
MANUAL

PLC Automation
Automation Builder, programmable logic control-
lers, control panels
Automation Builder 2.7.0, AC500 V3, AC500-eCo V3, AC500-XC V3, AC500-S, CP600, CP600-eCo,
CP600-Pro

—
 Table of contents

1 Preface... 6
1.1 Documentation guide.. 6
1.2 Do I use AC500 V2 or AC500 V3?.. 6
1.3 Your tasks - documentation from the user's point of view... 7
1.4 Regulations... 9
1.5 Older revisions of this document... 10
1.6 Structure of safety notices... 10

2 Safety instructions.. 12
3 Getting started with example projects.. 16

3.1 Introduction.. 16
3.2 Engineering software Automation Builder... 16

3.2.1 Purpose.. 16
3.2.2 Installation of the Automation Builder.. 16
3.2.3 Licensing procedure... 17
3.2.4 Setting up of communication parameters in Windows... 19

3.3 Hardware AC500 V3... 21
3.3.1 Configuration for example projects.. 21
3.3.2 System assembly, construction and connection.. 23

3.4 Example project for central I/O expansion.. 24
3.4.1 Purpose.. 24
3.4.2 Preconditions... 24
3.4.3 Creation, setting up and saving of your AC500 V3 project.. 24
3.4.4 Configuration of the I/O module... 29
3.4.5 Programming and compilation... 33
3.4.6 Setting up the communication gateway... 42
3.4.7 Installation and update of the AC500 V3 firmware... 48
3.4.8 Logging in to CPU and downloading the program... 50
3.4.9 Testing the program... 51
3.4.10 Setting up a visualization... 53
3.4.11 Creation of a visualization.. 57
3.4.12 Enabling a web visualization.. 65
3.4.13 Reset the CPU... 70

3.5 Example project for remote I/O expansion with PROFINET... 71
3.5.1 Purpose.. 71
3.5.2 Preconditions... 71
3.5.3 Set-up PROFINET controller.. 72
3.5.4 Set-up PROFINET device.. 74
3.5.5 Add remote I/O expansion to project.. 78
3.5.6 Test the program.. 82
3.5.7 Reset the CPU... 83

4 System overview, planning and operation.. 85
4.1 System overview... 85

4.1.1 AC500 PLC product family... 85
4.1.2 AC500/S500 system structure... 86
4.1.3 AC500-eCo/S500-eCo system structure.. 87
4.1.4 AC500/S500: Short description hardware.. 89
4.1.5 AC500-eCo/S500-eCo: Short description hardware.. 93

Table of contents

2024/01/053ADR010583, 1, en_US2

4.1.6 AC500-S... 94
4.1.7 CP600 control panels... 95
4.1.8 Automation Builder: Short description engineering software... 95

4.2 Application planning.. 97
4.2.1 Safety instructions.. 97
4.2.2 Processor module and I/O selection.. 97
4.2.3 I/O bus - Communication within the PLC... 97
4.2.4 Fieldbus connectivity options... 98
4.2.5 Power supply dimensioning... 100
4.2.6 Libraries, software packages and licensed features.. 103

4.3 Mechanical planning and installation... 104
4.3.1 Control cabinet assembly (indoor use)... 104
4.3.2 Mounting and demounting - general information... 106
4.3.3 Mounting and demounting the terminal base... 107
4.3.4 Mounting and demounting the AC500 processor module.. 109
4.3.5 Mounting and demounting the communication module... 109
4.3.6 Mounting and demounting the terminal unit... 111
4.3.7 Mounting and demounting the I/O module... 113
4.3.8 Mounting and demounting the AC500-eCo processor module.. 114
4.3.9 Mounting and demounting the S500-eCo I/O module.. 123
4.3.10 Accessories for AC500 (Standard)... 126
4.3.11 Accessories for AC500-eCo... 127
4.3.12 Control panels CP600.. 130

4.4 Wiring.. 131
4.4.1 Grounding concept... 131
4.4.2 EMC-conforming assembly and construction... 132
4.4.3 Connection and wiring of the PLC platform... 137
4.4.4 Connection and wiring of the modules... 145

4.5 Configuration and programming.. 145
4.6 Commissioning.. 146
4.7 Operation... 147

4.7.1 Operating modes.. 147
4.7.2 Diagnosis system... 147
4.7.3 Status LEDs, display and control elements... 148
4.7.4 PLC firmware/application update... 148
4.7.5 Control panel firmware/application update... 148
4.7.6 Reset Warm... 149

4.8 Troubleshooting... 149
4.8.1 General.. 149
4.8.2 Possible malfunctions.. 149
4.8.3 Execution of a hotfix... 151

4.9 Maintenance.. 152
4.9.1 Maintenance intervals.. 152
4.9.2 Replace an AC500 module.. 152
4.9.3 Replace an I/O module with hot swap.. 153
4.9.4 Replace a CP600 control panel... 157

4.10 Decommissioning.. 157
4.11 Recycling... 158

5 Hardware descriptions.. 159
5.1 Technical data of the system... 159

5.1.1 System data AC500-eCo... 159

Table of contents

2024/01/05 3ADR010583, 1, en_US 3

5.1.2 System data AC500... 166
5.1.3 System data AC500-XC... 169
5.1.4 AC500-S... 174
5.1.5 CP600.. 174

5.2 Device specifications... 175
5.2.1 Processor modules.. 175
5.2.2 Communication modules for AC500(-XC) processor modules.. 327
5.2.3 Terminal bases for AC500(-XC) processor modules and communication modules............... 377
5.2.4 I/O modules.. 387
5.2.5 Terminal units for S500(-XC) I/O modules... 938
5.2.6 Communication interface modules... 951
5.2.7 Terminal units for communication interface modules... 1270
5.2.8 Accessories.. 1286
5.2.9 Storage devices... 1332

5.3 Status LEDs, display and control elements... 1338
6 Configuration and programming... 1339

6.1 Cyber security... 1340
6.1.1 General.. 1340
6.1.2 Defense in depth.. 1341
6.1.3 Secure operation.. 1342
6.1.4 Hardening... 1345
6.1.5 Certificates factory default - no encryption... 1346
6.1.6 Open Ports and Services... 1349

6.2 Engineering software Automation Builder... 1350
6.2.1 Introduction.. 1350
6.2.2 Automation Builder updates... 1350
6.2.3 Use of open source components... 1350
6.2.4 Managing your licenses... 1350
6.2.5 Setting up of communication parameters in Windows... 1382
6.2.6 Version information.. 1384
6.2.7 PLC runtime and demo licensing... 1385
6.2.8 Create log files for support... 1385
6.2.9 Menues, views, windows.. 1386
6.2.10 Device repository... 1387
6.2.11 Creating and configuring projects... 1390
6.2.12 Handling of AC500 projects... 1391
6.2.13 Connection of devices.. 1392
6.2.14 Connection of serial interfaces... 1394
6.2.15 Converting an AC500 V2 project to an AC500 V3 project... 1394
6.2.16 Automation Builder installation manager... 1395

6.3 Configuration in Automation Builder for AC500 V3 products.. 1398
6.3.1 General settings... 1398
6.3.2 PLC devices and components... 1443
6.3.3 Windows server.. 1647
6.3.4 Protocols and special servers.. 1647
6.3.5 Data transfer and programming... 1750
6.3.6 Server installation... 1758
6.3.7 Converting an AC500 V2 project to an AC500 V3 project... 1799

6.4 Programming with CODESYS... 1800
6.4.1 CODESYS Development System.. 1800
6.4.2 Fieldbus Support.. 2812

Table of contents

2024/01/053ADR010583, 1, en_US4

6.4.3 Runtime systems, OPC UA server... 2834
6.4.4 Libraries... 2852
6.4.5 CODESYS Visualization.. 2852
6.4.6 CODESYS Visualization Support... 3753

6.5 Libraries and solutions.. 3773
6.5.1 Information on libraries... 3773
6.5.2 Reference to CODESYS (V3).. 3773
6.5.3 Library Manager functionality... 3773
6.5.4 ACS/DCS drives libraries... 3778
6.5.5 Application libraries.. 3833
6.5.6 BACnet-BC... 3833
6.5.7 CAA library guidelines.. 3849
6.5.8 Data Logger Library... 3849
6.5.9 High Availability Modbus TCP.. 3859
6.5.10 Motion Control.. 3904
6.5.11 MQTT client library... 4048
6.5.12 PLCopen libraries... 4051
6.5.13 Pumping library V3... 4056
6.5.14 Reference, function blocks... 4086

6.6 Engineering interfaces and tools... 4191
6.6.1 Export and import interfaces.. 4191
6.6.2 CODESYS Security Agent... 4201
6.6.3 CODESYS Static Analysis... 4208
6.6.4 Multi download tool.. 4306
6.6.5 Tool Calling Interface (TCI) implementation... 4309
6.6.6 Drive composer pro integration.. 4311
6.6.7 Professional Version Control.. 4315
6.6.8 Subversion... 4356
6.6.9 Mail service with SMTP/SMTPS.. 4361
6.6.10 SNMP... 4362
6.6.11 Scripting with Python.. 4362

6.7 Human machine interface... 4397
6.7.1 Control panels.. 4397
6.7.2 Panel Builder interface... 4398
6.7.3 SCADA Integration... 4406

6.8 System technology.. 4411
6.8.1 General... 4411
6.8.2 System technology of CPU and overall system... 4412
6.8.3 System technology of the AC500 communication modules... 4565
6.8.4 System technology of the communication interface modules.. 4568

6.9 Diagnosis and debugging.. 4605
6.9.1 The diagnosis system ... 4605
6.9.2 Online diagnosis in Automation Builder... 4640
6.9.3 Diagnosis messages.. 4655

7 Glossary... 4710
8 Index... 4713

Table of contents

2024/01/05 3ADR010583, 1, en_US 5

—
1 Preface
1.1 Documentation guide

Where to find information about:
● PLC system

– Ä Chapter 4.1 “System overview” on page 85
– Ä Chapter 3 “Getting started with example projects” on page 16
– Starter kit: Introduction to PLC programming and visualization, including all needed

hardware components
– Safety user manual for safety PLCs

● Devices
– Data sheets
– Installation instructions
– Ä Chapter 5.2 “Device specifications” on page 175
– Safety user manual for safety PLCs
– Control panels

● Software and programming
– Ä Chapter 6 “Configuration and programming” on page 1339
– Programming examples available for download
– Programming examples available in the engineering suite: Open Automation Builder

menu “Help è Project examples”
– Application descriptions for specific features and use cases
– Release notes for the latest version of the engineering suite Automation Builder

1.2 Do I use AC500 V2 or AC500 V3?
This document describes AC500 V3 products.
We offer different ranges of the processor modules (V2, V3). You can easily find out which ones
are used in your system. Either have a look at your used modules or your configuration.

Fig. 1: Hardware: Processor modules

Written type on the module Example Range Relevant manual
Processor module type PM +
3 digits

PM595 V2 AC500 V2

Processor module type PM +
4 digits

PM5670 V3 AC500 V3 (this manual)

Preface
Do I use AC500 V2 or AC500 V3?

2024/01/053ADR010583, 1, en_US6

https://drives-abb.swipeguide.com/guide/ac500-eco-v3-starter-kit
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=&DocumentPartId=&Action=Launch
https://library.abb.com/r?cid=9AAC177033&dk=data%20sheet
https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=&DocumentPartId=&Action=Launch
https://library.abb.com/r?cid=9AAC177473&dkg=dkg_instructions%20and%20manuals
https://new.abb.com/plc/application-examples
https://library.abb.com/r?cid=9AAC177033&dk=application%20note
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107680A0358&LanguageCode=&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010582&LanguageCode=en&DocumentPartId=&Action=Launch

Fig. 2: Software: Configuration in engineering software Automation Builder

Written type in brackets Example Range Relevant manual
Processor module type PM +
3 digits

PM595 V2 AC500 V2

Processor module type PM +
4 digits

PM5670 V3 AC500 V3 (this manual)

1.3 Your tasks - documentation from the user's point of view
All information about AC500, AC500-XC and AC500-eCo is available in this manual.
All information about AC500-S and AC500-S-XC is available online in the safety user manual.

PLC related videos youtube.com/user/abbplc

Getting started with example projects
Ä Chapter 3 “Getting started with example
projects” on page 16

PLC system description Ä Chapter 4.1 “System overview”
on page 85

Hardware descriptions
Ä Chapter 5.2 “Device specifications”
on page 175

System technology: System behavior, interac-
tion between PLC behavior (firmware), config-
uration, programming and use cases.

Ä Chapter 6.8 “System technology”
on page 4411

AC500 V3 CPU specifications
Ä Chapter 5.2 “Device specifications”
on page 175

Comparison of product features ● Ä Chapter 5.2.1.2.1 “Product overview
and comparison” on page 303

● via product catalog

Convert an AC500 V2 project to an AC500 V3
project

Ä Chapter 6.2.15 “Converting an AC500 V2
project to an AC500 V3 project” on page 1394

Compatible modules with AC500 CPUs
Ä Chapter 5.2 “Device specifications”
on page 175

Documentation for AC500 V2 AC500 V2

As a specialist
for PLCs, new to
AC500 PLC

As a specialist
for AC500 V2
CPU range, new
to AC500 V3
CPU range

Preface

Your tasks - documentation from the user's point of view

2024/01/05 3ADR010583, 1, en_US 7

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010582&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch
https://www.youtube.com/user/abbplc
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010582&LanguageCode=en&DocumentPartId=&Action=Launch

PLC system description Ä Chapter 4.1 “System overview”
on page 85

Hardware descriptions
Ä Chapter 5.2 “Device specifications”
on page 175

Comparison of product features ● Ä Chapter 5.2.1.2.1 “Product overview
and comparison” on page 303

● via product catalog (online)

Assembly of modules
Ä Chapter 4.3 “Mechanical planning and
installation” on page 104

Connection of modules In the device specifications, select the desired
product to access the connection for this
device.
Ä Chapter 5.2 “Device specifications”
on page 175

“Device specifications è Product group
è Product type è Electrical connection”

Installation instructions All AC500 modules

Example projects
Ä Chapter 3 “Getting started with example
projects” on page 16

Programming examples for download

Programming examples available in engi-
neering suite: Open Automation Builder menu
“Help è Project examples”

Application descriptions for specific features
and use cases

Installation of Automation Builder Ä Chapter 3.2.2 “Installation of the
Automation Builder” on page 16

License management for Automation Builder Ä Chapter 6.2.4 “Managing your licenses”
on page 1350

Configuration of PLC hardware in Automation
Builder

Ä Chapter 6.3 “Configuration in Automation
Builder for AC500 V3 products” on page 1398

Firmware update Ä Chapter 6.3.1.4 “Firmware identification
and update” on page 1419

Programming Ä Chapter 6.4 “Programming with CODESYS”
on page 1800

Function block libraries Libraries by ABB Ä Chapter 6.5 “Libraries and
solutions” on page 3773

CODESYS libraries by 3S Ä Chapter 6.4.4
“Libraries” on page 2852

System technology: System behavior, interac-
tion between PLC behavior (firmware), config-
uration, programming and use cases.

Ä Chapter 6.8 “System technology”
on page 4411

Visualization and web visualization: Example
projects

Ä Chapter 3.4 “Example project for central I/O
expansion” on page 24

Visualization and web visualization Ä Chapter 6.4.5 “CODESYS Visualization”
on page 2852

As a mechan-
ical/electrical
designer

As a control
cabinet manu-
facturer

As a program-
ming engineer

Preface
Your tasks - documentation from the user's point of view

2024/01/053ADR010583, 1, en_US8

https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch
https://share.library.abb.com/api/v4?cid=9AAC177287&dk=Instruction&dk=Manual&dk=Operating%20instruction&dk=Recycling%20instructions&dk=Service%20instruction&q=installation%20instruction
https://new.abb.com/plc/application-examples
https://library.abb.com/r?cid=9AAC177033&dk=application%20note&lang=en
https://library.abb.com/r?cid=9AAC177033&dk=application%20note&lang=en

Add, remove or modify software packages in
Automation Builder via installation manager

Ä Chapter 6.2.16 “Automation Builder installa-
tion manager” on page 1395

Add-on software packages Ä Chapter 6.6 “Engineering interfaces and
tools” on page 4191

HMI, e.g., interface to control panels and
SCADA systems

Ä Chapter 6.7 “Human machine interface”
on page 4397

Function block libraries Libraries by ABB Ä Chapter 6.5 “Libraries and
solutions” on page 3773

CODESYS libraries by 3S Ä Chapter 6.4.4
“Libraries” on page 2852

Hardware descriptions
Ä Chapter 5.2 “Device specifications”
on page 175

Troubleshooting Ä Chapter 4.8 “Troubleshooting” on page 149

Ä Chapter 6.9 “Diagnosis and debugging”
on page 4605

Troubleshooting Ä Chapter 4.8 “Troubleshooting” on page 149

Ä Chapter 6.9 “Diagnosis and debugging”
on page 4605

List of diagnosis and error messages Ä Chapter 6.9.3 “Diagnosis messages”
on page 4655

Contact ABB support new.abb.com/plc

1.4 Regulations
The planning and installation of the electrical system must be carried out in compliance with the
applicable regulations and standards. Hazards due to malfunctions must be prevented by taking
appropriate measures.
The suitability of the products for the respective application is proven by declarations of con-
formity and certificates.
The PLC Automation catalog contains an
overview of the available declarations of conformity and certificates.

Both the AC500 control system and other components in the vicinity are operated with dan-
gerous touch voltages. Touching live components can lead to serious health implications or
even death.
To avoid such risks and the occurrence of property damage, persons involved in the installation,
commissioning and maintenance must have relevant knowledge about:
● Automation technology
● Handling of hazardous voltages
● Application of relevant standards and regulations, accident prevention regulations and reg-

ulations on special environmental conditions (e.g., hazardous areas due to explosive sub-
stances, heavy soiling or corrosive influences).

As a commis-
sioning engi-
neer

As a service
engineer

Planning and
installation of
the electrical
system

Qualified per-
sonnel

Preface

Regulations

2024/01/05 3ADR010583, 1, en_US 9

https://new.abb.com/plc
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23certifications

1.5 Older revisions of this document
You can always find all revisions of our documents on our website.
AC500 V3 (online)

Revisions Select any of the revisions
Latest revision Get a link to the latest revision
This revision Get a direct link to the selected revision

1.6 Structure of safety notices
Throughout the documentation we use the following types of safety and information notices.
They make you aware of safety considerations or give advice on AC500 products usage.

1 Safety alert symbol indicates the danger.
2 Signal word classifies the danger.
3 Type and source of the risk are mentioned and possible consequences are described.
4 Measures to avoid these consequences (enumerations).

DANGER!
DANGER indicates a hazardous situation which, if not avoided, will result in
death or serious injury.
Ensure to take measures to prevent the described impending danger.

Signal words

Preface
Structure of safety notices

2024/01/053ADR010583, 1, en_US10

https://library.abb.com/d/3ADR010583

WARNING!
WARNING indicates a hazardous situation which, if not avoided, could result in
death or serious injury.
Ensure to take measures to prevent the described dangerous situation.

CAUTION!
CAUTION indicates a hazardous situation which, if not avoided, could result in
minor or moderate injury.
Ensure to take measures to prevent the described dangerous situation.

NOTICE!
NOTICE is used to address practices not related to physical injury but might
lead to property damage for example damage of the product.
Ensure to take measures to prevent the described dangerous situation.

NOTE provides additional information on the product, e.g., advices for configu-
ration or best practice scenarios.

Preface

Structure of safety notices

2024/01/05 3ADR010583, 1, en_US 11

—
2 Safety instructions

Relevant standards and regulations, accident prevention regulations and regulations on spe-
cial environmental conditions must be observed (e.g., hazardous areas due to explosive sub-
stances, heavy soiling or corrosive influences).
The devices must be handled and operated within the specified technical data and system data.
The devices contain no serviceable parts and must not be opened.
Removable covers must be closed during operation unless otherwise specified.
Any liability for the consequences of incorrect use or unauthorized repairs is rejected.

Both the AC500 control system and other components in the vicinity are operated with dan-
gerous touch voltages. Touching live components can lead to serious health implications or
even death.
To avoid such risks and the occurrence of property damage, persons involved in the installation,
commissioning and maintenance must have relevant knowledge about:
● Automation technology
● Handling of hazardous voltages
● Application of relevant standards and regulations, accident prevention regulations and reg-

ulations on special environmental conditions (e.g., hazardous areas due to explosive sub-
stances, heavy soiling or corrosive influences).

The AC500-S safety user manual must be read and understood before using the safety configu-
ration and programming tools of Automation Builder/PS501 Control Builder Plus. Only qualified
personnel are permitted to work with AC500-S safety PLCs.

The examples and diagrams in this manual are included solely for illustrative purposes.
Because of the many variants and requirements associated with any particular installation, ABB
cannot assume responsibility or liability for actual use based on the examples and diagrams.
The PLC was developed according to the relevant standards. Any module-specific measures
are described in the individual descriptions of the modules.

The product family AC500 control system is designed according to the EN
61131-2 and IEC 61131-2 standards. Any data that differs from IEC 61131-2,
is due to the higher requirements of Maritime Services. Other differences are
described in the technical data description of the devices.

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

Qualified per-
sonnel

Functional
safety

General infor-
mation

PLC-specific
safety notices

Safety instructions

2024/01/053ADR010583, 1, en_US12

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch

NOTICE!
Use of suitable enclosure
The devices must be mounted in a control cabinet that ensures compliance with
the specified environmental conditions.

Cleaning instructions
Do not use cleaning agent for cleaning the device.

Use a damp cloth instead.

Connection plans and a user program must be created so that no dangerous situations can
occur during normal operation or failure.
The application must be tested to ensure that no dangerous situations can occur during opera-
tion.

Do not operate devices outside of the specified, technical data!

Trouble-free functioning cannot be ensured outside of the specified data.

NOTICE!
PLC damage due to missing grounding
– Make sure to ground the devices.
– The grounding (switch cabinet grounding) is supplied both by the mains

connection (or 24 V supply voltage) and via the DIN rail. The DIN rail
must be connected to ground before power is supplied to the device. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

– In case of screw mounting, use metal screws for grounding.

CAUTION!
Do not obstruct the ventilation for cooling!
The ventilation slots on the upper and lower sides of the devices must not be
covered.

CAUTION!
Run signal and power wiring separately!
Signal and supply lines (power cables) must be laid out so that no malfunctions
due to capacitive and inductive interference can occur (EMC).

WARNING!
Warning sign on the module!
This indicates that dangerous voltages may be present or that surfaces may
have dangerous temperatures.

Safety instructions

2024/01/05 3ADR010583, 1, en_US 13

WARNING!
Splaying of strands can cause hazards!
Avoid splayed strands when wiring terminals with stranded conductors.
– Ferrules can be used to prevent splaying.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

CAUTION!
Use only ABB approved lithium battery modules!
At the end of the battery’s lifetime, always replace it only with a genuine battery
module.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble lithium batteries. Attempting to charge
lithium batteries will lead to overheating and can cause explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid unintentional short circuiting
do not store batteries in metal containers and do not place them on metallic
surfaces. Escaping lithium is a health hazard.

Information on
batteries

Safety instructions

2024/01/053ADR010583, 1, en_US14

Environment considerations
Recycle exhausted batteries. Dispose of batteries in an environmentally con-
scious manner in accordance with regulations issued by the local authorities.

Safety instructions

2024/01/05 3ADR010583, 1, en_US 15

—
3 Getting started with example projects
3.1 Introduction

This document gives an overview of the steps for the first use of a PLC with AC500 V3
processor module and describes:
● installation of the engineering software Ä Chapter 3.2 “Engineering software Automation

Builder” on page 16
● hardware needed for example projects Ä Chapter 3.3 “Hardware AC500 V3” on page 21
● setting up a first, simple project for a stand-alone CPU with central I/O expansion, including

visualization and web visualization Ä Chapter 3.4 “Example project for central I/O expan-
sion” on page 24

● commissioning a project for remote I/O expansion with PROFINET Ä Chapter 3.5 “Example
project for remote I/O expansion with PROFINET” on page 71

Getting started with an AC500-eCo V3 processor module:
Starter kit smart guide

3.2 Engineering software Automation Builder
3.2.1 Purpose

For configuring and programming of any AC500 CPU you need the engineering software suite
Automation Builder. Automation Builder is available for download.
Ä Further information on page 16

3.2.2 Installation of the Automation Builder
You must have admininstrator rights on your PC to install Automation Builder.
In case of an update installation:

Create a project archive before upgrading Automation Builder. Project archives
contain all project data, including data that is not stored with a *.project file, e.g.
device description files for third party devices.

Ä Chapter 6.3.1.1.8.2 “Creation of an archive ” on page 1408

1. Go to abb.com/automationbuilder to access the homepage of Automation Builder.
2. In the “Downloads” section, select “Download Automation Builder”.
3. In the “Latest Automation Builder” section, select “Automation Builder x.x. Download” (x.x

= latest version). This downloads the installer on your PC.
4. Open the downloaded installer and follow the instructions of the installation manager.

Preconditions

Installation

Getting started with example projects
Engineering software Automation Builder > Installation of the Automation Builder

2024/01/053ADR010583, 1, en_US16

https://drives-abb.swipeguide.com/guide/ac500-eco-v3-starter-kit
https://new.abb.com/plc/automationbuilder

5. Keep the default type of installation to “Premium Edition” if available.
6. Select software packages to be installed:

Enable the check box “PLC - AC500 V3” to activate installation of all options for AC500
V3.

7. Click “Download and install” and follow the instructions of the setup.

3.2.3 Licensing procedure
When you start Automation Builder software for the first time, you will be asked to choose a
license option.
See also:
● Details about the license model, the features of the editions and the latest license

information
● Detailed description of the installation and the licensing possibilities of Automation Builder

Automation Builder software must be installed successfully.

PC is connected to the internet.
1. Start Automation Builder.

ð A licensing wizard starts and guides you through the licensing procedure.

2. Enter user information.
In case of future support requests, your registration details enable ABB support team to
handle your questions quickly.

3. Select “OK”.

Activate a trial
license

Getting started with example projects

Engineering software Automation Builder > Licensing procedure

2024/01/05 3ADR010583, 1, en_US 17

https://new.abb.com/plc/automationbuilder/platform/software
https://new.abb.com/plc/automationbuilder/platform/software
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010659&LanguageCode=en&DocumentPartId=&Action=Launch

4. Enable the trial license.
5. Select “Next”.

6. Enable the single PC license and select “Next”.

Getting started with example projects
Engineering software Automation Builder > Licensing procedure

2024/01/053ADR010583, 1, en_US18

7. Enable online activation and select “Next”.

ð License activation procedure starts. A successfully ended licensing procedure ends
with a success message.

8. Select “OK” to end the wizard.

ð Automation Builder license is activated and starts.

3.2.4 Setting up of communication parameters in Windows
To set up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.
The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows control panel. Click “Network and Internet

è Network and Sharing Center”.
2. Click “Change adapter settings”.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click “Local Area Connection (Ethernet)” and select [Properties].

Setting up of
communication
parameters

Changing of the
IP address

Getting started with example projects

Engineering software Automation Builder > Setting up of communication parameters in Windows

2024/01/05 3ADR010583, 1, en_US 19

4. Double-click “Internet Protocol Version 4 (TCP/IPv4)”.

Getting started with example projects
Engineering software Automation Builder > Setting up of communication parameters in Windows

2024/01/053ADR010583, 1, en_US20

5. Enter your desired IP address and subnet mask.

3.3 Hardware AC500 V3
3.3.1 Configuration for example projects

The example projects require a small PLC configuration with I/O devices, e.g., as available in
the training case TA5450-CASE.

Table 1: Modules for example projects to get started with AC500 V3 PLC
Product name Type First project

Ä Chapter 3.4
“Example project for
central I/O expan-
sion” on page 24

Second project
Ä Chapter 3.5
“Example project
for remote
I/O expansion
with PROFINET”
on page 71

PM5630- 2ETH AC500 V3 CPU x x

TB5620-2ETH terminal base for CPU x x

DA501 analog/digital mixed
input/output (I/O)
module

x x

TU516-H terminal unit for I/O
module

x x

Getting started with example projects

Hardware AC500 V3 > Configuration for example projects

2024/01/05 3ADR010583, 1, en_US 21

https://new.abb.com/products/1SAP187700R0001

Product name Type First project
Ä Chapter 3.4
“Example project for
central I/O expan-
sion” on page 24

Second project
Ä Chapter 3.5
“Example project
for remote
I/O expansion
with PROFINET”
on page 71

CM579-PNIO PROFINET communi-
cation module

-- x

CI502-PNIO PROFINET commu-
nication interface
module

-- x

TU508-ETH terminal unit for com-
munication interface
module

-- x

TA524 blind cap for terminal
base

x x

Fig. 3: Training case TA5450

In the training case, the control panel CP6607 is included. A control panel is not
needed for the example projects.

For testing the example project some inputs require to be connected as follows:

Connections

Getting started with example projects
Hardware AC500 V3 > Configuration for example projects

2024/01/053ADR010583, 1, en_US22

Fig. 4: Wiring of training case

For the example projects, not all input switches and none of the potentiometers
included in training case are necessary.

You will need switch I1 for the example project for central I/O expansion.

You will need switch I5 for the example project for remote I/O expansion.

3.3.2 System assembly, construction and connection

NOTICE!
Avoidance of electrostatic charging
PLC devices and equipment are sensitive to electrostatic discharge, which can
cause internal damage and affect normal operation. Observe the following rules
when handling the system:
– Touch a grounded object to discharge potential static.
– Wear an approved grounding wrist strap.
– Do not touch connectors or pins on component boards.
– Do not touch circuit components inside the equipment.
– If available, use a static-safe workstation.
– When not in use, store the equipment in appropriate static-safe packaging.

You can mount AC500 PLC either to DIN rail or to a metal plate. Here, we recommend to mount
on DIN rail.
1. Snap the terminal base onto DIN rail.
2. Snap the additional terminal units for I/O modules onto DIN rail.
3. Make the sensor/actuator wire connections according to the dedicated electronic module

you want to use. Provide external process power supply as required.
4. If required, make the fieldbus connections according to the dedicated master communica-

tion module you want to use.

Getting started with example projects

Hardware AC500 V3 > System assembly, construction and connection

2024/01/05 3ADR010583, 1, en_US 23

5. Plug the appropriate electronic and I/O modules in the correct locations (processor
module, communication modules on terminal base, and eventually also communication
interface modules and I/O modules onto dedicated terminal units).

6. Connect a programming cable (Ethernet cable between ETH port of CPU and PC with
engineering software).

3.4 Example project for central I/O expansion
3.4.1 Purpose

The following steps show how to set-up an application project and configure the hardware. A
simple logic is used as example to introduce in programming and commissioning of the PLC.
The workflow for creation of a visualization is explained, as well as how to set-up a web server
for visualization.

3.4.2 Preconditions
● Automation Builder is installed and licensed as, at least, basic edition Ä Chapter 6.2.4

“Managing your licenses” on page 1350.
● AC500 V3 CPU is assembled and connected to the PC Ä Chapter 3.3 “Hardware AC500

V3” on page 21.

3.4.3 Creation, setting up and saving of your AC500 V3 project
3.4.3.1 Creation of a project

1. Launch Automation Builder either out of the desktop icon or out of the Windows menu.

2. Select “New Project” or go to menu “File è New Project”.

Getting started with example projects
Example project for central I/O expansion > Creation, setting up and saving of your AC500 V3 project

2024/01/053ADR010583, 1, en_US24

3. Select “Projects”.
4. Select “AC500 project”.
5. Fill in project name.
6. Choose a location to save the project to.
7. Select [OK].
8. Select “PLC - AC500 V3”.
9. Select the CPU according to your hardware set-up.

Getting started with example projects

Example project for central I/O expansion > Creation, setting up and saving of your AC500 V3 project

2024/01/05 3ADR010583, 1, en_US 25

10. Select [Add PLC] to add the CPU to your application.

Getting started with example projects
Example project for central I/O expansion > Creation, setting up and saving of your AC500 V3 project

2024/01/053ADR010583, 1, en_US26

3.4.3.2 Configuration of your processor module

1. Double-click “PLC_AC500_V3”.

ð A tab opens in the editor view.

2. Select “CPU Parameters”.
3. Under parameter “Check battery”, choose the value “Off” since there is no battery present

inside the CPU module.
4. Keep the default values for all other parameters.

3.4.3.3 Creation of folders in the device tree
To optimize the project readability, you will create different folders to group similar objects. The
folder names are exemplary. Because the device tree view follows an alphabetical order, we use
number prefixes to determine the order.

Getting started with example projects

Example project for central I/O expansion > Creation, setting up and saving of your AC500 V3 project

2024/01/05 3ADR010583, 1, en_US 27

1. Right-click “Application”.
2. Select “Add Folder”.

3. Type in "10 POUs". This is a name example. Here, the intention is to see this folder as a
last one.
The folder "10 POUs" is for program organization units (POU). POUs are objects of type
program, function or function block that are used to create a user program.

Getting started with example projects
Example project for central I/O expansion > Creation, setting up and saving of your AC500 V3 project

2024/01/053ADR010583, 1, en_US28

3.4.3.4 Saving the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

3.4.4 Configuration of the I/O module
3.4.4.1 General

● The types and order of modules in the Automation Builder project must match the real
hardware configuration.

● The position of the modules in the device tree can be changed by drag and drop.

Getting started with example projects

Example project for central I/O expansion > Configuration of the I/O module

2024/01/05 3ADR010583, 1, en_US 29

3.4.4.2 Adding an I/O bus module

1. Right-click “IO_Bus” in the device tree.
2. Select “Add object”.

Getting started with example projects
Example project for central I/O expansion > Configuration of the I/O module

2024/01/053ADR010583, 1, en_US30

3. Select “S500 I/O modules”.
4. Select “DA501” module.
5. Select [Add object] to add the module to the I/O bus.

Getting started with example projects

Example project for central I/O expansion > Configuration of the I/O module

2024/01/05 3ADR010583, 1, en_US 31

3.4.4.3 Variable mapping of the DA501

1. Double-click “DA501” in the device tree.

ð A tab opens in the editor view.

2. Select “DA501 I/O Mapping”

ð Here, you will map variable names (symbols) for the channels you will need in the
program.

The suggested name convention is based on "Hungarian notation". A name prefix is describing
variable type: e.g., "x" = variable of type BOOL, "w" = WORD, "i" = INT (integer) etc. This
increases the code readability and is helpful for program analysis.

3.4.4.4 Handling the digital input variables

1. Open the list of the digital inputs.
2. Fill in the variable names:

Channel Type Variable
Digital input DI8 BOOL xDI_08_DA501_I1

Getting started with example projects
Example project for central I/O expansion > Configuration of the I/O module

2024/01/053ADR010583, 1, en_US32

3.4.4.5 Handling the digital output variables

1. Open the list of the digital outputs.
2. Fill in the variable names:

Channel Type Variable
Digital output DC16 BOOL xStartDrilling1

3.4.5 Programming and compilation
3.4.5.1 Task configuration

A task is a time unit in the processing of a user program (IEC application), which defines by
parameters the way and the speed the CPU is executing the user program.
For this project you will use only one cycling task.

In the device tree, you see the objects “Task configuration” and “Task”. Both created automati-
cally with the project.
For this project you will use only one cycling task.

Double-click “Task” in the device tree.

ð A tab opens in the editor view.

For this project you will use only one cyclic task. Keep the default settings for the task.

Priority This is how the CPU prioritizes the task, when more than one task is defined. Priority
0 ... 15 = real time tasks, priority 16 = non-real time task.

Type In the CPU you can run tasks dependent on the demands of the process
Interval For cyclic tasks you can set the cyclical execution time. It is usually set in millisec-

onds with IEC time syntax
Watchdog To keep track of the time it takes to complete the task
Calls You can call in one or more program POUs in one single task

Getting started with example projects

Example project for central I/O expansion > Programming and compilation

2024/01/05 3ADR010583, 1, en_US 33

3.4.5.2 Main program PLC_PRG
In the default task configuration, there is one call of a POU (program organization unit) i.e.
"PLC_PRG" Ä (shown in chapter 3.4.5.1 Task configuration on page 33).
In your project the "PLC_PRG" will become a main program containing calls to other programs
(POUs) which you will create one by one.

The PLC_PRG POU has been defined by default in ST (Structured Text) editor. Keep this
setting because of good visibility of the instructions at a glance and good handling for trouble-
shooting.
To optimize the project readability, you will work with the previously created folder "10 POUs"
and add the created subroutines (POUs) to this folder. The subroutines will be created in FBD
(Function Block Diagram) editor.

3.4.5.3 Boolean logic "NOT"
3.4.5.3.1 Application example "driller"

Recognizing of a driller by a photo sensor. "TRUE" input signal from sensor indicates that a
driller is broken. If driller has been found correct, then start drilling.

Table 2: Required behavior
Signal from photo sensor Required signal of motor ON
FALSE TRUE

TRUE FALSE

Getting started with example projects
Example project for central I/O expansion > Programming and compilation

2024/01/053ADR010583, 1, en_US34

Table 3: Hardware set-up
Element HW channel Symbol Description
Switch I1 DA501 DI8 xDI_08_DA501_I1 Photo sensor

LED output DC16 DA501 DC16 xStartDrilling1 Motor on

3.4.5.3.2 Implementation
Creation of a new program POU in the project

1. Right-click “10 POUs”.
2. Select “Add object”.
3. Select “POU”.
4. Select [Add object].

Getting started with example projects

Example project for central I/O expansion > Programming and compilation

2024/01/05 3ADR010583, 1, en_US 35

5. Enter “_01_Assignment_NOT”.
6. Select “Program”.
7. Select “Function Block Diagram (FBD)”.
8. Select [Add].

ð POU has been added.

Getting started with example projects
Example project for central I/O expansion > Programming and compilation

2024/01/053ADR010583, 1, en_US36

Assigning the hardware DI signals to local variables
1. Double-click POU“_01_Assignement_NOT” in the device tree.

2. Select “Assignment” from the ToolBox.
3. Drag and drop “Assignment” into the "Start here" field in network “1”.

4. Select “???” on the left side of the assignment, then select “...”.
5. Open the “Io Config_Globals_Mapping” mapping list and select “xDI_08_DA501_I1”.
6. Select [OK] to add this variable to the left side of the assignment connector.

Getting started with example projects

Example project for central I/O expansion > Programming and compilation

2024/01/05 3ADR010583, 1, en_US 37

7. Select “???” on the right side of the assignment connector and mark the "???".
8. Create a new local variable by typing in "xDrillerBroken1" which will replace the "???".
9. Press [Enter].

ð “Auto Declare” opens.

You see the written variable name and the data type BOOL. The scope is "VAR". It
means it is a local variable within this POU.

10. Select [OK] to accept the entries.

11. Drag and drop “Network” from the ToolBox to the down-arrow of network 1.

ð You added a network “2” below network 1.

Adding assignments and a Boolean NOT to the DO signals
1. Add an assingment from the ToolBox.
2. Type in or copy & paste "xDrillerBroken1" to the left side of the instruction line.
3. Select “???” on the right side of the instruction line, then select “...”.

ð “Input Assistant” opens.

Getting started with example projects
Example project for central I/O expansion > Programming and compilation

2024/01/053ADR010583, 1, en_US38

4. In the “IoConfig_Globals_ Mapping” variable list, select “xStartDrilling1”.
5. Select [OK] to close the dialog.

Getting started with example projects

Example project for central I/O expansion > Programming and compilation

2024/01/05 3ADR010583, 1, en_US 39

6. Right-click the center of assignment PIN.
7. Select “Negation” to add a negation to the assignment.

Calling the POU in the PLC_PRG

1. Double-click “PLC_PRG”.
2. Select the first line in "PLC_PRG" and press [F2].

ð “Input Assistant” opens.

Getting started with example projects
Example project for central I/O expansion > Programming and compilation

2024/01/053ADR010583, 1, en_US40

3. Select “Module Calls”.
4. Open “Application”.
5. Open “10 POUs” and select “_01_Assignment_NOT”.
6. Select [OK] to close the dialog.

Getting started with example projects

Example project for central I/O expansion > Programming and compilation

2024/01/05 3ADR010583, 1, en_US 41

3.4.5.3.3 Compilation of the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

3.4.5.3.4 Saving the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

3.4.6 Setting up the communication gateway
To set up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.

Setting up of
communication
parameters

Getting started with example projects
Example project for central I/O expansion > Setting up the communication gateway

2024/01/053ADR010583, 1, en_US42

The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows control panel. Click “Network and Internet

è Network and Sharing Center”.
2. Click “Change adapter settings”.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click “Local Area Connection (Ethernet)” and select [Properties].

4. Double-click “Internet Protocol Version 4 (TCP/IPv4)”.

Changing of the
IP address

Getting started with example projects

Example project for central I/O expansion > Setting up the communication gateway

2024/01/05 3ADR010583, 1, en_US 43

5. Enter your desired IP address and subnet mask.

Getting started with example projects
Example project for central I/O expansion > Setting up the communication gateway

2024/01/053ADR010583, 1, en_US44

CPU and PC are connected with an Ethernet cable.

1. In the Automation Builder device tree right-click “PLC_AC500_V3”.
2. Select “Communication Settings”.

Setting up the
communication
gateway

Getting started with example projects

Example project for central I/O expansion > Setting up the communication gateway

2024/01/05 3ADR010583, 1, en_US 45

3. Keep the default value in the IP address of the CPU or type in the current IP address, if
differs.

The standard (default) IP address of the port ETH1 is: 192.168.0.10

4. Select [OK] to implement the IP address.

If you need to scan the network for the CPU or if you have multiple CPUs on the same network.
1. Right-click “PLC_AC500_V3” in the device tree.
2. Select “Communication Settings”.

Network scan

Getting started with example projects
Example project for central I/O expansion > Setting up the communication gateway

2024/01/053ADR010583, 1, en_US46

3. Select “...”.

ð “Pick IP Address for PLC_AC500_V3” opens.

The automatic scan runs.
The results will appear in this field.

4. Select the CPU in the field and select [OK] to implement the needed communications
gateway.

If you need to check the communications settings or if you want to see more information about
the current selected CPU.

1. Double-click “PLC_AC500_V3” in the device tree.

Checking the
communication
settings

Getting started with example projects

Example project for central I/O expansion > Setting up the communication gateway

2024/01/05 3ADR010583, 1, en_US 47

2. Select “Communication Settings”.

ð The selected IP address is shown.

3. If the IP address is not visible, enter the IP address manually.
4. To test the connection and/or to see the CPU information press [Enter] or click on the

black dot next to the PLC figure.

3.4.7 Installation and update of the AC500 V3 firmware

The multi download tool can be used to update multiple PLCs with firmware or
an application at the same time.

Ä Chapter 6.6.4 “Multi download tool” on page 4306

The PLC user management will remain also after a firmware update or downgrade.
Due to a structural change in the PLC user management in firmware version 3.5 there are some
limitations when updating the PLC firmware from a version 3.4 or lower to 3.5 or higher with
activated user management.

If you update the PLC firmware from version 3.4 or lower to version 3.6 or
higher this must be done in two steps. First an update to 3.5 must be done
via Automation Builder. Afterwards the firmware can be updated to any later
firmware version – either via Automation Builder or via memory card.

The PLC firmware can be updated via Automation Builder.

This is also necessary for commissioning V3 CPUs.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered
AC500 firmware, V3 CPUs are delivered with a boot loader only. You need to download a valid
firmware to the CPU. After download, the functionality of the CPU is given.

An Automation Builder project with an AC500 V3 CPU is open.

CPU is in "stop" mode or shows uPdAtE (update) on the display.

After update the CPU shows either donE or StoP on the display

Firmware
update with acti-
vated user man-
agement

Getting started with example projects
Example project for central I/O expansion > Installation and update of the AC500 V3 firmware

2024/01/053ADR010583, 1, en_US48

For new modules: IP address is set. (The default IP address is 192.168.0.10)
1. Double-click CPU “PLC_AC500_V3”.
2. Select “Version information”.

3. Select “Update Firmware”.

ð While the update process is running, the RUN and ERR LEDs are toggling, i.e., they
are flashing alternating.

4. Wait for the PLC to finish the update.

Firmware updates that include “UpdateFW” changes must be performed
in two steps:

First, the “UpdateFW” is updated, and once this is done click the update
button again to execute the “SystemFW” update.

Note: Firmware updates via memory card automatically cover both
updates in one step.

A completed update is indicated by a message on the display. Either donE, or StoP.

NOTICE!
Do not disconnect the power supply during the update process! The PLC
could be damaged.

ð StoP indicates a restart has been performed by the CPU. When donE is displayed
sometimes it is necessary to re-boot the CPU manually, e.g., by powering-off. Manual
re-boot might be, e.g., for some older CPU versions or if downgrading to an older
firmware version according to application settings.

The CPU display shows StoP after re-boot. The update process is finished.

Getting started with example projects

Example project for central I/O expansion > Installation and update of the AC500 V3 firmware

2024/01/05 3ADR010583, 1, en_US 49

5. If necessary, refresh the version information by switching to another tab and back.

ð Successful firmware update:

LED LED flashes Status
RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

3.4.8 Logging in to CPU and downloading the program
Logging-in to the CPU will load the project into the AC500 V3 CPU. The first log-in will also load
the hardware set-up.

Behavior of
LEDs during
firmware update

Getting started with example projects
Example project for central I/O expansion > Logging in to CPU and downloading the program

2024/01/053ADR010583, 1, en_US50

1. In the Automation Builder menu select “Online è Login [PLC_AC500_V3]”.

ð A pop-up will appear.

2. Select [Yes] to download the application to the AC500V3 CPU.

ð PLC is in "stop" mode.

3. Start the PLC Ä Chapter 3.4.9.1 “Starting the program execution” on page 51.

Generally, if the CPU is in RUN mode, i.e. in program execution mode, a
download will always cause the mode change to "stop". In stop mode the CPU
is not controlling the system!

Always, after selecting the “Login” command, read carefully the dialog box
text to ensure that you are aware of the CPU’s behavior after the command
confirmation.

By default, a download generates following actions in the CPU:
● The project is stored in the RAM memory.
● The project is stored in the flash EEPROM, if boot application was created.

3.4.9 Testing the program
3.4.9.1 Starting the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

Getting started with example projects

Example project for central I/O expansion > Testing the program

2024/01/05 3ADR010583, 1, en_US 51

The CPU is in "stop" mode.

Select menu “Debug è Start [PLC_AC500_V3]”.
Alternatively, select the "start" icon in the tool bar.
Alternatively, press [F5].

3.4.9.2 Testing the function
Operate the switch I1 and observe:
● The LEDs of the relevant DA501 inputs and outputs.
● The online status of inputs and outputs within the POU.

3.4.9.3 Stopping the program execution
You are logged in the CPU.

An executable project is loaded to the CPU.

Getting started with example projects
Example project for central I/O expansion > Testing the program

2024/01/053ADR010583, 1, en_US52

The CPU is in RUN mode.

Select menu “Debug è Stop [PLC_AC500_V3]”

Alternatively, select the "stop” icon in the tool bar.
Alternatively, press [Shift] + [F8].

3.4.10 Setting up a visualization
3.4.10.1 General

If you are not yet familiar with CODESYS visualization, we recommend you to start with the
application example First steps with CODESYS visualization. The example demonstrates the
main features of visualization and provides insights into possible use cases.

To use the Edge browser for CODESYS visualization of AC500 PLCs, follow the steps
described in the application note Usage in the Edge browser.

3.4.10.2 Adding the VisualizationManager

1. Right-click “Application” in the device tree.

Getting started with example projects

Example project for central I/O expansion > Setting up a visualization

2024/01/05 3ADR010583, 1, en_US 53

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010954&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011171&LanguageCode=en&DocumentPartId=&Action=Launch

2. Select “Add object”.
3. Select “VisualizationManager”.
4. Select [Add object] to add the VisualizationManager to the project.

ð Dialog “Add Visualization Manager” opens.

5. Select [Add].

ð You added the objects “VisualizationManager” and “VISU-TASK” to the device tree.

Getting started with example projects
Example project for central I/O expansion > Setting up a visualization

2024/01/053ADR010583, 1, en_US54

3.4.10.3 Settin up the VisualizationManager

1. Double-click VisualizationManager in the device tree.

ð A tab opens in the editor view.

Getting started with example projects

Example project for central I/O expansion > Setting up a visualization

2024/01/05 3ADR010583, 1, en_US 55

2. Select “Settings”.
3. Open the drop-down menu “Selected style”.
4. Select “Default, x.x.x” (exemplary).
5. Open the drop-down menu “Selected language”.
6. Select “en” for English language in the visualization.
7. Enable “Visible” for advanced settings.
8. Keep the file transfer to enable the visualization on the PLC (mandatory for web server

function) Ä Chapter 3.4.12 “Enabling a web visualization” on page 65.

3.4.10.4 Saving the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

Getting started with example projects
Example project for central I/O expansion > Setting up a visualization

2024/01/053ADR010583, 1, en_US56

3.4.11 Creation of a visualization
3.4.11.1 General

If you are not yet familiar with CODESYS visualization, we recommend you to start with the
application example First steps with CODESYS visualization. The example demonstrates the
main features of visualization and provides insights into possible use cases.

To use the Edge browser for CODESYS visualization of AC500 PLCs, follow the steps
described in the application note Usage in the Edge browser.

3.4.11.2 Adding a folder for visualization screens

1. Right-click “Application” in the device tree.
2. Select “Add Folder”.

3. Type in "02 VISUs".
4. Select [OK] to add the folder.

Getting started with example projects

Example project for central I/O expansion > Creation of a visualization

2024/01/05 3ADR010583, 1, en_US 57

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010954&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011171&LanguageCode=en&DocumentPartId=&Action=Launch

3.4.11.3 Adding a screen for "_01_Assignment_NOT" POU

1. Right-click “02 VISUs”.
2. Select “Add object”.
3. Select object “Visualization”.
4. Select [OK].

Getting started with example projects
Example project for central I/O expansion > Creation of a visualization

2024/01/053ADR010583, 1, en_US58

5. Type in "PLC_VISU".
6. Select [Add].

ð A tab opens in the editor view.

Fig. 5: PLC_VISU_tab

Getting started with example projects

Example project for central I/O expansion > Creation of a visualization

2024/01/05 3ADR010583, 1, en_US 59

The name "PLC_VISU" has been chosen, because it is the default name for a
home screen in a web visualization.

If you have more than one visualization object in your project, it will be
useful to choose another name, e.g. "_01_Assignment_NOT_v". And to choose
"PLC_VISU" as a home screen to access all available visualization screens.

The name of a visualization object can be modified afterwards.

3.4.11.4 Creation and configuration of a visualization
3.4.11.4.1 Changing the background color

1. Double-click “PLC_VISU” in the device tree.

ð A tab opens in the editor view.

2. Right-click anywhere on the "PLC_VISU" editor page.
3. Select “Background”.

4. Enable the check box “Use Color”.

ð This enables the drop-down menu.

5. Select a color, e.g., “Lightgray”.
6. Select [OK] to add the color to "PLC_VISU".

Getting started with example projects
Example project for central I/O expansion > Creation of a visualization

2024/01/053ADR010583, 1, en_US60

3.4.11.4.2 Adding a screen title
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.

3. Select “Common controls”.
4. Drag and drop “Label” to the page.

5. Type in "Start drilling condition".

3.4.11.4.3 Further lines and labels
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.
3. Select “Basic”.
4. Drag and drop the line. Then drag the line to the needed length.

Getting started with example projects

Example project for central I/O expansion > Creation of a visualization

2024/01/05 3ADR010583, 1, en_US 61

5. Follow the same procedure to create the other shapes and labels.

3.4.11.4.4 Lamp element for signal indication
1. Double-click on “PLC_VISU” in the device tree.

2. Select “ToolBox”.
3. Select “Lamps/Switches/Bitmaps”.
4. Drag and drop “Lamp” to the screen.
5. Adapt the size, if required.

6. Under “Image”, select “Gray”.

Getting started with example projects
Example project for central I/O expansion > Creation of a visualization

2024/01/053ADR010583, 1, en_US62

7. Double-click on “Variable” and select “...” to select a variable from the list.

8. Under “IoConfig_Globals_Mapping”, select “xStartDrilling1”.
9. Select [OK].

3.4.11.4.5 Compilation of the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

Getting started with example projects

Example project for central I/O expansion > Creation of a visualization

2024/01/05 3ADR010583, 1, en_US 63

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

3.4.11.4.6 Saving the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

3.4.11.5 Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 3.4.8 , on page 50.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

Getting started with example projects
Example project for central I/O expansion > Creation of a visualization

2024/01/053ADR010583, 1, en_US64

3.4.11.6 Testing the program
Operate the switches and observe the visualization screen.

3.4.12 Enabling a web visualization
3.4.12.1 Adding a web server object to the device tree

Ethernet ports can be configured for web server protocol. This description deals with ETH1
configuration for the web server

1. Right-click “ETH1” in the device tree.
2. Select “Add object”.
3. Select “Web Server”.

Getting started with example projects

Example project for central I/O expansion > Enabling a web visualization

2024/01/05 3ADR010583, 1, en_US 65

4. Select [Add object].

ð You added and activated a web server on Ethernet port 1 on the AC500 V3 CPU.

3.4.12.2 Setting up the web server

1. Double-click “WebVisu” in the device tree.

2. Under “Start Visualization”, select “...”.

ð A list opens.

3. Select the “PLC_VISU” screen from the list.
4. Keep all further settings with default values.

Getting started with example projects
Example project for central I/O expansion > Enabling a web visualization

2024/01/053ADR010583, 1, en_US66

5. Select the link “Show used visualizations”.

ð The VisualizationManager editor and there the tab “Visualizations” opens. All screens
and dialog elements created in the project are visible.
Here, you can select which screens are enabled or disabled for web visualization.

If you want to select another screen as a start visualization, you must modify the adequate
parameter in the webvisu.htm file: <param name="STARTVISU" value="PLC_VISU">

3.4.12.3 Compilation of the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

Getting started with example projects

Example project for central I/O expansion > Enabling a web visualization

2024/01/05 3ADR010583, 1, en_US 67

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

3.4.12.4 Saving the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

3.4.12.5 Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 3.4.8 , on page 50.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

Getting started with example projects
Example project for central I/O expansion > Enabling a web visualization

2024/01/053ADR010583, 1, en_US68

3.4.12.6 Creation of a boot project
By default, after project download, the boot project is created automatically.

3.4.12.7 Reboot of the CPU
Reboot the CPU by switching OFF and ON the power supply. (The parameter for web
server activation is a boot pamater which is loaded during boot of the CPU)

3.4.12.8 Testing the web visualization
You have downloaded the project and created the boot project.

The CPU has been rebooted.

You are logged in.

CPU is in "stop" mode.
1. Start the project execution, e.g., from the tool bar.
2. Launch an internet browser.

3. Type in the URL field: http://192.168.0.10/webvisu.htm.
192.168.0.10 is the IP address of CPU’s ETH1 port.
/webvisu.htm is the default htm file.

ð Web visualization will be loaded.

The start screen “PLC_VISU” is displayed in a responsive view.

4. Test the function by operating switch I1.
5. Test the results for responsive view by changing the web browser window size.

Getting started with example projects

Example project for central I/O expansion > Enabling a web visualization

2024/01/05 3ADR010583, 1, en_US 69

http://192.168.0.10/webvisu.htm

3.4.13 Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Fig. 6: Reset commands in “Online” menu

Reset
warm

All variables are reset, except RETAIN PERSISTENT variables.

Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-
mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except PERSISTENT
RETAIN variables.

Reset
origin

All variables and the application project are reset.

Table 4: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

To do a complete reset of the CPU thereby erasing the application from the RAM and flash
EEPROM do the following.

Reset values
and parameters

Complete reset
of the CPU

Getting started with example projects
Example project for central I/O expansion > Reset the CPU

2024/01/053ADR010583, 1, en_US70

1. Right-click the station object “PLC_AC500_V3” in the device tree.
2. Select “Reset origin device [station name]”.

ð The application is completely erased from the CPU (complete project from all memory
areas).

3.5 Example project for remote I/O expansion with PROFINET
3.5.1 Purpose

This example introduces the configuration of the PLC with remote I/O. The use of I/O channels
in a program and commissioning of the configuration is shown.

3.5.2 Preconditions
● Automation Builder is installed and licensed as, at least, standard edition Ä Chapter 6.2.4

“Managing your licenses” on page 1350.
● AC500 V3 CPU is assembled and connected to the PC Ä Chapter 3.3 “Hardware AC500

V3” on page 21.
● Configuration and programming of this example project will be made in the existing example

project for central I/O expansion Ä Chapter 3.4 “Example project for central I/O expansion”
on page 24.

● CM579-PNIO communication module is inserted in terminal base and connected to the PLC
Ä Chapter 3.3 “Hardware AC500 V3” on page 21.

● CI502-PNIO communication interface module is inserted in terminal unit and connected to
the PLC Ä Chapter 3.3 “Hardware AC500 V3” on page 21.

Getting started with example projects

Example project for remote I/O expansion with PROFINET > Preconditions

2024/01/05 3ADR010583, 1, en_US 71

3.5.3 Set-up PROFINET controller
3.5.3.1 Add the CM579-PNIO to the device tree

1. In the Automation Builder device tree under “Extension_Bus”, right-click “Slot_1”.
2. Select “Add object”.
3. Select “CM579-PNIO”.
4. Select [Replace object] to add the CM579-PNIO.

3.5.3.2 Set-up the general behavior

1. Under “Extension_Bus”, double-click “CM579_PNIO” in the device tree.

ð A tab opens in the editor view.

Getting started with example projects
Example project for remote I/O expansion with PROFINET > Set-up PROFINET controller

2024/01/053ADR010583, 1, en_US72

2. Select “CM579-PNIO Parameters”.

Run on configuration
fault

This parameter will prohibit the PLC from running if the CM579-PNIO
has a configuration error.

Bus behavior This parameter sets how the data from the bus flows in/out of the
CM579-PNIO.

3. Select “Status”.

ð This opens the bus controller status and gives a basic status overview.

4. Select “Information”.

ð This page contains general information about the CM579-PNIO.

5. For the example project, you can keep the default settings.

3.5.3.3 Set-up the PROFINET IO controller
To edit settings for the controller, you must not be logged-in to the PLC.

1. Under “CM579_PNIO”, double-click “PNIO_Controller” in the device tree.

ð A tab opens in the editor view.

2. Select “PROFINET IO CONTROLLER”

Getting started with example projects

Example project for remote I/O expansion with PROFINET > Set-up PROFINET controller

2024/01/05 3ADR010583, 1, en_US 73

3. Select “General”.
4. Here, you can set-up the way, IP addresses are distributed out to the industrial bus net-

work. You can even set, what IP-address and DNS name (station name) the PROFINET
controller has.
For the example project, keep the default settings.

3.5.4 Set-up PROFINET device
3.5.4.1 Hardware preparation

1. Switch off the power supply of your PLC.
2. Use a screw driver to set the CI502 module address to "02" by positioning of the upper

rotary switch to "0" and lower switch to "2". Note, that the numbers have hexadecimal
format.

3. Switch on the power supply.

3.5.4.2 Add the CI502-PNIO to the device tree
1. Right-click “PNIO_Controller” in the device tree.
2. Select “Add object”.
3. Select “CI502-PNIO-Device”.

Getting started with example projects
Example project for remote I/O expansion with PROFINET > Set-up PROFINET device

2024/01/053ADR010583, 1, en_US74

4. Select [Add object] to add the device.

3.5.4.3 Configure the CI502-PNIO device
3.5.4.3.1 Configure the CI502-PNIO PROFINET IO device

1. Double-click “CI502_PNIO_Device”.

ð A tab opens in the editor view.

Getting started with example projects

Example project for remote I/O expansion with PROFINET > Set-up PROFINET device

2024/01/05 3ADR010583, 1, en_US 75

2. Select “General”.

Station name Default station name
IP Parameter IP-addressing parameters of the node. If modifications are required for “IP

Parameter”, they must be done also for CM579-PNIO and all other devices in
this PROFINET line.

Communication Communication time set-up
VLAN Virtual local area network ID
RT Class PROFINET IO RT (real time) type settings
3. Set station name to e.g. "ci502-pn-0b" according to hardware settings.

The last two values of the node’s “Station Name” in Automation Builder correspond to
the position of module’s rotary switches (hexadecimal values): e.g., "ci502-pn-0a" or
"ci502-pn-10".

ð
Use small letters for the station name and not large ones.

4. Leave the default settings for “IP Parameter”.
5. Adjust the communication time settings to get a Watchdog (ms) 24:

● “Send clock (ms)”: 4
● “Reduction ratio”: 2
● “Phase”: 1

6. Leave the default settings for “VLAN ID”.
7. Leave the default settings for “RT Class”.

Getting started with example projects
Example project for remote I/O expansion with PROFINET > Set-up PROFINET device

2024/01/053ADR010583, 1, en_US76

If the node has the same device address (the last two digits of the device name)
as set by means of the rotary switches on the module, all the node parameters
will be loaded automatically upon initialization scan of the CI50x module. This
allows, e.g., the module exchange without an engineering tool.

3.5.4.3.2 Create CI502-PNIO I/O mapping to symbols

1. Double-click “CI502_IO”.

2. Select “PNIO Module I/O Mapping”.
3. Fill in the variable names:

Element Hardware channel Symbol
Switch I5 CI502 DI8 xDI_08_CI502_I5

LED output DO8 CI502 DO 8 xDO_08_CI502

Getting started with example projects

Example project for remote I/O expansion with PROFINET > Set-up PROFINET device

2024/01/05 3ADR010583, 1, en_US 77

3.5.5 Add remote I/O expansion to project
3.5.5.1 Add a program POU to the project

1. Right-click “01 - POUs” in the device tree.
2. Select “Add object”.
3. Select “POU”.
4. Select [Add object].

5. Fill in "_30_PNIO_test".
6. Select “Program”.
7. Select “Function Block Diagram”.

Getting started with example projects
Example project for remote I/O expansion with PROFINET > Add remote I/O expansion to project

2024/01/053ADR010583, 1, en_US78

8. Select [Add] to add the POU.

3.5.5.2 Create a POU logic
1. Double-click “30_PNIO_test” in the device tree.

2. In the ToolBox, select “Assignment”.
3. Drag and drop “Assignment” into the "Start here" field in network "1".

4. Select “???” on the left side of the assignment, then select “...”.
5. In “IoConfig_Globals_Mapping” list, select “xDI_08_CI502_I5”.
6. Select [OK] to add this variable to the left side of the assignment connector.

Getting started with example projects

Example project for remote I/O expansion with PROFINET > Add remote I/O expansion to project

2024/01/05 3ADR010583, 1, en_US 79

7. Select “???” on the right side of the assignment, then select “...”.
8. In “IoConfig_Globals_Mapping” list, select “xDO_08_CI502”.
9. Select [OK].

3.5.5.3 Call the POU in PLC_PRG
1. Double-click “PLC_PRG”.
2. Select the next free line in “PLC_PRG” and press [F2].

ð “Input Assistent” opens.

3. Select “Module Calls”.
4. Open “Application”.
5. Open “10 POUs” and select “_30_PNIO test”.
6. Select [OK] to close the dialog.

3.5.5.4 Compilation of the project
Before logging-in to the CPU, you need to compile the complete code without any errors.

Getting started with example projects
Example project for remote I/O expansion with PROFINET > Add remote I/O expansion to project

2024/01/053ADR010583, 1, en_US80

Select menu “Build è Generate code”.

ð The result of the compiling is shown in the “Messages” field at the bottom of the
screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger
compiling in advance to logging-in.

3.5.5.5 Saving the project

Select menu “File è Save Project”.

Alternatively, select the save icon in the tool bar.
Alternatively, press [Ctrl] + [S].

3.5.5.6 Loading the project to the CPU
1. Download the project to the CPU Ä as described in Chapter 3.4.8 , on page 50.
2. Check the notification window at the end of the download. In case of message "Boot

parameters were changed. These changes will be applied after reboot", a reboot of the
CPU is required after creation of the boot project.

Getting started with example projects

Example project for remote I/O expansion with PROFINET > Add remote I/O expansion to project

2024/01/05 3ADR010583, 1, en_US 81

3.5.6 Test the program
3.5.6.1 Starting the program execution

You are logged in the CPU.

An executable project is loaded to the CPU.

The CPU is in "stop" mode.

Select menu “Debug è Start [PLC_AC500_V3]”.
Alternatively, select the "start" icon in the tool bar.
Alternatively, press [F5].

3.5.6.2 Test the function
Operate the switch I5 and observe:
● The LEDs of the relevant CI502 inputs and outputs.
● The online status of inputs and outputs within the POU.

Getting started with example projects
Example project for remote I/O expansion with PROFINET > Test the program

2024/01/053ADR010583, 1, en_US82

3.5.7 Reset the CPU
In some cases, it could be required to do a CPU reset, e.g., for resetting of counter values,
parameters etc.

Fig. 7: Reset commands in “Online” menu

Reset
warm

All variables are reset, except RETAIN PERSISTENT variables.

Reset cold Causes initialization of all variables, except PERSISTENT variables. By recom-
mended creation of remanent variables always with both properties: PERSISI-
TENT and RETAIN, this command resets all variables, except PERSISTENT
RETAIN variables.

Reset
origin

All variables and the application project are reset.

Table 5: Behavior of variables of type VAR (local or global) and variables of type PERSISTENT
RETAIN

VAR VAR PERSISTENT RETAIN
After online command 'Online change' no change no change

After online command 'Download' initialization no change

After online command 'Reset warm' initialization no change

After online command 'Reset cold' initialization no change

After online command 'Reset origin' initialization initialization

After power supply off initialization no change

To do a complete reset of the CPU thereby erasing the application from the RAM and flash
EEPROM do the following.

Reset values
and parameters

Complete reset
of the CPU

Getting started with example projects

Example project for remote I/O expansion with PROFINET > Reset the CPU

2024/01/05 3ADR010583, 1, en_US 83

1. Right-click the station object “PLC_AC500_V3” in the device tree.
2. Select “Reset origin device [station name]”.

ð The application is completely erased from the CPU (complete project from all memory
areas).

Getting started with example projects
Example project for remote I/O expansion with PROFINET > Reset the CPU

2024/01/053ADR010583, 1, en_US84

—
4 System overview, planning and operation
4.1 System overview
4.1.1 AC500 PLC product family

The AC500 (Standard), AC500-eCo, AC500-S and AC500-XC scalable PLC ranges provide
solutions for small, medium and high-end applications. Our AC500 platform offers different
performance levels and is the ideal choice for high availability, extreme environments or safety
solutions. Our AC500 PLC platform offers interoperability and compatibility in hardware and
software from compact PLCs up to high-end and safety PLCs.
Due to the flexible combinations of AC500 devices and components, AC500 PLCs can be used
for controlling a wide variety of applications to fulfill your automation needs.

Features of AC500 PLCs
● Scalable and consistently expandable system
● Different performance classes of processor modules (CPUs) available
● Several fieldbusses available
● Parallel connection to several fieldbusses which can be combined arbitrarily

The AC500 product family consists of the product groups:
● AC500 (Standard):

AC500 standard PLCs offer a wide range of performance levels and scalability. The PLCs
are highly capable of communication and extension for flexible application.

● AC500-eCo:
AC500-eCo PLCs are cost-effective, high-performance compact PLCs that offer total inter-
operability with the core AC500 range and provide battery-free buffering of remanent data.
All I/O modules can be freely connected in a simple, stable and reliable manner.

● AC500-S:
AC500-S PLCs are designed for safety applications in factory, process or machine
automation.

● AC500-XC:
AC500 (Standard) and AC500-S provide devices with -XC extension as a product variant.
These variants operate according to their product group and can, in addition, be operated
under extreme conditions. AC500-XC PLCs can be used at high altitudes, extended oper-
ating temperature and in humid conditions. The devices also provids a high level of resist-
ance to vibration and corrosive gases. The AC500-XC series is consistent with standard
devices concerning the overall dimensions, the control function and the software compati-
bility Ä Chapter 5.1.3 “System data AC500-XC” on page 169.

AC500 program-
mable logic con-
trollers (PLCs)

System overview, planning and operation

System overview > AC500 PLC product family

2024/01/05 3ADR010583, 1, en_US 85

The AC500 product family is characterized by functional modularity. As the complete AC500
product family shares the same hardware platform and programming software tool, the devices
of the AC500 product groups can be flexibly combined.
S500 devices represent the I/O modules of the product group AC500 (Standard), whereas
S500-eCo devices represent the I/O modules of the product group AC500-eCo. Both S500 and
S500-eCo devices can be flexibly combined with devices of the AC500 product family.

4.1.2 AC500/S500 system structure
The AC500 product family provides a variety of modules and pluggable components for
expanding the capabilities of the processor module with additional I/Os or other communication
protocols. Depending on the features and functions of the processor module (CPU) compatible
components can be added to a complete AC500 PLC system.

01 Terminal base for processor module and 0 to 6 communication modules, with serial and
Ethernet interfaces

02 Communication module for, e.g., PROFIBUS, EtherCAT, and for support of safety solution
03 Processor module with integrated communication
04 I/O module, up to 10 I/O modules can be connected
05 Terminal unit for I/O modules, also for decentralized extension

Centralized I/O
extension

System overview, planning and operation
System overview > AC500/S500 system structure

2024/01/053ADR010583, 1, en_US86

1 Terminal unit for communication interface modules
2 Communication interface module with up to 24 integrated I/Os
3 I/O bus
4 Terminal unit for I/O modules, with screw or spring connection
5 Terminal unit for hot swap of I/O modules to exchange of I/O modules while the system is

running
6 S500 I/O modules with up to 32 channels for analog and/or digital signals
7 Compact S500-eCo I/O modules with up to 16 channels for analog and/or digital signals
8 Removable terminal blocks

4.1.3 AC500-eCo/S500-eCo system structure
AC500-eCo/S500-eCo series is compatible with AC500/S500.
The compact AC500-eCo processor module can be used for small applications with the inte-
grated I/O channels.
The functionality of the processor modules can be extended with option boards, e.g., for addi-
tional I/O channels.
For larger applications, I/O modules can be connected centralized or decentralized.

Decentralized
I/O extension

System overview, planning and operation

System overview > AC500-eCo/S500-eCo system structure

2024/01/05 3ADR010583, 1, en_US 87

1 AC500-eCo processor module with option boards, different memory sizes, inputs and out-
puts available

2 S500-eCo I/O module, up to 10 I/O modules can be connected, also for decentralized
extension

3 Terminal blocks in different variants available

Processor modules with an I/O bus interface on the right side can be expanded by up to 10 I/O
modules to increase the number of the I/O channels.

Fig. 8: I/O modules (S500-eCo) directly connected to an AC500-eCo processor module

Up to 10 I/O modules can be connected remotely with the onboard Ethernet interface. Usually, a
Modbus/TCP communication interface module or a processor module is used for the decentral-
ized I/O extension.

Centralized I/O
extension

Decentralized
I/O extension

System overview, planning and operation
System overview > AC500-eCo/S500-eCo system structure

2024/01/053ADR010583, 1, en_US88

Fig. 9: I/O modules (S500-eCo) connected to an AC500-eCo processor module via Modbus/TCP network, using a
Modbus/TCP communication interface module or a processor module as client.

4.1.4 AC500/S500: Short description hardware

AC500 processor modules contain the CPU with the core component of the PLC. The CPU is
connected with the user memory, input and output module, communication port and other units
via the system bus and performs tasks by means of system programs preset in the system
memory. The CPU adopts the function preset by the application program to command the PLC
for operation.
It has the following functions:
● To receive user programs and data entered
● To diagnose work faults of the power supply and PLC circuit as well as syntax errors in

programming
● To receive the state or data of the site via the input interface and save it into the shadow

register or data register
● To read the user programs in the memory one by one and execute them after interpretation
● To updating the state of the associated flag bits and the contents of the shadow register

according to the execution results and providing output control using the output unit.
Processor modules are available in different performance classes. Only one processor module
is required for a valid system architecture.
There are different types of processor module available that differ in the features and functions
they provide, e.g. performance, LED display etc.
If required, processor modules are also available with an integrated Ethernet communication
module (TCP/IP).

Processor
modules

Communication
modules

System overview, planning and operation

System overview > AC500/S500: Short description hardware

2024/01/05 3ADR010583, 1, en_US 89

AC500 communication modules are required for
● a connection to standard fieldbus systems and
● for integration into existing networks.
AC500 communication modules
● enable communication on different fieldbuses.
● are mounted on the left side of the processor module on the same terminal base.
● are directly powered via the internal communication module bus of the terminal base.

A separate voltage source is not required.

The terminal base is needed for mounting and connecting the processor module and the
communication modules. The modules are plugged on the terminal base.

Terminal bases

System overview, planning and operation
System overview > AC500/S500: Short description hardware

2024/01/053ADR010583, 1, en_US90

On AC500-eCo processor modules and special AC500 (Standard) processor
modules the terminal base cannot be removed.

The I/O modules are the input/output unit which connects the PLC with the process. The PLC
can detect controlled object data via the input interface and the data is taken as the basis
for PLC control on the controlled object. In addition, the PLC sends processing results via the
output interface to the controlled object to execute the control.
External input equipment and output equipment needs various signal levels whereas the infor-
mation processed by the processor module in the PLC can only be the standard level. In
order to perform this conversion, the I/O interface generally uses optical isolation and filtering
to improve the interference immunity of the PLC. In addition, the I/O interface can generally
indicate the working state to facilitate maintenance.
The PLC provides multiple I/O interfaces for operation level and drive capability to users for
selection such as digital input, digital output, analog input, analog output, etc. I/O interfaces
of the PLC interpret the number of input/output signals as the number of PLC I/O points. The
number of I/O points is an important basis for PLC selection. If the system has insufficient I/O
points, it can be expanded via the I/O extension interface of the PLC.
The I/O modules for digital and/or analog inputs and outputs are available in different versions
and allow flexible use thanks to configurable channels.
The modules can be simply plugged onto a terminal unit for a centralized or decentralized I/O
extension via communication interface modules.

I/O modules and function modules are plugged on a terminal unit.
Terminal units enable simple prewiring without electronics and are available for 24 V DC and
120/230 V AC, optionally for spring or screw-type terminals.

I/O modules

Terminal units

System overview, planning and operation

System overview > AC500/S500: Short description hardware

2024/01/05 3ADR010583, 1, en_US 91

Communication interface modules are used to build decentralized I/O stations in decentralized
systems. They contain the fieldbus interface and a set of onboard I/O channels. Additional I/O
modules can be attached to build larger decentralized I/O stations. A communication interface
module is mounted on a terminal unit.

Function modules extend the PLC system to perform special task control. These modules often
provide independent components such as a CPU, system programs, memory and interfaces
connected with the PLC system bus.
Function modules are connected with the PLC via the I/O bus to exchange data and independ-
ently work under cooperative management of the PLC.

In the PLC, the memory is mainly used for saving system programs, user programs and work
data. There are two types of memory:
● Volatile memory:

All saved data will be lost after power failure of the memory but the memory can provide
a high access rate and unlimited programming cycles. Common volatile memories mainly
include SRAM and DRAM (including common memories such as SDRAM).

● Nonvolatile memory:
All saved data will not be lost after power failure of the memory, but the memory is subject
to a low read-write rate and limited rewrite cycles. Common nonvolatile memories mainly
include NORflash, NANDflash, EEPROM, memory card, etc.

AC500 PLCs store all user programs in the nonvolatile memory to protect them from power
failure. The programs are exported to the volatile memory during operation of the PLC to ensure
high-speed and efficient operation. If user program debugging is finished, the programs can be
fixed in the nonvolatile memory when they need no change. The work data is subject to frequent
change and access during the PLC operation. It is saved in the volatile memory to meet the
requirements for random access.
The work data memory of the PLC has the memory area for input and output relay, auxiliary
relay, timer, counter and other logic devices. The state of these devices depends on initial
setting and operation of the user programs. Some data maintains its existing state by using
built-in supercapacitors or backup batteries in the event of a power failure. The memory area for
data saving in the event of a power failure is called the data retention area.

The PLC is equipped with a switching power supply for the internal supply. In comparison with
an ordinary power supply, the switching power supply has a higher stability and a higher noise
immunity.
Some modules include a stabilized power supply for the supply of external sensors.

Communication
interface
modules

Function
modules

Memory

Power supply

System overview, planning and operation
System overview > AC500/S500: Short description hardware

2024/01/053ADR010583, 1, en_US92

4.1.5 AC500-eCo/S500-eCo: Short description hardware

AC500-eCo processor modules contains the CPU with the core microprocessor of the PLC. It is
integrated with power supply, onboard I/Os and communication interface.
Functions:
● To download user programs
● To run the CPU
● To execute user programs in loops
● To monitor program input and output devices.
Processor modules are available in different performance classes and provide different numbers
of onboard I/Os.
Only one processor module is required for a valid system architecture.

AC500-eCo processor modules can be extended with option boards. Option boards provide
specific functionality. According to the processor module type, up to three option board slots
are available for extension. Each option board slot supports most existing types of option board
module. The option board modules provide the following functionality for processor module
extension:
● Serial interface RS232 (isolated) or RS485 (isolated or not isolated)
● Digital I/O channels extension (digital inputs, digital outputs, or mixed type)
● Analog I/O channels extension (analog inputs, analog outputs) for standard signal voltage or

current, but also temperature measurement with RTD/NTC or thermocouple sensors
● RTC real-time clock board for processor module PM5012 (other processor modules include

RTC functionality)
● Configuration address switch board for KNX protocol, only for processor modules PM5072

and PM5082

Processor
modules

Option boards

System overview, planning and operation

System overview > AC500-eCo/S500-eCo: Short description hardware

2024/01/05 3ADR010583, 1, en_US 93

If the number of onboard I/Os provided on the processor module is insufficient for a certain use
case, the PLC can be expanded with I/O modules to meet the control requirements.

In the PLC, the memory is mainly used for saving system programs, user programs and work
data. There are two types of memory:
● Volatile memory:

All saved data will be lost after power failure of the memory but the memory can provide
a high access rate and unlimited programming cycles. Common volatile memories mainly
include SRAM and DRAM (including common memories such as SDRAM).

● Nonvolatile memory:
All saved data will not be lost after power failure of the memory, but the memory is subject
to a low read-write rate and limited rewrite cycles. Common nonvolatile memories mainly
include NORflash, NANDflash, EEPROM, memory card, etc.

AC500 PLCs store all user programs in the nonvolatile memory to protect them from power
failure. The programs are exported to the volatile memory during PLC operation to ensure
high-speed and efficient operation. If user program debugging is finished, the programs can
be fixed in the nonvolatile memory when they need no change. The work data is subject to
frequent change and access during PLC operation. It is saved in the volatile memory to meet
the requirements for random access.
The work data memory of the PLC has the memory area for input and output relay, auxiliary
relay, timer, counter and other logic devices. The state of these devices depends on initial
setting and operation of the user programs. Some data maintains its existing state by using
built-in supercapacitors or backup batteries in the event of a power failure. The memory area for
data saving in the event of a power failure is called the data retention area.

The PLC is equipped with a switching power supply for the internal supply. In comparison with
an ordinary power supply, the switching power supply has a higher stability and a higher noise
immunity.
Some modules include a stabilized power supply for the supply of external sensors.

4.1.6 AC500-S
The AC500-S safety user manual must be read and understood before using the safety configu-
ration and programming tools of Automation Builder/PS501 Control Builder Plus. Only qualified
personnel are permitted to work with AC500-S safety PLCs.

The AC500-S safety PLC includes the following safety-relevant hardware components.
● SM560-S/SM560-S-FD-1/SM560-S-FD-4
● DI581-S

I/O modules

Memory

Power supply

Functional
safety

System overview, planning and operation
System overview > AC500-S

2024/01/053ADR010583, 1, en_US94

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch

● DX581-S
● AI581-S
● TU582-S

4.1.7 CP600 control panels

The CP600-eCo, CP600 and CP600-Pro control panels offer a wide range of features and
functionalities for tailor-made visualization. Our CP600 platform offers different performance
levels including control panels for economic applications, robust standard operator panels, high
end multi-touch human machine interfaces (HMIs).
The easy to use engineering tool PB610 Panel Builder 600, part of Automation Builder, ensures
easy scalability on the CP600 platform.
● CP600-eCo: The economical CP600-eCo control panel, with screen sizes from 4.3” to 10.1”

widescreen, is aimed for standard functions and high usability for clear interaction with the
operation process.

● CP600: The robust CP600 HMI, with screen sizes from 7” to 15” provides up-to-date visual-
ization performance, versatile communication and representative design for machines and
systems.

● CP600-Pro: The CP600-Pro HMI, with screen sizes from 5” to 21.5” widescreen, comes
with high end visualization performance, multi-touch operation and versatile communication
options

Ä Further information on page 6

4.1.8 Automation Builder: Short description engineering software
Details about the Automation Builder license model, the features of the editions and the latest
license information

Configuration and programming of all AC500 control systems (processor modules) is done by
using Automation Builder software.
Features:
● Standardized programming according to IEC 61131-3, five programming languages (Struc-

tured Text (ST), Function Block Diagram (FBD), Instruction List (IL), Ladder Diagram (LD),
Sequential Function Chart (SFC)), Continuous Function Chart (CFC), debugging functions
for program test

● Online diagnosis
● Debugging functions for the program test: Single step, single cycle, breakpoint
● Offline simulation - simulate commands without PLC being connected
● Sampling trace - timing diagrams for process variables
● Recipe management and watch lists
● Visualization
● Configuration of the communication interface modules (for PROFINET, PROFIBUS,

EtherCAT, CANopen, Ethernet, Modbus)
● Programming - serial or via Ethernet networks
● Comprehensive libraries

CP600 control
panels platform

Configuration
and program-
ming

System overview, planning and operation

System overview > Automation Builder: Short description engineering software

2024/01/05 3ADR010583, 1, en_US 95

https://new.abb.com/plc/automationbuilder/platform/software
https://new.abb.com/plc/automationbuilder/platform/software

● Export and import interfaces for devices, signals, applications, visualization, etc.
● Multi-user support and project compare
● Project scripting

IEC 61131-3 commands can be simulated without a PLC being connected, including the rele-
vant malfunctions. After the program test, the application can be downloaded to the control
system.

Timing diagrams for process variables and storage of data in a circular buffer with event trigger.

Values of selected variables are displayed. Pre-defined values can be assigned to variables
which can then be downloaded to the control system all at once ("Write recipe"). Actual values
from the control system can also be pre-assigned for reading into the Watch and Recipe
Manager, and stored in memory there ("Read recipe"). These functions are also helpful, for
example, for setting and entering control parameters.

Includes color change, moving elements, bitmaps, text display, allows input of setpoint values
and display of process variables read from the PLC, dynamic bar diagrams, alarm and event
management, function keys and ActiveX elements.

The Ethernet interface of the processor modules is used to connect to the engineering software
for programming, debugging and diagnosis.

Provides access from the programming system to an external project database in which the
program source code of one or several automation projects is managed. Optionally, a version
control system can be used in order to ensure data consistency of the program code for several
different users and projects.

Offline simula-
tion

Sampling trace

Recipe manage-
ment and watch
lists

Visualization

Programming

Engineering
interface

System overview, planning and operation
System overview > Automation Builder: Short description engineering software

2024/01/053ADR010583, 1, en_US96

4.2 Application planning
4.2.1 Safety instructions

NOTICE!
Wiring diagrams and user programs must be designed to prevent hazardous sit-
uations from occurring during normal operation or in the event of a malfunction.

4.2.2 Processor module and I/O selection
How to select modules for your automation task: In our main catalog we offer a CPU selector
and several comparative tables to find the modules for your application.

4.2.3 I/O bus - Communication within the PLC
The synchronized I/O bus is the I/O data bus for the I/O modules connected with the processor
modules or communication interface modules. Through this bus, I/O and diagnosis data are
transferred.
With its fast data transmission, the I/O bus obtains very low reaction times.
Up to 10 I/O terminal units (for one I/O module each) can be added to one terminal base or
to one AC500-eCo processor module. The I/O terminal units and the AC500-eCo I/O modules,
have a bus input at the left side and a bus output at the right side. Thus the length of the I/O
bus increases with the number of attached I/O modulesÄ Table 119 “Maximum number of I/O
devices which can be connected to the I/O bus” on page 389.

1 I/O bus connection
The connection of the I/O bus is performed automatically by telescoping the modules on the DIN
rail. The I/O bus provides the following signals:
● Supply voltage of 3.3 V DC for feeding the electronic interface components
● 3 data lines for the synchronized serial data exchange
● several control signals

System overview, planning and operation

Application planning > I/O bus - Communication within the PLC

2024/01/05 3ADR010583, 1, en_US 97

https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23V3_CPU_Selector

NOTICE!
Except when using hot swap terminal units, the I/O bus is not designed for
pulling and plugging modules during operation. If a module is pulled or plugged
on a terminal unit that is not hot swap capable while the bus is running, the
following consequences are possible
– reset of the station or of the processor module
– system lockup
– damage of the module

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Profibus (master and slave) and CM589-PNIO are available since version 2.5.0 of the
Automation Builder.

4.2.4 Fieldbus connectivity options
The PLC and control panel portfolio offers a wide range of scalable products, communication
protocols and connectivity options, from the field level to the management and visualization
levels.
An overview of the different connectivity options can be found below.

System overview, planning and operation
Application planning > Fieldbus connectivity options

2024/01/053ADR010583, 1, en_US98

Fig. 10: Exemplary networking

IT network/internet
● FTP(S)
Ä Chapter 6.3.4.5 “FTP server” on page 1721

● HTTP(S)
Ä Chapter 6.5.5 “Application libraries” on page 3833

● MQTT
Ä Chapter 6.3.4.6 “MQTT client protocol” on page 1722

● NTP/SNTP
Ä Chapter 6.3.4.4.1 “Introduction of the NTP/SNTP protocol” on page 1716

● OPC UA
Ä Chapter 6.3.4.11 “OPC UA” on page 1750

● SMTP(S)
Ä Chapter 6.6.10 “SNMP” on page 4362

Factory/side network
● BACnet
Ä Chapter 6.3.4.9 “BACnet-BC” on page 1733

● DNP3 (in preparation)
● FTP(S)
Ä Chapter 6.3.4.5 “FTP server” on page 1721

● HTTP(S)
Ä Chapter 6.5.5 “Application libraries” on page 3833

● IEC 60870-5-104
Ä Chapter 6.3.4.1 “IEC60870-5-104 (Telecontrol)” on page 1647

● IEC 61850
Ä Chapter 6.3.4.2 “IEC 61850 Server” on page 1671

● KNX
Ä Chapter 6.3.4.8 “KNX configurator” on page 1730

System overview, planning and operation

Application planning > Fieldbus connectivity options

2024/01/05 3ADR010583, 1, en_US 99

● MySQL/MSSQL
Ä Chapter 6.5.5 “Application libraries” on page 3833

● OPC DA/AE
Ä Chapter 6.3.4.11 “OPC UA” on page 1750

● OPC UA
Ä Chapter 6.3.4.11 “OPC UA” on page 1750

● SNMP
Ä Chapter 6.6.10 “SNMP” on page 4362

● SNTP
Ä Chapter 6.3.4.4.1 “Introduction of the NTP/SNTP protocol” on page 1716

● TCP/IP
Ä Chapter 6.3.2.2.4.4 “Configuration of communication via Ethernet (TCP/IP)” on page 1469

● UDP
Ä Chapter 6.3.4.10 “UDP protocol” on page 1750

Control network
● CANopen
Ä Chapter 6.3.2.11.1 “CANopen” on page 1521

● CAN 2A/2B
Ä Chapter 6.3.2.11.1.1.5 “Configuration of the protocols CAN 2.0 A / CAN 2.0 B”
on page 1533

● EtherCAT
Ä Chapter 6.3.2.17 “EtherCAT configurator ” on page 1609

● Ethernet/IP
Ä Chapter 6.3.2.2.4.4 “Configuration of communication via Ethernet (TCP/IP)” on page 1469

● IEC 60870-5-104
Ä Chapter 6.3.4.1 “IEC60870-5-104 (Telecontrol)” on page 1647

● IEC 61850
Ä Chapter 6.3.4.2 “IEC 61850 Server” on page 1671

● Modbus RTU
Ä Chapter 6.8.2.9 “Communication with Modbus RTU” on page 4506

● Modbus TCP
Ä Chapter 6.8.2.10 “Communication with Modbus TCP/IP” on page 4523

● PROFIBUS DP
Ä Chapter 6.3.2.11.4 “PROFIBUS” on page 1553

● PROFINET
Ä Chapter 6.3.2.11.2 “PROFINET ” on page 1534

● PROFIsafe AC500-S
● SAE J1939
Ä Chapter 6.3.2.16.2.3.2 “Tab 'J1939 Manager - General'” on page 1604

4.2.5 Power supply dimensioning
4.2.5.1 General

The power consumption of a complete station consists of the sum of all individual consump-
tions.
The two supply voltages with 24 V DC are distinguished in the AC500 platform:
● Supply of the internal logic via terminals L+ and M on the CPU module, or an the AC500

terminal base for: CPU, communication mudule(s) and I/O bus.
● Supply of the process-side input/output circuits for analog signals and 24 V DC digital

signals via the ZP and UP terminals of the S500 terminal units.
The two supply voltages can be provided by the same power supply unit. The CPU and the
I/O modules should, however, be fused separately. Of course also separate power supplies are
possible.

System overview, planning and operation
Application planning > Power supply dimensioning

2024/01/053ADR010583, 1, en_US100

https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch

4.2.5.2 Calculation of the total current consumption
In the example, the AC500 control system consists of the following devices:
● AC500 CPU with Ethernet interface
● 4 communication modules
● 7 I/O modules (digital and analog)
● As well as the required terminal bases and terminal units

Because of the high total current consumption of the digital I/O modules (from
UP = 24 V DC), the supply is divided up into several electric circuits fused
separately.

The maximum permitted total current over the supply terminals of the I/O ter-
minal units is 8 A.

The total current can be calculated as follows:
ITotal = IL+ + IUP

with the assumptions
IL+ = ICPU + II/O bus + IC1 + IC2 + IC3 + IC4 (CPU + communication modules + I/O bus)

II/O bus = Number of expansion modules × Current consumption through the I/O bus per module

and
IUP = IUP1 + ILOAD1 + IUP2 + ILOAD2 + IUP3 + ILOAD3 + IUP4 + ILOAD4 + IUP5 + ILOAD5 + IUP6 + ILOAD6 + IUP7
+ ILOAD7

Example

System overview, planning and operation

Application planning > Power supply dimensioning

2024/01/05 3ADR010583, 1, en_US 101

If one assumes that all outputs are switched on and are operated with their maximum permitted
load currents (under compliance with the maximum permitted currents at the supply terminals),
then the following values are the result for an example shown above:

 ICPU *) ICx *) II/O bus *) IUPx *) ILOADx *)

CPU/communication module part
CPU 0.110 A - - - -

C1 - 0.050 A - - -

C2 - 0.085 A - - -

C3 - 0.050 A - - -

C4 - 0.050 A - - -

I/O module part
Analog1 - - 0.002 A 0.150 A -

Analog2 - - 0.002 A 0.150 A 0.160 A

Analog3 - - 0.002 A 0.100 A 0.080 A

Analog4 - - 0.002 A 0.100 A 0.080 A

Digital1 - - 0.002 A 0.050 A 8.000 A

Digital2 - - 0.002 A 0.050 A 8.000 A

Digital3 - - 0.002 A 0.050 A 8.000 A

S columns 0.110 A 0.235 A 0.014 A 0.650 A 24.320 A

S IL+ ≈ 0.4 A S IUP ≈ 25 A

 ITotal ≈ 25.4 A

*) All values in this column are exemplary values

4.2.5.3 Dimensioning of the fuses
To be able to select the fuses for the station correctly, both the current consumption and the
inrush currents (melting integral for the series-connected fuse) must be taken into consideration.

Fuse for S of the
melting
integrals in
A²s

I L+ A IUPx A Recommended fuse
Type Value

F1 CPU logic 1.000 » 0.4 - Quick 10 A

F2 Module Dig-
ital1

0.005 - 8.050 Quick 10 A

F3 Module Dig-
ital2

0.008 - 8.050 Quick 10 A

F4 Module Dig-
ital3

0.007 - 8.050 Quick 10 A

F5 Modules
Analog1 +
Analog2 +
Analog3 +
Analog4

0.130 - 0.820 Quick 10 A

System overview, planning and operation
Application planning > Power supply dimensioning

2024/01/053ADR010583, 1, en_US102

4.2.6 Libraries, software packages and licensed features
Many applications are included in the Automation Builder. However, there are some that need to
be purchased additionally. The applications are briefly introduced here. If applicable, links lead
to further information depending on the version.

HA-Modbus TCP library
Library package adds High Availability System functionality for redundant hot standby over
Ethernet field network via HA-Modbus TCP.
Ä Chapter 6.5.9.1 “HA-Modbus TCP - System technology” on page 3859

61850 protocol
Adds engineering tool and library for 61850 Ed.1 MMS server and GOOSE publish and sub-
scribe functionalities.
Ä Chapter 6.3.4.2 “IEC 61850 Server” on page 1671

KNX protocol
Engineering and protocol package that seamlessly integrates ETS and Automation Builder.
Ä Chapter 6.3.4.8 “KNX configurator” on page 1730

BACnet-BC protocol
BACnet is a standardized data communication protocol for building automation and control
networks as defined in the ANSI/ASHRAE standard 135 and ISO 16484-5.
Ä Chapter 6.3.4.9 “BACnet-BC” on page 1733

Data logger library
The data logging function block library (“DataLogger” and “DataLoggerEco”) contains 5 function
blocks for the purpose of advanced time-stamped data logging for different use cases.
Ä Chapter 6.5.8 “Data Logger Library” on page 3849

Motion control library
Library package for decentralized, centralized and coordinated motion according to the
PLCopen standard.
Ä Chapter 6.5.10.3 “Motion control library” on page 3958

EtherNet/IP
EtherNet/IP is used to connect any number of different terminals in a network, using a scanner-
adapter relationship.
Ä Chapter 6.4.2.5.1 “Introduction” on page 2816

Table 6: AC500 runtime licenses
For Description Type Order code
all AC500 CPUs HA-Modbus TCP run-

time license
PS5601-HA-MTCP 1SAP195400R0101

all AC500 V3 CPUs
and AC500-eCo V3
PM5072 and PM5082

IEC 61850 protocol
runtime license

PS5602-61850 1SAP195600R0101

all AC500 V3 CPUs
and AC500-eCo V3
PM5072 and PM5082

KNX IP protocol run-
time license

PS5604-KNX 1SAP195800R0101

all AC500 V3 CPUs
and AC500-eCo V3
PM5072 and PM5082

BACnet protocol B-BC
runtime license

PS5607-BACnet-BC 1SAP195550R0101

System overview, planning and operation

Application planning > Libraries, software packages and licensed features

2024/01/05 3ADR010583, 1, en_US 103

For Description Type Order code
all AC500 V3 CPUs Data logger runtime

license for AC500 V3
PS5609-Log 1SAP195002R0101

AC500-eCo V3
PM5072 and PM 5082

Data logger runtime
license for PM5072
and PM5082

PS5609-Log-e 1SAP195004R0101

all AC500 V3 CPUs
and AC500-eCo V3
PM5032 and higher

Motion control library
runtime license

PS5611-MC 1SAP192150R0101

AC500 V3/AC500-
eCo V3
(for PM5032,
PM5052, PM5072,
PM5082 and PM56xx)

EtherNet/IP scanner
runtime license for
AC500 V3

PS5613-EIP-S 1SAP196101R0101

AC500-eCo V3
(for PM5032,
PM5052, PM5072 and
PM5082)

EtherNet/IP scanner
runtime license for
AC500-eCo V3 V3

PS5613-EIP-S-e 1SAP196103R0101

AC500 V3/AC500-
eCo V3
(for PM5032,
PM5052, PM5072,
PM5082 and PM56xx)

EtherNet/IP adapter
runtime license for
AC500 V3

PS5613-EIP-A 1SAP196100R0101

AC500-eCo V3
(for PM5032,
PM5052, PM5072 and
PM5082)

EtherNet/IP adapter
runtime license for
AC500-eCo V3

PS5613-EIP-A-e 1SAP196102R0101

For using runtime licensed features one license per CPU is required. The license has to be
installed on the AC500 V3 CPU either by connecting it to Automation Builder or via memory
card that has been prepared by Automation Builder for license activation.
The licenses can be transferred between AC500 V3 CPUs unlimited times.
Ä Chapter 6.3.2.2.2 “PLC runtime licensing” on page 1446

The linked application note provides step-by-step instructions on how to activate the runtime
license for the PLC.
AC500 V3 Activating a runtime license

Additional libraries and software packages for specific use cases are available to reduce the
programming effort and implement quickly your application. In our main catalog we offer an
overview of the available libraries and software packages.
Ä Chapter 6.5 “Libraries and solutions” on page 3773

4.3 Mechanical planning and installation
4.3.1 Control cabinet assembly (indoor use)

Activating a run-
time license

System overview, planning and operation
Mechanical planning and installation > Control cabinet assembly (indoor use)

2024/01/053ADR010583, 1, en_US104

https://search.abb.com/library/Download.aspx?DocumentID=PLC-EOTKN100U-EN&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23AB_Library_and_Runtime_License_Features

NOTICE!
PLC damage due to incorrect housing
Due to their construction (degree of protection IP 20 according to EN 60529)
and their connection technology, the devices are only suitable for operation in
closed control cabinets.

The cabinet must be suitable to protect the equipment from the following:
● unauthorized access,
● dusting and contamination,
● humidity and moisture and
● mechanical damage,
The equipment must be operated within the specified mechanical and enviromental conditions.

Maintain spacing from:
● enclosure walls
● wireways
● adjacent equipment
Allow a minimum of 20 mm clearance on all sides. This provides ventilation and galvanic
isolation.
It is recommended to mount the modules on an grounded mounting plate, or an grounded DIN
rail, independent of the mounting location.

Fig. 11: Exemplary figure: left side AC500, right side AC500-eCO

1 Cable duct
2 Distance from cable duct ≥20 mm
3 Mounting plate, grounded
4 Screw end-stop clamps recommended to avoid movement of the modules on the DIN rail

PLC enclosure

System overview, planning and operation

Mechanical planning and installation > Control cabinet assembly (indoor use)

2024/01/05 3ADR010583, 1, en_US 105

NOTICE!
Horizontal mounting is highly recommended.
Vertical mounting is possible, then derating must be considered to avoid over-
heating due to poor air circulation. Ä Chapter 5.1.2.1 “Environmental condi-
tions” on page 166.

When horizontal mounted, end-stop clamps are recommended to secure the
modules in case of shock or vibration.

When vertically mounted, always place an end-stop clamps on the bottom and
on the top of the modules to properly secure the modules.

4.3.2 Mounting and demounting - general information
The control system is designed to be mounted to a well-grounded mounting surface such as a
metal panel. Additional grounding connections from the mounting tabs or DIN rail (if used), are
not required unless the mounting surface cannot be grounded.

During panel or DIN rail mounting of all devices, be sure that all debris (metal
chips, wire strands, etc.) is kept from falling into the controller. Debris that falls
into the controller could cause damage while the controller is energized.

All devices are grounded through the DIN rail to chassis ground. Use zinc
plated yellow-chromate steel DIN rail to assure proper grounding. The use of
other DIN rail materials (e.g. aluminium, plastic, etc.) that can corrode, oxidize,
or are poor conductors, can result in improper or intermittent grounding.

Consider the safety instructions
In the description, special attention must be paid to designs using galvanic
isolation, grounding and EMC measures for the reasons stated. Consider the
safety instructions for AC500 product family.

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting - general information

2024/01/053ADR010583, 1, en_US106

4.3.3 Mounting and demounting the terminal base

1. Mount DIN rail 7.5 mm or 15 mm.
2. Mount the terminal base/function module terminal base:

ð The terminal base is put on the DIN rail above and then snapped-in below.

3. The demounting is carried out in a reversed order.

If the terminal base should be mounted with screws, wall mounting accessories TA526 must
be inserted at the rear side first Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324. These plastic parts prevent bending of the terminal base while screwing on.
TB560x and TB561x need one TA526, TB562x, TB564x and TB566x need two TA526.

Mounting and
demounting on
DIN rail

Mounting with
screws

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the terminal base

2024/01/05 3ADR010583, 1, en_US 107

Fig. 12: Terminal bases, Fastening with screws

Fig. 13: Function module terminal bases, Fastening with screws

By wall mounting, the terminal base is grounded through the screws. It is neces-
sary that

– the screws have a conductive surface (e.g. steel zinc-plated or brass nickel-
plated)

– the mounting plate is grounded
– the screws have a good electrical contact to the mounting plate

The following procedure allows you to use the mounted modules as a template for drilling holes
in the panel. Due to module mounting hole tolerance, it is important to follow these procedures:
1. On a clean work surface, mount no more than 3 modules (e.g. one terminal base and two

terminal units).
2. Using the mounted modules as a template, carefully mark the center of all module-

mounting holes on the panel.
3. Return the mounted modules to the clean work surface, including any previously mounted

modules.
4. Drill and tap the mounting holes for the screws (M4 or #8 recommended).
5. Place the modules back on the panel and check for proper hole alignment.
6. Attach the modules to the panel using the mounting screws.

If mounting more modules, mount only the last one of this group and put
the others aside. This reduces remounting time during drilling and tapping
of the next group.

7. Repeat the steps for all remaining modules.

Practical tip

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the terminal base

2024/01/053ADR010583, 1, en_US108

4.3.4 Mounting and demounting the AC500 processor module
1. After mounting the terminal base on the DIN rail, mount the processor module.

2. Press the processor module into the terminal base until it locks in place.
3. The demounting is carried out in a reversed order. Press above and below, then remove

the processor module.

4.3.5 Mounting and demounting the communication module
Communication modules are mounted on the left side of the processor module on the same
terminal base. The connection is established automatically when mounting the communication
module.

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the communication module

2024/01/05 3ADR010583, 1, en_US 109

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

After mounting the terminal base, mount the communication modules.
1. First insert the bottom nose of the communication module into the dedicated holes of the

terminal base. Then, rotate the communication module on the dedicated terminal base slot
until it is locked in place.

ð
NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against
accidental physical contact.
– Unused slots for communication modules must be covered with

dummy communication modules to achieve IP20 rating Ä Chapter
5.2.8.2.4 “TA524 - Dummy communication module” on page 1323.

– I/O bus connectors must not be touched during operation.

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the communication module

2024/01/053ADR010583, 1, en_US110

2. The demounting is carried out in a reversed order.
Press above and below, then rotate the communication module and remove it.

4.3.6 Mounting and demounting the terminal unit

1. Mount DIN rail 7.5 mm or 15 mm.
2. Mount the terminal unit.

The terminal unit is snapped into the DIN rail in the same way as the Terminal Base.
Once secured to the DIN rail, slide the terminal unit to the left until it fully locks into place
creating a solid mechanical and connection.

When attaching the devices, make sure the bus connectors are securely
locked together to ensure proper connection. Max. 10 terminal units can
be attached.

Mounting on
DIN rail

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the terminal unit

2024/01/05 3ADR010583, 1, en_US 111

3. Demounting: A screwdriver is inserted in the indicated place to separate the terminal units.

If the terminal unit should be mounted with screws, wall mounting accessories TA526 must
be inserted at the rear side first Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324. These plastic parts prevent bending of the Terminal Base while screwing on.

Fig. 14: Fastening with screws

By wall mounting, the terminal unit is grounded through the screws. It is neces-
sary that

– the screws have a conductive surface (e.g. steel zinc-plated or brass nickel-
plated)

– the mounting plate is grounded
– the screws have a good electrical contact to the mounting plate

The following procedure allows you to use the mounted modules as a template for drilling holes
in the panel. Due to module mounting hole tolerance, it is important to follow these procedures:
1. On a clean work surface, mount no more than 3 modules (e.g. one terminal base and two

terminal units).
2. Using the mounted modules as a template, carefully mark the center of all module-

mounting holes on the panel.

Mounting with
screws

Practical tip

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the terminal unit

2024/01/053ADR010583, 1, en_US112

3. Return the mounted modules to the clean work surface, including any previously mounted
modules.

4. Drill and tap the mounting holes for the screws (M4 or #8 recommended).
5. Place the modules back on the panel and check for proper hole alignment.
6. Attach the modules to the panel using the mounting screws.

If mounting more modules, mount only the last one of this group and put
the others aside. This reduces remounting time during drilling and tapping
of the next group.

7. Repeat the steps for all remaining modules.

4.3.7 Mounting and demounting the I/O module
After mounting the terminal unit, mount the I/O modules.
1. Press the I/O module into the terminal unit until it locks in place.

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the I/O module

2024/01/05 3ADR010583, 1, en_US 113

2. The demounting is carried out in a reversed order.
Press above and below, then remove the module.

4.3.8 Mounting and demounting the AC500-eCo processor module
4.3.8.1 Mounting and demounting the option boards
4.3.8.1.1 Optimized mounting of the option boards

The AC500-eCo processor modules have up to 3 slots for option boards.

Table 7: Option board slots

The best thermal circulation is given on slot 3 (bottom slot), followed by slot 2 (middle slot) and
then slot 1 (top slot).
The best mounting position of the option board depends on its power dissipation.

Rules for optimized mounting of the option boards
– The higher the power dissipation of the option board, the lower the

mounting position should be selected.
– The TA5126-2AO-UI option board has the highest power dissipation

and must always be mounted at the lowest option board slot.
The optimized mounting position can be easily determined with the help of this
table.

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/053ADR010583, 1, en_US114

Table 8: Power dissipation of the option boards
Power dissipation of

the option boards
Digital Analog Serial interface Accessory

very small TA5141-RS232I(W)
TA5142-RS485I(W)
TA5142-RS485(W)

TA5130-KNXPB(W)
TA5131-RTC

small TA5105-4DOT(W) TA5123-2AI-RT(D/W)

medium TA5110-2DI2DO(T/W)
TA5101-4DI(W)

TA5120-2AI-UI(W)

large TA5126-2AO-UI(W)

If the option boards to be mounted are in the same power dissipation level, then
the slots can be freely selected.

4.3.8.1.2 Inserting the option board

Press the option board TA51xx (or TA5300-CVR) into the slot of the processor module
PM50x2 until it locks in place.

The option board must click into the slot of the processor module.

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/05 3ADR010583, 1, en_US 115

4.3.8.1.3 Removing the option board

1. Push the option board on the side to release the lock.
2. At the same time, pull the option board out of the slot.

CAUTION!
Risk of injury and damaging the product!
Always plug in the option board slot cover when the option board is not inserted.
If the option board slot cover is lost, please order the replacement TA5300-CVR
(1SAP187500R0001).
Never power up the CPU with uncovered option board slot, otherwise it may
cause serious injury and/or damage the product.

4.3.8.2 Mounting and demounting of the terminal blocks
Removable terminal blocks are used for power supply and for I/O connectors on AC500-eCo V3
processor modules PM50x2.
For option boards there are different removable terminal blocks in spring version.

Intended pur-
pose

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/053ADR010583, 1, en_US116

For the AC500-eCo V3 Basic CPUs a 3-pin terminal block for power supply and a 13-pin
terminal block for I/O connectors are used.
For the AC500-eCo V3 Standard CPUs and Pro CPUs a 3-pin terminal block for power supply,
a 13-pin terminal block and a 12-pin terminal block for I/O connectors are used.
For all CPUs there is a screw and a spring variant available.

Basic CPU Standard and Pro CPUs
Spring terminal
TA5211-TSPF-B

Screw terminal
TA5211-TSCL-B

Spring terminal
TA5212-TSPF

Screw terminal
TA5212-TSCL

Various removable spring terminal blocks are available for option boards.
The following spare parts are available (depending on the number of pins).

Spring terminals
TA5220-SPF5 TA5220-SPF6 TA5220-SPF7 TA5220-SPF8

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/05 3ADR010583, 1, en_US 117

CAUTION!
Risk of injury and damaging the product!
Improper installation and maintenance may result in injury and can damage the
product!
– Installation and maintenance have to be performed according to the

technical rules, codes and relevant standards, e.g. EN 60204-1.
– Read product documentation carefully before wiring. Improper wiring or

wrong terminal block from other devices can damage the product!
– Only by qualified personnel.

CAUTION!
Risk of injury and damaging the module when using unapproved terminal
blocks!
Only use terminal blocks approved by ABB to avoid injury and damage to the
module.

Terminal block set for PM50x2
Processor modules PM50x2 CPU are not delivered with terminal blocks.

Screw terminal block set:

– TA5211-TSCL-B (1SAP187400R0001) for PM5012-x-ETH
– TA5212-TSCL (1SAP187400R0004) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W), PM5082-T-2ETH

Spring terminal block set:

– TA5211-TSPF-B (1SAP187400R0002) for PM5012-x-ETH
– TA5212-TSPF (1SAP187400R0005) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W), PM5082-T-2ETH

Assembly

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/053ADR010583, 1, en_US118

4.3.8.3 Mounting a processor module on a DIN rail

NOTICE!
Risk of function faults!
The processor module is grounded via DIN rail.
The DIN rail must be included into the grounding conception of the plant.
Use only metal screws for grounding.

Mount the processor module at the top of the DIN rail, then snap it in below.

Disassembly

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/05 3ADR010583, 1, en_US 119

Ä See hardware description of PM50xx for connection.

4.3.8.4 Demounting a processor module mounted on a DIN rail
1. Remove I/O modules if connected.

2. While pressing down processor module pull it away from DIN rail.

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/053ADR010583, 1, en_US120

4.3.8.5 Mounting a processor module on a metal plate

NOTICE!
Risk of function faults!
Missing electrical contact by isolating screws or washers!
Use metal screws on the metal plate.
The metal plate must be included into the grounding concept of the plant.
Do NOT use insulating washers!

One TA543 wall mounting accessory is needed per processor module.

1. Snap in the TA543 at the back side of the processor module.

2. Fasten the processor module with two screws (diameter: 4 mm) to the metal plate.

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/05 3ADR010583, 1, en_US 121

Ä See hardware description of PM50xx for connection.

4.3.8.6 Demounting a processor module mounted on a metal plate
1. Remove I/O modules if connected.

2. Remove the 2 screws.

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the AC500-eCo processor module

2024/01/053ADR010583, 1, en_US122

4.3.8.7 Mounting of the cable fixing accessory TA5301-CFA

1 TA5301-CFA cable fixing accessory
2 2 openings on the PM50x2 processor module

Insert the TA5301-CFA cable fixing accessory into the two openings on the PM50x2
processor module marked white in the figure.

4.3.9 Mounting and demounting the S500-eCo I/O module
S500-eCo I/O modules can be mounted either on a DIN rail or with screws on a metal plate.

NOTICE!
Risk of function faults!
The S500-eCo I/O modules are grounded via the DIN rail.
The DIN rail must be included into the grounding concept of the plant.
Use only metal screws.

1. Mount I/O module at the top of the DIN rail, then snap it in below.

Mounting I/O
modules on a
DIN rail

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the S500-eCo I/O module

2024/01/05 3ADR010583, 1, en_US 123

2. Attach I/O module by hand to an other module. The I/O bus is connected automatically.

1. Remove I/O module by hand if connected.

Demounting I/O
modules
mounted on a
DIN rail

System overview, planning and operation
Mechanical planning and installation > Mounting and demounting the S500-eCo I/O module

2024/01/053ADR010583, 1, en_US124

2. While pressing down I/O module pull it away from DIN rail.

1. Remove the 2 screws.

Demounting I/O
modules
mounted on a
metal plate

System overview, planning and operation

Mechanical planning and installation > Mounting and demounting the S500-eCo I/O module

2024/01/05 3ADR010583, 1, en_US 125

2. Remove the I/O module from the connected module by hand.

4.3.10 Accessories for AC500 (Standard)
4.3.10.1 Inserting and removing a memory card

1 MC5141 memory card
2 MC5102 micro memory card
3 Micro memory card adapter
4 Memory card slot

System overview, planning and operation
Mechanical planning and installation > Accessories for AC500 (Standard)

2024/01/053ADR010583, 1, en_US126

1. Insert the memory card into the memory card slot of the processor module until locked.

NOTICE!
Disturbed PLC operation
Do not remove the micro memory card when it is working!
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

– AC500 V3: Remove the micro memory card only when no black square ()
is shown next to MC in the display.

– AC500-eCo V3: Remove the micro memory card only when the MC LED is
not blinking.

2. To remove the memory card, push on the memory card until it moves forward. By this, the
memory card is unlocked and can be removed.

4.3.10.2 Further accessories
This section only describes accessories that are frequently used for system assembly, connec-
tion and construction.
Ä All additional accessories that can be used to supplement the AC500 system

4.3.11 Accessories for AC500-eCo
4.3.11.1 Mounting and demounting the option boards
4.3.11.1.1 Optimized mounting of the option boards

The AC500-eCo processor modules have up to 3 slots for option boards.

Table 9: Option board slots

The best thermal circulation is given on slot 3 (bottom slot), followed by slot 2 (middle slot) and
then slot 1 (top slot).
The best mounting position of the option board depends on its power dissipation.

Rules for optimized mounting of the option boards
– The higher the power dissipation of the option board, the lower the

mounting position should be selected.
– The TA5126-2AO-UI option board has the highest power dissipation

and must always be mounted at the lowest option board slot.
The optimized mounting position can be easily determined with the help of this
table.

System overview, planning and operation

Mechanical planning and installation > Accessories for AC500-eCo

2024/01/05 3ADR010583, 1, en_US 127

Table 10: Power dissipation of the option boards
Power dissipation of

the option boards
Digital Analog Serial interface Accessory

very small TA5141-RS232I(W)
TA5142-RS485I(W)
TA5142-RS485(W)

TA5130-KNXPB(W)
TA5131-RTC

small TA5105-4DOT(W) TA5123-2AI-RT(D/W)

medium TA5110-2DI2DO(T/W)
TA5101-4DI(W)

TA5120-2AI-UI(W)

large TA5126-2AO-UI(W)

If the option boards to be mounted are in the same power dissipation level, then
the slots can be freely selected.

4.3.11.1.2 Inserting the option board

Press the option board TA51xx (or TA5300-CVR) into the slot of the processor module
PM50x2 until it locks in place.

The option board must click into the slot of the processor module.

System overview, planning and operation
Mechanical planning and installation > Accessories for AC500-eCo

2024/01/053ADR010583, 1, en_US128

4.3.11.1.3 Removing the option board

1. Push the option board on the side to release the lock.
2. At the same time, pull the option board out of the slot.

CAUTION!
Risk of injury and damaging the product!
Always plug in the option board slot cover when the option board is not inserted.
If the option board slot cover is lost, please order the replacement TA5300-CVR
(1SAP187500R0001).
Never power up the CPU with uncovered option board slot, otherwise it may
cause serious injury and/or damage the product.

4.3.11.2 Inserting and removing a memory card

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Carefully insert the micro memory card into the micro memory card slot as far as it will go.

Observe orientation of card.
3. Close the micro memory card slot cover by turning it downwards.

AC500-eCo V3

System overview, planning and operation

Mechanical planning and installation > Accessories for AC500-eCo

2024/01/05 3ADR010583, 1, en_US 129

NOTICE!
Disturbed PLC operation
Do not remove the memory card when it is working!
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

– Remove the memory card only when no black square () is shown next to
MC in the display.

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Micro memory card can be removed from the micro memory card slot by gripping and

pulling with two fingers.
3. Close the micro memory card slot cover by turning it downwards.

4.3.11.3 Further accessories
This section only describes accessories that are frequently used for system assembly, connec-
tion and construction.
Ä All additional accessories that can be used to supplement the AC500 system

4.3.12 Control panels CP600
Refer to the installation instructions delivered with each control panel and to the
operating instructions.

AC500-eCo V3

System overview, planning and operation
Mechanical planning and installation > Control panels CP600

2024/01/053ADR010583, 1, en_US130

https://library.abb.com/r?cid=9AAC177473&dkg=dkg_instructions%20and%20manuals&q=installation%20instruction
https://library.abb.com/r?cid=9AAC177473&dkg=dkg_instructions%20and%20manuals&q=operating%20instruction

4.4 Wiring
4.4.1 Grounding concept

NOTICE!
PLC damage due to missing grounding
– Make sure to ground the devices.
– The grounding (switch cabinet grounding) is supplied both by the mains

connection (or 24 V supply voltage) and via the DIN rail. The DIN rail
must be connected to ground before power is supplied to the device. The
grounding may be removed only if it is certain that no more power is being
supplied to the control system.

– In case of screw mounting, use metal screws for grounding.

Power

DC532/DI524

I/O Terminal Unit TU515/TU516

ZP

supply

DIN
rail

I/O-Bus

Digital

UP CH-ERRx

0V
UP

+24V
Inputs/outputs

I/O-Bus

I/Os

I/O interface

1 M

1 M

ZP ZP

Block diagram:
Digital I/O
modules

System overview, planning and operation

Wiring > Grounding concept

2024/01/05 3ADR010583, 1, en_US 131

Power

AX522

I/O Terminal Unit TU515/TU516

ZP

supply

DIN
rail

I/O-Bus

UP CH-ERRx

0V
UP

+24V
I+ I–

I/O-Bus
Analog I/O interface

Inputs Outputs

+ – + –

I+ I– O+ O–

+ – + –

O+ O–

PTC PTC

1 M

1
M

4.4.2 EMC-conforming assembly and construction
4.4.2.1 General principles

AC500 and AC500-eCo PLC devices are Class II/Class III devices and do not
require a Protective Earth (PE) connection.

For proper EMC performance, all metal parts, DIN rails, mounting screws, and
cable shield connection terminals are connected to a common ground and pro-
vide Functional Earth (FE). This is typically connected to a common reference
potential, such as equipotential bonding rails.

Signal Grounds (SGND or GND) are used for signal reference and must not be
connected to cable shields, FE or other signals unless otherwise specified in the
specific device description.

Electric and electronical devices have to work correctly on site. This is also valid when electro-
magnetic influences affect them in defined and/or expected strength. The devices themselves
must not emit electro-magnetic noises.
Advant controller components have a very high noise immunity.

Block diagram:
Analog I/O
modules

General consid-
erations

System overview, planning and operation
Wiring > EMC-conforming assembly and construction

2024/01/053ADR010583, 1, en_US132

When the wiring and grounding instructions are met, an error-free operation is given.
High electro-magnetic noises of nearby mounted applications must be taken in consideration
during the planning phase.
An EMC compatible earthing concept will also guarantee an error-free operation here.

In order to prevent operating malfunctions, it is recommended, that the oper-
ating personnel discharge themselves prior to touching communication connec-
tors or perform other suitable measures to reduce effects of electrostatic dis-
charges.

There are three important principles to be especially considered:
– Keep all connections as short as possible (in particular the grounding con-

ductors)
– Use large conductor cross sections (in particular for the grounding conduc-

tors)
– Create low-impedance, i.e. good and large-sized contacts (in particular for

the grounding conductors)

Pay attention to the following:
– Use vibration-resistant connections
– Clean metallic contact areas
– Use solid plug and screw-type connections
– Use earth cable shields with clips on a well-grounded metallic surface
– Do not use aluminium parts
– Do not use sheath wires
– Do not use toothed lock washers under screw connections

Fig. 15: Assembly: wrong

Fig. 16: Assembly: correct

Make a connection between the DIN rails and PE (Protective Earth). For this, use an grounding
wire with a minimum conductor cross section of 10 mm².
The wire is connected to the DIN rail with an M6 screw.
A large-area contact of the DIN rail with the metallic mounting plate improves the EMC behavior
significantly, as the disturbances can be discharged more effective.

System overview, planning and operation

Wiring > EMC-conforming assembly and construction

2024/01/05 3ADR010583, 1, en_US 133

4.4.2.2 Cable routing
● Route cables meeting the standards.
● Sort the cables into cable groups:

– Power current cables
– Power supply cables
– Signal cables
– Data cables

● Route signal cables and data cables separately from the power cables.
– Separate cable ducts or cable bundles.
– The distance should be 20 cm or greater.

● Lay signal and data cables close to earthed surfaces.

4.4.2.3 Cable shields
● Use only shielded data cables. The shield should be grounded at both ends.

A cable shield only grounded at one end can only protect from capacitively coupled interfer-
ence and low-frequency disturbances (50 Hz hum).

● Avoid parasitic currents flowing through the cable shields.
This can be done by installing current-carrying equipotential bondings.

● Use only cables with braided shields.
Foil shields are not robust enough, cannot be contacted well and have poor HF properties.

● Use only metallic or [metal]-plated plugs for shielded data cables.
● Use only shielded cables for analog signals.

For small signals ground the shield only at one end.
● Ground the cable shield directly with a clip when entering the control cabinet.

Do not cut the shield until the cable reaches the module connected.

The connection between the PE bar and the shield bar must have a low impe-
dance.

4.4.2.4 Control cabinet

Installation of configurations in shielded cabinet can be required in shipping
applications. Follow specific instructions in the applicable type approval certifi-
cate.

1. Open landing page of the product e.g. DO526

2. In the middle of the page, click on [Downloads].

ð A two-column window opens on the page with all available documents.

3. In the left column of the downloads page click on [Certificate].

ð All available certificates are listed in the right column.

In the list of certificates, the maritime certificates can be identified by the title. The title consists
of the abbreviation of the maritime classification society followed by the words: Type Approval
Certificate. E.g. "DNV Type Approval Certificate: ...".

Available certifi-
cates can be
found in the
internet

System overview, planning and operation
Wiring > EMC-conforming assembly and construction

2024/01/053ADR010583, 1, en_US134

https://new.abb.com/products/1SAP240800R0001

The connections between the control cabinet, the mounting plates, the PE bar and the shield
bar must have a low impedance.

Ground the control cabinet doors with short and highly flexible conductors.

Only use lighting with interference suppression.

Use the mains socket which is located inside the control cabinet.

4.4.2.5 Reference potential
● Provide a uniform reference potential in the entire installation and ground all electrical

appliances if possible.
● Route your grounding conductors in a star configuration so that no ground loops can occur.

4.4.2.6 Equipotential bonding
The Installation of equipotential bondings are necessary if there are present or expected poten-
tial differences between parts of your application.

– The impedance of equipotential bonding must be equal or lower than 10 %
of the shield impedance of the shielded signal cables between the same
points.

– The conductor cross section of a equipotential bonding must be 16 mm² to
withstand the maximum possible compensating current.

– Equipotential bondings and shielded signal cables should be laid close to
each other.

– Equipotential bondings must be connected to PE with low impedance.

Connections

Grounding

Control cabinet
lighting

For supplying
the PC

System overview, planning and operation

Wiring > EMC-conforming assembly and construction

2024/01/05 3ADR010583, 1, en_US 135

Fig. 17: AC500, equipotential bonding

1 Cabinet 1
2 Cabinet 2
3 Power supply for the CPU
4 Fuse for the CPU power
5 Power supply for the I/Os
6 Fuse for the I/O power
7 For fuses for the contacts of the relay outputs
8 0V rail
9 Grounding of the 0V rail
10 Cabinet grounding
11 Equipotential bonding between the cabinets min. 16 mm2

12 Cable shields grounding
13 Fieldbus connection (e.g. Ethernet)

System overview, planning and operation
Wiring > EMC-conforming assembly and construction

2024/01/053ADR010583, 1, en_US136

4.4.3 Connection and wiring of the PLC platform
4.4.3.1 Safety instructions

NOTICE!
Attention:
The devices should be installed by experts who are trained in wiring electronic
devices. In case of bad wiring, the following problems could occur:
– On the terminal base, the terminals L+ and M are doubled. If the power

supply is badly connected, a short circuit could happen and lead to a
destruction of the power supply or its fuse. If no suitable fuse exists, the
terminal base itself might be destroyed.

– The terminal bases and all electronic modules and terminal units are pro-
tected against reverse polarity.

– All necessary measures should be carried out to avoid damages to modules
and wiring. Notice the wiring plans and connection examples.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

NOTICE!
 Attention:
Due to possible loss of communcation, the communication cables should be
fixed with cable duct or bracket or clamp during application.

4.4.3.2 AC500
4.4.3.2.1 Power supply for AC500 system

The system is powered by two different power circuits:
● The power supply for the processor module is provided through the terminals L+/M.
● The power supply for the I/O modules is provided through the terminals UP/ZP.
The power supply for the processor module is galvanic isolated from the power supply for the
I/O modules.
As soon as the power supply for the processor module is present, the processor module starts.
The power supply of the processor module and the I/O modules should be powered on the
same time, otherwise the processor module will not switch to run mode after startup.
When during operation the power supply falls below the minimum process and supply voltage
for more than 10 ms, the processor module switches to safe mode. A restart of the processor
module only occurs by switching the power supply off and on again.
If an I/O module is disconnected during operation from the power supply while the processor
module is still powered, the processor module will continue its normal operation on all other
powered peripherals (other I/O modules, communication modules and communication inter-
faces), but freezes the input image. After recovery of the power supply of the affected I/O
module it will continue normal operation and inputs and outputs will be updated.
Ä Chapter 5.1.2.1 “Environmental conditions” on page 166

As power supply for the AC500 system, the ABB power supplies series CP can be used
Ä Chapter 5.2.8.3.1 “CP-E - Economic range” on page 1325 Ä Chapter 5.2.8.3.2 “CP-C.1 - High
performance range” on page 1327.

System overview, planning and operation

Wiring > Connection and wiring of the PLC platform

2024/01/05 3ADR010583, 1, en_US 137

4.4.3.2.2 Power supply for processor modules
The supply voltage of 24 V DC is connected to a removable 5-pin terminal block. L+/M exist
twice. It is therefore possible to feed e.g. external sensors (up to 8 A max. with 1.5 mm2

conductor) via these terminals.

Pin Assignment Label Function Description

Terminal block
removed

Terminal block
inserted

L+ +24 V DC Positive pin of the
power supply voltage

L+ +24 V DC Positive pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

FE Functional earth

4.4.3.2.3 Connection of wires at the spring terminals

1 2 3

b

a

conductor driver
screw-

b
Screwdriver

for
Opening forOpening

closed
Terminal

open
Terminal

a

inserted
Screwdriver

Screwdriver

Spring

Fig. 18: Connect the wire to the spring terminal (steps 1 ... 3)

Pin assignment

Connection

System overview, planning and operation
Wiring > Connection and wiring of the PLC platform

2024/01/053ADR010583, 1, en_US138

5 6 74

Fig. 19: Connect the wire to the spring terminal (steps 4 ... 7)

1. Side view (open terminal drawn for illustration)
2. The top view shows the openings for wire and screwdriver
3. Insert screwdriver (2.5 x 0.4 to 3.5 x 0.5 mm) at an angle, screwdriver must be at least 15

mm free of insulation at the tip
4. While erecting the screwdriver, insert it until the stop (requires a little strength)
5. Screwdriver inserted - terminal open
6. Strip the wire for 7 mm (and put on wire-end ferrule)
7. Insert wire into the open terminal
8. Done

2 3

Screwdriver

1

Screwdriver

Fig. 20: Disconnect wire from the spring terminal (steps 1 ... 3)

Disconnection

System overview, planning and operation

Wiring > Connection and wiring of the PLC platform

2024/01/05 3ADR010583, 1, en_US 139

4 5 6

Conductor
Screwdriver

Fig. 21: Disconnect wire from the spring terminal (steps 4 ... 6)

1. Terminal with wire connected
2. Insert screwdriver (2.5 x 0.4 ... 3.5 x 0.5 mm) at an angle, screwdriver must be at least 15

mm free of insulation at the tip
3. While erecting the screwdriver, insert it until the stop (requires a little strength) - terminal is

now open
4. Remove wire from the open terminal
5. Done

4.4.3.2.4 Terminals for CANopen communication modules

Fig. 22: Combicon, 5-pole, female, removable plug with spring terminals

Fig. 23: Combicon, 5-pole, female, removable plug with spring terminals

System overview, planning and operation
Wiring > Connection and wiring of the PLC platform

2024/01/053ADR010583, 1, en_US140

Number of cores
per terminal

Conductor type Cross section Stripped conductor
end

1 solid 0.2 mm² ... 2.5 mm² 10 mm

1 flexible 0.2 mm² ... 2.5 mm² 10 mm

1 with wire-end fer-
rule (without plastic
sleeve)

flexible 0.25 mm² ... 2.5 mm² 10 mm

1 with wire-end fer-
rule (with plastic
sleeve)

flexible 0.25 mm² ... 2.5 mm² 10 mm

4.4.3.2.5 Ethernet connection details
Ethernet interface

Ethernet is also used for PROFINET, EtherCAT and Modbus TCP connection.

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

Ä Supported protocols and used Ethernet ports

Ä Communication via Modbus TCP/IP

Ä Communication via Modbus RTU

Wiring
For the maximum possible cable lengths within an Ethernet network, various factors have to
be taken into account. Twisted pair cables (TP cables) are used as transmission medium for
10 Mbit/s Ethernet (10Base-T) as well as for 100 Mbit/s (Fast) Ethernet (100Base-TX). For a
transmission rate of 10 Mbit/s, cables of at least category 3 (IEA/TIA 568-A-5 Cat3) or class C
(according to European standards) are allowed. For fast Ethernet with a transmission rate of
100 Mbit/s, cables of category 5 (Cat5) or class D or higher have to be used. The maximum
length of a segment, which is the maximum distance between two network components, is
restricted to 100 m due to the electric properties of the cable.

Terminal type:
Spring terminal

Pin assignment

Cable length
restrictions

System overview, planning and operation

Wiring > Connection and wiring of the PLC platform

2024/01/05 3ADR010583, 1, en_US 141

Furthermore, the length restriction for one collision domain has to be observed. A collision
domain is the area within a network which can be affected by a possibly occurring collision
(i.e. the area the collision can propagate over). This, however, only applies if the components
operate in half-duplex mode since the CSMA/CD access method is only used in this mode. If
the components operate in full-duplex mode, no collisions can occur. Reliable operation of the
collision detection method is important, which means that it has to be able to detect possible
collisions even for the smallest possible frame size of 64 bytes (512 bits). But this is only
guaranteed if the first bit of the frame arrives at the most distant subscriber within the collision
domain before the last bit has left the transmitting station. Furthermore, the collision must
be able to propagate to both directions at the same time. Therefore, the maximum distance
between two ends must not be longer than the distance corresponding to the half signal propa-
gation time of 512 bits. Thus, the resulting maximum possible length of the collision domain is
2000 m for a transmission rate of 10 Mbit/s and 200 m for 100 Mbit/s. In addition, the bit delay
times caused by the passed network components also have to be considered.

Table 11: Specified cable properties of the respective cable types per 100 m:
Parameter 10Base-T [10 MHz] 100Base-TX [100 MHz]
Attenuation [dB/100m] 10.7 23.2

NEXT [dB/100m] 23 24

ACR [dB/100m] N/A 4

Return loss [dB/100m] 18 10

Wave impedance [Ohms] 100 100

Category 3 or higher 5

Class C or higher D or higher

The TP cable has eight wires arranged in four pairs of twisted wires. Different color codes
exist for the coding of the wires, the coding according to EIA/TIA 568, version 1, being the one
most commonly used. In this code, the individual pairs are coded with blue, orange, green and
brown color. One wire of a pair is unicolored and the corresponding second wire is striped,
the respective color alternating with white. For shielded cables, a distinction is made between
cables that have one single shield around all pairs of wires and cables that have an additional
individual shield for each pair of wires. The following table shows the different color coding
systems for TP cables:

Table 12: Color coding of TP cables:
Pairs EIA/TIA 568

Version 1
EIA/TIA 568
Version 2

DIN 47100 IEC 189.2

Pair 1 white/
blue

blue green red white brown white blue

Pair 2 white/
orange

orange black yellow green yellow white orange

Pair 3 white/
green

green blue orange grey pink white green

Pair 4 white/
brown

brown brown slate blue red white brown

Two general variants are distinguished for the pin assignment of the normally used RJ45
connectors: EIA/TIA 568 version A and version B. The wiring according to EIA/TIA 568 version
B is the one most commonly used.

TP cable

System overview, planning and operation
Wiring > Connection and wiring of the PLC platform

2024/01/053ADR010583, 1, en_US142

T568A

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 3 Pair 4Pair 1

Pair 2

T568B

T3

1

R3

2

T2

3

R1

4

T1

5

R2

6

T4

7

R4

8

Pair 2 Pair 4Pair 1

Pair 3

Fig. 24: Pin assignment of RJ45 sockets

Cable types

Particular use
Crossover cables are needed only for a direct Ethernet connection without
crossover functionality. In particular for AC500 modules in product life cycle
phase "Classic".

Crossover cables are for a direct Ethernet connection of two terminal devices as the simplest
variant of a network. From transmission lines of the first station to the reception lines of the
second station.

12345678 123456781
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 25: Wiring of a crossover cable

For networks with more than two subscribers, hubs or switches have to be used additionally for
distribution. These active devices already have the crossover functionality implemented which
allows a direct connection of the terminal devices using straight-through cables.

12345678 123456781
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Fig. 26: Wiring of a straight-through cable

CAUTION!
Risk of communication faults!
When using inappropriate cables, malfunctions in communication may occur.
Only use network cables of the categories 5 (Cat 5, Cat 5e, Cat 6 or Cat 7) or
higher within PROFINET networks.

Crossover cable

Straight-through
cable

System overview, planning and operation

Wiring > Connection and wiring of the PLC platform

2024/01/05 3ADR010583, 1, en_US 143

4.4.3.3 AC500-eCo
4.4.3.3.1 Power supply

The processor modules PM50x2 can be connected to the 24 V DC supply voltage via a remov-
able 3-pin spring terminal block or a 3-pin screw terminal block.

Table 13: Removable terminal block for the supply voltage 24 V DC
3-pin spring terminal block 3-pin screw terminal block

The terminal block is available as a set for AC500-eCo V3 processor modules.

Basic CPU (PM5012) Standard CPUs (PM5032, PM5052) and
Pro CPUs (PM5072, PM5082)

Spring type Screw type Spring type Screw type
TA5211-TSPF-B TA5211-TSCL-B TA5212-TSPF TA5212-TSCL

Ä Further information on power supply and onboard inputs/outputs of the terminal blocks

Pin Assignment Pin Label Function Description

Terminal block
inserted

1 FE Functional earth

2 L+ +24 V DC Positive pin of the
power supply voltage

3 M 0 V Negative pin of the
power supply voltage

NOTICE!
Risk of damaging the PLC due to improper voltage levels!

– Never exceed the maximum tolerance values for process and supply vol-
tages.

– Never fall below the minimum tolerance values for process and supply
voltages.
Observe the system data and the technical data of the used module.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Pin assignment

System overview, planning and operation
Wiring > Connection and wiring of the PLC platform

2024/01/053ADR010583, 1, en_US144

4.4.3.3.2 Ethernet
Ethernet interface

Ethernet is also used for Modbus TCP connection.

The Ethernet interface is carried out via a RJ45 jack. The pin assignment of the Ethernet
interface:

Interface Pin Description
1 Tx+ Transmit Data +

2 Tx- Transmit Data -

3 Rx+ Receive data +

4 NC Not connected

5 NC Not connected

6 Rx- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

Ä Supported protocols and used Ethernet ports

Ä Communication via Modbus TCP/IP

Ä Communication via Modbus RTU

4.4.3.4 Control panels CP600
Refer to the installation instructions delivered with each control panel and to the
operating instructions.

4.4.4 Connection and wiring of the modules
Specific information about the connections of the modules and the wiring is available in the
installation instructions.
● Installation instructions of AC500 PLC product family
● Installation instructions of CP600 control panels

4.5 Configuration and programming
Detailed information is available in the installation and licensing document.

Ä Chapter 6.3 “Configuration in Automation Builder for AC500 V3 products” on page 1398

Advanced
installation of
engineering
suite
Programming
for PLC system

System overview, planning and operation

Configuration and programming

2024/01/05 3ADR010583, 1, en_US 145

https://library.abb.com/r?cid=9AAC177473&dkg=dkg_instructions%20and%20manuals&q=installation%20instruction
https://library.abb.com/r?cid=9AAC177473&dkg=dkg_instructions%20and%20manuals&q=operating%20instruction
https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch
https://library.abb.com/r?cid=9AAC177473&dk=manual&lang=en&q=installation
https://library.abb.com/d/3ADR010659

Detailed information is available in the installation and licensing document.

4.6 Commissioning
Preconditions:
● All PLC modules are installed and wired according to the configuration in Automation

Builder.
● The PLC is connected to the power supply.
● The application and the necessary licenses are available.

WARNING!
Risk of injury or damage to equipment
To avoid endangering persons or equipment, check before commissioning:
– Mechanical and electrical installation
– Electrical safety of the installation
– Safety functions

1. Switch on the power supply.

ð The green PWR LED goes on.

ð Processor modules with display: Wait until the processor module displays “Update”.

2. Install the firmware and the application on the processor module.
Installing the firmware and the application on a very new processor module is the same
process than updating a firmware and an application on a CPU.
Ä Chapter 4.7.4 “PLC firmware/application update” on page 148

ð The PLC starts with the new firmware and the new application.

WARNING!
Risk of injury or damage to equipment
To avoid endangering persons or equipment, a functional test of the applica-
tion must be performed before the final commissioning of the system.

Preconditions:
● The control panel is installed and wired.
● The control panel is connected to the power supply.
● The project file and the necessary licenses are available.
1. Start the control panel.
2. Set the IP address of the control panel.
3. Download the project file to the control panel.
4. Connect the PLC and the control panel with an Ethernet cable.

Activating soft-
ware licenses

Commissioning
the PLC

Commissioning
the control
panel

System overview, planning and operation
Commissioning

2024/01/053ADR010583, 1, en_US146

https://library.abb.com/d/3ADR010659

Step-by-step instructions using the example of the AC500-eCo starter kit with a control panel
included

Commis-
sioning
example

Protect your data, provide your projects with passwords and access restrictions.

Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

Ä Chapter 6.3.1.2.1 “User and access rights” on page 1409

The PLC has an integrated diagnosis system to output diagnosis messages, e.g., parameter
setting is wrong or battery low. A diagnosis message is indicated by ERR LED = on.
Ä Chapter 4.8 “Troubleshooting” on page 149

4.7 Operation
4.7.1 Operating modes

The common operating mode is called run mode.

Table 14: Run mode
LED Display Description
PWR LED = on
RUN LED = on
ERR LED = off

Power supply is present. PLC is in run
mode.

If the PLC is connected to the power supply, but does not operate, it is in stop mode. In stop
mode, the processor module does not control the system.

Table 15: Stop mode
LED Display Description
PWR LED = on
RUN LED = off
ERR LED = off/on

E.g., after the download of an applica-
tion, after a firmware update, an error
occured or the PLC was stopped by the
user, etc.

4.7.2 Diagnosis system
The PLC has an integrated diagnosis system to output diagnosis messages, e.g., parameter
setting is wrong or battery low. A diagnosis message is indicated by ERR LED = on.
Ä Chapter 4.8 “Troubleshooting” on page 149

System overview, planning and operation

Operation > Diagnosis system

2024/01/05 3ADR010583, 1, en_US 147

https://drives-abb.swipeguide.com/guide/ac500-eco-v3-starter-kit
https://drives-abb.swipeguide.com/guide/ac500-eco-v3-starter-kit

4.7.3 Status LEDs, display and control elements
Depending on the device type, various operating elements provided on the front panel can be
used to control the devices of the PLC system and/or to change the operating mode.
Operating elements:
● Status LEDs:

Indicates the availability of devices and components such as communication modules,
communication interface modules or function modules. Functionality and diagnosis of the
status LEDs depends on the specific module and is described in the device description of
the appropriate module. Possible status: on/off/blinking

● I/O LEDs:
Displays the status of the inputs and outputs.

● Display:
Available for some processor modules. It can be used for simple configurations and for
reading out diagnosis information.
Ä Chapter 6.8.2.5 “Display, LEDs and function keys on the front panel” on page 4452
Ä Chapter 6.9.1.3 “Diagnosis in CPU display” on page 4607
Ä Chapter 4.8 “Troubleshooting” on page 149

● Function keys and switches:
Allows to change the current operating modes/status manually Ä Chapter 6.8.2.5.5
“Description of the function keys” on page 4457.

4.7.4 PLC firmware/application update
During runtime it might be necessary to update the firmware of the modules, e.g., for security
reasons.
Updating the firmware and the application on a processor module is the same process than
installing a firmware and an application on a very new processor module.
The installation can be performed either via a PC (recommended) or via a memory card.
Ä Chapter 6.3.1.4 “Firmware identification and update” on page 1419

Fig. 27: The “Version information” tab of a device in the Automation Builder

4.7.5 Control panel firmware/application update
The system components can be updated via Panel Builder software or via USB flash drive.
Refer to the Panel Builder manual for a detailed description.

System overview, planning and operation
Operation > Control panel firmware/application update

2024/01/053ADR010583, 1, en_US148

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010277&LanguageCode=&DocumentPartId=&Action=Launch

4.7.6 Reset Warm

PLC is in STOP mode.
1. Press and hold (> 5 sec) [RUN].

ð RUN LED = ON.

“Reset” is displayed.
2. Press [OK] to reset+ the PLC.

The factory restore of a control panel is described in the Panel Builder manual.

4.8 Troubleshooting
4.8.1 General

Diagnosis messages are shown in the engineering suite Automation Builder. The diagnosis
information can be accessed in the IEC application and can be forwarded to, e.g., a web server
or a control panel. Ä Chapter 6.9.1.5 “Diagnosis in IEC application” on page 4615

Diagnosis messages can also be read out from the display of the PLC. Ä Chapter 6.9.3
“Diagnosis messages” on page 4655

Some diagnosis messages need to be acknowledged by the user (alarms+), others do not
require acknowledgment (events+). The diagnosis system stores alarms and events in a diag-
nosis history.
Diagnosis messages include the severity of an error. Error severity can be used for defining
system behavior, e.g., activating the error LED or stop the PLC.

4.8.2 Possible malfunctions

Fault description Cause Remedy
A processor module, a
communication interface
module or an I/O module
can not be plugged on
the corresponding terminal
base or terminal unit.

Terminal bases and terminal
units have a mechanical
encoding. The encoding
makes it impossible to insert a
module to the wrong place to
prevent dangerous voltages
or destroyed modules.

Check the given design scheme of your control cab-
inet.
Get in touch with the planner of the design scheme.
Check the terminal base compatibility and the
terminal unit compatibility.

An AC500-eCo V3 pro-
cessor module does not
start.

Configuration error due to
wrong firmware of the option
boards.

Update the option boards TA5141-RS232I, TA5142-
RS485I and TA5142-RS485 at least to system firm-
ware 3.5.0_HF-7 and boot firmware 3.5.1 or higher.
Use Automation Builder 2.5.2 or higher.
Ä Chapter 5.2.1.1.3.9 “TA5141-RS232I - Option
board for COMx serial communication” on page 285

Ä Chapter 5.2.1.1.3.10 “TA5142-RS485I - Option
board for COMx serial communication” on page 289

Ä Chapter 5.2.1.1.3.11 “TA5142-RS485 - Option
board for COMx serial communication” on page 296

The module does not
respond and is not avail-
able for online connection.

Module is not connected to
the power supply. Or module
is not functional any more.

Check power supply.
Replace the module or HMI.

PLC

Control panel

Possible mal-
functions

System overview, planning and operation
Troubleshooting > Possible malfunctions

2024/01/05 3ADR010583, 1, en_US 149

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010277&LanguageCode=&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23TB_compatibility
https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23TU_compatibility

Fault description Cause Remedy
The module does not
respond and is not avail-
able for online connection.

Module is not connected to
the power supply. Or module
is not functional any more.

Ä Chapter 4.9.2 “Replace an AC500 module”
on page 152

I/O module on a hot swap
terminal unit does not
respond and is not avail-
able for online connection.

I/O module is not plugged or
damaged.

As soon as the correct and operational I/O module
is plugged on the terminal unit, the module is config-
ured and ready to start.
Ä Hot swap behavior of I/O modules

Ä Hot swap behavior of remote I/O modules

After hot swap of a
(remote) I/O module, the
system and/or I/O module
does not start.

Wrong I/O module type
plugged. The type must be
the same as of the replaced
module.

Plug the correct I/O module type.

The display of the control
panel is black.

Control panel is not con-
nected to the power supply.
Or control panel is not func-
tional any more.

Check power supply.
Replace the control panel.

ERR LED of the processor
module flashes fast. The
display shows “AC500”.

A fatal system error occured. Contact ABB technical support

ERR LED of the processor
module flashes. RUN LED
is off. The display shows
“FAIL”.

Installation or update of firm-
ware, boot project or applica-
tion failed.

Restart the device. Perform the installation or
update again.
Ä Chapter 4.7.4 “PLC firmware/application update”
on page 148

ERR LED is on. PLC with event+ or unac-
knowledged alarm+.

● Use Automation Builder, IEC application or other
external access available in your project, e.g., a
control panel, to read out and acknowledge the
diagnosis messages.
In Automation Builder, double-click on a device
and select the “Diagnosis” tab to access the
diagnosis messages.

Or:
● Read out the diagnosis data on the display of

the processor module.
Ä Chapter 6.9.3 “Diagnosis messages”
on page 4655

The display of the pro-
cessor module shows
“Demo” for 5 min at every
license check. (For pro-
cessor modules without
display only visible when
logged in with Automation
Builder.)

PLC runs in demo mode
because at least one feature
license is missing. The demo
license is valid for 10 days
PLC in run. After this time,
PLC will go to stop mode.

You can buy the missing license or extend the demo
license via Automation Builder. The PLC will not
switch back to run mode until a new license is acti-
vated or the licensed features are removed from the
PLC application.
Ä Chapter 6.2.4 “Managing your licenses”
on page 1350

Ä Chapter 6.3.2.2.2 “PLC runtime licensing”
on page 1446

Every 10 min, the display
of the processor module
shows “Grace” for 5 min.

PLC runs in grace mode
because at least one feature
license which has been avail-
able disappeared. If the grace
time expires, PLC will go to
stop mode.

You need to buy or activate the missing. We recom-
mend to use the Automation Builder for activation.
After the PLC is in stop mode, it will not switch
back to run mode until a new license is activated
or the licensed features are removed from the PLC
application.
Ä Chapter 6.2.4 “Managing your licenses”
on page 1350

System overview, planning and operation
Troubleshooting > Possible malfunctions

2024/01/053ADR010583, 1, en_US150

Fault description Cause Remedy
Every 10 min, the display
of the processor module
shows “Grace” for 5 min.

PLC runs in grace mode
because at least one feature
license which has been avail-
able disappeared. If the grace
time expires, PLC will go to
stop mode.

Ä Chapter 6.3.2.2.2 “PLC runtime licensing”
on page 1446

The CPU displays
“noConn” (no connection).

No communication between
CPU and display is possible
due do very high CPU load
(e.g., endless loop in user
program and not activated
task watchdog).

Check the application for loops and operations
they need time. For example file handling. Wait for
response from other device who will block the exe-
cution from other code.

If a problem persists, contact ABB technical support. In order to be able to solve your problem
as soon as possible, please provide the affected Automation Builder project or Panel Builder
project, the log files and the firmware versions. How to read out log files is described in the
application note How to get log information.

4.8.3 Execution of a hotfix
Updates (also hotfixes) are displayed at every system start, if available. Ä Chapter 6.2.2
“Automation Builder updates” on page 1350

Hotfixes can be in different files - *.exe, *.package or Linux (for communication interface
modules).

A hotfix PLC firmware file (*.exe) can be installed via a memory card. Ä Chapter 6.3.1.4.5.2.3
“Execution of update via memory card” on page 1430

The firmware of AC500 communication interface modules can be updated with the IP configura-
tion tool.

1. Download the current firmware hotfix from the PLC website.
2. Save and unpack the .zip file at any location of your hard disc.
3. Save and close open projects in Automation Builder.
4. In the menu bar of the Automation Builder open the “Package Manager”. “Tools

è Package Manager”

ð The “Package Manager” opens.

5. Follow the instructions. Ä Chapter 6.4.1.21.3.9.4 “Command 'Package Manager'”
on page 2655

Hotfix file via
memory card

Communication
interface (CI)
module firm-
ware
Advanced:
Manual installa-
tion in
Automation
Builder

System overview, planning and operation

Troubleshooting > Execution of a hotfix

2024/01/05 3ADR010583, 1, en_US 151

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011110&LanguageCode=en&DocumentPartId=&Action=Launch
https://library.abb.com/r?cid=9AAC177288&dkg=dkg_software

4.9 Maintenance
4.9.1 Maintenance intervals
Interval Maintenance work
After 3 years of utilisation or as soon as pos-
sible after the PLC diagnosis message "low
battery warning"

Replace battery of the CPU.

Regularly or when the faceplate of the control
panel is dusty.

Keep the faceplate of the control panel clean.
Refer to the panel's operating instruction.

4.9.2 Replace an AC500 module

CAUTION!
Risk of injury and damaging the product!
Improper installation and maintenance may result in injury and can damage the
product!
– Installation and maintenance have to be performed according to the

technical rules, codes and relevant standards, e.g. EN 60204-1.
– Only by qualified personnel.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

All modules of the AC500 range are maintenance free. Spare parts are not available and repair
is not allowed. If a module is not functional any more, you have to replace the whole module.
If an I/O module is installed on a hot swap terminal unit, it is possible to replace it with the same
type during runtime.
Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

If an I/O module is installed on a terminal unit that does not support hot swap and for all other
AC500 modules, proceed as follows.
1. Disconnect the power supply.
2. For processor modules, insert the memory card into the new module.

System overview, planning and operation
Maintenance > Replace an AC500 module

2024/01/053ADR010583, 1, en_US152

https://library.abb.com/r?cid=9AAC177473&dkg=dkg_instructions%20and%20manuals&lang=en

3. For communciation modules, adjust the position of the rotary switches on the new module.
4. For terminal units and terminal bases, disconnect the connectors from the old module.
5. Demount the module to be replaced as described in the installation instructions.
6. Mount the new module as described in the installation instructions.
7. For terminal units and terminal bases, connect the connectors.
8. Reconnect the power supply.

ð System boots up again.

9. If necessary, update module firmware Ä Chapter 4.7.4 “PLC firmware/application update”
on page 148.
If a processor module is replaced, you must install the firmware, the application, the
licenses, passwords and the certificates on the new processor module.
Ä Chapter 6.3.1.4.2.2 “CPU firmware” on page 1419

Ä Chapter 4.7.4 “PLC firmware/application update” on page 148

Ä Chapter 6.3.2.2.2 “PLC runtime licensing” on page 1446

Ä Chapter 6.6.2.2 “Encrypted Communication with Devices via Controller Certificates”
on page 4201

Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

Ä Chapter 6.4.1.11 “Downloading an Application to the PLC” on page 1965

If a problem persists, contact ABB technical support.

4.9.3 Replace an I/O module with hot swap
4.9.3.1 Preconditions for using hot swap

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

Hot swap

System overview, planning and operation

Maintenance > Replace an I/O module with hot swap

2024/01/05 3ADR010583, 1, en_US 153

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

System overview, planning and operation
Maintenance > Replace an I/O module with hot swap

2024/01/053ADR010583, 1, en_US154

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

System overview, planning and operation

Maintenance > Replace an I/O module with hot swap

2024/01/05 3ADR010583, 1, en_US 155

Device Min. required device index for I/O module as of
FW Version 3.0.14

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

4.9.3.2 Compatibility of hot swap

Hot swap is not supported by AC500-eCo V3 CPU!

 Central I/O on V3 CPU
I/O module on TU5xx-H connected to I/O bus
master

AC500 V3 CPU types:
PM56xx-2ETH

Required version of I/O bus master Firmware as of V3.2.0

Fieldbus master when used as remote I/O with
AC500 V3

-

When used as remote I/O on third party
controller (PLC or DCS)

-

System overview, planning and operation
Maintenance > Replace an I/O module with hot swap

2024/01/053ADR010583, 1, en_US156

4.9.3.3 Hot swap behavior

Hot swap behavior Central I/O on V3 CPU
Start-up behavior with unplugged or damaged
I/O module on hot swap terminal unit TU5xx-H

System and I/O modules attached to the CPU
are starting (except unplugged or damaged
module when plugged on hot swap terminal
unit).
As soon as the correct and operational I/O
module is plugged on the terminal unit, the
module is configured and ready to start.
No specific setting needed.

Start-up behavior with wrong I/O module type
on any terminal unit

System and I/O modules are not starting

Diagnosis of presence of hot swap terminal
unit

Diagnosis using PLC browser command "io-
bus desc" in Automation Builder V3.
The PLC browser then provides an overview
of the modules on the I/O bus including the
position of hot swap terminal units in the
I/O bus.
In the application program this
can be detected with a func-
tion block "IoModuleHotSwapInfo"
(Library: AC500_Io/Function Blocks/I/O-Bus).
One instance of function block is needed per
terminal unit on the I/O bus. The function
block provides five outputs delivering infor-
mation about slut number, hot swap capa-
bility and plugged/unplugged state of the I/O
module

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

If module is pulled then diagnosis Err 9480
"Module removed from Hot Swap Terminal
Unit" is generated

Diagnosis after plugging the I/O module on
the hot swap terminal unit

Diagnosis Err 9480 is automatically
acknowledged

4.9.4 Replace a CP600 control panel
Control panels are maintenance free. Spare parts are not available and repair is not permitted. If
a control panel becomes inoperable, it must be replaced. An operation manual is included with
the new unit.

For instructions on how to transfer the runtime to a new control panel and how to load projects
to a new control panel, refer to the Panel Builder manual.

The procedure for changing from a CP600 device to a CP600 device of the 2nd generation
is described in the application example Converting a CP600 project. A description of the differ-
ences between both device variants can also be found in this application example.

4.10 Decommissioning
1. Delete the runtime licenses from the device by returning the licenses.

Ä Chapter 6.3.2.2.2.5 “Returning a license” on page 1452

System overview, planning and operation

Decommissioning

2024/01/05 3ADR010583, 1, en_US 157

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010277&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010541&LanguageCode=en&DocumentPartId=&Action=Launch

2. Delete certificates available on the CPU.
Ä Chapter 6.6.2.4.1 “View 'Security Screen' - 'Devices'” on page 4205

3. Delete applications.
Ä Chapter 6.4.1.21.3.7.12 “Command 'Reset Origin'” on page 2635

Ä Chapter 6.4.1.21.3.7.13 “Command 'Reset Origin Device'” on page 2636

4. Delete applications from memory card, if available.
Ä Chapter 6.4.1.15 “Copying files to/from PLC” on page 2027

5. If available, remove memory card and battery from CPU.
6. Delete all user accounts and user data.

Ä “Tab 'User'” on page 2593

7. Demount and dispose the hardware modules.
Ä Demount AC500, AC500-XC and AC500-S

Ä Chapter 4.11 “Recycling” on page 158

If you can not access the data stored in the CPU, e.g., because the CPU is not
functional any more, then physically destroy the device.

This ensures that the credentials that are stored in the device, can not be
misused.

4.11 Recycling

Disposal and recycling information
This symbol on the product (and on its packaging) is in accordance with the
European Union's Waste Electrical and Electronic Equipment (WEEE) Directive.

The symbol indicates that this product must be recycled/disposed of separately
from other household waste.

It is the end user’s responsibility to dispose of this product by taking it to a
designated WEEE collection facility for the proper collection and recycling of the
waste equipment.

The separate collection and recycling of waste equipment will help to conserve
natural resources and protect human health and the environment.

For more information about recycling, please contact your local environmental
office, an electrical/electronic waste disposal company or the store where you
purchased the product.

System overview, planning and operation
Recycling

2024/01/053ADR010583, 1, en_US158

—
5 Hardware descriptions
5.1 Technical data of the system
5.1.1 System data AC500-eCo
5.1.1.1 Environmental conditions

Table 16: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

24 V AC

 Voltage 24 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

100 V AC ... 240 V AC wide-range supply

 Voltage 100 V ... 240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply, according to EN 61131-2

 DC supply Interruption < 10 ms, time between 2 interruptions
> 1 s, PS2

 DC supply (only for analog option
boards TA512x)

Interruption < 1 ms, time between 2 interruptions
> 1s, PS1

NOTICE!
Risk of damaging the PLC due to improper voltage levels!

– Never exceed the maximum tolerance values for process and supply vol-
tages.

– Never fall below the minimum tolerance values for process and supply
voltages.
Observe the system data and the technical data of the used module.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

NOTICE!
Improper voltage level or frequency range which cause damage of AC inputs:
– AC voltage above 264 V
– Frenquency below 47 Hz or above 62.4 Hz

NOTICE!
Improper connection leads cause overtemperature on terminals.
PLC modules may be destroyed by using wrong cable type, wire size and cable
temperature classification.

CPUs

Hardware descriptions

Technical data of the system > System data AC500-eCo

2024/01/05 3ADR010583, 1, en_US 159

Table 17: Temperature ranges for processor modules revision 0
Parameter Value

PM5012-x-ETH PM5032-x-ETH, PM5052-x-ETH,
PM5072-T-2ETH

PM5072-T-2ETHW

Temperature

 Operating

 Horizontal mounting 0 °C ... +55 °C 0 °C ... +60 °C -20 °C ... +70 °C
Between 60 °C ... 70° C:
I/O derating to 75 %
Only 75 % of the
I/O channels are
allowed to be ener-
gized simultaneously,
e.g., only 6 of 8 output
channels.

Vertical mounting
(output load reduced
to 50 % per group)

0 °C ... +40 °C -20 °C ... +40 °C

Storage -40 °C ... +70 °C

Transport -40 °C ... +70 °C

Humidity Max. 95 %, without condensation

Air pressure

 Operating > 800 hPa / < 2000 m

Storage > 660 hPa / < 3500 m

Table 18: Temperature ranges for processor modules revision 1
Parameter Value

PM5012-x-ETH PM5032-x-ETH, PM5052-x-
ETH, PM5072-T-2ETH, PM5082-
T-2ETH

PM5072-T-2ETHW

Temperature

 Operating

 Horizontal mounting 0 °C ... +55 °C -20 °C ... +60 °C -20 °C ... +70 °C
Between 60 °C ... 70° C:
I/O derating to 75 %
Only 75 % of the
I/O channels are
allowed to be ener-
gized simultaneously,
e.g., only 6 of 8 output
channels.

Vertical mounting
(output load reduced
to 50 % per group)

0 °C ... +40 °C -20 °C ... +40 °C -20 °C ... +40 °C

Storage -40 °C ... +70 °C

Transport -40 °C ... +70 °C

Humidity Max. 95 %, without condensation

Hardware descriptions
Technical data of the system > System data AC500-eCo

2024/01/053ADR010583, 1, en_US160

Parameter Value
PM5012-x-ETH PM5032-x-ETH, PM5052-x-

ETH, PM5072-T-2ETH, PM5082-
T-2ETH

PM5072-T-2ETHW

- Simple coating for acci-
dental condensation

Air pressure

 Operating > 800 hPa / < 2000 m

Storage > 660 hPa / < 3500 m

Table 19: Standard temperature ranges with processor modules revision 0
Option boards Configuration Processor modules Operating tem-

perature ranges
Derating

Digital I/O option boards
TA5101-4DI
TA5105-4DOT
TA5110-2DI2DOT

Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
PM50x2-x-ETH
PM5072-T-2ETH

0 °C ... +60 °C No derating

Analog input option boards
TA5120-2AI-UI
TA5123-2AI-RTD

Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
PM50x2-x-ETH
PM5072-T-2ETH

0 °C ... +60 °C No derating

Analog output option boards
TA5126-2AO-UI 0 V ... +10 V PM5012-T-ETH

PM50x2-R-ETH
0 °C ... +55 °C No derating

PM50x2-T-ETH
PM5072-T-2ETH

0 °C ... +60 °C No derating

0 mA ... +20 mA PM50x2-x-ETH
PM5072-T-2ETH

0 °C ... +45 °C No derating
Load: 0 W ... 500 W

+45 °C ... +50 °C 50 %
Load: 250 W ... 500 W

+50 °C ... +55 °C 100 %
Load: 500 W

Accessory option boards
TA5130-KNXPB Not relevant PM5072-T-2ETH 0 °C ... 60 °C No derating
TA5131-RTC Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
Option boards for serial interface
TA5141-RS232I
TA5142-RS485I
TA5142-RS485

Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
PM50x2-x-ETH
PM5072-T-2ETH

0 °C ... +60 °C No derating

Option boards

Hardware descriptions

Technical data of the system > System data AC500-eCo

2024/01/05 3ADR010583, 1, en_US 161

Table 20: Standard temperature ranges with processor modules revision 1
Option boards Configuration Processor modules Operating tem-

perature ranges
Derating

Digital I/O option boards
TA5101-4DI
TA5105-4DOT
TA5110-2DI2DOT

Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
PM50x2-x-ETH
PM50x2-T-2ETH

-20 °C ... +60 °C No derating

Analog input option boards
TA5120-2AI-UI
TA5123-2AI-RTD

Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
PM50x2-x-ETH
PM50x2-T-2ETH

-20 °C ... +60 °C No derating

Analog output option boards
TA5126-2AO-UI 0 V ... +10 V PM5012-T-ETH 0 °C ... +55 °C No derating

PM50x2-R-ETH -20 °C ... +55 °C No derating
PM50x2-T-ETH
PM50x2-T-2ETH

-20 °C ... +60 °C No derating

0 mA ... +20 mA PM5012-x-ETH 0 °C ... +45 °C No derating
Load: 0 W ... 500 WPM50x2-x-ETH

PM50x2-T-2ETH
-20 °C ... +45 °C

PM50x2-x-ETH
PM50x2-T-2ETH

+45 °C ... +50 °C 50 %
Load: 250 W ... 500 W

PM50x2-x-ETH
PM50x2-T-2ETH

+50 °C ... +55 °C 100 %
Load: 500 W

Accessory option boards
TA5130-KNXPB Not relevant PM50x2-T-2ETH -20 °C ... 60 °C No derating
TA5131-RTC Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
Option boards for serial interface
TA5141-RS232I
TA5142-RS485I
TA5142-RS485

Not relevant PM5012-x-ETH 0 °C ... +55 °C No derating
PM50x2-x-ETH
PM50x2-T-2ETH

-20 °C ... +60 °C No derating

Table 21: Wide temperature ranges
Option boards Configuration Processor modules Operating tem-

perature ranges
Derating

Digital I/O option boards
TA5101-4DIW
TA5105-4DOTW
TA5110-2DI2DOW

Not relevant PM5072-T-2ETHW -20 °C ... +60 °C No derating
+60 °C ... +70 °C I/O derating to 75 %

Only 3 of 4 I/O
channels are allowed
to be energized
simultaneously.

Analog input option boards

Hardware descriptions
Technical data of the system > System data AC500-eCo

2024/01/053ADR010583, 1, en_US162

Option boards Configuration Processor modules Operating tem-
perature ranges

Derating

TA5120-2AI-UIW
TA5123-2AI-RTW

Not relevant PM5072-T-2ETHW -20 °C ... +60 °C No derating

Analog output option boards
TA5126-2AO-UIW 0 V ... +10 V PM5072-T-2ETHW -20 °C ... +60 °C No derating

0 mA ... +20 mA PM5072-T-2ETHW -20 °C ... +45 °C No derating
Load: 0 W ... 500 W

+45 °C ... +50 °C 50 %
Load: 250 W ... 500 W

+50 °C ... +55 °C 100 %
Load: 500 W

Accessory option boards
TA5130-KNXPBW Not relevant PM5072-T-2ETHW -20 °C ... 70 °C No derating
Option boards for serial interface
TA5141-RS232IW
TA5142-RS485IW
TA5142-RS485W

Not relevant PM5072-T-2ETHW -20 °C ... +70 °C No derating

5.1.1.2 Creepage distances and clearances
The creepage distances and clearances meet the requirements of the overvoltage category II,
pollution degree 2.

5.1.1.3 Power supply units

AC500 and AC500-eCo PLC devices are Class II/Class III devices and do not
require a Protective Earth (PE) connection.

For proper EMC performance, all metal parts, DIN rails, mounting screws, and
cable shield connection terminals are connected to a common ground and pro-
vide Functional Earth (FE). This is typically connected to a common reference
potential, such as equipotential bonding rails.

Signal Grounds (SGND or GND) are used for signal reference and must not be
connected to cable shields, FE or other signals unless otherwise specified in the
specific device description.

For the supply of the modules, power supply units according to SELV or PELV specifications
must be used.

Hardware descriptions

Technical data of the system > System data AC500-eCo

2024/01/05 3ADR010583, 1, en_US 163

Safety Extra Low Voltage (SELV) and Protective Extra Low Voltage (PELV)
To ensure electrical safety of AC500/AC500-eCo extra low voltage circuits, 24
V DC supply, communication interfaces, I/O circuits, and all connected devices
must be powered from sources meeting requirements of SELV, PELV, class 2,
limited voltage or limited power according to applicable standards.

WARNING!
Improper installation can lead to death by touching hazardous voltages!
To avoid personal injury, safe separation, double or reinforced insulation and
separation of the primary and secondary circuit must be observed and imple-
mented during installation.
– Only use power converters for safety extra-low voltages (SELV) with safe

galvanic separation of the primary and secondary circuit.
– Safe separation means that the primary circuit of mains transformers must

be separated from the secondary circuit by double or reinforced insulation.
The protective extra-low voltage (PELV) offers protection against electric
shock.

5.1.1.4 Electromagnetic compatibility
Table 22: Electromagnetic compatibility
Parameter Value
Device suitable only as Control Equipment for Industrial Applications, including marine applica-
tions.
IEC 61131-2, zone B
Ä Chapter 5.1.1.6 “Approvals and certifications” on page 166

Radiated emission according to
IEC 61000-6-4 CISPR11, class A

Yes

Conducted emission according to
IEC 61000-6-4 CISPR11, class A

Yes

Electrostatic discharge (ESD) according to
IEC 61000-4-2, criterion B

Air discharge: 8 kV
Contact discharge: 6 kV

Fast transient interference voltages (burst)
according to
IEC 61000-4-4, criterion B

Power supply (DC): 2 kV
Digital inputs/outputs (24 V DC): 1 kV
Digital inputs/outputs (240 V AC): 2 kV
Analog inputs/outputs: 1 kV
Communication lines shielded: 1 kV

Hardware descriptions
Technical data of the system > System data AC500-eCo

2024/01/053ADR010583, 1, en_US164

Parameter Value
High energy transient interference voltages
(surge) according to
IEC 61000-4-5, criterion B

Power supply (DC):
- Line to ground: 1 kV
- Line to line: 0,5 kV
Digital inputs/outputs/relay:
(24 V DC):
- Line to ground: 1 kV
(AC):
- Line to ground: 2 kV
- Line to line: 1 kV
Analog inputs/outputs:
- Line to ground: 1 kV
Communication lines:
- Line to ground: 1 kV

Influence of radiated disturbances
IEC 61000-4-3, criterion A

Test field strength: 10 V/m

Influence of line-conducted interferences
IEC 61000-4-6, criterion A

Test voltage: 10 V

Power frequency magnetic fields
IEC 61000-4-8, criterion A

30 A/m 50 Hz
30 A/m 60 Hz

5.1.1.5 Mechanical data

Parameter Value
Mounting Horizontal/vertical

Wiring method Spring/screw terminals

Degree of protection PLC system: IP 20
● with all modules or option boards plugged

in
● with all terminals plugged in
● with all covers closed

Housing Classification V-0 according to UL 94

Vibration resistance (sinusoidal) acc. to IEC
60068-2-6

All three axes
2 Hz ... 8.4 Hz, 3.5 mm peak,
8.4 Hz ... 150 Hz, 1 g

Shock test acc. to IEC 60068-2-27 All three axes
15 g, 11 ms, half-sinusoidal

Mounting of the modules:
Mounting Rail Top Hat according to IEC 60715 35 mm, depth 7.5 mm or 15 mm

Mounting with screws M4

Fastening torque 1.2 Nm

Hardware descriptions

Technical data of the system > System data AC500-eCo

2024/01/05 3ADR010583, 1, en_US 165

5.1.1.6 Approvals and certifications
The PLC Automation catalog contains an overview of the available approvals and certifications.

5.1.2 System data AC500
5.1.2.1 Environmental conditions

Table 23: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

100 V AC...240 V AC wide-range supply

 Voltage 100 V ... 240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply, according to EN 61131-2

 DC supply Interruption < 10 ms, time between 2 interrup-
tions > 1 s, PS2

AC supply Interruption < 0.5 periods, time between 2
interruptions > 1 s

NOTICE!
Risk of damaging the PLC due to improper voltage levels!

– Never exceed the maximum tolerance values for process and supply vol-
tages.

– Never fall below the minimum tolerance values for process and supply
voltages.
Observe the system data Ä Chapter 5.1.2 “System data AC500”
on page 166 and the technical data of the module used.

NOTICE!
Improper voltage level or frequency range which cause damage of AC inputs:
– AC voltage above 264 V
– Frenquency below 47 Hz or above 62.4 Hz

NOTICE!
Improper connection leads cause overtemperature on terminals.
PLC modules may be destroyed by using wrong cable type, wire size and cable
temperature classification.

Parameter Value
Temperature

 Operating 0 °C ... +60 °C: Horizontal mounting of modules.
0 °C ... +40 °C: Vertical mounting of modules.
Output load reduced to 50 % per group.

Hardware descriptions
Technical data of the system > System data AC500

2024/01/053ADR010583, 1, en_US166

https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23certifications

Parameter Value
 Storage -40 °C ... +70 °C

 Transport -40 °C ... +70 °C

Humidity Max. 95 %, without condensation

Air pressure

 Operating > 800 hPa / < 2000 m

 Storage > 660 hPa / < 3500 m

5.1.2.2 Creepage distances and clearances
The creepage distances and clearances meet the requirements of the overvoltage category II,
pollution degree 2.

5.1.2.3 Power supply units

AC500 and AC500-eCo PLC devices are Class II/Class III devices and do not
require a Protective Earth (PE) connection.

For proper EMC performance, all metal parts, DIN rails, mounting screws, and
cable shield connection terminals are connected to a common ground and pro-
vide Functional Earth (FE). This is typically connected to a common reference
potential, such as equipotential bonding rails.

Signal Grounds (SGND or GND) are used for signal reference and must not be
connected to cable shields, FE or other signals unless otherwise specified in the
specific device description.

For the supply of the modules, power supply units according to SELV or PELV specifications
must be used.

Safety Extra Low Voltage (SELV) and Protective Extra Low Voltage (PELV)
To ensure electrical safety of AC500/AC500-eCo extra low voltage circuits, 24
V DC supply, communication interfaces, I/O circuits, and all connected devices
must be powered from sources meeting requirements of SELV, PELV, class 2,
limited voltage or limited power according to applicable standards.

WARNING!
Improper installation can lead to death by touching hazardous voltages!
To avoid personal injury, safe separation, double or reinforced insulation and
separation of the primary and secondary circuit must be observed and imple-
mented during installation.
– Only use power converters for safety extra-low voltages (SELV) with safe

galvanic separation of the primary and secondary circuit.
– Safe separation means that the primary circuit of mains transformers must

be separated from the secondary circuit by double or reinforced insulation.
The protective extra-low voltage (PELV) offers protection against electric
shock.

Hardware descriptions

Technical data of the system > System data AC500

2024/01/05 3ADR010583, 1, en_US 167

5.1.2.4 Electromagnetic compatibility
Table 24: Electromagnetic compatibility
Parameter Value
Device suitable only as Control Equipment for Industrial Applications, including marine applica-
tions.
IEC 61131-2, zone B
Ä Chapter 5.1.2.6 “Approvals and certifications” on page 169

Radiated emission according to
IEC 61000-6-4 CISPR11, class A

Yes

Conducted emission according to
IEC 61000-6-4 CISPR11, class A

Yes

Electrostatic discharge (ESD) according to
IEC 61000-4-2, criterion B

Air discharge: 8 kV
Contact discharge: 6 kV

Fast transient interference voltages (burst)
according to
IEC 61000-4-4, criterion B

Power supply (DC): 2 kV
Digital inputs/outputs (24 V DC): 1 kV
Digital inputs/outputs (240 V AC): 2 kV
Analog inputs/outputs: 1 kV
Communication lines shielded: 1 kV

High energy transient interference voltages
(surge) according to
IEC 61000-4-5, criterion B

Power supply (DC):
- Line to ground: 1 kV
- Line to line: 0,5 kV
Digital inputs/outputs/relay:
(24 V DC):
- Line to ground: 1 kV
(AC):
- Line to ground: 2 kV
- Line to line: 1 kV
Analog inputs/outputs:
- Line to ground: 1 kV
Communication lines:
- Line to ground: 1 kV

Influence of radiated disturbances
IEC 61000-4-3, criterion A

Test field strength: 10 V/m

Influence of line-conducted interferences
IEC 61000-4-6, criterion A

Test voltage: 10 V

Power frequency magnetic fields
IEC 61000-4-8, criterion A

30 A/m 50 Hz
30 A/m 60 Hz

Hardware descriptions
Technical data of the system > System data AC500

2024/01/053ADR010583, 1, en_US168

5.1.2.5 Mechanical data

Parameter Value
Mounting Horizontal/Vertical

Wiring method Spring/screw terminals

Degree of protection PLC system: IP 20
● with all modules or option boards plugged

in
● with all terminals plugged in
● with all covers closed

Housing Classification V-2 according to UL 94

Vibration resistance (sinusoidal) acc. to IEC
60068-2-6

All three axes
2 Hz ... 8.4 Hz, 3.5 mm peak,
8.4 Hz ... 150 Hz, 1 g

Shock test acc. to IEC 60068-2-27 All three axes
15 g, 11 ms, half-sinusoidal

Mounting of the modules:
Mounting Rail Top Hat according to IEC 60715 35 mm, depth 7.5 mm or 15 mm

Mounting with screws M4

Fastening torque 1.2 Nm

5.1.2.6 Approvals and certifications
The PLC Automation catalog contains an overview of the available approvals and certifications.

5.1.3 System data AC500-XC
5.1.3.1 Environmental conditions

Table 25: Process and supply voltages
Parameter Value
24 V DC

 Voltage 24 V (-15 %, +20 %)

Protection against reverse polarity Yes

100 V AC...240 V AC wide-range supply

 Voltage 100 V ... 240 V (-15 %, +10 %)

Frequency 50/60 Hz (-6 %, +4 %)

Allowed interruptions of power supply, according to EN 61131-2

 DC supply Interruption < 10 ms, time between 2 interrup-
tions > 1 s, PS2

AC supply Interruption < 0.5 periods, time between 2
interruptions > 1 s

Hardware descriptions

Technical data of the system > System data AC500-XC

2024/01/05 3ADR010583, 1, en_US 169

https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23certifications

NOTICE!
Risk of damaging the PLC due to improper voltage levels!

– Never exceed the maximum tolerance values for process and supply vol-
tages.

– Never fall below the minimum tolerance values for process and supply
voltages.
Observe the system data Ä Chapter 5.1.2 “System data AC500”
on page 166 and the technical data of the module used.

NOTICE!
Improper voltage level or frequency range which cause damage of AC inputs:
– AC voltage above 264 V
– Frenquency below 47 Hz or above 62.4 Hz

NOTICE!
Improper connection leads cause overtemperature on terminals.
PLC modules may be destroyed by using wrong cable type, wire size and cable
temperature classification.

Parameter Value
Temperature

 Operating -40 °C ... +70 °C
-40 °C ... 0 °C: Due to the LCD technology, the
display might respond very slowly.
-40 °C ... +40 °C: Vertical mounting of modules
possible, output load limited to 50 % per group
+60 °C ... +70 °C with the following deratings:
● System is limited to max. 2 communication

modules per terminal base
● Digital inputs: maximum number of simul-

taneously switched on input channels
limited to 75 % per group (e.g. 8 channels
=> 6 channels)

● Digital outputs: output current maximum
value (all channels together) limited to 75
% per group (e.g. 8 A => 6 A)

● Analog outputs only if configured as
voltage output: maximum total output
current per group is limited to 75 %
(e.g. 40 mA => 30 mA)

● Analog outputs only if configured
as current output: maximum number
of simultaneously used output chan-
nels limited to 75 % per group
(e.g. 4 channels => 3 channels)

 Storage / Transport -40 °C ... +85 °C

Humidity Operating / Storage: 100 % r. H. with conden-
sation

Hardware descriptions
Technical data of the system > System data AC500-XC

2024/01/053ADR010583, 1, en_US170

Parameter Value
Air pressure Operating:

-1000 m 5000 m (1080 hPa ... 620 hPa)
> 2000 m (< 795 hPa):
● Max. operating temperature must be

reducted by 10 K for each 1000 m
exceeding 2000 m

● I/O module relay contacts must be oper-
ated with 24 V nominal only

Immunity to corrosive gases Yes, according to:
ISA S71.04.1985 Harsh group A, G3/GX
IEC60068-2-60
Method 4 with following concentrations:
● H2S 100 ± 10ppb
● NO2 1250 ± 20ppb
● CL2 100 ± 10ppb
● SO2 300 ± 20ppb

Immunity to salt mist Yes, horizontal mounting only, according to
IEC 60068-2-52 severity level: 1

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC devices
Ä Chapter 5.2.8.3.6 “TA535 - Protective caps for XC devices” on page 1332.

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 5.2.8.2.4 “TA524
- Dummy communication module” on page 1323.

– I/O bus connectors must not be touched during operation.

5.1.3.2 Creepage distances and clearances
The creepage distances and clearances meet the requirements of the overvoltage category II,
pollution degree 2.

Hardware descriptions

Technical data of the system > System data AC500-XC

2024/01/05 3ADR010583, 1, en_US 171

5.1.3.3 Power supply units

AC500 and AC500-eCo PLC devices are Class II/Class III devices and do not
require a Protective Earth (PE) connection.

For proper EMC performance, all metal parts, DIN rails, mounting screws, and
cable shield connection terminals are connected to a common ground and pro-
vide Functional Earth (FE). This is typically connected to a common reference
potential, such as equipotential bonding rails.

Signal Grounds (SGND or GND) are used for signal reference and must not be
connected to cable shields, FE or other signals unless otherwise specified in the
specific device description.

Safety Extra Low Voltage (SELV) and Protective Extra Low Voltage (PELV)
To ensure electrical safety of AC500/AC500-eCo extra low voltage circuits, 24
V DC supply, communication interfaces, I/O circuits, and all connected devices
must be powered from sources meeting requirements of SELV, PELV, class 2,
limited voltage or limited power according to applicable standards.

WARNING!
Improper installation can lead to death by touching hazardous voltages!
To avoid personal injury, safe separation, double or reinforced insulation and
separation of the primary and secondary circuit must be observed and imple-
mented during installation.
– Only use power converters for safety extra-low voltages (SELV) with safe

galvanic separation of the primary and secondary circuit.
– Safe separation means that the primary circuit of mains transformers must

be separated from the secondary circuit by double or reinforced insulation.
The protective extra-low voltage (PELV) offers protection against electric
shock.

5.1.3.4 Electromagnetic compatibility
Table 26: Electromagnetic compatibility
Parameter Value
Device suitable only as Control Equipment for Industrial Applications, including marine applica-
tions.
IEC 61131-2, zone B
Ä Chapter 5.1.3.6 “Approvals and certifications” on page 174

Radiated emission according to
IEC 61000-6-4 CISPR11, class A

Yes

Conducted emission according to
IEC 61000-6-4 CISPR11, class A

Yes

Electrostatic discharge (ESD) according to
IEC 61000-4-2, criterion B

Air discharge: 8 kV
Contact discharge: 6 kV

Hardware descriptions
Technical data of the system > System data AC500-XC

2024/01/053ADR010583, 1, en_US172

Parameter Value
Fast transient interference voltages (burst)
according to
IEC 61000-4-4, criterion B

Power supply (DC): 4 kV
Digital inputs/outputs (24 V DC): 2 kV
Digital inputs/outputs (240 V AC): 4 kV
Analog inputs/outputs: 2 kV
Communication lines shielded: 2 kV

High energy transient interference voltages
(surge) according to
IEC 61000-4-5, criterion B

Power supply (DC):
- Line to ground: 1 kV
- Line to line: 0,5 kV
Digital inputs/outputs/relay:
(24 V DC):
- Line to ground: 1 kV
(AC):
- Line to ground: 2 kV
- Line to line: 1 kV
Analog inputs/outputs:
- Line to ground: 1 kV
Communication lines:
- Line to ground: 1 kV

Influence of radiated disturbances
IEC 61000-4-3, criterion A

Test field strength: 10 V/m

Influence of line-conducted interferences
IEC 61000-4-6, criterion A

Test voltage: 10 V

Power frequency magnetic fields
IEC 61000-4-8, criterion A

30 A/m 50 Hz
30 A/m 60 Hz

5.1.3.5 Mechanical data

Parameter Value
Mounting Horizontal/vertical (no application in salt mist

environment)

Wiring method Spring terminals

Degree of protection PLC system: IP 20
● with all modules or option boards plugged

in
● with all terminals plugged in
● with all covers closed

Housing Classification V-2 according to UL 94

Vibration resistance (sinusoidal) acc. to IEC
60068-2-6

2 Hz ... 8.4 Hz, 3.5 mm peak,
8.4 Hz ... 500 Hz, 2 g

Vibration resistance (broadband random) acc.
to IEC 60068-2-64

5 Hz ... 500 Hz, 1,9 g rms (operational)
5 Hz ... 500 Hz, 4 g rms (non operational)

Hardware descriptions

Technical data of the system > System data AC500-XC

2024/01/05 3ADR010583, 1, en_US 173

Parameter Value
Shock resistance All three axes

15 g, 11 ms, half-sinusoidal

Mounting of the modules:
Mounting Rail Top Hat according to IEC 60715 35 mm, depth 7.5 mm or 15 mm

Mounting with screws M4

Fastening torque 1.2 Nm

5.1.3.6 Approvals and certifications
The PLC Automation catalog contains an overview of the available approvals and certifications.

5.1.4 AC500-S
The AC500-S safety user manual must be read and understood before using the safety configu-
ration and programming tools of Automation Builder/PS501 Control Builder Plus. Only qualified
personnel are permitted to work with AC500-S safety PLCs.

The AC500-S safety PLC includes the following safety-relevant hardware components.
● SM560-S/SM560-S-FD-1/SM560-S-FD-4
● DI581-S
● DX581-S
● AI581-S
● TU582-S

5.1.5 CP600
The technical data of the CP600 control panels are included in the CP600 data sheets.

Functional
safety

Hardware descriptions
Technical data of the system > CP600

2024/01/053ADR010583, 1, en_US174

https://search.abb.com/library/Download.aspx?DocumentID=3ADR020077C0204&LanguageCode=en&DocumentPartId=&Action=Launch&LaunchParam=%23certifications
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107991A4360&LanguageCode=en&DocumentPartId=&Action=Launch
https://library.abb.com/r?cid=9AAC177473&dk=data%20sheet

5.2 Device specifications
5.2.1 Processor modules
5.2.1.1 AC500-eCo
5.2.1.1.1 PM50x2
Features

Fig. 28: Example: PM5072-T-2ETH

1 Micro memory card slot
2 5 LEDs to display the states of the processor module (Power, Error, Run, MC, MOD1)
3 RUN button
4 RJ45 female connector for Ethernet1 connection
5 RJ45 female connector for Ethernet2 connection (available for PM50x2-T-2ETH)
6 3-pin terminal block for power supply 24 V DC
7 2 holes for screw mounting
8 Option board slot cover for option board slot (the number of available slots varies according

to the CPU type)
9 Cable fixing
10 13-pin terminal block for onboard I/Os
11 12-pin terminal block for onboard I/Os (not available on PM5012-x-ETH)
12 12 LEDs to display the states of the signals
13 10 LEDs to display the states of the signals
14 Cable fixing accessory TA5301-CFA on the top of the housing (optional)

The processor module is shown with pluggable terminal blocks. These terminal
blocks must be ordered separately.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 175

The cable fixing accessory on the top of the housing is optional.

Please use TA5301-CFA cable fixing accessory to provide strain relief.

It can also be used for AC500-eCo I/O modules.

The PM50x2 processor modules are supplied with option board slot covers as
standard.

There are various TA51xx option boards for the processor modules that can be
ordered separately.

Which and how many option boards can be plugged, depends on the respective
processor module.

Table 27: AC500-eCo V3 CPUs with their most important properties
Processor
modules

Total max-
imum
download-
able appli-
cation size

Configurable
input/output

Digital
inputs

Digital out-
puts

Power
supply

Ethernet
interfaces

Option
board
slots

Basic CPUs
PM5012-T-ETH 1 MB

thereof
256 kB for
user pro-
gram code
and data
dynamically
allocated

- 6 4 (Tran-
sistor)

24 V DC 1 1

PM5012-R-ETH 1 MB
thereof
256 kB for
user pro-
gram code
and data
dynamically
allocated

- 6 4 (Relay) 24 V DC 1 1

Standard CPUs
PM5032-T-ETH 5 MB

thereof
512 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 1 2

PM5032-R-ETH 5 MB
thereof
512 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 6 (Relay) 24 V DC 1 2

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US176

Processor
modules

Total max-
imum
download-
able appli-
cation size

Configurable
input/output

Digital
inputs

Digital out-
puts

Power
supply

Ethernet
interfaces

Option
board
slots

PM5052-T-ETH 7 MB
thereof
768 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 1 3

PM5052-R-ETH 7 MB
thereof
768 kB for
user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 6 (Relay) 24 V DC 1 3

Pro CPUs
PM5072-T-2ETH 9 MB

thereof 1 MB
for user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 2 3

PM5072-
T-2ETHW *)

9 MB
thereof 1 MB
for user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 2 3

PM5082-T-2ETH 9 MB
thereof 1 MB
for user pro-
gram code
and data
dynamically
allocated

2 (Transistor) 12 8 (Tran-
sistor)

24 V DC 2 3

*) W = wide temperature range

Short description
The processor modules PM50x2 series are the central units of AC500-eCo V3 PLC. Their main
characteristics are:
● Power supply 24 V DC
● I/O bus (not for PM5012-x-ETH)
● Real-time clock (PM5012-x-ETH needs additional RTC option board)
● Option board slots for extension on the CPU (1 for PM5012-x-ETH, 2 for PM5032-x-ETH, 3

for PM5052-x-ETH and PM50x2-T-2ETH)

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 177

● 6 digital inputs (PM5012-x-ETH), 12 digital inputs (PM5032-x-ETH, PM5052-x-ETH,
PM50x2-T-2ETH)

● 4 transistor outputs (PM5012-T-ETH), 8 transistor outputs (PM5032-T-ETH, PM5052-T-ETH,
PM50x2-T-2ETH)

● 4 relay outputs (PM5012-R-ETH), 6 relay outputs (PM5032-R-ETH, PM5052-R-ETH)
● 2 configurable digital inputs/outputs (not for PM5012-x-ETH)
The various processor module variants differ in the following characteristics:
● Type of the digital outputs (transistor or relays)
● Ethernet interface one or two independent interfaces
All processor module variants include a micro memory card slot.
Details and technical data are provided in the technical data section Ä Chapter 5.2.1.1.1.8
“Technical data” on page 188.

Assortment

Parameter Value
 PM5012 PM5032 PM5052 PM5072 PM5082

Total maximum downloadable application size 1) 1 MB 5 MB 7 MB 9 MB 9 MB

 Thereof user program code / data memory dynamically
allocated

256 KB 512 KB 768 KB 1 MB 1 MB

Thereof user web server memory for web visualization
max.

no web 1.5 MB 3.2 MB 7 MB 7 MB

Flash memory for user data

Remaining for all other usage (project save, infra- struc-
ture...)

30 MB 30 MB 30 MB 30 MB 30 MB

Buffered (FRAM) 8 KB 32 KB 32 KB 100 KB 100 KB

VAR_RETAIN persistent 4 KB 16 KB 16 KB 36 KB 36 KB

%MB data 4 KB 16 KB 16 KB 64 KB 64 KB

Expandable memory None None None None None

Integrated mass storage memory (FLASH) None None None None None

Slot for pluggable memory card x x x x x

Real-time clock (RTC) Optional
with
TA5131-
RTC

Built in

Min. retention time for RTC at room temperature
(if at least powered for 8 hours)

7 days 20 days

 Accuracy ±2 s/day

Programming languages ● Instruction List (IL)
● Function Block Diagram (FBD)
● Ladder Diagram (LD)
● Sequential Function Chart (SFC)
● Structured Text (ST)
● Continuous Function Chart (CFC)

 Processor type TI ARM Cortex-A9 32-bit-RISC

Detailed data

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US178

Parameter Value
 PM5012 PM5032 PM5052 PM5072 PM5082
 Processor clock speed 300 MHz 600

MHz

Calculation time per instructions (minimum) PM5012 PM5032 PM5052 PM5072 PM5082

 Binary 20 ns 10 ns

Word 50 ns 10 ns

Floating point 600 ns 10 ns

 Lowest cycle time usable (also f. PTO) - 5 2 1 1

Using onboard EtherCAT protocol (licensed) in preparation

EtherCAT onboard No. of synchronized axis PM5012 PM5032 PM5052 PM5072 PM5082

 axis per 1 ms CM typically - - - - 2 - 4*

 axis per 2 msCM typically - - - 2 - 4* 4 - 8*

 axis per 4 ms CM typically - - - 4 - 8* 8 - 16

 Cyclic min. configurable 10 ms 5 ms 2 ms 1 ms 1 ms

Time-controlled Yes

Multitasking Yes

Interruption Yes

LEDs Power, Error, Run, MC, MOD1, States of I/Os

RUN/STOP button Yes

Protection of the user program by password On request

Usable accessories On request

Remarks:
* Depending an application complexity
1): The values are for information only and cannot be fulfilled altogether. The available resources are limited at the
end by the maximal downloadable application size for each CPU.

Data of I/Os PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

Onboard digital inputs

Channels 6
(incl. 2
counter inputs
5 kHz and 4
interrupts)

12
(incl. 4 fast counter/encoder inputs (100 kHz/200 kHz), 4
inputs (5 kHz), 4 standard inputs)

Signal voltage 24 V DC type 1

Onboard digital outputs

Type of digital
outputs

PM5012-T-
ETH:
Transistor

PM5032-T-
ETH:
Transistor

PM5052-T-
ETH:
Transistor

PM5072-
T-2ETH(W):
Transistor

PM5082-
T-2ETH:
Transistor

PM5012-R-
ETH:
Relay

PM5032-R-
ETH:
Relay

PM5052-R-
ETH:
Relay

- -

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 179

Data of I/Os PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

Channels for
transistor ver-
sion

4
(5 kHz
standard and
PWM)

8
(incl. 4 fast outputs for standard or 4 PWM/4 PTO
(100 kHz/200 kHz), 4 standard outputs (5 kHz))

Channels dig-
ital input/
output config-
urable
(valid for both
PLC version
relais or tran-
sistor)

- 2
Relay version:
The DC channels can be used
as 1 PTO/2 PWM (100 kHz) or
standard digital inputs/outputs
Transistor version:
The DC channels can only
be used as standard digital
inputs/outputs

2
Transistor version:
The DC channels can only
be used as standard digital
inputs/outputs

Rated voltage
transistor

24 V DC

Nominal cur-
rent per tran-
sistor channel

0.5 A resistive

Channels for
relay version

4 6 - -

Rated voltage
relay

100 V AC ... 240 V AC
or
24 V DC

- -

Nominal cur-
rent per relay
channel

2 A resistive - -

Analog inputs Optional

Analog out-
puts

Optional

Number of
option board
slots

1 2 3 3 3

Usage of
option board

Each slot can be used for all type of existing option boards, same option board
for serial interface or digital/analog I/O extension can be used on several slot
per CPU.
Note: RTC option board is only for PM5012 possible.

KNX address
switch

No TA5130-KNXPB only on 1 slot

Real-time
clock (RTC)

TA5131-RTC No

Serial inter-
face

TA5141-RS232I, TA5142-RS485/TA5142-RS485I

Digital in/out
channels

TA5101-4DI, TA5105-4DOT, TA5110-2DI2DOT

Analog in/out
channels

TA5120-2AI-UI, TA5123-2AI-RTD, TA5126-2AO-UI

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US180

Data of I/Os PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

Max. number
of I/O
modules on
I/O bus

0 10

Digital inputs Onboard I/O
only

128 byte 1 KB

Digital outputs 128 byte 1 KB

Number of
decentralized
inputs and
outputs

Depending on the fieldbus used

Internal interfaces

Serial COMx Optional, use
a dedicated
serial inter-
face option
board (up to
1)

Optional, use
a dedicated
serial inter-
face option
board (up to
2)

Optional, use a dedicated serial interface
option board (up to 3)

Modbus RTU Master/Slave, ASCII

Ethernet inter-
face RJ45

1 2
Independent with switch func-
tionality

Ethernet func-
tions

Programming, TCP/IP, UDP/IP, DHCP, PING, network variables, and other
listed below

Modbus
TCP/IP
client/server

Yes
8 / 3

Yes
13 / 8

Yes
20 / 10

Yes
30 / 15

Yes
30 / 15

SNTP client/
server

No Yes

HTTPs and
WebVisu
number of
connections

No Yes
1

Yes
2

Yes
4

Yes
4

FTPs
number of
connections

No Yes
1

Yes
2

Yes
2

Yes
2

OPC UA
server
number of
free tags

No Yes
125

Yes
250

Yes
1000

Yes
3000

MQTT and
JSON library

No Yes

OPC DA
server

Yes

IEC
60870-5-104
telecontrol
protocol

No Yes
Substation only, 5 connections
max.,
only 1 Ethernet supported

Licensed protocols (runtime protocol per CPU)

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 181

Data of I/Os PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

BACnet IP B-
BC Ä Chapter
6.3.4.9
“BACnet-BC”
on page 1733

No Yes (max. 1000 object varia-
bles)

KNXIP
Ä Chapter
6.3.4.8 “KNX
configurator”
on page 1730

No Yes (max. 1000 object varia-
bles)

IEC 61850
MMS server/
goose
pub/sub

No Yes (max. 1000 data attrib-
utes)

EtherNet/IP
adapter/
scanner

No Yes
max. 512 byte in / 512 byte out data for adapter

EtherCAT
Master

No Yes
max. 512 byte in / 512 byte out data for adapter

Connections and interfaces
General

The I/O bus is not available for PM5012-T-ETH and PM5012-R-ETH. I/O
channel extension using option board slot only.

The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules for
PM5032-x-ETH (but with a limit of 128 Bytes input/ 128 Bytes output variables) and 10 I/O
modules for PM5052-x-ETH and PM50x2-T-2ETH can be added.

Depending on the processor module variants, an additional option board can be connected to
the option board slot to extend the feature of the processor module.
Ä Chapter 5.2.1.1.3 “Option boards” on page 218

RS-232 communication interface is available by using option board:
● TA5141-RS232I (isolated)
Ä Chapter 5.2.1.1.3.9 “TA5141-RS232I - Option board for COMx serial communication”
on page 285

RS-485 communication interface is available by using option boards:
● TA5142-RS485I (isolated)
Ä Chapter 5.2.1.1.3.10 “TA5142-RS485I - Option board for COMx serial communication”
on page 289

● TA5142-RS485 (non isolated)
Ä Chapter 5.2.1.1.3.11 “TA5142-RS485 - Option board for COMx serial communication”
on page 296

I/O bus

Option board
slot interface

Serial interface

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US182

The Ethernet interface is carried out via a RJ45 jack.
Table 28: Pin assignment of the Ethernet interface
Interface Pin Description

1 Tx+ Transmit data +

2 Tx- Transmit data -

3 Rx+ Receive data +

4 NC Not connected

5 NC Not connected

6 Rx- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

The processor modules PM50x2 have onboard I/Os which provide several functionalities.
According to the CPU type, the number or the functionality of the onboard I/Os can be different
Ä Chapter 5.2.1.1.2 “Onboard I/Os in processor module PM50x2” on page 196.

Modbus RTU connection details
The Modbus RTU protocol is implemented in the AC500 processor modules.
Modbus is a master-slave (client-server) protocol. The client sends a request to the server(s)
and receives the response(s).
Available serial interfaces can work as Modbus interfaces simultaneously.
The Modbus client operating mode of an interface is set with the function block
COM_MOD_MAST.

Table 29: Description of the Modbus protocol
Parameter Value
Supported standard Modbus RTU Server, Modbus RTU Client

Ä Chapter 6.3.2.14.2 “Configuring Modbus
RTU on serial interface” on page 1588

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 9,600 bits/s to 115,200 bits/s
Ä Chapter 6.3.2.14.2 “Configuring Modbus
RTU on serial interface” on page 1588

Ethernet inter-
face

Onboard I/Os

Technical data

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 183

Parameter Value
Encoding 1 start bit

8 data bits
1 or 2 stop bits
1 parity bit Ä Chapter 6.3.2.14.2 “Configuring
Modbus RTU on serial interface” on page 1588

Max. cable length for RS-485 on serial inter-
face option board used on the CPU.

1.200 m at 19.200 baud

Point-to-point with RS-232 or bus topology with RS-485. Modbus is a master-slave protocol.
Ä Chapter 6.8.2.9 “Communication with Modbus RTU” on page 4506

Power supply
The processor modules PM50x2 can be connected to the 24 V DC supply voltage via a remov-
able 3-pin spring terminal block or a 3-pin screw terminal block.

Table 30: Removable terminal block for the supply voltage 24 V DC
3-pin spring terminal block 3-pin screw terminal block

The terminal block is available as a set for AC500-eCo V3 processor modules.

Basic CPU (PM5012) Standard CPUs (PM5032, PM5052) and
Pro CPUs (PM5072, PM5082)

Spring type Screw type Spring type Screw type
TA5211-TSPF-B TA5211-TSCL-B TA5212-TSPF TA5212-TSCL

Ä Further information on power supply and onboard inputs/outputs of the terminal blocks

Pin Assignment Pin Label Function Description

Terminal block
inserted

1 FE Functional earth

2 L+ +24 V DC Positive pin of the
power supply voltage

3 M 0 V Negative pin of the
power supply voltage

Bus topology

Pin assignment

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US184

NOTICE!
Risk of damaging the PLC due to improper voltage levels!

– Never exceed the maximum tolerance values for process and supply vol-
tages.

– Never fall below the minimum tolerance values for process and supply
voltages.
Observe the system data and the technical data of the used module.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

State LEDs and operating elements
The processor modules, PM50xx series, have a RUN/STOP button. By pressing the RUN/STOP
button, the processor modules switch between RUN mode and STOP mode. By long-pressing
RUN/STOP button during the processor module power on phase, the processor module will be
in MOD1.

The processor modules PM50xx indicate their states of operation via 5 LEDs located on the
upper left side of the processor module.

LED State Color LED = ON LED = OFF LED flashing
PWR Power supply Green Power supply

present
Power supply
missing

-

MC Micro memory
card indication

Yellow Micro memory
card is in the
socket

Micro memory
card is not in the
socket

Micro memory
card is in read/
write state: any
file on card is
opened, means
activity on card

ERR Error indication Red An error occurred No errors or only
warnings
encountered (E4
errors).
The LED
behavior for the
error classes 2 to
4 is configurable.

Fast flashing (4
Hz) displays
together with the
RUN LED a cur-
rently running
firmware-upgrade
or writing data to
the Flash-
EPROM. Slow
flashing (1 Hz)
alone displays
shutdown of
Request To
Send. Medium
flashing (2 Hz)
alone displays at
start of PLC if
reboot after
watchdog.

MOD1 Mode 1 indication Yellow Processor
module is in
mode 1 state

Processor
module is not in
mode 1 state

-

RUN/STOP
button

State LEDs

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 185

LED State Color LED = ON LED = OFF LED flashing
RUN RUN/STOP state Green Processor

module is in state
RUN

Processor
module is in state
STOP

Fast flashing (4
Hz):
The processor
module is
reading/writing
data from/to the
memory card.
If the ERR-LED
is also flashing,
data is being
written to the
Flash-EPROM.

Slow flashing (1
Hz):
The firmware
update from the
memory card has
been completed
successfully
or
Boot project is
being updated.
Slow flashing
(0.5 Hz) together
with
MOD1 LED ON:
Mode1: Boot
project is not
loaded.

Two LEDs below
“ERR” and
“MOD1”

Configurable Yellow Configurable Configurable Additional two
LEDs are
reserved and can
be controlled
from IEC user
code with FB
PmLedSet

The AC500-eCo V3 processor module also provides 2 LEDs below the state LEDs which can be
used by user and driven by an application.
The LEDs can be used into a project and controlled using special function blocks which are
contained in the PM AC500 library. The POU is PmLedSet located in folder LED control.

The processor module provides up to 10 LEDs (PM5012-x-ETH), 20 LEDs (PM5032-R-ETH,
PM5052-R-ETH), or 22 LEDs (PM5032-T-ETH, PM5052-T-ETH, PM5072-T-2ETH(W), PM5082-
T-2ETH) to display the states of the inputs and outputs.

Processor
module

LED State Color LED = ON LED = OFF

PM5012-x-ETH I0 ... I5 Digital input Yellow Input is ON Input is OFF

O0 ... O3 Transistor
output

Yellow Output is ON Output is OFF

User configu-
rable LEDs

I/O LEDs

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US186

Processor
module

LED State Color LED = ON LED = OFF

NO0 ... NO3 Relay output Yellow Output is ON Output is OFF

PM5032-x-ETH
PM5052-x-ETH

I0 ... I11 Digital input Yellow Input is ON Input is OFF

O0 ... O7 Transistor
output

Yellow Output is ON Output is OFF

NO0 ... NO5 Relay output Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

PM5072-
T-2ETH(W)
PM5082-T-2ETH

I0 ... I11 Digital input Yellow Input is ON Input is OFF

O0 ...O7 Transistor
output

Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

Table 31: State LEDs at Ethernet connector
LED Color OFF ON Flashing
Activity Yellow No activity --- Activity

Link Green No link Link ---

Diagnosis
The AC500 processor module can display various errors according to the error classes. The
following error classes are possible. The reaction of the processor module is different for each
type of error.

Error class Type Description Example
E1
ERR-LED is ON

Fatal error A safe function of the operating
system is no longer guaranteed.

Checksum error in the system
Flash or RAM error

E2
ERR-LED is ON

Severe error The operating system is func-
tioning without problems, but the
error-free processing of the user
program is no longer guaranteed.

Checksum error in the user
Flash, independent of the task
duration

E3
ERR-LED is ON/OFF
*)

Light error It depends on the application
if the user program should be
stopped by the operating system
or not. The user should deter-
mine which reaction is necessary.

Flash could not be pro-
grammed, I/O module has
failed

E4
ERR-LED is ON/OFF
*)

Warning Error in the periphery (e.g. I/O)
which may show an impact in
the future. The user should deter-
mine which reaction is necessary.

Short-circuit at an I/O module,
the battery is run down or not
inserted

*) The behaviour if the ERR-LED lights up at error classes E3 or E4 is configurable.

Occurred errors can be displayed with the commands diagshow all in the PLC-Browser of
Automation Builder software.

Ethernet state
LEDs

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 187

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
PM5012 PM5032 PM5052 PM5072 PM5082

Power supply 24 V DC

Connection of power supply Via removable 3-pin terminal

Current consumption from power supply (max.)

 Transistor version 200 mA 340 mA 400 mA 420 mA 420 mA

 Relay version 200 mA 340 mA 400 mA - -

Melting integral of a fuse at 24 V DC 0.9 A²s

Peak inrush current from 24 V DC 65 A

Max. power dissipation within the processor module

 Transistor version 5.7 W 8.1 W 9.0 W 9.2 W 9.2 W

 Relay version 5.9 W 8.3 W 9.2 W - -

Processor module interfaces RS485/RS232 (optional), Ethernet

- I/O bus

Weight

 Transistor version 225 g 253 g 257 g 265 g 265 g

 Relay version 235 g 268 g 273 g

Mounting position Horizontal or vertical

Parameter Value
 PM5012 PM5032 PM5052 PM5072 PM5082

Total maximum downloadable application size 1) 1 MB 5 MB 7 MB 9 MB 9 MB

 Thereof user program code / data memory dynamically
allocated

256 KB 512 KB 768 KB 1 MB 1 MB

Thereof user web server memory for web visualization
max.

no web 1.5 MB 3.2 MB 7 MB 7 MB

Flash memory for user data

Remaining for all other usage (project save, infra- struc-
ture...)

30 MB 30 MB 30 MB 30 MB 30 MB

Buffered (FRAM) 8 KB 32 KB 32 KB 100 KB 100 KB

VAR_RETAIN persistent 4 KB 16 KB 16 KB 36 KB 36 KB

%MB data 4 KB 16 KB 16 KB 64 KB 64 KB

Expandable memory None None None None None

Integrated mass storage memory (FLASH) None None None None None

Slot for pluggable memory card x x x x x

General data

Detailed data

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US188

Parameter Value
 PM5012 PM5032 PM5052 PM5072 PM5082
Real-time clock (RTC) Optional

with
TA5131-
RTC

Built in

Min. retention time for RTC at room temperature
(if at least powered for 8 hours)

7 days 20 days

 Accuracy ±2 s/day

Programming languages ● Instruction List (IL)
● Function Block Diagram (FBD)
● Ladder Diagram (LD)
● Sequential Function Chart (SFC)
● Structured Text (ST)
● Continuous Function Chart (CFC)

 Processor type TI ARM Cortex-A9 32-bit-RISC

 Processor clock speed 300 MHz 600
MHz

Calculation time per instructions (minimum) PM5012 PM5032 PM5052 PM5072 PM5082

 Binary 20 ns 10 ns

Word 50 ns 10 ns

Floating point 600 ns 10 ns

 Lowest cycle time usable (also f. PTO) - 5 2 1 1

Using onboard EtherCAT protocol (licensed) in preparation

EtherCAT onboard No. of synchronized axis PM5012 PM5032 PM5052 PM5072 PM5082

 axis per 1 ms CM typically - - - - 2 - 4*

 axis per 2 msCM typically - - - 2 - 4* 4 - 8*

 axis per 4 ms CM typically - - - 4 - 8* 8 - 16

 Cyclic min. configurable 10 ms 5 ms 2 ms 1 ms 1 ms

Time-controlled Yes

Multitasking Yes

Interruption Yes

LEDs Power, Error, Run, MC, MOD1, States of I/Os

RUN/STOP button Yes

Protection of the user program by password On request

Usable accessories On request

Remarks:
* Depending an application complexity
1): The values are for information only and cannot be fulfilled altogether. The available resources are limited at the
end by the maximal downloadable application size for each CPU.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 189

Data of I/Os PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

Onboard digital inputs

Channels 6
(incl. 2
counter inputs
5 kHz and 4
interrupts)

12
(incl. 4 fast counter/encoder inputs (100 kHz/200 kHz), 4
inputs (5 kHz), 4 standard inputs)

Signal voltage 24 V DC type 1

Onboard digital outputs

Type of digital
outputs

PM5012-T-
ETH:
Transistor

PM5032-T-
ETH:
Transistor

PM5052-T-
ETH:
Transistor

PM5072-
T-2ETH(W):
Transistor

PM5082-
T-2ETH:
Transistor

PM5012-R-
ETH:
Relay

PM5032-R-
ETH:
Relay

PM5052-R-
ETH:
Relay

- -

Channels for
transistor ver-
sion

4
(5 kHz
standard and
PWM)

8
(incl. 4 fast outputs for standard or 4 PWM/4 PTO
(100 kHz/200 kHz), 4 standard outputs (5 kHz))

Channels dig-
ital input/
output config-
urable
(valid for both
PLC version
relais or tran-
sistor)

- 2
Relay version:
The DC channels can be used
as 1 PTO/2 PWM (100 kHz) or
standard digital inputs/outputs
Transistor version:
The DC channels can only
be used as standard digital
inputs/outputs

2
Transistor version:
The DC channels can only
be used as standard digital
inputs/outputs

Rated voltage
transistor

24 V DC

Nominal cur-
rent per tran-
sistor channel

0.5 A resistive

Channels for
relay version

4 6 - -

Rated voltage
relay

100 V AC ... 240 V AC
or
24 V DC

- -

Nominal cur-
rent per relay
channel

2 A resistive - -

Analog inputs Optional

Analog out-
puts

Optional

Number of
option board
slots

1 2 3 3 3

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US190

Data of I/Os PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

Usage of
option board

Each slot can be used for all type of existing option boards, same option board
for serial interface or digital/analog I/O extension can be used on several slot
per CPU.
Note: RTC option board is only for PM5012 possible.

KNX address
switch

No TA5130-KNXPB only on 1 slot

Real-time
clock (RTC)

TA5131-RTC No

Serial inter-
face

TA5141-RS232I, TA5142-RS485/TA5142-RS485I

Digital in/out
channels

TA5101-4DI, TA5105-4DOT, TA5110-2DI2DOT

Analog in/out
channels

TA5120-2AI-UI, TA5123-2AI-RTD, TA5126-2AO-UI

Max. number
of I/O
modules on
I/O bus

0 10

Digital inputs Onboard I/O
only

128 byte 1 KB

Digital outputs 128 byte 1 KB

Number of
decentralized
inputs and
outputs

Depending on the fieldbus used

Internal interfaces

Serial COMx Optional, use
a dedicated
serial inter-
face option
board (up to
1)

Optional, use
a dedicated
serial inter-
face option
board (up to
2)

Optional, use a dedicated serial interface
option board (up to 3)

Modbus RTU Master/Slave, ASCII

Ethernet inter-
face RJ45

1 2
Independent with switch func-
tionality

Ethernet func-
tions

Programming, TCP/IP, UDP/IP, DHCP, PING, network variables, and other
listed below

Modbus
TCP/IP
client/server

Yes
8 / 3

Yes
13 / 8

Yes
20 / 10

Yes
30 / 15

Yes
30 / 15

SNTP client/
server

No Yes

HTTPs and
WebVisu
number of
connections

No Yes
1

Yes
2

Yes
4

Yes
4

FTPs
number of
connections

No Yes
1

Yes
2

Yes
2

Yes
2

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 191

Data of I/Os PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

OPC UA
server
number of
free tags

No Yes
125

Yes
250

Yes
1000

Yes
3000

MQTT and
JSON library

No Yes

OPC DA
server

Yes

IEC
60870-5-104
telecontrol
protocol

No Yes
Substation only, 5 connections
max.,
only 1 Ethernet supported

Licensed protocols (runtime protocol per CPU)

BACnet IP B-
BC Ä Chapter
6.3.4.9
“BACnet-BC”
on page 1733

No Yes (max. 1000 object varia-
bles)

KNXIP
Ä Chapter
6.3.4.8 “KNX
configurator”
on page 1730

No Yes (max. 1000 object varia-
bles)

IEC 61850
MMS server/
goose
pub/sub

No Yes (max. 1000 data attrib-
utes)

EtherNet/IP
adapter/
scanner

No Yes
max. 512 byte in / 512 byte out data for adapter

EtherCAT
Master

No Yes
max. 512 byte in / 512 byte out data for adapter

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US192

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering Data
To enable better product availability into the production and to provide some new features, a
revision of the existing AC500-eCo V3 processor module was necessary. The existing AC500-
eCo V3 processor module with rubric R007x will move to classic and will be replaced by
compatible new AC500-eCo V3 processor module revision 1 with rubric R017x.

The processor module revision 1 PM5012-T-ETH (1SAP122 600 R0172) replaces the existing
processor module PM5012-T-ETH (1SAP 122 600 R0072) and provides the same features or
functionality of the previous ones.

For example:

Following points must be considered with the processor module revision 1:

– The processor module revision 1 (R017x) requires a new BootFW / CPUFW
from V3.6.x and higher.

– It cannot be downgraded and used with lower FW versions than V3.6.0.
– The processor module revision 1 (R017x) provides the same features as the

processor module (R007x) existing today and is fully compatible.
– An existing application using a processor module (R007x) built with

Automation Builder < 2.6 can run on a processor module revision 1 (R017x)
but the application must be upgraded to at least AB 2.6.0 or higher.

Processor
modules for
AC500-eCo V3
products

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 193

What must be done using a new processor module revision 1 (R017x)?
● On a new application?

– Just use the processor module revision 1 (R017x)
– Use the latest Automation Builder Software from 2.6.0 or higher.

● On an existing application using an Automation Builder software version smaller than 2.6.0?
– To use a processor module revision 1 in an existing application (e.g., replacement of the

processor module), the application must be upgraded to at least AB 2.6.0 or higher.
– If several processor module (revision 1 and revision 0) are used within the same project,

all the processor modules used in the same application must be upgraded to the FW
Version V3.6.x and higher.

Table 32: Processor modules for AC500-eCo V3
Part no. Description Product life cycle phase *)
1SAP 122 600 R0072
(processor module
revision 0)

Basic CPU PM5012-T-ETH, AC500-
eCo V3 processor module,
programmable logic controller
1 MB, 6DI/4DO-Transistor, Ethernet,
24 V DC, 1 option board slot

Classic
(replaced by processor
module revision 1)

1SAP 122 600 R0172
(processor module
revision 1)

Basic CPU PM5012-T-ETH, AC500-
eCo V3 processor module,
programmable logic controller
1 MB, 6DI/4DO-Transistor, Ethernet,
24 V DC, 1 option board slot

Active

1SAP 122 700 R0072
(processor module
revision 0)

Basic CPU PM5012-R-ETH, AC500-
eCo V3 processor module, pro-
grammable logic controller 1 MB,
6DI/4DO-Relay, Ethernet, 24 V DC, 1
option board slot

Classic
(replaced by processor
module revision 1)

1SAP 122 700 R0172
(processor module
revision 1)

Basic CPU PM5012-R-ETH, AC500-
eCo V3 processor module, pro-
grammable logic controller 1 MB,
6DI/4DO-Relay, Ethernet, 24 V DC, 1
option board slot

Active

1SAP 123 400 R0072
(processor module
revision 0)

Standard CPU PM5032-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 2 option board slots

Classic
(replaced by processor
module revision 1)

1SAP 123 400 R0172
(processor module
revision 1)

Standard CPU PM5032-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 2 option board slots

Active

1SAP 123 500 R0072
(processor module
revision 0)

Standard CPU PM5032-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 2 option board slots

Classic
(replaced by processor
module revision 1)

1SAP 123 500 R0172
(processor module
revision 1)

Standard CPU PM5032-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 2 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 2 option board slots

Active

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US194

Part no. Description Product life cycle phase *)
1SAP 124 000 R0072
(processor module
revision 0)

Standard CPU PM5052-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 3 option board slots

Classic
(replaced by processor
module revision 1)

1SAP 124 000 R0172
(processor module
revision 1)

Standard CPU PM5052-T-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/8DO-Transistor/2DC, Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 100 R0072
(processor module
revision 0)

Standard CPU PM5052-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 3 option board slots

Classic
(replaced by processor
module revision 1)

1SAP 124 100 R0172
(processor module
revision 1)

Standard CPU PM5052-R-ETH,
AC500-eCo V3 processor module,
programmable logic controller 4 MB,
12DI/6DO-Relay/2DC, Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 500 R0073
(processor module
revision 0)

Pro CPU PM5072-T-2ETH, AC500-
eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots

Classic
(replaced by processor
module revision 1)

1SAP 124 500 R0173
(processor module
revision 1)

Pro CPU PM5072-T-2ETH, AC500-
eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots

Active

1SAP 124 400 R0073
(processor module
revision 0)

Pro CPU PM5072-T-2ETHW, AC500-
eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots, wide
temperature

Classic
(replaced by processor
module revision 1)

1SAP 124 400 R0173
(processor module
revision 1)

Pro CPU PM5072-T-2ETHW, AC500-
eCo V3 processor module, pro-
grammable logic controller 8 MB,
12DI/8DO-Transistor/2DC, 2 Ethernet,
24 V DC, 3 option board slots, wide
temperature

Active

1SAP 124 600 R0173
(processor module
revision 1)

Pro CPU PM5082-T-2ETH, AC500-
eCo V3 processor module, program-
mable logic controller 8 MB, 12DI/
8DO-Transistor/2DC, 2 Ethernet, 24 V
DC, 3 option board slots

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 195

Table 33: Accessories for AC500-eCo V3
Part no. Description Product life cycle phase *)
Required accessories
1SAP 187 400 R00xx TA52xx, terminal block set

Ä Chapter 5.2.8.1.2 “TA52xx(-x) - Ter-
minal block sets” on page 1292

Active

Optional accessories
1SAP 187 000 R0xxx TA51xx, option board

Ä Chapter 5.2.1.1.3 “Option boards”
on page 218

Active

1SAP 180 100 R0002 MC5102, memory card
Ä Chapter 5.2.8.1.1 “MC5102 -
Micro memory card with adapter”
on page 1286

Active

1SAP 182 800 R0001 TA543, screw mounting accessory, 20
pieces per packing unit
Ä Chapter 4.3.8.5 “Mounting a pro-
cessor module on a metal plate”
on page 121

Active

1SAP 187 500 R0003 TA5301-CFA, cable fixing part acces-
sory, 20 pieces per packing unit
Ä Chapter 4.3.8.7 “Mounting of the
cable fixing accessory TA5301-CFA”
on page 123

Active

1SAP 187 500 R0001 TA5300-CVR, option board slot cover,
6 pieces

Active

1SAP 187 600 R0001 TA5400-SIM, input simulator for
testing and training purposes, 6
switches
Ä Chapter 5.2.8.1.4 “TA5400-SIM -
Input simulator” on page 1305

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.1.1.2 Onboard I/Os in processor module PM50x2
Functionality

The AC500-eCo V3 processor modules PM50x2 have onboard I/Os which provide several
functionalities. According to the CPU type, the number or the functionality of the onboard I/Os
can be different.
With the processor modules revision 1 (rubric R017x), the fast output channels provides up to
4 PTO pulse/direction with up to 200 kHz (rubric R007x, only 100 kHz). The processor modules
revision 1 are supported from AB 2.6.0 and the AB software automatically recognizes the used
processor module.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US196

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Digital inputs 6 12

Functionality of
digital inputs
(encoder, fast
counter, counter,
interrupt)

6 DI fast input 24 V DC (max. 5
kHz)
usable as
● 6 DI 24 V DC standard
● 2 channel 5 kHz encoder with

frequency measurement or
● 2 channel 5 kHz encoder with

frequency measurement and
with touch/reset using standard
DI or

● 2 fast counter (5 kHz)
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

4 DI fast input 24 V DC (max. 200
kHz)
usable as
● 4 DI 24 V DC standard or
● 4 fast counter (100 kHz) or
● 2 A/B encoder (200 kHz) with

frequency measurement or
● 2 full A/B encoders 0 and 1 (200

kHz) with frequency measure-
ment and with touch/reset using
standard highspeed (5 kHz) DI

● 1 full A/B encoder 0 (200 kHz)
with frequency measurement
and optional with touch/reset
using 2 touch/sync inputs with
A/B encoder 0

4 DI fast input 24 V DC (5 kHz)
usable as
● 4 DI 24 V DC standard or
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

● 4 touch/sync inputs with A/B
encoder 0 or 1

4 standard DI 24 V DC
Digital outputs 4 8 6

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 197

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Functionality of
digital outputs

4 fast output
DO-T
24 V DC/0.5 A
(max. 5 kHz)
usable as
● 4 DO-T

24 V DC/0.5 A
or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

● 4 limit switch

4 DO-R
24 V DC /
120/240 V AC 2A
in 2 groups

4 fast output
DO-T
24 V DC (100
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM (30
kHz, 2 µs
accuracy and
maximum
duty 95 %) or

● 2 PTO (200
kHz)
CW/CCW or
Pulse/Direc-
tion

● 4 PTO
(PWM)
100...200 kHz
Pulse/Direc-
tion using
standard
output

6 DO-R
24 V DC /
120/240 V AC 2A
in 2 groups

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US198

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

4 fast output
DO-T
24 V DC/0.5 A (5
kHz) (max. 5
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

● 4 direction
outputs
together with
4 high speed
pulses for up
to 4 PTO
Pulse/Direc-
tion outputs
up to 200 kHz

Digital inputs/
outputs,
configurable

- - 2 2

Functionality of
digital inputs/
outputs,
configurable

- - 2 DC 24 V DC
● 2 standard

I/Os
configurable

2 DC 24 V DC
usable as
● 2 DC

standard (DI
24 V DC or
DO-T) or

● 2 PWM (30
kHz) or

● 1 PTO (200
kHz) as
Pulse/Direc-
tion or
CW/CCW

LED displays For signal states

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 199

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Internal power
supply

Via processor module

External power
supply

Via UP and ZP terminal

Connections
General

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

When replacing a processor module, it is recommended to mark each wire
connected to the onboard I/O terminal block before disconnecting it. This should
make sure that the wires can be reconnected in the same order.

The connection is carried out by using removable 12-pin and 13-pin terminal blocks.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US200

Table 34: Assignment of the terminals for PM5012-T-ETH:
Terminal Signal Description
1 COM 0..5 Input common for digital input signals I0 to I5

2 I0 Digital input signal I0 (5 kHz)

3 I1 Digital input signal I1 (5 kHz)

4 I2 Digital input signal I2 (5 kHz)

5 I3 Digital input signal I3 (5 kHz)

6 I4 Digital input signal I4 (5 kHz)

7 I5 Digital input signal I5 (5 kHz)

8 O0 Digital output signal O0 (5 kHz)

9 O1 Digital output signal O1 (5 kHz)

10 O2 Digital output signal O2 (5 kHz)

11 O3 Digital output signal O3 (5 kHz)

12 UP Process supply voltage UP +24 V DC

13 ZP Process supply voltage ZP 0 V DC

Table 35: Assignment of the terminals for PM5012-R-ETH:
Terminal Signal Description
1 COM 0..5 Input common for digital input signals I0 to I5

2 I0 Digital input signal I0 (5 kHz)

3 I1 Digital input signal I1 (5 kHz)

4 I2 Digital input signal I2 (5 kHz)

5 I3 Digital input signal I3 (5 kHz)

6 I4 Digital input signal I4 (5 kHz)

7 I5 Digital input signal I5 (5 kHz)

8 NO0 Normally-open relay contact of the output NO0

9 NO1 Normally-open relay contact of the output NO1

10 R0..1 Output common for signals NO0 to NO1

11 NO2 Normally-open relay contact of the output NO2

12 NO3 Normally-open relay contact of the output NO3

13 R2..3 Output common for signals NO2 to NO3

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 201

Table 36: Assignment of the terminals for PM5032-T-ETH, PM5052-T-ETH, PM5072-T-2ETH(W)
and PM5082-T-2ETH:
Terminal Signal Description
1 COM 0..11 Input common for digital input signals I0 to I11

2 I0 Digital input signal I0 (max. 5 kHz)

3 I1 Digital input signal I1 (max. 5 kHz)

4 I2 Digital input signal I2 (max. 5 kHz)

5 I3 Digital input signal I3 (max. 5 kHz)

6 I4 Digital input signal I4
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

7 I5 Digital input signal I5 (100 kHz)
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

8 I6 Digital input signal I6 (100 kHz)
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

9 I7 Digital input signal I7 (100 kHz)
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

10 I8 Digital input signal I8

11 I9 Digital input signal I9

12 I10 Digital input signal I10

13 I11 Digital input signal I11

14 O0 Digital output signal O0 (max. 5 kHz)

15 O1 Digital output signal O1 (max. 5 kHz)

16 O2 Digital output signal O2 (max. 5 kHz)

17 O3 Digital output signal O3 (max. 5 kHz)

18 O4 Digital output signal O4
PWM (max. 100 kHz), PTO (max. 200 kHz)

19 O5 Digital output signal O5
PWM (max. 100 kHz), PTO (max. 200 kHz)

20 O6 Digital output signal O6
PWM (max. 100 kHz), PTO (max. 200 kHz)

21 O7 Digital output signal O7
PWM (max. 100 kHz), PTO (max. 200 kHz)

22 C12 Digital input/output signal configurable C12

23 C13 Digital input/output signal configurable C13

24 UP Process supply voltage UP +24 V DC

25 ZP Process supply voltage ZP 0 V DC

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US202

Table 37: Assignment of the terminals for PM5032-R-ETH and PM5052-R-ETH:
Terminal Signal Description
1 COM 0..11 Input common for digital input signals I0 to I11

2 I0 Digital input signal I0 (max. 5 kHz)

3 I1 Digital input signal I1 (max. 5 kHz)

4 I2 Digital input signal I2 (max. 5 kHz)

5 I3 Digital input signal I3 (max. 5 kHz)

6 I4 Digital input signal I4
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

7 I5 Digital input signal I5
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

8 I6 Digital input signal I6
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

9 I7 Digital input signal I7
Forward counter (max. 100 kHz), Encoder (max. 200
kHz)

10 I8 Digital input signal I8

11 I9 Digital input signal I9

12 I10 Digital input signal I10

13 I11 Digital input signal I11

14 NO0 Normally-open relay contact of the output NO0

15 NO1 Normally-open relay contact of the output NO1

16 NO2 Normally-open relay contact of the output NO2

17 R0..2 Output common for signals NO0 to NO2

18 NO3 Normally-open relay contact of the output NO3

19 NO4 Normally-open relay contact of the output NO4

20 NO5 Normally-open relay contact of the output NO5

21 R3..5 Output common for signals NO3 to NO5

22 C12 Digital input/output signal configurable C12
PWM (max. 100 kHz), PTO (max. 200 kHz)

23 C13 Digital input/output signal configurable C13
PWM (max. 100 kHz), PTO (max. 200 kHz)

24 UP Process supply voltage UP +24 V DC

25 ZP Process supply voltage ZP 0 V DC

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 203

Table 38: Internal structure of the onboard I/Os
PM5012-T-ETH PM5012-R-ETH PM5032-ETH

PM5052-T-ETH
PM5072-T-2ETH(W)

PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Block diagrams

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US204

Connection of the digital inputs
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

Table 39: Connection of the digital inputs to the PM50x2 processor modules

Connection of digital inputs (sink inputs) Connection digital inputs (source inputs)

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 205

Connection of the digital transistor outputs (PM50xx-T-xETH only)

Fig. 29: Connection of digital transistor outputs and configurable digital inputs/outputs

C12 used as configurable digital input
C13 used as configurable digital transistor output

CAUTION!
Risk of damaging the processor module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external fuse for each output.

The configurable digital channels (C12 and C13) used as digital inputs have the
same electrical characteristics as standard digital inputs.

The configurable digital channels (C12 and C13) used as digital transistor out-
puts have the same electrical characteristics as standard digital outputs.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US206

Connection of the digital relay outputs (PM50xx-R-ETH only)

Fig. 30: Connection of digital relay outputs and configurable digital inputs/outputs

C12 used as configurable digital input
C13 used as configurable digital transistor output

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

CAUTION!
Risk of damaging the processor module!
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be fed from the same

phase.
– Use an external fuse for each output.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 207

The configurable digital channels (C12 and C13) used as digital inputs have the
same electrical characteristics as standard digital inputs.

The configurable digital channels (C12 and C13) used as digital transistor out-
puts have the same electrical characteristics as standard digital outputs.

I/O configuration
The configuration data of the onboard I/Os is stored in the processor modules PM50x2.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Parameterization
For information about parameterization, refer to the configuration description for onboard I/Os
for processor modules PM50x2.
Ä “Basic CPU: PM5012-x-ETH” on page 1484

Ä “Standard CPU: PM5032-x-ETH, PM5052-x-ETH Pro CPU: PM5072-T-2ETH, PM5082-
T-2ETH” on page 1486

Diagnosis
No diagnosis is generated for the onboard I/O.
There is only an error message if the configuration does not work. A log entry is generated.
The Automation Builder already prevents faulty values from being entered in the configuration.
If the configuration does not work, there is a system error, if e.g. faulty software or wrong
versions are installed.
Otherwise there are error messages from the blocks for the individual functions.

State LEDs
Table 40: States of the I/Os
LED Status Color LED = ON LED = OFF
I Digital input yellow Input is ON Input is OFF

O Digital transistor output yellow Output is ON Output is OFF

NO Digital relay output yellow Relay contact is
closed

Relay contact is
open

C Digital configurable
input/output

yellow Configured input/
output is ON

Configured input/
output is OFF

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US208

Technical data
Technical data of the digital inputs

Table 41: PM5012-x-ETH
Parameter Value
Number of channels per module 6

Distribution of the channels into groups 1 group of 6 channels

Galvanic isolation Yes, per group

Connections of the channels I0 to I11 Terminals 2 to 7

Reference potential for the channels I0 to I11 Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)
and the module's logic is in operation

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal voltage -24 V DC +24 V DC

 Signal 0 -5 V .. .+3 V -3 V ... +5 V

 Undefined signal -15 V ... - 5 V +5 V ... +15 V

 Signal 1 -30 V ... -15 V +15 V ... +30 V

Ripple with signal 0 Within -5 V ... +3 V Within -3 V ... +5 V

Ripple with signal 1 Within
-30 V ... -15 V

Within
+15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 4.6 mA

 Input voltage +5 V Typ. 0.8 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Input delay (0->1 or 1->0) On request

Max. cable length *)

 Shielded 500 m

 Unshielded 300 m

*) For fast inputs, a shielded cable must be used and the max. cable length is 50 m.

Table 42: PM5032-x-ETH, PM5052-x-ETH, PM5072-T-2ETH(W) and PM5082-T-2ETH
Parameter Value
Number of channels per module 12

Distribution of the channels into groups 1 group of 12 channels

Galvanic isolation Yes, per group

Connections of the channels I0 to I11 Terminals 2 to 13

Reference potential for the channels I0 to I11 Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)
and the module's logic is in operation

Input type according to EN 61131-2 Type 1 source Type 1 sink

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 209

Parameter Value
Input signal voltage -24 V DC +24 V DC

 Signal 0 -5 V ... +3 V -3 V ... +5 V

 Undefined signal -15 V ... - 5 V +5 V ... +15 V

 Signal 1 -30 V ... -15 V +15 V ... +30 V

Ripple with signal 0 Within -5 V ... +3 V Within -3 V ... +5 V

Ripple with signal 1 Within
-30 V ... -15 V

Within
+15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 4.6 mA

 Input voltage +5 V Typ. 0.8 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Input delay (0->1 or 1->0) On request

Max. cable length *)

 Shielded 500 m

 Unshielded 300 m

*) For fast inputs, a shielded cable must be used and the max. cable length is 50 m.

Technical data of the fast counter inputs

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo V3 devices the function "fast counter" is available in onboard
I/Os of PM50xx.

The AC500-eCo V3 processor modules with onboard I/Os provide some special functionality on
the digital inputs or digital outputs. Fast counter, encoder inputs, interrupt inputs or PWM/PTO
outputs are available depending on the device used.
The fast counter functionality can be activated within the onboard I/O configuration.
The fast counter can work in pulse/direction mode or A/B track counter mode.
Ä Further information about the operating modes of the fast counter

Ä Further information about the configuration of the fast counter

As AC500-eCo V3 PLCs provide the fast counters via their onboard I/Os not only the cor-
rect power distribution to the PLC has to be made, but also the correct wiring to the signal
wires. How to connect and use fast counters in AC500-eCo V3 PLCs is described in an
application example.

The pulse/direction counter detects the rising edge of the counter input. It will increase or
decrease the count value (depending on the direction input) at every rising edge.
The A/B track counter is used to count the signal from an encoder.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US210

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011148&LanguageCode=en&DocumentPartId=&Action=Launch

The counter can count with quad phases. In the following the behavior of the A/B track counter
is described.

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Fast counter

 Useable inputs 2 2 4 4

Fast input
max. 5 kHz

I4 ... I5 I4 ... I5 - -

Fast input,
max. 100 kHz

- - I4 … I7 I4 … I7

Technical data of the interrupt inputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Interrupt

 Useable inputs 4 4 4 4

Fast input
max. 5 kHz

I0 ... I3 I0 ... I3 I0 ... I3 I0 ... I3

Technical data of the Touch/Reset inputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Touch/Reset

 Useable inputs - - 4
together with
dedicated
encoder

4
together with
dedicated
encoder

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 211

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Fast input
max. 5 kHz

- - I0 ... I3 I0 ... I3

Fast input,
max. 100 kHz

- - I6 ... I7
When using the
A/B encoder on
I04...I05 and
the Touch/
Reset inputs on
fast inputs

I6 ... I7
When using the
A/B encoder on
I04...I05 and
the Touch/
Reset inputs on
fast inputs

Technical data of the digital transistor outputs
Table 43: PM5012-T-ETH
Parameter Value
Number of channels per module 4

Distribution of the channels into groups 1 group of 4 channels

Galvanic isolation Yes, per group

Connection of the channels O0 to O3 Terminals 8 to 11

Common power supply voltage Terminals 12 (+24 V DC, signal name UP)

Reference potential for the channels O0 to O3 Terminal 13 (0 V DC, negative pole of the
process voltage, signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay (max. at rated load)

 0 to 1 On request

 1 to 0 On request

Rated protection fuse (per channel) 2 A fast

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general
use and pilot duty)

 Rated current per group (max.) 2 A

 Rated current (all channels together, max.) 2 A

Max. leakage current with signal 0 On request

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads On request

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US212

Parameter Value
Short-circuit-proof / Overload-proof No

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length *)

 Shielded 500 m

 Unshielded 150 m

*) For PWM and PTO outputs, a shielded cable must be used.
Table 44: PM5032-T-ETH, PM5052-T-ETH, PM5072-T-2ETH(W) and PM5082-T-2ETH
Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Galvanic isolation Yes, per group

Connection of the channels O0 to O7 Terminals 14 to 21

Common power supply voltage Terminals 24 (+24 V DC, signal name UP)

Reference potential for the channels O0 to O7 Terminal 25 (0 V DC, negative pole of the
process voltage, signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay (max. at rated load)

 0 to 1 On request

 1 to 0 On request

Rated protection fuse (per channel) 2 A fast

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general
use and pilot duty)

 Rated current per group (max.) 4 A

 Rated current (all channels together, max.) 4 A

Max. leakage current with signal 0 0.5 mA

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads On request

Short-circuit-proof / Overload-proof No

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length *)

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 213

Parameter Value
 Shielded 500 m

 Unshielded 150 m

*) For PWM and PTO outputs, a shielded cable must be used.

Technical data of the digital relay outputs
Table 45: PM5012-R-ETH
Parameter Value
Number of channels per module 4 normally-open relay outputs

Distribution of the channels into groups 2 groups for 2 channels

Galvanic isolation Yes, per group

Connection of the channels NO0 to NO1 Terminals 8 to 9

Connection of the channels NO2 to NO3 Terminals 11 to 12

Reference potential R0..1 for the channels NO0
to NO1

Terminal 10

Reference potential R2..3 for the channels NO2
to NO3

Terminal 13

Relay output voltage

 Rated value 24 V DC or
100 V AC ... 240 V AC
50 Hz/60 Hz

Range 5 V DC ... 30 V DC
or
5 V AC ... 250 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)

Way of operation Non-latching type

Output delay

 0 to 1 Typ. 10 ms

1 to 0 Typ. 10 ms

Output current

 Rated current per channel (max.) 2.0 A (24 V DC resistance and general use,
100 V AC ... 240 V AC, resistance, general
use and pilot duty)

Rated current per group (max.) 6 A

Rated current (all channels together, max.) 12 A

Demagnetization when inductive loads are
switched off

External demagnetization measures must be
implemented when switching inductive loads.

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching frequencies

 With resistive loads Max. 1 Hz

With inductive loads On request

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US214

Parameter Value
With lamp loads On request

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

Rated protection fuse (for each channel) 5 A fast

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100,000 at rated load

Max. cable length *)

 Shielded 500 m

Unshielded 150 m

*) For PWM and PTO outputs, a shielded cable must be used.
Table 46: PM5032-R-ETH and PM5052-R-ETH
Parameter Value
Number of channels per module 6 normally-open relay outputs

Distribution of the channels into groups 2 groups for 3 channels

Galvanic isolation Yes, per group

Connection of the channels NO0 to NO2 Terminals 14 to 16

Connection of the channels NO3 to NO5 Terminals 18 to 20

Reference potential R0..2 for the channels NO0
to NO2

Terminal 17

Reference potential R3..5 for the channels NO3
to NO5

Terminal 21

Relay output voltage

 Rated value 24 V DC or
100 V AC ... 240 V AC
50 Hz/60 Hz

Range 5 V DC ... 30 V DC
or
5 V AC ... 250 V AC

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered through the I/O bus

Way of operation Non-latching type

Output delay

 0 to 1 Typ. 10 ms

1 to 0 Typ. 10 ms

Output current

 Rated current per channel (max.) 2.0 A (24 V DC resistance and general use,
100 V AC ... 240 V AC, resistance, general
use and pilot duty)

Rated current per group (max.) 6 A

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 215

Parameter Value
Rated current (all channels together, max.) 12 A

Demagnetization when inductive loads are
switched off

External demagnetization measures must be
implemented when switching inductive loads.

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching frequencies

 With resistive loads Max. 1 Hz

With inductive loads On request

With lamp loads On request

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

Rated protection fuse (for each channel) 5 A fast

Overload message No

Output current limitation No

Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100,000 at rated load

Max. cable length *)

 Shielded 500 m

Unshielded 150 m

*) For PWM and PTO outputs, a shielded cable must be used.

Technical data of the limit switch outputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

Limit switch

 Useable outputs 4 - 8 2

Fast output
max. 5 kHz

O0 ... O3 - O0 … O3 -

Fast output,
max. 100 kHz

- - O4 … O7 C12 … C13

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US216

Technical data of the PTO outputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

PTO

 Useable outputs - - 4 1
pair of output

Fast output,
max. up to 200 kHz
2)

- - O4 … O7
For 2 PTO 200
kHz 1) Pulse/
Direction or
CC/Ccw modes
as pair of out-
puts

C12 … C13

O4 … O7
as 4 PTO up to
200 kHz Pulse
outputs / Direc-
tion using fast
output 5kHz
O0...O3 2)

1) If the load is less than 100 mA it is strongly recommended to connect an additional load
resistor (240 Ω/5 W or 270 Ω/5 W) to the output to improve the pulse signal.
2) With the processor modules revision 1 (rubric R017x), the fast output provides then 200 kHz
PTO Pulse output instead of 100 kHz. The processor modules revision 1 needs at least AB
2.6.0 and higher.

Technical data of the PWM outputs

Parameter PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH
PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

PM5032-R-
ETH
PM5052-R-
ETH

PWM

 Useable outputs 4 - 8 2

Fast output
max. 5 kHz

O0 ... O3 - O0 … O3 -

Fast output,
max. 100 kHz

- - O4 … O7 C12 … C13

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 217

5.2.1.1.3 Option boards
TA5101-4DI - Digital input option board
Features

● 4 digital inputs 24 V DC (I0 to I3) in 1 group
● Module-wise galvanically isolated
● W variant available for use in extended (wide) temperature range

1 4 yellow LEDs to display the signal states at the digital inputs I0 to I3
2 Allocation of signal name
3 5-pin terminal block for input signals

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

Intended purpose
The device is used as an optional I/O extension module for AC500-eCo V3 CPUs (PM50x2).
The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via internal CPU connection

External power supply Not necessary

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US218

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the system assembly chapter.

The connection is carried out by using a removable 5-pin terminal block. For more information,
please refer to the chapter terminal blocks for AC500-eCo V3 system. The terminal blocks are
included in the module's scope of delivery and additional terminal blocks as spare parts can be
ordered separately.

Fig. 31: Internal construction of the digital inputs

Table 47: Assignment of the terminals:
Terminal Signal Description
1 COM 0..3 Input common for signals I0 to I3

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

The internal power supply voltage for the module's circuitry is carried out via the connection to
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by 10 mA per TA5101-4DI.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The option boards are not designed for removal or insertion under power.
Because of unforeseeable consequences, it is not allowed to plug or unplug
option boards with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace an option board.
Disconnecting any powered option board while energized in a hazardous loca-
tion could result in an electric arc, which could create a flammable ignition
resulting in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 219

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

Table 48: Connection of the option board for digital I/O extension TA5101-4DI
Sink inputs of TA5101-4DI Source inputs of TA5101-4DI

The module provides several diagnosis functions Ä “Diagnosis” on page 221.
The meaning of the LEDs is described in the section 'State LEDs' Ä “State LEDs” on page 221.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the CPU module during power-up of the system.
Hence, replacing optional modules is possible without any re-parameterization via software.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US220

Diagnosis

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Table 49: Diagnosis messages
Device Severity Error

code
Description
Error Message Remedy

TA5101-4DI 11 1 Wrong or no board
plugged

Replace with correct func-
tional board

TA5101-4DI 11 2 Board defective Replace with correct func-
tional board

TA5101-4DI 11 3 Failed to set direction Replace with correct func-
tional board

TA5101-4DI 11 4 Parameter wrong Verify setting of parameter
“Run on config fault”

LED State Color LED = OFF LED = ON
Inputs I0...I3 Digital input Yellow Input is OFF Input is ON

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Diagnosis

State LEDs

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 221

Parameter Value
Galvanic isolation Yes, between the input group and the rest of

the module

 Isolated groups 1 (4 channels per group)

Current consumption from 24 V DC power
supply at the L+ and M terminals of the CPU

Ca. 10 mA

Max. power dissipation within the module 0.8 W

Weight 15 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Table 50: Technical data of the digital inputs
Parameter Value
Number of channels per module 4 inputs 24 V DC

Distribution of the channels into
groups

1 (4 channels per group)

Connections of the channels I0 to I3 Terminals 2 to 5

Reference potential for the channels
I0 to I3

Terminal 1 (plus or negative pole of the process supply
voltage, signal name COM 0 ... 3)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is powered
through the CPU connection.

Monitoring point of input indicator LED

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

 Signal 0 -5 V ... +3 V -3 V...+5 V

 Undefined signal -15 V ... -5 V +5 V ... +15 V

 Signal 1 -30 V ... -15 V +15 V ... +30 V

Input current per channel

 Input voltage 24 V Typ. 5 mA

 Input voltage 5 V Typ. 1 mA

 Input voltage 14 V

 Input voltage 15 V < 3 mA

 Input voltage 27 V

 Input voltage 30 V < 7 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US222

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 000 R0001 TA5101-4DI: AC500-eCo V3, digital

input option board, 4DI 24 V DC,
spring/cable front terminal 3.50 mm
pitch

Active

1SAP 187 000 R0201 TA5101-4DIW: AC500-eCo V3, digital
input option board, 4DI 24 V DC,
spring/cable front terminal 3.50 mm
pitch, wide temperature range

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 6 pieces per packing unit

Active

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 223

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5105-4DOT - Digital output option board
Features

● 4 digital outputs 24 V DC (O0 to O3) in 1 group
● Module-wise galvanically isolated
● W variant available for use in extended (wide) temperature range

1 4 yellow LEDs to display the signal states at the digital outputs O0 ... O3
2 Allocation of signal name
3 7-pin terminal block for output signals

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

Intended purpose
The device is used as an optional I/O extension module for AC500-eCo V3 CPUs (PM50x2).
The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US224

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via internal CPU connection

External power supply Via the terminals ZP and UP (process supply
voltage 24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the system assembly chapter.

The connection is carried out by using a removable 7-pin terminal block. For more information,
please refer to the chapter terminal blocks for AC500-eCo V3 system. The terminal blocks are
included in the module's scope of delivery and additional terminal blocks as spare parts can be
ordered separately.

Fig. 32: Internal construction of the digital outputs

Table 51: Assignment of the terminals:
Terminal Signal Description
1 NC Not connected

2 O0 Output signal O0

3 O1 Output signal O1

4 O2 Output signal O2

5 O3 Output signal O3

6 UP Process supply voltage UP +24 V DC

7 ZP Process supply voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the connection to
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by 10 mA per TA5105-4DOT.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 225

WARNING!
Removal/Insertion under power
The option boards are not designed for removal or insertion under power.
Because of unforeseeable consequences, it is not allowed to plug or unplug
option boards with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace an option board.
Disconnecting any powered option board while energized in a hazardous loca-
tion could result in an electric arc, which could create a flammable ignition
resulting in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

Fig. 33: Connection of the option board for digital I/O extension TA5105-4DOT

NOTICE!
Risk of malfunctions in the plant!
Only if L+/M of the CPU is available and the outputs are already configured in
the AB program, the outputs will switch on as soon as the UP/ZP is available.
This must be considered in the application planning.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US226

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external fuse for the outputs.

The module provides several diagnosis functions Ä Further information on page 227.
The meaning of the LEDs is described in the section State LEDs Ä “State LEDs” on page 228.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the CPU module during power-up of the system.
Hence, replacing optional modules is possible without any re-parameterization via software.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

Diagnosis

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 227

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Table 52: Diagnosis messages
Device Severity Error

code
Description
Error Message Remedy

TA5105-4DOT 11 1 Wrong or no board
plugged

Replace with correct func-
tional board

TA5105-4DOT 11 2 Board defective Replace with correct func-
tional board

TA5105-4DOT 11 3 Failed to set direction Replace with correct func-
tional board

TA5105-4DOT 11 4 Parameter wrong Verify setting of parameter
“Run on config fault”

LED State Color LED = OFF LED = ON
Outputs O0...O3 Digital output Yellow Output is OFF Output is ON

(The output
voltage (normally
24 V DC) is
only displayed if
UP/ZP and L+/M
(supply voltages
for the module) are
switched ON)

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 6 for UP (+24 V DC) and terminal 7
for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP On request

Current consumption from 24 V DC power
supply at the L+/M terminals of the CPU

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

State LEDs

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US228

Parameter Value
Isolated groups 1 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 0.5 W

Weight 16 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Table 53: Technical data of the digital outputs
Parameter Value
Number of channels per module 4 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (4 channels per group)

Connection of the channels O0 to O3 Terminals 2 to 5

Common power supply voltage Terminal 6 (positive pole of the process voltage,
signal name UP)

Reference potential for the channels O0 to
O3

Terminal 7 (negative pole of the process voltage,
signal name ZP)

Indication of the output signals 1 yellow LED per channel; the LED is on when
the output signal is high (signal 1).
Only internal logic is powered from CPU.
Outputs are powered from UP/ZP terminals.

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general use
and pilot duty)

 Rated current per group (max.) 2 A (4 channels * 0.5 A)

Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) On request

Demagnetization when inductive loads are
switched off

Must be performed externally according to driven
load specification

Switching Frequencies

 With resistive load Limited by CPU cycle time

 With inductive load Max. 0.5 Hz

 With lamp load Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 229

Parameter Value
 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Dimensions

The dimensions are in mm and in brackets in inch.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US230

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 000 R0002 TA5105-4DOT: AC500-eCo V3, digital

output option board, 4DO-T 24 V DC /
0.5 A, spring/cable front terminal 3.50
mm pitch

Active

1SAP 187 000 R0202 TA5105-4DOTW: AC500-eCo V3, dig-
ital output option board, 4DO-T 24
V DC / 0.5 A, spring/cable front ter-
minal 3.50 mm pitch, wide tempera-
ture range

Active

Spare parts

1SAP 187 400 R0014
**)

TA5220-SPF7: spring terminal block,
removable, 7-pin, spring front, cable
front, 6 pieces per packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5110-2DI2DOT - Digital I/O option board
Features

● 2 digital inputs 24 V DC (I0 to I1) in 1 group
● 2 digital transistor outputs 24 V DC (O0 to O1) in 1 group
● Group-wise galvanically isolated
● W variant available for use in extended (wide) temperature range

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 231

1 2 yellow LEDs to display the signal states at the digital outputs O0 to O1
2 2 yellow LEDs to display the signal states at the digital inputs I0 to I1
3 Allocation of signal name
4 7-pin terminal block for input/output signals

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

Intended purpose
The device is used as an optional I/O extension module for AC500-eCo V3 CPUs (PM50x2).
The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via internal CPU connection

External power supply Via the terminals ZP and UP (process supply
voltage 24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the system assembly chapter.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US232

The connection is carried out by using a removable 7-pin terminal block. For more information,
please refer to the chapter terminal blocks for AC500-eCo V3 system. The terminal blocks are
included in the module's scope of delivery and additional terminal blocks as spare parts can be
ordered separately.

Fig. 34: Internal construction of the digital inputs and outputs

Table 54: Assignment of the terminals:
Terminal Signal Description
1 COM 0 ... 1 Input common for signals I0 to I1

2 I0 Input signal I0

3 I1 Input signal I1

4 O0 Output signal O0

5 O1 Output signal O1

6 UP Process supply voltage UP +24 V DC

7 ZP Process supply voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the connection to
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by 10 mA per TA5110-2DI2DOT.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The option boards are not designed for removal or insertion under power.
Because of unforeseeable consequences, it is not allowed to plug or unplug
option boards with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace an option board.
Disconnecting any powered option board while energized in a hazardous loca-
tion could result in an electric arc, which could create a flammable ignition
resulting in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 233

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

Table 55: Connection for inputs of the option board for digital I/O extension TA5110-2DI2DOT
Sink inputs of TA5110-2DI2DOT Source inputs of TA5110-2DI2DOT

Fig. 35: Connection for outputs of the option board for digital I/O extension TA5110-2DI2DOT

NOTICE!
Risk of malfunctions in the plant!
Only if L+/M of the CPU is available and the outputs are already configured in
the AB program, the outputs will switch on as soon as the UP/ZP is available.
This must be considered in the application planning.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US234

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external fuse for the outputs.

The module provides several diagnosis functions Ä Further information on page 236.
The meaning of the LEDs is described in the section State LEDs Ä “State LEDs” on page 236.

I/O configurations
The module itself does not store configuration data. It receives its parameterization data from
the CPU module during power-up of the system.
Hence, replacing optional modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 235

Diagnosis

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Table 56: Diagnosis messages
Device Severity Error

code
Description
Error Message Remedy

TA5110-2DI2DOT 11 1 Wrong or no board
plugged

Replace with correct func-
tional board

TA5110-2DI2DOT 11 2 Board defective Replace with correct func-
tional board

TA5110-2DI2DOT 11 3 Failed to set direction Replace with correct func-
tional board

TA5110-2DI2DOT 11 4 Parameter wrong Verify setting of parameter
“Run on config fault”

LED State Color LED = OFF LED = ON
Inputs I0...I1 Digital input Yellow Input is OFF Input is ON

Outputs O0...O1 Digital output Yellow Output is OFF Output is ON

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 6 for UP (+24 V DC) and ter-
minal 7 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

State LEDs

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US236

Parameter Value
 Inrush current 0.000002 A²s

 Protection against reversed voltage Yes

 Rated protection fuse for UP On request

Current consumption from 24 V DC power supply
at the L+/M terminals of the CPU

Ca. 10 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 2 groups (1 group for 2 input channels, 1
group for 2 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 0.7 W

Weight 15 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

Table 57: Technical data of the digital inputs
Parameter Value
Number of channels per module 2

Distribution of the channels into groups 1 group for 2 channels

Connections of the channels I0 to I1 Terminals 2 to 3

Reference potential for the channels I0 to I1 Terminal 1

Indication of the input signals 1 yellow LED per channel; the
LED is ON when the input signal
is high (signal 1)

Monitoring point of input indicator LED
It is not part of input circuit (its
controlled by processor side, not
process side)

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

Signal 0 -5 V ... +3 V -3 V ... +5 V

Undefined signal -15 V ... + 5 V +5 V ... +15 V

Signal 1 -30 V ... -15 V +15 V ... +30 V

Ripple with signal 0 -5 V ... +3 V -3 V ... +5 V

Ripple with signal 1 -30 V ... -15 V +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V < 3 mA

 Input voltage +30 V < 7 mA

Max. permissible leakage current (at 2-wire proximity
switches)

1 mA

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 237

Parameter Value
Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Table 58: Technical data of the digital outputs
Parameter Value
Number of channels per module 2 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 group of 2 channels

Connection of the channels O0 to O1 Terminals 4 to 5

Reference potential for the channels O0 to O17 Terminal 7 (negative pole of the process
voltage, name ZP)

Common power supply voltage Terminal 6 (positive pole of the process
voltage, name UP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Monitoring point of output indicator Controlled together with transistor

Way of operation Non-latching type

Min. output voltage at signal 1 UP - 0.1 V

Output delay

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC (resistance, general
use and pilot duty)

 Rated current per group (max.) 1 A

 Rated current (all channels together,
max.)

1 A

 Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) On request

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive load Limited by CPU cycle time

 With inductive load Max. 0.5 Hz

 With lamp load Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US238

Parameter Value
 Output current limitation No

 Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Dimensions

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 239

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 000 R0003 TA5110-2DI2DOT: AC500-eCo V3,

digital I/O option board, 2DI 24 V DC,
2DO-T 24 V DC / 0.5 A, spring/cable
front terminal 3.50 mm pitch

Active

1SAP 187 000 R0203 TA5110-2DI2DOW: AC500-eCo V3,
digital I/O option board, 2DI 24 V DC,
2DO-T 24 V DC / 0.5 A, spring/cable
front terminal 3.50 mm pitch, wide
temperature range

Active

Spare parts

1SAP 187 400 R0014
**)

TA5220-SPF7: spring terminal block,
removable, 7-pin, spring front, cable
front, 6 pieces per packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5120-2AI-UI - Analog input option board
Features

● 2 configurable analog inputs (I0 and I1) in 1 group
Resolution 12 bits including sign

● Option board is galvanically isolated
● W variant available for use in extended (wide) temperature range

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US240

1 Allocation of terminal and signal name
2 2 yellow LEDs to display the signal states at the analog inputs I0 and I1
3 6-pin terminal block for analog input signals and power supply (UP, ZP)
4 Input connection diagram for U and I

Intended purpose
The option board is used as analog input extension module for AC500-eCo V3 CPUs (PM50xx).

The analog option boards TA5120-2AI-UI and TA5126-2AO-UI can only be used
from AB 2.5.2, SystemFW 3.5.0_HF-7, BootFW 3.5.1 and higher.

Using the option boards with lower versions will create a configuration error and
the CPU will not start.

Functionality
2 analog inputs, individually configurable for
● Unused (default setting)
● 0 V ... 10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Parameter Value
Resolution of the analog channels

 Voltage 0 V ... 10 V 12 bits

Current 0 mA ... 20 mA, 12 bits

Current 4 mA ... 20 mA 12 bits

LED displays 2 LEDs for signals I0 and I1

Internal power supply Via the CPU PM50xx

External power supply Via the terminals UP and ZP (process
voltage 24 V DC)

Required CPU PM50xx

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 241

Connection

WARNING!
Removal/Insertion under power
The option boards are not designed for removal or insertion under power.
Because of unforeseeable consequences, it is not allowed to plug or unplug
option boards with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace an option board.
Disconnecting any powered option board while energized in a hazardous loca-
tion could result in an electric arc, which could create a flammable ignition
resulting in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.

The option board TA5120-2AI-UI for analog input extension is plugged into an AC500-eCo V3
processor module PM50xx.
Ä Chapter 4.3.11.1 “Mounting and demounting the option boards” on page 127

The electrical connection is made via a removable 6-pin terminal block.

The terminal block is included in the scope of delivery of the option board.
Further terminal blocks can be ordered separately as spare parts.

Ä Chapter 5.2.8.1.2 “TA52xx(-x) - Terminal block sets” on page 1292

Table 59: Assignment of the terminals:
Terminal Signal Description
1 I0+ Positive analog input I0

2 I0- Negative analog input I0

3 I1+ Positive analog input I1

4 I1- Negative analog input I1

5 UP Process voltage UP = +24 V DC

6 ZP Process voltage ZP = 0 V DC

CAUTION!
The negative terminal of the analog inputs (voltage 0 V…10 V) are connected
internally and form an internal analog ground (AGND). This analog ground is
connected to ZP via a PTC resistor. There is no galvanic isolation between
the analog circuitry and ZP/UP. Hence, analog inputs can not be connected in
series.

The internal power supply of the circuits of the module takes place via the connection to the
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by << 1 mA per TA5120-2AI-UI.
The external power supply is connected via the terminals UP (+24 V DC) and ZP (0 V DC).

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US242

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

The following figure shows the connection of the module:

Fig. 36: Internal construction of the analog inputs

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The option board provides several diagnosis functions.
Ä Chapter 5.2.1.1.3.4.8 “Diagnosis” on page 248

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 243

By connecting the sensor's negative terminal of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

Table 60: Configurable measuring ranges for TA5120-2AI-UI
Parameter Value
Channel configuration 0 V...+10 V

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "not used".

Connection of
active-type
analog sensors
(Voltage) with
galvanically iso-
lated power
supply

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US244

Parameter Value
Channel configuration 0 mA...+20 mA

or
+4 mA...+20 mA

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "not used".

Connection of
active-type
analog sensors
(Current) with
galvanically iso-
lated power
supply

Connection of
active-type
analog sensors
(Voltage) with
no galvanically
isolated power
supply

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 245

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines.

If AGND does not get connected to ZP, the sensor supply current flows to ZP
via the AGND line. This current will distort the measuring signal, as a very
small current flows through the AGND line. ZP connection should be close to
the sensor. The total current through the PTC should not exceed 50 mA. This
measuring method is therefore only suitable for short lines and small compen-
sation currents via the AGND line.

Parameter Value
Channel configuration 0 V...+10 V

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "not used".

Parameter Value
Channel configuration 0 mA...+20 mA

or
+4 mA...+20 mA

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "not used".

Connection of
passive-type
analog sensors
(current)

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US246

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-Volt Zener diode (in parallel to I+ and I-). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

I/O configuration
The option board itself does not store configuration data. It receives its parameterization from
the CPU module during power-up of the system.
Hence, replacing option boards is possible without any re-parameterization via software.

Parameter Value
Configurability 0 V...10 V

0 mA...20 mA
4 mA...20 mA
(each input can be configured individu-
ally)

Unused voltage inputs Must be configured as "not used"

Unused current inputs Must be configured as "not used"

Firmware update via memory card
The following steps describe the procedure for updating the firmware for the analog option
boards using a memory card. Prerequisite is the previous download of the current firmware to
the memory card either from the Automation Builder or as online download from ABB.
Direct from ABB Software.
Click this link and on the next web page find the relevant firmware package and download it.
● Unpack this .zip archive file at any location of your hard disc
● Insert empty formatted (FAT16 / FAT32) memory card in the PC card reader
● Execute the unpacked *.exe file
● Select PC card reader as the final destination and confirm.
All directories, files and SDCARD.INI file will be automatically created on memory card and
properly configured. After the process is complete, one has the prepared memory card with
relevant updates.

Precondition: Prepared memory card with boot project and firmware Ä Chapter
6.3.1.4.5.2.2 “Preparation of memory card” on page 1427.
1. Switch off the device.
2. Insert the memory card.

Firmware
update

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 247

https://share.library.abb.com/api/v4?cid=9AAC177288&dk=Software

3. Switch on the device.

ð The alternate flashing of the RUN and the ERR LED indicates the running update
process.
At the end of the update process a reboot is executed and the system firmware is
started for the finishing of the update process.
If RUN LED blinks (ERR LED is off), the update was successful and the display shows
done.
If ERR LED blinks (RUN LED is off), the update failed and the display shows FAIL.
The text file “SDCARD.RDY” includes the results of the different updates. If the update
fails, the file contains the reasons for the abort. Based on this, further steps can be
taken to fix the problem.

4. Switch off the device.
5. Remove the memory card.
6. Switch on the device.

ð The system starts with the new firmware.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA5120-2AI-UI Parameters” tab to edit the parameterization of the desired

option board.

Diagnosis

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US248

Severity Error Description Remedy
Option board error (Channel 255)

3 3 Timeout
Communication timeout to CPU

If the process voltage is connected
properly, replace the option board.

3 51 Invalid slot
Wrong or missing option board in the
appropriate slot

Check the configuration and the hard-
ware setup.

4 11 Process voltage is too low Check the process voltage.

4 34 Data not ready
Data synchronization warning

Check PLC program and synchronize.
1)

3 40 SW-mismatch
Hardware does not match the firmware
version

Replace the option board.

3 53 Download failed
Power loss during firmware update

Replace the option board. 2)

3 9 DIAG_BUF_OVERFLOW
Overflow in Diagnosis buffer

Diagnosis overflow usually means too
many repeated warnings or errors.
Please check all diagnosis in detail and
take the appropriate action. A restart
will clear the diagnosis.

3 43 DIAG_INTERNAL_ERR
Internal error in the option board

Replace the option board.

3 26 DIAG_CFG_PRM_ERR
Parameterization error

Check the CPU parameterization.

3 19 DIAG_CRC_ERR
Checksum error in option board

Replace the option board.

Channel warning

4 4 Highest level
Voltage measurement overflow

Check the input value.

4 7 Lowest level
Measurement underflow, or broken wire
in current range 4 mA…20 mA

Check the input value and the wiring.

4 48 Overload wire break
Broken wire in voltage mode, overflow
in current mode

Check the input value and the wiring.

Remarks:

1) If no other error occurs, the programs are not identical and the param-
eter is set to report an error in this case.

2) Do not remove the power supply from the option board during the firm-
ware update.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 249

State LEDs

 LED State Color LED = OFF LED = ON LED
flashes

Inputs I0 ...
I1

Analog
input

Yellow Input is
OFF or
input value
is too low

Input is ON
(brightness
depends on
the value of
the analog
signal)

--

Measuring ranges
The represented resolution corresponds to 12 bits.

Table 61: Measuring range: 0 V ... 10 V
Range Input [V] Digital value

Decimal Hex.
Wire break > 13.1784 32767 7FFF

Overflow > 11.7564 32767 7FFF

Input voltage too high 11.7564
:

10.0029

32504
:

27656

7EF8
:

6C08

Normal range 10.0000
:

0.0029

27648
:
8

6C00
:

0008

0.0000 0 0

Input voltage too low -0.0029
:

-1.7593

-8
:

-4864

FFF8
:

ED00

Underflow < -1.7593 -32768 8000

Table 62: Measuring range: 0 mA ... 20 mA
Range Input [mA] Digital value

Decimal Hex.
Overflow > 23.5127 32767 7FFF

Input current too high 23.5127
:

20.0058

32504
:

27656

7EF8
:

6C08

Normal range 20.0000
:

0.0058

27648
:
8

6C00
:

0008

0.0000 0 0

Measuring
ranges - Input
ranges of
voltage and cur-
rent

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US250

Range Input [mA] Digital value
Decimal Hex.

Input current too low -0.0058
:

-3.5185

-8
:

-4864

FFF8
:

ED00

Underflow < -3.5185 -32768 8000

Negative overange < -23.5185 -32768 8000

Table 63: Measuring range: 4 mA ... 20 mA
Range Input [mA] Digital value

Decimal Hex.
Overflow > 22.8102 32767 7FFF

Input current too high 22.8102
:

20.0046

32504
:

27656

7EF8
:

6C08

Normal range 20.0000
:

4.0046

27648
:
8

6C00
:

0008

4.0000 0 0

Input current too low 3.9954
:

1.1898
1.1852

-8
:

-4856
-4864

FFF8
:

ED08
ED00

Underflow < 1.1852 -32768 8000

Negative overange < -14.8148 -32768 8000

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Process voltage

 Connections Terminal 5 for +24 V (UP) as well as
terminal 6 for 0 V (ZP)

Rated value 24 V DC

Protection against reversed voltage Yes

Rated protection fuse on UP 1 A slow

Galvanic isolation Yes, per module (no isolation between
channels)

Current consumption

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 251

Parameter Value
 From 24 V DC power supply at the termi-

nals UP/L+ and ZP/M of the CPU PM50xx
< 1 mA

From UP at normal operation max. 20 mA

Inrush current from UP (at power up) 0.005 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.2 mm²

On request

Weight 20 g

Mounting position Horizontal or vertical with derating

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group of 2 channels

Connections of the channel 0

 Voltage mode

 Terminal I0+ and I0- Terminals 1 and 2

 Current mode

 Terminal I0+ and ZP Termnal 1 and 6

Connections of the channel 1

 Voltage mode

 Terminal I1+ and I1- Terminals 3 and 4

 Current mode

 Terminal I1+ and ZP Terminals 3 and 6

Input type Unipolar

Galvanic isolation Yes, per option board (no isolation
between channels)

Configurability 0 V...10 V
0 mA...20 mA
4 mA...20 mA
(each input can be configured individu-
ally)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Not used: > 100 kW

Technical data
of the analog
inputs

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US252

Parameter Value
Time constant of the input filter Voltage: 10 µs

Current: 10 µs

Indication of the input signals 1 LED per channel

Conversion cycle *)

 1 activated channel 1 ms

 2 activated channel 2 ms

Resolution for all configurations 12 bits

Conversion error of the analog values caused by
non-linearity, adjustment error at factory and resolu-
tion within the normal range

Max. ±0.3 % at +25 °C

Max. ±0.5 % over full temperature
range

Temperature coefficient
(is related to the max error at +25°C and max error
in the full range)

±0.005 %/K

Temporary deviation during EMC disturbance Max. ±1 %

Mapping between input signal and digital value Input ranges of voltage and current

Unused voltage inputs Must be configured as "not used"

Unused current inputs Must be configured as "not used"

Overvoltage protection Yes

*) The value is the sampling time on the option board. The complete conversion cycle time is
also related to the CPU cycle time.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 253

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 100 R0001 TA5120-2AI-UI: AC500-eCo V3,

analog input option board, 2AI U/I, 12
bits, spring/cable front terminal 3.50
mm pitch

Active

1SAP 187 100 R0201 TA5120-2AI-UIW: AC500-eCo V3,
analog input option board, 2AI U/I, 12
bits, spring/cable front terminal 3.50
mm pitch, wide temperature range

Active

Spare parts

1SAP 187 400 R0013
**)

TA5220-SPF6: spring terminal block,
removable, 6-pin, spring front, cable
front, 6 pieces per packing unit

Active

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US254

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5123-2AI-RTD - Analog input option board
Features

● 2 configurable analog inputs (I0 and I1) in 1 group
Resolution 16 bits including sign

● Option board is galvanically isolated
● W variant available for use in extended (wide) temperature range

1 Allocation of signal name
2 2 yellow LEDs to display the signal states at the analog inputs I0 and I1
3 8-pin terminal block for analog input signals and power supply (UP, ZP)

Intended purpose
The option board is used as analog input extension module for AC500-eCo V3 CPUs (PM50xx).

The analog option board TA5123-2AI-RTD can only be used from AB 2.6.0,
SystemFW 3.6.0, BootFW 3.6 and higher.

Using the option board with lower versions will create a configuration error and
the CPU will not start.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 255

In the first 5 seconds after power on, the analog option board TA5123-2AI-RTD
is in self-calibration mode, so the measured values may not be accurate.

Functionality
2 analog inputs, individually configurable for
● Unused (default setting)
● Pt100, -50 °C...+400 °C (2-wire)
● Pt100, -50 °C...+400 °C (3-wire)
● Pt100, -50 °C...+130 °C (2-wire)
● Pt100, -50 °C...+130 °C (3-wire)
● Pt1000, -50 °C...+400 °C (2-wire)
● Pt1000, -50 °C...+400 °C (3-wire)
● Ni1000, -50 °C...+150 °C (2-wire)
● Ni1000, -50 °C...+150 °C (3-wire)
● NTC (2-wire)

Parameter Value
Resolution of the analog channels

 Temperature 0.1 °C

LED displays 2 LEDs for signals I0 and I1

Internal power supply Via the CPU PM50xx

External power supply Via the terminals UP and ZP (process
voltage 24 V DC)

Required CPU PM50xx

Connections

WARNING!
Removal/Insertion under power
The option boards are not designed for removal or insertion under power.
Because of unforeseeable consequences, it is not allowed to plug or unplug
option boards with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace an option board.
Disconnecting any powered option board while energized in a hazardous loca-
tion could result in an electric arc, which could create a flammable ignition
resulting in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.

The option board TA5123-2AI-RTD for analog input extension is plugged into an AC500-eCo V3
CPU PM50x2.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US256

Insert the module and press it until it locks into place.

A detailed description of the assembly and disassembly of the module can be
found in the chapter Mounting and demounting option boards.

Ä Chapter 4.3.11.1 “Mounting and demounting the option boards” on page 127

The electrical connection is made via a removable 8-pin terminal block. For more information,
please refer to the chapter TA52xx(-x) - Terminal block sets.

The terminal block is included in the scope of delivery of the option board.
Further terminal blocks can be ordered separately as spare parts.

Table 64: Assignment of the terminals:
Terminal Signal Description
1 I0A Connection for 3-wire measurement of the analog input

I0

2 I0+ Positive analog input I0

3 I0- Negative analog input I0

4 I1A Connection for 3-wire measurement of the analog input
I1

5 I1+ Positive analog input I1

6 I1- Negative analog input I1

7 UP Process voltage UP = +24 VDC

8 ZP Process voltage ZP = 0 V

CAUTION!
The negative terminal of the analog inputs are connected internally and form
an internal analog ground (AGND). This analog ground is connected to ZP via
a PTC resistor. There is no galvanic isolation between the analog circuitry and
ZP/UP. Hence, analog inputs can not be connected in series.

The internal power supply of the circuits of the module takes place via the connection to the
CPU. Thus, the current consumption from 24 VDC power supply at the terminals L+ and M of
the CPU module increases by << 1 mA per TA5123-2AI-RTD.
The external power supply is connected via the UP (+24 VDC) and the ZP (0 VDC) terminals.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 257

The following block diagram shows the internal construction of the analog inputs:

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The module provides several diagnosis functions, see section Diagnosis.

The meaning of the LEDs is described in the section State LEDs.

Fig. 37: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Connection of
resistance ther-
mometers in 2-
wire configura-
tion

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US258

Parameter Resistance thermometers Value
Channel configuration Pt100 -50 °C...+400 °C

-50 °C...+130 °C

Pt1000 -50 °C...+400 °C

Ni1000 -50 °C...+150 °C

NTC 803 W...100 kW

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "not used".

Fig. 38: Connection example

Parameter Resistance thermometers Value
Channel configuration Pt100 -50 °C...+400 °C

-50 °C...+130 °C

Pt1000 -50 °C...+400 °C

Ni1000 -50 °C...+150 °C

The module linearizes the resistance thermometer characteristics. In order to keep measuring
errors as small as possible, it is necessary by all means to have all the involved conductors in
the same cable. All the conductors must have the same cross section.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "not used".

I/O configuration
The option board itself does not store configuration data. It receives its parameterization data
from the CPU module during power-up of the system.
Hence, replacing option boards is possible without any re-parameterization via software.
Ä Further information to the option board.

Connection of
resistance ther-
mometers in 3-
wire configura-
tion

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 259

Firmware update via memory card
The following steps describe the procedure for updating the firmware for the analog option
boards using a memory card. Prerequisite is the previous download of the current firmware to
the memory card either from the Automation Builder or as online download from ABB.
Direct from ABB Software.
Click this link and on the next web page find the relevant firmware package and download it.
● Unpack this .zip archive file at any location of your hard disc
● Insert empty formatted (FAT16 / FAT32) memory card in the PC card reader
● Execute the unpacked *.exe file
● Select PC card reader as the final destination and confirm.
All directories, files and SDCARD.INI file will be automatically created on memory card and
properly configured. After the process is complete, one has the prepared memory card with
relevant updates.

Precondition: Prepared memory card with boot project and firmware Ä Chapter
6.3.1.4.5.2.2 “Preparation of memory card” on page 1427.
1. Switch off the device.
2. Insert the memory card.
3. Switch on the device.

ð The alternate flashing of the RUN and the ERR LED indicates the running update
process.
At the end of the update process a reboot is executed and the system firmware is
started for the finishing of the update process.
If RUN LED blinks (ERR LED is off), the update was successful and the display shows
done.
If ERR LED blinks (RUN LED is off), the update failed and the display shows FAIL.
The text file “SDCARD.RDY” includes the results of the different updates. If the update
fails, the file contains the reasons for the abort. Based on this, further steps can be
taken to fix the problem.

4. Switch off the device.
5. Remove the memory card.
6. Switch on the device.

ð The system starts with the new firmware.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA5123-2AI-RTD Parameters” tab to edit the parameterization of the desired

option board.

Firmware
update

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US260

https://share.library.abb.com/api/v4?cid=9AAC177288&dk=Software

1. The two inputs are set to “Not used” by default.
Select your 2 individually configurable analog inputs.

2. If you select Pt100 (2-wire), PT100 (3-wire), Pt100 (2-wire), PT100 (3-wire), NI1000 (2-
wire) or NI1000 (3-wire) by double-clicking, parameterization is completed.
If you select NTC (2-wire) by double-clicking, you still have to make further entries.

3. The following steps are only required for the NTC (2-wire) selection.
If you have selected NTC (2-wire) on input 0 (1) , a folder Input 0 (1) - R, T, B configuration
appears.

Data sheet of used NTC
Take the following values from the data sheet of the NTC used.

– Resistance at temperature T [W]
– Temperature at resistance R [°C] (the reference temperature is usually

25 °C)
– B [K] - The shape of the curve, represents the relationship between

the resistance and the temperature of a particular thermistor.

4. Enter these values in the column “Value” in the respective cells R, T and B. Observe the
correct units in the note.
When you have entered the 3 values with double-click, the parameterization is completed.
Ä Table 68 “Measuring range: NTC” on page 265

Diagnosis

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

The following table shows the diagnosis messages.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 261

Severity Error Description Remedy
Option board error (Channel 255)

3 3 Timeout
Communication timeout to CPU

If the process voltage is connected
properly, replace the option board.

3 51 Invalid slot
Wrong or missing option board in the
appropriate slot

Check the configuration and the hard-
ware setup.

4 11 Process voltage is too low Check the process voltage.

4 34 Data not ready
Data synchronization warning

Check PLC program and synchronize.
1)

3 40 SW-mismatch
Hardware does not match the firmware
version

Replace the option board.

3 53 Download failed
Power loss during firmware update

Replace the option board. 2)

3 9 DIAG_BUF_OVERFLOW
Overflow in Diagnosis buffer

Diagnosis overflow usually means too
many repeated warnings or errors.
Please check all diagnosis in detail and
take the appropriate action. A restart
will clear the diagnosis.

3 43 DIAG_INTERNAL_ERR
Internal error in the option board

Replace the option board.

3 26 DIAG_CFG_PRM_ERR
Parameterization error

Check the CPU parameterization.

3 19 DIAG_CRC_ERR
Checksum error in option board

Replace the option board.

Channel warning

4 5 DIAG_HIGH_LEVEL
NTC value too high

Check the NTC input and configuration.

4 6 DIAG_LOW_LEVEL
NTC value too low

Check the input value and the wiring.

4 7 Lowest Level
Measurement underflow

Check the input value.

4 47 DIAG_WIRE_SHORTCUT
Short circuit at analog input

Check the wiring.

4 48 Overload Cut Wire
Overflow or broken wire

Check the NTC input and configuration.

Remarks:

1) If no other error occurs, the programs are not identical and the param-
eter is set to report an error in this case.

2) Do not remove the power supply from the option board during the firm-
ware update.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US262

State LEDs

 LED State Color LED = OFF LED = ON LED
flashes

Inputs
I0...I1

Analog
input

Yellow Input is
OFF or
input value
is too low

Input is ON
(brightness
depends on
the value of
the analog
signal)

--

Measuring ranges
Table 65: Measuring range: Pt100 /Pt1000 -50 °C ... +400 °C
Range/
LED behavior

Input Digital value
Decimal Hex.

Wire break/LED OFF >> 450.0 °C 32767 7FFF

Overflow/LED OFF > 450.0 °C 32767 7FFF

Temperature too
high/LED 100 %

450.0 °C
:

400.1 °C

4500
:

4001

1194
:

0FA1

Normal range/LED 0
% ... 100 %

400 °C
:

0.1 °C

4000
:
1

0FA0
:

0001

0.0000 0 0

-0.1 °C
:

-50.0 °C

-1
:

-500

FFFF
:

FE0C

Temperature too
low/LED OFF

-50.1 °C
:

-60.0 °C

-501
:

-600

FE0B
:

FDA8

Underflow/LED OFF < -60.0 °C -32768 8000

Short circuit/LED OFF << -60.0 °C -32768 8000

Table 66: Measuring range: Pt100/Pt1000 -50 °C ... +130 °C
Range/
LED behavior

Input Digital value
Decimal Hex.

Wire break/LED OFF >> 140.0 °C 32767 7FFF

Overflow/LED OFF > 140.0 °C 32767 7FFF

Temperature too
high/LED 100 %

140.0 °C
:

130.1 °C

1400
:

1301

0578
:

0515

Measuring
ranges - resist-
ance tempera-
ture detector

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 263

Range/
LED behavior

Input Digital value
Decimal Hex.

Normal range/LED 0
% ... 100 %

130.0 °C
:

0.1 °C

1300
:
1

0514
:

0001

0.0000 0 0

-0.1 °C
:

-50.0 °C

-1
:

-500

FFFF
:

FE0C

Temperature too
low/LED OFF

-50.1 °C
:

-60.0 °C

-501
:

-600

FE0B
:

FDA8

Underflow/LED OFF < -60.0 °C -32768 8000

Short circuit/LED OFF << -60.0 °C -32768 8000

Table 67: Measuring range: Ni1000 -50 °C ... +150 °C
Range/
LED behavior

Input Digital value
Decimal Hex.

Wire break/LED OFF >> 160.0 °C 32767 7FFF

Overflow/LED OFF > 160.0 °C 32767 7FFF

Temperature too
high/LED 100 %

160.0 °C
:

150.1 °C

1600
:

1501

0640
:

05DD

Normal range/LED 0
% ... 100 %

150.0 °C
:

0.1 °C

1500
:
1

05DC
:

0001

0.0000 0 0

-0.1 °C
:

-50.0 °C

-1
:

-500

FFFF
:

FE0C

Temperature too
low/LED OFF

-50.1 °C
:

-60.0 °C

-501
:

-600

FE0B
:

FDA8

Underflow/LED OFF < -60.0 °C -32768 8000

Short circuit/LED OFF << -60.0 °C -32768 8000

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US264

Variable measuring range
With the NTC, a resistance is measured. Depending on the values R, T and B
a temperature value can be calculated, from which the digital values (dec. and
hex.) are derived.

The following table shows an example with the default value:

– R = 10000 W
– T = 25 °C
– B = 3435 K

Table 68: Measuring range: NTC
Range/
LED behavior

Calculated value Measured value
[W]

Digital value
Decimal Hex.

Short circuit/LED
ON

>> 223.6 °C 30 32767 7FFF

Overflow/LED
ON

> 223.6 °C < 100 32767 7FFF

Temperature
medium accu-
racy/LED 100 %

223.5 °C

:
108.7 °C

100
:

801

2235

:
1087

08BB

:
043E

Normal
range/LED 0
% ... 100 %

108.6 °C

:
25.1 °C

803.06
:

9961

1086

:
251

043D

:
00FB

25.0 10000 250 00FA

24.9 °C

:
-24.7 °C

10039
:

100000

249

:
-247

00F9

:
FF09

Temperature
medium accu-
racy/LED 0 %

-24.8 °C

:
-36.5 °C

100558
:

200000

-248

:
-365

FF08

:
FE93

Underflow/LED
OFF

< -36.6 °C > 200000 -32768 8000

Wire break/LED
OFF

<< -36.6 °C > 400000 -32768 8000

Values written in italics
Values written in italics are variable and depend on the parameters R, T and B.

Here, the default values are used (R: 10000 W, T: 25 °C, B: 3435 K)

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 265

Parameter Value
Process voltage

 Connections Terminals 7 for +24 V (UP) and 8 for 0 V
(ZP)

Rated value 24 V DC

Protection against reversed voltage Yes

Rated protection fuse on UP 1 A slow

Galvanic isolation Yes, per module (no isolation between
channels)

Current consumption

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU PM50x2

< 1 mA

From UP at normal operation max. 20 mA

Inrush current from UP (at power up) 0.005 A2s

Max. length of analog cables, conductor cross sec-
tion ³ 0.2 mm²

On request

Weight 20 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group of 2 channels

Input type Unipolar with Pt100, Pt1000, Ni1000
and NTC

Galvanic isolation Yes, per module (no isolation between
channels)

Technical data
of the analog
inputs

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US266

Parameter Value
Configurability Pt100 (2-wire) -50 °C...+400 °C

Pt100 (3-wire) -50 °C...+400 °C
Pt100 (2-wire) -50 °C...+130 °C
Pt100 (3-wire) -50 °C...+130 °C
Pt1000 (2-wire) -50 °C...+400 °C
Pt1000 (3-wire) -50 °C...+400 °C
Ni1000 (2-wire) -50 °C...+150 °C
Ni1000 (3-wire) -50 °C...+150 °C
NTC (2-wire)
(each input can be configured individu-
ally)

Indication of the input signals 1 LED per channel

Conversion cycle *)

 Configurations

 2 activated channels with 3-wire measure-
ment

2 s

all others 1 s

Resolution Range 16 bits including sign

Conversion error of the analog values caused by non-linearity, adjustment error at factory and
resolution within the normal range

 PT100, PT1000, Ni1000 0,3% max at 25 °C
0,5% max at full temperature range

 NTC
Reference sensor R: 10000W, T: 25 °C B: 3435 K

accuracy specified in the range 806 W - 100kW

0,3% max at 25 °C
0,5% max at full temperature range

Temperature coefficient
(is related to the max error at +25°C and max error in
the full range)

+-0,006 %/K

Temporary deviation during EMC disturbance 3%

Unused temperature inputs Must be configured as "Not used"

Overvoltage protection Yes

*) The value is the sampling time on the option board. The complete conversion cycle time is
also related to the CPU cycle time.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 267

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 100 R0002 TA5123-2AI-RTD: AC500-eCo V3,

analog input option board, 2AI RTD,
16 bits including sign, spring/cable
front terminal 3.50 mm pitch

Active

1SAP 187 100 R0202 TA5123-2AI-RTW: AC500-eCo V3,
analog input option board, 2AI RTD,
16 bits including sign, spring/cable
front terminal 3.50 mm pitch, wide
temperature range

Active

Spare parts

1SAP 187 400 R0015
**)

TA5220-SPF8: spring terminal block,
removable, 8-pin, spring front, cable
front, 6 pieces per packing unit

Active

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US268

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5126-2AO-UI - Analog output option board
Features

● 2 configurable analog outputs (O0 and O1) in 1 group
Resolution 12 bits

● Option board is galvanically isolated
● W variant available for use in extended (wide) temperature range

1 Allocation of signal name
2 2 yellow LEDs to display the signal states at the analog outputs O0 and O1
3 6-pin terminal block for analog output signals and power supply (UP, ZP)
4 Output connection diagram for U and I

Intended purpose
The option board is used as analog output extension module for AC500-eCo V3 CPUs
(PM50xx).

The analog option boards TA5120-2AI-UI and TA5126-2AO-UI can only be used
from AB 2.5.2, SystemFW 3.5.0_HF-7, BootFW 3.5.1 and higher.

Using the option boards with lower versions will create a configuration error and
the CPU will not start.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 269

Functionality
2 analog outputs, individually configurable for
● Not used (default setting)
● 0 V...10 V
● 0 mA...20 mA
● 4 mA...20 mA

Parameter Value
Resolution of the analog channels

 Voltage 0 V...10 V 12 bits

Current 0 mA...20 mA, 12 bits

Current 4 mA...20 mA 12 bits

LED displays 2 LEDs for signals O0 and O1

Internal power supply Via the CPU PM50xx

External power supply Via the terminals UP and ZP (process
voltage 24 V DC)

Required CPU PM50xx

Connections

WARNING!
Removal/Insertion under power
The option boards are not designed for removal or insertion under power.
Because of unforeseeable consequences, it is not allowed to plug or unplug
option boards with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace an option board.
Disconnecting any powered option board while energized in a hazardous loca-
tion could result in an electric arc, which could create a flammable ignition
resulting in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.

The option board TA5126-2AO-UI for analog output extension is plugged into an AC500-eCo V3
CPU PM50xx.
Ä Chapter 4.3.11.1 “Mounting and demounting the option boards” on page 127

The electrical connection is made via a removable 6-pin terminal block.
The terminal block is included in the scope of delivery of the option board. Further terminal
blocks can be ordered separately as spare parts
Ä Chapter 5.2.8.1.2 “TA52xx(-x) - Terminal block sets” on page 1292

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US270

Table 69: Assignment of the terminals:
Terminal Signal Description
1 O0+ Positive analog output O0

2 O0- Negative analog output O0

3 O1+ Positive analog output O1

4 O1- Negative analog output O1

5 UP Process voltage UP = +24 V DC

6 ZP Process voltage ZP = 0 V DC

CAUTION!
The negative terminal of the analog outputs (voltage 0 V…10 V) are connected
internally and form an internal analog ground (AGND). This analog ground is
connected to ZP via a PTC resistor. There is no galvanic isolation between the
analog circuitry and ZP/UP.

The internal power supply voltage for the module's circuitry is carried out via the connection to
CPU. Thus, the current consumption from 24 V DC power supply at the terminals L+ and M of
the CPU module increases by << 1 mA per TA5126-2AO-UI.
The external power supply connection is carried out via the terminals UP (+24 V DC) and ZP (0
V DC).

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

The following figure shows the connection of the module:

Fig. 39: Internal construction of the analog outputs

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 271

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The module provides several diagnosis functions
Ä Chapter 5.2.1.1.3.6.8 “Diagnosis” on page 274

Parameter Value
Channel configuration 0 V...+10 V

0 mA...20 mA

4 mA...20 mA

In order to avoid error messages or long processing times, it is useful to configure unused
analog output channels as "not used".

I/O configuration
The option board itself does not store configuration data. It receives its parameterization from
the CPU module during power-up of the system.
Hence, replacing optional modules is possible without any re-parameterization via software.

Connection of
analog output
loads (Voltage,
current)

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US272

Parameter Value
Configurability 0 V...10 V

0 mA...20 mA
4 mA...20 mA
(each input can be configured individu-
ally)

Unused voltage outputs Must be configured as "not used"

Unused current outputs Must be configured as "not used"

Firmware update via memory card
The following steps describe the procedure for updating the firmware for the analog option
boards using a memory card. Prerequisite is the previous download of the current firmware to
the memory card either from the Automation Builder or as online download from ABB.
Direct from ABB Software.
Click this link and on the next web page find the relevant firmware package and download it.
● Unpack this .zip archive file at any location of your hard disc
● Insert empty formatted (FAT16 / FAT32) memory card in the PC card reader
● Execute the unpacked *.exe file
● Select PC card reader as the final destination and confirm.
All directories, files and SDCARD.INI file will be automatically created on memory card and
properly configured. After the process is complete, one has the prepared memory card with
relevant updates.

Precondition: Prepared memory card with boot project and firmware Ä Chapter
6.3.1.4.5.2.2 “Preparation of memory card” on page 1427.
1. Switch off the device.
2. Insert the memory card.
3. Switch on the device.

ð The alternate flashing of the RUN and the ERR LED indicates the running update
process.
At the end of the update process a reboot is executed and the system firmware is
started for the finishing of the update process.
If RUN LED blinks (ERR LED is off), the update was successful and the display shows
done.
If ERR LED blinks (RUN LED is off), the update failed and the display shows FAIL.
The text file “SDCARD.RDY” includes the results of the different updates. If the update
fails, the file contains the reasons for the abort. Based on this, further steps can be
taken to fix the problem.

4. Switch off the device.
5. Remove the memory card.
6. Switch on the device.

ð The system starts with the new firmware.

Firmware
update

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 273

https://share.library.abb.com/api/v4?cid=9AAC177288&dk=Software

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA5126-2AO-UI Parameters” tab to edit the parameterization of the desired

option board.

Diagnosis

1. In the device tree, double-click the desired option board.
2. Select the “Diagnosis” tab to view the diagnosis messages of the desired option board.

Bus pos. Type Channel Class Error Description Remedy
Module error (Channel 255)

0..2 31 255 3 3 Timeout
Communication timeout to
CPU

If the process voltage
is connected properly,
replace the option board.

0..2 31 255 3 51 Invalid slot
Wrong or missing option
board in the appropriate
slot

Check the configuration
and the hardware setup.

0..2 31 255 4 11 Process voltage is too low Check the process
voltage.

0..2 31 255 4 34 Data not ready
Data synchronization
warning

Check PLC program and
synchronize. 1)

0..2 31 255 3 40 SW-mismatch
Hardware does not match
the firmware version

Replace the option board.

0..2 31 255 3 53 Download failed
Power loss during firm-
ware update

Replace the option board.
2)

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US274

Bus pos. Type Channel Class Error Description Remedy
0..2 31 255 3 9 DIAG_BUF_OVERFLOW

Overflow in Diagnosis
buffer

Diagnosis overflow usu-
ally means too many
repeated warnings or
errors. Please check
all diagnosis in detail
and take the appropriate
action. A restart will clear
the diagnosis.

0..2 31 255 3 43 DIAG_INTERNAL_ERR
Internal error in the option
board

Replace the option board.

0..2 31 255 3 26 DIAG_CFG_PRM_ERR
Parameterization error

Check the CPU parame-
terization.

0..2 31 255 3 19 DIAG_CRC_ERR
Checksum error in option
board

Replace the option board.

Channel warning

0..2 1 0..1 4 4 Highest level
Output value is greater
than the highest level

Check the output value.

0..2 1 0..1 4 7 Lowest level
Output value is lower than
the lowest level

Check the output value.

0..2 1 0..1 4 46 DIAG_EXT_VOLTAGE_F
EEDED
Output is short circuited to
another voltage

Check the wiring. 3)

0..2 1 0..1 4 48 Overload wire break
Output value is overflow
or broken wire in current
mode, or output value
overflow in voltage mode

Check the output value
and the wiring. 4)

Remarks:

1) If no other error occurs, the programs are not identical and the param-
eter is set to report an error in this case.

2) Do not remove the power supply from the option board during the firm-
ware update.

3) In this case, output will be switched ON /OFF with a 10 sec cycle
4) in this case, if the output is configured as voltage output, the output will

be switched ON /OFF with a 10 sec cycle

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 275

State LEDs

 LED State Color LED = OFF LED = ON LED
flashes

Outputs
O0...O1

Analog
output

Yellow Output is
OFF or
output
value is too
low

Output is
ON
(brightness
depends on
the value of
the analog
signal)

--

Measuring ranges
The represented resolution corresponds to 12 bits.

Table 70: Measuring range: 0 V ... 10 V
Range Output [V] Digital value

Decimal Hex.
Overflow 0 V > 32504 > 7EF8

Output value too high 11.7564
:

10.0029

32504
:

27656

7EF8
:

6C08

Normal range 10.0000
:

0.0029

27648
:
8

6C00
:

0008

0.0000 0 0

Output value too low -0.0029
:

-1.7593

-8
:

-4864

FFF8
:

ED00

Underflow 0 < -4864 < ED00

Table 71: Measuring range: 0 mA ... 20 mA
Range Output [mA] Digital value

Decimal Hex.
Overflow 0.0000 > 32504 > 7EF8

Output value too high 23.5127
:

20.0058

32504
:

27656

7EF8
:

6C08

Normal range 20.0000
:

0.0058

27648
:
8

6C00
:

0008

0.0000 0 0

Underflow 0 < 0 < 0

Measuring
ranges - Output
ranges of
voltage and cur-
rent

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US276

Table 72: Measuring range: 4 mA ... 20 mA
Range Output [mA] Digital value

Decimal Hex.
Overflow 0.0000 > 32504 > 7EF8

Output value too high 22.8102
:

20.0046

32504
:

27656

7EF8
:

6C08

Normal range 20.0000
:

4.0046

27648
:
8

6C00
:

0008

4.0000 0 0

Output value too low 3.995
:

0.0046
0.0000

-8
:

-6904
-6912

FFF8
:

E508
E500

Underflow 0 < -6912 < E500

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Process voltage

 Connections Terminal 5 for +24 V (UP) as well as
terminal 6 for 0 V (ZP)

Rated value 24 V DC

Protection against reversed voltage Yes

Rated protection fuse on UP 1 A slow

Galvanic isolation Yes, per module (no isolation between
channels)

Current consumption

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU PM50xx

<< 1 mA

From UP at normal operation max. 70 mA

Inrush current from UP (at power up) 0.005 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.2 mm²

On request

Weight 20 g

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 277

Parameter Value
Mounting position Horizontal or vertical with derating

(output load reduced to 50 % at +40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group of 2 channels

Connections of the channel 0

 Voltage mode

 Terminal O0+ and O0- Terminals 1 and 2

 Current mode

 Terminal O0+ and ZP Termnal 1 and 6

Connections of the channel 1

 Voltage mode

 Terminal O1+ and O1- Terminals 3 and 4

 Current mode

 Terminal O1+ and ZP Terminals 3 and 6

Output type Unipolar

Galvanic isolation Yes, per option board (no isolation
between channels)

Configurability 0 V ... 10 V
0 mA ... 20 mA
4 mA ... 20 mA
(each output can be configured individu-
ally)

Output resistance (load), as current output 0 W...500 W

Output loadability, as voltage output Max. ±10 mA

Indication of the output signals One LED per channel

Conversion cycle

 1 activated channel 250 µs

 2 activated channel 500 µs

Resolution for all configurations 12 bits

Settling time for full range change (resistive load,
output signal within specified tolerance)

Typ. 5 ms

Technical data
of the analog
outputs

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US278

Parameter Value
Conversion error of the analog values caused by
non-linearity, adjustment error at factory and resolu-
tion within the normal range

Max. ±0.3 % at +25 °C

Max. ±0.3 % over full temperature
range

Temperature coefficient
(is related to the max error at +25°C and max error
in the full range)

±0.003 %/K

Temporary deviation during EMC disturbance Max. ±3 %

Mapping between output signal and digital value Output ranges of voltage and current

Unused voltage outputs Must be configured as "not used"

Unused current outputs Must be configured as "not used"

Dimensions

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 279

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 100 R0003 TA5126-2AO-UI: AC500-eCo V3,

analog output option board, 2AO U/I,
12 bits, spring/cable front terminal
3.50 mm pitch

Active

1SAP 187 100 R0203 TA5126-2AO-UIW: AC500-eCo V3,
analog output option board, 2AO U/I,
12 bits, spring/cable front terminal
3.50 mm pitch, wide range tempera-
ture

Active

Spare parts

1SAP 187 400 R0013
**)

TA5220-SPF6: spring terminal block,
removable, 6-pin, spring front, cable
front, 6 pieces per packing unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5130-KNXPB - Option board KNX address push button
Features

● W variant available for use in extended (wide) temperature range

1 State LED
2 Allocation of signal name
3 Connector

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US280

Intended purpose

This option board is only intended to be used with PM5072-T-2ETH(W) and
PM5082-T-2ETH.

This option board can only be used once on one slot at a time!

The option board is not supported by other AC500-eCo V3 PLCs.

Ä Information about the interface to KNX

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

State LEDs

Signal Color State Description
PRG Red ON Programming state

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Usable CPUs PM5072-T-2ETH(W) and PM5082-T-2ETH

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight 14 g

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 281

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 200 R0001 TA5130-KNXPB: AC500-eCo V3,

option board KNX address push
button for AC500-eCo V3 Pro CPU
only

Active

1SAP 187 200 R0201 TA5130-KNXPBW: AC500-eCo V3,
option board KNX address push
button for AC500-eCo V3 Pro CPU
only, wide temperature range

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US282

TA5131-RTC - Option board for real-time clock
Features

This option board is only for the basic CPUs PM5012-T-ETH and PM5012-R-ETH.
All other AC500-eCo V3 CPUs have the real-time clock already integrated.
Ä Information about the real-time clock

1 TA5131-RTC option board

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Buffering time (if at least powered for 8 hours) 7 days at room tempera-

ture

 Accuracy ±2 s/day

Usable CPUs PM5012

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 283

Parameter Value
Internal power supply Via internal CPU connec-

tion

Additional current consumption from 24 V DC power supply at
CPU

Max. 25 mA

Weight 16 g

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 200 R0002 TA5131-RTC:AC500-eCo V3, real-

time clock without battery, option
board for AC500-eCo V3 Basic CPU
only

Active

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US284

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

TA5141-RS232I - Option board for COMx serial communication
Features

● W variant available for use in extended (wide) temperature range

1 2 LEDs for communication state display (TxD and RxD)
2 Allocation of signal name
3 5-pin terminal block for communication interface

Option board for COMx serial communication TA5141-RS232I(W) is equipped with 1 RS-232
serial interface with handshake.

The serial interface option boards TA5141-RS232I(W), TA5142-RS485I(W) and
TA5142-RS485(W) produced from 2023 can only be used from AB 2.5.2, Sys-
temFW 3.5.0_HF-7, BootFW 3.5.1 and higher. These new produced option
boards can be recognized with the Date/Code printed on the sticker or also on
the product packaging, the date code looks like 2xx3, where 2 and 3 are for the
year and the xx for the production week.

Using the option boards with lower versions will create a configuration error and
the CPU will not start.

These new produced option boards cannot be used with lower Automation
Builder Version and the CPU BootFW/FW and the application must be
upgraded to AB 2.5.2 HF8 or higher.

Application note AC500-eCo V3 - FAQ

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 285

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011187&LanguageCode=en&DocumentPartId=&Action=Launch

Connections

NOTICE!
Damage to the serial communication interface by using 5-pin terminal
block of the TA5101-4DI!
If the 5-pin terminal block of the TA5101-4DI option board is plugged into a
option board for COMx serial communication TA5141-RS232I, TA5142-RS485I
or TA5142-RS485, the communication interface will be damaged by the 24 V.
Please do not confuse the 5-pin terminal block of the TA5101-4DI with the 5-pin
terminal block for serial communication interface of TA5141-RS232I, TA5142-
RS485I or TA5142-RS485.

Table 73: TA5141-RS232I
Serial interface Pin Signal Description

1 RTS Request To Send
DCE is ready to accept data from the DTE

2 TxD Transmit data (output)

3 GND Common Ground

4 RxD Receive data (input)

5 CTS Clear To Send (input)
DCE is ready to accept data from the DTE

The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate.
RS-232 for point-to-point connection:

Parameter Value
Transmission rate 9.6 kBit/s to 115.2 kBit/s

Maximum cable length On request

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

Serial interfaces

Cable length

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US286

State LEDs

Signal Color State Description
TxD Yellow ON (blinking) Transmitting

RxD Yellow ON (blinking) Receiving

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Protocol Programmable with Automation Builder e.g.

Modbus RTU / CAA SerialCom via serial inter-
faces

Interface Serial interface

Serial interface standard EIA RS-232

Potential separation Yes, from the CPU, 500 V DC

Serial interface parameters Configurable via software

Modes of operation Data exchange

Transmission rate 9.6 kbit/s to 115.2 kbit/s

Protocol Programmable

Interface connector 5-pin terminal block, male

Usable CPUs PM50xx

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight Ca. 15 g

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 287

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 300 R0001 TA5141-RS232I: AC500-eCo V3,

RS-232 isolated option board for
COMx serial communication, spring/
cable front terminal, 3.50 mm pitch

Active

1SAP 187 300 R0201 TA5141-RS232IW: AC500-eCo V3,
RS-232 isolated option board for
COMx serial communication, spring/
cable front terminal, 3.50 mm pitch,
wide temperature range

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 3.5 mm pitch, 6 pieces per
packing unit

Active

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US288

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5142-RS485I - Option board for COMx serial communication
Features

● W variant available for use in extended (wide) temperature range

1 2 LEDs for communication state display (TxD and RxD)
2 2 LEDs for termination state display
3 Allocation of signal name
4 5-pin terminal block for communication interface

Option boards for COMx serial communication TA5142-RS485I(W) and TA5142-RS485(W) are
equipped with 1 RS-485 (2-wire half-duplex) serial interface which can be used for communica-
tion via Modbus RTU or CAA SerialCom.
Bus terminations are built-in and configurable.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 289

The serial interface option boards TA5141-RS232I(W), TA5142-RS485I(W) and
TA5142-RS485(W) produced from 2023 can only be used from AB 2.5.2, Sys-
temFW 3.5.0_HF-7, BootFW 3.5.1 and higher. These new produced option
boards can be recognized with the Date/Code printed on the sticker or also on
the product packaging, the date code looks like 2xx3, where 2 and 3 are for the
year and the xx for the production week.

Using the option boards with lower versions will create a configuration error and
the CPU will not start.

These new produced option boards cannot be used with lower Automation
Builder Version and the CPU BootFW/FW and the application must be
upgraded to AB 2.5.2 HF8 or higher.

Application note AC500-eCo V3 - FAQ

Connections

NOTICE!
Damage to the serial communication interface by using 5-pin terminal
block of the TA5101-4DI!
If the 5-pin terminal block of the TA5101-4DI option board is plugged into a
option board for COMx serial communication TA5141-RS232I, TA5142-RS485I
or TA5142-RS485, the communication interface will be damaged by the 24 V.
Please do not confuse the 5-pin terminal block of the TA5101-4DI with the 5-pin
terminal block for serial communication interface of TA5141-RS232I, TA5142-
RS485I or TA5142-RS485.

Table 74: TA5142-RS485(I)
Serial interface Pin Signal

1 A1
internally connected to A2

2 B1
internally connected to B2

3 GND

4 A2
internally connected to A1

5 B2
internally connected to B1

No. Protocol Description
1 Modbus Modbus RTU, master or slave

2 CAA SerialCom Support for blocks contained in the CAA_SerialCom.lib library

Serial interfaces

Protocols

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US290

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011187&LanguageCode=en&DocumentPartId=&Action=Launch

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω ... 150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Remarks Commonly used telephone cables with PE insulation and a
core diameter of > 0.8 mm are usually sufficient.

Cables with PVC core insulation and core diameter of
0.8 mm can be used up to a length of approx. 250 m. In
this case, the bus terminating resistor is approx. 100 Ω.

The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate.
RS-485 for point-to-point or bus connection:

Parameter Value
Transmission rate 9.6 kbit/s to 115.2 kbit/s

Maximum cable length On request

The line ends of the bus segment must be equipped with bus terminating resistors. These
resistors are integrated in the module TA5142-RS485I. The pull-up and pull-down settings must
also be made on the circuit board of the module.

1 Termination resistance settings
2 Pull-up and pull-down settings

Bus cable

Cable length

Bus termination

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 291

Table 75: Configuration
Settings on the module State of

LEDs
Internal wiring

diagram
Description

Master at the bus line
end, pull-up and pull-down
activated, bus termination
120 Ω

Master within the bus
line, pull-up and pull-down
activated

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US292

Settings on the module State of
LEDs

Internal wiring
diagram

Description

Slave at the bus line end,
bus termination 120 Ω

Slave within the bus line

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 293

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

State LEDs

 Signal Color State Description
TxD Yellow ON (blinking) Transmitting

RxD Yellow ON (blinking) Receiving

120R Yellow ON Bus termination

PUD Yellow ON Pull-up / Pull-down

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Table 76: TA5142-RS485I
Parameter Value
Protocol Programmable with Automation Builder e.g.

Modbus RTU / CAA_SerialCom via serial
interfaces

Interface Serial interface

Serial interface standard EIA RS-485

Potential separation Yes, from the CPU, 500 V DC

Serial interface parameters Configurable via software

Modes of operation Data exchange

Transmission rate 9.6 kbit/s to 115.2 kbit/s

Protocol Programmable

Interface connector 5-pin terminal block, male

Usable CPUs PM50xx

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight Ca. 16 g

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US294

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 300 R0002 TA5142-RS485I: AC500-eCo V3,

RS-485 isolated option board for
COMx serial communication, spring/
cable front terminal, 3.50 mm pitch

Active

1SAP 187 300 R0202 TA5142-RS485IW: AC500-eCo V3,
RS-485 isolated option board for
COMx serial communication, spring/
cable front terminal, 3.50 mm pitch,
wide range temperature

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 3.5 mm pitch, 6 pieces per
packing unit

Active

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 295

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

TA5142-RS485 - Option board for COMx serial communication
Features

● W variant available for use in extended (wide) temperature range

1 2 LEDs for communication state display (TxD and RxD)
2 2 LEDs for termination state display
3 Allocation of signal name
4 5-pin terminal block for communication interface

Option boards for COMx serial communication TA5142-RS485I(W) and TA5142-RS485(W) are
equipped with 1 RS-485 (2-wire half-duplex) serial interface which can be used for communica-
tion via Modbus RTU or CAA SerialCom.
Bus terminations are built-in and configurable.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US296

The serial interface option boards TA5141-RS232I(W), TA5142-RS485I(W) and
TA5142-RS485(W) produced from 2023 can only be used from AB 2.5.2, Sys-
temFW 3.5.0_HF-7, BootFW 3.5.1 and higher. These new produced option
boards can be recognized with the Date/Code printed on the sticker or also on
the product packaging, the date code looks like 2xx3, where 2 and 3 are for the
year and the xx for the production week.

Using the option boards with lower versions will create a configuration error and
the CPU will not start.

These new produced option boards cannot be used with lower Automation
Builder Version and the CPU BootFW/FW and the application must be
upgraded to AB 2.5.2 HF8 or higher.

Application note AC500-eCo V3 - FAQ

Connections

NOTICE!
Damage to the serial communication interface by using 5-pin terminal
block of the TA5101-4DI!
If the 5-pin terminal block of the TA5101-4DI option board is plugged into a
option board for COMx serial communication TA5141-RS232I, TA5142-RS485I
or TA5142-RS485, the communication interface will be damaged by the 24 V.
Please do not confuse the 5-pin terminal block of the TA5101-4DI with the 5-pin
terminal block for serial communication interface of TA5141-RS232I, TA5142-
RS485I or TA5142-RS485.

Table 77: TA5142-RS485(I)
Serial interface Pin Signal

1 A1
internally connected to A2

2 B1
internally connected to B2

3 GND

4 A2
internally connected to A1

5 B2
internally connected to B1

No. Protocol Description
1 Modbus Modbus RTU, master or slave

2 CAA SerialCom Support for blocks contained in the CAA_SerialCom.lib library

Serial interfaces

Protocols

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 297

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011187&LanguageCode=en&DocumentPartId=&Action=Launch

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω ... 150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Remarks Commonly used telephone cables with PE insulation and a
core diameter of > 0.8 mm are usually sufficient.

Cables with PVC core insulation and core diameter of
0.8 mm can be used up to a length of approx. 250 m. In
this case, the bus terminating resistor is approx. 100 Ω.

The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate.
RS-485 for point-to-point or bus connection:

Parameter Value
Transmission rate 9.6 kbit/s to 115.2 kbit/s

Maximum cable length On request

The line ends of the bus segment must be equipped with bus terminating resistors. These
resistors are integrated in the module TA5142-RS485. The pull-up and pull-down settings must
also be made on the circuit board of the module.

1 Termination resistance settings
2 Pull-up and pull-down settings

Bus cable

Cable length

Bus termination

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US298

Table 78: Configuration
Settings on the module State of

LEDs
Internal wiring

diagram
Description

Master at the bus line
end, pull-up and pull-down
activated, bus termination
120 Ω

Master within the bus
line, pull-up and pull-down
activated

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 299

Settings on the module State of
LEDs

Internal wiring
diagram

Description

Slave at the bus line end,
bus termination 120 Ω

Slave within the bus line

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US300

1. In the device tree, double-click the desired option board.
2. Select the “TA51xx Parameters” tab to edit the parameterization of the desired option

board.

State LEDs

 Signal Color State Description
TxD Yellow ON (blinking) Transmitting

RxD Yellow ON (blinking) Receiving

120R Yellow ON Bus termination

PUD Yellow ON Pull-up / Pull-down

Technical data
The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Table 79: TA5142-RS485
Parameter Value
Protocol Programmable with Automation Builder e.g.

Modbus RTU / CAA_SerialCom via serial
interfaces

Interface Serial interface

Serial interface standard EIA RS-485

Potential separation No

Serial interface parameters Configurable via software

Modes of operation Programming or data exchange

Transmission rate 9.6 kbit/s to 115.2 kbit/s

Protocol Programmable

Interface connector 5-pin terminal block, male

Usable CPUs PM50xx

Internal power supply Via internal CPU connection

Additional current consumption from 24 V DC
power supply at CPU

Max. 25 mA

Weight Ca. 15 g

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 301

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 187 300 R0003 TA5142-RS485: AC500-eCo V3,

RS-485 non isolated option board for
COMx serial communication, spring/
cable front terminal, 3.50 mm pitch

Active

1SAP 187 300 R0203 TA5142-RS485W: AC500-eCo V3,
RS-485 non isolated option board for
COMx serial communication, spring/
cable front terminal, 3.50 mm pitch,
wide range temperature

Active

Spare parts

1SAP 187 400 R0012
**)

TA5220-SPF5: spring terminal block,
removable, 5-pin, spring front, cable
front, 3.5 mm pitch, 6 pieces per
packing unit

Active

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US302

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

**) The needed spring terminal block is always delivered with the option board.

The terminal block listed in the table is for spare part only if needed.

FAQs
Frequently asked and important questions about the AC500-eCo V3 serial communica-
tion option boards from 2023 are collected and answered in the application note.
AC500 V3-eCo FAQ - TA514X-RSXXX Serial Option Boards.

5.2.1.2 AC500 and AC500-XC
5.2.1.2.1 Product overview and comparison
Comparison of AC500 V3 terminal bases

With the latest Automation Builder version the following terminal bases are compatible with the
AC500 V3 processor modules:

The number of slots that are available on a terminal base for connecting communication
modules or AC500-S modules differs within the terminal base range.
Table 80: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 303

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011187&LanguageCode=en&DocumentPartId=&Action=Launch

The AC500 V3 terminal bases can be equipped with the following supported devices:
Table 81: Comparison: TB56xx
Processor module PM5630 PM5650 PM5670 PM5675
Max. number of variables allowed for each communication module supported

 Input variables 4 kB 4 kB 5 kB 5 kB

 Output variables 4 kB 4 kB 5 kB 5 kB

Type of communication module supported

 CM574-RS/RCOM - serial interface No No No No

 CM5610-2RS - 2 serial interfaces x x x x

 CM582-DP - PROFIBUS DP V0/V1 slave x x x x

 CM592-DP - PROFIBUS DP V0/V1 master x x x x

 CM579-ETHCAT - EtherCAT master x x x x

 CM579-PNIO - PROFINET IO RT controller x x x x

 CM589-PNIO - PROFINET IO RT device x x x x

 CM589-PNIO-4 - PROFINET IO RT
with 4 devices

x x x x

 CM597-ETH - Ethernet interface No No No No

 CM5640-2ETH - 2 Ethernet interfaces x x x x

 CM588-CN - CAN, CANopen slave No No No No

 CM598-CN - CAN, CANopen master only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

Type of AC500-S module supported

 SM560-S - safety module x x x x

 SM560-S-FD-1 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

x x x x

 SM560-S -FD-4 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

x x x x

Table 82: Comparison: PM56xx
Processor module PM5630 PM565

0
PM567
0

PM5675

Total maximum downloadable application size 1) 9 MB 84 MB 176
MB

176 MB

 Thereof user program code and
data (dynamically allocated)

2 MB 8 MB 32 MB 32 MB

 Thereof user webserver data
max.

6 MB 72 MB 128
MB

128 MB

Flash memory for User data

 Remaining for all other usage
(project save, infrastructure...)

30 MB 285
MB

643
MB

643 MB

Buffered (SRAM) 256 kB 256 kB 1.5 MB 1.5 MB

 Thereof VAR retain persistent 128 kB 128 kB 1024
kB

1024 kB

Supported
devices

Memory size
and perform-
ance

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US304

Processor module PM5630 PM565
0

PM567
0

PM5675

 Thereof %M memory (e.g.
Modbus register)

128 kB 128 kB 512 kB 512 kB

Expandable memory None None None None

Integrated mass storage memory (FLASH) None None None 8 GB

Slot for pluggable memory card x x x x

Processor type TI ARM Cortex-A9 32-bit-RISC

Processor clock speed 300 MHz 600
MHz

1 GHz 1 GHz

Cycle time for 1 instruction (minimum):

 Binary Min.
0.02 µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Word Min.
0.02 µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Floating point Min.
0.12 µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

Mathematic co-processor x x x x

Motion capability

 No. synchronized axis per
1 ms on EtherCAT CM typ-
ically

- 8* 16* 16*

 No. synchronized axis per
2 ms on EtherCAT CM typ-
ically

4* 16* 32* 32*

 No. synchronized axis per
4 ms on EtherCAT CM or
CANopen onboard typically

8* 32* 64* 64*

 Min. bus cycle time for
EtherCAT using external
CM579

2 ms 1 ms 0,5 ms 0,5 ms

* in addition: 1 virtual axis

Max. number of central inputs and outputs (10 exp. modules):

 Digital inputs 320

 Digital outputs 320

 Analog inputs 160

 Analog outputs 160

Number of decentralized inputs and outputs Depends on the used fieldbus

Data backup Battery

Data buffering time at 25 °C Typ. 3 years

Battery low indication via application program

Real-time clock:

 With battery backup x

 Accuracy Typ. ± 2 s / day at +25 °C

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 305

Processor module PM5630 PM565
0

PM567
0

PM5675

Program execution:

 Cyclic x

 Time-controlled x

 Multitasking x

 Minimum cycle time configurable
for cyclical task

1 ms 1 ms 0,5 ms 0,5 ms

User program protection by password x (user management)

Internal interfaces for communication:

Serial interface COM1:

 Physical link Configurable for RS-232 or RS-485
(9.6 kb/s, 19.2 kb/s, 38.4 kb/s, 57.6
kb/s and 115.2 kb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage Serial ASCII communication,Modbus
RTU

CAN interface:

 Physical link CAN 2A/2B (from 50 kb/s to 1 Mb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage CANopen master communication,
CAN 2A/2B, J1939 protocol, CAN
sync

 Max. number of variables allowed

 Input variables 2 kB 4 kB 5 kB 5 kB

 Output variables 2 kB 4 kB 5 kB 5 kB

Network interface ETH1, ETH2:

 Usage Ethernet

 Physical link 10/100 base-TX, configurable as
internal switch or independent Inter-
faces

 Connection 2x RJ45 socket, provided on
TB56xx-2ETH

LEDs, LCD display, function keys RUN / STOP, status, diagnosis, set-
tings

Number of timers Unlimited

Number of counters Unlimited

Programming languages:

 Structured Text ST x

 Instruction list IL x

 Function Block Diagram FBD x

 Ladder Diagram LD x

 Sequential function chart SFC x

 Continuous function chart (CFC) x

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US306

Remarks:
1): The values are for information only and cannot be fulfilled altogether. The available
resources are limited at the end by the maximal downloadable application size for each CPU.

Comparison of features and protocols

Table 83: OPC UA server / OPC DA server
Processor module PM5630 PM5650 PM5670 PM5675
OPC UA server x x x x

 Number of free tags 3.000 10.000 30.000 30.000

 Number of connections 10 20 50 50

 Min. sampling rate (limit) 500 ms 100 ms 50 ms 50 ms

OPC DA server AE x x x x

 Number of connections 8 8 8 8

Table 84: Modbus, Telecontrol
Processor module PM5630 PM5650 PM5670 PM5675
Modbus TCP client / server x x x x

 Number of Modbus clients ModMast
in parallel on a CPU master (server)

30 50 120 120

 Number of Modbus server in parallel
(e.g. for SCADA access)

15 25 50 50

IEC 60870-5-104 telecontrol protocol x x x x

 Number of free tags 1.000 5.000 10.000 10.000

 Control station (number of connec-
tions)

5 10 20 20

 Sub-station (number of connections) 5 10 20 20

Ethernet protocols and ports for AC500 V3 products
General

The communication module CM5640-2ETH acts as a port extender of the used AC500 V3 CPU.
It is not offloading the CPU for the protocols.
● the stacks are still executed in CPU.
● the performance is slightly lower or the load is slightly higher than directly from the main

CPU, because each communication module and the communication module bus must also
be handled.

Each CM5640-2ETH provides:
● 2 additional independent onboard Ethernet interfaces controlled by the CPU and not

switched.
● all Ethernet ports, wherever located - on the communication module or on the CPU - must

be in different subnets.
Addressing is not done via slot numbers but via IP addresses.

Communication
and onboard
protocols

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 307

The Ethernet limitations of the CPU used together with CM5640-2ETH apply to all onboard and
additional interfaces.

All interfaces of the onboard and CM5640-2ETH modules need to be in dif-
ferent subnets. Overlapping of subnets must be avoided. The selection of the
used interface (ETH port) is done automatically according the match of the
IP-address of the server and the subnet of the interfaces.

Description ³ CPU
firm-
ware

PM563
0-2ET

H

PM565
0-2ET

H

PM567
0-2ET

H

PM567
5-2ET

H

³ CPU
firm-
ware

CM564
0-2ETH

ABB netConfig V3.0.0 x x x x V3.6.0 x

Online access with driver 3S TCP/IP BlkDrvTcp V3.0.0 x x x x V3.6.0 x

Modbus TCP server V3.0.3 x x x x V3.6.0 x

Modbus TCP client with POU ModTcpMast V3.0.1 x x x x V3.6.0 x

UDP out of user program with library netBaseSer-
vice.lib

V3.0.0 x x x x V3.6.0 x

UDP data exchange, Network variables V3.0.0 x x x x V3.6.0 x

TCP/IP out of user program with library netBase-
Service.lib

V3.0.0 x x x x V3.6.0 x

Web server on PLC with web visualization V3.0.0 x x x x V3.6.0 x

NTP/SNTP ((Simple) Network Time Protocol)
client with 3S licenced store package SNTPSer-
vice.package.
Library container: SNTPService

V3.0.0 x x x x V3.6.0 x

IEC60870-5-104 control station incl. 2nd connec-
tion and 2nd port

V3.0.0 x x x x V3.6.0 x

IEC60870-5-104 substation incl. 2nd port V3.0.0 x x x x V3.6.0 x

FTP server V3.0.0 x x x x V3.6.0 x

CODESYS network variables V3.0.0 x x x x V3.6.0 x

OPC DA server V3.0.0 x x x x V3.6.0 x

OPC UA server V3.0.0 x x x x V3.6.0 x

ICMP – ping out of user project with POU
ETHx_ICMP_PING

V3.0.0 x x x x V3.6.0 x

DHCP client V3.1.0 x x x x V3.6.0 x

NTP/SNTP ((Simple) Network Time Protocol)
client system solution
Ä Chapter 6.3.4.4.2 “(S)NTP client configuration”
on page 1718

V3.1.0 x x x x V3.6.0 x

NTP/SNTP ((Simple) Network Time Protocol)
server system solution
Ä Chapter 6.3.4.4.3 “(S)NTP server configura-
tion” on page 1720

V3.1.0 x x x x V3.6.0 x

Maximum number of Input/output allowed variable
on Ethernet for the protocol

V3.4.0 2 kB /2
kB

4 kB /4
kB

5 kB /5
kB

5 kB /5
kB

V3.6.0 Depen
ds on
used
CPU

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US308

Description ³ CPU
firm-
ware

PM563
0-2ET

H

PM565
0-2ET

H

PM567
0-2ET

H

PM567
5-2ET

H

³ CPU
firm-
ware

CM564
0-2ETH

IEC 61850 (MMS server, GOOSE) 2) V3.1.0 x x x x V3.6.0 x

EthernetIP Scanner 1, 2) AB
2.4.1/
FW
3.4.1

x x x x AB
2.6.0/
FW

3.6.0

EthernetIP Adapter 1, 2) AB
2.4.1/
FW
3.4.1

x x x x AB
2.6.0/
FW

3.6.0

x

KNX - Building communication 2) V3.2.x x x x x V3.6.0 x

BACnet-BC - Infrastructure communication 2) V3.3.1 x x x x V3.6.0 x

HTTPS – secure web server on PLC with
CODESYS web visualization
Ä Chapter 6.3.4.7.3.2 “Secure web server”
on page 1727

V3.1.0 x x x x V3.6.0 x

 WebVisu for data visualisation on web
server HTML5

V3.0.0 x x x x V3.6.0 x

FTPS – secure FTP
Ä Chapter 6.3.4.7.3.3 “Secure FTP” on page 1728

V3.1.0 x x x x V3.6.0 x

Secure online access with driver 3S UDP
BlkDrvUdp

V3.1.0 x x x x V3.6.0 x

Secure online access with driver 3S TCP/IP
BlkDrvTcp

V3.1.0 x x x x V3.6.0 x

ICMP – ping out of user project with POU
ETHx_ICMP_PING or EthIcmpPing (PLCopen
style)

V3.1.0 x x x x V3.6.0 x

Modbus TCP client (master) with ModTcpMast
(PLCopen style)

V3.1.0 x x x x V3.6.0 x

Remarks:
1): in preparation
2): feature is licensed

Default open Ethernet ports of PM56xx-2ETH
After startup without a PLC project the PM56xx-2ETH contains the following Ethernet ports and
sockets:

Protocol Port

ABB NetConfig 1) UDP 24576

Online access with driver 3S Tcp/Ip BlkDrvTcp (no scan) TCP 11740

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 309

Protocol Port

OPC UA server 2) TCP 4840

Remarks:
1): The port 24576 for ABB NetConfig protocol can be disabled via PLC configuration by
deleting the protocol node from configuration tree of Ethernet interfaces ETH1 and ETH2.
2): The port 4840 for OPC UA server is closed by default as of SystemFW V3.6.0.

All other ports are closed by default.

Overview of protocols, sockets and ports

Protocol Port Sockets
ABB netConfig 24576 1 permanent socket per interface

3S gateway client (e.g. CODESYS) to
gateway server

1217 1 permanent socket

Online access with driver 3S block driver
TCP/IP (no scan)

11740 1 socket per connection + 1
listen

Modbus TCP server 502 or config-
urable

1 socket listen + 1 socket per
server connection, number of
server connections is configu-
rable in AB

Modbus TCP client with POU ModTcpMast Random 1 socket per connection with
POU ModTcpMast

UDP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

TCP/IP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

Web server on PLC with web visualization 80 1 listen and 1 per connection

NTP/SNTP client 123 1 permanent socket

IEC60870-5-104 control station Random 1 per connection

IEC60870-5-104 substation 2404 1 per connection

FTP server Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

CODESYS network variables 1202 (UDP broadcast)

OPC DA server (default 3S block driver) UDP = 1740
or
TCP/IP
=11740

1 socket per connection

OPC UA server 4840 1 permanent socket

ICMP – ping out of user project with POU
ETHx_ICMP_PING DHCP

none No socket

DHCP 67 1 socket during startup

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US310

Protocol Port Sockets
NTP/SNTP ((Simple) Network Time Pro-
tocol) client system solution
Ä Chapter 6.3.4.4.2 “(S)NTP client config-
uration” on page 1718

123 1 permanent socket

NTP/SNTP ((Simple) Network Time Pro-
tocol) server system solution
Ä Chapter 6.3.4.4.3 “(S)NTP server config-
uration” on page 1720

123 1 permanent socket

HTTPS – secure web server on PLC with
CODESYS web visualization
Ä Chapter 6.3.4.7.3.2 “Secure web server”
on page 1727

443 1 listen and 1 per connection

FTPS – secure FTP
Ä Chapter 6.3.4.7.3.3 “Secure FTP”
on page 1728

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

Secure online access with driver 3S
TCP/IP BlkDrvTcp

11740 1 socket per connection + 1
listen

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

None No socket

Modbus TCP client (master) with POU
ModTcpMast (PLCopen style)

Random 1 socket per connection with
POU ModTcpMast

Limitation of connections per protocol
The limitation for each CPU apply to all onboard Ethernet interfaces either directly on the CPU
itself or also on all CM5640-2ETH interfaces that are added to this CPU.

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

Modbus TCP server (e.g. for SCADA
access)

30
40
15

100
40
25

100
40
50

100
40
50

3.0.3
3.1.0
3.1.3

Modbus TCP client with POU ModTcpMast
(PLCopen style)

30
30

100
50

100
120

100
120

3.1.0
3.1.3

IEC60870-5-104 control station incl. 2nd

connection and 2nd port
10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104 substation incl. 2nd port 10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104: No. of free tags

+ additional license for extension 1)

1.000 5.000 10.000 10.000 3.4.0

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 311

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

FTP server 4 4 4 4 3.1.0

Online access with driver 3S TCP/IP
BlkDrvTcp

n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC DA server (number of connections) n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC UA server (number of connections) 50
10

50
20

50
50

50
50

3.1.0
3.4.0

 No. of free tags

+ additional license for extension 1)

1.000 5.000 30.000 30.000 3.4.0

 min sampling rate (limit) 500 ms 100 ms 50 ms 50 ms 3.4.0

Secure online access with driver 3S
TCP/IP BlkDrvTcp

8 8 8 8 3.1.0

FTPS - secure FTP server 4 4 4 4 3.1.0

HTTPS – Integrated webserver – number
of connections

4 8 12 12 3.4.0

Ethernet/IP
Maximum number of Input/Output

0.5
kB/0.5
kB

0.5
kB/0.5
kB

0.5
kB/0.5
kB

0.5
kB/0.5 kB

3.4.1

Remarks:
1): in preparation

The PLC types PM5630-2ETH, PM5670-2ETH and PM5675-2ETH are avail-
able as of SystemFW 3.1.0.

Default Ethernet configuration

Module IP Address Netmask Comment
PM5xx2-x-ETH ETH: 192.168.0.10 255.255.255.0

PM50x2-T-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

PM56xx-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

CM5640-2ETH SLOT1:
192.168.11.10,
192.168.12.10
SLOT2:
192.168.21.10,
192.168.22.10
...

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US312

Ä Changing the IP addresses using the Automation Builder

Ä Changing the IP addresses using the CFG key

Online access
3S TCP/IP block driver. This driver requires at least 2 sockets:
● 1x driver “BlkDrvTcp” on port 11740
● 1x listen on port 11740 if PLC has established online connection

Online access can be established from:

– Automation Builder command 'Login' Ä Chapter 6.4.1.21.3.7.2 “Command
'Login'” on page 2624

– CODESYS OPC DA server
– Panel CP600 series

Each established connection needs one socket. In addition one socket on port 11740 is lis-
tening.
1. Startup the PLC.

ð One socket on port 11740 (listen).

2. Login from Automation Builder via driver “BlKDrvTcp”.

ð 2 sockets on port 11740 (1x online, 1x listen)

3. Additional login out of OPC server with the same driver.

ð 3 sockets on port 11740 (2x online, 1x listen)

4. Additional connect CP600 via driver “BlkDrvTcp”.

ð 4 sockets on port 11740 (3x online, 1x listen)

5.2.1.2.2 PM56xx-2ETH for AC500 V3 products
Features

Processor modules with onboard interfaces:
● PM5630-2ETH: processor module, memory 8 MB, with Ethernet support (onboard Ethernet)

– 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● PM5650-2ETH: processor module, memory 80 MB, with Ethernet support (onboard

Ethernet) – 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● PM5670-2ETH: processor module, memory 160 MB, with Ethernet support (onboard

Ethernet) – 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● PM5675-2ETH: processor module, 160 MB, 8 GB flash disk, with Ethernet support (onboard

Ethernet) – 2 network interfaces RJ45, CAN and COM1 on the terminal base.
● XC version for use in extreme ambient conditions available

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 313

1 6 7-segment state displays with backlight
2 "Triangle" displays for "item"
3 "Square" displays for "state"
4 3 state LEDs
5 8 function keys
6 Slot for memory card
7 Label
8 Compartment for lithium battery TA521
9 Lithium battery TA521
10 Memory card
11 I/O bus for connection of I/O modules
12 Slot for processor module (processor module

mounted on terminal base)

13 Slots for communication modules (multiple,
depending on terminal base; unused slots must be
covered with TA524)

14 Interface for CAN (5-pin terminal block, removable)
15 Power supply (5-pin terminal block, removable)
16 Serial interface COM1 (9-pin terminal block, remov-

able)
17 RJ45 female connector for ETHERNET1 connection
18 RJ45 female connector for ETHERNET2 connection
19 DIN rail

Sign for XC version

Short description
The processor modules are the central units of the control system AC500. The types differ in
their performance (memory size, speed etc.). Each processor module must be mounted on a
suitable terminal base.
The terminal base type (TB56xx) depends on the number of communication modules which are
used together with the processor module.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US314

Table 85: Comparison: TB56xx
Processor module PM5630 PM5650 PM5670 PM5675
Max. number of variables allowed for each communication module supported

 Input variables 4 kB 4 kB 5 kB 5 kB

 Output variables 4 kB 4 kB 5 kB 5 kB

Type of communication module supported

 CM574-RS/RCOM - serial interface No No No No

 CM5610-2RS - 2 serial interfaces x x x x

 CM582-DP - PROFIBUS DP V0/V1 slave x x x x

 CM592-DP - PROFIBUS DP V0/V1 master x x x x

 CM579-ETHCAT - EtherCAT master x x x x

 CM579-PNIO - PROFINET IO RT controller x x x x

 CM589-PNIO - PROFINET IO RT device x x x x

 CM589-PNIO-4 - PROFINET IO RT
with 4 devices

x x x x

 CM597-ETH - Ethernet interface No No No No

 CM5640-2ETH - 2 Ethernet interfaces x x x x

 CM588-CN - CAN, CANopen slave No No No No

 CM598-CN - CAN, CANopen master only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

Type of AC500-S module supported

 SM560-S - safety module x x x x

 SM560-S-FD-1 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

x x x x

 SM560-S -FD-4 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

x x x x

All terminal bases (TB56xx) provide the same communication interfaces (ETH1, ETH2, CAN
and COM1) Ä Chapter 5.2.3.1.4 “Technical data” on page 383.
All other V3 processor modules can operate multiple communication modules via their commu-
nication module interface.
The communication modules are mounted on the left side of the processor module on the same
terminal base.
On the right side of the processor module, up to 10 digital or analog I/O expansion modules can
be connected to the I/O bus. Each I/O module requires a suitable terminal unit depending on the
module type.
Terminal bases, terminal units, I/O modules, communication modules and accessories have
their own technical descriptions.
Each processor module can be used as:
● Stand-alone processor module
● Stand-alone processor module with local I/Os
● Remote IO server
● Remote IO client
The processor modules are powered with 24 V DC.

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 315

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Connections
All terminals for connection are available on the terminal base. For information on connection
and available interfaces see the descriptions for
● Ä Chapter 5.2.3.1 “TB56xx for AC500 V3 products” on page 377.

Processor modules PM56xx-2ETH can only be used with TB56xx-2ETH ter-
minal bases.

Table 86: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Storage elements

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
Ä Chapter 6.8.2.3.2 “AC500 battery” on page 4445

Lithium battery

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US316

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

The technical data, handling instructions and the insertion/replacement of the battery is
described in detail in the chapter TA521 lithium battery Ä Chapter 5.2.8.2.3 “TA521 - Battery”
on page 1319.

AC500 processor modules are supplied without memory card. It must be ordered separately.
The memory card can be used
● to read and write user files,
● to download a user program,
● for firmware updates,
● for program source code storage.
AC500 processor modules can be operated with and without memory cards. The processor
module uses a standard file system (FAT). This allows standard card readers to read and write
the memory cards.
Ä Further information

LEDs, display and function keys on the front panel

Ä Detailed information on using the LEDs, display and the function keys such as startup
procedure and error coding

Technical data
The system data of AC500 and S500 are applicable to the standard version. Ä Chapter 5.1.2
“System data AC500” on page 166

Memory card

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 317

The system data of AC500-XC are applicable to the XC version. Ä Chapter 5.1.3 “System data
AC500-XC” on page 169

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Connection of the supply voltage 24 V
DC at the terminal base of the processor
module

Removable 5-pin terminal block with spring con-
nection

Current consumption on 24 V DC

Min. typ. (module alone) PM5630-2ETH: 110 mA
PM5650-2ETH: 120 mA
PM5670-2ETH: 140 mA
PM5675-2ETH: 140 mA

Max. typ. (all communication modules
and I/Os)

PM5630-2ETH: 850 mA
PM5650-2ETH: 900 mA
PM5670-2ETH: 950 mA
PM5675-2ETH: 950 mA

Number of slots for processor modules 1 (on all terminal bases)

Processor module interfaces at the ter-
minal bases TB56xx

I/O bus, ETH1, ETH2, CAN, COM1

Weight (processor module without ter-
minal base)

135 g

Mounting position Horizontal or vertical

Table 87: Comparison: PM56xx
Processor module PM5630 PM565

0
PM567
0

PM5675

Total maximum downloadable application size 1) 9 MB 84 MB 176
MB

176 MB

 Thereof user program code and
data (dynamically allocated)

2 MB 8 MB 32 MB 32 MB

 Thereof user webserver data
max.

6 MB 72 MB 128
MB

128 MB

Flash memory for User data

 Remaining for all other usage
(project save, infrastructure...)

30 MB 285
MB

643
MB

643 MB

Buffered (SRAM) 256 kB 256 kB 1.5 MB 1.5 MB

 Thereof VAR retain persistent 128 kB 128 kB 1024
kB

1024 kB

 Thereof %M memory (e.g.
Modbus register)

128 kB 128 kB 512 kB 512 kB

Expandable memory None None None None

Integrated mass storage memory (FLASH) None None None 8 GB

Slot for pluggable memory card x x x x

Processor
module and
terminal base

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US318

Processor module PM5630 PM565
0

PM567
0

PM5675

Processor type TI ARM Cortex-A9 32-bit-RISC

Processor clock speed 300 MHz 600
MHz

1 GHz 1 GHz

Cycle time for 1 instruction (minimum):

 Binary Min.
0.02 µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Word Min.
0.02 µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

 Floating point Min.
0.12 µs

Min.
0.01 µs

Min.
0.002
µs

Min.
0.002 µs

Mathematic co-processor x x x x

Motion capability

 No. synchronized axis per
1 ms on EtherCAT CM typ-
ically

- 8* 16* 16*

 No. synchronized axis per
2 ms on EtherCAT CM typ-
ically

4* 16* 32* 32*

 No. synchronized axis per
4 ms on EtherCAT CM or
CANopen onboard typically

8* 32* 64* 64*

 Min. bus cycle time for
EtherCAT using external
CM579

2 ms 1 ms 0,5 ms 0,5 ms

* in addition: 1 virtual axis

Max. number of central inputs and outputs (10 exp. modules):

 Digital inputs 320

 Digital outputs 320

 Analog inputs 160

 Analog outputs 160

Number of decentralized inputs and outputs Depends on the used fieldbus

Data backup Battery

Data buffering time at 25 °C Typ. 3 years

Battery low indication via application program

Real-time clock:

 With battery backup x

 Accuracy Typ. ± 2 s / day at +25 °C

Program execution:

 Cyclic x

 Time-controlled x

 Multitasking x

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 319

Processor module PM5630 PM565
0

PM567
0

PM5675

 Minimum cycle time configurable
for cyclical task

1 ms 1 ms 0,5 ms 0,5 ms

User program protection by password x (user management)

Internal interfaces for communication:

Serial interface COM1:

 Physical link Configurable for RS-232 or RS-485
(9.6 kb/s, 19.2 kb/s, 38.4 kb/s, 57.6
kb/s and 115.2 kb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage Serial ASCII communication,Modbus
RTU

CAN interface:

 Physical link CAN 2A/2B (from 50 kb/s to 1 Mb/s)

 Connection Pluggable terminal block, spring con-
nection

 Usage CANopen master communication,
CAN 2A/2B, J1939 protocol, CAN
sync

 Max. number of variables allowed

 Input variables 2 kB 4 kB 5 kB 5 kB

 Output variables 2 kB 4 kB 5 kB 5 kB

Network interface ETH1, ETH2:

 Usage Ethernet

 Physical link 10/100 base-TX, configurable as
internal switch or independent Inter-
faces

 Connection 2x RJ45 socket, provided on
TB56xx-2ETH

LEDs, LCD display, function keys RUN / STOP, status, diagnosis, set-
tings

Number of timers Unlimited

Number of counters Unlimited

Programming languages:

 Structured Text ST x

 Instruction list IL x

 Function Block Diagram FBD x

 Ladder Diagram LD x

 Sequential function chart SFC x

 Continuous function chart (CFC) x

Remarks:
1): The values are for information only and cannot be fulfilled altogether. The available
resources are limited at the end by the maximal downloadable application size for each CPU.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US320

Table 88: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Table 89: Comparison: TB56xx
Processor module PM5630 PM5650 PM5670 PM5675
Max. number of variables allowed for each communication module supported

 Input variables 4 kB 4 kB 5 kB 5 kB

 Output variables 4 kB 4 kB 5 kB 5 kB

Type of communication module supported

 CM574-RS/RCOM - serial interface No No No No

 CM5610-2RS - 2 serial interfaces x x x x

 CM582-DP - PROFIBUS DP V0/V1 slave x x x x

 CM592-DP - PROFIBUS DP V0/V1 master x x x x

 CM579-ETHCAT - EtherCAT master x x x x

 CM579-PNIO - PROFINET IO RT controller x x x x

 CM589-PNIO - PROFINET IO RT device x x x x

 CM589-PNIO-4 - PROFINET IO RT
with 4 devices

x x x x

 CM597-ETH - Ethernet interface No No No No

 CM5640-2ETH - 2 Ethernet interfaces x x x x

 CM588-CN - CAN, CANopen slave No No No No

 CM598-CN - CAN, CANopen master only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

only CAN
2A/2B

Type of AC500-S module supported

 SM560-S - safety module x x x x

 SM560-S-FD-1 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

x x x x

 SM560-S -FD-4 - safety module with
F-Device functionality for 1 PROFIsafe net-
work

x x x x

Table 90: OPC UA server / OPC DA server
Processor module PM5630 PM5650 PM5670 PM5675
OPC UA server x x x x

 Number of free tags 3.000 10.000 30.000 30.000

Communication
and onboard
protocols

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 321

Processor module PM5630 PM5650 PM5670 PM5675
 Number of connections 10 20 50 50

 Min. sampling rate (limit) 500 ms 100 ms 50 ms 50 ms

OPC DA server AE x x x x

 Number of connections 8 8 8 8

Table 91: Modbus, Telecontrol
Processor module PM5630 PM5650 PM5670 PM5675
Modbus TCP client / server x x x x

 Number of Modbus clients ModMast
in parallel on a CPU master (server)

30 50 120 120

 Number of Modbus server in parallel
(e.g. for SCADA access)

15 25 50 50

IEC 60870-5-104 telecontrol protocol x x x x

 Number of free tags 1.000 5.000 10.000 10.000

 Control station (number of connec-
tions)

5 10 20 20

 Sub-station (number of connections) 5 10 20 20

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US322

The dimensions are in mm and in brackets in inch.

Ordering data
To enable better product availability into the production and to provide some new features, a
revision 3 of the existing AC500 V3 processor module was necessary. The existing AC500 V3
processor module revision 2 with rubric R0278 will move to classic and will be replaced by
compatible new AC500 V3 processor module revision 3 with rubric R0378.

The processor module revision 3 PM5630-2ETH (1SAP131 000 R0378) replaces the existing
processor module revision 2 PM5630-2ETH (1SAP 131 000 R0278) and provides the same
features or functionality of the previous ones.

For example:

Following points must be considered with the processor module revision 3:

– The processor module revision 3 (R037x) requires a new BootFW / CPUFW
from V3.6.x and higher.

– It cannot be downgraded and used with lower FW versions than V3.6.0.
– The processor module revision 3 (R037x) provides the same features as the

processor module revision 2 (R027x) existing today and is fully compatible.
– An existing application using a processor module revision 2 (R027x) built

with Automation Builder < 2.6 can run on a processor module revision 3
(R037x) but the application must be upgraded to at least AB 2.6.0 or
higher.

What must be done using a new processor module revision 3 (R037x)?
● On a new application?

– Just use the new processor module revision 3 (R037x)
– Use the latest Automation Builder software from 2.6.0 or higher.

● On an existing application using an Automation Builder software version smaller than 2.6.0?
– To use a new processor module revision 3 in an existing application (e.g., replacement

of the processor module revision 2), the application must be upgraded to at least AB
2.6.0 or higher.

– If several processor module (revision 3 and revision 2) are used within the same project,
all the processor modules used in the same application must be upgraded to the FW
Version V3.6.x and higher.

Processor
modules for
AC500
(Standard) V3
products

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 323

Table 92: Processor modules for AC500 (Standard) V3
Part no. Description Product life cycle phase *)
1SAP 131 000 R0278
(processor module
revision 2)

PM5630-2ETH, processor module,
memory 8 MB, 24 V DC, memory card
slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Classic
(replaced by processor
module revision 3)

1SAP 131 000 R0378
(processor module
revision 3)

PM5630-2ETH, processor module,
memory 8 MB, 24 V DC, memory card
slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Active

1SAP 331 000 R0278
(processor module
revision 2)

PM5630-2ETH-XC, processor module,
memory 8 MB, 24 V DC, memory card
slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Classic
(replaced by processor
module revision 3)

1SAP 331 000 R0378
(processor module
revision 3)

PM5630-2ETH-XC, processor module,
memory 8 MB, 24 V DC, memory card
slot, interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Active

1SAP 141 000 R0278
(processor module
revision 2)

PM5650-2ETH, processor module,
memory 80 MB, 24 V DC, memory
card slot, interface 1 RS-232/485,
display, 2 RJ45 independent
onboard Ethernet TCP/IP interfaces
with Modbus TCP, web server,
IEC60870-5-104 or selectable
Ethernet based protocols

Classic
(replaced by processor
module revision 3)

1SAP 141 000 R0378
(processor module
revision 3)

PM5650-2ETH, processor module,
memory 80 MB, 24 V DC, memory
card slot, interface 1 RS-232/485,
display, 2 RJ45 independent
onboard Ethernet TCP/IP interfaces
with Modbus TCP, web server,
IEC60870-5-104 or selectable
Ethernet based protocols

Active

1SAP 341 000 R0278
(processor module
revision 2)

PM5650-2ETH-XC, processor module,
memory 80 MB, 24 V DC, memory
card slot, interface 1 RS-232/485,
display, 2 RJ45 independent
onboard Ethernet TCP/IP interfaces
with Modbus TCP, web server,
IEC60870-5-104 or selectable
Ethernet based protocols, XC version

Classic
(replaced by processor
module revision 3)

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US324

Part no. Description Product life cycle phase *)
1SAP 341 000 R0378
(processor module
revision 3)

PM5650-2ETH-XC, processor module,
memory 80 MB, 24 V DC, memory
card slot, interface 1 RS-232/485,
display, 2 RJ45 independent
onboard Ethernet TCP/IP interfaces
with Modbus TCP, web server,
IEC60870-5-104 or selectable
Ethernet based protocols, XC version

Active

1SAP 151 000 R0278
(processor module
revision 2)

PM5670-2ETH, processor module,
memory 160 MB, 24 V DC,
memory card slot, interface
1 RS-232/485, display, 2 RJ45
independent onboard Ethernet TCP/IP
interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Classic
(replaced by processor
module revision 3)

1SAP 151 000 R0378
(processor module
revision 3)

PM5670-2ETH, processor module,
memory 160 MB, 24 V DC,
memory card slot, interface
1 RS-232/485, display, 2 RJ45
independent onboard Ethernet TCP/IP
interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Active

1SAP 351 000 R0278
(processor module
revision 2)

PM5670-2ETH-XC, processor module,
memory 160 MB, 24 V DC,
memory card slot, interface
1 RS-232/485, display, 2 RJ45
independent onboard Ethernet TCP/IP
interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Classic
(replaced by processor
module revision 3)

1SAP 351 000 R0378
(processor module
revision 3)

PM5670-2ETH-XC, processor module,
memory 160 MB, 24 V DC,
memory card slot, interface
1 RS-232/485, display, 2 RJ45
independent onboard Ethernet TCP/IP
interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Active

1SAP 151 500 R0278
(processor module
revision 2)

PM5675-2ETH, processor module,
memory 160 MB, 8 GB flash disk,
24 V DC, memory card slot,
interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Classic
(replaced by processor
module revision 3)

1SAP 151 500 R0378
(processor module
revision 3)

PM5675-2ETH, processor module,
memory 160 MB, 8 GB flash disk,
24 V DC, memory card slot,
interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols

Active

Hardware descriptions

Device specifications > Processor modules

2024/01/05 3ADR010583, 1, en_US 325

Part no. Description Product life cycle phase *)
1SAP 351 500 R0278
(processor module
revision 2)

PM5675-2ETH-XC, processor module,
memory 160 MB, 8 GB flash disk,
24 V DC, memory card slot,
interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Classic
(replaced by processor
module revision 3)

1SAP 351 500 R0378
(processor module
revision 3)

PM5675-2ETH-XC, processor module,
memory 160 MB, 8 GB flash disk,
24 V DC, memory card slot,
interface 1 RS-232/485, display,
2 RJ45 independent onboard Ethernet
TCP/IP interfaces with Modbus TCP,
web server, IEC60870-5-104 or
selectable Ethernet based protocols,
XC version

Active

1SAP 131 000 R0379 PM5630-MC-KIT: AC500, Machine
Controller Kit with PM5630-2ETH,
CM579-ETHCAT, TB5610-ETH,
PS5611-MC

Active

1SAP 141 000 R0379 PM5650-MC-KIT: AC500, Machine
Controller Kit with PM5650-2ETH,
CM579-ETHCAT, TB5610-ETH,
PS5611-MC

Active

1SAP 151 000 R0379 PM5670-MC-KIT: AC500, Machine
Controller Kit with PM5670-2ETH,
CM579-ETHCAT, TB5610-ETH,
PS5611-MC

Active

Required accessories
1SAP xxx 300 R0278 TB56xx, terminal base

Ä Chapter 5.2.3.1 “TB56xx for AC500
V3 products” on page 377

Active

Optional accessories
1SAP 180 300 R0001 TA521, lithium battery

Ä Chapter 5.2.8.2.3 “TA521 - Battery”
on page 1319

Active

1SAP 180 100 R00xx MC51xx, memory card
Ä Chapter 5.2.8.1.1 “MC5102 -
Micro memory card with adapter”
on page 1286

Ä Chapter 5.2.8.2.2 “MC5141 -
Memory card” on page 1315

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > Processor modules

2024/01/053ADR010583, 1, en_US326

5.2.2 Communication modules for AC500(-XC) processor modules
5.2.2.1 Features

AC500 communication modules are required for
● a connection to standard fieldbus systems and
● for integration into existing networks.
AC500 communication modules
● enable communication on different fieldbuses.
● are mounted on the left side of the processor module on the same terminal base.
● are directly powered via the internal communication module bus of the terminal base.

A separate voltage source is not required.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 327

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

The communication between the processor module and the communication modules takes
place via the communication module bus, which is integrated in the terminal base. Depending
on the used terminal base up to 6 communication modules can be connected.
● Ä Chapter 5.2.3.1 “TB56xx for AC500 V3 products” on page 377

There are no restrictions concerning which communication modules can be arranged for a
processor module.
Within the AC500 control system, the communication modules can be used as
● bus master or
● slave.
It depends on the
● selected protocol,
● the functionality of the communication module and
● the several field buses and networks.
The following name extensions of the device names describe the supported field bus/protocol:
● CM5640-2ETH: Ethernet
● CM5x2-DP: PROFIBUS
● CM5x9-PNIO: PROFINET
● CM579-ETHCAT: EtherCAT
● CM598-CN: CANopen
● CM5610-2RS: 2 serial interfaces (COM1/COM2)
If a XC version of the device is available, for use in extreme ambient conditions (e.g. wider
temperature and humidity range), this is indicated with a snowflake sign.

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US328

5.2.2.2 Compatibility of communication modules and communication interface modules
Table 93: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x -- -- hot-swap I/O

CM5640-2ETH CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

CM5640-2ETH CI521-MODTCP
CI522-MODTCP

x -- -- hot-swap I/O

Table 94: PROFIBUS DP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM592-DP
master

CI541-DP
CI542-DP

x x -- remote I/O

CM592-DP
master

CI541-DP
CI542-DP

x -- -- hot-swap I/O

Table 95: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot-swap I/O

Table 96: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard CAN
interface

CI581-CN
CI582-CN

-- -- -- remote I/O

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 329

Table 97: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

5.2.2.3 Technical data (Overview)

Communica-
tion module

Field bus Transmission
rate

Field bus
connector

Processor Communica-
tion module
interface

Current con-
sumption
from 24 V DC
power supply
at the ter-
minal base of
the CPU

CM5610-2RS Serial (ASCII/
Modbus)

9.6 ... 187.5
kBit/s

2 x MC 0.5/9-
G-2.5, 9-pin,
male

TI ARM
Cortex-A9

Dual-port RAM Typ. 40 mA

CM579-
ETHCAT

EtherCAT 10 or 100
MBit/s

2 x RJ45 Hilscher NETX
100

Dual-port
RAM, 16 kB

Typ. 85 mA

CM582-DP
CM592-DP

PROFIBUS
DP

9.6 kBit/s ... 12
MBit/s

D-sub, 9-pin,
female,
bended

Hilscher NETX
100

Dual-port
RAM, 16 kB

Typ. 65 mA

CM598-CN CANopen 10 ... 1 MBit/s COMBICON
2x 5-pin,
bended

Hilscher NETX
100

Dual-port
RAM, 16 kB

Typ. 65 mA

CM579-PNIO PROFINET 100 MBit/s 2 x RJ45 Hilscher NETX
100

Dual-port
RAM, 16 kB

Typ. 85 mA

CM5640-2ET
H

2 x Ethernet 10 or 100
MBit/s

2 x RJ45 TI ARM
Cortex-A9

Dual-port RAM Typ. 47 mA

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US330

5.2.2.4 Serial
5.2.2.4.1 CM5610-2RS with 2 serial interfaces
Features

4

3

1

2

1 5 LEDs for state display
2 2 rotary switches for address setting
3 Label
4 2 serial interfaces: COM1 and COM2

Sign for XC version

CAUTION!
Risk of injury and damaging the module when using unapproved terminal
blocks!
Only use terminal blocks approved by ABB to avoid injury and damage to the
module.

The communication modules with 2 serial interfaces are delivered with two 9-pin
terminal blocks TA532 (1SAP 182 000 R0001).

The terminal block listed in the ordering data is for spare part only if needed.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 331

Purpose
Communication module CM5610-2RS is equipped with 2 serial interfaces (COM1 and COM2)
which can be used as serial interface extension of the proocessor module or for communication
e.g. for communication via Modbus or ASCII.
Depending on the connection, the physical interface of COM1 and COM2 is either RS-232 or
RS-485.

Connections
Serial interfaces

Pin Signal Interface Description
1 Term. P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit, positive

3 RxD/TxD-N RS-485 Receive/Transmit, negative

4 Term. N RS-485 Terminator N

5 RTS RS-232 Request to send (output)

6 TxD RS-232 Transmit data (output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data (input)

9 CTS RS-232 Clear to send (input)

Bus cable for RS-485

Bus line
Construction 2 cores, twisted, with common shield

Conductor cross section > 0.22 mm² (24 AWG)

Twisting rate > 10 per meter (symmetrically twisted)

Core insulation Polyethylene (PE)

Resistance per core < 100 Ω/km

Characteristic impedance ca. 120 Ω (100 Ω ... 150 Ω)

Capacitance between the cores < 55 nF/km (if higher, the max. bus length must be reduced)

Terminating resistors 120 Ω ¼ W at both line ends

Remarks Commonly used telephone cables with PE insulation and a
core diameter of > 0.8 mm are usually sufficient.

Cables with PVC core insulation and core diameter of
0.8 mm can be used up to a length of approx. 250 m. In
this case, the bus terminating resistor is approx. 100 Ω.

Cable lengths
The maximum possible cable length of a serial connection subnet within a segment depends on
the transmission rate.
RS-232 (for point-to-point connection):

Pin assignment

Bus cable

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US332

Parameter Value
Transmission rate 9.6 kbit/s to 115.2 kbit/s

Maximum cable length On request

RS-485 (for point-to-point or bus connection):

Parameter Value
Transmission rate 9.6 kbit/s to 115.2 kbit/s

Maximum cable length On request

Bus termination (RS-485 only)
The line ends of the bus segment must be equipped with bus terminating resistors. Normally,
these resistors are integrated in the interface connectors.

1 Term. P
2 RxD/TxD-P
3 RxD/TxD-N
4 Term. N
A Master at the bus line end, pull-up resistor and pull-down resistor activated, bus terminating

resistor 120 Ω
B Slave within the bus line
C Slave at the bus line end, bus terminating resistor 120 Ω

State LEDs

LED Color State Description
PWR Green ON (light) Voltage is present

OFF (dark) Voltage is missing

RDY Yellow Programmable Depends on user program

RUN Green Programmable Depends on user program

STA Yellow Programmable Depends on user program

ERR Red Programmable Depends on user program

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 333

The technical data are also applicable to the XC version.

Parameter Value
Protocols

 Serial COM ASCII Yes

Modbus RTU (master and slave) Yes

State LED

 PWR 1

RUN 1

ERR 1

RDY 1

STA 1

Rotary switch

 ADDR 00...FFhex 2, for station identification

Serial interface 1

 Physical layer

 RS232 / RS485 configurable Isolated

Connection name COM input of funktion blocks:11, 21, ... 61
depending on which slot CM5610-2RS is
plugged. Counting starts from right to left on
left side of CPU.

Connection type

 Terminal block Pluggable spring terminals

Transmission rate Configurable from 9.6 kbit/s to 115.2 kbit/s

Usage

 Programming No

Modbus RTU (master and slave) Yes

Serial ASCII communication Yes

Serial interface 2

 Physical layer

 RS232 / RS485 configurable Isolated

Connection name COM input of funktion blocks:12, 22, ... 62
depending on which slot CM5610-2RS is
plugged. Counting starts from right to left on
left side of CPU.

Connection type

 Terminal block Pluggable spring terminals

Transmission rate Configurable from 9.6 kbit/s to 115.2 kbit/s

Usage

 Programming No

Modbus RTU (master and slave) Yes

Serial ASCII communication Yes

Communication module interface/bus Dual-port RAM (simulated)

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US334

Parameter Value
Net weight [kg] 0.12 kg

Power supply

 Nominal supply voltage

 Supply current at nominal supply
voltage (depending on system
architecture)

Typ. 40 mA per communication module at 24
V
With maximum load to both COM ports: 46
mA

Internal power supply source Communication module bus

Hardware

 Usable CPUs PM56xx Ä Chapter 5.2.1.2.2 “PM56xx-2ETH
for AC500 V3 products” on page 313

Usable terminal bases TB56xx Ä Chapter 5.2.3.1 “TB56xx for AC500
V3 products” on page 377

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 176 000 R0020 CM5610-2RS, communication module,

2 serial RS232/485
Active

1SAP 376 000 R0020 CM5610-2RS-XC, communication
module, 2 serial RS232/485, XC ver-
sion

Active

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 335

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Table 98: Spare parts for communication modules with 2 serial interfaces
Part no. Description
1SAP 182 000 R0001 TA532: 9-pin terminal block set for communication module

CM5610-2RS(-XC), 10 pieces, spring type terminal

The communication modules with 2 serial interfaces are delivered with two 9-pin
terminal blocks TA532 (1SAP 182 000 R0001).

The terminal block listed in the ordering data is for spare part only if needed.

5.2.2.5 CANopen
5.2.2.5.1 CM598-CN - CANopen master
Features

● CANopen master 1 Mbit/s
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US336

1 5 LEDs for state display
2 Label
3 Communication interface, 5-pin, Combicon, male, removable plug with spring terminals

Sign for XC version

Purpose
Communication module CM598-CN enables communication over the CANopen field bus.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

The AC500 V3 CPUs only support CAN 2A/2B protocol on the communication
module CM598-CAN Ä Chapter 6.3.2.11.1.1.5 “Configuration of the protocols
CAN 2.0 A / CAN 2.0 B” on page 1533.

Support of CANopen protocol is in preparation.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 337

Connections

Interface socket 5-pin COMBICON

Transmission standard ISO 11898, potential-free

Transmission protocol CANopen (CAN), 1 Mbaud max.

Transfer rate (transmis-
sion rate)

10 kbit/s, 20 kbit/s, 50 kbit/s, 100 kbit/s, 125 kbit/s, 250 kbit/s, 500
kbit/s, 800 kbit/s and 1 Mbit/s,

Table 99: Pin assignment of the CANopen connector
Interface PIN Signal Description

Terminal block
removed

Terminal block
inserted

1 CAN_GND CAN reference potential

2 CAN_L Bus line, receive/transmit line,
LOW

3 CAN_SHLD Shield of the bus line

4 CAN_H Bus line, receive/transmit line,
HIGH

5 NC Not connected

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

For CANopen, only bus cables with characteristics as recommended in ISO 11898 are to be
used. The requirements for the bus cables depend on the length of the bus segment. Regarding
this, the following recommendations are given by ISO 11898:

Field bus inter-
face

Pin assignment

Bus length

Types of bus
cables

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US338

Length of seg-
ment [m]

Bus cable (shielded, twisted pair) Max. transmis-
sion rate [kbit/s]

 Conductor
cross section
[mm²]

Line resistance
[W/km]

Wave impe-
dance [W]

0...40 0.25 ... 0.34 /
AWG23, AWG22

70 120 1000 at 40 m

40...300 0.34 ... 0.60 /
AWG22, AWG20

< 60 120 < 500 at 100 m

300...600 0.50 ... 0.60 /
AWG20

< 40 120 < 100 at 500 m

600...1000 0.75 ... 0.80 /
AWG18

< 26 120 < 50 at 1000 m

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 40: CANopen interface, bus terminating resistors connected to the line ends

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

Bus terminating
resistors

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 339

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 41: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear Ä Chapter
5.1.2 “System data AC500” on page 166.

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US340

State LEDs
Table 100: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

OFF ---

RUN Green ON Communication module is operational

Blinking ---

OFF Communication module is not operational

CAN-RUN Green ON Operational: Device is in the
OPERATIONAL state

Single Flash Stopped: Device is in STOPPED state

Blinking Pre-operational: Device is in the
PREOPERATIONAL state

OFF No communication or no power supply

CAN-ERR Red ON CANopen bus is off

Single flash Warning limit reached: At least one of the
error counters of the CAN controller has
reached or exceeded the warning level
(too many error frames)

Double flash Error control event: A guard event (NMT
Slave or NMTmaster) or a heartbeat event
(Heartbeat consumer) has occurred

OFF No Error: Device is in working condition

CAN-RUN Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.CAN-ERR Yellow

LED state
during
firmware
update

CAN-RUN Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.CAN-ERR Red

CAN-RUN Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

CAN-ERR Red

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 341

Parameter Value
Protocol CANopen master (in preparation), CAN2A,

CAN2B

Transmission rate 10 kbit/s to 1 Mbit/s

Ambient temperature see:
System data AC500 Ä Chapter 5.1.2 “System
data AC500” on page 166

System Data AC500-XC Ä Chapter 5.1.3
“System data AC500-XC” on page 169

Usable terminal bases All TB5xx

Field bus connector Pluggable connector COMBICON, 5-pin

Technology Hilscher NETX 100

Indicators 5 LEDs

Internal power supply Via the communication module interface of the
terminal base

Current consumption from 24 V DC power
supply at the Terminal Base of the CPU

Typ. 65 mA

Number of Slaves Max. 126

Number of receive/transmit PDOs Max. 512 (respectively for receive and
transmit)

Total quantity of input and output data Max. 3584 byte (respectively for input and
output)

Weight Ca. 150 g

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US342

Ordering data

Part no. Description Product life cycle phase *)
1SAP 173 800 R0001 CM598-CN, communication module

CANopen master
Active

1SAP 373 800 R0001 CM598-CN-XC, communication
module CANopen master, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.2.6 EtherCAT

Two alternatives are available for using EtherCAT:

– Onboard EtherCAT for the AC500-eCo
– EtherCAT for the AC500 with the CM579 communication module

Further information can be found here:

Onboard EtherCAT

Ä EtherCAT configurator

Ä Communication schema onboard Ethernet/EtherCAT

Ä Motion Control

EtherCAT

Ä CM579-ETHCAT

Ä Communication schema onboard Ethernet/EtherCAT

Ä Motion Control

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 343

5.2.2.6.1 CM579-ETHCAT - EtherCAT master
Features

1 5 LEDs for state display
2 2 rotary switches for address setting (not used)
3 Label
4 2 communication interfaces RJ45 (ETHCAT1 and ETHCAT2)

Intended purpose
Communication module CM579-ETHCAT is for EtherCAT communication.
The comunication module is configured via the dual-port memory by means of a system config-
urator. The configuration is saved on a non-volatile Flash EPROM memory.
Ä Chapter 6.9.3.6.2 “CM579-ETHCAT” on page 4665

Connections
The EtherCAT communication module provides 2 RJ45 interfaces with the following pin assign-
ment. The pin assignment is used for the EtherCAT slaves (communication interface modules
CI5xy-ETHCAT) as well.

Field bus inter-
faces

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US344

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Pin assignment

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 345

State LEDs
The EtherCAT state is shown by the EtherCAT communication module's LEDs. Some LEDs are
two-colored.

Table 101: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Green On No bus error, communication running

Blinking Establishing communication

Off System error

STA2 Red On Configuration error

Blinking ---

Off No error

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 102: Meaning of the diagnosis LEDs
LED Color State Description

ETHCAT1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

ETHCAT1 LED "RX/TX" Yellow On Device sends/receives frames

Off No Ethernet connection

ETHCAT2 LED "Link" Green Connector ETHCAT2 is not used

ETHCAT2 LED "RX/TX" Yellow

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US346

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Internal Supply Via the communication module interface of the

terminal base

Protocol EtherCAT

Field bus connector 2 x RJ45 (ETHCAT1 and ETHCAT2)

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m at 100 Mbit/s

Indicators 5 LEDs

Usable CPUs PM56xx Ä Chapter 5.2.1.2.2 “PM56xx-2ETH
for AC500 V3 products” on page 313

Usable terminal bases All TB56xx (not TB5600) Ä Chapter 5.2.3.1
“TB56xx for AC500 V3 products” on page 377

Ambient temperature System data AC500 Ä Chapter 5.1.2 “System
data AC500” on page 166

System Data AC500 XC Ä Chapter 5.1.3
“System data AC500-XC” on page 169

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

Number of slaves Limited to 200

Quantity of input and output data for a single
slave

Max. 5760 bytes (respectively for input and
output)

Total quantity of input and output data Max. 5760 bytes (only valid for asynchro-
nous operation, for synchronous operation the
reachable values depends on the additional
load of SoE, CoE and EoE, typical reachable
values are 1024 bytes).

Supported protocols RTC - Real-time cyclic protocol, class 1
RTA - Real-time acyclic protocol

Acyclic services ● CoE upload
● CoE download (1500 bytes max.)
● Emergency

Min. bus cycle 1 ms

Max. size of the bus configuration file 2 MB

Weight Ca. 170 g

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 347

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 902 R0101 CM579-ETHCAT, EtherCAT

communication module
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.2.7 Ethernet
5.2.2.7.1 CM5640-2ETH - Communication module Ethernet
Features

● TCP/IP with 2 independent channels
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US348

4

3

1

2

1 5 LEDs for state display
2 2 rotary switches for station identification
3 Label
4 2 communication interfaces Ethernet RJ45

Sign for XC version

Purpose
The communication module provides additional communication ports for the CPU. The Ethernet
communication module is a port extender that provides two additional, separate, non-program-
mable Ethernet interfaces for the CPU processor module used.
Each communication module and port used results in a slightly higher CPU load on the CPU
compared to using the same protocol via the onboard port, since the communication module
and the transmission of the communication packets must be additionally processed by the CPU.
The complete TCP/IP protocol and the application layers are supported.

– Each communication module port must be addressed via its IP address (not
slot no.) and must be in a different subnet than the port(s) of the CPU.

– Each used communication module and port causes a slightly higher CPU
load compared to using the same protocol onboard.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 349

It is not possible to close a RSTP ring by using the two ports of the communica-
tion module.

Applications:
● TCP/IP for PC/Automation Builder (programming)
● UDP functions using SysSocket or NetBaseServices libraries
● Modbus on TCP/IP (Modbus on TCP/IP, client and server and all standard protocols from

the PLC)
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Connections
The Ethernet communication module has 2 RJ45 interfaces:

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

State LEDs
The Ethernet state is shown by the Ethernet communication module's LEDs.

Field bus inter-
faces

Pin assignment

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US350

Table 103: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Off Power supply not available or defective
module

RDY Yellow On Boot procedure

Off Awaiting boot

Blinking Boot failure

RUN Green On Communication module is operational

Off Communication module is not operational

STA1 Green On Communication module is activated

Off Communication module awaiting
activation

STA2 Red On Diagnosis available not fetched by PLC

Off No error

LED state
during
firmware
update

STA1 Green Blinking
(alternately)

Communication module is in firmware
update state.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 104: Meaning of the diagnosis LEDs
LED Color State Description

ETH1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

ETH1 LED "RX/TX" Yellow On ---

Blinking Device sends/receives frames

Off ---

ETH2 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

ETH2 LED "RX/TX" Yellow On ---

Blinking Device sends/receives frames

Off ---

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 351

Parameter Value
Protocols

 Ethernet

 TCP/IP Yes

UPD/IP Yes

Modbus TCP Yes

ICMP (Ping) Yes

DNS Yes

SMTP (email) Yes

DHCP Yes

State LED

 PWR 1

RUN 1

RDY 1

STA 2

Rotary switch

 ADDR 00...FFhex 2, for station identification

Ethernet interfaces

 Physical layer 10/100Base-TX

Connection name ETH <Slot>1, ETH <Slot>2

Connection type

 Independent channels Yes, 2

 Internal switch No

Auto negotiation Yes, not adjustable/changeable

MAC address Not configurable

Transmission rate 10/100 Mbit/s

Max. cable length 100 m at 100 Mbit/s

Usage

 Programming 3S Online Protocol

TCP/IP Yes

Modbus TCP Yes

Online access 3S Online Protocol

Communication module interface/bus Dual-port RAM

Net weight 0.12 kg

Power supply

 Nominal supply voltage

 Supply current at nominal supply
voltage (depending on system
architecture)

47 mA per communication module at 24 V

Internal power supply source Communication module bus

Hardware

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US352

Parameter Value
 Usable CPUs PM56xx Ä Chapter 5.2.1.2.2 “PM56xx-2ETH

for AC500 V3 products” on page 313

Usable terminal bases TB56xx Ä Chapter 5.2.3.1 “TB56xx for AC500
V3 products” on page 377

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 176 000 R0080 CM5640-2ETH,

communication module Ethernet
TCP/IP with 2 RJ45 CPU port exten-
sions

Active

1SAP 376 000 R0080 CM5640-2ETH-XC,
communication module Ethernet
TCP/IP with 2 RJ45 CPU port exten-
sions, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 353

5.2.2.8 PROFIBUS
5.2.2.8.1 CM582-DP - PROFIBUS DP slave
Features

● PROFIBUS DP slave 12 Mbit/s
● Compatible with Automation Builder version starting from V2.0.2, and with CPU firmware

version starting from V2.6
● XC version for use in extreme ambient conditions available

1 5 LEDs for state display
2 Label
3 Communication interface PROFIBUS DP D-sub, 9-pin, female

Sign for XC version

Purpose
Communication module CM582-DP enables communication over the PROFIBUS DP field bus.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US354

Connections
The PROFIBUS DP connector (9-pin, female) has the following pin assignment:

Pin Signal Description
1 NC Not connected

2 NC Not connected

3 RxD/TxD-P Receive/Transmit positive

4 CNTR-P Control signal for repeater, positive

5 DGND Reference potential for data exchange and +5 Vl

6 VP +5 V (power supply for the bus terminating resistors)

7 NC Not connected

8 RxD/TxD-N Receive/Transmit negative

9 NC Not connected

Table 105: Correlation of transmission rate, bit time and cable length:
Tranmission rate in [kbit/s] Bit time [tBit] Max. cable length in [m]
9.6 104.2 µs 1200

19.2 52.1 µs 1200

31.25 32 µs 1200

45.45 22 µs 1200

93.75 10.7 µs 1200

187.5 5.3 µs 1000

500 2 µs 400

1500 666.7 ns 200

3000 333.3 ns 100

6000 166.7 ns 100

12000 83.3 ns 100

Field bus inter-
face

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 355

State LEDs
The PROFIBUS state is shown by state LEDs.

Table 106: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available.

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

OFF ---

RUN Green ON Communication module is operational

Blinking ---

OFF Communication module is not operational

STA Green ON Communication to all slaves is established

Flashes cyclic ---

Flashes non-
cyclic

No configuration or stack error

OFF No communication

ERR Red Blinking No data exchange to the master module
or the cable is disconnected

OFF No error

STA Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.ERR Yellow

LED state
during
firmware
update

STA Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.ERR Red

STA Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

ERR Red

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
State indication By 5 LEDs

PWR, RDY, RUN, STA, ERR

Usable CPUs PM57x, PM58x, PM59x

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US356

Parameter Value
Usable terminal bases All TB5xx

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 65 mA

Internal power supply Through the communication module interface
of the terminal base

Maximum number of cyclic input data 244 bytes

Maximum number of cyclic output data 244 bytes

Maximum number of acyclic read/write 240 bytes

Configuration data max. 244 bytes

Parameter data 237 bytes application specific parameters

Processor Hilscher NETX 100

Internal RAM memory 8 MB

External Flash memory 8 MB

Weight Ca. 150 g

Parameter Value
Interface socket 9-pin, D-sub socket

Transmission standard EIA RS-485 acc. to IEC 61158/61784, poten-
tial-free

Transmission protocol PROFIBUS DP

Transmission rate 9.6 kbit/s up to 12 Mbit/s

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

Technical data
of the interface

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 357

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 172 200 R0001 CM582-DP, communication module

PROFIBUS DP slave, 12 MBit/s
Active

1SAP 372 200 R0001 CM582-DP-XC,
communication module PROFIBUS
DP slave, 12 MBit/s, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.2.8.2 CM592-DP - PROFIBUS DP master
Features

● Master 12 Mbit/s
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US358

1 5 LEDs for state display
2 Label
3 Communication interface PROFIBUS DP D-sub, 9-pin, female

Sign for XC version

Purpose
Communication module CM592-DP enables communication over the PROFIBUS DP field bus.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 359

Connections
The PROFIBUS DP connector (9-pin, female) has the following pin assignment:

Pin Signal Description
1 NC Not connected

2 NC Not connected

3 RxD/TxD-P Receive/Transmit positive

4 CNTR-P Control signal for repeater, positive

5 DGND Reference potential for data exchange and +5 Vl

6 VP +5 V (power supply for the bus terminating resistors)

7 NC Not connected

8 RxD/TxD-N Receive/Transmit negative

9 NC Not connected

Table 107: Correlation of transmission rate, bit time and cable length:
Tranmission rate in [kbit/s] Bit time [tBit] Max. cable length in [m]
9.6 104.2 µs 1200

19.2 52.1 µs 1200

31.25 32 µs 1200

45.45 22 µs 1200

93.75 10.7 µs 1200

187.5 5.3 µs 1000

500 2 µs 400

1500 666.7 ns 200

3000 333.3 ns 100

6000 166.7 ns 100

12000 83.3 ns 100

Field bus inter-
face

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US360

State LEDs
The PROFIBUS state is shown by state LEDs.

Table 108: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green ON (light) Power supply available

OFF (dark) Power supply not available or defective
hardware

RDY Yellow ON Boot procedure

Blinking Boot failure

OFF ---

RUN Green ON Communication module is operational

Blinking ---

OFF Communication module is not operational

STA Green ON Communication to all slaves is established

Flashes cyclic ---

Flashes non-
cyclic

No configuration or stack error

OFF No communication

ERR Red ON Communication to one/all slaves is dis-
connected

Flashes cyclic Communication to at least one slave is
disconnected

OFF No error

STA Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.ERR Yellow

LED state
during
firmware
update

STA Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.ERR Red

STA Green Blinking
(alternately)

Communication module writes the
firmware file to the user flash memory.
Do not power off the PLC!

ERR Red

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 361

Parameter Value
State indication By 5 LEDs

PWR, RDY, RUN, STA, ERR

Usable CPUs PM57x, PM58x, PM59x

Usable terminal bases All TB5xx

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 65 mA

Internal power supply Through the communication module interface
of the terminal base

Maximum number of supported slaves 125 (DPV0/DPV1)

Maximum number of total cyclic input data 5712 bytes
(Status information is separately managed)

Maximum number of total cyclic output data 5760 bytes

Maximum number of cyclic intput data 244 bytes/slave

Maximum number of cyclic output data 244 bytes/slave

Configuration data max. 244 bytes per slave

Parameterization data per slave 7 bytes/slave standard parameters
237 bytes/slave application specific parame-
ters

Maximum number of acyclic read/write 240 bytes per slave and telegram

Processor Hilscher NETX 100

Internal RAM memory 8 MB

External user flash memory 8 MB

Weight Ca. 150 g

Parameter Value
Interface socket 9-pin, D-sub socket

Transmission standard EIA RS-485 acc. to IEC 61158/61784, poten-
tial-free

Transmission protocol PROFIBUS DP

Transmission rate 9.6 kbit/s up to 12 Mbit/s

Technical data
of the interface

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US362

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 173 200 R0001 CM592-DP, communication module

PROFIBUS DP master, 12 MBit/s
Active

1SAP 373 200 R0001 CM592-DP-XC,
communication module PROFIBUS
DP master, 12 MBit/s, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.2.8.3 PROFIBUS connection details
9-pin D-sub connector, male

Parameter Value
Fastening torque 0.4 Nm

Attachment plug
for the bus
cable

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 363

Pin Signal Description
1 Shield Shielding, protective ground

2 not used -

3 RxD/TxD-P Reception / transmission line,
positive

4 CBTR-P Control signal for repeater,
positive (optional)

5 DGND Reference potential for data
lines and +5 V

6 VP +5 V, supply voltage for bus
terminating resistors

7 not used -

8 RxD/TxD-N Reception / transmission line,
negative

9 CNTR-N Control signal for repeater,
negative (optional)

Parameter Value
Type Twisted pair (shielded)

Characteristic impedance 135 Ω ... 165 Ω

Cable capacitance < 30 pF/m

Conductor diameter of the cores ≥ 0.64 mm

Conductor cross section of the cores ≥ 0.34 mm²

Cable resistance per core ≤ 55 Ω/km

Loop resistance (resistance of two cores) ≤ 110 Ω/km

The maximum possible cable length of a PROFIBUS subnet within a segment depends on the
tranmission rate (baud rate).

Transmission Rate Maximum Cable Length
9.6 / 19.2 / 93.75 kBaud 1200 m

187.5 kBaud 1000 m

500 kBaud 400 m

1.5 MBaud 200 m

3 MBaud to 12 MBaud 100 m

Branch lines are generally permissible for transmission rates of up to 1500 kbit/s. But in fact
they should be avoided for transmission rates higher than 500 kbit/s.

The line ends (of the bus segments) have to be terminated using bus terminating resistors
according to the drawing below. The bus terminating resistors are usually placed inside the bus
connector.

Assignment

Bus cable

Cable lengths

Bus terminating
resistors

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US364

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

GND (0 V)

RxD/TxD-P

RxD/TxD-N

Data Line B

Data Line A

6

3

8

5

One bus segment can have up to 32 subscribers. Using repeaters a system can be expanded to
up to 126 subscribers. Repeaters are also required for longer transfer lines. Please note that a
repeater's load to the bus segment is the same as the load of a normal bus subscriber. The sum
of normal bus subscribers and repeaters in one bus segment must not exceed 32.

Station 32 Station 61

Bus segment 2:
max. 30 stations
+ 2 repeaters

R Repeater RR Repeater R

Station 1 Station 31

Bus segment 1:
max. 31 stations
+ 1 repeater

R

max. 200 m max. 200 m

Fig. 42: Principle example for a PROFIBUS-DP system with repeaters (1500 kbit/s baud rate)

5.2.2.9 PROFINET
5.2.2.9.1 CM579-PNIO - PROFINET IO RT controller
Features

● PROFINET IO controller
● Integrated 2-port switch
● XC version for use in extreme ambient conditions available

Repeaters

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 365

1 5 LEDs for state display
2 2 rotary switches for address setting (not used)
3 Label
4 2 communication interfaces RJ45 (PNIO1 and PNIO2)

Sign for XC version

Intended purpose
The communication module is for PROFINET RT communication.
The PROFINET communication module includes an internal Ethernet switch. The connection to
the Ethernet can be established directly to the communication module. An additional switch is
not necessary.
The communication module is configured via the dual-port memory by means of a system
configurator. The configuration is saved on a non-volatile Flash EPROM memory.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US366

Functionality

Parameter Value
Protocol PROFINET IO RT

Usable CPUs PM57x, PM58x, PM59x
Ä Chapter 5.2.1.2.2 “PM56xx-2ETH for
AC500 V3 products” on page 313

Usable terminal bases All TB56xx (not TB5600) Ä Chapter 5.2.3.1
“TB56xx for AC500 V3 products” on page 377

Field bus connector 2 RJ45 (PNIO1 and PNIO2), with integrated
2-port switch

Internal supply Via the communication module interface of the
terminal base

Connections
The communication module provides 2 RJ45 interfaces.

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

Field bus inter-
faces

Pin assignment

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 367

State LEDs
The PROFINET state is shown by the state LEDs.

Table 109: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Red On Diagnosis alarm reported. At least one
device is having a diagnosis alarm. In
incorporation with STA2 PNIO: License
fault.

Blinking System error

Off No system error

STA2 Red On No connection; in incorporation with STA1
PNIO: license fault

Blinking Configuration fault: some configured I/O
modules are not connected

Off No bus error, communication is running

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 110: Meaning of the diagnosis LEDs
LED Color State Description

PNIO1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

PNIO1 LED "RX/TX" Yellow On ---

Blinking PROFINET device sends/receives
frames

Off ---

PNIO2 LED "Link" Green On Ethernet connection established

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US368

LED Color State Description
Off No Ethernet connection

PNIO2 LED "RX/TX" Yellow On ---

Blinking PROFINET device sends/receives
frames

Off ---

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Protocol PROFINET IO RT

Bus connection 2 RJ45 (PNIO1 and PNIO2), with integrated 2-
port switch

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m

Indicators 5 LEDs

Usable terminal bases All TB56xx (not TB5600) Ä Chapter 5.2.3.1
“TB56xx for AC500 V3 products” on page 377

Supported alarm types Process alarm, diagnostic alarm, return of Sub-
Module, plug alarm, pull alarm

Alarm processing Requires handling in application program

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

Weight Ca. 170 g

Maximum number of remote I/O stations
connected

128

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 369

Parameter Value
Supported protocols RTC - real-time cyclic protocol, class 1

RTA - real-time acyclic protocol
DCP - discovery and configuration protocol *)
CL-RPC - connectionless remote procedure call
Since revision FW 2.4.8.0 additionally
LLDP - link layer discovery protocol
SNMP - simply network management protocol
(SNMP v1)

Acyclic services PNIO read / write (max. 1392 bytes per telegram,
max. 4096 bytes per service request)

Total quantity of input and output data

 CM579-PNIO < FW 2.4.8.0 1024 bytes per I/O module
3072 bytes in total

 CM579-PNIO = FW 2.4.8.0 1024 bytes per I/O module
4096 bytes in total

 CM579-PNIO > FW 2.4.8.0 1440 bytes per I/O module
PM5630, PM5650: 4096 bytes in total
PM567x: 5120 bytes in total

Min. bus cycle 1 ms

Conformance class CC A

*) CM579-PNIO does not allow setting "Station name" by using PROFINET service "DCP SET
NameOfStation".

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US370

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 170 901 R0101 CM579-PNIO, PROFINET

communication module
Active

1SAP 370 901 R0101 CM579-PNIO-XC, PROFINET
communication module, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.2.9.2 CM589-PNIO(-4) - PROFINET IO RT with 4 devices
Features

● PROFINET IO device
● Integrated 2-port switch
● XC version for use in extreme ambient conditions available

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 371

1 5 LEDs for state display
2 2 rotary switches for setting the IO device identifier
3 Label
4 2 communication interfaces RJ45 (PNIO1 and PNIO2)

Sign for XC version

The communication module is for PROFINET RT communication.
The PROFINET communication module includes an internal Ethernet switch. The connection to
the Ethernet can be established directly to the communication module. An additional switch is
not necessary.
The communication module is configured via the dual-port memory by means of a system
configurator. The configuration is saved on a non-volatile Flash EPROM memory.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

CM589-PNIO(-4)
CM589-PNIO supports one application relation to communicate to one single
PROFINET IO controller.

CM589-PNIO-4 supports 4 application relations to communicate to up to 4
PROFINET IO controllers in parallel using PROFINET Shared Device tech-
nology.

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US372

Functionality

Parameter Value
Protocol PROFINET IO RT

Usable CPUs PM57x, PM58x, PM59x
Ä Chapter 5.2.1.2.2 “PM56xx-2ETH for
AC500 V3 products” on page 313

Usable terminal bases All TB56xx (not TB5600) Ä Chapter 5.2.3.1
“TB56xx for AC500 V3 products” on page 377

Field bus connector 2 RJ45 (PNIO1 and PNIO2), with integrated
2-port switch

Internal supply Via the communication module interface of the
terminal base

Connections
The PROFINET communication module provides 2 RJ45 interfaces:

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

Addressing

The module reads the position of the rotary switches only during power-up, i.e.
changes of the switch position during operation will have no effect until the next
module initialization.

Field bus inter-
faces

Pin assignment

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 373

State LEDs
The PROFINET state is shown by the state LEDs.

Table 111: Meaning of the diagnosis LEDs
LED Color State Description

PWR Green On Power supply available

Blinking ---

Off Power supply not available or defective
hardware

RDY Yellow On Boot procedure

Blinking Boot failure

Off ---

RUN Green On Communication module is operational

Blinking ---

Off Communication module is not operational

STA1 Red On System error; watchdog timeout

Blinking

Off No system error

STA2 Red On No connection; no configuration

Blinking No data exchange

Off No bus error, communication is running

STA1 Yellow Blinking
(synchronously)

No production data available,
no bus communication possible.STA2 Yellow

LED state
during
firmware
update

STA1 Green Blinking
(synchronously)

Firmware file transfers during
communication module firmware update.STA2 Red

STA1 Green Blinking
(alternately)

Communication module writes the
firmware file to the internal flash.
Do not power off the PLC!

STA2 Red

The RJ45 Ethernet connector contains two LEDs showing the current Ethernet port connection
state.

Table 112: Meaning of the diagnosis LEDs
LED Color State Description

PNIO1 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

PNIO1 LED "RX/TX" Yellow On PROFINET device sends/receives
frames

Blinking PROFINET device sends/receives
frames

Off ---

PNIO2 LED "Link" Green On Ethernet connection established

Off No Ethernet connection

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US374

LED Color State Description
PNIO2 LED "RX/TX" Yellow On PROFINET device sends/receives

frames

Blinking PROFINET device sends/receives
frames

Off ---

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Protocol PROFINET IO RT

Bus connection 2 RJ45 (PNIO1 and PNIO2), with integrated
2-port switch

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Bus length (segment length max.) 100 m

Indicators 5 LEDs

Usable terminal bases All TB56xx (not TB5600) Ä Chapter 5.2.3.1
“TB56xx for AC500 V3 products” on page 377

Supported alarm types Process alarm, diagnostic alarm, return of
SubModule, plug alarm, pull alarm

Current consumption from 24 V DC power
supply at the terminal base of the CPU

Typ. 85 mA

Internal supply Via the communication module interface of the
terminal base

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Weight Ca. 170 g

Hardware descriptions

Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/05 3ADR010583, 1, en_US 375

Parameter Value
Supported protocols RTC - real-time cyclic protocol, class 1

RTA - real-time acyclic protocol
DCP - discovery and configuration protocol *)
CL-RPC - connectionless remote procedure
call
LLDP - link layer discovery protocol
SNMP - simply network management protocol
MRP - MRP Client

Acyclic services PNIO read / write
CM589-PNIO < FW 1.4.0: max. 1024 bytes
CM589-PNIO ≥ FW 1.4.0: max. 8096 bytes
CM589-PNIO-4: max. 8096 bytes

Total quantity of input and output data CM589-PNIO < FW 1.4.0 (respectively for
input and output): max. 1024 byte
CM589-PNIO ≥ FW 1.4.0 (respectively for
input and output): max. 1440 byte
CM589-PNIO-4 (respectively for input and
output): max. 1440 byte

Min. bus cycle 1 ms

Conformance class CC B

*) Setting NameOfStation via service "DCP SET NameOfStation" is enabled only if rotary
switches are adjusted to position "00".

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions
Device specifications > Communication modules for AC500(-XC) processor modules

2024/01/053ADR010583, 1, en_US376

Ordering data

Part no. Description Product life cycle phase *)
1SAP 172 900 R0011 CM589-PNIO, PROFINET

communication module
Active

1SAP 372 900 R0011 CM589-PNIO-XC, PROFINET
communication module, XC version

Active

1SAP 172 900 R0111 CM589-PNIO-4, PROFINET
communication module

Active

1SAP 372 900 R0111 CM589-PNIO-4-XC, PROFINET
communication module, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.3 Terminal bases for AC500(-XC) processor modules and communication modules
5.2.3.1 TB56xx for AC500 V3 products
5.2.3.1.1 Features

● TB5600-2ETH: 1 processor module, with network interface 2 Ethernet RJ45, 1 CAN and 1
COM1

● TB5610-2ETH: 1 processor module, 1 communication module, with network interface 2
Ethernet RJ45, 1 CAN and 1 COM1

● TB5620-2ETH: 1 processor module, 2 communication modules, with network interface 2
Ethernet RJ45, 1 CAN and 1 COM1

● TB5640-2ETH: 1 processor module, 4 communication modules, with network interface 2
Ethernet RJ45, 1 CAN and 1 COM1

● TB5660-2ETH: 1 processor module, 6 communication modules, with network interface 2
Ethernet RJ45, 1 CAN and 1 COM1

● XC version for use in extreme ambient conditions available

Terminal bases TB56xx-2ETH can only be used with processor modules
PM56xx-2ETH.

Table 113: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

The following figure shows the TB5620-2ETH as example.

Hardware descriptions

Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/05 3ADR010583, 1, en_US 377

1 I/O bus (10-pin, female) to connect the I/O terminal units
2 One available slot for the processor module
3 Slots for communication modules
4 Interface for CAN (5-pin terminal block, removable)
5 Power supply (5-pin terminal block, removable)
6 Serial interface COM1 (9-pin terminal block, removable)
7 RJ45 female connector for Ethernet connection
8 Holes for screw mounting

XC = eXtreme Conditions

Extreme conditions
Terminal bases for use in extreme ambient conditions have no sign for
XC version.

The figure 3 in the Part no. 1SAP3... (label) identifies the XC version.

5.2.3.1.2 Short description
Terminal bases TB56xx are used as sockets for processor modules PM56xx and
communication modules.
Up to 10 I/O terminal units for I/O expansion modules can be added to these terminal bases.
The terminal bases have slots for one processor module and for communication modules as
well as terminals and interfaces for power supply, expansion and networking.

XC version

Hardware descriptions
Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/053ADR010583, 1, en_US378

Table 114: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

NOTICE!
Risk of malfunctions!
Unused slots for communication modules are not protected against accidental
physical contact.
– Unused slots for communication modules must be covered with dummy

communication modules to achieve IP20 rating Ä Chapter 5.2.8.2.4 “TA524
- Dummy communication module” on page 1323.

– I/O bus connectors must not be touched during operation.

5.2.3.1.3 Connections
I/O bus

The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules can
be added.
Ä Chapter 4.2.3 “I/O bus - Communication within the PLC” on page 97

Ä Chapter 5.2.4.2 “I/O bus - Data transfer” on page 387

Power supply
The supply voltage of 24 V DC is connected to a removable 5-pin terminal block. L+/M exist
twice. It is therefore possible to feed e.g. external sensors (up to 8 A max. with 1.5 mm2

conductor) via these terminals, when the ambient temperature never exceeds +60 °C.

Pin Assignment Label Function Description

Terminal block
removed

Terminal block
inserted

L+ +24 V DC Positive pin of the
power supply voltage

L+ +24 V DC Positive pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

M 0 V Negative pin of the
power supply voltage

FE Functional earth

Pin assignment

Hardware descriptions

Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/05 3ADR010583, 1, en_US 379

NOTICE!
Risk of damaging the PLC due to improper voltage levels!

– Never exceed the maximum tolerance values for process and supply vol-
tages.

– Never fall below the minimum tolerance values for process and supply
voltages.
Observe the system data Ä Chapter 5.1.2 “System data AC500”
on page 166 and the technical data of the module used.

NOTICE!
Risk of malfunction!
To ensure reliability and proper functionality of processor modules below index
C0, the supply voltage must ramp-up from 0 V to 24 V within max. 2.5 s.

NOTICE!
Risk of damaging the terminal base and power supply!
Short circuits might damage the terminal base and power supply.
Make sure that the four clamps L+ and M (two of each) are not wrongly
connected (e. g. +/- of power supply is connected to both L+/L+ or both M/M).

NOTICE!
Risk of damaging the terminal base!
Terminal base can be damaged by connecting the power supply terminal block
(L+/M) to COM1.
Make sure that the COM1 terminal block is always connected to the terminal
base even if you do not use COM1 to prevent this.

NOTICE!
Risk of damaging the terminal base!
Excessive current might damage the clamp and terminal base.
Make sure that the current flowing through the removable clamps never
exceeds 8 A (with 1.5 mm2 conductor).

NOTICE!
For applications using XC versions!
To ensure reliability and proper function, make sure the ambient temperature
never exceeds +60 °C when the current flowing through the removable clamps
is 8 A (with 1.5 mm2 conductor).

Serial interface COM1
The serial interface COM1 is connected to a removable 9-pin terminal block.
From firmware version V3.1 it is configurable for RS-232 or RS-485 (V3.0 RS-232 only).

Faulty wiring on
power supply
terminals

Hardware descriptions
Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/053ADR010583, 1, en_US380

 Pin Signal Interface Description

Terminal
block
removed

Terminal
block
inserted

1 Terminator P RS-485 Terminator P

2 RxD/TxD-P RS-485 Receive/Transmit,
positive

3 RxD/TxD-N RS-485 Receive/Transmit,
negative

4 Terminator N RS-485 Terminator N

5 RTS RS-232 Request to send
(output)

6 TxD RS-232 Transmit data
(output)

7 SGND Signal Ground Signal Ground

8 RxD RS-232 Receive data
(input)

9 CTS RS-232 Clear to send
(input)

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

Ethernet interface
This interface is the connection to a processor module with onboard Ethernet e.g.
PM56xx-2ETH.

TB56xx-2ETH for processor modules PM56xx-2ETH provide 2 independent
Ethernet interfaces.

The two Ethernet interfaces can be configured as independent interfaces or with
switch functionality.

In case of two independent interfaces they must be configured to different
subnets.

For structured Ethernet cabling only use cables according to TIA/EIA-568-A,
ISO/IEC 11801 or EN 50173.

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NU Not used

5 NU Not used

Pin assignment
(RS-485 /
RS-232)

Pin assignment

Hardware descriptions

Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/05 3ADR010583, 1, en_US 381

Interface Pin Signal Description
6 RxD- Receive data -

7 NU Not used

8 NU Not used

Shield Cable shield Functional earth

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC devices
Ä Chapter 5.2.8.3.6 “TA535 - Protective caps for XC devices” on page 1332.

Ä Supported protocols and used Ethernet ports

Ä Communication via Modbus TCP/IP

Ä Supported protocols and used Ethernet ports

CAN interface
This interface is the connection to a processor module with onboard CAN e.g. PM56xx-2ETH.

Interface socket COMBICON, 5-pin, female, removable plug with spring terminals

Transmission standard ISO 11898, potential-free

Transmission protocol CANopen (CAN), 1 Mbaud max.

Transfer rate (transmis-
sion rate)

50 kbit/s, 100 kbit/s, 125 kbit/s, 250 kbit/s, 500 kbit/s, 800 kbit/s
and 1 Mbit/s,

Table 115: Pin assignment of the CANopen connector
Interface PIN Signal Description

Terminal block
removed

Terminal block
inserted

1 CAN_GND CAN reference potential

2 CAN_L Bus line, receive/transmit line,
LOW

3 CAN_SHLD Shield of the bus line

4 CAN_H Bus line, receive/transmit line,
HIGH

5 NC Not connected

NOTICE!
Unused connector!
Make sure that the terminal block is always connected to the terminal base or
communication module, even if you do not use the interface.

Pin assignment

Hardware descriptions
Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/053ADR010583, 1, en_US382

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

Only bus cables with characteristics as recommended in ISO 11898 are to be used. The
requirements for the bus cables depend on the length of the bus segment.

Both ends of the CAN bus have to be terminated with a 120 Ω (≥ 1/4 W, ≤ 5 %) bus terminating
resistor, to minimize signal reflection. The bus terminating resistor should be connected directly
at the bus connector between the CAN signals (CAN_H and CAN_L).

5.2.3.1.4 Technical data

The system data of AC500 and S500 are applicable to the standard version. Ä Chapter 5.1.2
“System data AC500” on page 166

The system data of AC500-XC are applicable to the XC version. Ä Chapter 5.1.3 “System data
AC500-XC” on page 169

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Connection of the supply voltage 24 V
DC at the terminal base of the processor
module

Removable 5-pin terminal block spring type

Max. current consumption from 24 V DC TB5600: 0.25 A 1)

TB5610: 0.35 A 1)

TB5620: 0.4 A 1)

TB5640: 0.6 A 1)

TB5660: 0.8 A 1)

Melting integral of a fuse at 24 V DC Min. 1 A²s 2)

Peak inrush current from 24 V DC 55 A 2)

Number of slots for processor modules 1 (on all terminal bases)

Processor module interfaces at TB56xx I/O bus, ETH1, ETH2, CAN, COM1

Bus length

Types of bus
cables

Bus terminating
resistors

Hardware descriptions

Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/05 3ADR010583, 1, en_US 383

Parameter Value
Net weight (terminal base without pro-
cessor module)

TB5600: 155 g
TB5610: 180 g
TB5620: 210 g
TB5640: 260 g
TB5660: 310 g

Mounting position Horizontal or vertical

1) Including processor modules, communication modules and communication interface modules
2) The inrush current and the melting integral depends on the internal power supply of the
processor module and the number and type of communication modules and I/O modules
connected to the I/O bus.
Table 116: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Hardware descriptions
Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/053ADR010583, 1, en_US384

5.2.3.1.5 Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

5.2.3.1.6 Ordering data

Part no. Description Product life cycle phase *)
1SAP 110 300 R0278 TB5600-2ETH, terminal base AC500,

slots: 1 processor module, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 310 300 R0278 TB5600-2ETH-XC, terminal base
AC500, slots: 1 processor module,
2 Ethernet RJ45, 1 CAN connector,
XC version

Active

1SAP 111 300 R0278 TB5610-2ETH, terminal base AC500,
slots: 1 processor module,
1 communication module, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 311 300 R0278 TB5610-2ETH-XC, terminal base
AC500, slots: 1 processor module,
1 communication module, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

Hardware descriptions

Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/05 3ADR010583, 1, en_US 385

Part no. Description Product life cycle phase *)
1SAP 112 300 R0278 TB5620-2ETH, terminal base AC500,

slots: 1 processor module,
2 communication modules, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 312 300 R0278 TB5620-2ETH-XC, terminal base
AC500, slots: 1 processor module,
2 communication modules, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

1SAP 114 300 R0278 TB5640-2ETH, terminal base AC500,
slots: 1 processor module,
4 communication modules, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 314 300 R0278 TB5640-2ETH-XC, terminal base
AC500, slots: 1 processor module,
4 communication modules, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

1SAP 116 300 R0278 TB5660-2ETH, terminal base AC500,
slots: 1 processor module,
6 communication modules, 2 Ethernet
RJ45, 1 CAN connector

Active

1SAP 316 300 R0278 TB5660-2ETH-XC, terminal base
AC500, slots: 1 processor module,
6 communication modules, 2 Ethernet
RJ45, 1 CAN connector, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Table 117: Combination of TB56xx-2ETH(-XC) and PM56xx(-XC)
Processor module PM5630 PM5650 PM5670 PM5675
TB5600-2ETH 0 slot 0 slot 0 slot 0 slot

TB5610-2ETH 1 slot 1 slot 1 slot 1 slot

TB5620-2ETH 2 slots 2 slots 2 slots 2 slots

TB5640-2ETH - 4 slots 4 slots 4 slots

TB5660-2ETH - - 6 slots 1) 6 slots 1)

Remarks:
The slots can be used for connecting communication modules or AC500-S modules. Note that
only one AC500-S module can be connected at one terminal base.
1) PM567x must have an index ≥ C0.

Table 118: Accessories
Part no. Description
1SAP 180 800
R0001

TA526, wall mounting accessory

Hardware descriptions
Device specifications > Terminal bases for AC500(-XC) processor modules and communication modules

2024/01/053ADR010583, 1, en_US386

5.2.4 I/O modules
5.2.4.1 Safety instructions

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Ä Further information about hot swap.

5.2.4.2 I/O bus - Data transfer
The I/O bus is the I/O data bus for the I/O modules. Through this bus, I/O and diagnosis data
are transferred between the processor module and the I/O modules. Up to 10 I/O modules can
be added.
Ä Chapter 4.2.3 “I/O bus - Communication within the PLC” on page 97

Ä Chapter 5.2.4.2 “I/O bus - Data transfer” on page 387

The synchronized I/O bus is the I/O data bus for the I/O modules connected with the processor
modules or communication interface modules. Through this bus, I/O and diagnosis data are
transferred.
With its fast data transmission, the I/O bus obtains very low reaction times.
Up to 10 I/O terminal units (for one I/O module each) can be added to one terminal base or
to one AC500-eCo processor module. The I/O terminal units and the AC500-eCo I/O modules,
have a bus input at the left side and a bus output at the right side. Thus the length of the I/O
bus increases with the number of attached I/O modulesÄ Table 119 “Maximum number of I/O
devices which can be connected to the I/O bus” on page 389.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 387

1 I/O bus connection
The connection of the I/O bus is performed automatically by telescoping the modules on the DIN
rail. The I/O bus provides the following signals:
● Supply voltage of 3.3 V DC for feeding the electronic interface components
● 3 data lines for the synchronized serial data exchange
● several control signals

NOTICE!
Except when using hot swap terminal units, the I/O bus is not designed for
pulling and plugging modules during operation. If a module is pulled or plugged
on a terminal unit that is not hot swap capable while the bus is running, the
following consequences are possible
– reset of the station or of the processor module
– system lockup
– damage of the module

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US388

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Profibus (master and slave) and CM589-PNIO are available since version 2.5.0 of the
Automation Builder.

Table 119: Maximum number of I/O devices which can be connected to the I/O bus
Device Version Automation

Builder
Version firmware Max. number of I/O

devices
CANopen bus
modules CI581-CN
and CI582-CN

As of V2.1.0 All 0

PROFINET bus
modules CI501-PNIO
and CI502-PNIO

As of V2.1.0 all 10

EtherCAT com-
munication inter-
face module CI511-
ETHCAT and
CI512-ETHCAT

As of V2.1.0 As of V2.0.x 10

Modbus communica-
tion interface module
CI521 and CI522

Independent from
Automation Builder
version

all 10

Profibus (master and slave) and CM589-PNIO are available since version 2.5.0 of the
Automation Builder.

Table 120: General data of the I/O bus
Parameter Value
Supply voltage, signal level 3.3 V DC ± 10 %

Max. supply current On request

Type of the data interface Synchronized serial data exchange

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 389

Parameter Value
Bus data transmission speed 1.8 Mb/s

Minimum bus cycle time 500 µs
This value is valid for all module combinations
(from 1 to 10 I/O modules)

Galvanic isolation I/O bus is galvanic connected to CPU and
communication interface logic ciruits. Galvanic
isolation of I/O bus is I/O module specific. See
each module specification for details.

Protection against electrostatic discharge
(ESD)

TB5xx, TB56xx: with protection diodes,
no ESD discharge allowed on the port.

Table 121: Wiring (bus connection)
Parameter Value
Bus connection Left-side and right-side connection from

module to module via a 10-pole HE plug (male
at the left side, female at the right side)

Mechanical connection Established by the terminal units

Max. bus length 1 m

5.2.4.3 Digital I/O modules
5.2.4.3.1 S500-eCo
DC562 - Digital input/output module
Features

● 16 configurable digital inputs/outputs in 1 group, 24 V DC
● Module-wise galvanically isolated

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US390

1 I/O bus
2 16 yellow LEDs to display the states of the inputs/outputs C0 ... C15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input and output signals (9-pin)
6 Terminal block for input and output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs/outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs/outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 391

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V
DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US392

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

--- 1

C0 2

C1 3

C2 4

C3 5

C4 6

C5 7

C6 8

C7 9

--- 10

C8 11

C9 12

C10 13

C11 14

C12 15

C13 16

C14 17

C15 18

UP 19

ZP 20

Fig. 43: Internal construction of the digital inputs and outputs

Table 122: Assignment of the terminals:
Terminal Signal Description
1 --- Reserved

2 C0 Input/output signal C0

3 C1 Input/output signal C1

4 C2 Input/output signal C2

5 C3 Input/output signal C3

6 C4 Input/output signal C4

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 393

Terminal Signal Description
7 C5 Input/output signal C5

8 C6 Input/output signal C6

9 C7 Input/output signal C7

10 --- Reserved

11 C8 Input/output signal C8

12 C9 Input/output signal C9

13 C10 Input/output signal C10

14 C11 Input/output signal C11

15 C12 Input/output signal C12

16 C13 Input/output signal C13

17 C14 Input/output signal C14

18 C15 Input/output signal C15

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DC562.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US394

Process supply voltage must be connected to UP/ZP of the module. The inputs
and UP/ZP must use the same power supply.

1

2

--

C0

4 C2

24 VDC
-
+

3 C1

5 C3

6 C4

7 C5

8 C6

9 C7

10

11

C8

13 C10

12 C9

14 C11

15 C12

16 C13

17 C14

18 C15

19 UP

20 ZP

Fig. 44: Connection of the digital input/output module DC562

In this connection example, the inputs/outputs C0 ... C7 are connected as inputs and the inputs/
outputs C8 ... C15 are connected as outputs.
The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.1.7 “Diagnosis”
on page 397.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 5.2.4.3.1.1.8 “State
LEDs” on page 397.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 395

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6155 1) WORD 6155
0x180B

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses less than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x06
0x18, 0x0C, 0x00, 0x02, 0x00, 0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US396

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Inter-
face

Device Module Channel Error-
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DC562

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself, 1...10 = expansion module 1 ... 10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10
= expansion 1 ... 10
Channel error: I/O bus or PNIO = module type (4 = DC); COM1/COM2:
1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs/outputs
C0 ... C15

Digital input
or
digital output

Yellow Input/output
is OFF

Input/output is ON
(the LEDs are only
operating if the
module's circuitry is
supplied via the
I/O bus)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 397

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption via UP terminal 90 mA + 0.5 A per output (max.)

 Max. ripple 5 %

 Inrush current 0.000001 A2s

 Protection against reversed voltage Yes

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input/output group and the
rest of the module

 Isolated groups 1 group for 16 channels

Surge voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 4.8 W

Input data length 2 bytes

Output data length 2 bytes

Weight Ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 16 configurable inputs (24 V DC)

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminal 20 (negative pole of the process
voltage, name ZP)

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1). The
module is powered through the I/O bus.

No effects of
multiple over-
loads

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US398

Parameter Value
Input type according to EN 61131-2 Type 1 sink

Input signal range +24 V DC

 Signal 0 -3 V ... +5 V

 Undefined signal +5 V ... +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 -3 V ... +5 V

Ripple with signal 1 +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 16 configurable transistor outputs

Distribution of the channels into groups 1 (16 channels per group)

Connections of the channels C0 to C15 Terminals 1 to 16

Reference potential for the channels C0 to
C15

Terminal 20 (negative pole of the process
voltage, signal name ZP)

Common power supply voltage Terminal 19 (positive pole of the process
voltage, signal name UP)

Indication of the input signals 1 yellow LED per channel; the LED is ON when
the input signal is high (signal 1). The module
is powered through the I/O bus.

Way of operation Non-latching type

Output voltage at signal 1 UP -0.3 V at max. current

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 8 A

 Rated current (all channels together,
max.)

8 A

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 399

Parameter Value
 Lamp load (max.) 5 W

 Max. leakage current with signal 0 < 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching frequency

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC
signals

Yes

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US400

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 231 900 R0000 DC562, digital input/output module,

16 configurable inputs/outputs,
transistor output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 401

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI561 - Digital input module
Features

● 8 digital inputs 24 V DC / 24 V AC (I0 ... I7) in 1 group
● Module-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 to I7
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US402

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using a removable 9-pin terminal block. These terminal blocks
differ in their connection system (spring terminals or screw terminals, cable mounting from the
front or from the side). The terminal blocks are not included in the module's scope of delivery
and must be ordered separately.

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Fig. 45: Internal construction of the digital inputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 403

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Table 123: Assignment of the terminals:
Terminal Signal Description
1 C0 ... 7 Input common for signals I0 to

I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI561.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US404

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

Table 124: Connection of the digital input module DI561

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Connection of DI561 - sink inputs Connection of DI561 - source inputs

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.2.7 “Diagnosis”
on page 406.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 5.2.4.3.1.2.8 “State
LEDs” on page 407.

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 405

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6105 1) WORD 6105
0x17D9

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDA, 0x17, 0x00;

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US406

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1 ... 10 = decentralized communication interface module 1 ... 10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0...I7 Digital input Yellow Input is OFF Input is ON

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input group and the rest of

the module

 Isolated groups 1 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 1.6 W

Weight Ca. 110 g

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 407

Parameter Value
Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8 inputs (24 V DC / 24 V AC)

Distribution of the channels into
groups

1 (8 channels per group)

Connections of the channels I0 to I7 Terminals 2 ... 9

Reference potential for the channels
I0 to I7

Terminal 1 (plus or negative pole of the process supply
voltage, signal name C0 .. 7)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is powered
through the I/O bus.

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

 Signal 0 -5 V ... +3 V -3 V ... +5 V 0 V AC ... 5 V AC

 Undefined signal -15 V ... -5 V +5 V ... +15 V 5 V AC ... 14 V AC

 Signal 1 -30 V ... -15 V +15 V ... +30 V 14 V AC ... 27 V
AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA Typ. 1 mA r.m.s.

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US408

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2101 DI561, digital input module, 8 DI,

24 V DC / 24 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI562 - Digital input module
Features

● 16 digital inputs 24 V DC / 24 V AC (I0 ... I15) in 2 groups
● Group-wise galvanically isolated

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 409

1 I/O bus
2 16 yellow LEDs to display the signal states of the inputs I0 ... I15
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
The other electronic circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US410

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw-type terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

I8 11

I9 12

I10 13

I11 14

I12 15

I13 16

I14 17

I15 18

C8..15 10

−−− 19

−−− 20

Fig. 46: Internal construction of the digital inputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 411

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Table 125: Assignments of the terminal
Terminal Signal Description
1 C0 ... C7 Input common for signals I0 to I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 C8 ... C15 Input common for signals I8 ... I15

11 I8 Input signal I8

12 I9 Input signal I9

13 I10 Input signal I10

14 I11 Input signal I11

15 I12 Input signal I12

16 I13 Input signal I13

17 I14 Input signal I14

18 I15 Input signal I15

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI562.
An external power supply connection is not needed.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US412

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.3.7 “Diagnosis”
on page 415.
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

Table 126: Connection of the digital input module DI562

1

2

C0..7

I0

4 I2

3 I1

5 I3

6 I4

7 I5

8 I6

9 I7

10

11

C8..15

I8

13 I10

12 I9

14 I11

15 I12

16 I13

17 I14

18 I15

19 ---

20 ---

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6 I4

7 I5

8 I6

9 I7

10

11

C8..15

I8

13 I10

12 I9

14 I11

15 I12

16 I13

17 I14

18 I15

19 ---

20 ---

24 V
DC/AC

+ / ~

– / ~

Connection of DI562 - sink inputs Connection of DI562 - source inputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 413

The meaning of the LEDs is described in section State LEDs Ä Chapter 5.2.4.3.1.3.8 “State
LEDs” on page 415.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6110 1) WORD 6110
0x17DE

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

Remarks:

1) With CS31 and addresses less than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ...

n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDF, 0x17, 0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US414

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DI562

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1 ... 10 = decentralized communication interface module 1 ... 10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0 ...
I15

Digital input Yellow Input is OFF Input is ON

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 415

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input groups and the rest of

the module

 Isolated groups 2 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 3.2 W

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16 inputs (24 V DC / 24 V AC)

Distribution of the channels into groups 2 (8 channels per group)

Connections of the channels I0 to I7 Terminals 2 ... 9

Connections of the channels I8 to I15 Terminals 11 ... 18

Reference potential for the channels I0
to I7

Terminal 1 (positive or negative pole of the process
supply voltage, signal name I0 ... I7)

Reference potential for the channels I8
to I15

Terminal 10 (positive or negative pole of the process
supply voltage, signal name I8 ... I15)

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1). The module is pow-
ered through the I/O bus.

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

 Signal 0 -5 V ... +3 V -3 V ... +5 V 0 V AC ... 5 V AC

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US416

Parameter Value
 Undefined signal -15 V ... -5 V +5 V ... +15 V 5 V AC ... 14 V

AC

 Signal 1 -30 V ... -15 V +15 V ... +30 V 14 V AC ... 27 V
AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at 2-
wire proximity switches)

1 mA Typ. 1 mA r.m.s.

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 2 bytes

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.

Dimensions

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 417

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2102 DI562, digital input module, 16 DI,

24 V DC / 24 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI571 - Digital input module
Features

● 8 digital inputs 100 ... 240 V AC (I0 ... I7) in 8 groups
● Module-wise galvanically isolated

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US418

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 ... I7
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 419

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US420

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

N0 2

I0 1

N1 4

I1 3

N2 6

I2 5

N3 8

I3 7

N4 11

I4 10

N5 13

I5 12

N6 15

I6 14

N7 17

I7 16

−−− 9

−−− 18

−−− 19

−−− 20

Fig. 47: Internal construction of the digital inputs

Table 127: Assignment of the terminals:
Terminal Signal Description
1 I0 Input signal I0

2 N0 Neutral conductor for the input signal I0

3 I1 Input signal I1

4 N1 Neutral conductor for the input signal I1

5 I2 Input signal I2

6 N2 Neutral conductor for the input signal I2

7 I3 Input signal I3

8 N3 Neutral conductor for the input signal I3

9 --- Reserved

10 I4 Input signal I4

11 N4 Neutral conductor for the input signal I4

12 I5 Input signal I5

13 N5 Neutral conductor for the input signal I5

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 421

Terminal Signal Description
14 I6 Input signal I6

15 N6 Neutral conductor for the input signal I6

16 I7 Input signal I7

17 N7 Neutral conductor for the input signal I7

18 --- Reserved

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI571.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US422

1

2

I0

N0

4 N1

3 I1

5 I2

6 N2

7 I3

8 N3

9 −−−

10

11

I4

N4

13 N5

12 I5

14 I6

15 N6

16 I7

17 N7

18 −−−

19 −−−

20 −−−

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L0
N0

L7
N7

Fig. 48: Connection of the digital input module DI571

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.4.8 “Diagnosis”
on page 425.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 5.2.4.3.1.4.9 “State
LEDs” on page 425.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 423

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 0

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of the modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6115 1) WORD 6115
0x17E3

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No (0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) with CS31 and addresses less than 70, the value is increased by 1
2) the module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xDF, 0x17, 0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US424

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = decentralized communication interface module
1 ... 10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0 ... I7 Digital input Yellow Input is OFF Input is ON

(the input voltage is
only displayed if the
supply voltage of the
module is ON)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 425

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the channels and the rest of the

module

 Isolated groups 8 (1 channel per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module On request

Weight Ca. 135 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8 AC inputs (100-240 V AC)

Distribution of the channels into groups 8 (1 channel per group)

Input voltage range 0 V AC ... 264 V AC (47 Hz ... 63 Hz)

Input current per channel (typically at +25 °C) <5 mA (at 40 V AC)
>6 mA (at 159 V AC, 50 Hz)
>7 mA (at 159 V AC, 60 Hz)

Connections of the channels I0 to I7 Terminals 1, 3, 5, 7, 10, 12, 14, 16

Reference potential for the channels I0 to I7 Terminals 2, 4, 6, 8, 11, 13, 15, 17

Indication of the input signals 1 yellow LED per channel; the LED is ON
when the input signal is high (signal 1)

Input type according to EN 61131-2 Type 1

Input signal range

 Signal 0 (max.) 20 V AC

 Undefined signal 20 V AC < U < 79 V AC

 Signal 1 (min.) 79 V AC

Input delay

 Signal 0 -> 1 Typ. 15 ms

 Signal 1 -> 0 Typ. 30 ms

Input data length 1 byte

Max. permissible leakage current (at 2-wire
proximity switches)

1 mA

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US426

Parameter Value
Max. cable length

 Shielded 500 m

 Unshielded 300 m

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2103 DI571, digital input module, 8 DI,

100 V AC ... 240 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 427

Part no. Description Product life cycle phase *)
1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DI572 - Digital input module
Features

● 16 digital inputs 100 ... 240 V AC (I0 ... I15) in 2 groups
● Module-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the inputs I0 ... I15

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US428

3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 429

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

I1 2

I0 1

I3 4

I2 3

I5 6

I4 5

I7 8

I6 7

I9 11

I8 10

LI11 13

I10 12

I13 15

I12 14

I15 17

I14 16

N0..7 9

N8..15 18

--- 19

--- 20

Fig. 49: Block diagram for the internal construction of the digital inputs.

Table 128: Assignment of the terminals
Terminal Signal Description
1 I0 Input signal I0

2 I1 Input signal I1

3 I2 Input signal I2

4 I3 Input signal I3

5 I4 Input signal I4

6 I5 Input signal I5

7 I6 Input signal I6

8 I7 Input signal I7

9 N0 ... 7 Neutral conductor for the input signals I0 ... I7

10 I8 Input signal I8

11 I9 Input signal I9

12 I10 Input signal I10

13 I11 Input signal I11

14 I12 Input signal I12

15 I13 Input signal I13

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US430

Terminal Signal Description
16 I14 Input signal I14

17 I15 Input signal I15

18 N8 ... 15 Neutral conductor for the input signals I8 ... I15

19 --- Reserved

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DI572.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 431

1

2

I0

I1

4 I3

3 I2

5 I4

6 I5

7 I6

8 I7

9 N0..7

10

11

I8

I9

13 I11

12 I10

14 I12

15 I13

16 I14

17 I15

18 N8..15

19 ---

20 ---

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

N

N

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.5.7 “Diagnosis”
on page 434.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US432

Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Param-
eter
name

Value Internal
value

Data type
of
internal
value

Default
value

Min. Max. EDS Slot
Index

Module ID Internal 6160 1) WORD 6160
0x1810

0 65535 xx01 2)

Ignore
module

No 0 BYTE No
0x00

- - -

Yes 1

Parameter
length

Internal 3 BYTE 3 0 255 xx02 2)

Input
delay

20 ms 0 BYTE 20 ms
0x00

0 1 -

100 ms 1

1) With CS31 and addresses less than 70, the value is increased by 1.
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n).
GSD file:

Ext_Module_Prm_Data_Len = 7

Ext_User_Prm_Data_Const(0) = 0x18, 0x11, 0x00, 0x03, 0x00, 0x00, 0x00;

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 433

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

Param-
eter

Remark

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = decentralized communication interface module 1 ...
10, ADR = hardware address (e.g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 = expan-
sion 1 ... 10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0 ...
I15

Digital input Yellow Input is OFF Input is ON
(the input voltage is
only displayed if the
supply voltage of the
module is ON)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US434

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the input groups and the rest of

the module

Isolated groups 2 (8 channels per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module 6 W

Weight Ca. 222 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16 AC inputs (100-240 V AC)

Distribution of the channels into groups 2 (8 channels per group)

Input voltage range 0 V AC ... 264 V AC (47 Hz ... 63 Hz)

Input current per channel (typically at +25 °C) < 3 mA (at 40 V AC)
> 6 mA (at 164 V AC)
> 8 mA (at 240 V AC)

Connections of the channels I0..I7 Terminals 1... 8

Connections of the channels I8...I15 Terminals 10 ... 17

Reference potential for the channels I0...I7 Terminal 9

Reference potential for the channels I8...I15 Terminal 18

Indication of the input signals 1 yellow LED per channel. The LED is on
when the input signal is high (signal 1).

Input type according to EN 61131-2 Type 1

Input signal range

 Signal 0 (max.) 40 V AC

 Undefined signal 40 V AC < U < 79 V AC

 Signal 1 (min.) 79 V AC

Input delay

 Signal 0 -> 1 Typ. 24 ms

 Signal 1 -> 0 Typ. 24 ms

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 435

Parameter Value
Input data length 2 bytes

Max. permissible leakage current (at 2-wire prox-
imity switches)

1 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 230 500 R0000 DI572, digital input module, 16 DI,

100 V AC ... 240 V AC
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US436

Part no. Description Product life cycle phase *)
1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,

screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO561 - Digital output module
Features

● 8 digital outputs 24 V DC (O0 ... O7) in 1 group
● Module-wise galvanically isolated

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 437

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 ... O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US438

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

O0 11

O1 12

O2 13

O3 14

O4 15

O5 16

O6 17

O7 18

−−− 10

UP 19

ZP 20

Fig. 50: Internal construction of the digital outputs

Table 129: Assignment of the terminals:
Terminals Signal Description
10 --- Reserved

11 O0 Output signal O0

12 O1 Output signal O1

13 O2 Output signal O2

14 O3 Output signal O3

15 O4 Output signal O4

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 439

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Terminals Signal Description
16 O5 Output signal O5

17 O6 Output signal O6

18 O7 Output signal O7

19 UP Process supply voltage
UP +24 V DC

20 ZP Process supply voltage
ZP 0 V

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US440

10

11

−−−

O0

13 O2

12 O1

14 O3

15 O4

16 O5

17 O6

18 O7

19 UP

20 ZP

24 VDC
−
+

Fig. 51: Connection of the digital output module DO561

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.6.7 “Diagnosis”
on page 442.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 5.2.4.3.1.6.8 “State
LEDs” on page 443.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 441

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6120 1) WORD 6120
0x17E8

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xE9, 0x17, 0x00;

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DO561
3 14 1 ... 10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1 ... 10

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US442

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error DO561
3 14 1 ... 10 31 31 43 Internal error in the

module
Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = decentralized communication interface module 1 ...
10, ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1 ... 10
= expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs O0 ...
O7

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 443

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal
20 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by an 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

Isolated groups 1 (8 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Power dissipation within the module (max.) 1.6 W

Weight Ca. 115 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (8 channels per group)

Connection of the channels O0 to O7 Terminals 11 to 18

Common power supply voltage Terminal 19 (positive pole of the process
voltage, signal name UP)

Reference potential for the channels O0 to O7 Terminal 20 (negative pole of the process
voltage, signal name ZP)

No effects of
multiple over-
loads

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US444

Parameter Value
Indication of the output signals 1 yellow LED per channel; the LED is on

when the output signal is high (signal 1) and
the module is powered via the I/O bus

Way of operation Non-latching type

Min. output voltage at signal 1 20 V DC at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 4 A

 Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 445

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2201 DO561, digital output module, 8 DO,

transistor output
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US446

DO562 - Digital output module
Features

● 16 digital outputs 24 V DC (O0 ... O15) in 1 group
● Module-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the outputs O0 ... O15
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 447

All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US448

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

O8 11

O9 12

O10 13

O11 14

O12 15

O13 16

O14 17

O15 18

--- 10

UP 19

ZP 20

--- 1

O0 2

O1 3

O2 4

O3 5

O4 6

O5 7

O6 8

O7 9

Fig. 52: Internal construction of the digital outputs

Table 130: Assignment of the terminals:
Terminal Signal Description
1 --- Reserved

2 O0 Output signal O0

3 O1 Output signal O1

4 O2 Output signal O2

5 O3 Output signal O3

6 O4 Output signal O4

7 O5 Output signal O5

8 O6 Output signal O6

9 O7 Output signal O7

10 --- Reserved

11 O8 Output signal O8

12 O9 Output signal O9

13 O10 Output signal O10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 449

Terminal Signal Description
14 O11 Output signal O11

15 O12 Output signal O12

16 O13 Output signal O13

17 O14 Output signal O14

18 O15 Output signal O15

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO562.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US450

10

11

O8

13 O10

12 O9

14 O11

15 O12

16 O13

17 O14

18 O15

19 UP

20 ZP

24 VDC
-
+

1

2

O0

4 O2

3 O1

5 O3

6 O4

7 O5

8 O6

9 O7

Fig. 53: Connection of the digital output module DO562

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 451

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.7.7 “Diagnosis”
on page 453.
The meaning of the LEDs is described in the section Status LEDs Ä Chapter 5.2.4.3.1.7.8
“State LEDs” on page 453.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6145 1) WORD 6145
0x1801

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x06
0x18, 0x02, 0x00, 0x02, 0x00, 0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US452

Diagnosis

E1...E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Inter- face Device Module Channel Error-
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1 ... 10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = decentralized communication interface module 1 ... 10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = Module itself; COM1/COM2: 1 ... 10 = expan-
sion 1 ... 10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs O0 ...
O15

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 453

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 20 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A2s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be protected
by an 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of
the CPU/communication interface module

Ca. 10 mA

Galvanic isolation Yes, between the output group and the rest of
the module

Isolated groups 1 (16 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 1.4 W

Weight Ca. 125 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 (16 channels per group)

Connection of the channels O0 ... O7 Terminals 1 ... 9

Connection of the channels O8 ... O15 Terminals 11 ... 18

Common power supply voltage Terminal 19 (positive pole of the process voltage,
signal name UP)

Reference potential for the channels O0 ...
O15

Terminal 20 (negative pole of the process
voltage, signal name ZP)

No effects of
multiple over-
loads

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US454

Parameter Value
Indication of the output signals 1 yellow LED per channel; the LED is on when

the output signal is high (signal 1) and the
module is powered via the I/O bus

Way of operation Non-latching type

Min. output voltage at signal 1 UP -0.3 V at max. current consumption

Output delay (max. at rated load)

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 2 bytes

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 8 A

 Lamp load (max.) 5 W

Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to driven
load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V
DC

No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 455

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 230 900 R0000 DO562, digital output module, 16 DO,

transistor output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US456

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO571 - Digital output module
Features

● 8 digital normally open relay outputs 24 V DC / 24 V AC or 100 V AC ... 240 V AC, 2 A max.
(NO0 ... NO7) in 2 groups

● Group-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 ... O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 457

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminal L+ (process voltage 24 V DC). The negative
pole is provided by the I/O bus.

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US458

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

NO212

NO111

R0..314

NO313

NO617

NO516

R4..719

NO718

NO010

NO415

L+20

Fig. 54: Internal construction of the digital outputs

Table 131: Assignment of the terminals:
Terminal Signal Description
10 NO0 Normally-open contact of the output NO0

11 NO1 Normally-open contact of the output NO1

12 NO2 Normally-open contact of the output NO2

13 NO3 Normally-open contact of the output NO3

14 R0..3 Output common for signals NO0 to NO3

15 NO4 Normally-open contact of the output NO4

16 NO5 Normally-open contact of the output NO5

17 NO6 Normally-open contact of the output NO6

18 NO7 Normally-open contact of the output NO7

19 R4..7 Output common for signals NO4 to NO7

20 L+ Process voltage L+ +24 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DO571.
The external power supply connection is carried out via the L+ (+24 V DC) terminal. The
negative pole of the external power supply is realized via the I/O bus. Therefore, the CPU/
communication interface module and the DO571 must have a common power supply.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 459

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0 ... R3 and
R4 ... R7) does not exceed 8 A.
Never connect total currents > 8 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

Connection of the module:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US460

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

24 VDC
-
+

24 VDC
-
+

Fig. 55: Connection of 24 V DC actuators

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

120 VAC/
240 VAC

 24 VAC/
~

~

L

N

L

N
120 VAC/
240 VAC

 24 VAC/

Fig. 56: Connection of 24 V AC or 100 V AC ... 240 V AC actuators

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 461

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

Fig. 57: Power supply - the negative connection is realized via the I/O bus

1 CPU or communication interface module
2 I/O bus
3 DO571

The L+ connection of the DO571 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.8.7 “Diagnosis”
on page 464.
The meaning of the LEDs is described in the section Status LEDs Ä Chapter 5.2.4.3.1.8.8
“State LEDs” on page 465.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US462

Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6125 1) WORD 6125
0x17ED

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x04
0xEF, 0x17, 0x00,\
0x01;

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 463

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ...
063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ...
7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ...
5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1 ... 10 31 31 19 Checksum error in

the I/O module
Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = decentralized communication interface module
1 ... 10, ADR = Hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1 ...
10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US464

State LEDs

LED State Color LED = OFF LED = ON
Outputs O0 ...
O7

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 20 for L+ (+24 V DC). The negative
pole is provided by the I/O bus.

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Inrush current (at power-up) 0.0035 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by a 3 A fast-acting fuse

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the output group and the rest
of the module

Isolated groups 2 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.0 W

Weight Ca. 150 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

No effects of
multiple over-
loads

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 465

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 normally-open relay outputs

Distribution of the channels into groups 2 (4 channels per group)

Connection of the channels O0 ... O3 Terminals 10 ... 13

Connection of the channels O4 ... O7 Terminals 15 ... 18

Reference potential for the channels O0 ... O3 Terminal 14 (signal name R0 ... R3)

Reference potential for the channels O4 ... O7 Terminal 19 (signal name R4 ... R7)

Relay coil power supply Terminal 20 (positive pole of the process
supply voltage, signal name L+). The nega-
tive pole is provided by the I/O bus.

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Way of operation Non-latching type

Relay output voltage

 Rated value 24 V DC / 24 V AC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 1 byte

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 8 A

 Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US466

Parameter Value
Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2202 DO571, digital output module, 8 DO,

relay output
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 467

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO572 - Digital output module
Features

● 8 digital triac outputs (O0 ... O7) in 8 groups
● 120/240 V AC
● Module-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the outputs O0 ... O7
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US468

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Not necessary

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 469

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

N02

O01

N14

O13

N27

O26

N39

O38

N412

O411

N514

O513

N617

O616

N719

O718

−−−5

−−−10

−−−15

−−−20

Fig. 58: Internal construction of the digital outputs

Table 132: Assignment of the terminals:
Terminal Signal Description
1 O0 Output signal O0

2 N0 Neutral conductor for the
output signal O0

3 O1 Output signal O1

4 N1 Neutral conductor for the
output signal O1

5 --- Reserved

6 O2 Output signal O2

7 N2 Neutral conductor for the
output signal O2

8 O3 Output signal O3

9 N3 Neutral conductor for the
output signal O3

10 --- Reserved

11 O4 Output signal O4

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US470

Terminal Signal Description
12 N4 Neutral conductor for the

output signal O4

13 O5 Output signal O5

14 N5 Neutral conductor for the
output signal O5

15 --- Reserved

16 O6 Output signal O6

17 N6 Neutral conductor for the
output signal O6

18 O7 Output signal O7

19 N7 Neutral conductor for the
output signal O7

20 --- Reserved

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DO572.
An external power supply connection is not needed.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 471

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

1

2

O0

N0

4 N1

3 O1

5 −−−

6 O2

7 N2

8 O3

9 N3

10

11

−−−

O4

13 O5

12 N4

14 N5

15 −−−

16 O6

17 N6

18 O7

19 N7

20 −−−

L

N

L

N

L

N

L

N

L

N

L

N

L

N

L

N

Fig. 59: Connection of the module

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US472

NOTICE!
Risk of damaging the PLC modules!
The PLC modules will be irreparably damaged if a voltage > 240 V is con-
nected.
Make sure that all inputs are fed from the same phase. The module must not be
connected to a 400 V voltage.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.9.7 “Diagnosis”
on page 474.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 5.2.4.3.1.9.8 “State
LEDs” on page 475.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6130 1) WORD 6130
0x17F2

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length 2)

Internal 1 - CPU BYTE 0 0 255 xx02 3)

1) With CS31 and addresses smaller than 70, the value is increased by 1
2) The module has no additional user-configurable parameters
3) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ...

n)

GSD file:

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 473

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x03
0xF3, 0x17, 0x00;

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1 ... 10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = decentralized communication interface module 1 ... 10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 = expan-
sion 1 ... 10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US474

State LEDs

LED State Color LED = OFF LED = ON
Outputs O0 ...
O7

Digital output Yellow Output is
OFF

Output is ON

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Galvanic isolation Yes, between the channels and the rest of the

module

Isolated groups 8 (1 channel per group)

Current consumption from 24 V DC power
supply at the L+/UP and M/ZP terminals of the
CPU/communication interface module

Ca. 10 mA

Max. power dissipation within the module On Request

Weight ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 triac outputs

Distribution of the channels into groups 8 groups (1 channel per group)

Connection of the channels O0 to O7 Terminals 1, 3, 5, 7, 10, 12, 14, 16

Reference potential for the channels O0 to O7 Terminals 2, 4, 6, 8, 11, 13, 15, 17

Output voltage for signal 1 On Request

Max. leakage current with signal 0 1.1 mA root mean square at 132 V AC and
1.8 mA root mean square at 264 V AC

Output voltage

 Rated value 120 V AC or 240 V AC

No effects of
multiple over-
loads

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 475

Parameter Value
Indication of the output signals 1 yellow LED per channel; the LED is on

when the output signal is high (signal 1) and
the module is powered via the I/O bus

Way of operation Non-latching type

Output delay On Request

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.3 A

 Rated current per group (max.) 0.3 A

Surge current (max.) On request

Lamp load (max.) On request

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 10 Hz

 With inductive loads Not applicable

 With lamp loads Max. 10 Hz

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse 2 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

 Output current limitation No

Resistance to feedback against 230 V AC No

Connection of 2 outputs in parallel Not applicable

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US476

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2203 DO572, digital output module, 8 DO,

triac output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 477

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO573 - Digital output module
Features

● 16 digital normally open relay outputs 24 V DC or 100 V AC ... 240 V AC (NO0 ... NO15) in
2 groups, 2 A max.

● Group-wise galvanically isolated

1 I/O bus
2 16 yellow LEDs to display the signal states of the outputs O0 ... O15
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US478

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals L+ (process voltage 24 V DC) and M (0 V
DC); the M terminal is connected to the M terminal of the CPU
via the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 479

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

NO1012

NO911

NO1214

NO1113

NO1517

NO1416

L+19

R8..1518

NO810

NO1315

M20

NO01

NO23

NO12

NO56

NO45

NO78

NO67

NO34

R0..79

Fig. 60: Internal construction of the digital outputs

Table 133: Assignment of the terminals:
Terminal Signal Description
1 NO0 Normally-open contact of the output NO0

2 NO1 Normally-open contact of the output NO1

3 NO2 Normally-open contact of the output NO2

4 NO3 Normally-open contact of the output NO3

5 NO4 Normally-open contact of the output NO4

6 NO5 Normally-open contact of the output NO5

7 NO6 Normally-open contact of the output NO6

8 NO7 Normally-open contact of the output NO7

9 R0..7 Output common for signals NO0 to NO7

10 NO8 Normally-open contact of the output NO8

11 NO9 Normally-open contact of the output NO9

12 NO10 Normally-open contact of the output NO10

13 NO11 Normally-open contact of the output NO11

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US480

Terminal Signal Description
14 NO12 Normally-open contact of the output NO12

15 NO13 Normally-open contact of the output NO13

16 NO14 Normally-open contact of the output NO14

17 NO15 Normally-open contact of the output NO15

18 R8 ... 15 Output common for signals NO8 to NO15

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DO573.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V
DC) terminals. The M terminal is electrically interconnected to the M/ZP terminal of the CPU/
communication interface module.

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 481

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0..7 and
R8..15) does not exceed 10 A.
Never connect total currents > 10 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The following figure shows the connection of the module:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US482

10

11

NO8

NO9

13 NO11

12 NO10

14 NO12

15 NO13

16 NO14

17 NO15

18 R8..15

19 L+

20 M

24 V DC
-
+

1

2

NO0

NO1

4 NO3

3 NO2

5 NO4

6 NO5

7 NO6

8 NO7

9 R0..7

24 V DC
-
+

24 V DC -
+

Fig. 61: Connection of 24 V DC actuators

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 483

10

11

NO8

NO9

13 NO11

12 NO10

14 NO12

15 NO13

16 NO14

17 NO15

18 R8..15

19 L+

20 M

1

2

NO0

NO1

4 NO3

3 NO2

5 NO4

6 NO5

7 NO6

8 NO7

9 R0..7

24 V DC -
+

120 V AC/
240 V AC ~

L

N

120 V AC/
240 V AC ~

L

N

Fig. 62: Connection of 100-240 V AC actuators

The module provides several diagnosis functions.
The meaning of the LEDs is described in the section State LEDs Ä Chapter 5.2.4.3.1.9.8 “State
LEDs” on page 475.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US484

CPU /

Bus Module

24 V DC

− +

L+ / UPM / ZP

I/O−Bus DO573

L+M

Fig. 63: Power supply - the negative connection is realized via the I/O bus

The L+ connection of the DO573 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply .

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 485

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6150 1) WORD 6150
0x1806

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07 0x18, 0x07, 0x00, 0x03, 0x01, 0x00,
0x00;

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ...
063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ...
7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ...
5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1 ... 10 31 31 19 Checksum error in

the I/O module
Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US486

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ...
063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ...
7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ...
5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1 ... 10 31 31 11 Process voltage too

low
Check
process
voltage11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31-Bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself, 1 ... 10 = decentralized communication interface module 1 ... 10,
ADR = Hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 = expan-
sion 1 ... 10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Outputs
NO0 ... NO15

Digital output Yellow Output is
OFF

Output is ON
(the output voltage is
only displayed if the
supply voltage of the
module is ON)

Technical data
Technical data of the module

The system data of AC500-eCo apply.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 487

Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminals 19 for L+ (+24 V DC) and 20
for M (0 V DC)

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for L+ Recommended; the outputs must be
protected by an 5 A fast-acting fuse

Current consumption from 24 V DC power supply at
the L+/UP and M/ZP terminals of the CPU/communi-
cation interface module

Ca. 5 mA

Galvanic isolation Yes, between the output groups and the
rest of the module

Isolated groups 2 (8 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.0 W

Weight Ca. 160 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other
parts in the control cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 normally-open relay outputs

Distribution of the channels into groups 2 (8 channels per group)

Connection of the channels NO0 ... NO7 Terminals 1 ... 8

Connection of the channels NO8 ... NO15 Terminals 10 ... 17

Reference potential for the channels NO0 ...
NO7

Terminal 9 (signal name R0 ... 7)

Reference potential for the channels NO8 ...
NO15

Terminal 18 (signal name R8 ... 15)

Relay coil power supply Terminals 19 and 20 (signal names L+ and
M)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1) and
the module is powered via the I/O bus

No effects of
multiple over-
loads

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US488

Parameter Value
Way of operation Non-latching type

Relay output voltage

 Rated value 24 V DC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 2 bytes

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC /
120 V AC / 240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only
pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 10 A

Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC loads Must be performed externally according to
driven load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse
or circuit breaker

 Overload message No

 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 489

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 231 300 R0000 DO573, digital output module, 16 DO,

relay output
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US490

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX561 - Digital input/output module
Features

● 8 digital inputs 24 V DC (I0 ... I7) in 1 group
● 8 digital transistor outputs 24 V DC (O0 ... O7) in 1 group
● Group-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 ... I7
3 8 yellow LEDs to display the signal states of the outputs O0 ... O7
4 Terminal number
5 Allocation of signal name
6 Terminal block for input signals (9-pin)
7 Terminal block for output signals (11-pin)
8 2 holes for wall-mounting with screws
9 DIN rail

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 491

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs and outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminals ZP and UP (process voltage 24 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US492

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

O0 11

O1 12

O2 13

O3 14

O4 15

O5 16

O6 17

O7 18

−−− 10

UP 19

ZP 20

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Fig. 64: Internal construction of the digital inputs and outputs

Table 134: Assignment of the terminals:
Terminal Signal Description
1 C0 ... 7 Input common for signals I0 ...

I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 --- Reserved

11 O0 Output signal O0

12 O1 Output signal O1

13 O2 Output signal O2

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 493

Terminal Signal Description
14 O3 Output signal O3

15 O4 Output signal O4

16 O5 Output signal O5

17 O6 Output signal O6

18 O7 Output signal O7

19 UP Process voltage UP +24 V DC

20 ZP Process voltage ZP 0 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per DX561.
The external power supply connection is carried out via the UP (+24 V DC) and ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US494

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

Fig. 65: Connection of inputs to the digital input/output module - sink inputs

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Fig. 66: Connection of inputs to the digital input/output module - source inputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 495

10

11

−−−

O0

13 O2

12 O1

14 O3

15 O4

16 O5

17 O6

18 O7

19 UP

20 ZP

24 VDC
−
+

Fig. 67: Connection of the outputs to the module

NOTICE!
Risk of malfunctions in the plant!
The outputs may switch on for a period of 10 to 50 µs if the process supply
voltage UP/ZP is switched on.
This must be considered in the planning of the application.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuits and overload.
– Never short-circuit or overload the outputs.
– Never connect the outputs to other voltages.
– Use an external 3 A fast-protection fuse for the outputs.

The module provides several diagnosis functions Ä Chapter 5.2.4.3.1.11.7 “Diagnosis”
on page 498.
The meaning of the LEDs is described in the Displays section Ä Chapter 5.2.4.3.1.11.8 “State
LEDs” on page 499 chapter.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US496

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6135 1) WORD 6135
0x17F7

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =
(0) =

0x03
0xF8, 0x17, 0x00,\
0x01;

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 497

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1 ... 10 31 31 19 Checksum error in the

I/O module
Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1 ... 10 = decentralized communication interface module 1 ... 10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 = expan-
sion 1 ... 10
Channel error: I/O bus or PNIO = module type (2 = DO); COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = module itself" is output.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US498

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0 ... I7 Digital input Yellow Input is OFF Input is ON

Outputs O0 ...
O7

Digital output Yellow Output is
OFF

Output is ON

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and ter-
minal 20 for ZP (0 V DC)

 Rated value 24 V DC

 Current consumption via UP terminal 5 mA + max. 0.5 A per output

 Max. ripple 5 %

 Inrush current 0.000002 A²s

 Protection against reversed voltage Yes

 Rated protection fuse for UP Recommended; the outputs must be pro-
tected by an 3 A fast-acting fuse

Current consumption from 24 V DC power supply
at the L+/UP and M/ZP terminals of the CPU/com-
munication interface module

Ca. 10 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 2 groups (1 group for 8 input channels, 1
group for 8 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.3 W

Weight ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

No effects of
multiple over-
loads

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 499

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group for 8 channels

Connections of the channels I0 ... I7 Terminals 2 ... 9

Reference potential for the channels I0 ... I7 Terminal 1

Indication of the input signals 1 yellow LED per channel; the
LED is ON when the input signal
is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink

Input signal range -24 V DC +24 V DC

Signal 0 -5 V ... +3 V -3 V ... +5 V

Undefined signal -15 V ... + 5 V +5 V ... +15 V

Signal 1 -30 V ... -15 V +15 V ... +30 V

Ripple with signal 0 -5 V ... +3 V -3 V ... +5 V

Ripple with signal 1 -30 V ... -15 V +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V > 2.5 mA

 Input voltage +30 V < 8 mA

Max. permissible leakage current (at 2-wire proximity
switches)

1 mA

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 transistor outputs (24 V DC, 0.5 A max.)

Distribution of the channels into groups 1 group of 8 channels

Connection of the channels O0 ... O7 Terminals 11 ... 18

Reference potential for the channels O0 ... O7 Terminal 20 (negative pole of the process
voltage, name ZP)

Common power supply voltage Terminal 19 (positive pole of the process
voltage, name UP)

Indication of the output signals 1 yellow LED per channel; the LED is on
when the output signal is high (signal 1)
and the module is powered via the I/O bus

Monitoring point of output indicator Controlled together with transistor

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US500

Parameter Value
Way of operation Non-latching type

Max. output voltage at signal 1 20 V DC at max. current consumption

Output delay

 0 to 1 50 µs

 1 to 0 200 µs

Output data length 1 byte

Output current

 Rated current per channel (max.) 0.5 A at UP 24 V DC

 Rated current per group (max.) 4 A

 Rated current (all channels together,
max.)

4 A

 Lamp load (max.) 5 W

 Max. leakage current with signal 0 0.5 mA

Output type Non-protected

Protection type External fuse on each channel

Rated protection fuse (for each channel) 3 A fast

Demagnetization when inductive loads are
switched off

Must be performed externally according to
driven load specification

Switching Frequencies

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz at max. 5 W

Short-circuit-proof / Overload-proof No

 Overload message No

 Output current limitation No

 Resistance to feedback against 24 V DC No

Connection of 2 outputs in parallel Not possible

Max. cable length

 Shielded 500 m

 Unshielded 150 m

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 501

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2301 DX561, digital input/output module,

8 DI 24 V DC, 8 DO 24 V DC,
transistor output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US502

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DX571 - Digital input/output module
Features

● 8 digital inputs 24 V DC / 24 V AC (I0 ... I7) in 1 group
● 8 digital normally open relay outputs 24 V DC / 24 V AC or 100 V AC ... 240 V AC, 2 A max.

(NO0 ... NO7) in 2 groups
● Group-wise galvanically isolated

1 I/O bus
2 8 yellow LEDs to display the signal states of the inputs I0 ... I7
3 8 yellow LEDs to display the signal states of the outputs NO0 ... NO7
4 Terminal number
5 Allocation of signal name
6 Terminal block for input signals (9-pin)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 503

7 Terminal block for output signals (11-pin)
8 2 holes for wall-mounting with screws
9 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs and outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality

Parameter Value
LED displays For signal states

Internal power supply Via I/O bus

External power supply Via the terminal L+ (process voltage 24 V DC). The negative
pole is provided by the I/O bus.

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using removable 9-pin and 11-pin terminal blocks. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US504

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

NO212

NO111

R0..314

NO313

NO617

NO516

R4..719

NO718

NO010

NO415

L+20

I0 2

I1 3

I2 4

I3 5

I4 6

I5 7

I6 8

I7 9

C0..7 1

Fig. 68: Internal construction of the digital inputs and outputs

Table 135: Assignment of the terminals:
Terminal Signal Description
1 C0 ... 7 Input common for signals I0 ...

I7

2 I0 Input signal I0

3 I1 Input signal I1

4 I2 Input signal I2

5 I3 Input signal I3

6 I4 Input signal I4

7 I5 Input signal I5

8 I6 Input signal I6

9 I7 Input signal I7

10 NO0 Normally-open contact of the
output 0

11 NO1 Normally-open contact of the
output 1

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 505

Terminal Signal Description
12 NO2 Normally-open contact of the

output 2

13 NO3 Normally-open contact of the
output 3

14 R0 ... 3 Output common for signals
O0 ... O3

15 NO4 Normally-open contact of the
output 4

16 NO5 Normally-open contact of the
output 5

17 NO6 Normally-open contact of the
output 6

18 NO7 Normally-open contact of the
output 7

19 R4 ... 7 Output common for signals
O4 ... O7

20 L+ Process voltage +24 V DC

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per DX571.
The external power supply connection is carried out via the L+ (+24 V DC) terminal. The
negative pole of the external power supply is realized via the I/O bus. Therefore, the CPU/
communication interface module and the DX571 must have a common power supply.

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US506

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overload.
Make sure that the total current of each output common terminal (R0 ... 3 and
R4 ... 7) does not exceed 8 A.
Never connect total currents > 8 A per group.
If the group fuse protection is not sufficient, then individual fuse protection of the
outputs should be used.

The module provides several diagnosis functions (see Diagnosis Ä Chapter 5.2.4.3.1.12.7
“Diagnosis” on page 511).
The digital inputs can be used as source inputs or as sink inputs.

NOTICE!
Risk of malfunctions in the plant!
A ground fault, e. g. caused by a damaged cable insulation, can bridge switches
accidentally.
Use sink inputs when possible or make sure that, in case of error, there will be
no risks to persons or plant.

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

24 V
DC/AC

+ / ~

– / ~

Fig. 69: Connection of inputs to the digital input/output module DX571 - sink inputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 507

24 V
DC/AC

+ / ~

– / ~

1

2

C0..7

I0

4 I2

3 I1

5 I3

6

7 I5

8 I6

9 I7

I4

Fig. 70: Connection of inputs to the digital input/output module DX571 - source inputs

The following figures show the connection of the outputs to the module:

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

24 VDC
-
+

24 VDC
-
+

Fig. 71: Connection of 24 V DC actuators

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US508

10

11

NO0

NO1

13 NO3

12 NO2

14 R0...3

15 NO4

16 NO5

17 NO6

18 NO7

19 R4...7

20 L+

120 VAC/
240 VAC

 24 VAC/
~

~

L

N

L

N
120 VAC/
240 VAC

 24 VAC/

Fig. 72: Connection of 24 V AC or 100 ... 240 V AC actuators

The L+ connection of the DX571 and the 24 V supply of the CPU/communica-
tion interface module must be connected to the same 24 V power supply.

Fig. 73: Power supply - the minus connection is realized via the I/O bus

1 CPU or communication interface module
2 I/O bus
3 DX571

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 509

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For screw-type terminals only:

WARNING!
For screw terminals only: Danger of death by electric shock!
The IP 20 protection degree is only provided if all terminal screws are tightened.
Tighten all screws of unused load terminals of relay outputs if voltages > 24 V
are connected to the relay group.

NOTICE!
Risk of damaging the I/O module!
The outputs are not protected against short circuit and overload.
– Never short-circuit or overload the outputs.
– Never connect inductive loads without an external suppression against

voltage peaks due to inductive kickback.
– Never connect voltages > 240 V. All outputs must be supplied from the

same phase.
– Use an external 5 A fast protection fuse for the outputs.

The meaning of the LEDs is described in the Displays section Ä Chapter 5.2.4.3.1.12.8 “State
LEDs” on page 512.

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US510

Name Value Internal
Value

Internal
Value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6140 1) WORD 6140
0x17FC

0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
(0x00)

Parameter
length

Internal 1 BYTE 0 0 255 xx02 2)

Check
supply

Off
On

0
1

BYTE On
0x01

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1...n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =
(0) =

0x04
0xFD, 0x17, 0x00,\
0x01;

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC

Browser
Byte 6

Bit 6 ... 7
- Byte 3 Byte 4 Byte 5 Byte 6

Bit 0 ... 5
PNIO

diagnosis
block

Class Inter face Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error
3 14 1 ... 10 31 31 19 Checksum error in the

I/O module
Replace

I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 511

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = Module itself,
1 ... 10 = decentralized communication interface module 1 ... 10,
ADR = hardware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = Module itself; COM1/COM2: 1 ... 10 = expan-
sion 1 ... 10
Channel error: I/O bus or PNIO = Module type (2 = DO); COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON
Inputs I0 ... I7 Digital input Yellow Input is OFF Input is ON

Outputs
NO0 ... NO7

Digital output Yellow Output is
OFF

Output is ON

In the undefined signal range, the state LED for the inputs can be ON although
the input state detected by the module is OFF.

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 20 for L+ (+24 V DC). The neg-
ative pole is provided by the I/O bus.

 Rated value 24 V DC

 Current consumption via L+ 50 mA

 Inrush current (at power-up) 0.0035 A²s

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US512

Parameter Value
 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for L+ Recommended; the outputs must be pro-
tected by a 3 A fast-acting fuse

Current consumption from 24 V DC power supply at
the L+/UP and M/ZP terminals of the CPU/commu-
nication interface module

Ca. 5 mA

Galvanic isolation Yes, between the input group and the
output group and the rest of the module

Isolated groups 3 groups (1 group for 8 input channels, 2
groups for 8 output channels)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.3 W

Weight Ca. 150 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into
groups

1 group for 8 channels

Connections of the channels I0 ... I7 Terminals 2 ... 9

Reference potential for the channels
I0 ... I7

Terminal 1

Indication of the input signals 1 yellow LED per channel; the LED is ON when the
input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type according to EN 61131-2 Type 1 source Type 1 sink Type 1 AC 1)

Input signal range -24 V DC +24 V DC 24 V AC 50/60 Hz

Signal 0 -5 V ... +3 V -3 V ... +5 V 0 V AC ... 5 V AC

Undefined signal -15 V ... + 5 V +5 V ... +15 V 5 V AC ... 14 V AC

Signal 1 -30 V ... -15 V +15 V ... +30 V 14 V AC ... 27 V
AC

Input current per channel

 Input voltage 24 V Typ. 5 mA Typ. 5 mA r.m.s.

 Input voltage 5 V Typ. 1 mA Typ. 1 mA r.m.s.

 Input voltage 14 V Typ. 2.7 mA r.m.s.

No effects of
multiple over-
loads

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 513

Parameter Value
 Input voltage 15 V > 2.5 mA

 Input voltage 27 V Typ. 5.5 mA r.m.s.

 Input voltage 30 V < 8 mA

Max. permissible leakage current (at
2-wire proximity switches)

1 mA Typ. 1 mA r.m.s.

Input delay (0->1 or 1->0) Typ. 8 ms

Input data length 1 byte

Max. cable length

 Shielded 500 m

 Unshielded 300 m

1) When inputs are used with 24 V AC, external surge limiting filters are required.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 normally-open relay outputs

Distribution of the channels into groups 2 (4 channels per group)

Connection of the channels O0 ... O3 Terminals 10 ... 13

Connection of the channels O4 ... O7 Terminals 15 ... 18

Reference potential for the channels
O0 ... O3

Terminal 14 (signal name R0 ... 3)

Reference potential for the channels
O4 ... O7

Terminal 19 (signal name R4 ... 7)

Relay coil power supply Terminal 20 (positive pole of the process supply
voltage, signal name L+). The negative pole is pro-
vided by the I/O bus.

Indication of the output signals 1 yellow LED per channel; the LED is on when the
output signal is high (signal 1) and the module is
powered through the I/O bus

Monitoring point of output indicator Controlled together with relay

Way of operation Non-latching type

Relay output voltage

 Rated value 24 V DC / 24 V AC or 120/240 V AC

Output delay

 Switching 0 to 1 (max.) Typ. 10 ms

 Switching 1 to 0 (max.) Typ. 10 ms

Output data length 1 byte

Output current

 Rated current per channel (max.) 2.0 A (24 V DC / 24 V AC / 48 V AC / 120 V AC /
240 V AC, only resistive loads)
2.0 A (24 V AC / 48 V AC / 120 V AC, only pilot duty)
1.5 A (240 V AC, only pilot duty)

 Rated current per group (max.) 8 A

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US514

Parameter Value
Lamp load (max.) 200 W (230 V AC), 30 W (24 V DC)

Spark suppression with inductive AC
loads

Must be performed externally according to driven
load specification

Switching Frequencies

 With resistive loads Max. 1 Hz

 With inductive loads On Request

 With lamp loads Max. 1 Hz

Output type Non-protected

Protection type External fuse 1)

Rated protection fuse 5 A fast

Short-circuit-proof / Overload-proof No, should be provided by an external fuse or circuit
breaker

 Overload message No

 Output current limitation No

Connection of 2 outputs in parallel Not possible

Lifetime of relay contacts (cycles) 100.000 at rated load

Max. cable length

 Shielded 500 m

 Unshielded 150 m

1) Per group in case of group fuse protection. For each channel in case of channel-by-channel
fuse protection. The maximum current per group must not be exceeded.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 515

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R2302 DX571, digital input/output module,

8 DI 24 V DC / 24 V AC, 8 DO, relay
output

Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US516

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.4.3.2 S500 and S500-XC
DC522 - Digital input/output module
Features

● 16 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 Sensor power supply 24 V DC / 0.5 A
4 16 yellow LEDs to display the signal states at the digital inputs/outputs (C0 ... C15)
5 1 green LED to display the state of the process supply voltage UP
6 4 red LEDs to display errors
7 Label

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 517

8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Digital configurable input/output unit.
● 2 sensor supply voltages 24 V DC, 0.5 A, with short-circuit and overload protection
● 16 digital configurable inputs/outputs 24 V DC (C0 ... C15) in 1 group (2.0 ... 2.7 and 4.0 ...

4.7), each of which can be used
– as an input,
– as a transistor output with short-circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

The device is plugged on a terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542
for I/O modules” on page 938. Position the module properly and press until it locks in place.
The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US518

Connections

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 1.8 ... 4.8: process voltage UP = +24 V DC
Terminals 1.9 ... 4.9: process voltage ZP = 0 V DC

1 I/O bus
2 4.0 ... 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Control cabinet earth
The assignment of the other terminals:

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 519

Terminals Signal Description
1.0 ... 1.3 +24 V 4 x sensor power supply sources (loadable with 0.5

A in total)

1.4 ... 1.7 0 V 0 V (reference potential)

2.0 ... 2.7 C0 ... C7 8 digital inputs/outputs

3.0 ... 3.3 +24 V 4 x sensor power supply sources (loadable with 0.5
A in total)

3.4 ... 3.7 0 V 0 V (reference potential)

4.0 ... 4.7 C8 ... C15 8 digital inputs/outputs

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US520

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC522.
Connect a 470 W / 1 W resistor in series to inputs C8/C9 if they are used as fast
counter inputs to avoid any influences.

The modules provide several diagnosis functions.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 2 4

Digital outputs (bytes) 2 4

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O Configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 521

Module: Module slot address: Y = 1 ... 10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1220
1)

Word 1220
0x04C4

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 7 Byte 7-CPU
6-FBP

0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:

10 3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Short-cir-
cuit detec-
tion of
output or
sensor
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
Bit 15 =
Output 15
Bit 0 =
Output 0

0 ...
65535

0 ...
0xffff

Word 0
0x0000

0 65535 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606
4) With FBP or CS31 without the parameter Fast Counter

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US522

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

9
0x04, 0xc5, 0x06, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
C0 ... C15

Digital input
or digital
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 523

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the L+/UP
and M/ZP terminals of the CPU/commu-
nication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.15 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.005 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Sensor power supply

 Connections Terminals 1.0 ... 1.3 = +24 V, 1.4 ... 1.7 = 0 V
Terminals 3.0 ... 3.3 = +24 V, 3.4 ... 3.7 = 0 V

 Voltage 24 V DC with short-circuit and overload protec-
tion

 Loadability Terminals 1.0 ... 1.3, in total max. 0.5 A
Terminals 3.0 ... 3.3, in total max. 0.5 A

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US524

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

If the channels are used as inputs

 Channels C0 ... C7 Terminals 2.0 ... 2.7

 Channels C8 ... C15 Terminals 4.0 ... 4.7

If the channels are used as outputs

 Channels C0 ... C7 Terminals 2.0 ... 2.7

 Channels C8 ... C15 Terminals 4.0 ... 4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON
when the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 16 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 ... 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V *)

 Undefined signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V *)

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 525

Parameter Value
 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Consequently, the input voltage must range -12 V ... +30 V when UPx = 24 V and -6 V ... +30 V
when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US526

Fig. 74: Digital input/output (circuit diagram)

1 UPx (+ 24 V)
2 Digital input/output
3 ZPx (0 V)
4 For demagnization when inductive loads are switched off

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C8 / C9

Used outputs C10

Counting frequency Max. 50 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 527

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 600 R0001 DC522, digital input/output module,

16 DC, 24 V DC / 0.5 A, 2-wires
Active

1SAP 440 600 R0001 DC522-XC, digital input/output
module, 16 DC, 24 V DC / 0.5 A,
2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US528

DC523 - Digital input/output module
Features

● 24 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 Sensor power supply 24 V DC / 0.5 A
4 24 yellow LEDs to display the signal states at the digital inputs/outputs (C0 ... C23)
5 1 green LED to display the status of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 529

Digital configurable input/output unit.
● 1 sensor supply voltage 24 V DC, 0.5 A, with short circuit and overload protection
● 24 digital configurable inputs/outputs 24 V DC (C0 ... C23) in 1 group (2.0 ... 2.7, 3.0 ... 3.7

and 4.0 ... 4.7), of which each can be used
– as an input,
– as a transistor output with short circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

The device is plugged on a terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542
for I/O modules” on page 938. Position the module properly and press until it locks in place.
The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.

Connections
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 1.8 ... 4.8: process voltage UP = +24 V DC

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US530

Terminals 1.9 ... 4.9: process voltage ZP = 0 V DC

1 I/O bus
2 4.0 ... 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Control cabinet earth
The assignment of the other terminals:

Terminals Signal Description
1.0 ... 1.3 +24 V 4 x sensor power supply sources (loadable

with 0.5 A in total)

1.4 ... 1.7 0 V 0 V (reference potential)

2.0 ... 2.7 C0 ... C7 8 digital inputs/outputs

3.0 ... 3.7 C8 ... C15 8 digital inputs/outputs

4.0 ... 4.7 C16 ... C23 8 digital inputs/outputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 531

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC523.
Connect a 470 W / 1 W resistor in series to inputs C16/C17 if they are used as
fast counter inputs to avoid any influences.

The modules provide several diagnosis functions.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US532

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 3 5

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1215
1)

Word 1215
0x04BF

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 9 Byte 9-CPU
8-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x=Y03

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 533

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Short cir-
cuit detec-
tion of
output or
sensor
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
B23 =
Output 23
Bit 0 =
Output 0

0 ...
16777215

0 ...
0x00ff-ffff

DWord 0
0x0000
-0000

0 224−1 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

11
0x04, 0xc0, 0x08, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00, 0x00,
0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US534

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
C0 ... C23

Digital input
or digital
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP) as
well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 535

Parameter Value
 From 24 V DC power supply at the

terminals UP/L+ and ZP/M of the CPU/
communication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.1 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.008 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Sensor power supply

 Connections Terminals 1.0 ... 1.3 = +24 V, 1.4 ... 1.7 = 0 V

 Voltage 24 V DC with short circuit and overload protec-
tion

 Loadability Terminals 1.0 ... 1.3, in total max. 0.5 A

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the control
cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 24 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 24 channels

If the channels are used as inputs

 Channels C0 ... C7 Terminals 2.0 ... 2.7

 Channels C8 ... C15 Terminals 3.0 ... 3.7

 Channels C16 ... C23 Terminals 4.0 ... 4.7

If the channels are used as outputs

 Channels C0 ... C7 Terminals 2.0 ... 2.7

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US536

Parameter Value
 Channels C8 ... C15 Terminals 3.0 ... 3.7

 Channels C16 ... C23 Terminals 4.0 ... 4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 24 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V *)

 Undefined signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V *)

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 537

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 24 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US538

Fig. 75: Digital input/output (circuit diagram)

1 UPx (+ 24 V)
2 Digital input/output
3 ZPx (0 V)
4 For demagnization when inductive loads are switched off

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C16 / C17

Used outputs C18

Counting frequency Max. 50 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

How to prepare a device as fast counter and how to connect it to the PLC is described in an
application example.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 539

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011148&LanguageCode=en&DocumentPartId=&Action=Launch

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 500 R0001 DC523, digital input/output module,

24 DC, 24 V DC / 0.5 A, 1-wire
Active

1SAP 440 500 R0001 DC523-XC, digital input/output
module, 24 DC, 24 V DC / 0.5 A,
1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US540

DC532 - Digital input/output module
Features

● 16 digital inputs 24 V DC, 16 configurable digital inputs/outputs
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the digital inputs (I0 ... I15)
4 16 yellow LEDs to display the signal states at the digital inputs/outputs (C16 ... C31)
5 1 green LED to display the state of the process supply voltage UP
6 4 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 541

Digital configurable input / output unit.
● 16 digital inputs 24 V DC in 2 groups (1.0 ... 1.7 and 2.0 ... 2.7)
● 16 digital configurable inputs/outputs 24 V DC (C16 ... C31) in 1 group (3.0 ... 3.7 and 4.0 ...

4.7), of which each can be used
– as an input,
– as a transistor output with short circuit and overload protection, 0.5 A rated current or
– as a re-readable output (combined input/output) with the technical data of the digital

inputs and outputs.
● Optional with fast counter

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Digital inputs 16 (24 V DC)

Digital inputs/outputs 16 (24 V DC)

Fast counter Integrated, many configurable operating
modes (only with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

The device is plugged on a terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542
for I/O modules” on page 938. Position the module properly and press until it locks in place.
The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US542

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Connections
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 1.8 ... 4.8: process voltage UP = +24 V DC
Terminals 1.9 ... 4.9: process voltage ZP = 0 V DC

1 I/O bus
2 4.0 ... 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Control cabinet earth
The assignment of the other terminals:

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 543

Terminals Signal Description
1.0 ... 1.7 I0 ... I7 8 digital inputs

2.0 ... 2.7 I8 ... I15 8 digital inputs

3.0 ... 3.7 C16 ... C23 8 digital inputs/outputs

4.0 ... 4.7 C24 ... C31 8 digital inputs/outputs

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DC532.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US544

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DC532.
Connect a 470 W / 1 W resistor in series to inputs C24/C25 if using them as fast
counter inputs to avoid any influences.

The module provides several diagnosis functions.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 4 6

Digital outputs (bytes) 2 4

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 545

Name Value Internal
value

Internal
value,
type

Default Min. Max.

Module ID Internal 1200
1)

Word 1200
0x04B0

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 7 Byte 7-CPU
6-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Output
short cir-
cuit detec-
tion

Off
On

0
1

Byte On
0x01

0 1 0x0Y05

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y06

Substitute
value at
outputs
Bit 15 =
Output 15
Bit 0 =
Output 0

0 ...
65535

0 ...
0xffff

Word 0
0x0000

0 65535 0x0Y07

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606
4) With FBP or CS31 without the parameter Fast Counter

GSD file:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US546

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

9
0x04, 0xb1, 0x06, \
0x01, 0x02, 0x01, 0x00, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0 ... I15

Digital input Yellow Input = OFF Input = ON 1) --

Inputs/ out-
puts
C16 ... C31

Digital input/
output

Yellow Input/output
= OFF

Input/output =
ON 1)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module Error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 547

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.15 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.007 A²s

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16

Distribution of the channels into groups 1 group of 16 channels

Terminals of the channels I0 ... I7 1.0 ... 1.7

Terminals of the channels I8 ... I15 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9, 2.8, 3.8 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Galvanic isolation From the rest of the module (I/O bus)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US548

Parameter Value
Indication of the input signals 1 yellow LED per channel, the LED is ON when

the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V

 Undefined signal > +5 V ... < +15 V
Parameter

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 16 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

If the channels are used as inputs

 Channels I16 ... I23 Terminals 3.0 ... 3.7

 Channels I24 ... I31 Terminals 4.0 ... 4.7

If the channels are used as outputs

 Channels Q16 ... Q23 Terminals 3.0 ... 3.7

 Channels Q24 ... Q31 Terminals 4.0 ... 4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation From the rest of the module

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 549

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module Max. 16 digital inputs

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Input current, per channel See 'Technical Data of the Digital Inputs'
Ä Chapter 5.2.4.3.2.3.9.2 “Technical data of
the digital inputs” on page 548

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input signal voltage 24 V DC

Signal 0 -3 V ... +5 V *)

undefined signal > +5 V ... < +15 V

Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V *)

Ripple with signal 1 Within +15 V ... +30 V

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module Max. 16 transistor outputs

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together) 8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US550

Parameter Value
 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

Fig. 76: Digital input/output (circuit diagram)

1 UPx (+ 24 V)
2 Digital input/output
3 ZPx (0 V)
4 For demagnization when inductive loads are switched off

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs C24 / C25

Used outputs C26

Counting frequency Max. 50 kHz

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 551

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 100 R0001 DC532, digital input/output module,

16 DI, 16 DC, 24 V DC / 0.5 A, 1-wire
Active

1SAP 440 100 R0001 DC532-XC, digital input/output
module, 16 DI, 16 DC,
24 V DC / 0.5 A, 1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US552

DI524 - Digital input module
Features

● 32 digital inputs 24 V DC in 4 groups (1.0 ... 1.7, 2.0 ... 2.7, 3.0 ... 3.7 and 4.0 ... 4.7)
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 32 yellow LEDs to display the signal states at the digital inputs (I0 ... I31)
4 1 green LED to display the state of the process supply voltage UP
5 4 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 553

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating modes (only

with AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal units TU515 or TU516 Ä Chapter 5.2.5.2 “TU515, TU516,
TU541 and TU542 for I/O modules” on page 938

Effect of incorrect input terminal con-
nection

Wrong or no signal detected, no damage up to 35 V

The device is plugged on a terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542
for I/O modules” on page 938. Position the module properly and press until it locks in place.
The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, irrespective of the inserted module:
Terminals 1.8 ... 4.8: process voltage UP = +24 V DC
Terminals 1.9 ... 4.9: process voltage ZP = 0 V DC

Table 136: Assignment of the other terminals:
Terminals Signal Description
1.0 ... 1.7 I0 ... I7 8 digital inputs

2.0 ... 2.7 I8 ... I15 8 digital inputs

3.0 ... 3.7 I16 ... I23 8 digital inputs

4.0 ... 4.7 I24 ... I31 8 digital inputs

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US554

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DI524.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 555

1 I/O bus
2 Control cabinet earth

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The module provides several diagnosis functions.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 4 6

Digital outputs (bytes) 0 2

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US556

 Without the fast counter With the fast counter (only
with AC500)

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1000
1)

Word 1000
0x03E8

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length

Internal 3-CPU
2-FBP

Byte 3
2

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 557

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

5 Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

6 Fast
counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606
4) With FBP or CS31 without the parameter Fast counter

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

5
0x03, 0xe9, 0x02, \
0x01, 0x02;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0 ... I31

Digital input Yellow Input = OFF Input = ON 1) --

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US558

LED State Color LED = OFF LED = ON LED flashes
CH-ERR1 Channel

error, error
messages in
groups (dig-
ital inputs
combined
into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 2) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module

ca. 2 mA

 From UP at normal operation 0.15 A

 Inrush current from UP (at power up) 0.008 A²s

Weight (without terminal unit) ca. 105 g

Mounting position Horizontal or vertical with derating (output
load reduced to 50 % at +40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 559

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 32

Distribution of the channels into groups 1 group of 32 channels

Terminals of the channels I0 ... I7 1.0 ... 1.7

Terminals of the channels I8 ... I15 2.0 ... 2.7

Terminals of the channels I16 ... I23 3.0 ... 3.7

Terminals of the channels I24 ... I31 4.0 ... 4.7

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name
ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals One yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0 -> 1 or 1 -> 0) Typ. 8 ms, configurable from 0.1 ... 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V

 Undefined signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US560

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs I24 / I25

Used outputs None

Counting frequency Max. 50 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 561

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 000 R0001 DI524, digital input module, 32 DI,

24 V DC, 1-wire
Active

1SAP 440 000 R0001 DI524-XC, digital input module, 32 DI,
24 V DC, 1-wire, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO524 - Digital output module
Features

● 32 digital outputs 24 V DC / 0.5 A in 4 groups (1.0 ... 4.7) with short circuit and overload
protection

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US562

1 I/O bus
2 Allocation between terminal number and signal name
3 32 yellow LEDs to display the signal states at the digital outputs (O0 ... O31)
4 1 green LED to display the state of the process supply voltage UP
5 4 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are galvanically isolated from all other circuitry of the module. There is no potential
separation between the channels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 563

Functionality

Parameter Value
LED displays For signal states, errors and supply voltage

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515, TU516,
TU541 and TU542 for I/O modules” on page 938

The device is plugged on a terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542
for I/O modules” on page 938. Position the module properly and press until it locks in place.
The terminal unit is either mounted on a DIN rail or to the wall using 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, independent of the inserted module:
Terminals 1.8 ... 4.8: process voltage UP = +24 V DC
Terminals 1.9 ... 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 ... 1.7 O0 ... O7 8 digital outputs

2.0 ... 2.7 O8 ... O15 8 digital outputs

3.0 ... 3.7 O16 ... O23 8 digital outputs

4.0 ... 4.7 O24 ... O31 8 digital outputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DO524.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US564

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

4.0 O 24

4.1 O 25

4.2 O 26

4.3 O 27

4.4 O 28

4.5 O 29

4.6 O 30

4.7 O 31

4.9

4.8

1.0 O 0

1.1 O 1

1.2 O 2

1.3 O 3

1.4 O 4

1.5 O 5

1.6 O 6

1.7 O 7

1.9

1.8

ZP 0 V

UP +24 V

2.0 O 8

2.1 O 9

2.2 O 10

2.3 O 11

2.4 O 12

2.5 O 13

2.6 O 14

2.7 O 15

2.9

2.8

3.0 O 16

3.1 O 17

3.2 O 18

3.3 O 19

3.4 O 20

3.5 O 21

3.6 O 22

3.7 O 23

3.9

3.8

Fig. 77: Internal construction of the digital outputs

The module provides several diagnosis functions.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 565

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 4

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Module ID Internal 1101
1)

WORD 1101
0x044D

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

BYTE No
0x00

 not for
FBP

Parameter
length

Internal 7 BYTE 7-CPU
7-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

BYTE On
0x01

0 1 0x0Y03

Output
short cir-
cuit detec-
tion

Off
On

0
1

BYTE On
0x01

0 1 0x0Y04

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US566

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

BYTE Off
0x00

0 2 0x0Y05

Substitute
value at
outputs
Bit 31 =
Output 31
Bit 0 =
Output 0

0 ...
42949672
95

0 ...
0xffffffff

DWORD 0
0x000000
00

0 42949672
95

0x0Y06

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

10
0x04, 0x4d, 0x07, \
0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0 ... O31

Digital output Yellow Output =
OFF

Output = ON --

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital outputs
combined
into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR *) Module error Red -- Internal error --

*) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 567

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

0.10 A + max. 0.5 A per output

 Inrush current from UP (at power up) 0.005 A2s

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) Ca. 100 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US568

Technical data of the digital outputs

Parameter Value
Number of channels per module 32 outputs (with transistors)

Distribution of the channels into groups 1 group of 32 channels

Connection of the channels

 O0 ... O7 Terminals 1.0 ... 1.7

 O8 ... O15 Terminals 2.0 ... 2.7

 O16 ... O23 Terminals 3.0 ... 3.7

 O24 ... O31 Terminals 4.0 ... 4.7

Indication of the output signals 1 yellow LED per channel, the LED is ON if the
output signal is high (signal 1)

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole
of the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0 -> 1 or 1 -> 0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (channels O0 ... O15) 4 A

 Maximum value (channels O16 ... O31) 4 A

 Maximum value (all channels together) 8 A

Max. leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit proof / overload proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital output with the varistors for demagnetiza-
tion when inductive loads are switched off.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 569

UPx (+24 V)

Digital output

ZPx (0 V)

for demagnetization when inductive
loads are switched off

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US570

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 700 R0001 DO524, digital output module, 32 DO,

24 V DC / 0.5 A, 1-wire
Active

1SAP 440 700 R0001 DO524-XC, digital output module,
32 DO, 24 V DC / 0.5 A, 1-wire,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DO526 - Digital output module
Features

● 8 digital outputs 24 V DC (O0 ... O7) in 2 groups without short circuit and without overload
protection.

● Module and group-wise galvanically isolated
● XC version for use in extreme ambient conditions available

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 571

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the outputs O0 ... O7
4 3 green LEDs to display the states of the process supply voltage UP, UP3 and UP4
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN-rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are group-wise galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the outputs.
Potential separation between the channel groups.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US572

Functionality

Parameter Value
LED displays For signal states, errors and supply voltages

Internal power supply Via I/O bus

External power supply Via the terminals ZP, ZP3, ZP4, UP, UP3 and UP4
(process voltage 24 V DC)

Required terminal unit TU542 Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938

The output module is plugged on the terminal unit TU542. Properly position the module and
press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 ... 2.8 and 1.9 ... 2.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:

Terminals 1.8 ... 2.8: Process voltage UP = +24 V DC

Terminals 1.9 ... 2.9: Process voltage ZP = 0 V

Terminal 3.8: Process voltage UP3 = +24 V DC

Terminal 3.9: Process voltage ZP3 = 0 V

Terminal 4.8: Process voltage UP4 = +24 V DC

Terminal 4.9: Process voltage ZP4 = 0 V

Terminals Signal Description
3.0, 3.1, 3.4, 3.5 O0 ... O3 4 digital outputs

4.0, 4.1, 4.4, 4.5 O4 ... O7 4 digital outputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DO526.
The external power supply connection is carried out via the UP, UP3, UP4 (+24 V DC) and the
ZP, ZP3, ZP4 (0 V DC) terminals.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 573

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Fig. 78: Internal construction of the digital outputs

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US574

1 I/O bus
2 4.0 ... 4.7: Connected with UP (switch) -> Input;

Connected with ZP (load) -> Output
3 Control cabinet earth

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The module provides several diagnosis functions.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 575

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 1

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software, versions
≥ 1.2.3.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 7

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Module ID Internal 1105
1)

WORD 1105
0x0451

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

BYTE No
0x00

 not for
FBP

Parameter
length

Internal 6 BYTE 6-CPU
6-FBP

0 6 0x0Y02

Check
supply

Off
on

0
1

BYTE On
0x01

0 1 0x0Y03

Reserve 0 ... 255 0 ... 0xff BYTE On
0x01

0 1 0x0Y04

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

BYTE Off
0x00

0 2 0x0Y05

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US576

Name Value Internal
value

Internal
value,
type

Default Min. Max. Max.

Substitute
value at
outputs
Bit 7 =
Output 7
Bit 0 =
Output 0

0...255 0 ... 0xff BYTE 0x00 0 255 0x0Y06

Reserve 0 ... 255 0 ... 0xff BYTE 0x00 0 255 0x0Y07

Reserve 0 ... 255 0 ... 0xff BYTE 0x00 0 255 0x0Y08
1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len = 10

Ext_User_Prm_Data_Const(0) = 0x04, 0x51, 0x00, 0x06, 0x01, 0x01, 0x00,
0x00, 0x00, 0x00

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0 ... O7

Digital output Yellow Output =
OFF

Output = ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

UP3 Process
supply
voltage out-
puts 0 ... 3
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

UP4 Process
supply
voltage out-
puts 4 ... 7
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 577

LED State Color LED = OFF LED = ON LED flashes
CH-ERR3 Channel

Error, error
messages in
groups (dig-
ital outputs
combined
into the
groups 3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on in the
corresponding
groupCH-ERR4 Red

CH-ERR 1) Module Error Red -- Internal error --
1) All of the LEDs CH-ERR3 to CH-ERR4 light up together
2) The state of the LEDs corresponds to the logic state of the output. In case
of missing or low process supply voltage UP3 or UP4, the signal on the output
terminal is off even though the LED is on.

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP, UP3 and UP4

 Connections Terminals 1.8 and 2.8 for +24 V (UP) as well as
1.9 and 2.9 0 V (ZP)
Terminals 3.8 for +24 V (UP3) as well as 3.9 for
0 V (ZP3)
Terminals 4.8 for +24 V (UP4) as well as 4.9 for
0 V (ZP4)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP, UP3 and
UP4

10 A fast (for each process supply voltage)

 Galvanic isolation Yes, per module and per output channel groups

Current consumption

 From 24 V DC power supply at the ter-
minals UP/L+ and ZP/M of the CPU/com-
munication interface module

Ca. 2 mA

 From UP at normal operation / with out-
puts

Ca. 20 mA + 1.5 mA per output

 From UP3 or UP4 at normal operation /
with outputs

Ca. 0.01 A + max. 2 A per output

 Inrush current from UP (at power up) 0.015 A²s

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US578

Parameter Value
 Inrush current from UP3 or UP4 (at

power up)
0.005 A²s (without output load)

Max. power dissipation within the module 6 W

Weight (without terminal unit) Ca. 135 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
 Attention:
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply and continuous overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital outputs

Parameter Value
Number of channels per module 8 outputs (with transistors, non-latching type)

Distribution of the channels into groups 2 groups of 4 channels

Connection of the channels

 O0 ... O3 Terminals 3.0, 3.1, 3.4, 3.5

 O4 ... O7 Terminals 4.0, 4.1, 4.4, 4.5

Indication of the output signals 1 yellow LED per channel, the LED is ON if the
output signal is high (signal 1)

Power supply voltage for the module Terminals 1.8 and 2.8 (positive pole of the
process supply voltage, signal name UP)

Reference potential for module power supply Terminals 1.9 and 2.9 (negative pole of the
process supply voltage, signal name ZP)

Power supply voltage for the outputs O0 to
O3

Terminal 3.8 (positive pole of the process
supply voltage, signal name UP3)

Reference potential for the outputs O0 to O3 Terminal 3.9 (negative pole of the process
supply voltage, signal name ZP3)

Power supply voltage for the outputs O4 to
O7

Terminal 4.8 (positive pole of the process
supply voltage, signal name UP4)

Reference potential for the outputs O4 to O7 Terminal 4.9 (negative pole of the process
supply voltage, signal name ZP4)

Output voltage for signal 1 UP (-0.4 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 2 A at UP3 or UP4 = 24 V

No effects of
multiple over-
loads

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 579

Parameter Value
 Maximum value (channels O0 ... O3) 8 A

 Maximum value (channels O4 ... O7) 8 A

Leakage current with signal 0 < 0.1 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With clamp diode in output high side driver

Switching frequency

 With resistive load On request

 With inductive loads Max. 2 Hz

 With lamp loads Max. 11 Hz with max. 48 W

Short-circuit proof / overload proof No (should be done externally)

Overload message No

Output current limitation No (should be done externally)

Resistance to feedback against 24 V signals Yes to UP3 or UP4. No to outputs in same
group.

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US580

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 240 800 R0001 DO526, digital output module, 8 DO,

24 V DC / 2 A, 1-wire
Active

1SAP 440 800 R0001 DO526-XC, digital output module,
8 DO, 24 V DC / 2 A, 1-wire,
XC version

Active

1SAP 213 200 R0001 TU542, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 413 200 R0001 TU542-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

DX522 - Digital input/output module
Features

● 8 digital inputs 24 V DC, module-wise galvanically isolated
● 8 relay outputs
● Fast counter
● XC version for use in extreme ambient conditions available

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 581

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the digital inputs (I0 ... I7)
4 8 yellow LEDs to display the signal states at the digital relay outputs (R0 ... R7)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Digital configurable input/output unit.
● 8 digital inputs 24 V DC in 1 group (1.0...1.7)
● 8 digital relay outputs with one change-over contact each (R0...R7). All output channels are

galvanically isolated from each other.
● Fast counter

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US582

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Fast counter Integrated, many configurable operating modes (only with

AC500)

LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Required terminal units TU531 or TU532 Ä Chapter 5.2.5.3 “TU531 and TU532 for
I/O modules” on page 945

The device is plugged on a terminal unit Ä Chapter 5.2.5.3 “TU531 and TU532 for I/O modules”
on page 945. Position the module properly and press until it locks in place. The terminal unit is
either mounted on a DIN rail or to the wall using 2 screws plus the additional accessory for wall
mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory” on page 1324.

Connections

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal unit
and have always the same assignment, irrespective of the inserted module:
● Terminals 1.8 ... 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 ... 4.9: process supply voltage ZP = 0 V DC

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 583

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Table 137: Assignment of the other terminals:
Terminals Signal Description
1.0 ... 1.7 I0 ... I7 Input signals of the 8 digital

inputs

1.8 ... 4.8 UP Process supply voltage +24 V
DC

1.9 ... 4.9 ZP Reference potential for the 8
digital inputs and the process
supply voltage

2.0 R0 Common contact of the first
relay output

3.0 NO 0 Normally-open contact of the
first relay output

4.0 NC 0 Normally-closed contact of the
first relay output

2.1 R1 Common contact of the
second relay output

3.1 NO 1 Normally-open contact of the
second relay output

4.1 NC 1 Normally-closed contact of the
second relay output

: : :

2.7 R7 Common contact of the eighth
relay output

3.7 NO 7 Normally-open contact of the
eighth relay output

4.7 NC 7 Normally-closed contact of the
eighth relay output

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DX522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US584

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 585

Fig. 79: Connection of the digital input/output module DX522

1 I/O bus
2 Control cabinet earth

NOTICE!
– If the relay outputs have to switch inductive DC loads, free-wheeling diodes

must be circuited in parallel to these loads.
– If the relay outputs have to switch inductive AC loads, spark suppressors

are required.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US586

NOTICE!
Risk of damaging the PLC module!
The following has to be considered when connecting input and output voltages
to the module:
– All 230 V AC feeds must be single-phase from the same supply system.
– Connection of 2 or more relay contacts in series is possible; however, vol-

tages above 230 V AC and 3-phase loads are not allowed.
– The 8 change-over contacts of the relays are galvanically isolated from

channel to channel. This allows to connect loads of 24 V DC and 120/230 V
AC to relay outputs of the same module. In such cases it is necessary that
both supply voltages are grounded to prevent unsafe floating grounds.

NOTICE!
Risk of damaging the PLC module!
There is no internal short-circuit or overload protection for the relay outputs.
Protect the relay contacts by back-up fuses of 6 A max. (characteristic gG/gL).
Depending on the application, fuses can be used for single channels or module-
wise.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 1 3

Digital outputs (bytes) 1 3

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 587

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1210
1)

Word 1210
0x04BA

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length

Internal 5 Byte 5-CPU
4-FBP

0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

Byte 8 ms
0x02

0 3 0x0Y04

Fast
Counter
4)

0
:
10
3)

0
:
10

Byte Mode 0
0x00

 Not for
FBP

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

Substitute
value at
outputs)
Bit 7 =
Output 7
Bit 0 =
Output 0

0 ...
255

0 ...
0xff

Byte 0
0x00

0 255 0x0Y06

Remarks:

1) With CS31 and addresses smaller than 70 and FBP, the value is increased
by 1

2) Not with FBP
3) For a description of the counter operating modes, please refer to the 'Fast

Counter' section Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606
4) With FBP and without the parameter Fast Counter

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US588

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const
(0) =

7
0x04, 0xbb, 0x04, \
0x01, 0x02, 0x00, 0x00;

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0 ... I7

Digital input Yellow Input = OFF Input = ON 1) --

Outputs
R0 ... R7
(relays)

Digital output Yellow Relay output
= OFF

Relay output =
ON

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
Error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1 and
2)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR2 Red

CH-ERR 2) Module Error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) All of the LEDs CH-ERR1 to CH-ERR2 light up together

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 589

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP)
as well as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the
terminals UP/L+ and ZP/M of the CPU/
communication interface module

ca. 2 mA

 From UP at normal operation / with out-
puts

0.05 A + output loads

 Inrush current from UP (at power up) 0.010 A²s

Max. power dissipation within the module 6 W (outputs OFF)

Weight (without terminal unit) ca. 300 g

Mounting position Horizontal or vertical with derating (output
load reduced to 50 % at +40 °C per group)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels I0 ... I7 1.0 ... 1.7

Reference potential for all inputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Galvanic isolation From the rest of the module (I/O bus)

Indication of the input signals One yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable 0.1 ... 32 ms

No effects of
multiple over-
loads

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US590

Parameter Value
Input signal voltage 24 V DC

Signal 0 -3 V ... +5 V

Undefined signal > +5 V ... < +15 V

Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the relay outputs

Parameter Value
Number of channels per module 8 relay outputs

Distribution of channels into groups 8 groups of 1 channel each

Connection of the channel R0 Terminal 2.0 (common), 3.0 (NO) and 4.0 (NC)

Connection of the channel R1 Terminal 2.1 (common), 3.1 (NO) and 4.1 (NC)

Connection of the channel R6 Terminal 2.6 (common), 3.6 (NO) and 4.6 (NC)

Connection of the channel R7 Terminal 2.7 (common), 3.7 (NO) and 4.7 (NC)

Galvanic isolation Between the channels and from the rest of the module

Indication of the output signals One yellow LED per channel, the LED is ON when the
relay coil is energized

Monitoring point of output indicator LED is controlled by process CPU

Way of operation Non-latching type

Output delay (0->1 or 1->0) On request

Relay power supply By UP process supply voltage

Relay outputs

 Output short circuit protection Should be provided externally with a fuse or circuit
breaker

Rated protection fuse 6 A gL/gG per channel

Min. switching current 10 mA

Output switching capacity

 Resistive load, max. 3 A; 3 A (230 V AC), 2 A (24 V DC)

 Inductive load, max. 1.5 A; 1.5 A (230 V AC), 1.5 A (24 V DC)

 Lamp load 60 W (230 V AC), 10 W (24 V DC)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 591

Parameter Value
Output switching capacity (XC ver-
sion above +60 °C)

On request

Lifetime (cycles) Mechanical: 300 000;
Under load: 300 000 (24 V DC at 2 A), 200 000 (120 V
AC at 2 A), 100 000 (230 V AC at 3 A)

Spark suppression with inductive AC
load

Must be performed externally according to driven load
specifications

Demagnetization with inductive DC
load

A free-wheeling diode must be circuited in parallel to
the inductive load

Switching frequency

 With resistive load Max. 10 Hz

 With inductive load Max. 2 Hz

 With lamp load On request

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a

– FBP interface module
– CS31 bus module
– CANopen communication interface module

Parameter Value
Used inputs I0 / I1

Used outputs None

Counting frequency 50 kHz max.

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US592

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 245 200 R0001 DX522, digital input/output module,

8 DI, 24 V DC, 8 DO relays
Active

1SAP 445 200 R0001 DX522-XC, digital input/output
module, 8 DI, 24 V DC, 8 DO relays,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 593

DX531 - Digital input/output module
Features

● 8 digital inputs 120/230 V AC
● 4 relay outputs with one change-over contacts each
● Module-wise galvanically isolated

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the digital inputs (I0 ... I7)
4 4 yellow LEDs to display the signal states at the digital relay outputs (R0 ... R3)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US594

Digital configurable input / output unit.
● 8 digital inputs 120/230 V AC in 1 group (2.0 ... 2.3 and 3.0 ... 3.3)
● 4 digital relay outputs with one change-over contact each (R0 ... R3). All output channels

are galvanically isolated from each other.

The configuration is performed by software. The modules are supplied with a process supply
voltage of 24 V DC.
All available inputs/outputs are galvanically isolated from all other circuitry of the module. There
is no potential separation between the channels within the same group.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
LED displays For signal states, errors and supply voltage

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process supply voltage
24 V DC)

Required terminal units TU531 or TU532 Ä Chapter 5.2.5.3 “TU531 and
TU532 for I/O modules” on page 945

The device is plugged on a terminal unit Ä Chapter 5.2.5.3 “TU531 and TU532 for I/O modules”
on page 945. Position the module properly and press until it locks in place. The terminal unit is
either mounted on a DIN rail or to the wall using 2 screws plus the additional accessory for wall
mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory” on page 1324.

Connections

WARNING!
Risk of death by electric shock!
Hazardous voltages can be present at the terminals of the module.
Make sure that all voltage sources (supply voltage and process supply voltage)
are switched off before you begin with operations on the system.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal unit
and always have the same assignment, irrespective of the inserted module:

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 595

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

● Terminals 1.8 ... 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 ... 4.9: process supply voltage ZP = 0 V DC

Table 138: Assignment of the other terminals
Terminals Signal Description
1.0 ... 1.7 unused

2.0 and 3.0 I0 and I1 Input signals for the digital
inputs I0 and I1

4.0 N01 Neutral conductor for the dig-
ital inputs I0 and I1

2.1 and 3.1 I2 and I3 Input signals for the digital
inputs I2 and I3

4.1 N23 Neutral conductor for the dig-
ital inputs I2 and I3

2.2 and 3.2 I4 and I5 Input signals for the digital
inputs I4 and I5

4.2 N45 Neutral conductor for the dig-
ital inputs I4 and I5

2.3 and 3.3 I6 and I7 Input signals for the digital
inputs I6 and I7

4.3 N67 Neutral conductor for the dig-
ital inputs I6 and I7

2.4 R0 Common contact of the first
relay output

3.4 and 4.4 NO0 and NC0 NO and NC contacts of the
first relay output

2.5 R1 Common contact of the
second relay output

3.5 and 4.5 NO1 and NC1 NO and NC contacts of the
second relay output

2.6 R2 Common contact of the third
relay output

3.6 and 4.6 NO2 and NC2 NO and NC contacts of the
third relay output

2.7 R3 Common contact of the fourth
relay output

3.7 and 4.7 NO3 and NC3 NO and NC contacts of the
fourth relay output

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US596

Fig. 80: Internal construction

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DX531. The external power supply connection is carried out via
the UP (+24 V DC) and the ZP (0 V DC) terminals.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 597

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US598

Fig. 81: Connection of the module

1 I/O bus
2 Control cabinet earth

NOTICE!
– If the relay outputs have to switch inductive DC loads, free-wheeling diodes

must be circuited in parallel to these loads.
– If the relay outputs have to switch inductive AC loads, spark suppressors

are required.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 599

NOTICE!
Risk of damaging the PLC module!
The following has to be considered when connecting input and output voltages
to the module:
– All 230 V AC feeds must be single phase from the same supply system.
– Connection of 2 or more relay contacts in series is possible; however, vol-

tages above 230 V AC and 3-phase loads are not allowed.
– The 4 change-over contacts of the relays are galvanically isolated from

channel to channel. This allows to connect loads of 24 V DC and 120/230 V
AC to relay outputs of the same module. In such cases it is necessary that
both supply voltages are grounded to prevent unsafe floating grounds.

– All input signals must come from the same phase of the same supply
system (together with the used neutral conductor). The module is designed
for 120/230 V AC max., not for 400 V AC, not even between two input
terminals.

– All neutral conductor connections must be common to the same supply
system, since the terminals 4.0 ... 4.3 are interconnected within the module.
Otherwise, accidental energization could occur.

NOTICE!
Risk of damaging the PLC module!
There is no internal short-circuit or overload protection for the relay outputs.
Protect the relay contacts by back-up fuses of 6 A max. (characteristic gG/gL).
Depending on the application, fuses can be used for single channels or module-
wise.

The module provides several diagnosis functions.

Internal data exchange

Digital inputs (bytes) 1

Digital outputs (bytes) 1

Counter input data (words) 0

Counter output data (words) 0

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US600

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

Module ID Internal 1205
1)

Word 1205
0x04B5

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

Parameter
length

Internal 4 Byte 4-CPU
4-FBP

0 255 0x0Y02

Check
supply

Off
on

0
1

Byte On
0x01

0 1 0x0Y03

Input
delay

20 ms
100 ms

0
1

Byte 20 ms
0x00

0 1 0x0Y04

Behaviour
of outputs
at com-
munica-
tion errors

Off
Last value
Substitute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

Substitute
value at
outputs
Bit 3 =
Output 3
Bit 0 =
Output 0

0 ... 15 0 ...
0x0f

Byte 0
0x00

0 15 0x0Y06

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const
(0) =

7
0x04, 0xb6, 0x04, \
0x01, 0x00, 0x00, 0x00;

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 601

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs
I0 ... I7

Digital input Yellow Input = OFF Input = ON --

Outputs
R0 ... R3
(relays)

Digital output Yellow Relay output
= OFF

Relay output =
ON

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR2 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 2 and
3)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
corresponding
group

CH-ERR3 Red

CH-ERR *) Module Error Red -- Internal error --

*) All of the LEDs CH-ERR2 to CH-ERR3 light up together

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage UP

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for
+24 V DC (UP) as well as 1.9, 2.9,
3.9 and 4.9 for 0 V DC (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US602

Parameter Value
 From 24 V DC power supply at the terminals

UP/L+ and ZP/M of the CPU/communication inter-
face module

ca. 2 mA

 From UP at normal operation / with outputs 0.15 A + output loads

Inrush current from UP (at power up) 0.004 A2s

Max. power dissipation within the module 6 W (outputs OFF)

Weight (without terminal unit) Ca. 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at
+40 °C per group)

Cooling The natural convection cooling
must not be hindered by cable
ducts or other parts in the control
cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

No effects of multiple overloads on isolated multi-channel modules occur, as every channel is
protected individually by an external fuse.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 4 groups of 2 channels each

Terminals of the channels I0 to I7 Ä Chapter 5.2.4.3.2.8.4 “Connections”
on page 595

Galvanic isolation 2500 V AC from the rest of the module (I/O
bus)

Indication of the input signals 1 yellow LED per channel
The LEDs are only operating if the module is
initialized

Monitoring point of input indicator LED is controlled by process CPU

Input type acc. to EN 61131-2 Type 2

Input delay (0->1 or 1->0) Typ. 20 ms

Input signal voltage 230 V AC or 120 V AC

Input signal range 0 V AC ... 265 V AC

Input signal frequency 47 Hz ... 63 Hz

Input characteristic According EN 61132-2 Type 2

Signal 0 0 V AC ... 40 V AC

Undefined signal > 40 V AC ... < 74 V AC

Signal 1 74 V AC ... 265 V AC

No effects of
multiple over-
loads

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 603

Parameter Value
Input current per channel

 Input voltage = 159 V AC > 7 mA

 Input voltage = 40 V AC < 5 mA

Overvoltage protection Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the relay outputs

Parameter Value
Number of channels per module 4 relay outputs

Distribution of channels into groups 4 groups of 1 channel each

Connection of the four relays Ä Chapter 5.2.4.3.2.8.4 “Connections”
on page 595

Galvanic isolation Between the channels and from the rest of the
module

Indication of the output signals 1 yellow LED per channel, the LED is ON when
the relay coil is energized

Monitoring point of output indicator LED is controlled by process CPU

Way of operation Non-latching type

Output delay (0->1 or 1->0) On request

Relay power supply By UP process supply voltage

Relay outputs

 Output short circuit protection Must be provided externally with a fuse or cir-
cuit breaker

 Rated protection fuse 6 A gL/gG per channel

Output switching capacity

 Resistive load, max. 3 A; 3 A (230 V AC), 2 A (24 V DC)

 Inductive load, max. 1.5 A; 1.5 A (230 V AC), 1.5 A (24 V DC)

 Lamp load 60 W (230 V AC), 10 W (24 V DC)

Lifetime (cycles) Mechanical: 300 000;
Under load: 300 000 (24 V DC at 2 A), 200 000
(120 V AC at 2 A), 100 000 (230 V AC at 3 A)

Spark suppression with inductive AC load Must be performed externally according to
driven load specifications

Demagnetization with inductive DC load A free-wheeling diode must be circuited in par-
allel to the inductive load

Switching frequency

 With resistive load Max. 10 Hz

 With inductive load Max. 2 Hz

 With lamp load On request

Max. cable length

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US604

Parameter Value
 Shielded 1000 m

 Unshielded 600 m

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 245 000 R0001 DX531, digital input/output module,

8 DI, 120 / 230 V AC, 4 DO relays,
2-wires

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 605

Fast counter
More information can be found in the Automation Builder chapter, “Fast counters in AC500
devices”.
Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

5.2.4.4 Analog I/O modules
5.2.4.4.1 S500-eCo
AI561 - Analog input module
Features

● 4 configurable analog inputs (I0 ... I3) in 1 group
● Resolution: 12 bits including sign

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US606

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
All other circuitry of the module is not galvanically isolated from the inputs or from the I/O bus.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
4 analog inputs, individually configurable for
● Not used (default setting)
● -2.5 V ... +2.5 V
● -5 V ... +5 V
● 0 V ... +5 V
● 0 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-2.5 V ... +2.5 V; -5 V ... +5
V)

12 bits including sign

 Voltage unipolar (0 V ... 5 V; 0 V ... 10 V) 12 bits

 Current (0 mA ... 20 mA; 4 mA ... 20 mA) 12 bits

LED displays 2 LEDs for process voltage and error mes-
sages

Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24
V DC) and M (0 V DC); the M terminal is
connected to the M terminal of the CPU via
the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 607

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

I0+ 2

I0− 3

R0 1

+
−

I1+ 5

I1− 6

R1 4

+
−

I2+ 8

I2− 9

R2 7

+
−

I3+ 11

I3− 12

R3 10

+
−

−−− 13

−−− 14

−−− 16

−−− 17

−−− 15

L+ 19

M 20

SG 18

Fig. 82: Internal construction of the analog inputs

The assignment of the terminals:

Terminal Signal Description
1 R0 Burden resistor for input

signal 0 for current sensing

2 I0+ Positive pole of input signal 0

3 I0- Negative pole of input signal 0

4 R1 Burden resistor for input
signal 1 for current sensing

5 I1+ Positive pole of input signal 1

6 I1- Negative pole of input signal 1

7 R2 Burden resistor for input
signal 2 for current sensing

8 I2+ Positive pole of input signal 2

9 I2- Negative pole of input signal 2

10 R3 Burden resistor for input
signal 3 for current sensing

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US608

Terminal Signal Description
11 I3+ Positive pole of input signal 3

12 I3- Negative pole of input signal 3

13 --- Reserved

14 --- Reserved

15 --- Reserved

16 --- Reserved

17 --- Reserved

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 10 mA per AI561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V DC)
terminals. The M terminal is interconnected to the M/ZP terminal of the CPU/communication
interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 5.2.4.4.1.1.7 “Diagnosis”
on page 615.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 609

The following figure is an example of the internal construction of the analog input AI0. The
analog inputs AI1 ... AI3 are designed in the same way.

250 Ω
R0
I0+
I0−

CAUTION!
Risk of damaging the analog input!
The 250 Ω input resistor can be damaged by overcurrent.
Make sure that the current through the resistor never exceeds 30 mA.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US610

Table 139: Example of the connection of analog sensors (voltage) to the input I0 of the analog
input module AI561 (Proceed with the inputs I1 ... I3 in the same way)

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

+

-
UIN

24 VDC

-+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sensors
(voltage)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 611

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sen-
sors (voltage)

-2.5 V ... 2.5 V -2.5 V ... 2.5 V

-5 V ... 5 V -5 V ... 5 V

0 V ... 5 V 0 V ... 5 V

0 V ... 10 V 0 V ... 10 V

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US612

Table 140: Example of the connection of analog sensors to the Input I0 of the analog input
module AI561 (Proceed with the inputs I1 ... I3 in the same way.)

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

UIN

+

-

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

-

+

Connection of active-type analog sensors
(current)

Connection of passive-type analog sensors
(current)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 613

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sen-
sors (voltage)

4 mA ... 20 mA 4 mA ... 20 mA

0 mA ... 20 mA

The meaning of the LEDs is described in the Displays section Ä Chapter 5.2.4.4.1.1.8 “State
LEDs” on page 616.

I/O configuration
The analog input module AI561 does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6500 1) WORD 0x1964 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Internal 6 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses smaller than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)

GSD file: Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0
) =

0x09
0x65, 0x19, 0x06, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US614

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00

0 65535

Table 141: Channel configuration 2)
Internal value Operating modes for the analog inputs, individu-

ally configurable
0 Not used (default)

1 0 V ... 10 V

3 0 mA ... 20 mA

4 4 mA ... 20 mA

6 0 V ... 5 V

7 -5 V ... +5 V

20 -2,5 V ... +2,5 V

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 1 0 ... 3 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1 ... 0

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 615

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1 ... 10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 0

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/COM2: 1 ...
10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US616

Measuring ranges

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

Range -2.5 ...
+2.5 V

-5 ... +5
V

0 ... 5 V 0 ... 10 V 0 ... 20
mA

4 ... 20
mA

Digital value

 Decimal Hex.
Overflow >2.9397 >5.8795 >5.8795 >11.758

9
>23.517
8

>22.814
2

32767 7FFF

Meas-
ured
value too
high

2.9397
:
2.5014

5.8795
:
5.0029

5.8795
:
:
:
5.0015

11.7589
:
:
:
10.0029

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal
range
Normal
range or
meas-
ured
value too
low

2.5000
:
0.0014

5.0000
:
0.0029

5.0000
:
:
:
0.0015

10.0000
:
:
:
0.0029

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0.0000 0.0000 0.0000 0 4 0 0000

:
-0.0014
:
:
:
-2.5000

:
-0.0029
:
:
:
-5.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Meas-
ured
value too
low

-2.5014
:
-2.9398

-5.0029
:
-5.8795

 -27664
:
-32512

93F0
:
8100

Under-
flow

<-2.9398 <-5.8795 <-0.0300 <-0.0600 <-0.1200 <-0.1200 -32768 8000

The represented resolution corresponds to 12 bits including sign.

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 617

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption via L+ terminal 0.1 A

 Inrush current (at power up) 0.05 A2s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of the
CPU/communication interface module

Ca. 10 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.7 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 4 individually configurable voltage or current

inputs

Distribution of channels into groups 1 (4 channels per group)

Resolution

 Unipolar Voltage: 0 V ... +5 V; 0 V ... +10 V: 12 bits
Current 0 mA ... 20 mA; 4 mA ... 20 mA: 12 bits

 Bipolar Voltage -2.5 V ... +2.5 V; -5 V ... +5 V: 12 bits
including sign

Connection of the signals I0- to I3- Terminals 3, 6, 9, 12

Connection of the signals I0+ to I3+ Terminals 2, 5, 8, 11

Input type Differential

Galvanic isolation No galvanic isolation between the inputs and
the I/O bus

Common mode input range Signal voltage plus common mode voltage
must be within ± 12 V

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US618

Parameter Value
Indication of the input signals No

Channel input resistance Voltage: > 1 MW

Current: ca. 250 W

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ± 0.5 % of full scale (voltage)
± 0.5 % of full scale (current 0
mA ... 20 mA)
± 0.7 % of full scale (current 4
mA ... 20 mA)
at +25 °C

Max. ± 2 % of full scale (all ranges)
at 0 °C ... +60 °C or EMC disturb-
ance

Time constant of the input filter Voltage: 300 µs
Current: 300 µs

Relationship between input signal and hex
code

Ä Chapter 5.2.4.4.1.1.9 “Measuring ranges”
on page 617

Analog to digital conversion time Typ. 500 µs per channel

Unused inputs Can be left open and should be configured as
"unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC only for voltage input

Max. cable length (conductor cross section
> 0,14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 619

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1101 AI561, analog input module, 4 AI, U/I Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US620

AI562 - Analog input module
Features

● 2 configurable analog resistance temperature detector (RTD) inputs (I0 and I1) in 1 group
● Resolution: 16 bits including sign

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are not galvanically isolated from each other.
All other circuitry of the module is galvanically isolated from the inputs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 621

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
2 analog RTD-inputs, individually configurable for
● Not used (default)
● Pt100, -50 °C ... +400 °C, 2-wire
● Pt100, -50 °C ... +400 °C, 3-wire
● Pt1000, -50 °C ... +400 °C, 2-wire
● Pt1000, -50 °C ... +400 °C, 3-wire
● Ni1000, -50 °C ... +150 °C, 2-wire
● Ni1000, -50 °C ... +150 °C, 3-wire
● Ni100, -50 °C ... +150 °C, 2-wire
● Ni100, -50 °C ... +150 °C, 3-wire
● Analog input resistance 0 W ... 150 W
● Analog input resistance 0 W ... 300 W

Parameter Value
Resolution of the analog channels

 Temperature +0.1 °C

LED displays 2 LEDs for process voltage and error messages

Internal supply Via I/O bus

External supply Via the terminals UP (process voltage 24 V DC) and
ZP (0 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US622

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

I0 1

I0 2

O0+ 10

O1+ 13

I1+ 14

−−− 16

SG 17

I1− 15

UP 19

ZP 20

SG 18

+ 1

− 1

+
−

+
−

Fig. 83: Internal construction of the analog inputs

The assignment of the terminals:

Terminal Signal Description
10 O0+ Current source of channel 0

11 I0+ Sense input of channel 0

12 I0- Return input of channel 0

13 O1+ Current source of channel 1

14 I1+ Sense input of channel 1

15 I1- Return input of channel 1

16 --- Reserved

17 SG Shield grounding

18 SG Shield grounding

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 5 mA per AI562.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 623

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 5.2.4.4.1.2.7 “Diagnosis”
on page 626.

Table 142: Connection of RTDs to the inputs of the analog input module AI562

24 VDC
-
+

10

11

O0+

I0+

13 O1+

12 I0-

14 I1+

15 I1-

16 ---

17 SG

18 SG

19 UP

20 ZP

24 VDC
-
+

10

11

O0+

I0+

13 O1+

12 I0-

14 I1+

15 I1-

16 ---

17 SG

18 SG

19 UP

20 ZP

2-wires input 3-wires input

With 2-wires connection, the resistance of the connection wires influences the
accuracy of the measured value. Use 3-wires connection to achieve the guaran-
teed measuring accuracy.

The meaning of the LEDs is described in the Displays section Ä Chapter 5.2.4.4.1.2.8 “State
LEDs” on page 627.

I/O configuration
The analog input module AI562 does not store configuration data itself.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US624

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6505 1) WORD 0x1969 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 4 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07
0x6A, 0x19, 0x04, \
0x01, 0x00, \
0x00, 0x00;

Input channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 3)

0 65535

Table 143: Channel configuration 2)
Internal value Operating modes for the analog inputs,

individually configurable
0 Not used (default)

3)

8 2-wire Pt100 -50 °C ... +400 °C

9 3-wire Pt100 -50 °C ... +400 °C

16 2-wire Pt1000, -50 °C ... +400 °C

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 625

Internal value Operating modes for the analog inputs,
individually configurable

17 3-wire Pt1000, -50 °C ... +400 °C

18 2-wire Ni1000 -50 °C ... +150 °C

19 3-wire Ni1000 -50 °C ... +150 °C

22 2-wire Ni100, -50 °C ... +150 °C

23 3-wire Ni100, -50 °C ... +150 °C

32 Analog input resistor 0 W ... 150 W

33 Analog input resistor 0 W ... 300 W

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 1 0...1 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0...1 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 10

Remarks:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US626

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1...10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/COM2: 1 ... 10
= expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

Resistance temperature detectors

Range Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000 / Ni100
-50 °C ... +150 °C

Digital value

 Decimal Hex.
Overflow > +450.0 °C > +160.0 °C 32767 7FFF

Measured value
too high

+450.0 °C
:
+400.1 °C

 4500
:
4001

1194
:
0FA1

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 627

Range Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000 / Ni100
-50 °C ... +150 °C

Digital value

 Decimal Hex.
 +160.0 °C

:
+150.1 °C

1600
:
1501

0640
:
05DD

Normal range +400.0 °C
:
:
:
:
+ 0.1 °C

+150.0 °C
:
:
+ 0.1 °C

4000
2000
1500
700
:
1

0FA0
07D0
05DC
02BC
:
1

0,0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500
-2000

FFFF
:
FE0C
F830

Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Resistances

Range Resistance
0 W ... 150 W

Resistance
0 W ... 300 W

Digital value

 Decimal Hex.
Overflow >176.383 >352.767 32767 7FFF

Measured value
too high

176.383
150.005

352.767
300.011

32511
27649

7EFF
6C01

Normal range 150.000
:
0.005

300.000
:
0.011

27648
:
1

6C00
:
0001

0 0 0 0000

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US628

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption 0.04 A

 Inrush current (at power-up) 0.05 A2s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for UP Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the input group and the rest of the
module

 Isolated groups 1 (2 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 1.1 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 2 configurable RTD (resistance temperature detector)

inputs

Distribution of channels into groups 1 (2 channels per group)

Resolution

 RTD +0.1 °C / 0.1 °F

 Resistance 16 bits including sign

Connection of the signals O0+ and
O1+

Terminals 10 and 13

Connection of the signals I0- and I1- Terminals 11 and 14

Connection of the signals I0+ and I1+ Terminals 12 and 15

Input type Module ground referenced RTD for 2-wire and 3-wire
resistance temperature detectors

Galvanic isolation Against internal power supply and other modules

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 629

Parameter Value
Input ranges Pt100, Pt1000, Ni100, Ni1000

150 W, 300 W

Indication of the input signals No

Module update time All channels: < 1 s

Channel input resistance > 100 kW

Input filter attenuation -3 dB at 3.6 kHz

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. Depending on RTD max. ±0.6 % of full scale
(guaranteed for 3-wires connection only)
at +25 °C

Max. ± 2 % of full scale (guaranteed for 3-wires
connection only)
at 0 °C ... +60 °C or EMC disturbances

Measuring range Ä Chapter 5.2.4.4.1.2.9 “Measuring ranges”
on page 627

Analog to digital conversion time Typ. 140 ms per channel

Unused inputs Can be left open and should be configured as
"unused"

Input data length 4 bytes

Power dissipation inside the sensor
(max.)

1 mW

Suppression of interference On request

Maximum input voltage 30 V DC (sense), 5 V DC (source)

Basic error (resistance) 0.1 % of full-scale

Repeatability 0.05 % of full-scale

Overvoltage protection Yes, up to 30 V DC

Wire loop resistance < 20 W

Max. cable length (conductor cross
section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US630

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1102 AI562, analog input module, 2 AI, RTD Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 631

AI563 - Analog input module
Features

● 4 configurable thermocouple (TC) / -80 mV ... +80 mV inputs (I0 ... I3) in 1 group
● Resolution: 16 bits including sign

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for input signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The inputs are group-wise galvanically isolated from each other.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US632

The other electronic circuitry of the module is galvanically isolated from the inputs.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
4 analog TC inputs, individually configurable for
● Not used (default)
● Voltage -80 mV ... + 80 mV
● Thermocouple J-type -210 °C ... +1200 °C
● Thermocouple K-type -270 °C ... +1372 °C
● Thermocouple R-type -50 °C ... +1768 °C
● Thermocouple S-type -50 °C ... +1768 °C
● Thermocouple T-type -270 °C ... +400 °C
● Thermocouple E-type -270 °C ... +1000 °C
● Thermocouple N-type -270 °C ... +1300 °C

Parameter Value
Resolution of the analog channels

 Temperature +0.1 °C

LED displays 2 LEDs for process voltage and error mes-
sages

Internal supply Via I/O bus

External supply Via the terminals UP (process voltage 24 V
DC) and ZP (0 V DC)

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

After powering up the system, input channels, which are configured will have
undefined values /diagnosis message for typically 45 seconds, if the wires of all
configured channels are broken.

If the AI563 is connected to a PROFINET communication interface module, the
firmware version of PROFINET communication interface module must be 1.2 or
above.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 633

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

−−− 11

−−− 12

−−− 10

−−− 13

−−− 14

SG 16

SG 17

SG 15

UP 19

ZP 20

SG 18

I2− 6

I3+ 7

I2+ 5

+
−

I3− 8

−−− 9

I0− 2

I1+ 3

I0+ 1 +
−

I1− 4

+
−

+
−

Fig. 84: Internal construction of the analog inputs

Table 144: Assignment of the terminals
Terminal Signal Description
1 I0+ Positive pole of channel 0

2 I0- Negative pole of channel 0

3 I1+ Positive pole of channel 1

4 I1- Negative pole of channel 1

5 I2+ Positive pole of channel 2

6 I2- Negative pole of channel 2

7 I3+ Positive pole of channel 3

8 I3- Negative pole of channel 3

9 --- Reserved

10 --- Reserved

11 --- Reserved

12 --- Reserved

13 --- Reserved

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US634

Terminal Signal Description
14 --- Reserved

15 SG Shield grounding

16 SG Shield grounding

17 SG Shield grounding

18 SG Shield grounding

19 UP Process voltage UP (24 V DC)

20 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AI563.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 5.2.4.4.1.3.7 “Diagnosis”
on page 638.
The following figure shows the connection of thermocouples to the inputs of the module:

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 635

1

2

I0+

I0-

4 I1-

24 VDC
-
+

3 I1+

5 I2+

6 I2-

7 I3+

8 I3-

9 ---

10

11

13 ---

12 ---

14 ---

15 SG

16 SG

17 SG

18 SG

19 UP

20 ZP

Fig. 85: Connection of thermocouples to the inputs of the module

The meaning of the LEDs is described in Displays chapter Ä Chapter 5.2.4.4.1.3.8 “State LEDs”
on page 639.

I/O configuration
The analog input module AI563 does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US636

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6510 1) WORD 0x196E 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 6 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x09
0x6F, 0x19, 0x06, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

Table 145: Channel configuration 2)
Internal value Operating modes for the analog inputs, individually configurable
0 Not used (default)

21 Voltage -80 mV ... +80 mV

24 Thermocouple J-type -210 °C ... +1200 °C

25 Thermocouple K-type -270 °C ... +1372 °C

26 Thermocouple R-type -50 °C ... +1768 °C

27 Thermocouple S-type -50 °C ... +1768 °C

28 Thermocouple T-type -270 °C...+400 °C

29 Thermocouple E-type -270 °C ... +1000 °C

30 Thermocouple N-type -270 °C ... +1300 °C

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 637

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 1 0 ... 3 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0...3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1...10, ADR = hard-
ware address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the
master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2:
1 ... 10 = expansion 1 ... 10
Channel error: I/O bus or PNIO = module type (1 = AI); COM1/
COM2: 1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US638

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Measuring ranges

AI563 needs typ. 6 to 8 seconds for initialization after applying the process
supply voltage to clamp UP/ZP. During this time, the accuracy of the measure-
ment values is not within specification. After that, valid measurement values are
provided by the module. After that, valid measurement values are provided by
the module.

After an interruption of the process supply voltage > 10 ms, a re-initialization is
performed by AI563.

Risk of invalid analog input values!
The analog input values may be invalid if the measuring range of the inputs is
exceeded.

Make sure that the analog signal at the connection terminals is always within
the signal range.

When a wire break occurs on a sensor wire, the temperature measurement
value of the corresponding channel changes to Overflow (Hexadecimal 7FFF).

Range Type J
-210 °C ...
+1200 °C

Type K
270 °C ...
+1372 °C

Type N
270 °C ...
+1300 °C

Type T
-270 °C ...
+400 °C

Digital value

 Decimal Hex.
Overflow > +1200.0

°C
> +1372.0
°C

> +1300.0
°C

> +400.0 °C 32767 7FFF

Normal
range

 17680 4510

 +1372.0 °C 13720 3598

 : +1300.0 °C 13000 32C8

+1200.0 °C : : 12000 2EE0

: : : +400.0 °C 4000 0FA0

: : : : : :

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 639

Range Type J
-210 °C ...
+1200 °C

Type K
270 °C ...
+1372 °C

Type N
270 °C ...
+1300 °C

Type T
-270 °C ...
+400 °C

Digital value

 Decimal Hex.
+0.1 °C +0.1 °C +0.1 °C +0.1 °C 1 1

+0.0 °C +0.0 °C +0.0 °C 0 0000

-0.1 °C -0.1 °C -0.1 °C -0.1 °C -1 FFFF

: : : : : :

: : : : -500 FE0C

-210.0 °C : : : -2100 F7CC

 -270.0 °C -270.0 °C -270.0 °C -2700 F574

Underflow < -210.0 °C < -270.0 °C < -270.0 °C < -270.0 °C -32768 8000

Range -80 mV ... +80
mV

Type E
-270 °C ...
+1000 °C

Types R, S
-50 °C ...
+1768 °C

Digital value

 Decimal Hex.
Overflow > +90 mV > +1000.0 °C > +1768.0 °C 32767 7FFF

Normal range +80 mV 27648 6C00

 +1768.0 °C 17680 4510

 +1000.0 °C 10000 2710

 9000 2328

: : : : :

3 µV +0.1 °C +0.1 °C 1 1

0 µV 0.0 °C 0.0 °C 0 0000

-3 µV -0.1 °C -0.1 °C -1 FFFF

: : : : :

: : -50.0 °C -500 FE0C

: -270.0 °C -2700 F574

-80 mV -27648 9400

Underflow < -90 mV < -270.0 °C < -50.0 °C -32768 8000

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US640

Parameter Value
Process supply voltage UP

 Connections Terminal 19 for UP (+24 V DC) and terminal 20
for ZP (0 V)

 Rated value 24 V DC

 Current consumption 0.10 A

 Inrush current (at power-up) 0.07 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse for UP Not necessary

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation Yes, between the channels and the rest of the
module

 Isolated groups 1 (4 channels per group)

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 2.6 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 4 configurable thermocouple (TC) inputs

Distribution of channels into groups 1 (4 channels per group)

Resolution

 Temperature 0.1 °C

 Voltage 16 bits including sign

Connection of the signals I0+ to I3+ Terminals 1, 3, 5 and 7

Connection of the signals I0- to I3- Terminals 2, 4, 6 and 8

Input type Floating thermocouple

Galvanic isolation Against internal power supply and other modules

Common mode rejection > 120 dB at 120 V AC

Indication of the input signals No

Module update time All channels: < 1.6 s

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 641

Parameter Value
Channel input resistance On request

Input filter attenuation -3 dB at 15 kHz

Cold junction error ± 1.5 °C

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. 0.1 % of full-scale (voltage)
Depending on thermocouple, see table 'Ac-
curacy of thermocouple ranges at +25 °C'
Ä Chapter 5.2.4.4.1.3.10.2.1 “Accuracy of
thermocouple ranges at 25 °C (with cold junc-
tion compensation)” on page 642

Max. ± 2 % of full scale (T-Type: ± 3 % for -240
°C ... -270 °C)
at 0 °C ... +60 °C

Relationship between input signal
and hex code

Ä Chapter 5.2.4.4.1.3.9 “Measuring ranges”
on page 639

Analog to digital conversion time 400 ms per channel

Unused inputs Can be left open and should be configured as "unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC

Repeatability On request

Wire loop resistance < 100 W

Max. cable length (conductor cross
section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Accuracy of thermocouple ranges at 25 °C (with cold junction compensation)

Thermocouple Type Range Accuracy
E -270 °C ... -220 °C

-220 °C ... +1000 °C
± 2 %
± 0.6 %

J -210 °C ... +1200 °C ± 0.6 %

K -270 °C ... -220 °C
-220 °C ... +1372 °C

± 1.5 %
± 0.6 %

N -270 °C ... -150 °C
-150 °C ... +1300 °C

± 2 %
± 0.6 %

R -50 °C ... +150 °C
+150 °C ... +1768 °C

± 1.5 %
± 0.6 %

S -50 °C ... +150 °C
+150 °C ... +1768 °C

± 1.5 %
± 0.6 %

T -270 °C ... -240 °C
-240 °C ... -0 °C
0 °C ... +400 °C

± 3 %
± 2 %
± 0.6 %

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US642

These accuracy values are valid only for stable module temperatures.

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1103 AI563, analog input module, 4 AI,

thermocouple
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 643

Part no. Description Product life cycle phase *)
1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AO561 - Analog output module
Features

● 2 configurable analog outputs (O0 ... O1) in 1 group
● Resolution: 12 bits including sign

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US644

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for output signals (11-pin)
6 2 holes for wall-mounting with screws
7 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The outputs are not galvanically isolated from each other.
The other electronic circuitry of the module is not galvanically isolated from the outputs or from
the I/O bus.

The I/O module must not be used as communication interface module at CI590-
CS31-HA bus modules.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 645

Functionality
2 analog outputs, individually configurable for
● Not used (default setting)
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-10 V ... +10 V) 12 bits including sign

 Current (0 mA ... 20 mA; 4 mA ... 20 mA) 12 bits

LED displays 2 LEDs for process voltage and error messages

Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24 V DC)
and M (0 V DC); the M terminal is connected to
the M terminal of the CPU via the I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

If the output is configured as not used, the voltage and current output signals
are undefined and must not be connected.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US646

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

−−− 11

−−− 12

−−− 10

O0U+ 13

O0I+ 14

O1I+ 16

O01− 17

O1U+ 15

L+ 19

M 20

SG 18

+

+

−

−

Fig. 86: Internal construction of the analog outputs

The assignment of the terminals:

Terminal Signal Description
10 --- Reserved

11 --- Reserved

12 --- Reserved

13 O0U+ Voltage output of channel 0

14 O0I+ Current output of channel 0

15 O1U+ Voltage output of channel 1

16 O1I+ Current output of channel 1

17 O01- Negative pole of channels O0 and O1

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AO561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V
DC) terminals. The M terminal is electrically interconnected to the M/ZP terminal of the CPU/
communication interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 647

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 5.2.4.4.1.4.7 “Diagnosis”
on page 650.

Table 146: Connection of analog actuators to the analog output module AO561

U

24 VDC
-
+

10

11

13 O0U+

12 ---

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

U

24 VDC
-
+

10

11

13 O0U+

12 ---

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

I

I

Connection of analog voltage actuators Connection of analog current actuators

The output signal is undefined if the supply voltage at the L+ terminal is below
10 V. This can, for example, occur if the supply voltage has a slow ramp-up /
ramp-down behavior and must be foreseen when planning the installation.

If the output is configured in current mode, the voltage output signal is unde-
fined and must not be connected.

If the output is configured in voltage mode, the current output signal is unde-
fined and must not be connected.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US648

I/O configuration
The analog output module AO561 does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 6515 1) WORD 0x1973 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Intern 4 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0
1

BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

 255

1) with CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x07
0x74, 0x19, 0x04, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00;

Output channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 649

Table 147: Channel configuration 2)
Internal value Operating modes for the analog outputs, individually configu-

rable
0 Not used (default)

128 -10 V ... +10 V

129 0 mA ... 20 mA

130 4 mA ... 20 mA

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 3 0 ... 1 48 Analog value overflow
at an analog output

Check
output
value or
terminal

11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 0 ... 1 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US650

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or PNIO = module type (3 = AO); COM1/COM2: 1 ...
10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Output ranges

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.
Overflow >11.7589 >23.5178 >22.8142 32767 7FFF

Value too high 11.7589
:
10.0058
:
:

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058
:

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal range
Normal range
or value too
low

10.0000
:
0.0058
:
:

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0 4 0 0000

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 651

Range -10 ... +10 V 0 ... 20 mA 4 ... 20 mA Digital value
 Decimal Hex.

:
-0.0058
:
:
:
-10.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Value too low -10.0058
:
-11.7589

 -27664
:
-32512

93F0
:
8100

Underflow <-11.7589 <0.0000 -32768 8000

The represented resolution corresponds to 12 bits including sign.

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption 0.1 A + output load

 Inrush current (at power-up) 0.05 A²s

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 3.1 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US652

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog outputs

Parameter Value
Number of channels per module 2 configurable voltage or current outputs

Distribution of channels into groups 1 (2 channels per group)

Connection of the signals O0U- and O1U+ Terminals 13 and 15

Connection of the signals O0I+ and O1I+ Terminals 14 and 16

Output type Bipolar with voltage, unipolar with current

Resolution 12 bits including sign

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ± 0.5 % of full scale
at +25 °C

Max. ± 2 % of full scale
at 0 °C ... +60 °C or EMC distur-
bances

Indication of the output signals No

Output Resistance (load) as current output 0 W ... 500 W

Output load ability as voltage output ± 2 mA max.

Output data length 4 bytes

Relationship between output signal and hex
code

Ä Chapter 5.2.4.4.1.4.9 “Output ranges”
on page 651

Unused outputs Must not be connected and must be configured
as "unused"

Overvoltage protection Yes, up to 30 V DC

Max. cable length (conductor cross section
> 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 653

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1201 AO561, analog output module, 2 AO,

U/I
Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US654

AX561 - Analog input/output module
Features

● 4 configurable analog inputs (I0 ... I3) in 1 group
● 2 configurable analog outputs (O0 and O1) in 1 group
● Resolution: 12 bits including sign

1 I/O bus
2 1 green LED to display power supply, 1 red LED to display error
3 Terminal number
4 Allocation of signal name
5 Terminal block for input signals (9-pin)
6 Terminal block for output signals (11-pin)
7 2 holes for wall-mounting with screws
8 DIN rail

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 655

The inputs are not galvanically isolated from each other.
The outputs are not galvanically isolated from each other.
All other circuitry of the module is not galvanically isolated from the inputs/outputs or from the
I/O bus.

The I/O module must not be used as a decentralized I/O module with CI590-
CS31-HA communication interface modules.

Functionality
4 analog inputs, individually configurable for
● Not used (default)
● -2.5 V ... +2.5 V
● -5 V ... + 5 V
● 0 V ... +5 V
● 0 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA
2 analog outputs, individually configurable for
● Not used (default)
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Parameter Value
Resolution of the analog channels

 Voltage bipolar (-2.5 V ... +2.5 V;
-5 V ... +5 V)

12 bits including sign

 Voltage unipolar (0 V ... 5 V; 0 V ... 10 V) 12 bits

 Current (0 mA ... 20 mA; 4 mA ... 20 mA) 12 bits

LED displays 2 LEDs for process voltage and error mes-
sages

Internal supply Via I/O bus

External supply Via the terminals L+ (process voltage 24 V
DC) and M (0 V DC); the M terminal is con-
nected to the M terminal of the CPU via the
I/O bus

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US656

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

If the output is configured as not used, the voltage and current output signals
are undefined and must not be connected.

The connection is carried out by using a removable 9-pin and 11-pin terminal block. These
terminal blocks differ in their connection system (spring terminals or screw terminals, cable
mounting from the front or from the side). The terminal blocks are not included in the module's
scope of delivery and must be ordered separately.

I0+ 2

I0− 3

R0 1

+
−

I1+ 5

I1− 6

R1 4

+
−

I2+ 8

I2− 9

R2 7

+
−

I3+ 11

I3− 12

R3 10

+
−

O0U+ 13

O0I+ 14

O1I+ 16

O01− 17

O1U+ 15

L+ 19

M 20

SG 18

+

+

−

−

Fig. 87: Internal construction of the analog inputs and outputs

Table 148: Assignment of the terminals
Terminal Signal Description
1 R0 Burden resistor for input signal 0 for current sensing

2 I0+ Positive pole of input signal 0

3 I0- Negative pole of input signal 0

4 R1 Burden resistor for input signal 1 for current sensing

5 I1+ Positive pole of input signal 1

6 I1- Negative pole of input signal 1

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 657

Terminal Signal Description
7 R2 Burden resistor for input signal 2 for current sensing

8 I2+ Positive pole of input signal 2

9 I2- Negative pole of input signal 2

10 R3 Burden resistor for input signal 3 for current sensing

11 I3+ Positive pole of input signal 3

12 I3- Negative pole of input signal 3

13 O0U+ Voltage output of channel 0

14 O0I+ Current output of channel 0

15 O1U+ Voltage output of channel 1

16 O1I+ Current output of channel 1

17 O01- Negative pole of channels O0 and O1

18 SG Shield grounding

19 L+ Process voltage L+ (24 V DC)

20 M Process voltage M (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals UP/L+ and ZP/M of the CPU/communication interface
module increases by 5 mA per AX561.
The external power supply connection is carried out via the L+ (+24 V DC) and the M (0 V DC)
terminals. The M terminal is interconnected to the M/ZP terminal of the CPU/communication
interface module.

NOTICE!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalisation of a
low resistance to avoid high potential differences between different parts of the
plant.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US658

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The module provides several diagnosis functions Ä Chapter 5.2.4.4.1.5.7 “Diagnosis”
on page 665.

250 Ω
R0
I0+
I0−

Fig. 88: Example of the internal construction of the analog input AI0 (analog inputs AI1 ... AI3
are designed in the same way)

CAUTION!
Risk of damaging the analog input!
The 250 W input resistor can be damaged by overcurrent.

Make sure that the current through the resistor never exceeds 30 mA.

The following figures are an example of the connection of analog sensors (voltage) to the input
I0 of the analog input/output module AX561. Proceed with the inputs I1 ... I3 in the same way.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 659

Table 149: Example of the connection of analog sensors (voltage) to the input I0 of the analog
input/output module AX561 (Proceed with the inputs I1 to I3 in the same way)

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

+

-
UIN

24 VDC

-+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sensors
(voltage)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US660

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sen-
sors (voltage)

-2.5 V ... 2.5 V -2.5 V ... 2.5 V

-5 V ... 5 V -5 V ... 5 V

0 V ... 5 V 0 V ... 5 V

0 V ... 10 V 0 V ... 10 V

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 661

Table 150: Example of the connection of analog sensors (current) to the input I0 of the analog
input/output module AX561 (Proceed with the inputs I1 ... I3 in the same way)

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

UIN

+

-

24 VDC
-
+

1

2

R0

I0+

3 I0-

18 SG

19 L+

20 M

-

+

Connection of active-type analog sensors
(current)

Connection of passive-type analog sensors
(current)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US662

Connection of active-type analog sensors
(voltage)

Connection of passive-type analog sen-
sors (voltage)

4 mA ... 20 mA 4 mA ... 20 mA

0 mA ... 20 mA

Table 151: Example of the connection of analog actuators to the analog input/output module
AX561

24 V DC
-
+

10

11

R3

I3+

13 O0U+

12 I3-

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

U

U

24 V DC
-
+

10

11

R3

I3+

13 O0U+

12 I3-

14 O0I+

15 O1U+

16 O1I+

17 O01-

18 SG

19 L+

20 M

I

I

Connection of analog voltage actuators Connection of analog current actuators

The output signal is undefined if the supply voltage at the L+ terminal is below
10 V. This can, for example, occur if the supply voltage has a slow ramp-up /
ramp-down behavior and must be foreseen when planning the installation.

If the output is configured in current mode, the voltage output signal is unde-
fined and must not be connected.

If the output is configured in voltage mode, the current output signal is unde-
fined and must not be connected.

The meaning of the LEDs is described in the displays chapter Ä Chapter 5.2.4.4.1.5.8 “State
LEDs” on page 666.

I/O configuration
The I/O module does not store configuration data itself.

Parameterization
The arrangement of the parameter data is performed with Automation Builder software.
The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 663

Name Value Internal
Value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Internal 6520 1) WORD 0x1978 0 65535 xx01

Ignore
module

No
Yes

0
1

BYTE No
0x00

Parameter
length

Internal 8 BYTE 0 0 255 xx02 2)

Check
Supply

Off
On

0 1 BYTE On
0x01

Analog
Data
Format

Default 0 BYTE Default
0x00

1) With CS31 and addresses less than 70, the value is increased by 1
2) Value is hexadecimal: HighByte is slot (xx: 0 ... 7), LowByte is index (1 ... n)
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

0x0B
0x79, 0x19, 0x08, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00;

Input channel (4x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see table 2) see table 2) BYTE 0
0x00 see
table 2)

0 65535

Table 152: Channel configuration 2)
Internal value Operating modes for the analog inputs, individually configu-

rable
0 Not used (default)

1 0 V ... +10 V

3 0 mA ... 20 mA

4 4 mA ... 20 mA

6 0 V ... +5 V

7 -5 V ... +5 V

20 -2.5 V ... +2.5 V

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US664

Output channel (2x)

Name Value Internal
value

Internal
value, Type

Default Min. Max.

Channel
configura-
tion

see see
table 2)

see see
table 2)

BYTE 0
0x00 see
table 2)

0 65535

Table 153: Channel configuration 2)
Internal value Operating modes for the analog outputs, individually configurable
0 Not used (default)

128 -10 V ... + 10 V

129 0 mA ... 20 mA

130 4 mA ... 20 mA

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 1 0 ... 3 48 Analog value overflow
at an analog input

Check
input value
or terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 3 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 665

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

PNIO
diagnosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1 ... 10 3 0 ... 1 48 Analog value overflow
at an analog output

Check
output
value or
terminal

11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 0 ... 1 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

1) In AC500 the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The PNIO diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e. g. of the DC551-CS31)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or PNIO: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or PNIO = module type (1 = AI, 3 = AO); COM1/
COM2: 1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs

LED State Color LED = OFF LED = ON LED flashes
PWR Process

voltage
24 V DC via
terminal

Green CPU module
voltage or
external
24 V DC
supply voltage
is missing

3.3 V system
voltage (I/O
bus) and
external
24 V DC supply
voltage are
present

ERR Channel or
module error

Red No error or
process
voltage is
missing

Severe error in
the module

Error on 1 or
more chan-
nels of the
module

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US666

Measuring ranges

CAUTION!
Risk of wrong analog input values!
The analog input values may be wrong if the measuring range of the inputs are
exceeded.
Make sure that the analog signal at the connection terminals is always within
the signal range.

Range -2.5 V ...
+2.5 V

-5 V ...
+5 V

0 V ... 5
V

0 V ... 10
V

0 mA ...
20 mA

4 mA ...
20 mA

Digital value

 Decimal Hex.
Overflow >2.9397 >5.8795 >5.8795 >11.758

9
>23.517
8

>22.814
2

32767 7FFF

Meas-
ured
value too
high

2.9397
:
2.5014

5.8795
:
5.0029

5.8795
:
:
:
5.0015

11.7589
:
:
:
10.0029

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal
range
Normal
range or
meas-
ured
value too
low

2.5000
:
0.0014

5.0000
:
0.0029

5.0000
:
:
:
0.0015

10.0000
:
:
:
0.0029

20.0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0.0000 0.0000 0.0000 0 4 0 0000

:
-0.0014
:
:
:
-2.5000

:
-0.0029
:
:
:
-5.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Meas-
ured
value too
low

-2.5014
:
-2.9398

-5.0029
:
-5.8795

 -27664
:
-32512

93F0
:
8100

Under-
flow

<-2.9398 <-5.8795 <-0.0300 <-0.0600 <-0.1200 <-0.1200 -32768 8000

The represented resolution corresponds to 12 bits including sign.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 667

Output ranges

Range -10 V ... +10 V 0 mA ... 20
mA

4 mA ... 20
mA

Digital value

 Decimal Hex.
Overflow > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Output value
too high

11.7589
:
10.0058
:
:

23.5178
:
:
:
20.0058

22.8142
:
:
20.0058
:

32511
:
27664
27658
27656

7EFF
:
6C10
6C0A
6C08

Normal range
Normal range
or output
value too low

10.0000
:
0.0058
:
:

20,0000
:
:
:
0.0058

20.0000
:
:
4.0058

27648
:
16
10
8

6C00
:
0010
000A
0008

0.0000 0 4 0 0000

:
-0.0058
:
:
:
-10.0000

 3.9942
:
:
0

-10
-16
-4864
-6912
:
-27648

FFF6
FFF0
ED00
E500
:
9400

Output value
too low

-10.0058
:
-11.7589

 -27664
:
-32512

93F0
:
8100

Underflow < -11.7589 <0.0000 -32768 8000

The represented resolution corresponds to 12 bits including sign.

Technical data
Technical data of the module

The system data of AC500-eCo apply.
Ä Chapter 5.1.1 “System data AC500-eCo” on page 159

Only additional details are therefore documented below.

Parameter Value
Process supply voltage L+

 Connections Terminal 19 for L+ (+24 V DC) and terminal 20
for M (0 V)

 Rated value 24 V DC

 Current consumption via L+ terminal 0.14 A + output load

 Inrush current (at power-up) 0.05 A

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US668

Parameter Value
 Max. ripple 5 %

 Protection against reversed voltage Yes

 Protection fuse for L+ Recommended

Current consumption from 24 V DC power
supply at the terminals UP/L+ and ZP/M of
the CPU/communication interface module

Ca. 5 mA

Galvanic isolation No

Surge-voltage (max.) 35 V DC for 0.5 s

Max. power dissipation within the module 4.9 W

Weight Ca. 120 g

Mounting position Horizontal or vertical

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the control
cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per
module

4 individually configurable voltage or current inputs

Distribution of channels into
groups

1 (4 channels per group)

Resolution

 Unipolar Voltage: 0 V ... +5 V; 0 V ... +10 V: 12 bits
Current 0 mA ... 20 mA; 4 mA ... 20 mA: 12 bits

 Bipolar Voltage -2.5 V ... +2.5 V; -5 V ... +5 V: 12 bits including sign

Connection of the signals I0- to
I3-

Terminals 3, 6, 9, 12

Connection of the signals I0+ to
I3+

Terminals 2, 5, 8, 11

Input type Differential

Galvanic isolation No galvanic isolation between the inputs and the I/O bus

Common mode input range Signal voltage plus common mode voltage must be within ±
12 V

Indication of the input signals No

Channel input resistance Voltage: >1 MW

Current: ca. 250 W

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 669

Parameter Value
Conversion error of the analog
values caused by non-linearity,
adjustment error at factory and
resolution within the normal
range

Typ. ± 0.5 % of full scale (voltage)
± 0.5 % of full scale (current 0 mA ... 20 mA)
± 0.7 % of full scale (current 4 mA ... 20 mA)
at +25 °C

Max. ± 2 % of full scale (all ranges)
at 0 °C ... +60 °C or EMC disturbance

Time constant of the input filter Voltage: 300 µs
Current: 300 µs

Relationship between input
signal and hex code

Ä Table on page 667

Analog to digital conversion
time

Typ. 500 µs per channel

Unused inputs Can be left open and should be configured as "unused"

Input data length 8 bytes

Overvoltage protection Yes, up to 30 V DC only for voltage input

Max. cable length (conductor
cross section > 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Technical data of the analog outputs

Parameter Value
Number of channels per module 2 configurable voltage or current outputs

Distribution of channels into groups 1 (2 channels per group)

Connection of the signals O0U- and O1U+ Terminals 13 and 15

Connection of the signals O0I+ and O1I+ Terminals 14 and 16

Output type Bipolar with voltage, unipolar with current

Resolution 12 bits including sign

Indication of the output signals No

Output resistance (load) as current output 0 W ... 500 W

Output load ability as voltage output 2 mA max.

Relationship between input signal and hex code Table Output Ranges Ä Table on page 668

Conversion error of the analog values caused
by non-linearity, adjustment error at factory and
resolution within the normal range

Typ. ± 0.5 % of full scale (voltage)
± 0.5 % of full scale (current
0 mA ... 20 mA)
± 0.7 % of full scale (current
4 mA ... 20 mA)
at +25°C

Max. ± 2 % of full scale (all ranges)
at 0 °C ... +60 °C or EMC disturb-
ance

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US670

Parameter Value
Unused outputs Can be left open and should be configured

as "unused"

Output data length 4 bytes

Overvoltage protection Yes, up to 30 V DC

Max. cable length (conductor cross section
> 0.14 mm²)

 Unshielded wire 10 m

 Shielded wire 100 m

Dimensions

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1TNE 968 902 R1301 AX561, analog input/output module,

4 AI, 2 AO, U/I
Active

1TNE 968 901 R3101 Terminal block TA563-9, 9 pins, screw
front, cable side, 6 pieces per unit

Active

1TNE 968 901 R3102 Terminal block TA563-11, 11 pins,
screw front, cable side, 6 pieces per
unit

Active

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 671

Part no. Description Product life cycle phase *)
1TNE 968 901 R3103 Terminal block TA564-9, 9 pins, screw

front, cable front, 6 pieces per unit
Active

1TNE 968 901 R3104 Terminal block TA564-11, 11 pins,
screw front, cable front, 6 pieces per
unit

Active

1TNE 968 901 R3105 Terminal block TA565-9, 9 pins, spring
front, cable front, 6 pieces per unit

Active

1TNE 968 901 R3106 Terminal block TA565-11, 11 pins,
spring front, cable front, 6 pieces per
unit

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.4.4.2 S500 and S500-XC
AC522 - Analog input/output module
Features

● 8 channels configurable as analog inputs/outputs in one group (2.0 ... 2.7 and 3.0 ... 3.7)
● Resolution 12 bits including sign
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US672

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the analog inputs/outputs (C0 ... C7)
4 1 green LED to display the state of the process supply voltage UP
5 1 red LED to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

The configuration is performed by software. The modules are supplied with a process voltage of
24 V DC.
The inputs and outputs are galvanically isolated from all other circuitry of the module.

Functionality
8 channels configurable as analog inputs/outputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 673

If used as inputs, the following signal ranges are individually configurable:

● Unused (default setting)
● 0 V ... 10 V
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA
● Pt100, -50 °C ... +400 °C (2-wire)
● Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels
● Pt100, -50 °C ... +70 °C (2-wire)
● Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C ... +400 °C (2-wire)
● Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C ... +150 °C (2-wire)
● Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels
● 0 V ... 10 V with differential inputs, requires 2 channels
● -10 V ... +10 V with differential inputs, requires 2 channels
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage -10 V ... +10 V 12 bits including sign

 Voltage 0 V ... 10 V 12 bits

 Current 0 mA ... 20 mA,
4 mA ... 20 mA

12 bits

 Temperature +0.1 °C

LED displays 10 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The modules are plugged on an I/O terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938. Properly position the modules and press until
they lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US674

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9, 3.9 and 4.9 are electrically intercon-
nected within the I/O terminal units and always have the same assignment, independent of the
inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 ... 1.7 Unused Unused

2.0 ... 2.7 C0- ... C7- Negative poles of the 8 analog
inputs/outputs

3.0 ... 3.7 C0+ ... C7+ Positive poles of the analog
inputs/outputs

4.0 ... 4.7 Unused Unused

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (wire break), each analog input channel is pulled
up to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module. The external power supply connection is carried out
via the UP (+24 V DC) and the ZP (0 V DC) terminals.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 675

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US676

Fig. 89: Connection of the I/O module

1 4 analog I/O channels
as inputs for 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA, Pt100/Pt1000/
Ni1000 digital signals
as outputs for -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA

2 4 analog I/O channels
as inputs for 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA, Pt100/Pt1000/
Ni1000 digital signals
as outputs for -10 V ... +10 V

The process voltage must be included in the grounding concept of the control
system (e.g. grounding the negative pole).

By installing equipotential bonding conductors between the different parts of the
system, it must be made ensured that the potential difference between ZP and
AGND never exeeds 1 V.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 677

Pt100 -50 °C ... +70 °C 2-wire configuration, one
channel used

Pt100 -50 °C ... +400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US678

1 Return line
2 Twisted pair within the cable

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. C1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C ... +70 °C 3-wire configuration, two
channels used

Pt100 -50 °C ... +400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 679

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

By connecting to AGND the galvanically isolated voltage source of the sensor is referred to ZP.
The following measuring ranges can be configured:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US680

The following measuring ranges can be configured:

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V *) 1 channel used

*) if the sensor can provide this signal range

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 681

Connection of passive-type analog sensors (Current)

Current 4 mA ... 20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and ZP). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential dif-
ference with respect to ZP (max. ± 1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US682

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 683

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Connection of analog output loads (Voltage, current)

Voltage -10 V ... +10 V Load max. ± 10 mA 1 channel used

Current 0 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Current 4 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Only the channels 0 ... 3 can be configured as current output (0 mA ... 20 mA or
4 mA ... 20 mA).
Unused analog outputs can be left open-circuited.

Internal data exchange

Analog inputs (words) 8

Analog outputs (words) 8

I/O configuration
The module does not store configuration data itself. The 8 configurable analog channels are
defined as inputs or outputs by the configuration, i.e. each of the configurable channels can
used as input or output (or re-readable output in case of voltage input/output).
When a channel is used as input, the corresponding output must be configured unused.
When a channel is used as output, the corresponding input must be configured unused.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US684

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1520
1)

Word 1520
0x05f0

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 37 Byte 37-CPU
37-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
configu-
ration
Input
channel
0

see table
Channel configura-
tion

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y07

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 685

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

9
to
22

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 7

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y15

23 Channel
configu-
ration
Output
channel
0

see table
Channel configura-
tion

Byte Default
0x00

0 130 0x0Y16

24 Channel
moni-
toring
Output
channel
0

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y17

25 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0 ... 0xffff Word Default
0x0000

0 65535 0x0Y18

26 to 31 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y19
to
0x0Y1E

32 Channel
configu-
ration
Output
channel
4

see table
Channel configura-
tion

Byte Default
0x00

0 128 0x0Y1F

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US686

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

33 Channel
moni-
toring
Output
channel
4

see table
Channel monitoring

Byte Default
0x00

0 3 0x0Y20

34
to
39

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
5 to 7

see tables
channel configura-
tion and channel
monitoring

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y21
to
0x0Y26

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

40
0x05, 0xf1, 0x25, \
0x01, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

Table 154: Input channel (8x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 687

Table 155: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V ... 10 V

2 Digital input

3 Analog input 0 mA ... 20 mA

4 Analog input 4 mA ... 20 mA

5 Analog input -10 V ... +10 V

8 Analog input Pt100, -50 °C ... +400 °C (2-wire)

9 Analog input Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels *)

10 Analog input 0 ... 10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V ... +10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C ... +70 °C (2-wire)

15 Analog input Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C ... +400 °C (2-wire)

17 Analog input Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C ... +150 °C (2-wire)

19 Analog input Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 156: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

1 Open-circuit and short-circuit

2 Plausibility

3 No monitoring

Table 157: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0 ... 65535 0 ...
0xffff

Word 0

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US688

Table 158: Output channels 1 ... 7 (7x)
No. Name Internal value, type Default
1 Channel configura-

tion

see table 4)

Byte see table 4)

2 Channel monitoring

see table 5)

Byte see table 5)

Table 159: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V ... +10 V

129 Analog output 0 mA ... 20 mA (not with the channels 4 ... 7)

130 Analog output 4 mA ... 20 mA (not with the channels 4 ... 7)

Table 160: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

1 Open-circuit (broken wire) and short-circuit

2 Plausibility

3 No monitoring

Table 161: Substitute value 6)
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value Last value 0

Substitute value Off or last value 1 ... 65535

Diagnosis
Table 162: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0 mA ... 20 mA Error identifier = 7 Error identifier = 4

4 mA ... 20 mA

-10 V ... +10 V

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 689

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0 mA ... 20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4 mA ... 20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10 V ... +10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

Table 163: Content of diagnosis messages
E1 ... E4 d1 d2 d3 d4 Identifier

000 ...
063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1 ... 10

Channel error

 AX521 AX522

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US690

E1 ... E4 d1 d2 d3 d4 Identifier
000 ...
063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1 ... 10 1 0 ... 3 0 ... 7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0...3 0 ... 7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 3 0 ... 7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 4 ... 7 8 ... 15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 4 ... 7 8 ... 15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 691

LED State Color LED = OFF LED = ON LED flashes
Inputs/
outputs
00...07

Analog input/
output

Yellow Input/output
is OFF

Input/output is
ON (bright-
ness depends
on the value
of the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR3 Channel
error, error
messages
combined
into group 3

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
group

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0 V ... 10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ...
20 mA

Digital
input

Digital value

 Decimal Hex.
Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

ON 27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

-0.0004
-1.7593

-0.0004
:
:
:
-10.0000

 3.9994
:
0

 -1
-4864
-6912
:
-27648

FFFF
ED00
E500
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow <0.0000 <-11.7589 <0.0000 <0.0000 -32768 8000

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US692

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50 °C ... +70
°C

Pt100 /
Pt1000
-50 °C ...
+400 °C

Ni1000
-50 °C ...
+150 °C

Digital value

 Decimal Hex.
Overflow > +80.0 °C > +450.0 °C > +160.0 °C 32767 7FFF

Measured
value too high

 +450.0 °C
:
+ 400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

+80.0 °C
:
+70.1 °C

 800
:
701

0320
:
02BD

Normal range :
:
+70.0 °C
:
+ 0.1 °C

+400.0 °C
:
:
:
+0.1 °C

:
+150.0 °C
:
:
+ 0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

Range -10 V ... +10 V 0 mA ... 20
mA

4 mA ... 20
mA

Digital value

 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 693

Range -10 V ... +10 V 0 mA ... 20
mA

4 mA ... 20
mA

Digital value

 Decimal Hex.
Normal range 10.0000 V

:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
Technical data of the module

The System Data of AC500 and S500 Ä Chapter 5.1.2 “System data AC500” on page 166 are
applicable to the standard version.
Only additional details are therefore documented below.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 VDC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 VDC power supply at the terminals
UP/L+ and ZP/M of the CPU/bus module

Ca. 2 mA

 From UP at normal operation 0.10 A + output loads

Inrush current from UP (at power up) 0.040 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US694

Parameter Value
Mounting position Horizontal or vertical with derating

(output load reduced to 50 % at +40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels C0- ... C7- Terminals 2.0 ... 2.7

Connections of the channels C0+ ... C7+ Terminals 3.0 ... 3.7

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits
Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ± 0.5 % of full scale
at +25 °C

Max. ± 1 % of full scale (all ranges)
at 0 °C ... +60 °C or EMC disturbance

Relationship between input signal and hex
code

See table Ä Chapter 5.2.4.4.2.1.10.1 “Input
ranges of voltage, current and digital input”
on page 692

Unused inputs Must be configured as "unused".

Overvoltage protection Yes

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 695

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels C0+ ... C7+ Terminals 3.0 ... 3.7

Reference potential for the inputs Terminals 1.9 ... 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 ... 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 VDC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 8, all channels for voltage, the first 4 channels

also for current

Distribution of channels into groups 1 group of 8 channels

 Channels C0- ... C7- Terminals 2.0 ... 2.7

 Channels C0+ ... C7+ Terminals 3.0 ... 3.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA (each output can be config-
ured individually), current outputs only chan-
nels 0 ... 3

Output resistance (load), as current output 0 W ... 500 W

Output loadability, as voltage output Max. ± 10 mA

Indication of the output signals One LED per channel

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. ± 0.5 % of full scale
at +25 °C

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US696

Parameter Value
Max. ± 1 % of full scale (all ranges)

at 0 °C ... +60 °C or EMC disturb-
ance

Relationship between output signal and hex
code

See table 'AC522 - Analog input/output
module' Ä Chapter 5.2.4.4.2.1.10.3 “Output
ranges voltage and current” on page 693

Unused outputs Must be configured as "unused".

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 697

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 500 R0001 AC522, analog input/output module,

8 AC, U/I/RTD, 12 bits including sign,
2-wires

Active

1SAP 450 500 R0001 AC522-XC, analog input/output
module, 8 AC, U/I/RTD,
12 bits including sign, 2-wires, XC ver-
sion

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

AI523 - Analog input module
Features

● 16 configurable analog inputs (I0 ... I15) in 2 groups (1.0 ... 2.7 and 3.0 ... 4.7)
Resolution 12 bits including sign

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US698

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the analog inputs (I0 ... I15)
4 1 green LED to display the state of the process supply voltage UP
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
16 analog inputs, individually configurable for
● Unused (default setting)
● 0 V ... 10 V
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 699

● Pt100, -50 °C ... +400 °C (2-wire)
● Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels
● Pt100, -50 °C ... +70 °C (2-wire)
● Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C ... +400 °C (2-wire)
● Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C ... +150 °C (2-wire)
● Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels
● 0 V ... 10 V with differential inputs, requires 2 channels
● -10 V ... +10 V with differential inputs, requires 2 channels
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage -10 V ... +10 V 12 bits including sign

 Voltage 0 V ... 10 V 12 bits

 Current 0 mA ... 20 mA, 4 mA ... 20 mA 12 bits

 Temperature 0.1 °C

LED displays 19 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Connections
The modules are plugged on an I/O terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938. Properly position the modules and press until
they lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal
units and have always the same assignment, independent of the inserted module:
Terminals 1.8 ... 4.8: process voltage UP = +24 V DC
Terminals 1.9 ... 4.9: process voltage ZP = 0 V
The assignment of the other terminals:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US700

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Terminals Signal Description
1.0 ... 1.7 I0- ... I7- Negative poles of the first 8

analog inputs

2.0 ... 2.7 I0+ ... I7+ Positive poles of the first 8
analog inputs

3.0 ... 3.7 I8- ... I15- Negative poles of the fol-
lowing 8 analog inputs

4.0 ... 4.7 I8+ ... I15+ Positive poles of the following
8 analog inputs

CAUTION!
The negative poles of the analog inputs are galvanically connected to each
other. They form an "Analog Ground" signal for the module. The negative poles
of the analog outputs are also galvanically connected to each other to form an
"Analog Ground" signal.

CAUTION!
There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

CAUTION!
Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (wire break), each analog input channel is pulled
up to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AI523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 701

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

The following figure shows the connection of the module:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US702

Fig. 90: 16 analog inputs in two groups, individually configurable Ä Chapter 5.2.4.4.2.2.3 “Func-
tionality” on page 699

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The modules provide several diagnosis functions Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 703

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module AI523
provides a constant current source which is multiplexed over the 8 analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 91: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.2.7 “Parameterization”
on page 714.

Pt100 -50 °C ... +70 °C 2-wire configuration, one
channel used

Pt100 -50 °C ... +400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, one
channel used

The function of the LEDs is described under Displays Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.
The module AI523 performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module AI523
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US704

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 92: Connection example

If several measuring points are adjacent to each other, the return line is neces-
sary only once. This saves wiring costs.

With 3-wire configuration, two adjacent analog channels belong together (e.g. the channels 0
and 1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.2.7 “Parameterization”
on page 714

Pt100 -50 °C ... +70 °C 3-wire configuration, two
channels used

Pt100 -50 °C ... +400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, two
channels used

The function of the LEDs is described under Displays Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.
The module AI523 performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 705

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

+

-
UIN

AGND

Fig. 93: Connection example

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US706

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.2.7 “Parameterization”
on page 714 Ä Chapter 5.2.4.4.2.2.10 “Measuring ranges” on page 719

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

The function of the LEDs is described under Displays Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 94: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.2.7 “Parameterization”
on page 714 Ä Chapter 5.2.4.4.2.2.10 “Measuring ranges” on page 719

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

The function of the LEDs is described under Displays Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.
Unused input channels can be left open-circuited, because they are of low resistance.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 707

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

AGND

Fig. 95: Connection example

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US708

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1 V, not even in case of long lines Ä Chapter 5.2.4.4.2.2 “AI523 -
Analog input module” on page 698.

If AGND does not get connected to ZP, the sensor current flows to ZP via
the AGND line. The measuring signal is distorted, as a very low current flows
over the voltage line. The total current through the PTC should not exceed 50
mA. This measuring method is therefore only suitable for short lines and small
sensor currents. If there are bigger distances, the difference measuring method
has to be preferred.

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.2.10 “Measuring
ranges” on page 719

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V *) 1 channel used

*) if the sensor can provide this signal range

The function of the LEDs is described under Displays Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 709

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

-

+

Fig. 96: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.2.7 “Parameterization”
on page 714 Ä Chapter 5.2.4.4.2.2.10 “Measuring ranges” on page 719

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US710

Current 4 mA ... 20 mA 1 channel used

The function of the LEDs is described under Displays Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA
for more than 1 second into an analog input, this input is switched off by the
module (input protection). In such cases, it is recommended to protect the
analog input by a 10-volt Zener diode (in parallel to I+ and ZP). But, in general,
it is a better solution to use sensors with fast initialization or without current
peaks higher than 25 mA.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V within the full signal range). Otherwise problems
can occur concerning the common-mode input voltages of the involved analog
inputs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 711

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

+

-
UIN

Fig. 97: Connection example

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US712

The negative pole of the sensor must be grounded next to the sensor.

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.2.7 “Parameterization”
on page 714 Ä Chapter 5.2.4.4.2.2.10 “Measuring ranges” on page 719:

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

The function of the LEDs is described under Displays Ä Chapter 5.2.4.4.2.2.8 “Diagnosis”
on page 717.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 98: Connection example

The following operating mode can be configured Ä Chapter 5.2.4.4.2.2.7 “Parameterization”
on page 714 Ä Chapter 5.2.4.4.2.2.10 “Measuring ranges” on page 719

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

The function of the LEDs is described under Displays.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 713

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 16

Counter output data (words) 0

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
That means replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1515
1)

Word 1515
0x05eb

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

3 Param-
eter
length in
bytes

Internal 34 Byte 34-CPU
34-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US714

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

6 Channel
configu-
ration
Input
channel
0

See table 'Channel
configuration'
Ä Table 164 “Chan
nel configuration 2)”
on page 716

Byte Default
0x00

0 19 0x0Y05

7 Channel
moni-
toring
Input
channel
0

See table 'Channel
monitoring'
Ä Table 165 “Chan
nel monitoring 4)”
on page 717

Byte Default
0x00

0 3 0x0Y06

8
to
35

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 ... 14

See
table 'Channel con-
figuration'
Ä Table 164 “Chan
nel configuration 2)”
on page 716

and
table 'Channel
monitoring'
Ä Table 165 “Chan
nel monitoring 4)”
on page 717

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y07
to
0x0Y22

36 Channel
configu-
ration
Input
channel
15

See
table 'Channel con-
figuration'
Ä Table 164 “Chan
nel configuration 2)”
on page 716

Byte Default
0x00

0 19 0x0Y23

37 Channel
moni-
toring
Input
channel
15

See table 'Channel
monitorings'
Ä Table 165 “Chan
nel monitoring 4)”
on page 717

Byte Default
0x00

0 3 0x0Y24

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 715

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

37
0x05, 0xec, 0x22, \
0x01, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

No. Name Value Internal value Internal
value, type

Default

1 Channel con-
figuration

see table 2) see table 2) Byte 0

0x00 see 3)

2 Channel mon-
itoring

see table 4) see table 4) Byte 0

0x00 see 5)

Table 164: Channel configuration 2)
Interna
l value

Operating modes of the analog inputs, individually configurable

0 Unused (default)
3)

1 Analog input 0 V ... 10 V

2 Digital input

3 Analog input 0 mA ... 20 mA

4 Analog input 4 mA ... 20 mA

5 Analog input -10 V ... +10 V

8 Analog input Pt100, -50 °C ... +400 °C (2-wire)

9 Analog input Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels *)

10 Analog input 0 ... 10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V ... +10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C ... +70 °C (2-wire)

15 Analog input Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C ... +400 °C (2-wire)

17 Analog input Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C ... +150 °C (2-wire)

Input channel
(16 x with AI523)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US716

Interna
l value

Operating modes of the analog inputs, individually configurable

19 Analog input Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs, two
adjacent analog inputs belong together (e.g. the channels 0 and 1). In these cases,
both channels are configured in the desired operating mode. The lower address must
be the even address (channel 0). The next higher address must be the odd address
(channel 1). The converted analog value is available at the higher address (channel
1).

Table 165: Channel monitoring 4)
Intern
al
value

Monitoring

0 Plausibility, open-circuit (broken wire) and short circuit
5)

1 Open-circuit and short circuit

2 Plausibility

3 No monitoring

Diagnosis
Table 166: Possible diagnosis of I/O channels
Input range Condition

Short circuit Wire break Input value under-
flow

Input value over-
flow

0 mA ... 20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4 mA ... 20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10 V ... +10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 717

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1 ... 10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched off (ON ->
OFF)

Process
voltage ON11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 1 0 ... 15 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 15 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 15 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1 ... 10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e.g. of the DC551)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US718

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or FBP = module type (1 = AI); COM1/COM2: 1 ... 10 =
expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs I0 ...
I7 and I8 ...
I15

Analog
input

Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC via
terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages
in groups
(analog
inputs or
outputs
combined
into the
groups 2
and 4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module
error

Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 719

Range 0 V ... 10 V -10 V ...
+10 V

0 mA ...
20 mA

4 mA ...
20 mA

Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Meas-
ured
value
too high

11.7589
.
.
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
meas-
ured
value
too low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
ON

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10.0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Meas-
ured
value
too low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<-1.7593 <-11.7589 <0.0000 <1.1858 -32768 8000

Input ranges resistance temperature detector
The resolution corresponds to 16 bits.

Range Pt100 / Pt
1000
-50 °C ... +70
°C

Pt100 /
Pt1000
-50 °C ...
+400 °C

Ni1000
-50 °C ...
+150 °C

Digital value

 Decimal Hex.
Overflow > +80.0 °C > +450.0 °C > +160.0 °C 32767 7FFF

Measured
value too high

 +450.0 °C
:
+ 400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

+80.0 °C
:
+70.1 °C

 800
:
701

0320
:
02BD

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US720

Range Pt100 / Pt
1000
-50 °C ... +70
°C

Pt100 /
Pt1000
-50 °C ...
+400 °C

Ni1000
-50 °C ...
+150 °C

Digital value

 Decimal Hex.
Normal
range

:
:
+70.0 °C
:
+ 0.1 °C

+400.0 °C
:
:
:
+0.1 °C

:
+150.0 °C
:
:
+ 0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24
V (UP) as well as 1.9, 2.9, 3.9 and 4.9
for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

Ca. 2 mA

 From UP at normal operation / with outputs 0.15 A + output loads

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 721

Parameter Value
Inrush current from UP (at power up) 0.050 A2s

Max. length of analog cables, conductor cross section
> 0.14 mm2

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at +40
°C per group)

Cooling The natural convection cooling must
not be hindered by cable ducts or
other parts in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 16

Distribution of channels into groups 2 groups of 8 channels each

Connections of the channels I0- ... I7-
Connections of the channels I0+ ... I7+

Terminals 1.0 ... 1.7
Terminals 2.0 ... 2.7

Connections of the channels I8- ... I15-
Connections of the channels I8+ ... I15+

Terminals 3.0 ... 3.7 Terminals 4.0 ... 4.7

Input type Bipolar (not with current or Pt100/ Pt1000/
Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V ... 10 V, -10 V ... +10 V, 0/4 mA ... 20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel

Conversion cycle 2 ms (for 16 inputs), with Pt/Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits

Range -10 V ... +10 V: 12 bits including sign

Range 0 mA ... 20 mA: 12 bits

Range 4 mA ... 20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ±0.5 % of full scale
at +25 °C

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US722

Parameter Value
Max. ±1 % of full scale (all ranges)

at 0 °C ... +60 °C or EMC disturbance

Relationship between input signal and hex
code Ä Chapter 5.2.4.4.2.2.10.2 “Input ranges

resistance temperature detector” on page 720

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-
circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 16

Distribution of channels into groups 2 groups of 8 channels each

Connections of the channels I0+ ... I7+
Connections of the channels I8+ ... I15+

Terminals 2.0 ... 2.7
Terminals 4.0 ... 4.7

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 ... 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 723

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 300 R0001 AI523, analog input module, 16 AI,

U/I/Pt100, 12 bits including sign,
2-wires

Active

1SAP 450 300 R0001 AI523-XC, analog input module, 16 AI,
U/I/Pt100, 12 bits including sign,
2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US724

AI531 - Analog input module
Features

● 8 configurable analog inputs (I0 ... I7) in 2 groups (1.0 ... 1.7 and 2.0 ... 2.7 as well as
3.0 ... 3.7 and 4.0 ... 4.7)
Resolution 16 bits including sign

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal names
3 4 yellow LEDs to display the states at the inputs I0 ... I3
4 4 yellow LEDs to display the states at the inputs I4 ... I7
5 1 green LED to display the process supply voltage UP
6 2 red LEDs to display errors (CH-ERR2 and CH-ERR4)
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 725

Functionality
8 analog inputs, individually configurable for
● Unused (default setting)
● 0 V ... 5 V, 0 V ... 10 V
● -50 mV ... +50 mV, -500 mV ... +500 mV
● -1 V ... +1 V, -5 V ... +5 V, -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA
● -20 mA ... 20 mA
● Pt100, -50 °C ... +70 °C or +400 °C (2-, 3- and 4-wire)
● Pt100, -200 °C ... +850 °C (2-, 3- and 4-wire)
● Pt1000, -50 °C ... +400 °C (2-, 3- and 4-wire)
● Ni1000, -50 °C ... +150 °C (2-, 3- and 4-wire)
● Cu50 (1.426): -50 °C ... +200 °C (2-, 3- and 4-wire)
● Cu50 (1.428): -200 °C ... +200 °C (2-, 3- and 4-wire)
● 0 Ω ... 50 kΩ
● Thermocouples of types J, K, T, N, S
● Resistance measuring bridge
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage and current 16 bits including sign

 Temperature +0.1 °C (0,01°C at Pt100 -50 °C ... +70 °C)

LED displays 11 LEDs for signals and error messages

Internal power supply through the I/O bus interface (I/O bus)

External power supply via terminals (process voltage UP = 24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The modules are plugged on an I/O terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938. Properly position the modules and press until
they lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8, 4.8, 1.9, 2.9, 3.9 and 4.9 are electrically interconnected within the
I/O terminal units and always have the same assignment, independent of the inserted module:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US726

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V
The assignment of the other terminals:

Terminals Signal Description
2.0, 2.2, 2.4, 2.6 I0+ ... I3+ Positive poles of the first 4

analog inputs

1.0, 1.2, 1.4, 1.6 I0- ... I3- Negative poles of the first 4
analog inputs

2.1, 2.3, 2.5, 2.7 I0A ... I3A Connections A (supply) of the
first 4 analog inputs

1.1, 1.3, 1.5, 1.7 I0B ... I3B Connections B (analog
ground) of the first 4 analog
inputs

4.0, 4.2, 4.4, 4.6 I4+ ... I7+ Positive poles of the following
4 analog inputs

3.0, 3.2, 3.4, 3.6 I4- ... I7- Negative poles of the fol-
lowing 4 analog inputs

4.1, 4.3, 4.5, 4.7 I4A ... I7A Connections A (supply) of the
following 4 analog inputs

3.1, 3.3, 3.5, 3.7 I4B ... I7B Connections B (analog
ground) of the following 4
analog inputs

CAUTION!
Analog sensors must be galvanically isolated against the ground. In order to
avoid inaccuracy with the measuring results, the analog sensors should also be
isolated against the power supply.

The "IxB" clamps (x=0 ... 7) of the analog inputs are galvanically connected to
each other. They form an "Analog Ground Signal" (AGND) for the module.

The negative poles of the analog inputs Ix- may accept a potential difference
up to ±20 V DC with regard to the common reference potential IxB (AGND,
ZP). Observing this maximum voltage difference, analog current inputs of one
module can be switched in series to each other and also with current inputs of
other modules.

For the open-circuit detection (wire break), each positive analog input channel
Ix+ is pulled up to "plus" by a high-resistance resistor and each negative analog
input channel Ix- is pulled down to "minus" by a resistor. If wire break occurs, a
maximum voltage (overflow or underflow) will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AI531.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 727

The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US728

Fig. 99: 8 analog inputs in two groups, individually configurable Ä Chapter 5.2.4.4.2.3.3 “Func-
tionality” on page 726

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The module provides several diagnosis functions Ä Chapter 5.2.4.4.2.3.8 “Diagnosis”
on page 753.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 729

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

+

-
UIN

Fig. 100: Connection example

The measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Standard ranges

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US730

Voltage -50 mV ... +50 mV 1 channel used

Voltage -500 mV ... +500 mV 1 channel used

Voltage -1 V ... +1 V 1 channel used

Voltage -5 V ... +5 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

Voltage 0 V ... +5 V 1 channel used

Voltage 0 V ... +10 V 1 channel used

Fig. 101: Connection example

The measuring range can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Voltage Common mode voltage 1 channel used

The function of the LEDs is described under diagnosis and displays/displays Ä Chapter
5.2.4.4.2.3.8 “Diagnosis” on page 753.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Common mode
range (+/-20 V)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 731

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

Fig. 102: Connection example

CAUTION!
If GND is not directly connected to ZP at the sensor, the supply current flows
via the GND line to ZP. Measuring errors can only occur caused by voltage
differences higher than ± 20 V DC between GND and ZP.

The measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749 :

Voltage -50 mV ... +50 mV 1 channel used

Voltage -500 mV ... +500 mV 1 channel used

Voltage -1 V ... +1 V 1 channel used

Voltage -5 V ... +5 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

Voltage 0 V ... +5 V 1 channel used

Voltage 0 V ... +10 V 1 channel used

Standard ranges

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US732

Fig. 103: Connection example

CAUTION!
If GND is not directly connected to ZP at the sensor, the supply current flows
via the GND line to ZP. Measuring errors can only occur caused by voltage
differences higher than ±20 V DC between GND and ZP.

The measuring range can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Voltage Common mode voltage 1 channel used

The function of the LEDs is described under diagnosis and displays/displays Ä Chapter
5.2.4.4.2.3.8 “Diagnosis” on page 753.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Common mode
range (+/-20 V)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 733

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 104: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Current -20 mA ... 20 mA 1 channel used

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

The function of the LEDs is described under diagnosis and displays/displays Ä Chapter
5.2.4.4.2.3.8 “Diagnosis” on page 753.
Unused input channels can be left open, because they are of low resistance.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US734

Connection of active-type analog sensors (Current) with galvanically isolated power supply and series-
connection of an additional input

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

+

-

UP

+

-

1

Fig. 105: Connection example

1 Analog input of the second device

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 735

If series-connection of an additional input is used, the input resistance of the
module (ca. 330 Ω) must be added to the input resistance of the second device.
Make sure that the maximum permitted load resistance of the analog sensor is
not exceeded (see the data sheet of the analog sensor).

The input of the module is not related to ZP. If the input of the second device is
related to ZP, the order of sequence in the series-connection must be observed
by all means (from the sensor to the module and then to the input of the second
device).

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Current -20 mA ... 20 mA 1 channel used

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

For a description of the functions of the LEDs, please refer to diagnosis and displays/displays
Ä Chapter 5.2.4.4.2.3.8 “Diagnosis” on page 753.
Unused input channels can be left open, because they are of low resistance.

Connection of passive-type analog sensors (Current)

Fig. 106: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US736

Current -20 mA ... 20 mA *) 1 channel used

Current 0 mA ... 20 mA *) 1 channel used

Current 4 mA ... 20 mA 1 channel used

*) This setting is not applicable with passive-type analog sensors (current).

The function of the LEDs is described under diagnosis and displays/displays Ä Chapter
5.2.4.4.2.3.8 “Diagnosis” on page 753.
Unused input channels can be left open, because they are of low resistance.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 737

Connection of passive-type analog sensors (Current) and series-connection of an additional analog sensor

ZP

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

-

+

UP

+

-

1

Fig. 107: Connection example

1 Analog input of the second device

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US738

If series-connection of an additional input is used, the input resistance of the
module (ca. 330 Ω) must be added to the input resistance of the second device.
Make sure that the maximum permitted load resistance of the analog sensor is
not exceeded (see the data sheet of the analog sensor).

The input of the module is not related to ZP. If the input of the second device is
related to ZP, the order of sequence in the series-connection must be observed
by all means (from the sensor to the module and then to the input of the second
device).

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Current -20 mA ... 20 mA *) 1 channel used

Current 0 mA ... 20 mA *) 1 channel used

Current 4 mA ... 20 mA 1 channel used

*) This setting is not applicable with passive-type analog sensors (current).

The function of the LEDs is described under diagnosis and displays/displays Ä Chapter
5.2.4.4.2.3.8 “Diagnosis” on page 753.
Unused input channels can be left open, because they are of low resistance.

Connection of digital signal sources at analog inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZP

UP

ZP

Fig. 108: Connection example

The following operating mode can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749 :

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 739

For a description of the function of the LEDs, please refer to diagnosis and displays/displays
Ä Chapter 5.2.4.4.2.3.8 “Diagnosis” on page 753.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

Fig. 109: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Pt100 -50 °C ... +70 °C / +400 °C;
-200 °C ... +850 °C

1 channel used

Pt1000 -50 °C ... +400 °C 1 channel used

Ni1000 -50 °C ... +150 °C 1 channel used

Cu50 -50 °C ... +200 °C (1.426);
-200 °C ... +200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / displays
Ä Chapter 5.2.4.4.2.3.8 “Diagnosis” on page 753.
The module linearizes the resistance thermometer characteristics.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US740

Fig. 110: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Pt100 -50 °C ... +70 °C/+400 °C;
-200 °C ... +850 °C

1 channel used

Pt1000 -50 °C ... +400 °C 1 channel used

Ni1000 -50 °C ... +150 °C 1 channel used

Cu50 -50 °C ... +200 °C (1.426);
-200 °C ... +200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to diagnosis and displays/displays
Ä Chapter 5.2.4.4.2.3.8 “Diagnosis” on page 753.
The module linearizes the resistance thermometer characteristics. In order to keep measuring
errors as small as possible, it is necessary by all means to have all the involved conductors in
the same cable. All the conductors must have the same cross section.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 4-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000, Cu50) are used, a constant current
must flow through them to build the necessary voltage drop for the evaluation. For this, the
module AI531 provides a constant current source which is multiplexed over the 4 analog chan-
nels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 741

1.0
I0-
1.1
I0B

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I0A

2.8
UP
2.9
ZPZP

UP

Pt100
Pt1000
Ni1000
Cu50

Fig. 111: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749:

Pt100 -50 °C ... +70 °C/+400 °C;
-200 °C ... +850 °C

1 channel used

Pt1000 -50 °C ... +400 °C 1 channel used

Ni1000 -50 °C ... +150 °C 1 channel used

Cu50 -50 °C ... +200 °C (1.426);
-200 °C ... +200 °C (1.428)

1 channel used

For a description of the function of the LEDs, please refer to diagnosis and displays/displays
Ä Chapter 5.2.4.4.2.3.8 “Diagnosis” on page 753.
The module linearizes the resistance thermometer characteristics. In order to keep measuring
errors as small as possible, it is necessary by all means, to have all the involved conductors in
the same cable.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistors in 2-wire configuration
For evaluating resistors, a constant current must flow through them to build the necessary
voltage drop. For this, the module AI531 provides a constant current source which is multi-
plexed over the 4 analog channels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US742

Fig. 112: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749 :

Resistor 50 kΩ 1 channel used

For a description of the function of the LEDs, please refer to diagnosis and displays/displays
Ä Chapter 5.2.4.4.2.3.8 “Diagnosis” on page 753.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of a resistance measuring bridge with internal supply
When resistance measuring bridges are connected, the short-circuit-proof voltage output
(internal supply) at pin I0A (or I2A, I4A, I6A) must be used. This supply voltage is activated
as soon as "Voltage Measurement" is configured for the relevant channel.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 743

Fig. 113: Connection example

1 Internal supply
All voltage measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749.

Voltage -50 mV ... +50 mV 1 channel used

Voltage -500 mV ... +500 mV 1 channel used

Voltage -1 V ... +1 V 1 channel used

Voltage -5 V ... +5 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

Voltage 0 V ... +5 V 1 channel used

Voltage 0 V ... +10 V 1 channel used

The calculation of the resistor deviation must be performed via the bridge voltage by the PLC
user program.

Connection of a resistance measuring bridge with external supply
With the connection of a resistance measuring bridge with external supply, the supply voltage is
provided separately.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US744

UP

ZP

1.2
I1-
1.3
I1B

1.8
UP
1.9
ZP

1.0
I0-
1.1
I0B

PTC

2.2
I1+
2.3
I1A

2.8
UP
2.9
ZP

2.0
I0+
2.1
I0A

1)

0 V

<= 10 V

Fig. 114: Connection example

1 Bridge to IxB necessary with galvanically isolated supply
All voltage measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749 .

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 745

Voltage -50 mV ... +50 mV 1 channel used

Voltage -500 mV ... +500 mV 1 channel used

Voltage -1 V ... +1 V 1 channel used

Voltage -5 V ... +5 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

Voltage 0 V ... +5 V 1 channel used

Voltage 0 V ... +10 V 1 channel used

The calculation of the resistor deviation must be performed via the bridge voltage by the PLC
user program.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US746

Connection of thermocouples

Fig. 115: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749 :

J type -210 °C ... +1200 °C Fe-CuNi 1 channel used

K type -270 °C ... +1372 °C Ni-CrNi 1 channel used

N type -270 °C ... +1300 °C NiCrSi-NiSi 1 channel used

S type -50 °C ... +1768 °C Pt10Rh-Pt 1 channel used

T type -270 °C ... +400 °C Cu-CuNi 1 channel used

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 747

For a description of the function of the LEDs, please refer to diagnosis and displays/displays
Ä Chapter 5.2.4.4.2.3.8 “Diagnosis” on page 753.
The module linearizes the thermocouple characteristics. It supports the following possibilities of
temperature compensation and handling with cold junctions:

Internal compensation
An internal temperature sensor which is located next to the terminal unit is used to detect the
temperature of the cold junction. So the compensating cables must be connected directly to the
terminal unit, where the cold junction is located.
The setting “Internal compensation (default)” for the parameter “Compensation channel” should
be selected.

To get more precise temperature measurements, the use of an external com-
pensation method is recommended.

External compensation with temperature input
The temperature for the cold junction can be determinated externally.
A measured or known temperature value (e.g. ambient temperature in the cabinet) is transferred
to the module via the output data word to all required channels. The possible temperature range
is -25 °C ... +60 °C and is monitored by the AI531.
The setting “External with temperature value” for the parameter “Compensation channel” should
be selected.

External compensation with compensation box
A compensation box balances the temperature difference between the cold junction and the
reference temperature by generating a bridge voltage. The reference temperature is transferred
via the output data word.
The compensation box must fit to the type of thermocouple and is located at the end of the
compensating cables, where the cold junction is located. The cabling to the AI531 can be
carried out with normal cables. The operating manual of the compensation box also has to be
considered.
The setting “External with temperature value” for the parameter “Compensation channel” should
be selected.

External compensation with flanking channel
A flanking channel of the same input group can be used for compensation, e. g. for channel
3, the channels 0, 1 and 2 can be selected as reference channels. The type of sensor for the
reference channel can be selected in the parameters for the flanking channel. For example, a
RTD sensor which is located next to the thermocouple terminal can be used as reference point
for other channels.
The setting “Channel x” for the parameter “Compensation channel” should be selected. Refer
to 'Channel configuration' for possible settings Ä Chapter 5.2.4.4.2.3.7 “Parameterization”
on page 749.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US748

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Analog inputs (words) 8

Analog outputs (words) 1

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
This means that replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot/
Index

Module ID Internal 1535
1)

Word 1535
0x05ff

0 65535 0x0Y01

Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

Parameter
length in
bytes

Internal 36 Byte 36 0 255 0x0Y02

Check
supply

Off
On

0
1

Byte On
0x01

 0x0Y03

Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 749

2) Not with FBP
GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

39
0x05, 0xff, 0x24, \
0x01, 0x00, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

No. Name Value Internal
value

Internal
value, Type

Default EDS Slot
Index

1 Channel
configura-
tion

see table
'Channel con-
figuration'
Ä Table 167 “
Channel con-
figuration”
on page 751

see
'Channel
configura-
tion'
Ä Table 1
67 “Chan
nel con-
figuration”
on page 751

Byte 0
0x00

0x0Y07

2 Channel
monitoring

see table
'Channel
monitoring'
Ä Table 168 “
Channel mon-
itoring”
on page 752

see
'Channel
monitor-
ing'
Ä Table 1
68 “Chan
nel moni-
toring”
on page 752

Byte 0
0x03

3 Line fre-
quency
suppression

see table
'Line fre-
quency sup-
pression'
Ä Further
information
on page 752

see 'Line
frequency
suppres-
sion'
Ä Further
informa-
tion
on page 752

Byte 0
0x00

4 Compensa-
tion channel

see table
'Compensa-
tion channel'
Ä Further
information
on page 752

see table
'Compen-
sation
channel'
Ä Further
informa-
tion
on page 752

Byte 0
0x00

Input channel
(8x)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US750

Table 167: Channel configuration
Internal
value

Operating modes for the analog inputs, individually configurable

0 Unused (default)

2 Digital input

34 Analog input -50 mV ... +50 mV

35 Analog input -500 mV ... +500 mV

36 Analog input -1 V ... +1 V

7 Analog input -5 V ... +5 V

5 Analog input -10 V ... +10 V

6 Analog input 0 V ... +5 V

1 Analog input 0 V ... +10 V

37 Analog input -20 mA ... +20 mA

3 Analog input 0 mA ... 20 mA

4 Analog input 4 mA ... 20 mA

14 Analog input Pt100 (2-wire), -50 °C ... +70 °C

15 Analog input Pt100 (3-wire), -50 °C ... +70 °C

48 Analog input Pt100 (4-wire), -50 °C ... +70 °C

57 Analog input Pt100 (2-wire), -50 °C ... +70 °C (resolution: 0,01 K)

58 Analog input Pt100 (3-wire), -50 °C ... +70 °C (resolution: 0,01 K)

59 Analog input Pt100 (4-wire), -50 °C ... +70 °C (resolution: 0,01 K)

8 Analog input Pt100 (2-wire), -50 °C ... +400 °C

9 Analog input Pt100 (3-wire), -50 °C ... +400 °C

49 Analog input Pt100 (4-wire), -50 °C ... +400 °C

45 Analog input Pt100 (2-wire), -200 °C ... +850 °C

46 Analog input Pt100 (3-wire), -200 °C ... +850 °C

47 Analog input Pt100 (4-wire), -200 °C ... +850 °C

16 Analog input Pt1000 (2-wire), -50 °C ... +400 °C

17 Analog input Pt1000 (3-wire), -50 °C ... +400 °C

50 Analog input Pt1000 (4-wire), -50 °C ... +400 °C

18 Analog input Ni1000 (2-wire), -50 °C ... +150 °C

19 Analog input Ni1000 (3-wire), -50 °C ... +150 °C

51 Analog input Ni1000 (4-wire), -50 °C ... +150 °C

39 Analog input Cu50 1.426 (2-wire) -50 °C ... +200 °C

40 Analog input Cu50 1.426 (3-wire) -50 °C ... +200 °C

41 Analog input Cu50 1.426 (4-wire) -50 °C ... +200 °C

42 Analog input Cu50 1.428 (2-wire) -200 °C ... +200 °C

43 Analog input Cu50 1.428 (3-wire) -200 °C ... +200 °C

44 Analog input Cu50 1.428 (4-wire) -200 °C ... +200 °C

24 Analog input J-type thermocouple -210 °C ... +1200 °C

25 Analog input K-type thermocouple -270 °C ... +1372 °C

30 Analog input N-type thermocouple -270 °C ... +1300 °C

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 751

Internal
value

Operating modes for the analog inputs, individually configurable

27 Analog input S-type thermocouple -50 °C ... +1768 °C

28 Analog input T-type thermocouple -270 °C ... +400 °C

38 Analog input resistor 50 kW

52 Temperature-internal reference point

53 Common mode voltage

Table 168: Channel monitoring
Internal
value

Monitoring

0 Plausibility, open-circuit (wire break) and short circuit (default)

3 No monitoring

Table 169: Line frequency suppression
Internal
value

Line frequency suppression

0 50 Hz

1 60 Hz

2 No line frequency suppression

Table 170: Compensation channel
Internal
value

Compensation channel

0 Internal compensation (default)

1 Channel 0 (possible with channels 1, 2, 3)

2 Channel 1 (possible with channels 0, 2, 3)

3 Channel 2 (possible with channels 0, 1, 3)

4 Channel 3 (possible with channels 0, 1, 2)

5 Channel 4 (possible with channels 5, 6, 7)

6 Channel 5 (possible with channels 4, 6, 7)

7 Channel 6 (possible with channels 4, 5, 7)

8 Channel 7 (possible with channels 4, 5, 6)

9 External with temperature value

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US752

Diagnosis

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module, e.g. internal
analog voltage is not
correct

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

Restart

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched OFF (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 1 0 ... 7 48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 7 7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 7 47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 7 1 Possibly wrong meas-
ured value caused
by inadmissible temper-
ature of the compensa-
tion channel

Check the
tempera-
ture com-
pensation
channel

11 / 12 ADR 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 753

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1 ... 10 1 0 ... 7 2 Invalid measured value
of the channel caused
by overly high voltage
difference

Check
voltage dif-
ference;
install
equalizing
conductors
if neces-
sary

11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 7 11 Output voltage 10 V
faulty

Check
output load11 / 12 ADR 1 ... 10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 expansion module 1 ... 10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:

Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1 ... 10
= expansion 1 ... 10
Channel error: I/O bus or FBP = module type (1 = AI); COM1/COM2:
1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.
States of the LEDs (see also section diagnosis LEDs in the S500 system data):

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US754

LED State Color LED = OFF LED = ON LED flashes
Inputs I0 ... I3
and I4 ... I7

Analog
input

Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC
via ter-
minal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error,
mes-
sages in
groups
(analog
inputs
com-
bined
into the
groups 2
and 4)

Red No error, or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module
error

Red -- Internal error --

*) Both LEDs CH-ERR2 and CH-ERR4 light up together

Measuring ranges
Voltage input ranges
Bipolar voltage input range, measuring bridge

The represented resolution corresponds to 16 bits.

Range -50
mV ...
+50 mV

-500
mV ...
+500
mV

-1 V ...
+1 V

-5 V ...
+5 V

-10 V ...
+10 V

Commo
n Mode
Voltage

Digital value
Decimal Hex.

Over-
flow

>
58.7945

>
587.944
9

>
1.17589

> 5.8794 >
11.7589

>
20.0000

32767 7FFF

Meas-
ured
value
too high

58.7945
:
50.0018

587.944
9
:
500.018
1

1.17589
:
1.00004

5.8794
:
5.0002

11.7589
:
10.0004

 32511
:
27649

7EFF
:
6C01

Normal
range

50.0000
:
0.0018

500.000
0
:
0.0181

1.00000
:
0.00004

5.0000
:
0.0002

10.0000
:
0.0004

20.0000
:
0.0008

27648
:
1

6C00
:
0001

0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0 0000

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 755

Range -50
mV ...
+50 mV

-500
mV ...
+500
mV

-1 V ...
+1 V

-5 V ...
+5 V

-10 V ...
+10 V

Commo
n Mode
Voltage

Digital value
Decimal Hex.

Normal
range or
Meas-
ured
value
too low

-0.0018
:
-50.0000

-0.0181
:
-500.000
0

-0.00004
:
-1.00000

-0.0002
:
-5.0000

-0.004
:
-10.0000

-0.0008
:
-20.0000

-1
:
-27648

FFFF
:
9400

Meas-
ured
value
too low

-50.0018
:
-58.7945

-500.018
1
:
-587.944
9

-1.00004
:
-1.17589

-5.0002
:
-5.8794

-10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<
-58.7945

<
-587.944
9

<
-1.17589

<
-5.8794

<
-11.7589

<
-20.0000

-32768 8000

Unipolar voltage input range, measuring bridge, digital input

Range 0 V ... +5 V 0 V ... +10
V

Digital
input

Digital value
Decimal Hex.

Measured
value too
high

 5.8794
:
5.0002

11.7589
:
10.0004

 32511
:
27649

7EFF
:
6C01

Normal
range

 5.0000
:
0.0002

10.0000
:
0.0004

ON

27648
:
1

6C00
:
0001

 0.0000 0.0000 OFF 0 0000

Measured
value too
low

 -0.0002
:
-0.8794

-0.0004
:
-1.1759

 -1
:
-4864

FFFF
:
ED00

Underflow < -0.8794 < -1.1759 -32768 8000

Current input ranges

Range -20 mA ...
+20 mA

0 mA ... +20
mA

4 mA ... 20
mA

Digital value
Decimal Hex.

Overflow > 23.5178 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

23.5178
:
20.0007

23.5178
:
20.0007

22.8142
:
20.0006

32511
:
27649

7EFF
:
6C01

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US756

Range -20 mA ...
+20 mA

0 mA ... +20
mA

4 mA ... 20
mA

Digital value
Decimal Hex.

Normal
range

20.0000
:
0.0007

20.0000
:
0.0007

20.0000
:
4.0006

27648
:
1

6C00
:
0001

0.0000 0.0000 4.0000 0 0000

-0.0007
:
-20.0000

 -1
:
-27648

FFFF
:
9400

Measured
value too low

 -0.0007
:
-3.5178

3.9994
:
1.1852

-1
:
-4864

FFFF
:
ED00

-20.0007
:
-23.5178

 -27649
:
-32512

93FF
:
8100

Underflow < -23.5178 < -3.5178 < 1.1852 -32768 8000

Resistance thermometer input ranges
The represented resolution corresponds to 16 bits.

Range Pt100
-50 °C ...
+70 °C 1)

Pt100 /
Pt1000
-50 °C ...
+400 °C

Pt100
-200
°C ...
+850 °C

Ni1000
-50 °C ...
+150 °C

Cu50
-200
°C ...
+200 °C

Digital value
Decimal Hex.

Overflow > +80.0
°C

> +450.0
°C

> +850
°C

> +160.0
°C

> +200
°C

32767 7FFF

Measured
value too
high

 +450.0
°C
:
+400.1
°C

 4500
:
4001

1194
:
0FA1

 +160.0
°C
:
+150.1
°C

 1600
:
1501

0640
:
05DD

+80.0 °C
:
+70.1 °C

 800
:
701

0320
:
02BD

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 757

Range Pt100
-50 °C ...
+70 °C 1)

Pt100 /
Pt1000
-50 °C ...
+400 °C

Pt100
-200
°C ...
+850 °C

Ni1000
-50 °C ...
+150 °C

Cu50
-200
°C ...
+200 °C

Digital value
Decimal Hex.

Normal
range

:
:
:
:
+70.0 °C
:
+0.1 °C

:
+400.0
°C
:
:
:
:
+ 0.1 °C

+850.0
°C
:
:
:
:
:
+0.1 °C

:
:
:
+150.0
°C
:
:
+0.1 °C

:
:
+200.0
°C
:
:
:
+0.1 °C

8500
4000
2000
1500
700
:
1

2134
0FA0
07D0
05DC
02BC
:
1

0.0 °C 0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
:
-200 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C
2)
-200.0 °C
2)

-1
:
-500
-2000

FFFF
:
FE0C
F830

Measured
value too
low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

 -50.1 °C
:
-60.0 °C

 -501
:
-600

FE0B
:
FDA8

Under-
flow

< -60.0
°C

< -60.0
°C

< -200 °C < -60.0
°C

< -200 °C
2)

-32768 8000

1) also possible with resolution 0.01 K
2) if Cu50 with 1.426, -50 °C is valid; if Cu50 with 1.428, -200.0 °C is valid

Resistor input range
The represented resolution corresponds to 16 bits.

Range Resistor [W] Digital value
Decimal Hex.

Overflow > 55000 32767 7FFF

Measured value
too high

55000
:
50001

30413
:
27649

76CD
:
6C01

Normal range 50000
:
2
1
0

27648
:
1
1
0

6C00
:
0001
0001
0000

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US758

Thermocouple input ranges
The represented resolution corresponds to 16 bits.

Range Typ J
-210
°C ...
+1200 °C

Typ K
-270
°C ...
+1372 °C

Typ N
-270
°C ...
+1300 °C

Typ S
-50 °C ...
+1768 °C

Typ T
-270
°C ...
+400 °C

Digital value
Decimal Hex.

Overflow >
+1200.0
°C

>
+1372.0
°C

>
+1300.0
°C

>
+1768.0
°C

> +400.0
°C

32767 7FFF

Normal
range

 +1768.0
°C

 17680 4510

 +1372.0
°C

 : 13720 3598

 : +1300.0
°C

: 13000 32C8

+1200.0
°C

: : : 12000 2EE0

: : : : +400.0
°C

4000 0FA0

: : : : : : :

+0.1 °C +0.1 °C +0.1 °C +0.1 °C +0.1 °C 1 1

0.0 °C 0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C -0.1 °C -0.1 °C -0.1 °C -0.1 °C -1 FFFF

: : : : : : :

: : : -50.0 °C : -500 FE0C

-210.0 °C : : : : -2100 F7CC

 -270.0 °C -270.0 °C -270.0 °C -2700 F574

Under-
flow

< -210.0
°C

< -270.0
°C

< -270.0
°C

< -50.0
°C

< -270.0
°C

-32768 8000

Temperature-internal reference point ranges

Range Value Digital value
Decimal Hex.

Overflow > +85 °C 32767 7FFF

Normal range +85 °C 850 0352

0 °C 0 0000

-40 °C -400 FE70

Underflow < -40 °C -32768 8000

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 759

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V (UP) as well
as 1.9, 2.9, 3.9 and 4.9 for 0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed
voltage

Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at
the terminals UP/L+ and ZP/M of
the CPU/communication interface
module

Ca. 2 mA

 Current consumption from UP in
normal operation

130 mA

 Inrush current from UP (at power
up)

0.056 A2s

Max. length of analog cables, con-
ductor cross section > 0.14 mm² *)

100 m

Weight 130 g

Mounting position Horizontal or vertical with derating (max. temperature
40 °C)

Cooling The natural convection cooling must not be hindered
by cable ducts or other parts in the control cabinet.

*) Please note that an additional current of approx. 3µA flows out of the input for the wire break
detection. Depending on the internal resistance of the signal source and the wire, this can lead
to a higher measured value due to the voltage drop.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US760

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 2 groups of 4 channels each

Connections of the channels I0 ... I3 Terminals 1.0 ... 1.7 and terminals
2.0 ... 2.7

Connections of the channels I4 ... I7 Terminals 3.0 ... 3.7 and terminals
4.0 ... 4.7

Input type Bipolar (not with current or Pt100/
Pt1000/ Ni1000/ Cu50/ resistor)

Galvanic isolation Against internal supply and other
modules

Common mode input range ± 20 V DC plus signal voltage

Configurability Digital input, -50 mV ... +50 mV,
-500mV ... +500 mV, -1 V ... +1 V,
-5 V ... +5 V, -10 V ... +10 V,
0 V ... +5 V, 0 V ... +10 V,
-20 mA ... +20 mA, 0 mA ... 20 mA,
4 mA ... 20 mA, Pt100, Pt1000, Ni1000,
Cu50, resistor, thermocouple types J, K,
N, S, T (each input can be configured
individually)

Channel input resistance Voltage: > 100 kW, current: ca. 330 W

Time constant of the input filter Line-frequency suppression 50 Hz, 60
Hz, none

Indication of the input signals 1 yellow LED per channel, the bright-
ness depends on the value of the
analog signal

Conversion time 1 ms (none),
100 ms (50 Hz / 60 Hz) per channel

Resolution 16 bits including sign

Conversion error of the analog values caused by
non-linearity, adjustment error at factory and resolu-
tion within the normal range

Typ. ± 0.1 % (voltage)
± 0.3 % (current, resistor)
at 25 °C

Max
.

± 0.7 % (voltage)
± 0.9 % (current, resistor)
± 0.5 % (thermocouple type J, N,
S, T; thermocouple type K > -220
°C)
1.0 K (resistance temperature
detectors)
at 0 °C ... 60 °C or EMC disturb-
ance

Maximum permanent allowed overload (no damage)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 761

Parameter Value
 Current input When the input current exceeds the

overflow value of the measurement
range, the input impedance is switched
to high impedance for protection. The
maximum allowed overload is then 30
V. The digital value corresponds to the
overflow value. Periodically, the input
impedance is switched to the normal
value and the input current is measured.
If the input current is within the meas-
urement range, the input impedance
remains at the normal level and the dig-
ital value corresponds to the measured
current.

 Voltage input 30 V

Relationship between input signal and hex code Ä Table 168 “Channel monitoring”
on page 752

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-
circuited

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 2 groups of 4 channels each

Connections of the channels I0+ to I3+
Connections of the channels I4+ to I7+

Terminals 2.0, 2.2, 2.4, 2.6
Terminals 4.0, 4.2, 4.4, 4.6

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input delay Typ. 2 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V Typ. 1 mA

 Input voltage +15 V Typ. 3.1 mA

 Input voltage +30 V < 7 mA

Input resistance Ca. 4.8 kW

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US762

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 600 R0001 AI531, analog input module, 8 AI,

U/I/Pt100, TC, 16 bits including sign,
4-wires

Active

1SAP 450 600 R0001 AI531-XC, analog input module, 8 AI,
U/I/Pt100, TC, 16 bits including sign,
4-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 763

AO523 - Analog output module
Features

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states at the analog outputs (O0 ... O15)
4 1 green LED to display the state of the process supply voltage UP
5 2 red LEDs to display errors
6 Label
7 Terminal unit
8 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US764

Functionality
● 16 analog outputs in two groups:

– 8 channels configurable for voltage or currrent output (O0...O3 / O8...O11)
– 8 channels for voltage output (O4...O7 / O12...O15)
Resolution 12 bits including sign

Parameter Value
Resolution of the analog channels

 Voltage -10 V ... +10 V 12 bits including sign

 Current 0 mA ... 20 mA, 4 mA ... 20 mA 12 bits

LED displays 19 LEDs for signals and error messages

Internal power supply Through the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The modules are plugged on an I/O terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938. Properly position the modules and press until
they lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the I/O terminal
units and have always the same assignment, independent of the inserted module:
Terminals 1.8 ... 4.8: process voltage UP = +24 V DC
Terminals 1.9 ... 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 ... 1.7 O0- ... O7- Negative poles of the first 8

analog outputs

2.0 ... 2.7 O0+ ... O7+ Positive poles of the first 8
analog outputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 765

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Terminals Signal Description
3.0 ... 3.7 O8- ... O15- Negative poles of the fol-

lowing 8 analog outputs

4.0 ... 4.7 O8+ ... O15+ Positive poles of the following
8 analog outputs

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per AO523.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US766

Fig. 116: Connection of the module: 16 analog outputs in two groups Ä Chapter 5.2.4.4.2.4.3
“Functionality” on page 765

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

The modules provide several diagnosis functions Ä Chapter 5.2.4.4.2.4.8 “Diagnosis”
on page 774.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 767

Connection of analog output loads (Voltage, current)

UP

ZP

1.0
O0-
1.1
O1-

1.8
UP
1.9
ZP

PTC

2.0
O0+
2.1
O1+

2.8
UP
2.9
ZP

Fig. 117: Connection example

The following measuring ranges can be configured Ä Chapter 5.2.4.4.2.4.7 “Parameterization”
on page 769:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US768

Voltage -10 V ... +10 V Load max. ± 10 mA 1 channel used

Current 0 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Current 4 ... 20 mA Load 0 W ... 500 W 1 channel used

Only the channels 0 ... 3 and 8 ... 11 can be configured as current output (0 mA ... 20 mA or
4 mA ... 20 mA).
The function of the LEDs is described under Displays.
Unused analog outputs can be left open-circuited.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Analog inputs (words) 0

Analog outputs (words) 16

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
That means replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 769

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1510
1)

Word 1510
0x05e6

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length in
bytes

Internal 39 Byte 39-CPU
39-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
con-
figura
tion
Output
channel
0

See table 'Channel
configuration'
Ä Table 171 “Chan
nel configuration 3)”
on page 773

Byte Default
0x00

0 130 0x0Y06

8 Channel
moni-
toring
Output
channel
0

See table 'Channel
monitoring'
Ä Table 172 “Chan
nel monitoring 4)”
on page 773

Byte Default
0x00

0 3 0x0Y07

9 Substi-
tute
value
Output
channel
0

Output
channel
0!

0 ... 0xffff Word Default
0x0000

0 65535 0x0Y08

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US770

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

10 ... 15 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 3

See
table 'Channel con-
figuration'
Ä Table 171 “Chan
nel configuration 3)”
on page 773

and
table 'Channel
monitoring'
Ä Table 172 “Chan
nel monitoring 4)”
on page 773

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y09
to
0x0Y0E

16 ... 23 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
4 to 7

See
table 'Channel con-
figuration'
Ä Table 171 “Chan
nel configuration 3)”
on page 773

and
table 'Channel
monitoring'
Ä Table 172 “Chan
nel monitoring 4)”
on page 773

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y0F
to
0x0Y16

24 Channel
con-
figura
tion
Output
channel
8

See table 'Channel
configuration'
Ä Table 171 “Chan
nel configuration 3)”
on page 773

Byte Default
0x00

0 130 0x0Y17

25 Channel
moni-
toring
Output
channel
8

See table 'Channel
monitoring'
Ä Table 172 “Chan
nel monitoring 4)”
on page 773

Byte Default
0x00

0 3 0x0Y18

26 Substi-
tute
value
Output
channel
8

Output
channel
8!

0 ... 0xffff Word Default
0x0000

0 65535 0x0Y19

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 771

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

27
...
32

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
9 to 11

See
table 'Channel con-
figuration'
Ä Table 171 “Chan
nel configuration 3)”
on page 773

and
table 'Channel moi-
toring'
Ä Table 172 “Chan
nel monitoring 4)”
on page 773

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y1A
to
0x0Y1F

33
...
40

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
12 to 15

See
table 'Channel con-
figuration'
Ä Table 171 “Chan
nel configuration 3)”
on page 773

and
table 'Channel
monitoring'
Ä Table 172 “Chan
nel monitoring 4)”
on page 773

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y20
to
0x0Y27

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

42
0x05, 0xe7, 0x27, \
0x01, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US772

No. Name Value Internal value Internal
value, type

Default

1 Channel con-
figuration

see below
table 'Channel
configuration'
Ä Table 171 “
Channel con-
figuration 3)”
on page 773

see below
table 'Channel
configuration'
Ä Table 171 “
Channel con-
figuration 3)”
on page 773

Byte see below
table 'Channel
configuration'
Ä Table 171 “
Channel con-
figuration 3)”
on page 773

2 Channel mon-
itoring

see below
table 'Channel
monitoring'
Ä Table 172 “
Channel mon-
itoring 4)”
on page 773

see below
table 'Channel
monitoring'
Ä Table 172 “
Channel mon-
itoring 4)”
on page 773
*8)

Byte see below
table 'Channel
monitoring'
Ä Table 172 “
Channel mon-
itoring 4)”
on page 773

3 Substitute
value
Ä Table 173 “
Substitute
value”
on page 774

0 ... 65535 0 ...
0xffff

Word 0

No. Name Internal value, type
1 Channel configuration

see table 3)

Byte

2 Channel monitoring

see table 4)

Byte

Table 171: Channel configuration 3)
Internal value Operating modes of the analog outputs,

individually configurable
0 Unused (default)

128 Analog output -10 V ... +10 V

129 Analog output 0 mA ... 20 mA (not with the
channels 4 ... 7 and 12 ... 15)

130 Analog output 4 mA ... 20 mA (not with the
channels 4 ... 7 and 12 ... 15)

Table 172: Channel monitoring 4)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and

short circuit (default)

1 Open-circuit (broken wire) and short circuit

2 Plausibility

3 No monitoring

Output channels
0 and 8 (2 chan-
nels, AO523)

Output channels
1 ... 7 and 9 ... 15
(14 channels,
AO523)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 773

Table 173: Substitute value
Intended behavior of
channel 0 when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF OFF 0

Last value Last value 0

Substitute value OFF or Last value 1 ... 65535

Diagnosis
Table 174: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0 mA ... 20 mA Error identifier = 7 Error identifier = 4

4 mA ... 20 mA

-10 V ... +10 V

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 40 Different hard-/firmware
versions in the module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data exchange
failure

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US774

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched off (ON ->
OFF)

Process
voltage ON11 / 12 ADR 1 ... 10

Channel error

4 14 1 ... 10 3 0 ... 15 48 Analog value overflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 0 ... 15 7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or FBP = module type (3 = AO); COM1/COM2: 1 ...
10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 775

LED State Color LED = OFF LED = ON LED flashes
Outputs
O0 ... O7
and O8 ...
O15

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC
via terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages
in groups
(analog
inputs or
outputs
combined
into the
groups 2
and 4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module
error

Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Output ranges
Output ranges voltage and current

The represented resolution corresponds to 16 bits.

Range -10 V ... +10
V

0 mA ... 20
mA

4 mA ... 20
mA

Digital value
Decimal Hex.

Overflow > 11.7589 V > 23.5178
mA

> 22.8142
mA

> 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US776

Range -10 V ... +10
V

0 mA ... 20
mA

4 mA ... 20
mA

Digital value
Decimal Hex.

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for
0 V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

Ca. 2 mA

 Current consumption from UP at normal oper-
ation

0.15 A + output loads

 Inrush current from UP (at power up) 0.040 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.14 mm2

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at +40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other
parts in the control cabinet.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 777

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog outputs

Parameter Value
Number of channels per module 16, of which channnels O0 ... O3 and O8 ... O11

for voltage and current, and channels O4 ... 7 and
O12 ... 15 only for voltage

Distribution of channels into groups 1 group

 Channels O0- ... O7-
Channels O0+ ... O7+

Terminals 1.0 ... 1.7
Terminals 2.0 ... 2.7

 Channels O8- ... O15-
Channels O8+ ... O15+

Terminals 3.0 ... 3.7
Terminals 4.0 ... 4.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA
(each output can be configured individually), current
outputs only channels 0 ... 3 and 8 ... 11

Output resistance (load), as current
output

0 W ... 500 W

Output loadability, as voltage output Max. ± 10 mA

Indication of the output signals One LED per channel

Resolution 12 bits including sign

Settling time for full range change (resis-
tive load, output signal within specified
tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the
normal range

Typ. ± 0.5 % of full scale
at +25 °C

Max. ± 1 % of full scale (all ranges)
at 0 °C ... +60 °C or EMC disturbance

Relationship between output signal and
hex code

Ä Chapter 5.2.4.4.2.4.10 “Output ranges”
on page 776

Unused outputs Can be left open-circuited

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US778

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 200 R0001 AO523, analog output module, 16 AO,

U/I, 12 bits including sign, 2-wires
Active

1SAP 450 200 R0001 AO523-XC, analog output module,
16 AO, U/I, 12 bits including sign,
2-wires, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 779

AX521 - Analog input/output module
Features

● 4 configurable analog inputs (I0 ... I3) in 1 group (1.0 ... 2.3)
Resolution 12 bits including sign

● 4 configurable analog outputs (O0 ... O3) in 1 group (3.0 ... 4.3)
Resolution 12 bits including sign

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 4 yellow LEDs to display the signal states at the analog inputs (I0 ... I3)
4 4 yellow LEDs to display the signal states at the analog outputs (O0 ... O3)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US780

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
4 analog inputs (channel 0... channel 3), individually configurable for
● Unused (default setting)
● 0 V ... 10 V
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA
● Pt100, -50 °C ... +400 °C (2-wire)
● Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels
● Pt100, -50 °C ... +70 °C (2-wire)
● Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C ... +400 °C (2-wire)
● Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C ... +150 °C (2-wire)
● Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels
● 0 V ... 10 V with differential inputs, requires 2 channels
● -10 V ... +10 V with differential inputs, requires 2 channels
● Digital signals (digital input)
4 analog outputs (channel 0 ... channel 3), individually configurable for
● Unused (default setting)
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Parameter Value
Resolution of the analog channels

 Voltage -10 V ... +10 V 12 bits including sign

 Voltage 0 V ... 10 V 12 bits

 Current 0 mA ... 20 mA, 4 mA ... 20 mA 12 bits

 Temperature +0.1 °C

LED displays 11 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

AX521

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 781

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The modules are plugged on an I/O terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938. Properly position the modules and press until
they lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9, 3.9 and 4.9 are electrically intercon-
nected within the I/O terminal units and have always the same assignment, irrespective of the
inserted module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC

Table 175: Assignment of the other terminals
Terminals Signal Description
1.0 ... 1.3 I0- ... I3- Negative poles of the 4 analog

inputs

2.0 ... 2.3 I0+ ... I3+ Positive poles of the 4 analog
inputs

3.0 ... 3.3 O0- ... O3- Negative poles of the 4 analog
outputs

4.0 ... 4.3 O0+ ... O3+ Positive poles of the 4 analog
outputs

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US782

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (wire break), each analog input channel is pulled
up to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 783

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Fig. 118: Connection of the I/O module: 4 analog inputs and 4 analog outputs, individually
configurable Ä Chapter 5.2.4.4.2.5.3 “Functionality” on page 781

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US784

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 119: Connection example

Pt100 -50 °C ... +70 °C 2-wire configuration, one
channel used

Pt100 -50 °C ... +400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 120: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 785

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C ... +70 °C 3-wire configuration, two
channels used

Pt100 -50 °C ... +400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US786

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

+

-
UIN

AGND

Fig. 121: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 787

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

The following measuring ranges can be configured for AX521 Ä Chapter 5.2.4.4.2.5.7
“Parameterization” on page 796 and for AX522 Ä Chapter 5.2.4.4.2.6.7 “Parameterization”
on page 826:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 122: Connection example

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US788

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

AGND

Fig. 123: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 789

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V *) 1 channel used

*) if the sensor can provide this signal range
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US790

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

-

+

Fig. 124: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 791

Current 4 mA ... 20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and ZP). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US792

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

+

-
UIN

Fig. 125: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 793

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 126: Connection example

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US794

Connection of analog output loads (Voltage, current)

UP

ZP

3.0
O0-
3.1
O1-

3.8
UP
3.9
ZP

PTC

4.0
O0+
4.1
O1+

4.8
UP
4.9
ZP

Fig. 127: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 795

Voltage -10 V ... +10 V Load max. ± 10 mA 1 channel used

Current 0 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Current 4 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Only the channels 0 ... 3 can be configured as current output (0 mA ... 20 mA or
4 mA ... 20 mA).
Unused analog outputs can be left open-circuited.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 4

Counter output data (words) 4

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1505
1)

Word 1505
0x05E1

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 Not for
FBP

3 Param-
eter
length in
bytes

Internal 21 Byte 21-CPU
21-FBP

0 255 0x0Y02

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US796

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
configu-
ration
Input
channel
0

See table 'Channel
configuration'
Ä Table 177 “Chan
nel configuration 2)”
on page 799

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

See table 'Channel
monitoring'
Ä Table 178 “Chan
nel monitoring 3)”
on page 799

Byte Default
0x00

0 3 0x0Y07

9
to
14

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 to 3

See tables
'Channel configura-
tion'
Ä Table 177 “Chan
nel configuration 2)”
on page 799 and
'Channel monitor-
ing'
Ä Table 178 “Chan
nel monitoring 3)”
on page 799

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y0D

15 Channel
configu-
ration
Output
channel
0

See table 'Channel
configuration'
Ä Table 177 “Chan
nel configuration 2)”
on page 799

Byte Default
0x00

0 130 0x0Y0E

16 Channel
moni-
toring
Output
channel
0

See table 'Channel
monitoring'
Ä Table 178 “Chan
nel monitoring 3)”
on page 799

Byte Default
0x00

0 3 0x0Y0F

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 797

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

17 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0 ... 0xffff Word Default
0x0000

0 65535 0x0Y10

18 to 21 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 to 2

See tables
'Channel configura-
tion'
Ä Table 177 “Chan
nel configuration 2)”
on page 799 and
'Channel monitor-
ing'
Ä Table 178 “Chan
nel monitoring 3)”
on page 799

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y11
to
0x0Y14

22 Channel
configu-
ration
Output
channel
3

See table 'Channel
monitoring'
Ä Table 177 “Chan
nel configuration 2)”
on page 799

Byte Default
0x00

0 130 0x0Y15

23 Channel
moni-
toring
Output
channel
3

See table 'Channel
monitoring'
Ä Table 178 “Chan
nel monitoring 3)”
on page 799

Byte Default
0x00

0 3 0x0Y16

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

24
0x05, 0xe2, 0x15, \
0x01, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00;

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US798

Table 176: Input channel (4x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 177: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V ... 10 V

2 Digital input

3 Analog input 0 mA ... 20 mA

4 Analog input 4 mA ... 20 mA

5 Analog input -10 V ... +10 V

8 Analog input Pt100, -50 °C ... +400 °C (2-wire)

9 Analog input Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels *)

10 Analog input 0 ... 10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V ... +10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C ... +70 °C (2-wire)

15 Analog input Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C ... +400 °C (2-wire)

17 Analog input Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C ... +150 °C (2-wire)

19 Analog input Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Table 178: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

3 No monitoring

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 799

Table 179: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0 ... 65535 0 ...
0xffff

Word 0

Table 180: Output channels 1 ... 3 (3x)
No. Name Internal value, type
1 Channel configuration

see table 4)

Byte

2 Channel monitoring

see table 6)

Byte

Table 181: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V ... +10 V

129 Analog output 0 mA ... 20 mA (not with the channels 4 ... 7 and 12 ... 15)

130 Analog output 4 mA ... 20 mA (not with the channels 4 ... 7 and 12 ... 15)

Table 182: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

3 No monitoring

Table 183: Substitute value 6)
Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US800

Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
Table 184: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0 mA ... 20 mA Error identifier = 7 Error identifier = 4

4 mA ... 20 mA

-10 V ... +10 V

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0 mA ... 20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4 mA ... 20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10 V ... +10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

Table 185: Content of diagnosis messages
E1 ... E4 d1 d2 d3 d4 Identifier

000 ...
063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 801

E1 ... E4 d1 d2 d3 d4 Identifier
000 ...
063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1 ... 10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1 ... 10

Channel error

 AX521 AX522

4 14 1 ... 10 1 0 ... 3 0 ... 7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0...3 0 ... 7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 3 0 ... 7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 4 ... 7 8 ... 15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 4 ... 7 8 ... 15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US802

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

LED State Color LED = OFF LED = ON LED flashes
Inputs I0 ... I3 Analog

input
Yellow Input is OFF Input is ON

(brightness
depends on
the value of
the analog
signal)

--

Outputs
O0 ... O3

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC
via ter-
minal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error,
error
mes-
sages in
groups
(analog
inputs or
outputs
com-
bined
into the
groups 2
and 4)

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Module
error

Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 803

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0 V ... 10 V -10 V ...
+10 V

0 mA ...
20 mA

4 mA ...
20 mA

Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Meas-
ured
value
too high

11.7589
.
.
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
meas-
ured
value
too low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
ON

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10.0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Meas-
ured
value
too low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<-1.7593 <-11.7589 <0.0000 <1.1858 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50 °C ... +70 °C

Pt100 /
Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value
Decimal Hex.

Overflow > +80.0 °C > +450.0 °C > +160.0 °C 32767 7FFF

Measured
value too
high

 +450.0 °C
:
+ 400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

+80.0 °C
:
+70.1 °C

 800
:
701

0320
:
02BD

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US804

Range Pt100 / Pt
1000
-50 °C ... +70 °C

Pt100 /
Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value
Decimal Hex.

Normal
range

:
:
+70.0 °C
:
+0.1 °C

+400.0 °C
:
:
:
+ 0.1 °C

:
+150.0 °C
:
:
+ 0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

Range -10 V ...+10 V 0 mA ... 20 mA4 mA ... 20 mA Digital value
Decimal Hex.

Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 805

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 From UP at normal operation 0.15 A + output loads

Inrush current from UP (at power up) 0.020 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels I0- ... I3- Terminals 1.0 ... 1.3

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US806

Parameter Value
Connections of the channels I0+ ... I3+ Terminals 2.0 ... 2.3

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA, Pt100/1000, Ni1000 (each input can
be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits
Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. ± 0.5 % of full scale
at 25 °C

Max. ± 1 % of full scale (all ranges)
at 0 °C ... 60 °C or EMC disturbance

Relationship between input signal and
hex code

Ä Chapter 5.2.4.4.2.5.10.2 “Input ranges resistance
temperature detector” on page 804

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels I0+ to I3+ Terminals 2.0 to 2.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 to 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 807

Parameter Value
 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 4, all channels for voltage and current

Distribution of channels into groups 1 group of 4 channels

 Channels O0- ... O3- Terminals 3.0 ... 3.3

 Channels O0+ ... O3+ Terminals 4.0 ... 4.3

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA
(each output can be configured individually), current
outputs only channels 0 ... 3

Output resistance (load), as current
output

0 W ... 500 W

Output loadability, as voltage output Max. ± 10 mA

Indication of the output signals One LED per channel

Resolution 12 bits including sign

Settling time for full range change
(resistive load, output signal within
specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment
error at factory and resolution within
the normal range

Typ. ± 0.5 % of full scale
at 25 °C

Max. ± 1 % of full scale (all ranges)
at 0 °C ... 60 °C or EMC disturbance

Relationship between output signal and
hex code

Unused outputs Can be left open-circuited

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US808

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering Data

Part no. Description Product life cycle phase *)
1SAP 250 100 R0001 AX521, analog input/output module,

4 AI, 4 AO, U/I/Pt100,
12 bits including sign, 2-wires

Active

1SAP 450 100 R0001 AX521-XC, analog input/output
module, 4 AI, 4 AO, U/I/Pt100,
12 bits including sign, 2-wires,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 809

AX522 - Analog input/output module
Features

● 8 configurable analog inputs (I0 ... I7) in 1 group (1.0 ... 2.7)
Resolution 12 bits including sign

● 8 configurable analog outputs (O0 ... O7) in 1 group (3.0 ... 4.7)
Resolution 12 bits including sign

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states at the analog inputs (I0 ... I7)
4 8 yellow LEDs to display the signal states at the analog outputs (O0 ... O7)
5 1 green LED to display the state of the process supply voltage UP
6 2 red LEDs to display errors
7 Label
8 Terminal unit
9 DIN rail

Sign for XC version

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US810

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
8 analog inputs (channel 0 ... channel 7), individually configurable

● Unused (default setting)
● 0 V ... 10 V
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA
● Pt100, -50 °C ... +400 °C (2-wire)
● Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels
● Pt100, -50 °C ... +70 °C (2-wire)
● Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels
● Pt1000, -50 °C ... +400 °C (2-wire)
● Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels
● Ni1000, -50 °C ... +150 °C (2-wire)
● Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels
● 0 V ... 10 V with differential inputs, requires 2 channels
● -10 V ... +10 V with differential inputs, requires 2 channels
● Digital signals (digital input)

Parameter Value
Resolution of the analog channels

 Voltage -10 V ... +10 V 12 bits including sign

 Voltage 0 V ... 10 V 12 bits

 Current 0 mA ... 20 mA,
4 mA ... 20 mA

12 bits

 Temperature 0.1 °C

LED displays 19 LEDs for signals and error messages

Internal power supply Via the I/O bus interface (I/O bus)

External power supply Via the terminals ZP and UP (process voltage
24 V DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 811

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

The modules are plugged on an I/O terminal unit Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938. Properly position the modules and press until
they lock in place. The terminal units are mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 40 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8, 2.8, 3.8 and 4.8 as well as 1.9, 2.9,3.9 and 4.9 are electrically interconnected
within the I/O terminal units and always have the same assignment, independent of the inserted
module:
Terminals 1.8, 2.8, 3.8 and 4.8: process voltage UP = +24 V DC
Terminals 1.9, 2.9, 3.9 and 4.9: process voltage ZP = 0 V DC
The assignment of the other terminals:

Terminals Signal Description
1.0 ... 1.7 I0- ... I7- Negative poles of the 8 analog

inputs

2.0 ... 2.7 I0+ ... I7+ Positive poles of the 8 analog
inputs

3.0 ... 3.7 O0- ... O7- Negative poles of the 8 analog
outputs

4.0 ... 4.7 O0+ ... O7+ Positive poles of the 8 analog
outputs

The negative poles of the analog inputs are connected to each other to form an
"Analog Ground" signal for the module.

The negative poles of the analog outputs are connected to each other to form
an "Analog Ground" signal for the module.

There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (wire break), each analog input channel is pulled
up to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US812

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per I/O module.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 813

Fig. 128: Connection of the I/O module: 8 analog inputs and 8 analog outputs, individually
configurable Ä Chapter 5.2.4.4.2.6.3 “Functionality” on page 811

CAUTION!
By installing equipotential bonding conductors between the different parts of the
system, it must be ensured that the potential difference between ZP and AGND
never can exceed 1 V.

CAUTION!
The process supply voltage must be included in the grounding concept (e. g.
grounding of the negative terminal).

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the 8 analog channels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US814

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 129: Connection example

Pt100 -50 °C ... +70 °C 2-wire configuration, one
channel used

Pt100 -50 °C ... +400 °C 2-wire configuration, one
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, one
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, one
channel used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the I/O module
provides a constant current source which is multiplexed over the max. 8 (depending on the
configuration) analog channels.

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

Pt100
Pt1000
Ni1000

Fig. 130: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 815

If several measuring points are adjacent to each other, only one return line is
necessary. This saves wiring costs.

With the 3-wire configuration, two adjacent analog channels belong together (e.g. the channels
0 and 1). In this case, both channels are configured according to the desired operating mode.
The lower address must be the even address (channel 0), the next higher address must be the
odd address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e.g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C ... +70 °C 3-wire configuration, two
channels used

Pt100 -50 °C ... +400 °C 3-wire configuration, two
channels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, two
channels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, two
channels used

The I/O module performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US816

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

+

-
UIN

AGND

Fig. 131: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 817

By connecting the sensor's negative pole of the output voltage to AGND, the
galvanically isolated voltage source of the sensor is referred to ZP.

The following measuring ranges can be configured for AX521 Ä Chapter 5.2.4.4.2.5.7
“Parameterization” on page 796 and for AX522 Ä Chapter 5.2.4.4.2.6.7 “Parameterization”
on page 826:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Connection of active-type analog sensors (Current) with galvanically isolated power supply

Fig. 132: Connection example

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

Unused input channels can be left open-circuited, because they are of low resistance.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US818

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

AGND

Fig. 133: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 819

CAUTION!
The potential difference between AGND and ZP at the module must not be
greater than 1V, not even in case of long lines (see figure Terminal Assignment).

If AGND does not get connected to ZP, the sensor current flows to ZP via the
AGND line. The measuring signal is distorted, as a very small current flows
through the voltage line. The total current through the PTC should not exceed
50 mA. This measuring method is therefore only suitable for short lines and
small sensor currents. If there are bigger distances, the difference measuring
method should be applied.

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V *) 1 channel used

*) if the sensor can provide this signal range
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US820

Connection of passive-type analog sensors (Current)

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

-

+

Fig. 134: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 821

Current 4 mA ... 20 mA 1 channel used

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA for
more than 1 second to an analog input, this input is switched off by the module
(input protection). In such cases, it is recommended to protect the analog input
by a 10-volt Zener diode (in parallel to I+ and ZP). But, in general, sensors with
fast initialization or without current peaks higher than 25 mA are preferrable.

Unused input channels can be left open-circuited because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The use of differential inputs helps to considerably increase the measuring accuracy and to
avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
The ground potential at the sensors must not have too large a potential
difference with respect to ZP (max. ±1 V within the full signal range). Other-
wise, problems may occur concerning the common-mode input voltages of the
involved analog inputs.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US822

UP

ZP

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

1.0
I0+
1.1
I1+

1.8
UP
1.9
ZP

+

-
UIN

Fig. 135: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 823

The negative pole of the sensor must be grounded next to the sensor.

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

1.0
I0-
1.1
I1-

1.8
UP
1.9
ZP

PTC

2.0
I0+
2.1
I1+

2.8
UP
2.9
ZP

UP

ZP

Fig. 136: Connection example

Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US824

Connection of analog output loads (Voltage, current)

UP

ZP

3.0
O0-
3.1
O1-

3.8
UP
3.9
ZP

PTC

4.0
O0+
4.1
O1+

4.8
UP
4.9
ZP

Fig. 137: Connection example

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 825

Voltage -10 V ... +10 V Load max. ± 10 mA 1 channel used

Current 0 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Current 4 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Only the channels 0 ... 3 can be configured as current output (0 mA ... 20 mA or
4 mA ... 20 mA).
Unused analog outputs can be left open-circuited.

Internal data exchange

Digital inputs (bytes) 0

Digital outputs (bytes) 0

Counter input data (words) 8

Counter output data (words) 8

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module slot address: Y = 1 ... 7

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

1 Module
ID

Internal 1500
1)

Word 1500
0x05dc

0 65535 0x0Y01

2 Ignore
module
2)

No
Yes

0
1

Byte No
0x00

 not for
FBP

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US826

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

3 Param-
eter
length in
bytes

Internal 37 Byte 37-CPU
37-FBP

0 255 0x0Y02

4 Check
supply

Off
On

0
1

Byte On
0x01

0 1 0x0Y03

5 Analog
data
format

Default 0 Byte Default
0x00

 0x0Y04

6 Behav-
iour of
outputs
at com-
munica-
tion
errors

Off
Last
value
Substi-
tute
value

0
1+(n*5)
2+(n*5),
n £ 2

Byte Off
0x00

0 2 0x0Y05

7 Channel
configu-
ration
Input
channel
0

See table 'Channel
configuration'
Ä Table 187 “Chan
nel configuration 2)”
on page 829

Byte Default
0x00

0 19 0x0Y06

8 Channel
moni-
toring
Input
channel
0

See table 'Channel
monitoring'
Ä Table 188 “Chan
nel monitoring 3)”
on page 830

Byte Default
0x00

0 3 0x0Y07

9
to
22

Channel
configu-
ration
and
channel
moni-
toring of
the input
channels
1 ... 7

See
table 'Channel con-
figuration'
Ä Table 187 “Chan
nel configuration 2)”
on page 829

and
table 'Channel
monitoring'
Ä Table 188 “Chan
nel monitoring 3)”
on page 830

Byte
Byte

Default
0x00
0x00

0
0

19
3

0x0Y08
to
0x0Y15

23 Channel
configu-
ration
Output
channel
0

See table 'Channel
configuration'
Ä Table 187 “Chan
nel configuration 2)”
on page 829

Byte Default
0x00

0 130 0x0Y16

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 827

No. Name Value Internal
value

Internal
value,
type

Default Min. Max. EDS
Slot/
Index

24 Channel
moni-
toring
Output
channel
0

See table 'Channel
monitoring'
Ä Table 188 “Chan
nel monitoring 3)”
on page 830

Byte Default
0x00

0 3 0x0Y17

25 Substi-
tute
value
Output
channel
0

only
valid for
output
channel
0

0 ... 0xffff Word Default
0x0000

0 65535 0x0Y18

26 to 31 Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
1 ... 3

See
table 'Channel con-
figuration'
Ä Table 187 “Chan
nel configuration 2)”
on page 829

and
table 'Channel
monitoring'
Ä Table 188 “Chan
nel monitoring 3)”
on page 830

Byte
Byte

Default
0x00
0x00

0
0

130
3

0x0Y19
to
0x0Y1E

32 Channel
configu-
ration
Output
channel
4

See table 'Channel
configuration'
Ä Table 187 “Chan
nel configuration 2)”
on page 829

Byte Default
0x00

0 128 0x0Y1F

33 Channel
moni-
toring
Output
channel
4

See table 'Channel
monitoring'
Ä Table 188 “Chan
nel monitoring 3)”
on page 830

Byte Default
0x00

0 3 0x0Y20

34
to
39

Channel
configu-
ration
and
channel
moni-
toring of
the
output
channels
5 ... 7

See
table 'Channel con-
figuration'
Ä Table 187 “Chan
nel configuration 2)”
on page 829

and
table 'Channel
monitoring'
Ä Table 188 “Chan
nel monitoring 3)”
on page 830

Byte
Byte

Default
0x00
0x00

0
0

128
3

0x0Y21
to
0x0Y26

1) With CS31 and addresses less than 70 and FBP, the value is increased by 1
2) Not with FBP

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US828

GSD file:

Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

24
0x05, 0xe2, 0x15, \
0x01, 0x00, 0x00 \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, \
0x00, 0x00, 0x00, 0x00, \
0x00, 0x00, 0x00, 0x00, 0x00, 0x00;

Table 186: Input channel (4x)
No. Name Internal value, type Default
1 Channel configuration

see table 2)

Byte 0

0x00 see table 2)

2 Channel monitoring

see table 3)

Byte 0

0x00 see table 3)

Table 187: Channel configuration 2)
Internal value Operating modes of the analog inputs, individually configurable
0 Unused (default)

1 Analog input 0 V ... 10 V

2 Digital input

3 Analog input 0 mA ... 20 mA

4 Analog input 4 mA ... 20 mA

5 Analog input -10 V ... +10 V

8 Analog input Pt100, -50 °C ... +400 °C (2-wire)

9 Analog input Pt100, -50 °C ... +400 °C (3-wire), requires 2 channels *)

10 Analog input 0 ... 10 V via differential inputs, requires 2 channels *)

11 Analog input -10 V ... +10 V via differential inputs, requires 2 channels *)

14 Analog input Pt100, -50 °C ... +70 °C (2-wire)

15 Analog input Pt100, -50 °C ... +70 °C (3-wire), requires 2 channels *)

16 Analog input Pt1000, -50 °C ... +400 °C (2-wire)

17 Analog input Pt1000, -50 °C ... +400 °C (3-wire), requires 2 channels *)

18 Analog input Ni1000, -50 °C ... +150 °C (2-wire)

19 Analog input Ni1000, -50 °C ... +150 °C (3-wire), requires 2 channels *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode. The
lower address must be the even address (channel 0). The next higher address
must be the odd address (channel 1). The converted analog value is available
at the higher address (channel 1).

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 829

Table 188: Channel monitoring 3)
Internal value Monitoring
0 Plausibility, open-circuit (broken wire) and short circuit

3 No monitoring

Table 189: Output channel 0 (1 channel)
No. Name Value Internal value Internal

value, type
Default

1 Channel con-
figuration

see table 4) see table 4) Byte see table 4)

2 Channel mon-
itoring

see table 5) see table 5) Byte see table 5)

3 Substitute
value

see table 6)

0 ... 65535 0 ...
0xffff

Word 0

Table 190: Output channels 1 ... 3 (3x)
No. Name Internal value, type
1 Channel configuration

see table 4)

Byte

2 Channel monitoring

see table 6)

Byte

Table 191: Channel configuration 4)
Internal value Operating modes of the analog outputs, individually configurable
0 Unused (default)

128 Analog output -10 V ... +10 V

129 Analog output 0 mA ... 20 mA (not with the channels 4 ... 7 and 12 ... 15)

130 Analog output 4 mA ... 20 mA (not with the channels 4 ... 7 and 12 ... 15)

Table 192: Channel monitoring 5)
Internal value Monitoring
0 Plausibility, open circuit (broken wire) and short circuit (default)

3 No monitoring

Table 193: Substitute value 6)
Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US830

Intended behaviour of
output channel when the
control system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
Table 194: Possible diagnosis of I/O channels
Output range Condition

Output value in the PLC
underflow

Output value in the PLC overflow

0 mA ... 20 mA Error identifier = 7 Error identifier = 4

4 mA ... 20 mA

-10 V ... +10 V

Input range Condition
Short circuit Wire break Input value under-

flow
Input value over-
flow

0 mA ... 20 mA no diagnosis possible no diagnosis possible no diagnosis possible Error identifier = 48

4 mA ... 20 mA Error identifier = 7 Error identifier = 7 Error identifier = 7 Error identifier = 48

-10 V ... +10 V no diagnosis possible Error identifier = 48 Error identifier = 7 Error identifier = 48

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 831

Table 195: Content of diagnosis messages
E1 ... E4 d1 d2 d3 d4 Identifier

000 ...
063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in
the I/O module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 40 Different hard-/firm-
ware versions in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 43 Internal error in the
module

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data
exchange failure

Replace
I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too
low

Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage
ON11 / 12 ADR 1 ... 10

Channel error

 AX521 AX522

4 14 1 ... 10 1 0 ... 3 0 ... 7 48 Analog value over-
flow or broken wire
at an analog input

Check
input
value or
terminal

11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0...3 0 ... 7 7 Analog value under-
flow at an analog
input

Check
input
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 0 ... 3 0 ... 7 47 Short circuit at an
analog input

Check
terminal11 / 12 ADR 1 ... 10

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US832

E1 ... E4 d1 d2 d3 d4 Identifier
000 ...
063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP
diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

4 14 1 ... 10 3 4 ... 7 8 ... 15 4 Analog value over-
flow at an analog
output

Check
output
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 4 ... 7 8 ... 15 7 Analog value under-
flow at an analog
output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1 ... 10 = expansion module 1 ... 10, ADR = hardware
address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO); COM1/COM2:
1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power ON procedure, the module initializes automatically. All LEDs (except the
channel LEDs) are ON during this time.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 833

LED State Color LED = OFF LED = ON LED flashes
Inputs I0 ...
I7

Analog
input

Yellow Input is OFF Input is ON
(brightness
depends on
the value of
the analog
signal)

--

Outputs
O0 ... O7

Analog
output

Yellow Output is
OFF

Output is ON
(brightness
depends on
the value of
the analog
signal)

--

UP Process
voltage
24 V DC
via terminal

Green Process
voltage is
missing

Process
voltage OK

--

CH-ERR2 Channel
error, error
messages
in groups
(analog
inputs or
outputs
combined
into the
groups 2
and 4)
Module
error

Red No error or
process
voltage is
missing

Severe error
within the cor-
responding
group

Error on one
channel of the
groupCH-ERR4 Red

CH-ERR *) Red -- Internal error --

*) Both LEDs (CH-ERR2 and CH-ERR4) light up together

Measuring ranges
Input ranges of voltage, current and digital input

The represented resolution corresponds to 16 bits.

Range 0 V ... 10 V -10 V ...
+10 V

0 mA ...
20 mA

4 mA ...
20 mA

Digital
input

Digital value
Decimal Hex.

Overflow >11.7589 >11.7589 >23.5178 >22.8142 32767 7FFF

Meas-
ured
value
too high

11.7589
.
.
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
ON

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 OFF 0 0000

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US834

Range 0 V ... 10 V -10 V ...
+10 V

0 mA ...
20 mA

4 mA ...
20 mA

Digital
input

Digital value
Decimal Hex.

Normal
range or
meas-
ured
value
too low

-0.0004
-1.7593

-0.0004
:
:
-10.0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Meas-
ured
value
too low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Under-
flow

<-1.7593 <-11.7589 <0.0000 <1.1858 -32768 8000

Input ranges resistance temperature detector

Range Pt100 / Pt
1000
-50 °C ... +70 °C

Pt100 /
Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value
Decimal Hex.

Overflow > +80.0 °C > +450.0 °C > +160.0 °C 32767 7FFF

Measured
value too
high

 +450.0 °C
:
+ 400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

+80.0 °C
:
+70.1 °C

 800
:
701

0320
:
02BD

Normal
range

:
:
+70.0 °C
:
+0.1 °C

+400.0 °C
:
:
:
+ 0.1 °C

:
+150.0 °C
:
:
+ 0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 835

Output ranges voltage and current
The represented resolution corresponds to 16 bits.

Range -10 V ...+10 V 0 mA ... 20 mA4 mA ... 20 mA Digital value
Decimal Hex.

Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for +24 V
(UP) as well as 1.9, 2.9, 3.9 and 4.9 for 0
V (ZP)

 Rated value 24 V DC

 Max. ripple 5 %

 Protection against reversed voltage Yes

 Rated protection fuse on UP 10 A fast

 Galvanic isolation Yes, per module

Current consumption

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US836

Parameter Value
 From 24 V DC power supply at the termi-

nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

Ca. 2 mA

 From UP at normal operation 0.15 A + output loads

Inrush current from UP (at power up) 0.020 A2s

Max. length of analog cables, conductor cross sec-
tion > 0.14 mm²

100 m

Weight 300 g

Mounting position Horizontal or vertical with derating
(output load reduced to 50 % at 40 °C
per group)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the analog inputs

Parameter Value
Number of channels per module 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels I0- ...I7- Terminals 1.0 ... 1.7

Connections of the channels I0+ ... I7+ Terminals 2.0 ... 2.3

Input type Bipolar (not with current or Pt100/Pt1000/Ni1000)

Galvanic isolation Against internal supply and other modules

Configurability 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA, Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
current: 100 µs

Indication of the input signals One LED per channel

Conversion cycle 2 ms (for 8 inputs + 8 outputs), with Pt/Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits
Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. ± 0.5 % of full scale
at 25 °C

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 837

Parameter Value
Max. ± 1 % of full scale (all ranges)

at 0 °C ... 60 °C or EMC disturbance

Unused voltage inputs Are configured as "unused"

Unused current inputs Have a low resistance, can be left open-circuited

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital Inputs

Parameter Value
Number of channels per module Max. 8

Distribution of channels into groups 1 group of 8 channels

Connections of the channels I0+ ... I7+ Terminals 2.0 ... 2.7

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Input signal delay Typ. 8 ms, configurable from 0.1 ms ... 32 ms

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 4.3 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 8, all channels for voltage, the first 4 channels

also for current

Distribution of channels into groups 1 group of 8 channels

 Channels O0- ... O7- Terminals 3.0 ... 3.7

 Channels O0+ ... O7+ Terminals 4.0 ... 4.7

Output type Bipolar with voltage, unipolar with current

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA (each output can be config-
ured individually), current outputs only chan-
nels 0 ... 3

Output resistance (load), as current output 0 W ... 500 W

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US838

Parameter Value
Output loadability, as voltage output Max. ± 10 mA

Indication of the output signals One LED per channel

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. ± 0.5 % of full scale
at 25 °C

Max. ± 1 % of full scale (all ranges)
at 0 °C ... 60 °C or EMC disturbance

Relationship between output signal and hex
code

Unused outputs Can be left open-circuited

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 839

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 000 R0001 AX522, analog input/output module,

8 AI, 8 AO, U/I/Pt100,
12 bits including sign, 2-wires

Active

1SAP 450 000 R0001 AX522-XC, analog input/output
module, 8 AI, 8 AO, U/I/Pt100,
12 bits including sign, 2-wires,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.4.5 Digital/Analog I/O modules
5.2.4.5.1 S500 and S500-XC
DA501 - Digital/Analog input/output module
Features

● 16 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● 4 analog inputs, voltage, current and RTD.

Resolution 12 bits including sign
● 2 analog outputs, voltage and current

Resolution 12 bits including sign
● Fast counter

● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US840

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states of the digital inputs DI0 ... DI15
4 4 yellow LEDs to display the signal states of the analog inputs AI0 ... AI3
5 2 yellow LEDs to display the signal states of the analog outputs AO0 ... AO1
6 8 yellow LEDs to display the signal state of the configurable digital inputs/outputs

DC16 ... DC23
7 1 green LED to display the state of the process supply voltage UP
8 4 red LEDs to display errors
9 Label
10 Terminal unit
11 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Functionality
● 16 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 841

● 4 analog inputs, voltage, current and RTD.
Resolution 12 bits including sign

● 2 analog outputs, voltage and current
Resolution 12 bits including sign

● Fast counter

Parameter Value
Fast Counter Integrated, many configurable operating

modes

Power supply From the process supply voltage UP

LED displays For system displays, signal states, errors and
power supply

Internal supply voltage Via the I/O bus interface (I/O bus)

External supply voltage Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542 for I/O modules” on page 938.
The assignment of the terminals:

Terminal Signal Description
1.0 DI0 Signal of the digital input DI0

1.1 DI1 Signal of the digital input DI1

1.2 DI2 Signal of the digital input DI2

1.3 DI3 Signal of the digital input DI3

1.4 DI4 Signal of the digital input DI4

1.5 DI5 Signal of the digital input DI5

1.6 DI6 Signal of the digital input DI6

1.7 DI7 Signal of the digital input DI7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US842

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Terminal Signal Description
2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 AI0+ Positive pole of analog input signal 0

3.1 AI1+ Positive pole of analog input signal 1

3.2 AI2+ Positive pole of analog input signal 2

3.3 AI3+ Positive pole of analog input signal 3

3.4 AI- Negative pole of analog input signals 0 to 3

3.5 AO0+ Positive pole of analog output signal 0

3.6 AO1+ Positive pole of analog output signal 1

3.7 AO- Negative pole of analog output signals 0
and 1

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 C16 Signal of the configurable digital input/
output C16

4.1 C17 Signal of the configurable digital input/
output C17

4.2 C18 Signal of the configurable digital input/
output C18

4.3 C19 Signal of the configurable digital input/
output C19

4.4 C20 Signal of the configurable digital input/
output C20

4.5 C21 Signal of the configurable digital input/
output C21

4.6 C22 Signal of the configurable digital input/
output C22

4.7 C23 Signal of the configurable digital input/
output C23

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DA501.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 843

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

CAUTION!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalization of a
low resistance to avoid high potential differences between different parts of the
plant.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US844

DI0 1.0

DI1 1.1

DI2 1.2

DI3 1.3

DI4 1.4

DI5 1.5

DI6 1.6

DI7 1.7

DI8 2.0

DI9 2.1

DI10 2.2

DI11 2.3

DI12 2.4

DI13 2.5

DI14 2.6

DI15 2.7

+-AI0 3.0

+-AI1 3.1

+-AI2 3.2

+-AI3 3.3

AO03.5

AO13.7

AI- 3.4

AO-3.8

DC164.0

DC174.1

DC184.2

DC194.3

DC204.4

DC214.5

DC224.6

DC234.7

PTCPTC

1.8
3.82.8

4.8UP +24 V DC

1.9
3.92.9

4.9ZP 0 V

+-

+-

Fig. 138: Terminal assignment of the module

The module provides several diagnosis functions Ä Chapter 5.2.4.5.1.1.8 “Diagnosis”
on page 861.

Connection of the digital inputs
The following figure shows the connection of the digital input DI0. Proceed with the digital inputs
DI1 ... DI15 in the same way.

Fig. 139: Connection of the module

The meaning of the LEDs is described in the Displays chapter Ä Chapter 5.2.4.5.1.1.9 “State
LEDs” on page 863.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 845

Connection of the configurable digital inputs/outputs

Fig. 140: Connection of configurable digital inputs/outputs to the module (DC16 ... DC23) (DC16
as an input, DC17 as an output)

CAUTION!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DA501.
If the inputs are used as fast counter inputs, connect a 470 W / 1 W resistor in
series to inputs DC16/DC17.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA501
provides a constant current source which is multiplexed over the max. 4 analog input channels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US846

Fig. 141: Connection of resistance thermometers in 2-wire configuration to the analog inputs
(AI0 to AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Pt100 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.4.5.1.1.9 “State LEDs” on page 863.
The module DA501 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA501
provides a constant current source which is multiplexed over the max. 4 analog input channels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 847

Fig. 142: Connection of resistance thermometers in 3-wire configuration to the analog inputs
(AI0 ... AI3)

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Pt100 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.4.5.1.1.8 “Diagnosis” on page 861.
0
The module DA501 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US848

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

Fig. 143: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.4.5.1.1.9 “State LEDs” on page 863.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 849

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

Fig. 144: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.4.5.1.1.9 “State LEDs” on page 863.
Unused input channels can be left open-circuited, because they are of low resistance.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US850

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

Fig. 145: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs (AI0 ... AI3)

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 5.2.4.5.1.1.9 “State LEDs” on page 863.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 851

Connection of passive-type analog sensors (Current) to the analog inputs

Fig. 146: Connection of passive-type analog sensors (current) to the analog inputs (AI0 to AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Current 4 mA ... 20 mA 1 channel used

For a description of function of the LEDs, please refer to the Diagnosis and displays / Displays
chapter Ä Chapter 5.2.4.5.1.1.9 “State LEDs” on page 863.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Only use sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US852

The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 147: Connection of active-type analog sensors (voltage) to differential analog inputs (AI0 ...
AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 5.2.4.5.1.1.9 “State LEDs” on page 863.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 853

Fig. 148: connection of digital sensors to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:

Digital input 24 V 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 5.2.4.5.1.1.9 “State LEDs” on page 863.

Connection of analog output loads (Voltage)

Fig. 149: Connection of analog output loads (voltage) to the analog outputs (AO0 and AO1)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US854

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856 :

Voltage -10 V ... +10 V Load ± 10 mA max. 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 5.2.4.5.1.1.9 “State LEDs” on page 863.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)

Fig. 150: Connection of analog output loads (current) to the analog outputs (AO0 and AO1)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.1.7 “Parameterization”
on page 856:
0

Current 0 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Current 4 mA ... 20 mA Load 0 W ... 500 W 1 channel used

For a description of the function of the LEDs, please refer to the Diagnosis and displays /
Displays chapter Ä Chapter 5.2.4.5.1.1.9 “State LEDs” on page 863.
Unused analog outputs can be left open-circuited.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 1 3

Analog inputs (words) 4 4

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 855

 Without the fast counter With the fast counter (only
with AC500)

Digital outputs (words) 2 2

Counter input data (words) 0 4

Counter output data (words) 0 8

I/O configuration
The module does not store configuration data itself. It gets its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Module ID
1)

Internal 1810 WORD 1810 0x0Y01

Ignore module

see table 2)

Internal Yes
No

BYTE No not for FBP

Parameter
length

Internal 8 BYTE 8 0xY02

Check supply off 0 BYTE 1 0xY03

on 1

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US856

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Fast counter
3)

0
:
10
4)

0
:
10

BYTE 0 not for FBP

Behavior out-
puts at comm.
error
5)

Off Last value
Last value 5
sec Last value
10 sec Substi-
tute value
Substitute
value 5 sec
Substitute
value 10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

0x0Y07

2) Setting Description

 On Error LED lights up at errors of all error classes, Failsafe
mode off

 Off by E4 Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe mode off

 Off by E3 Error LED lights up at errors of error classes E1 and E2,
Failsafe mode off

 On +Failsafe Error LED lights up at errors of all error classes, Failsafe
mode on *)

 Off by E4 + Failsafe Error LED lights up at errors of error classes E1, E2 and E3,
Failsafe mode on *)

 Off by E3 + Failsafe Error LED lights up at errors of error classes E1 and E2,
Failsafe mode on *)

Remarks:
1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic process
data transmission
2) Not for FBP
3) With FBP or CS31 without the parameter "Fast Counter"

The fast counter of the module does not work if the module is connected to an
FBP interface module or CS31 bus module.

4) For counter operating modes, please refer to the description of the fast counter Ä Chapter
5.2.4.3.2.9 “Fast counter” on page 606
5) The parameter Behavior outputs at comm. error is only analyzed if the Failsafe-mode is ON.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 857

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0x0Y05

Detect short
circuit at out-
puts

Off
On

0
1

BYTE On
0x01

0x0Y06

Substitute
value at
output

0 ... 255 00h ... FFh BYTE 0
0x0000

0x0Y08

*) The parameters Behavior DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the analog part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Analog data
format

Standard
Reserved

0
255

BYTE 0 0x0Y04

*) The parameter Behavior AO at comm. error is only analyzed if the Failsafe mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 0,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 196 “
Channel con-
figuration”
on page 859

see table
'Channel con-
figuration'
Ä Table 196 “
Channel con-
figuration”
on page 859

BYTE 0 0x0Y09

Input 0,
Check
channel

see table
'Channel
monitoring'
Ä Table 197 “
Channel mon-
itoring”
on page 859

see table
'Channel
monitoring'
Ä Table 197 “
Channel mon-
itoring”
on page 859

BYTE 0 0x0Y0A

: : : : :

: : : : :

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US858

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 3,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 196 “
Channel con-
figuration”
on page 859

see table
'Channel con-
figuration'
Ä Table 196 “
Channel con-
figuration”
on page 859

BYTE 0 0x0Y0F

Input 3,
Check
channel

see table
'Channel
monitoring'
Ä Table 197 “
Channel mon-
itoring”
on page 859

see table
'Channel
monitoring'
Ä Table 197 “
Channel mon-
itoring”
on page 859

BYTE 0 0x0Y10

Table 196: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 V ... 10 V

2 Digital input

3 0 mA ... 20 mA

4 4 mA ... 20 mA

5 -10 V ... +10 V

8 2-wire Pt100 -50 °C ... +400 °C

9 3-wire Pt100 -50 °C ... +400 °C *)

10 0 V ... 10 V (voltage diff.) *)

11 -10 V ... +10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C ... +70 °C

15 3-wire Pt100 -50 °C ... +70 °C *)

16 2-wire Pt1000 -50 °C ... +400 °C

17 3-wire Pt1000 -50 °C ... +400 °C *)

18 2-wire Ni1000 -50 °C ... +150 °C

19 3-wire Ni1000 -50 °C ... +150 °C *)

 *) In the operating modes with 3-wire configuration or with differ-
ential inputs, two adjacent analog inputs belong together (e.g. the
channels 0 and 1). In these cases, both channels are configured in
the desired operating mode. The lower address must be the even
address (channel 0). The next higher address must be the odd
address (channel 1). The converted analog value is available at the
higher address (channel 1).

Table 197: Channel monitoring
Internal Value Check Channel
0 (default) Plausibility, wire break, short circuit

3 Not used

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 859

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

0
Output 0,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 198 “
Channel con-
figuration”
on page 860

see table
'Channel con-
figuration'
Ä Table 198 “
Channel con-
figuration”
on page 860

BYTE 0 0x0Y11

Output 0,
Check
channel

see table
'Channel
monitoring'
Ä Table 199 “
Channel mon-
itoring”
on page 861

see table
'Channel
monitoring'
Ä Table 199 “
Channel mon-
itoring”
on page 861

BYTE 0 0x0Y12

Output 0,
Substitute
value

see table
'Substitute
value'
Ä Table 200 “
Substitute
value”
on page 861

see table
'Substitute
value'
Ä Table 200 “
Substitute
value”
on page 861

WORD 0 0x0Y13

Output 1,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 198 “
Channel con-
figuration”
on page 860

see table
'Channel con-
figuration'
Ä Table 198 “
Channel con-
figuration”
on page 860

BYTE 0 0x0Y14

Output 1,
Check
channel

see table
'Channel
monitoring'
Ä Table 199 “
Channel mon-
itoring”
on page 861

see table
'Channel
monitoring'
Ä Table 199 “
Channel mon-
itoring”
on page 861

BYTE 0 0x0Y15

Output 1,
Substitute
value

see table
'Substitute
value'
Ä Table 200 “
Substitute
value”
on page 861

see table
'Substitute
value'
Ä Table 200 “
Substitute
value”
on page 861

WORD 0 0x0Y16

Table 198: Channel configuration
Internal value Operating modes of the analog outputs, individually configurable
0 (default) Not used

128 -10 V ... +10 V

129 0 mA ... 20 mA

130 4 mA ... 20 mA

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US860

Table 199: Channel monitoring
Internal value Check channel
0 Plausibility, wire break, short circuit

3 None

Table 200: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of
the module parameter
"Behavior of outputs in
case of a communication
error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

0
3

14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 40 Different hard-/firmware
versions in the module11 / 12 ADR 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 861

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1 ... 10 31 31 43 Internal error in the
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data exchange
failure11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1 ... 10

Channel error DA501

4 14 1 ... 10 2 22 ... 29
 5)

47 Short circuit at a digital
output

Check
connection11 / 12 ADR 1 ... 10

Channel error DA501

4 14 1 ... 10 1 16 ... 19
 6)

48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 16 ... 19
 6)

7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 16 ... 19
 6)

47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 20 ... 21
 7)

4 Analog value overflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 20 ... 21
 7)

7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US862

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself,
1 ... 10 = communication interface module 1 ... 10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1 ... 10 =
expansion 1 ... 10
Channel error: I/O bus or FBP = module type (1 = AI, 3 = AO, 4 = DC); COM1/
COM2: 1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = module itself" is output.
5) Ch = 22 ... 29 indicates the digital inputs/outputs DC16 ... DC23
6) Ch = 16 ... 19 indicates the analog inputs AI0 ... AI3
7) Ch = 20 ... 21 indicates the analog outputs AO0 ... AO1

State LEDs

LED State Color LED = OFF LED = ON LED flashes
DI0 ... DI15 Digital input Yellow Input is OFF Input is ON 1) --

DC16 ...
DC23

Digital input/
output

Yellow Input/output
is OFF

Input/output is
ON 1)

--

AI0 ... AI3 Analog input Yellow Input is OFF Input is ON 2) --

AO0 ...
AO1

Analog
output

Yellow Output is
OFF

Output is ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Severe error
within the cor-
responding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 3) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) Brightness depends on the value of the analog signal
3) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 863

Measuring ranges
Input ranges voltage, current and digital input

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10,0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 1.7593 < -11.7589 < 0.0000 < 1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50 °C ... +70 °C

Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Overflow > +80.0 °C > +450.0 °C > +160.0 °C

Measured value too high +450.0 °C
:
+ 400.1 °C

 +160.0 °C
:
+ 150.1 °C

+80.0 °C
:
+ 70.1 °C

Normal range :
:
+70.0 °C
:
+ 0.1 °C

+400.0 °C
:
:
:
+ 0.1 °C

+150.0 °C
:
:
+ 0.1 °C

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US864

Range Pt100 / Pt1000
-50 °C ... +70 °C

Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

0.0 °C 0.0 °C 0.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

Measured value too low -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 4500
:
4001

1194
:
0FA1

1600
:
1501

0640
:
05DD

800
:
701

0320
:
02BD

Normal range 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0 0000

-1
:
-500

FFFF
:
FE0C

Measured value too low -501
:
-600

FE0B
:
FDA8

Underflow -32768 8000

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 865

Output ranges voltage and current

Range -10 V ... +10 V 0 mA ... 20 mA 4 mA ... 20 mA
Overflow >11.7589 V >23.5178 mA >22.8142 mA

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

0.0000 V 0.0000 mA 4.0000 mA

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

Underflow 0 V 0 mA 0 mA

Range Digital value
 Decimal Hex.
Overflow > 32511 > 7EFF

Value too high 32511
:
27649

7EFF
:
6C01

Normal range 27648
:
1

6C00
:
0001

0 0000

-1
-6912
-27648

FFFF
E500
9400

Value too low -27649
:
-32512

93FF
:
8100

Underflow < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US866

The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24
V DC) and 1.9, 2.9, 3.9 and 4.9 for ZP (0 V
DC)

 Protection against reverse voltage yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.5 A per output

 From 24 V DC power supply at the terminals
UP/L+ and ZP/M of the CPU/communication
interface module

ca. 2 mA

 Inrush current from UP (at power-up) 0.04 A2s

Galvanic isolation Yes, per module

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal mounting or vertical with
derating (output load reduced to 50 % at
+40 °C)

Cooling The natural convection cooling must not
be hindered by cable ducts or other parts
in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 16

Distribution of the channels into groups 2 groups of 8 channels

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 867

Parameter Value
Terminals of the channels DI0 ... DI7 Terminals 1.0 ... 1.7

Terminals of the channels DI8 ... DI15 Terminals 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Monitoring point of input indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable digital I/O channels can be defined as input or output by the user
program. This is done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC16 ... DC23 Terminals 4.0 ... 4.7

If the channels are used as outputs

 Channels DC16 ... DC23 Terminals 4.0 ... 4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation Yes, per module

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US868

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 ... DC23 Terminals 4.0 ... 4.7

Reference potential for all inputs Terminals 1.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable 0.1 ... 32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 shielded 1000 m

 unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 ...DC23 Terminals 4.0 ... 4.7

Reference potential for all outputs Terminals 1.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the supply voltage, signal
name UP)

Output voltage for signal 1 UP (-0.8 V)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 869

Parameter Value
Output delay (0->1 or 1->0) On request

Output current

 rated value per channel 500 mA at UP = 24 V

 max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 151: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to an
FBP interface module or CS31 bus module.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US870

Parameter Value
Used inputs DC16 / DC17

Used outputs DC18

Counting frequency Max. 50 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ ... AI3+ Terminals 3.0 ... 3.3

Reference potential for AI0+ ... AI3+ Terminal 3.4 (AI-) for voltage and RTD
measurement
Terminal 1.9, 2.9, 3.9 and 4.9 for current
measurement

Input type

 Unipolar Voltage 0 V ... 10 V, current or Pt100/
Pt1000/Ni1000

 Bipolar Voltage -10 V ... +10 V

Configurability 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA, Pt100/1000, Ni1000 (each
input can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on
the value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs
Pt/Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits
Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): 0.1
°C

Conversion error of the analog values caused
by non-linearity, adjustment error at factory and
resolution within the normal range

Typ. 0.5 %, max. 1 %
For XC version below 0 °C and above +60
°C: on request

Relationship between input signal and hex code
Ä Chapter 5.2.4.5.1.1.10.2 “Input
ranges resistance temperature detector”
on page 864

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 871

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ ... AI3+ Terminals 3.0 ... 3.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+ ... AO1+ Terminals 3.5 and 3.6

Reference potential for AO0+ ... AO1+ Terminal 3.7 (AO-) for voltage output
Terminals 1.9, 2.9, 3.9 and 4.9 for current
output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA
(each output can be configured individually)

Output resistance (load) as current output 0 W ... 500 W

Output loadability as voltage output ± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US872

Parameter Value
Relationship between input signal and hex
code

Ä Chapter 5.2.4.5.1.1.10.3 “Output ranges
voltage and current” on page 866

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 3 5

Digital outputs (bytes) 1 3

Analog inputs (words) 4 4

Analog outputs (words) 2 2

Counter input data (words) 0 4

Counter output data (words) 0 8

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 873

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 700 R0001 DA501, digital/analog input/output

module, 16 DI, 8 DC, 4 AI, 2 AO
Active

1SAP 450 700 R0001 DA501-XC, digital/analog input/output
module, 16 DI, 8 DC, 4 AI, 2 AO,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

DA502 - Digital/Analog input/output module
Features

● 16 digital outputs, 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● 4 analog inputs, voltage, current and RTD, resolution 12 bits including sign
● 2 analog outputs, voltage and current, resolution 12 bits including sign
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US874

1 I/O bus
2 Allocation between terminal number and signal name
3 16 yellow LEDs to display the signal states of the digital outputs DO0 ... DO15
4 4 yellow LEDs to display the signal states of the analog inputs AI0 ... AI3
5 2 yellow LEDs to display the signal states of the analog outputs AO0 ... AO1
6 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs

DC16 ... DC23
7 1 green LED to display the state of the process supply voltage UP
8 4 red LEDs to display errors
9 Label
10 Terminal unit
11 DIN rail

Sign for XC version

Intended purpose
The device can be used as a decentralized I/O extension module for S500 communication
interface modules (e. g. CI592-CS31, CI501-PNIO, CI541-DP, CI581-CN) or as a centralized
extension module for AC500 CPUs.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 875

Functionality

Parameter Value
Fast counter Integrated, many configurable operating

modes

Power supply From the process supply voltage UP

LED displays For system displays, signal states, errors and
power supply

Internal supply voltage Via the I/O bus interface (I/O bus)

External supply voltage Via terminals UP and ZP (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515,
TU516, TU541 and TU542 for I/O modules”
on page 938

Connections

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542 for I/O modules” on page 938.
The assignment of the terminals:

Terminal Signal Description
1.0 DO0 Signal of the digital output DO0

1.1 DO1 Signal of the digital output DO1

1.2 DO2 Signal of the digital output DO2

1.3 DO3 Signal of the digital output DO3

1.4 DO4 Signal of the digital output DO4

1.5 DO5 Signal of the digital output DO5

1.6 DO6 Signal of the digital output DO6

1.7 DO7 Signal of the digital output DO7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DO8 Signal of the digital output DO8

2.1 DO9 Signal of the digital output DO9

2.2 DO10 Signal of the digital output DO10

2.3 DO11 Signal of the digital output DO11

2.4 DO12 Signal of the digital output DO12

2.5 DO13 Signal of the digital output DO13

2.6 DO14 Signal of the digital output DO14

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US876

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Terminal Signal Description
2.7 DO15 Signal of the digital output DO15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 AI0+ Positive pole of analog input signal 0

3.1 AI1+ Positive pole of analog input signal 1

3.2 AI2+ Positive pole of analog input signal 2

3.3 AI3+ Positive pole of analog input signal 3

3.4 AI- Negative pole of analog input signals 0 ... 3

3.5 AO0+ Positive pole of analog output signal 0

3.6 AO1+ Positive pole of analog output signal 1

3.7 AO- Negative pole of analog output signals 0 and 1

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DC16 Signal of the configurable digital input/output
DC16

4.1 DC17 Signal of the configurable digital input/output
DC17

4.2 DC18 Signal of the configurable digital input/output
DC18

4.3 DC19 Signal of the configurable digital input/output
DC19

4.4 DC20 Signal of the configurable digital input/output
DC20

4.5 DC21 Signal of the configurable digital input/output
DC21

4.6 DC22 Signal of the configurable digital input/output
DC22

4.7 DC23 Signal of the configurable digital input/output
DC23

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a CPU). Thus, the current consumption from
24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/communication interface
module increases by 2 mA per DA502.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 877

WARNING!
Removal/Insertion under power
Removal or insertion under power is permissible only if all conditions for hot
swapping are fullfilled.

Ä Chapter 4.9.3 “Replace an I/O module with hot swap” on page 153

The devices are not designed for removal or insertion under power when the
conditions for hot swap do not apply. Because of unforeseeable consequences,
it is not allowed to plug in or unplug devices with the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while they are energized in a hazardous
location could result in an electric arc, which could create an ignition source
resulting in fire or explosion.
Prior to proceeding, make sure that power is been disconnected and that the
area has been thoroughly checked to ensure that flammable materials are not
present.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

NOTICE!
Risk of damaging the PLC modules!
The PLC modules must not be removed while the plant is connected to a power
supply.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove or replace a module.

CAUTION!
Risk of imprecise and faulty measurements!
Analog signals may be distorted seriously by external electromagnetic influ-
ences.
Use shielded wires when wiring analog signal sources. The cable shield must
be grounded at both ends of the cable. Provide a potential equalization of a
low resistance to avoid high potential differences between different parts of the
plant.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US878

+-AI0 3.0

+-AI1 3.1

+-AI2 3.2

+-AI3 3.3

AO03.5

AO13.6

AI- 3.4

AO-3.7

PTCPTC

1.8
3.82.8

UP +24 V DC

1.9
3.92.9

ZP 0 V

+-

+-

DC164.0

DC174.1

DC184.2

DC194.3

DC204.4

DC214.5

DC224.6

DC234.7

4.8

4.9

D001.0

D011.1

DO21.2

DO31.3

DO41.4

DO51.5

DO61.6

DO71.7

D082.0

D092.1

DO102.2

DO112.3

DO122.4

DO132.5

DO142.6

DO152.7

Fig. 152: Terminal assignment of the module

The module provides several diagnosis functions Ä Chapter 5.2.4.5.1.2.8 “Diagnosis”
on page 895.

Connection of the digital outputs

Fig. 153: Connection of the digital outputs (DO0 ... DO15)

For a description of the meaning of the LEDs, please refer to the Displays chapter Ä Chapter
5.2.4.5.1.2.9 “State LEDs” on page 897.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 879

Connection of the configurable digital inputs/outputs

Fig. 154: Connection of the configurable digital input/outputs (DC16 ... DC23) (DC16 as an
input, DC17 as an output)

NOTICE!
Risk of influences to the connected sensors!
Some sensors may be influenced by the deactivated module outputs of DA502.
Connect a 470 W / 1 W resistor in series to inputs DC16/DC17 if they are used
as fast counter inputs to avoid any influences.

For a description of tthe meaning of the LEDs, please refer to the Displays Ä Chapter
5.2.4.5.1.2.9 “State LEDs” on page 897 chapter.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA502
provides a constant current source which is multiplexed over max. 4 analog input channels.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US880

Fig. 155: Connection of resistance thermometers in 2-wire configuration to the analog inputs
(AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Pt100 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, 1
channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
The module DA502 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module DA502
provides a constant current source which is multiplexed over max. 4 analog input channels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 881

Fig. 156: Connection of resistance thermometers in 3-wire configuration to the analog inputs
(AI0 ... AI3)

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Pt100 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, 2 chan-
nels used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
The module DA502 performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US882

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

Fig. 157: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 883

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

Fig. 158: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
Unused input channels can be left open-circuited, because they are of low resistance.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US884

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

Fig. 159: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs (AI0 ... AI3)

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ±1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 885

Connection of passive-type analog sensors (Current) to the analog inputs

Fig. 160: Connection of passive-type analog sensors (current) to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Current 4 mA ... 20 mA 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.

NOTICE!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US886

The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too large a potential difference
with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Fig. 161: Connection of active-type analog sensors (voltage) to differential analog inputs (AI0 ...
AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 887

Fig. 162: connection of digital sensors to the analog input (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898 :

Digital input 24 V 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.

Connection of analog output loads (Voltage)

Fig. 163: Connection of analog output loads (voltage) to the analog outputs (AO0 ... AO1)

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US888

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890 Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Voltage -10 V ... +10 V Load ± 10 mA max. 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)

Fig. 164: Connection of analog output loads (current) to the analog outputs (AO0 ... AO1)

The following measuring ranges can be configured Ä Chapter 5.2.4.5.1.2.7 “Parameterization”
on page 890Ä Chapter 5.2.4.5.1.2.10 “Measuring ranges” on page 898:

Current 0 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Current 4 mA ... 20 mA Load 0 W ... 500 W 1 channel used

For a description of the function of the LEDs, please refer to Diagnosis and displays / Displays
Ä Chapter 5.2.4.5.1.2.9 “State LEDs” on page 897.
Unused analog outputs can be left open-circuited.

Internal data exchange

 Without the fast counter With the fast counter (only
with AC500)

Digital inputs (bytes) 1 1

Digital outputs (bytes) 3 3

Analog inputs (words) 4 4

Analog outputs (words) 2 2

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 889

 Without the fast counter With the fast counter (only
with AC500)

Counter input data (words) 0 5

Counter output data (words) 0 9

I/O configuration
The module itself does not store configuration data. It draws its parameterization data from the
master device of the I/O bus (CPU or communication interface module) during power-up of the
system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Module ID 1) Internal 1815 WORD 1815 0x0Y01

Ignore module Internal Yes
No

BYTE No

Parameter
length

Internal 8 BYTE 8 0xY02

Check supply off 0 BYTE 1 0xY03

on 1

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US890

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Fast counter
3)

0
:

10 2)

0
:
10

BYTE 0 Not for FBP

Behavior out-
puts at comm.
error 5)

Off Last value
Last value 5 s
Last value 10
s Substitute
value
Substitute
value 5 s
Substitute
value 10 s

0
1 6
11
2
7
12

BYTE Off
0x00

0x0Y07

2) Setting Description

 On Error LED lights up at errors of all error
classes, Failsafe mode off

 Off by E4 Error LED lights up at errors of error
classes E1, E2 and E3, Failsafe mode off

 Off by E3 Error LED lights up at errors of error
classes E1 and E2, Failsafe mode off

 On +Failsafe Error LED lights up at errors of all error
classes, Failsafe mode on *)

 Off by E4 + Failsafe Error LED lights up at errors of error
classes E1, E2 and E3, Failsafe mode on
*)

 Off by E3 + Failsafe Error LED lights up at errors of error
classes E1 and E2, Failsafe mode on *)

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission
2) For a description of the counter operating modes, please refer to the 'Fast Counter' section
Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606
3) With CS31 without the parameter "Fast Counter"

The fast counter of the module does not work if the module is connected to a
CS31 bus module.

5) The parameter Behavior outputs at comm. error is only analyzed if the Failsafe mode is ON.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 891

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

0x0Y05

Detect short
circuit at out-
puts

Off
On

0
1

BYTE On
0x01

0x0Y06

Substitute
value at
output

0 ... 255 00h ... FFh BYTE 0
0x0000

0x0Y08

*) The parameters Behavior DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the analog part

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Analog data
format

Standard
Reserved

0
255

BYTE 0 0x0Y04

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 0,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 201 “
Channel con-
figuration”
on page 893

see table
'Channel con-
figuration'
Ä Table 201 “
Channel con-
figuration”
on page 893

BYTE 0 0x0Y09

Input 0,
Check
channel

see table
'Channel
monitoring'
Ä Table 202 “
Channel mon-
itoring”
on page 893

see table
'Channel
monitoring'
Ä Table 202 “
Channel mon-
itoring”
on page 893

BYTE 0 0x0Y0A

: : : : :

: : : : :

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US892

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

Input 3,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 201 “
Channel con-
figuration”
on page 893

see table
'Channel con-
figuration'
Ä Table 201 “
Channel con-
figuration”
on page 893

BYTE 0 0x0Y0F

Input 3,
Check
channel

see table
'Channel
monitoring'
Ä Table 202 “
Channel mon-
itoring”
on page 893

see table
'Channel
monitoring'
Ä Table 202 “
Channel mon-
itoring”
on page 893

BYTE 0 0x0Y10

Table 201: Channel configuration
Internal value Operating modes of the analog inputs, individually configu-

rable
0 (default) Not used

1 0 V ... 10 V

2 Digital input

3 0 mA ... 20 mA

4 4 mA ... 20 mA

5 -10 V ... +10 V

8 2-wire Pt100 -50 °C ... +400 °C

9 3-wire Pt100 -50 °C ... +400 °C *)

10 0 V ... 10 V (voltage diff.) *)

11 -10 V ... +10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C ... +70 °C

15 3-wire Pt100 -50 °C ... +70 °C *)

16 2-wire Pt1000 -50 °C ... +400 °C

17 3-wire Pt1000 -50 °C ... +400 °C *)

18 2-wire Ni1000 -50 °C ... +150 °C

19 3-wire Ni1000 -50 °C ... +150 °C *)

 *) In the operating modes with 3-wire configuration or with differen-
tial inputs, two adjacent analog inputs belong together (e.g. the
channels 0 and 1). In these cases, both channels are configured in
the desired operating mode. The lower address must be the even
address (channel 0). The next higher address must be the odd
address (channel 1). The converted analog value is available at
the higher address (channel 1).

Table 202: Channel monitoring
Internal Value Check Channel
0 (default) Plausibility, wire break, short circuit

3 Not used

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 893

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal
value, type

Default EDS Slot /
Index

0
Output 0,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 203 “
Channel con-
figuration”
on page 894

see table
'Channel con-
figuration'
Ä Table 203 “
Channel con-
figuration”
on page 894

BYTE 0 0x0Y11

Output 0,
Check
channel

see table
'Channel
monitoring'
Ä Table 204 “
Channel mon-
itoring”
on page 895

see table
'Channel
monitoring'
Ä Table 204 “
Channel mon-
itoring”
on page 895

BYTE 0 0x0Y12

Output 0,
Substitute
value

see table
'Substitute
values'
Ä Table 205 “
Substitute
value”
on page 895

see table
'Substitute
values'
Ä Table 205 “
Substitute
value”
on page 895

WORD 0 0x0Y13

Output 1,
Channel con-
figuration

see table
'Channel con-
figuration'
Ä Table 203 “
Channel con-
figuration”
on page 894

see table
'Channel con-
figuration'
Ä Table 203 “
Channel con-
figuration”
on page 894

BYTE 0 0x0Y14

Output 1,
Check
channel

see table
'Channel
monitoring'
Ä Table 204 “
Channel mon-
itoring”
on page 895

see table
'Channel
monitoring'
Ä Table 204 “
Channel mon-
itoring”
on page 895

BYTE 0 0x0Y15

Output 1,
Substitute
value

see table
'Substitute
values'
Ä Table 205 “
Substitute
value”
on page 895

see table
'Substitute
values'
Ä Table 205 “
Substitute
value”
on page 895

WORD 0 0x0Y16

Table 203: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V ... +10 V

129 0 mA ... 20 mA

130 4 mA ... 20 mA

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US894

Table 204: Channel monitoring
Internal value Check channel
0 Plausibility, wire break, short circuit

3 None

Table 205: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of
the module parameter
"Behavior of outputs in
case of a communication
error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 s 0

Last value for 10 s and then
turn off

Last value 10 s 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 s Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 s Depending on configuration

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

Module error

3 14 1 ... 10 31 31 19 Checksum error in the
I/O module

Replace
I/O module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 3 Timeout in the I/O
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 40 Different hard-/firmware
versions in the module11 / 12 ADR 1 ... 10

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 895

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis
block

Class Interface Device Module Channel Error
Identifier

Error message Remedy

 1) 2) 3) 4)

3 14 1 ... 10 31 31 43 Internal error in the
module11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 36 Internal data exchange
failure11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 9 Overflow diagnosis
buffer

New start

11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 26 Parameter error Check
master11 / 12 ADR 1 ... 10

3 14 1 ... 10 31 31 11 Process voltage too low Check
process
voltage11 / 12 ADR 1 ... 10

4 14 1 ... 10 31 31 45 Process voltage is
switched off (ON −>
OFF)

Process
voltage ON11 / 12 ADR 1 ... 10

Channel error DA502

4 14 1 ... 10 2 0 ... 15
22 ... 29
 5)

47 Short-circuit at a digital
output

Check
connection11 / 12 ADR 1 ... 10

Channel error DA502

4 14 1 ... 10 1 16 ... 19
 6)

48 Analog value overflow
or broken wire at an
analog input

Check
input value
or terminal11 / 12 ADR 1...10

4 14 1 ... 10 1 16 ... 19
 6)

7 Analog value underflow
at an analog input

Check
input value11 / 12 ADR 1 ... 10

4 14 1 ... 10 1 16 ... 19
 6)

47 Short circuit at an
analog input

Check ter-
minal11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 20 ... 21
 7)

4 Analog value overflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

4 14 1 ... 10 3 20 ... 21
 7)

7 Analog value underflow
at an analog output

Check
output
value11 / 12 ADR 1 ... 10

Remarks:

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US896

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.

2) With "Device" the following allocation applies:
31 = module itself,
1 ... 10 = communication interface module 1 ... 10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus: 31 = Module itself; COM1/COM2: 1 ... 10 = expansion
1 ... 10
Channel error: I/O bus = module type (1 = AI, 3 = AO, 4 = DC); COM1/COM2:
1 ... 10 = expansion 1 ... 10

4) In case of module errors, with channel "31 = module itself" is output.
5) Ch = 22 ... 29 indicate the digital inputs/outputs DC16 ... DC23
6) Ch = 16 ... 19 indicates the analog inputs AI0 ... AI3
7) Ch = 20 ... 21 indicates the analog outputs AO0 ... AO1

State LEDs

LED State Color LED = OFF LED = ON LED flashes
DO0 ...
DO15

Digital output Yellow Output is
OFF

Output is ON --

DC16 ...D
C23

Digital input/
output

Yellow Input/output
is OFF

Input/output is
ON 1)

--

AI0 ... AI3 Analog input Yellow Input is OFF Input is ON 2) --

AO0 ...
AO1

Analog
output

Yellow Output is
OFF

Output is ON
2)

--

UP Process
supply
voltage
24 V DC via
terminal

Green Process
supply
voltage is
missing

Process
supply voltage
OK

--

CH-ERR1 Channel
error, error
messages in
groups (dig-
ital inputs/
outputs com-
bined into the
groups 1, 2,
3, 4)

Red No error or
process
supply
voltage is
missing

Severe error
within the cor-
responding
group

Severe error
within the cor-
responding
group (e.g.
short circuit at
an output)

CH-ERR2 Red

CH-ERR3 Red

CH-ERR4 Red

CH-ERR 3) Module error Red -- Internal error --
1) Indication LED is ON even if an input signal is applied to the channel and
the supply voltage is off. In this case the module is not operating and does not
generate an input signal.
2) Brightness depends on the value of the analog signal
3) All of the LEDs CH-ERR1 to CH-ERR4 light up together

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 897

Measuring ranges
Input ranges voltage, current and digital input

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10,0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 1.7593 < -11.7589 < 0.0000 < 1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 /
Pt1000
-50°C ... +70
°C

Pt100 /
Pt1000
-50 °C ...
+400 °C

Ni1000
-50 °C ...
+150 °C

Digital value

 Decimal Hex.
Overflow > +80.0 °C > +450.0 °C > +160.0 °C 32767 7FFF

Measured value too
high

 +450.0 °C
:
+ 400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+ 150.1 °C

1600
:
1501

0640
:
05DD

+80.0 °C
:
+70.1 °C

 800
:
701

0320
:
02BD

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US898

Range Pt100 /
Pt1000
-50°C ... +70
°C

Pt100 /
Pt1000
-50 °C ...
+400 °C

Ni1000
-50 °C ...
+150 °C

Digital value

 Decimal Hex.
Normal range :

:
+70.0 °C
:
+0.1 °C

+400.0 °C
:
:
:
+ 0.1 °C

+150.0 °C
:
:
+0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Measured value too
low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10 V ... +10 V 0 mA ... 20
mA

4 mA ... 20
mA

Digital value

 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Value too high 11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Value too low -10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 899

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24
V DC) and 1.9, 2.9, 3.9 and 4.9 for ZP (0
V)

 Protection against reverse voltage yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.5 A per output

 From 24 V DC power supply at the termi-
nals UP/L+ and ZP/M of the CPU/communi-
cation interface module

ca. 2 mA

 Inrush current from UP (at power-up) 0.04 A2s

Galvanic isolation Yes, per module

Max. power dissipation within the module 6 W (outputs unloaded)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal mounting or vertical with
derating (output load reduced to 50% at
+40 °C)

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in
the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US900

Technical data of the digital outputs

Parameter Value
Number of channels per module 16 outputs (with transistors)

Distribution of the channels into groups 1 group of 16 channels

Connection of the channels

 DO0 ... DO7 Terminals 1.0 ... 1.7

 DO8 ... DO15 Terminals 2.0 ... 2.7

Indication of the output signals 1 yellow LED per channel, the LED is ON if the
output signal is high (signal 1)

Monitoring point of output indicator LED is controlled by process CPU

Reference potential for all outputs Terminals 1.9, 2.9, 3.9 and 4.9 (negative pole of
the process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the process supply voltage,
signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (channels O0 to O15) 4 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the configurable digital inputs/outputs
Each of the configurable digital I/O channels can be defined as input or output by the user
program. This is done by interrogating or allocating the corresponding channel.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 901

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC16 ... DC23 Terminals 4.0 ... 4.7

If the channels are used as outputs

 Channels DC16 ... DC23 Terminals 4.0 ... 4.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON
when the input/output signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Galvanic isolation Yes, per module

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 ... DC23 Terminals 4.0 ... 4.7

Reference potential for all inputs Terminals 1.9 ... 4.9 (Negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Monitoring point of input/output indicator LED is part of the input circuitry

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US902

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC16 ... DC23 Terminals 4.0 ... 4.7

Reference potential for all outputs Terminals 1.9 ... 4.9 (negative pole of the supply
voltage, signal name ZP)

Common power supply voltage For all outputs terminals 1.8, 2.8, 3.8 and 4.8
(positive pole of the supply voltage, signal name
UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 rated value per channel 500 mA at UP = 24 V

 max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 165: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 903

Technical data of the fast counter

The fast counter of the module does not work if the module is connected to a
CS31 bus module.

Parameter Value
Counting frequency Max. 50 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ ... AI3+ Terminals 3.0 ... 3.3

Reference potential for AI0+ ... AI3+ Terminal 3.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9, 3.9 and 4.9 for current
measurement

Input type

 Unipolar Voltage 0 V ... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V ... +10 V

Configurability 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA, Pt100/1000, Ni1000 (each
input can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits
Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): +0.1 °C

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %
For XC version below 0 °C and above +60 °C:
on request

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US904

Parameter Value
Relationship between input signal and hex
code Ä Chapter 5.2.4.5.1.2.10.2 “Input ranges

resistance temperature detector” on page 898

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ ... AI3+ Terminals 3.0... 3.3

Reference potential for the inputs Terminals 1.9, 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+ ... AO1+ Terminals 3.5 and 3.6

Reference potential for AO0+ ... AO1+ Terminal 3.7 (AO-) for voltage output
Terminals 1.9, 2.9, 3.9 and 4.9 for current
output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA,
4 mA ... 20 mA (each output can be config-
ured individually)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 905

Parameter Value
Output resistance (load),
as current output

0 W ... 500 W

Output loadability,
as voltage output

± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on
the value of the analog signal)

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values caused
by non-linearity, adjustment error at factory
and resolution within the normal range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Ä Chapter 5.2.4.5.1.2.10.3 “Output ranges
voltage and current” on page 899

Unused outputs Are configured as "unused" (default value)
and can be left open-circuited

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US906

Ordering data

Part no. Description Product life cycle phase *)
1SAP 250 800 R0001 DA502, digital/analog input/output

module, 16 DO, 8 DC, 4 AI, 2 AO
Active

1SAP 450 800 R0001 DA502-XC, digital/analog input/output
module, 16 DO, 8 DC, 4 AI, 2 AO,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.4.6 Function modules
5.2.4.6.1 S500 and S500-XC
CD522 - Encoder, counter and PWM module
Features

● 2 encoder inputs with 2 integrated 5-V-power-supplies for the encoders
● 2 PWM outputs - 2 digital inputs 24 V DC
● 8 configurable digital inputs/outputs 24 V DC
● Fast counter
● Module-wise galvanically isolated
● XC version for use in extreme ambient conditions available

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 907

1 I/O bus
2 Allocation of terminal No. and signal name
3 3 yellow LEDs to display the signal states of the encoder 0 input
4 3 yellow LEDs to display the signal states of the encoder 1 input
5 2 green LEDs to display the 5-V-power-supply states
6 2 yellow LEDs to display the signal state of the digital input I3 and I11
7 8 yellow LEDs to display the input/output signal states
8 2 yellow LEDs to display the signal states of the PWM/pulse outputs
9 1 green LED to display the process voltage UP
10 3 red LEDs to display errors
11 Label
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The encoder and PWM module CD522 can be used at the following devices:
● Communication interface modules (e. g. CI501-PNIO, CI541-DP)
● Processor modules
Features:
● 2 independent counting functions with up to 12 configurable modes (including incremental

position encoder and frequency input up to 300 kHz)
● 2 independent PWM (pulse-width modulator) or pulse outputs with push-pull driver

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US908

● Dedicated inputs/outputs for specific counting functions (e.g. touch, set, reset)
● All unused inputs/outputs can be used with the specifications of standard inputs/outputs

range
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.
Depending on the configuration used, some inputs and outputs are dedicated to specific
counting functions (touch, set, reset…). All unused inputs and outputs can be used with the
specification of standard inputs/outputs range.

Functionality

Digital inputs/outputs 24 V DC, dedicated inputs/outputs can be used for specific
counting functions:
- Catch/touch operation, counter value stored in separate vari-
able on external event (rising or falling edge)
- Set input to preset counter register with predefined value
- Set input to reset counter register
- End value output; the output is set when predefined value is
reached
- Reference point initialization (RPI) input for incremental
encoder initialization
All unused inputs/outputs can be used with the specification of
standard input/output range.
Effect of incorrect input terminal connection: Wrong or no
signal detected, no damage up to 35 V.

Fast counter/encoder integrated, 2 counters (hardware interface with +24 V DC,
+5 V DC, differential and 1 Vpp sinus input) with up to 12
configurable operation modes:
- 32 bits one counter mode
- 16 bits two counter mode
- Incremental position encoder
- Absolute SSI encoder
- Time frequency meter
- Frequency input up to 300 kHz

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 909

PWM/pulse outputs 2 pulse-width-modulators or pulse outputs
Output specification
- Push-pull output: 24 V DC, 100 mA max.
- Current limitation (thermal and over current)
PWM specification
- Frequency from 1 Hz to 100 kHz
- Value from 0 to 100 %
Pulse specification
- Frequency from 1 Hz to 15 kHz
- Pulse emission from 1 to 65535 pulses
- Number of pulses emitted indicator (0 to 100 %)
Frequency specification
- Frequency output = 100 kHz when duty cycle set to 50 %

Power supply for encoders 2 5V power supplies, max. 100 mA

LED displays For signal states, errors and supply voltage

Internal power supply Via I/O bus

External power supply Via the terminals UP (process voltage 24 V DC) and ZP (0 V
DC)

Required terminal unit TU515 or TU516 Ä Chapter 5.2.5.2 “TU515, TU516, TU541
and TU542 for I/O modules” on page 938

How to prepare a device as fast counter and how to connect it to the PLC is described in an
application example.

Connections
The function module CD522 can be connected to the following devices via the I/O bus con-
nector:
● CS31 bus module DC551-CS31
● AC500 CPU
● OtherAC500 I/O devices.
The connection is carried out by using the 40 terminals of the terminal unit TU515/TU516
Ä Chapter 5.2.5.2 “TU515, TU516, TU541 and TU542 for I/O modules” on page 938.

Table 206: Assignment of the terminals
Terminal Signal Description
1.0 /A0 Inverted input signal A of encoder 0

1.1 /B0 Inverted input signal B of encoder 0

1.2 /Z0 Inverted input signal Z of encoder 0

1.3 5V0 +5 V DC power supply output 0 for sensors

1.4 0V 0 V reference input

1.5 O0 Output signal of the fast output O0

1.6 0V 0 V reference input

1.7 O1 Output signal of the fast output O1

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US910

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011148&LanguageCode=en&DocumentPartId=&Action=Launch

Terminal Signal Description
1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 A0 Input signal A of encoder 0

2.1 B0 Input signal B of encoder 0

2.2 Z0 Input signal Z of encoder 0

2.3 I3 Input signal I3 (standard input)

2.4 ... 2.7 C4 ... C7 Signal of the configurable digital input/output C4 ... C7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 /A1 Inverted input signal A of encoder 1

3.1 /B1 Inverted input signal B of encoder 1

3.2 /Z1 Inverted input signal Z of encoder 1

3.3 5V1 +5 V DC power supply output 1 for sensors

3.4...3.7 0V 0 V reference input

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 A1 Input signal A of encoder 1

4.1 B1 Input signal B of encoder 1

4.2 Z1 Input signal Z of encoder 1

4.3 I11 Input signal I11 (standard input)

4.4 ... 4.7 C12 ... C15 Signal of the configurable digital input/output C12 ... C15

4.8 UP Process voltage UP (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

The internal power supply voltage for the module's circuitry is carried out via the I/O bus
(provided by a communication interface module or a processor module). Thus, the current
consumption from 24 V DC power supply at the terminals L+/UP and M/ZP of the CPU/commu-
nication interface module increases by 2 mA per CD522.
The external power supply connection is carried out via the UP (+24 V DC) and the ZP (0 V DC)
terminals.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 911

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

The encoder is powered by the 5 V power supply which is integrated in CD522.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

5 V DC +−

A
A
B
B
Z
Z

Connection of
encoders with
differential
RS-422 signal

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US912

The encoder is powered by the 5 V power supply which is integrated in the CD522.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

5 V DC +−

A

B

Z

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

24 V DC +−

A
A
B
B
Z
Z

Connection of
encoders with 5
V TTL signal

Connection of
encoders with
24 V totem pole
signal

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 913

The wires A, B and Z need not to be connected to the module. They are left
open.

When using different power supplies for the encoder device and the CD522,
make sure that the reference potentials of both power supplies are intercon-
nected.

The encoder is powered through the 5 V power supply which is integrated in the CD522.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

A

B

Z

5 V DC +−

A
A
B
B
Z
Z

The encoder is powered by the 5 V power supply which is integrated in the CD522.

Connection of
encoders with 1
Vpp sine signal

Connection of
absolute
encoders with
SSI interface
and differential
RS-422 signal

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US914

The encoder can optionally be powered by the 5 V power supply which is integrated in the
CD522.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
-
+

5 V DC +-

D+
D-
Clk+
Clk-

Data

Clk

Connection of
absolute
encoders with
an SSI interface
and an optocou-
pler interface at
CLK input

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 915

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

NOTICE!
Risk of damaging the module
The PWM outputs have no protection against reverse polarity.

Proceed with the inputs/outputs I11 and C12 ... C15 in the same way.

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

Proceed with the A0, B0, A1, B1 and Z1 in the same way.

Connection of
output loads to
the PWM/Pulse
putputs

Connection of
standard inputs/
outputs

Connection of
sensors with
frequency out-
puts

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US916

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

t

UIN

Fig. 166: Example of the connection of sensors with frequency outputs to the input Z0 of the
CD522

NOTICE!
Risk of malfunctions!
The edges of a signal must be strong enough (0.4 V/µs) to be recognized
correctly by the module.
Put a 1 kW resistor between 0 V and the Z terminal when using a standard
output as time generator.

Proceed with the 5 V power supply 1 in the same way.

Each 5-V-power supply provides a current of 100 mA max. It is possible to
parallel both integrated power supplies. In this case, the max. current is 200
mA.

Connection of
sensors to the 5
V power supply

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 917

1.0
A0
1.1
B0
1.2
Z0
1.3
5V0
1.4
0V
1.5
O0
1.6
0V
1.7
O1
1.8
UP
1.9
ZP

2.0
A0
2.1
B0
2.2
Z0
2.3
I3
2.4
C4
2.5
C5
2.6
C6
2.7
C7
2.8
UP
2.9
ZP

24 V DC
−
+

5 V DC

3.0
A1
3.1
B1
3.2
Z1
3.3
5V1
3.4
0V
3.5
0V
3.6
0V
3.7
0V
3.8
UP
3.9
ZP

4.0
A1
4.1
B1
4.2
Z1
4.3
I11
4.4
C12
4.5
C13
4.6
C14
4.7
C15
4.8
UP
4.9
ZP

2 A 2 A

NOTICE!
Risk of damaging the module
The integrated 2 A fuse cannot be replaced. If it blows, the module must be
replaced.
Ensure that the current per 0 V connection does not exceed 0.5 A.

NOTICE!
Risk of damaging the module
The two 5 V outputs have no protection against reverse polarity.

Internal data exchange

Parameter Value
Digital inputs (bytes) 0

Digital outputs (bytes) 0

Analog inputs (words) 12

Analog outputs (words) 16

The data will be transferred in 16-bit words and not in bytes. Two bytes are
packed into one 16-bit word.

The bit strings are transmitted in big-endian byte order, so the bytes within
the word are swapped. If several bytes are considered, the first byte (lowest
address) is the largest (High Byte).

If used with AC500 please check the chapter how to configure CD522 within Automation Builder
and use the CD522 library.

The types “structCD522In” and “structCD522Out” can be added in Automation Builder by using
the command “Generate DUT” via the context menu of the CD522 device.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US918

To use CD522 with CI50x-PNIO or CI54x-DP as unbundled IOs with other PLCs find the
meaning of the IO-Data in following tables below:

From CD522 to PLC

TYPE structCD522In
STRUCT

StateBy-
tePWM0

High
Byte

0..100 Percentage of pulses already sent on channel 0

StateBy-
tePWM1

Low
Byte

0..100 Percentage of pulses already sent on channel 1

State-
ByteC0

High
Byte

 *)

InputC0 Low
Byte

 Name Bitposition Description
Input A 0 Digital Input A

Input B 1 Digital Input B

Input Z 2 Digital Input C

Input I3 3 Digital Input I3

Input I4 4 Digital Input I4

Input I5 5 Digital Input I5

Input I6 6 Digital Input I6

Input I7 7 Digital Input I7

Touch-
Coun-
terHiC0

WORD

Touch-
Coun-
terLoC0

WORD

Coun-
terHiC0

WORD

Coun-
terLoC0

WORD

Coun-
terHiC1

WORD

Coun-
terLoC1

WORD

Reser-
vedWC1

WORD

State-
ByteC1

High
Byte

 *)

InputC1 Low
Byte

 Name Bitposition Description
Input A 0 Digital Input A

Input B 1 Digital Input B

Input Z 2 Digital Input C

Input I3 3 Digital Input I3

Input I4 4 Digital Input I4

Input I5 5 Digital Input I5

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 919

TYPE structCD522In
Input I6 6 Digital Input I6

Input I7 7 Digital Input I7

Touch-
Coun-
terHiC1

WORD

Touch-
Coun-
terLoC1

WORD

END_STRUCT

END_TYPE

Table 207: *) Status Byte C0/C1
Bit One Counter Modes (1,2,5,6,11,12,13,14) Two Counter Modes (3,4)
0 CF0

1=End value 0 reached
not used

1 not used not used

2 NCATCH
1=New catch available

not used

3 OVRFLW0
1=Counter 0 overflow (see Note 3 below)

OVRFLW0
1=Counter 0 overflow (0x0000
¬® 0xFFFF)

4 SET0_INPUT
Logical OR on all inputs configured as set0 input

OVRFLW1
1=Counter 1 overflow (0x0000
¬® 0xFFFF)

5 RESET0_INPUT
Logical OR on all inputs configured as reset0 input

RESET0_INPUT
Logical OR on all inputs con-
figured as reset0 input

6 not used not used

7 not used RESET1_INPUT
Logical OR on all inputs con-
figured as reset1 input

Bit 16-bit One Counter Mode (8) Time frequency meter mode
(15)

0 CF0
1=Zero crossover detected

not used

1 not used not used

2 NCATCH
1=New catch available

not used

3 not used not used

4 SET0_INPUT
Logical OR on all inputs configured as set0 input

not used

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US920

Bit 16-bit One Counter Mode (8) Time frequency meter mode
(15)

5 RESET0_INPUT
Logical OR on all inputs configured as reset0 input

not used

6 not used NEW
1=New timing value available

7 not used not used

From PLC to CD522

TYPE structCD522Out
STRUCT

FreqPWM0 WORD 0…65535 PWM frequency of channel 0
Unit: Hz or 10Hz (depending on control byte in slot 3)
Limit: 100kHz

DutyPul-
sePWM0

WORD 0…1000 PWM mode:
PWM duty cycle of channel 0 in 1/10 percentage

0…65535 Pulse mode:
Number of pulses to sent on channel 0

ControlPWM0 High
Byte

Bit Description

0 FREQU_X10
FREQU_X10 1 = Frequency multiplier x10 enabled

1 not used

2 not used

3 PULSE_START
Rising edge = Start pulse emission channel 0

4 not used

5 not used

6 not used

7 1 = Enable Pulse/PWM channel 0

Reser-
vedBPWM0

Low
Byte

Reser-
vedWPWM0

WORD

FreqPWM1 WORD 0…65535 PWM frequency of channel 1
Unit: Hz or 10Hz (depending on control byte in slot 3)
Limit: 100kHz

DutyPul-
sePWM1

WORD 0…1000 PWM mode:
PWM duty cycle of channel 1 in 1/10 percentage

0…65535 Pulse mode:
Number of pulses to sent on channel 1

ControlPWM1 High
Byte

Bit Description

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 921

TYPE structCD522Out
0 FREQU_X10

1 = Frequency multiplier x10 enabled

1 not used

2 not used

3 PULSE_START
Rising edge = Start pulse emission channel 1

4 not used

5 not used

6 not used

7 1 = Enable Pulse/PWM channel 1

Out-
putPW0PWM1

Low
Byte

Bit 0 = Digital output value of channel 0
BIT 4 = Digital output value of channel 1

Reser-
vedWPWM1

WORD

Counter-
SetHiC0

WORD

Counter-
SetLoC0

WORD

CtrlByteC0 High
Byte

 **)

OutputC0 Low
Byte

ReservedWC0 WORD

Counter-
SetHiC1

WORD

Counter-
SetLoC1

WORD

CtrlByteC1 High
Byte

 **)

OutputC1 Low
Byte

ReservedWC1 WORD

END_STRUCT

END_TYPE

Table 208: **) Counter Control Byte C0/C1
Bit One Counter Modes (1,2,5,6,8) Two Counter Modes (3,4)
0 EN

0=counter disabled
1=counter enabled

EN
0=counter disabled
1=counter enabled

1 SET_0
1=set counter 0

not used

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US922

Bit One Counter Modes (1,2,5,6,8) Two Counter Modes (3,4)
2 RESET_0

1=reset counter 0
RESET_0
1=reset counter 0

3 not used UP_DWN0
0=up counter 0
1=down counter 0

4 not used RESET_1
1=reset counter 1

5 UPDWN
0=up counter
1=down counter

UP_DWN1
0=up counter 1
1=down counter 1

6 NCATCH
0=no catch operation
1=enable next catch operation

NCATCH
0=no catch operation
1=enable next catch operation

7 EDGECATCH
0=catch on falling edge
1=catch on rising edge

EDGECATCH
0=catch on falling edge
1=catch on rising edge

Bit Relative encoder modes (Modes 11,12,13) Time frequency meter (Mode 15)
0 EN

0=counter disabled
1=counter enabled

EN
0=counter disabled
1=counter enabled

1 SET_0
1=set counter 0

EN_1_0
1=enable time capture on falling
edge

2 RESET_0
1=reset counter 0

EN_0_1
1=enable time capture on rising
edge

3 not used FREQ_0
0=time measure mode
1=frequency and RPM measure
mode

4 RPI, Reference Point Indicator RESET_NEW
1=time/frequency/RPM measure-
ment is in reset. NEW flag is cleared.

5 not used not used

6 NCATCH
0=no catch operation
1=enable next catch operation

not used

7 EDGECATCH
0=catch on falling edge
1=catch on rising edge

not used

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 923

Bit SSI, absolute encoder (Mode 14)
0 EN

0=counter disabled
1=counter enabled

1 not used

2 not used

3 not used

4 not used

5 not used

6 NCATCH
0=no catch operation
1=enable next catch operation

7 EDGECATCH
0=catch on falling edge
1=catch on rising edge

I/O configuration
The module itself does not store configuration data. It receives its parameterization data from
the master device of the I/O bus (CPU or communication interface module) during power-up of
the system.
Hence, replacing I/O modules is possible without any re-parameterization via software.

If the external power supply voltage via UP/ZP terminals fails, the I/O module
loses its configuration data. The whole station has to be switched off and on
again to re-configure the module.

Parameterization

Firmware version Configuration
Firmware version > V2.0.0 The arrangement of the parameter data is per-

formed by Control Builder Plus/ Automation
Builder software.

The parameter data directly influences the functionality of modules.
For non-standard applications, it is necessary to adapt the parameters to your system configura-
tion.
Module: Module slot address: Y = 1 ... 10

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Module ID Intern 1805 1) WORD 0x070D 0 65535 0x0Y01

Ignore
module 2)

No
Yes

0
1

BYTE No
0x00

 Not for
FBP

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US924

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Parameter
length

Internal 42 BYTE 0 0 255 xx02 3)

Check
supply

Off
On

0
1

BYTE On
0x01

 0x0Y03

Input
delay

0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 8 ms
0x02

0 3 0x0Y04

Mode
Counter 0

see table
below

0 BYTE 0x00 0 15 0x0Y05

Counter 0
frequency
limit

No filter
50 Hz
500 Hz
5 kHz
20 kHz

0
1
2
3
4

BYTE No filter
0x00

0 4 0x0Y06

Counter 0
input level

0-24 V DC
0-5 V DC
Differen-
tial
1 Vpp
sinus

0
1
2
3

BYTE 0-24 V DC
0x00

0 3 0X0Y07

SSI 0 fre-
quency

200 kHz
500 kHz
1 MHz

2
3
4

BYTE 200 kHz
0x02

0 4 0x0Y08

SSI 0 res-
olution (in
bit)

8 to 32 bit BYTE 16 bit
16

8 32 0x0Y09

SSI 0
code type

Binary 0 BYTE Binary
0

0 0 0x0Y0A

SSI 0
polling
time

10 ms BYTE 10 1 255 0x0Y0B

5 V
sensor 0
supply

Off
On

0 BYTE Off
0x00

0 1 0x0Y0C

Mode
Counter 1

see table
below

0 BYTE 0x00 0 15 0x0Y0D

Counter 1
frequency
limit

No filter
50 Hz
500 Hz
5 kHz
20 kHz

0
1
2
3
4

BYTE No filter
0x00

0 4 0x0Y0E

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 925

Name Value Internal
value

Internal
value,
Type

Default Min. Max. EDS Slot
Index

Counter 1
input level

0-24 V DC
0-5 V DC
Differen-
tial
1 Vpp
sinus

0
1
2
3

BYTE 0-24 V DC
0x00

0 3 0X0Y0F

SSI 1 fre-
quency

200 kHz
500 kHz
1 MHz

2
3
4

BYTE 200 kHz
0x02

2 4 0x0Y10

SSI 1 res-
olution (in
bit)

8 to 32 bit BYTE 16 bit
16

8 32 0x0Y11

SSI 1
code type

Binary 0 BYTE Binary
0

0 0 0x0Y12

SSI 1
polling
time

10 ms BYTE 10 1 255 0x0Y13

5 V
sensor 1
supply

Off
On

0 BYTE Off
0x00

0 1 0x0Y14

Detection
SC on
sensors

Off
On

0 BYTE Off
0x00

0 1 0x0Y15

Output
behaviour
com fault

Off
Last value
Substitute
Last value
5s
Substitute
5s
Last value
10s Sub-
stitute 10s

0
1
2
3
4
5
6

BYTE Off
0x00

0 1 0x0Y16

Substitute
value

0 0 WORD Default
0x0000

0 65536 0x0Y17

1) With CS31 and addresses smaller than 70 and FBP, the value is increased by 1
2) Not with FBP
3) Value is hexadecimal: HighByte is slot (xx: 1 ... 10), LowByte is index (1 ... n)

Table 209: Operating modes for counters 0 and 1, configuration table
Internal value Operating modes of counter
0 No counter / No PWM (default value)

1 1-1 UpDown counter (A)

2 2-1 UpDown with release input

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US926

Internal value Operating modes of counter
3 3-2 UpDown counters (A, B)

4 4-2 UpDown (A, B on falling edges)

5 5-1 UpDown dynamic set (B) / rising edge

6 6-1 UpDown dynamic set (B) / falling edge

7 Not used

8 8-1 UpDown with release (B), 0 cross detection

9 - 19 Not used

20 11-1 Incremental encoder

21 12-2 Incremental encoder X2

22 13-1 Incremental encoder X4

30 14-1 SSI, absolute encoder

40 15-1 Time frequency meter

Table 210: GSD file
Ext_User_Prm_Data_Len =
Ext_User_Prm_Data_Const(0) =

25
0x07, 0x0E, 0x17, \
0x01, 0x02, \
0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x0A,
0x00, \
0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x0A,
0x00, \
0x00, 0x00, 0x00, 0x00;

Diagnosis

E1...E4 d1 d2 d3 d4 Identi-
fier
000 ...
063

AC500 dis-
play

<− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6 ...
7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 14 1...10 31 31 19 Checksum error
in the I/O module

Replace I/O
module11 / 12 ADR 1...10

3 14 1...10 31 31 9 Overflow diag-
nosis buffer

New start

11 / 12 ADR 1...10

3 14 1...10 31 31 26 Parameter error Check
master

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 927

E1...E4 d1 d2 d3 d4 Identi-
fier
000 ...
063

AC500 dis-
play

<− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6 ...
7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

11 / 12 ADR 1...10

3 14 1...10 31 31 11 Process voltage
too low

Check
process
voltage11 / 12 ADR 1...10

Table 211: Channel error CD522
E1...E4 d1 d2 d3 d4 Identi-

fier
000 ...
063

AC500dis-
play

<− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6 ...
7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Channel error
4 14 1...10 1 0...15 47 Output short cir-

cuit
Check
output con-
nection or
terminal

11 / 12 ADR 1..10

4 14 1...10 1 0, 1, 8, 9 10 Input frequency
too high

Check fre-
quency filter
parameter
or sensor

11 / 12 ADR 1...10

4 14 1...10 1 0, 1 2 PWM frequency
too high

Clamp
min/max
value in pro-
gram

11 / 12 ADR 1...10

4 14 1...10 1 0, 1 10 PWM duty cycle
out of range
(0-1000)

Clamp min
value to 0 in
program11 / 12 ADR 1...10

4 14 1...10 1 0, 1 11 5 V sensor
supply too low

Check
wiring &
sensor
power

11 / 12 ADR 1...10

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US928

E1...E4 d1 d2 d3 d4 Identi-
fier
000 ...
063

AC500dis-
play

<− Display in

Class Comp Dev Mod Ch Err PS501 PLC
browser

Byte 6
Bit 6 ...
7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

FBP diag-
nosis block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 14 1...10 1 0, 1 18 Internal fuse on 0
V has blown, 0 V
not connected to
GND

Check
wiring,
replace
module

11 / 12 ADR 1...10

Remarks:

1) In AC500, the following interface identifier applies:
14 = I/O bus, 11 = COM1 (e.g. CS31 bus), 12 = COM2.
The FBP diagnosis block does not contain this identifier.

2) With "Device" the following allocation applies:
31 = module itself, 1...10 = decentralized communication interface module 1...10,
ADR = hardware address (e.g. of the DC551)

3) With "Module" the following allocation applies depending on the master:
Module error: I/O bus or FBP: 31 = module itself; COM1/COM2: 1...10 = expansion
1...10
Channel error: I/O bus or FBP = module type (2 = DO); COM1/COM2: 1...10 =
expansion 1...10

4) In case of module errors, with channel "31 = Module itself" is output.

State LEDs
During the power-on procedure, the module initializes automatically. All LEDs (except the LEDs
for the signal states) are on during the initialization.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 929

LED State Color LED = OFF LED = ON LED flashes
A0, B0, Z0 Encoder 0

inputs
Yellow Input ON Input OFF LED follows

the state of the
inputs,
depending on
frequency

A1, B1, Z1 Encoder 1
inputs

Yellow Input ON Input OFF LED follows
the state of the
inputs,
depending on
frequency

I3 and I11 Digital inputs Yellow Input = ON
(the input
voltage is
even dis-
played if the
supply
voltage is
OFF).

Input = OFF ---

C4 ... C7
and
C12 ... C15

Configurable
digital inputs/
outputs

Yellow Input/output
= ON (the
input voltage
is even dis-
played if the
supply
voltage is
OFF).

Input/output =
OFF

O0 and O1 Digital PWM
outputs

Yellow Output = ON Output = OFF LED follows
the state of the
outputs,
depending on
frequency and
operation
mode

5V0 and
5V1

Power supply
for encoders

Green Configura-
tion ON and
power 5-V-
power ready

Configuration
OFF or power
failure

Power supply
outputs are
short-circuited

UP Process
supply
voltage

Green Process
voltage OK

Process
voltage is
missing

CH-ERR1,
CH-ERR2,
CH-ERR4

 Red Severe error
within the
corre-
sponding
group

No error or
process
voltage is
missing

Error on one
channel of the
corresponding
group (e.g.
short circuit at
an output)

CH-ERR *) Error indica-
tion

Red Internal
error or con-
figuration is
not loaded

-- ---

*) All LEDs CH-ERR1, CH-ERR2 and CH-ERR4 light up simultaneously

Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US930

The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltage

 Connections Terminals 1.8, 2.8, 3.8 and 4.8 for UP (+24 V DC) and
1.9, 2.9, 3.9 and 4.9 for ZP (0 V)

 Protection against reverse
voltage

Yes

 Rated protection fuse at UP 10 A fast

 Rated value 24 V DC

 Max. ripple 5 %

Current consumption

 From UP 0.07 A + max. 0.008 A per input + max. 0.5 A per output +
0.01 A for A, B and Z inputs

 Via I/O bus Ca. 5 mA

 Inrush current from UP (at
power-up)

0.04 A²s

Galvanic isolation Yes, per module

Max. power dissipation within the
module

6 W (outputs unloaded)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal mounting or vertical with derating (output load
reduced to 50 % at +40 °C)

Cooling The natural convection cooling must not be hindered by
cable ducts or other parts in the control cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Number of channels 2 + 8 configurable digital inputs/outputs

Reference potential for all
inputs

Terminals 1.9...4.9 (negative pole of the process supply
voltage, signal name ZP)

Galvanic isolation From the rest of the module

Technical data
of the digital
inputs/outputs if
used as
standard inputs

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 931

Parameter Value
Indication of the input signals 1 yellow LED per channel, the LED is ON when the input

signal is high (signal 1)

Input type acc. to EN 61131-2 Type 1

Input delay (0->1 or 1->0) Typ. 8 ms, configurable from 0.1 to 32 ms

Input data length 24 bytes

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V *

 Undefined signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V *

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 5 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

* Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input (see figure) above. This is why the difference between UPx and the input signal must not
exceed the clamp voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V.
Consequently, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Parameter Value
Number of channels 8 configurable digital inputs/outputs

Reference potential for all outputs Terminals 1.9 ... 4.9 (negative pole of the
process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8 ... 4.8 (positive pole
of the process supply voltage, signal name UP)

Output voltage for signal 1 UP (-0.8 V)

Output delay (0->1 or 1->0) Typ. 10 µs

Output data length 32 bytes

Output current

 Rated value, per channel 500 mA at UP = 24 V

 Maximum value (all channels together,
PWM included)

8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

Demagnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure below)

Switching frequency

Technical data
of the digital
inputs/outputs if
used as
standard out-
puts

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US932

Parameter Value
 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads Max. 11 Hz with max. 5 W

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Fig. 167: Digital input/output (circuit diagram)

1 UPx (+ 24 V)
2 Digital input/output
3 ZPx (0 V)
4 For demagnization when inductive loads are switched off

Parameter Value
Number of channels per module 6

Reference potential for all inputs Terminal 1.9, 2.9, 3.9 and 4.9 (negative
pole of the process voltage, signal name
ZP)

Input Type 24 V DC 5 V DC / Differential
Sinus 1 Vpp

Input current per channel

 Input voltage +24 V Typ. 14 mA

 Input voltage +5 V > 4.8 mA

 Input voltage +15 V > 12 mA

 Input voltage +30 V < 15 mA

Input type acc. to EN 61131-2 Type 1

Input frequency max. (fast counter) 300 kHz 300 kHz

Technical data
of the high-
speed inputs
(A0, B0, Z0; A1,
B1, Z1)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 933

Parameter Value
Input frequency max. (frequency measurement) 5 kHz 5 kHz

Input signal voltage 24 V DC 5 V DC

Signal 0 -3 V ... +5 V -3 V ... +0,5 V

Undefined signal > +5 V ... < +15 V --

Signal 1 +15 V ... +30 V +0,5 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V Within
-3 V ... +0.5 V

Ripple with signal 1 Within
+15 V ... +30 V

Within
+0,5 V ... +30 V

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Parameter Value
Number of channels 2

Reference potential for all outputs Terminals 1.9 ... 4.9 (negative pole of the
process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8 ... 4.8 (positive pole
of the process supply voltage, signal name UP)

Indication of the output signals Brightness of the LED depends on the number
of pulses emitted (0 % to 100 %) (pulse output
mode only)

Output voltage for signal 1 UP (-0.1 V)

Output voltage for signal 0 ZP (+0.3 V)

Output delay (0->1 or 1->0) Typ. 1 µs

Output current

 Rated value, per channel 100 mA at UP = 24 V

 Maximum value (all channels together,
configurable outputs included))

8 A

Leakage current with signal 0 < 0.5 mA

Rated protection fuse on UP 10 A fast

De-magnetization when inductive loads are
switched off

With varistors integrated in the module (see
figure above)

Switching frequency PWM: up to 100 kHz (min. step for PWM value:
2 µs)
Pulse: up to 15 kHz

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.1x A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Resistance to feedback against reverse
polarity

No

Max. cable length

Technical data
of the fast out-
puts O0 and O1

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US934

Parameter Value
 Shielded 1000 m

 Unshielded 600 m

Parameter Value
Number of channels 2

Reference potential for all outputs Terminals 1.9...4.9 (negative pole of the
process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8 ... 4.8 (positive
pole of the process supply voltage, signal
name UP)

Output voltage for signal 0 ≤ 1.5 V at 10 mA

Output delay (0->1 or 1->0) Typ. 0.3 µs

Output current ≤ 10 mA

Switching frequency < 1 MHz (depending on firmware)

Short-circuit-proof / overload-proof Yes

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes

Resistance to feedback against reverse
polarity

No

Max. cable length (shielded) Typ. 12.5 m at 500 kHz (depending on sensor)

Parameter Value
Number of channels 2

Reference potential for all outputs Terminals 1.9 ... 4.9 (negative pole of the
process supply voltage, signal name ZP)

Common power supply voltage For all outputs: terminals 1.8 ... 4.8 (positive
pole of the process supply voltage, signal
name UP)

Output voltage for signal 1 ≥ 2.9 V at 10 mA

Output voltage for signal 0 ≤ 1.3 V at 10 mA

Output delay (0->1 or 1->0) Typ. 0.3 µs

Output current ≤ 10 mA

Switching frequency < 1 MHz (depending on firmware)

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.1x A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short-cir-
cuit/overload

Resistance to feedback against 24V signals Yes

Resistance to feedback against reverse
polarity

No

Max. cable length (shielded) 100 m

Technical data
of the fast out-
puts (SSI CLK
output B0, B1
for optical inter-
face)

Technical data
of the fast out-
puts (SSI CLK
Output Differen-
tial)

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 935

Parameter Value
Number of supplies 2, independently configuration

Voltage supply (outputs unloaded) 5 V DC +/- 5%

Resistance to feedback against reverse
polarity

No

Output current 100 mA max. (independently)
200 mA max. (parallel use)

Output diagnosis Yes, with diagnosis LED and error message

Parameter Value
Number of reference inputs (internally con-
nected to ZP through internal fuse)

6

Max. current per connection 0.5 A

Internal fuse protection

 Terminals 1.4 and 1.6 2 A

 Terminals 3.4 ... 3.7 2 A

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

Technical data
of the 5 V
sensor supply

Technical data
of the 0 V refer-
ence input

Hardware descriptions
Device specifications > I/O modules

2024/01/053ADR010583, 1, en_US936

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 260 300 R0001 CD522, encoder & PWM module,

2 encoder inputs, 2 PWM outputs,
2 digital inputs 24 V DC, 8 digital
outputs 24 V DC

Active

1SAP 460 300 R0001 CD522-XC, encoder & PWM module,
2 encoder inputs, 2 PWM outputs,
2 digital inputs 24 V DC, 8 digital
outputs 24 V DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > I/O modules

2024/01/05 3ADR010583, 1, en_US 937

5.2.5 Terminal units for S500(-XC) I/O modules
5.2.5.1 Safety instructions

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Ä Further information about hot swap.

5.2.5.2 TU515, TU516, TU541 and TU542 for I/O modules
5.2.5.2.1 Features

● TU515, I/O terminal unit, 24 V DC, screw terminals
● TU516, I/O terminal unit, 24 V DC, spring terminals
● TU516-XC, I/O terminal unit, 24 V DC, spring terminals, XC version
● TU516-H, I/O terminal unit, hot swap, 24 V DC, spring terminals
● TU516-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals, XC version
● TU541, I/O terminal unit, 24 V DC, screw terminals
● TU542, I/O terminal unit, 24 V DC, spring terminals
● TU542-XC, I/O terminal unit, 24 V DC, spring terminals, XC version
● TU542-H, I/O terminal unit, hot swap, 24 V DC, spring terminals
● TU542-H-XC, I/O terminal unit, hot swap, 24 V DC, spring terminals, XC version
The input/output modules plug into the I/O terminal unit. When properly seated, they are
secured with two mechanical locks. All the connections are established via the terminal unit,
which allows removal and replacement of the I/O modules without disturbing the wiring at the
terminal unit.

Hardware descriptions
Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/053ADR010583, 1, en_US938

1 I/O bus (10 pins, male) to connect the previous terminal unit, the CPU terminal base or the
communication interface module to the terminal unit

2 I/O bus (10 pins, female) to connect other terminal units
3a Plug (2 x 25 pins) to connect the inserted I/O modules
3b Plug (2 x 19 pins) to connect the inserted I/O modules
4 With a screwdriver inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
5 Holes for screw mounting
6 40 terminals for signals and process supply voltage
7 DIN rail
8 White border signifies hot swap capability of the terminal unit

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for XC
version.

The figure 4 in the Part no. 1SAP4... (lable) identifies the XC version.

XC version

Hardware descriptions

Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/05 3ADR010583, 1, en_US 939

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

The following terminals are used for connection of the process supply voltage.

 Terminals
Type 1.8 2.8 3.8 4.8 1.9 2.9 3.9 4.9

TU515,
TU516
and
TU516-H

These terminals are internally connected
with assignment: process supply voltage
UP = +24 V DC

These terminals are internally connected
with assignment: process supply voltage
ZP = 0 V

TU541,
TU542
and
TU542-H

These terminals
are internally con-
nected with assign-
ment: process
voltage UP = +24 V
DC

Separate
process
supply
voltage
UP3 =
+24 V
DC

Separate
process
supply
voltage
UP4 =
+24 V
DC

These terminals
are internally con-
nected with assign-
ment: process
supply voltage ZP =
0 V

Separate
process
supply
voltage
ZP = 0 V

Separate
process
supply
voltage
ZP = 0 V

The assignment of the other terminals depends on the inserted communication interface module
(see the description of the respective module used).

5.2.5.2.2 Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of channels per module Max. 32

Distribution of the channels into groups 4 groups of 8 channels each (1.0 ... 1.7, 2.0 ...
2.7, 3.0 ... 3.7, 4.0 ... 4.7), the allocation of the
channels is given by the inserted I/O module

Rated voltage 24 V DC

Max. permitted total current 10 A, per separated process voltage terminal
or for internal connection of process voltages

Terminals

Hardware descriptions
Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/053ADR010583, 1, en_US940

Parameter Value
Grounding Direct connection to the grounded DIN rail or

via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

5.2.5.2.3 Hot swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap

Hardware descriptions

Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/05 3ADR010583, 1, en_US 941

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Hardware descriptions
Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/053ADR010583, 1, en_US942

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

Hardware descriptions

Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/05 3ADR010583, 1, en_US 943

5.2.5.2.4 Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

5.2.5.2.5 Ordering data

Part no. Description Product life cycle phase *)
1SAP 212 200 R0001 TU515, I/O terminal unit, 24 V DC,

screw terminals
Active

1SAP 212 000 R0001 TU516, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 412 000 R0001 TU516-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

1SAP 215 000 R0001 TU516-H, I/O terminal unit, hot swap,
24 V DC, spring terminals, XC version

Active

1SAP 415 000 R0001 TU516-H-XC, I/O terminal unit,
hot swap, 24 V DC, spring terminals

Active

1SAP 213 000 R0001 TU541, I/O terminal unit, 24 V DC,
screw terminals

Active

1SAP 213 200 R0001 TU542, I/O terminal unit, 24 V DC,
spring terminals

Active

1SAP 413 200 R0001 TU542-XC, I/O terminal unit, 24 V DC,
spring terminals, XC version

Active

1SAP 215 200 R0001 TU542-H, I/O terminal unit, hot swap,
24 V DC, spring terminals

Active

1SAP 415 200 R0001 TU542-H-XC, I/O terminal unit,
hot swap, 24 V DC, spring terminals,
XC version

Active

Hardware descriptions
Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/053ADR010583, 1, en_US944

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.5.3 TU531 and TU532 for I/O modules
5.2.5.3.1 Features

● TU531, I/O terminal unit, 120/230 V AC, screw terminals
● TU532, I/O terminal unit, 120/230 V AC, spring terminals
● TU532-XC, I/O terminal unit, 120/230 V AC, spring terminals, XC version
● TU532-H, I/O terminal unit, hot swap, 120/230 V AC, spring terminals
● TU532-H-XC, I/O terminal unit, hot swap, 120/230 V AC, spring terminals, XC version

1 I/O bus (10 pins, male) to connect the previous terminal unit, the CPU terminal base or the
communication interface module to the terminal unit

2 I/O bus (10 pins, female) to connect other terminal units
3a Plug (2 x 25 pins) to connect the inserted I/O modules
3b Plug (3 x 19 pins) to connect the inserted I/O modules
4 With a screwdriver inserted in this place, the terminal unit and the adjacent I/O terminal unit

can be shoved from each other
5 Holes for screw mounting
6 40 terminals for signals and process supply voltage
7 DIN rail
8 White border signifies hot swap capability of the terminal unit

Hardware descriptions

Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/05 3ADR010583, 1, en_US 945

The input/output modules (I/O modules) plug into the I/O terminal unit. When properly plugged-
in, they are secured with two mechanical locks. All the connections are established via the
terminal unit, which allows removal and replacement of the I/O modules without disturbing the
wiring at the terminal unit.
The terminal units TU531 and TU532 are specifically designed for use with AC500/S500 I/O
modules that incorporate 115 V AC ... 230 V AC inputs and/or 120/230 V AC relay outputs.

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

The terminals 1.8 ... 4.8 and 1.9 ... 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, independent of the inserted module:
● Terminals 1.8 ... 4.8: process supply voltage UP = +24 V DC
● Terminals 1.9 ... 4.9: process supply voltage ZP = 0 V
The assignment of the other terminals depends on the inserted communication interface module
(see the description of the respective module used).
The supply voltage of 24 V DC for the module's circuitry comes from the I/O expansion bus (I/O
bus).

5.2.5.3.2 Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.

XC version

Terminals

Hardware descriptions
Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/053ADR010583, 1, en_US946

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of channels per module 32

Distribution of the channels into groups 4 groups of 8 channels each (1.0 ... 1.7, 2.0 ...
2.7, 3.0 ... 3.7, 4.0 ... 4.7), the allocation of the
channels is given by the inserted I/O module

Terminals 1.8 ... 4.8 and 1.9 ... 4.9

 Max. voltage 30 V DC

 Max. permitted total current 10 A

Terminals 1.0 ... 1.7, 2.0 ... 2.7, 3.0 ... 3.7, 4.0 ... 4.7

 Max. voltage 300 V AC 1)

 Max. permitted current 3 A 2)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

1) Only when the voltage is not limited by the specification of the I/O channel or the supply input
which is internally connected to the terminal.
2) The terminals are connected to the electronic module via internal connectors (X22 (or 3b),
X23 (or 3b), X32, X33 and X34). The current per terminal is limited by the permitted current of
these connectors.

5.2.5.3.3 Hot swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

Hot swap

Hardware descriptions

Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/05 3ADR010583, 1, en_US 947

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

Hardware descriptions
Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/053ADR010583, 1, en_US948

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

Hardware descriptions

Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/05 3ADR010583, 1, en_US 949

Device Min. required device index for I/O module as of
FW Version 3.0.14

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

5.2.5.3.4 Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions
Device specifications > Terminal units for S500(-XC) I/O modules

2024/01/053ADR010583, 1, en_US950

5.2.5.3.5 Ordering data

Part no. Description Product life cycle phase *)
1SAP 217 200
R0001

TU531, terminal unit, 120/230 V AC,
relays, screw terminals

Active

1SAP 217 000
R0001

TU532, terminal unit, 120/230 V AC,
relays, spring terminals

Active

1SAP 417 000
R0001

TU532-XC, terminal unit,
120/230 V AC, relays, spring
terminals, XC version

Active

1SAP 215 100
R0001

TU532-H, terminal unit, hot swap,
120/230 V AC, relays, spring terminals

Active

1SAP 415 100
R0001

TU532-H-XC, terminal unit, hot
swap, 120/230 V AC, relays, spring
terminals, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.6 Communication interface modules
5.2.6.1 Safety instructions

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Ä Further information about hot swap.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 951

5.2.6.2 Compatibility of communication modules and communication interface modules
Table 212: Modbus TCP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

Onboard
Ethernet inter-
face

CI521-MODTCP
CI522-MODTCP

x -- -- hot-swap I/O

CM5640-2ETH CI521-MODTCP
CI522-MODTCP

x x -- high availability,
remote I/O

CM5640-2ETH CI521-MODTCP
CI522-MODTCP

x -- -- hot-swap I/O

Table 213: PROFIBUS DP
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM592-DP
master

CI541-DP
CI542-DP

x x -- remote I/O

CM592-DP
master

CI541-DP
CI542-DP

x -- -- hot-swap I/O

Table 214: PROFINET IO RT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x x x remote I/O,
safety I/O

CM579-PNIO
controller

CI501-PNIO
CI502-PNIO

x -- -- hot-swap I/O

Table 215: CANopen
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

Onboard CAN
interface

CI581-CN
CI582-CN

-- -- -- remote I/O

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US952

Table 216: EtherCAT
Communication
module

Communication
interface
module

I/O expansion
module
S500

I/O expansion
module
S500-eCo

I/O expansion
module
S500-S

Applications

CM579-ETHCAT
master

CI511-ETHCAT
CI512-ETHCAT

x x -- remote I/O

5.2.6.3 CANopen
5.2.6.3.1 Comparison CI581 and CI582

The devices differ in their input and output characteristics.

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC; delay time configu-

rable via software)
8 digital transistor outputs (24 V DC, 0.5 A
max.)
4 analog inputs, configurable as:
● -10 V ... +10 V
● 0 V ... +10 V
● -10 V ... +10 V (differential voltage)
● 0 mA ... 20 mA
● 4 mA ... 20 mA
● Pt100 , Pt1000, Ni1000 (for each 2-wire

and 3-wire)
● 24 V digital input function
2 analog outputs, configurable as:
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Resolution of the analog channels 12 bits

Fast counter Integrated, configurable operating modes

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC)

8 digital transistor outputs (24 V DC, 0.5 A
max.)
8 configurable digital inputs/outputs (24 V DC,
0.5 A max.)

5.2.6.3.2 CI581-CN
Features

● 4 analog inputs (resolution 12 bits including sign)
● 2 analog outputs (resolution 12 bits including sign)
● 8 digital inputs 24 V DC

CI581-CN: Input/
Output charac-
teristics

CI582-CN: Input/
Output charac-
teristics

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 953

● 8 digital outputs 24 V DC, 0.5 A max
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CI581

CH-ERR1 CH-ERR3CH-ERR2

2.4

2.0 AI0+

2.2 AI2+

2.7 AO-

2.9 ZP

2.3 AI3+

2.1 AI1+

AI -

2.5 AO0+

2.6 AO1+

2.8 UP

4.0 DO0

4.2 DO2

4.4 DO4

4.6 DO6

4.9 ZP

4.1 DO1

4.3 DO3

4.5 DO5

4.7 DO7

4.8 UP33.8 UP

3.9 ZP

3.0 DI0

3.2 DI2

3.3 DI3

3.5 DI5

3.6 DI6

3.4 DI4

3.7 DI7

3.1 DI1

UP 24VDC 100W CANopen Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

PWR/
RUN

ADDR x01H

ADDR x10H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1.8GND

1.9GND

1.0 CAN+

1.2 CAN-

1.3 CAN-

1.5 Term+

1.6 Term-

1.4 Term+

1.7 Term-

1.1 CAN+ CN-
RUN
CN-

ERR
S-

ERR
I/O-
Bus

12 3 4 5

6
7

8

9

10

12

13

11

1 I/O bus
2 Allocation between terminal No. and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 ... AI3,

AO0 ... AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 ... DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 ... DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, CN-RUN, CN-ERR, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the CANopen Node ID
11 10 terminals to connect the CANopen bus signals
12 Terminal unit
13 DIN rail

Sign for XC version

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US954

Intended purpose
The CANopen communication interface module CI581-CN is used as decentralized I/O module
in CANopen networks. Depending on the used terminal unit the network connection is per-
formed either via 9-pin female D-sub or via 10 terminals (screw or spring terminals) which are
integrated in the terminal unit. The communication interface module contains 22 I/O channels
with the following properties:
● 4 analog inputs (2.0 ... 2.3)
● 2 analog outputs (2.5 ... 2.6)
● 8 digital inputs 24 V DC in 1 group (3.0 ... 3.7)
● 8 digital outputs 24 V DC in 1 group (4.0 ... 4.7)

The inputs/outputs are galvanically isolated from the CANopen network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability CI58x can only be used on onboard CAN inter-
face and without any I/O expansion module
Ä Table 215 “CANopen” on page 952.

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

Ambient temperature System data AC500 Ä Chapter 5.1.2 “System
data AC500” on page 166

System data AC500 XC Ä Chapter 5.1.3
“System data AC500-XC” on page 169

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 955

Parameter Value
Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 5.2.7.4 “TU517 and TU518 for com-
munication interface modules” on page 1278

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US956

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC; delay time configu-

rable via software)
8 digital transistor outputs (24 V DC, 0.5 A
max.)
4 analog inputs, configurable as:
● -10 V ... +10 V
● 0 V ... +10 V
● -10 V ... +10 V (differential voltage)
● 0 mA ... 20 mA
● 4 mA ... 20 mA
● Pt100 , Pt1000, Ni1000 (for each 2-wire

and 3-wire)
● 24 V digital input function
2 analog outputs, configurable as:
● -10 V ... +10 V
● 0 mA ... 20 mA
● 4 mA ... 20 mA

Resolution of the analog channels 12 bits

Fast counter Integrated, configurable operating modes

Connections
General

The CANopen communication interface module is plugged on the I/O terminal units TU517
Ä Chapter 5.2.7.4 “TU517 and TU518 for communication interface modules” on page 1278
or TU518 Ä Chapter 5.2.7.4 “TU517 and TU518 for communication interface modules”
on page 1278 and accordingly TU509 or TU510. Properly position the module and press until it
locks in place.
The connection of the I/O channels is established using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

CI581-CN: Input/
Output charac-
teristics

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 957

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Do not connect any voltages externally to the digital outputs!

Reason: External voltages at an output or several outputs may cause other
outputs to be supplied via that voltage instead of voltage UP3 (reverse voltage).
This ist not the intended use.

CAUTION!
Risk of malfunctions by unintended use!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is connected at the outputs
DO0 ... DO7 and DC0 ... DC7.

Possibilities of connection
The assignment of the 9-pin female D-sub for the CANopen signals

1

5

6

9

1 --- Reserved

2 CAN- Inverted signal of the CAN bus

3 CAN_GND Ground potential of the CAN bus

4 --- Reserved

5 --- Reserved

6 --- Reserved

7 CAN+ Non-inverted signal of the CAN bus

8 --- Reserved

9 --- Reserved

Shield Cable shield Functional earth

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6

12
0

12
0

Node 1 Node 2 Node N5 5

Fig. 168: CANopen interface, bus terminating resistors connected to the line ends

Mounting on ter-
minal units
TU509 or TU510

Bus terminating
resistors

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US958

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 169: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear Ä Chapter
5.1.2 “System data AC500” on page 166.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 959

Table 217: Assignment of the terminals
Terminal Signal Description
1.0 CAN+ Non-inverted signal of the CAN bus

1.1 CAN+ Non-inverted signal of the CAN bus

1.2 CAN- Inverted signal of the CAN bus

1.3 CAN- Inverted signal of the CAN bus

1.4 Term+ CAN bus termination for CAN+ (for bus termination,
Term+ must be connected with CAN+)

1.5 Term+ CAN bus termination for CAN+ (connecting alterna-
tive for terminal 1.4)

1.6 Term- CAN bus termination for CAN- (for bus termination,
Term- must be connected with CAN-)

1.7 Term- CAN bus termination for CAN- (connecting alterna-
tive for terminal 1.6)

1.8 CAN-GND Ground potential of the CAN bus

1.9 CAN-GND Ground potential of the CAN bus

At the line ends of a bus segment, terminating resistors must be connected. If TU517 or TU518
is used, the bus terminating resistors can be enabled by connecting the terminals Term+ and
Term- to the data lines CAN+ and CAN- (no external terminating resistors are required, see
figure below).
The following figures show the different connection options for the CANopen communication
interface module:

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen in

CANopen out

Mounting on ter-
minal units
TU517 or TU518

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US960

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen end

In the case of TU517/TU518, the terminating resistors are not located inside
the TU but inside the communication interface module CI581-CN. Hence, when
removing the device from the TU, the bus terminating resistors are no longer
connected to the bus. The bus itself will not be disconnected if a device is
removed.

The grounding of the shield should take place at the control cabinet. Please
refer to the AC500 System-Data Ä Chapter 5.1.2 “System data AC500”
on page 166.

Table 218: Assignment of the other terminals
Terminal Signal Description
2.0 AI0+ Positive pole of analog input signal 0

2.1 AI1+ Positive pole of analog input signal 1

2.2 AI2+ Positive pole of analog input signal 2

2.3 AI3+ Positive pole of analog input signal 3

2.4 AI- Negative pole of analog input signals 0 to 3

2.5 AO0+ Positive pole of analog output signal 0

2.6 AO1+ Positive pole of analog output signal 1

2.7 AI- Negative pole of analog output signals 0 and 1

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI0 Signal of the digital input DI0

3.1 DI1 Signal of the digital input DI1

3.2 DI2 Signal of the digital input DI2

3.3 DI3 Signal of the digital input DI3

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 961

Terminal Signal Description
3.4 DI4 Signal of the digital input DI4

3.5 DI5 Signal of the digital input DI5

3.6 DI6 Signal of the digital input DI6

3.7 DI7 Signal of the digital input DI7

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO0 Signal of the digital output DO0

4.1 DO1 Signal of the digital output DO1

4.2 DO2 Signal of the digital output DO2

4.3 DO3 Signal of the digital output DO3

4.4 DO4 Signal of the digital output DO4

4.5 DO5 Signal of the digital output DO5

4.6 DO6 Signal of the digital output DO6

4.7 DO7 Signal of the digital output DO7

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US962

For the open-circuit detection (wire break), each analog input channel is pulled
up to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

+
-

+
-

+
-

+
-

+
-

+
-

PTC

AI0+

AI1+

AI2+

AI3+
AI-

2.0

2.1

2.2

2.3
2.4

PTC

2.5

2.6
2.7

AO0+

AO1+
AO-

4.0 DO0

4.1 DO1

4.2 DO2

4.3 DO3

4.4 DO4

4.5 DO5

4.6 DO6

4.7 DO7

DI0 3.0

DI1 3.1

DI2 3.2

DI3 3.3

DI4 3.4

DI5 3.5

DI6 3.6

DI7 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 3.9

3.8
UP3 +24 V

ZP 0 V

Fig. 170: Connection of the communication interface module CI581-CN

The module provides several diagnosis functions Ä Chapter 5.2.6.3.2.9 “Diagnosis”
on page 979.
For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.
The meaning of the LEDs is described in the section for the state LEDs Ä Chapter 5.2.6.3.2.10
“State LEDs” on page 982.

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

Bus length

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 963

Bit Rate (speed) Bus Length
125 kbit/s 500 m

50 kbit/s 1000 m

Connection of the digital inputs

2.0
DI0
2.1
DI1
2.2
DI2
2.3
DI3
2.4
DI4
2.5
DI5
2.6
DI6
2.7
DI7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 171: Connection of the digital inputs to the module CI581-CN

Connection of the digital outputs

4.0
DO0
4.1
DO1
4.2
DO2
4.3
DO3
4.4
DO4
4.5
DO5
4.6
DO6
4.7
DO7
4.8
UP3
4.9
ZP

24 V DC
-
+

Fig. 172: Connection of configurable digital outputs to the module CI581-CN

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US964

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
to build the necessary voltage drop for the evaluation. For this, the module CI581-CN provides a
constant current source which is multiplexed over the max. 4 analog input channels.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
3.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 173: Connection of resistance thermometers in 2-wire configuration to the analog inputs

Pt100 2-wire configuration, 1 channel used

Pt1000 2-wire configuration, 1 channel used

Ni1000 2-wire configuration, 1 channel used

For the measuring ranges that can be configured, please refer to sections Measuring Ranges
Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization Ä Chapter
5.2.6.3.2.8 “Parameterization” on page 974.
The module CI581-CN performs a linearization of the resistance characteristic.
To avoid error messages, configure unused analog input channels as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI581-CN provides a constant current source which is multiplexed over the max. 4 analog input
channels.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 965

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 174: Connection of resistance thermometers in 3-wire configuration to the analog inputs

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 3-wire configuration, 2 channels used

Pt1000 3-wire configuration, 2 channels used

Ni1000 3-wire configuration, 2 channels used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.
The module CI581-CN performs a linearization of the resistance characteristic.
To avoid error messages, configure unused analog input channels as "unused".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US966

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

+

-
UIN

Fig. 175: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs

Voltage 0 ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.
To avoid error messages, configure unused analog input channels as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 967

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-

0 ... +20 mA
+4 ... +20 mA

UIN

Fig. 176: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog input AI0 (Proceed with the analog inputs AI1 ... AI3 in the same way)

Current 0 ... 20 mA 1 channel used

Current 4 ... 20 mA 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.
Unused input channels can be left open-circuited, because they are of low resistance.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US968

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

Fig. 177: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs (AO ... AI3)

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Voltage 0 ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

For the measuring ranges that can be configured, plese refer to the sections Measuring Ranges
Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization Ä Chapter
5.2.6.3.2.8 “Parameterization” on page 974.
To avoid error messages, configure unused analog input channels as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 969

Connection of passive-type analog sensors (Current) to the analog inputs

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-

+

+4 ... +20 mA

Fig. 178: Connection of passive-type analog sensors (current) to the analog inputs (A0 ... A3)

Current 4 ... 20 mA 1 channel used

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Only use sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to I+ and I-.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful if analog sensors which are remotely non-isolated (e.g. the
negative terminal is remotely grounded) are used.
Using differential inputs helps to considerably increase the measuring accuracy and to avoid
ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US970

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-
UIN

Fig. 179: Connection of active-type analog sensors (voltage) to differential analog inputs (AI0 ...
AI3)

Voltage 0 ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.
To avoid error messages, configure unused analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 971

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 180: Connection of digital sensors to the analog input (AI0 ... AI3)

Digital input 24 V 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.

Connection of analog output loads (Voltage)

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 181: Connection of analog output loads (voltage) to the analog outputs (AO0 ... AO1)

Voltage -10 V ... +10 V Load ± 10 mA max. 1 channel used

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US972

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 182: Connection of analog output loads (current) to the analog outputs (AO0 ... AO1)

Current 0 ... 20 mA Load 0 ... 500 W 1 channel used

Current 4 ... 20 mA Load 0 ... 500 W 1 channel used

For the measuring ranges that can be configured, please refer to the sections Measuring
Ranges Ä Chapter 5.2.6.3.2.11 “Measuring ranges” on page 984 and Parameterization
Ä Chapter 5.2.6.3.2.8 “Parameterization” on page 974.
Unused analog outputs can be left open-circuited.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 973

Addressing
A detailed description concerning addressing can be found in the documentation of ABB Control
Builder Plus Software.

The CANopen communication interface module reads the position of the rotary
switches only during power-up, i. e. changes of the switch position during oper-
ation will have no effect until the next module initialization.

The range of permitted CANopen slave addresses is 1 to 127. Setting a higher
address (> 128) does not lead to an error response, but results in a special
mode (DS401). In this special mode, the device creates the node address by
subtracting the value 128 from the address switch's value.

I/O configuration
The CI582-CN CANopen bus configuration is handled by CANopen master with the exception of
the slave node ID (via rotary switches) and the transmision rate (automatic detection).
The digital I/O channels and the fast counter are configured via software.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C84 WORD 0x1C84

Parameter length Internal 54 BYTE 54

Error LED / Fail-
safe function
(table error LED /
Failsafe function
Ä Further infor-
mation
on page 974)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved 0 0 ARRAY of 24
BYTES

Check supply
(UP and UP3)

On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

10 2) 10

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission
2) For a description of the counter operating modes, please refer to the fast counter section
Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US974

Table 219: Settings "Error LED / Failsafe function"
Setting Description
On Error LED (S-ERR) lights up at errors of all error classes, failsafe

mode off

Off by E4 Error LED (S-ERR) lights up at errors of error classes E1, E2 and E3,
failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error classes E1 and E2,
failsafe mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all error classes, failsafe
mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1, E2 and E3,
failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1 and E2,
failsafe mode on *)

*) The parameters Behaviour analog outputs at communication error and Behaviour digital
outputs at communication error are only evaluated if the failsafe function is enabled.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behavior analog
outputs at com-
munication error
*)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behavior analog outputs at communication error is only analyzed if the
failsafe mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Operation modes
of analog inputs

Operation modes
of analog inputs

BYTE 0

Input 0, Check
channel

Settings channel
monitoring

Settings channel
monitoring

BYTE 0

: : : : :

: : : : :

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 975

Name Value Internal value Internal value,
type

Default

Input 3, Channel
configuration

Operation modes
of analog inputs

Operation modes
of analog inputs

BYTE 0

Input 3, Check
channel

Settings channel
monitoring

Settings channel
monitoring

BYTE 0

Table 220: Channel configuration - Operating modes of the analog inputs
Internal Value Operating Modes (individually configu-

rable)
0 (default) Not used

1 0 ... 10 V

2 Digital input

3 0 ... 20 mA

4 4 ... 20 mA

5 -10 V ... +10 V

8 2-wire Pt100 -50 °C ... +400 °C

9 3-wire Pt100 -50 ... +400 °C *)

10 0 ... 10 V (voltage diff.) *)

11 -10 V ... +10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C ... +70 °C

15 3-wire Pt100 -50 °C ... +70 °C *)

16 2-wire Pt1000 -50 °C ... +400 °C

17 3-wire Pt1000 -50 °C ... +400 °C *)

18 2-wire Ni1000 -50 °C ...+150 °C

19 3-wire Ni1000 -50 °C ... +150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 221: Channel monitoring
Internal Value Check Channel
0 (default) Plausibility, wire break, short circuit

3 Not used

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US976

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Operation modes
of analog outputs

Operation modes
of analog outputs

BYTE 0

Output 0, Check
channel

Channel moni-
toring

Channel moni-
toring

BYTE 0

Output 0, Substi-
tute value

Substitute value Substitute value WORD 0

Output 1,
Channel configu-
ration

Operation modes
of analog outputs

Operation modes
of analog outputs

BYTE 0

Output 1, Check
channel

Channel moni-
toring

Channel moni-
toring

BYTE 0

Output 1, Substi-
tute value

Substitute value Substitute value WORD 0

Table 222: Channel configuration - Operating modes of the analog outputs
Internal value Operating Modes (individually configu-

rable)
0 (default) Not used

128 -10 V ... +10 V

129 0 mA ... 20 mA

130 4 mA ... 20 mA

Table 223: Channel monitoring
Internal value Check channel
0 Plausibility, wire break, short circuit

3 None

Table 224: Substitute value
Intended Behavior of Output
Channel when the Control
System Stops

Required Setting of
the Module Parameter
"Behavior of Outputs in
Case of a Communication
Error"

Required Setting of the
Channel Parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 977

Intended Behavior of Output
Channel when the Control
System Stops

Required Setting of
the Module Parameter
"Behavior of Outputs in
Case of a Communication
Error"

Required Setting of the
Channel Parameter "Substi-
tute value"

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behavior digital
outputs at com-
muncation error
1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x00

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE Off
0x00

1) The parameter Behavior digital outputs at communcation error is only analyzed if the failsafe
mode is ON.

2) The state "externally voltage detected" appears if the output of a channel DC0 ... DC7 is to
be switched on while an external voltage is connected Ä Chapter 5.2.6.3.2.4 “Connections”
on page 957. In this case, the start-up is disabled as long as the external voltage is connected.
The monitoring of this state and the resulting diagnosis message can be disabled by setting
the parameters to "OFF".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US978

Diagnosis

Byte Number Description Possible Values
1 Diagnosis byte, slot number 31 = CI581-CN (e. g. error at integrated 8 DI /

8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

4 Diagnosis byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000 .. 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 979

E1..E4 d1 d2 d3 d4 Identi-
fier
000 .. 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US980

E1..E4 d1 d2 d3 d4 Identi-
fier
000 .. 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Voltage feedback
on deactivated dig-
ital output 6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0..1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 981

1) In AC500, the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = position of the
communication module;14 = I/O bus; 31 = module itself
The identifier is not contained in the CI541-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = module itself; 1 ... 10 =
decentralized communication interface module

3) With "Module" the following allocation applies:
31 = module itself
Channel error: module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears if external voltages at one or more terminals DO0 ... DO7
cause other digital outputs to be fed by that voltage Ä Chapter 5.2.6.3.2.4
“Connections” on page 957. All outputs of the digital output groups will be turned
off for 5 seconds. The diagnosis message appears for the whole output group.

5) The voltage on digital outputs DO0 ... DO7 has overrun the process supply
voltage UP3 Ä Chapter 5.2.6.3.2.4 “Connections” on page 957. Diagnosis mes-
sage appears for the whole module.

6) This message appears if the output of a channel DO0 ... DO7 is to be switched
on while an external voltage is connected. In this case, start-up is disabled while
the external voltage is connected. Otherwise, this could produce reverse voltage
flowing from this output to other digital outputs. This diagnosis message appears
for each channel.

7) Short circuit: After a short circuit has been detected, the output is deactivated for
100ms seconds. Subsequently, a new start-up will be executed. This diagnosis
message appears for each channel.

State LEDs
The state LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, CN-RUN, CN-ERR, S-ERR and I/O bus) show the operation

states of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

CN-RUN Green --- Device config-
ured, CANopen
bus in OPERA-
TIONAL state
and cyclic data
exchange run-
ning

Flashing:
CANopen bus in
PRE-OPERA-
TIONAL state
and slave is
being configured
Single flash:
CANopen bus in
STOPPED state.
Flickering: Auto-
detect is active

States of the 5
system LEDs

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US982

LED Color OFF ON Flashing
CN-ERR Red No system error CANopen Bus is

OFF
Flashing: Config-
uration error
Single flash: error
counter overflow
due to too many
error frames
Double flash: A
node-guard or a
heartbeat event
occurred
Flickering: Auto-
detect is active

S-ERR Red No error Internal error --

I/O bus Green No decentralized
I/O modules con-
nected or com-
munication error

Decentralized I/O
modules con-
nected and
operational

LED Color OFF ON Flashing
AI0 ... AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 ... AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 ... DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 ... DO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

States of the 27
process LEDs:

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 983

Measuring ranges
Input ranges voltage, current and digital input

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10,0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 1.7593 < -11.7589 < 0.0000 < 1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value

 Decimal Hex.
Overflow > +450.0 °C > +160.0 °C 32767 7FFF

Measured value
too high

+450.0 °C
:
+ 400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

 800
:
701

0320
:
02BD

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US984

Range Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value

 Decimal Hex.
Normal range +400.0 °C

:
:
:
+ 0.1 °C

+150.0 °C
:
:
+0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10 V ...+10 V 0 mA ... 20
mA

4 mA ... 20
mA

Digital value

 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 985

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability CI58x can only be used on onboard CAN inter-
face and without any I/O expansion module
Ä Table 215 “CANopen” on page 952.

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

Ambient temperature System data AC500 Ä Chapter 5.1.2 “System
data AC500” on page 166

System data AC500 XC Ä Chapter 5.1.3
“System data AC500-XC” on page 169

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US986

Parameter Value
 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 5.2.7.4 “TU517 and TU518 for com-
munication interface modules” on page 1278

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 3.0 ... 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 987

Parameter Value
Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from

0.1 ms ... 32 ms

Input signal voltage 24 V DC

Signal 0 -3 V ... +5 V

Undefined signal > +5 V ... < +15 V

Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

Input voltage +24 V Typ. 5 mA

Input voltage +5 V > 1 mA

Input voltage +15 V > 2 mA

Input voltage +30 V < 8 mA

Max. cable length

Shielded 1000 m

Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

Rated value per channel 500 mA at UP3 = 24 V

Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

With resistive load On request

With inductive loads Max. 0.5 Hz

With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US988

Parameter Value
Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

Shielded 1000 m

Unshielded 600 m

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 183: Circuitry of a digital input/output with the varistors for demagnetization when inductive
loads are switched off

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ to AI3+ Terminals 2.0 to2.3

Reference potential for AI0+ to AI3+ Terminal 2.4 (AI-) for voltage and RTD meas-
urement
Terminal 2.9, 3.9 and 4.9 for current measure-
ment

Input type

 Unipolar Voltage 0...10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10...+10 V

Galvanic isolation Against CANopen Bus

Configurability 0...10 V, -10...+10 V, 0/4...20 mA, Pt100/1000,
Ni1000 (each input can be configured individu-
ally)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 989

Parameter Value
Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/

Ni... 1 s

Resolution Range 0...10 V: 12 bits
Range -10...+10 V: 12 bits including sign
Range 0...20 mA: 12 bits
Range 4...20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): +0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code Ä Chapter 5.2.6.3.2.11.2 “Input ranges resist-

ance temperature detector” on page 984

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ to AI3+ Terminals 2.0 to 2.3

Reference potential for the inputs Terminals 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 VDC

 Signal 0 -30 V...+5 V

 Undefined signal +5 V...+15 V

 Signal 1 +15 V...+30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5...1.6

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US990

Parameter Value
Reference potential for AO0+ to AO1+ Terminal 2.7 (AO-) for voltage output

Terminal 2.9, 3.9 and 4.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10...+10 V, 0...20 mA, 4...20 mA (each output
can be configured individually)

Output resistance (load), as current output 0...500 W

Output loadability, as voltage output ±10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Ä Chapter 5.2.6.3.2.11.3 “Output ranges
voltage and current” on page 985

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI0), 3.1 (DI1)

Used outputs Terminal 4.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Detailed description Fast Counter Ä Chapter 5.2.4.3.2.9 “Fast
counter” on page 606

Operating modes Operating modes Ä Chapter 5.2.4.3.2.9 “Fast
counter” on page 606

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 991

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 228 100
R0001

CI581-CN, CANopen
communication interface module with
8 DI, 8 DO, 4 AI and 2 AO

Active

1SAP 428 100
R0001

CI581-CN-XC, CANopen
communication interface module with
8 DI, 8 DO, 4 AI and 2 AO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US992

5.2.6.3.3 CI582-CN
Features

● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for use in extreme ambient conditions available

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

CI582

CH-ERR1 CH-ERR3CH-ERR2

UP 24VDC 100W CANopen Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

PWR/
RUN

ADDR x01H

ADDR x10H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1.8GND

1.9GND

1.0 CAN+

1.2 CAN-

1.3 CAN-

1.5 Term+

1.6 Term-

1.4 Term+

1.7 Term-

1.1 CAN+ CN-
RUN
CN-

ERR
S-

ERR
I/O-
Bus

2.0 DC0

2.2 DC2

2.9 ZP

2.3 DC3

2.1 DC1

2.5 DC5

2.6 DC6

2.8 UP

2.7 DC7

2.4 DC4

3.8 UP

3.9 ZP

3.0 DI8

3.2 DI10

3.3 DI11

3.5 DI13

3.6 DI14

3.4 DI12

3.7 DI15

3.1 DI9

4.0 DO8

4.2 DO10

4.4 DO12

4.6 DO14

4.9 ZP

4.1 DO9

4.3 DO11

4.5 DO13

4.7 DO15

4.8 UP3

12 3 4 5

6
7

8

9

10

12

13

11

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs

(DC0 ... DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 ... DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 ... DO15)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, CN-RUN, CN-ERR, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the CANopen node ID
11 10 terminals to connect the CANopen bus signals
12 Terminal unit
13 DIN rail

Sign for XC version

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 993

Intended purpose
The CANopen communication interface module CI582-CN is used as decentralized I/O module
in CANopen networks. Depending on the terminal unit used, the network connection is per-
formed either via a female 9-pin D-sub connector or via 10 terminals (screw or spring terminals)
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0 ... 1.7)
● 8 digital inputs 24 V DC in 1 group (2.0 ... 2.7)
● 8 digital outputs 24 V DC in 1 group (3.0 ... 3.7)

The inputs/outputs are galvanically isolated from the CANopen network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For use in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability CI58x can only be used on onboard CAN inter-
face and without any I/O expansion module
Ä Table 215 “CANopen” on page 952.

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

Ambient temperature System data AC500 Ä Chapter 5.1.2 “System
data AC500” on page 166

System data AC500 XC Ä Chapter 5.1.3
“System data AC500-XC” on page 169

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US994

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 5.2.7.4 “TU517 and TU518 for com-
munication interface modules” on page 1278

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Parameter Value
Inputs and outputs 8 digital inputs (24 V DC)

8 digital transistor outputs (24 V DC, 0.5 A
max.)
8 configurable digital inputs/outputs (24 V DC,
0.5 A max.)

CI582-CN: Input/
Output charac-
teristics

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 995

Connections
General

The CANopen communication interface module is plugged on the I/O terminal units TU517
Ä Chapter 5.2.7.4 “TU517 and TU518 for communication interface modules” on page 1278
or TU518 Ä Chapter 5.2.7.4 “TU517 and TU518 for communication interface modules”
on page 1278 and accordingly TU509 or TU510. Properly position the module and press until it
locks in place.
The connection of the I/O channels is established using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Possibilities of connection
The assignment of the 9-pin female D-sub for the CANopen signals

1

5

6

9

1 --- Reserved

2 CAN- Inverted signal of the CAN bus

3 CAN_GND Ground potential of the CAN bus

4 --- Reserved

5 --- Reserved

6 --- Reserved

7 CAN+ Non-inverted signal of the CAN bus

8 --- Reserved

9 --- Reserved

Shield Cable shield Functional earth

The ends of the data lines have to be terminated with a 120 W bus terminating resistor. The bus
terminating resistor is usually installed directly at the bus connector.

Mounting on ter-
minal units
TU509 or TU510

Bus terminating
resistors

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US996

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

1
2

4

3
1
2

4

3
1
2

4

3

6 6 6
12

0

12
0

Node 1 Node 2 Node N5 5

Fig. 184: CANopen interface, bus terminating resistors connected to the line ends

1 CAN_GND

2 CAN_L

3 Shield

4 CAN_H

5 Data line, shielded twisted pair

6 COMBICON connection, CANopen interface

12
0

12
0

4

 2

3

1

4

2

3

1

+24 V

0 V
5

6

7

9

11

5

7

12

13

8

10

Fig. 185: DeviceNet interface, bus terminating resistors connected to the line ends

6 DeviceNet power supply

7 COMBICON connection, DeviceNet interface

8 Data lines, twisted pair cables

9 red

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 997

10 black

11 white

12 blue

13 bare

The grounding of the shield should take place at the switchgear Ä Chapter
5.1.2 “System data AC500” on page 166.

Table 225: Assignment of the terminals
Terminal Signal Description
1.0 CAN+ Non-inverted signal of the CAN bus

1.1 CAN+ Non-inverted signal of the CAN bus

1.2 CAN- Inverted signal of the CAN bus

1.3 CAN- Inverted signal of the CAN bus

1.4 Term+ CAN bus termination for CAN+ (for bus termination,
Term+ must be connected with CAN+)

1.5 Term+ CAN bus termination for CAN+ (connecting alterna-
tive for terminal 1.4)

1.6 Term- CAN bus termination for CAN- (for bus termination,
Term- must be connected with CAN-)

1.7 Term- CAN bus termination for CAN- (connecting alterna-
tive for terminal 1.6)

1.8 CAN-GND Ground potential of the CAN bus

1.9 CAN-GND Ground potential of the CAN bus

At the line ends of a bus segment, terminating resistors must be connected. If TU517 or TU518
is used, the bus terminating resistors can be enabled by connecting the terminals Term+ and
Term- to the data lines CAN+ and CAN- (no external terminating resistors are required, see
figure below).
The following figures show the different connection options for the CANopen communication
interface module:

Mounting on ter-
minal units
TU517 or TU518

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US998

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen in

CANopen out

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

CANopen end

In the case of TU517/TU518, the terminating resistors are not located inside
the TU but inside the communication interface module CI581-CN. Hence, when
removing the device from the TU, the bus terminating resistors are no longer
connected to the bus. The bus itself will not be disconnected if a device is
removed.

The grounding of the shield should take place at the control cabinet. Please
refer to the AC500 System-Data Ä Chapter 5.1.2 “System data AC500”
on page 166.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 999

Table 226: Assignment of the other terminals
Terminal Signal Description
2.0 DC0 Signal of the configurable digital input/output DC0

2.1 DC1 Signal of the configurable digital input/output DC1

2.2 DC2 Signal of the configurable digital input/output DC2

2.3 DC3 Signal of the configurable digital input/output DC3

2.4 DC4 Signal of the configurable digital input/output DC4

2.5 DC5 Signal of the configurable digital input/output DC5

2.6 DC6 Signal of the configurable digital input/output DC6

2.7 DC7 Signal of the configurable digital input/output DC7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI8 Signal of the digital input DI8

3.1 DI9 Signal of the digital input DI9

3.2 DI10 Signal of the digital input DI10

3.3 DI11 Signal of the digital input DI11

3.4 DI12 Signal of the digital input DI12

3.5 DI13 Signal of the digital input DI13

3.6 DI14 Signal of the digital input DI14

3.7 DI15 Signal of the digital input DI15

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO8 Signal of the digital output DO8

4.1 DO9 Signal of the digital output DO9

4.2 DO10 Signal of the digital output DO10

4.3 DO11 Signal of the digital output DO11

4.4 DO12 Signal of the digital output DO12

4.5 DO13 Signal of the digital output DO13

4.6 DO14 Signal of the digital output DO14

4.7 DO15 Signal of the digital output DO15

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1000

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

4.0 DO8

4.1 DO9

4.2 DO10

4.3 DO11

4.4 DO12

4.5 DO13

4.6 DO14

4.7 DO15

DI8 3.0

DI9 3.1

DI10 3.2

DI11 3.3

DI12 3.4

DI13 3.5

DI14 3.6

DI15 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 4.9

4.8
UP3 +24 V

ZP 0 V

DC0 2.0

DC1 2.1

DC2 2.2

DC3 2.3

DC4 2.4

DC5 2.5

DC6 2.6

DC7 2.7

Fig. 186: Connection of the communication interface module CI582-CN

For a description of the meaning of the LEDs, please refer to the section for the state LEDs
Ä Chapter 5.2.6.3.3.10 “State LEDs” on page 1010.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1001

The maximum possible bus length of a CAN network depends on bit rate (transmission rate)
and cable type. The sum of all bus segments must not exceed the maximum bus length

Bit Rate (speed) Bus Length
1 Mbit/s 40 m

800 kbit/s 50 m

500 kbit/s 100 m

250 kbit/s 250 m

125 kbit/s 500 m

50 kbit/s 1000 m

Connection of the digital inputs

3.0
DI8
3.1
DI9
3.2
DI10
3.3
DI11
3.4
DI12
3.5
DI13
3.6
DI14
3.7
DI15
3.8
UP
3.9
ZP

24 V DC
-
+

Fig. 187: Connection of the digital inputs (DI8 ... DI15) to the module CI582-CN

Bus length

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1002

Connection of the digital outputs

4.0
DO8
4.1
DO9
4.2
DO10
4.3
DO11
4.4
DO12
4.5
DO13
4.6
DO14
4.7
DO15
4.8
UP
4.9
ZP

24 V DC
-
+

Fig. 188: Connection of configurable digital outputs (DO8 ... DO15) to the module CI582-CN

Connection of the configurable digital inputs/outputs

2.0
DC0
2.1
DC1
2.2
DC2
2.3
DC3
2.4
DC4
2.5
DC5
2.6
DC6
2.7
DC7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 189: Connection of configurable digital inputs/outputs (DC0 ... DC7) to the module CI582-
CN

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1003

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing
A detailed description concerning addressing can be found in the documentation of ABB Control
Builder Plus Software.

The CANopen communication interface module reads the position of the rotary
switches only during power-up, i. e. changes of the switch position during oper-
ation will have no effect until the next module initialization.

The range of permitted CANopen slave addresses is 1 to 127. Setting a higher
address (> 128) does not lead to an error response, but results in a special
mode (DS401). In this special mode, the device creates the node address by
subtracting the value 128 from the address switch's value.

I/O configuration
The CI582-CN CANopen bus configuration is handled by CANopen master with the exception of
the slave node ID (via rotary switches) and the transmision rate (automatic detection).
The digital I/O channels and the fast counter are configured via software.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C89 WORD 0x1C89

Parameter length Internal 38 BYTE 38

Error LED / fail-
safe function
table error LED /
failsafe function
Ä Table 227 “Err
or LED / Failsafe
function”
on page 1005)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved 0 0 ARRAY of 24
BYTES

Check supply On 0 BYTE

Off 1 1

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1004

Name Value Internal value Internal value,
type

Default

Fast counter 0 0 BYTE 0

: :

10 2) 10

1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) For a description of the counter operating modes, please refer to the 'Fast Counter' section
Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606.

Table 227: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, failsafe mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, failsafe mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, failsafe mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, failsafe mode on *)

*) The parameter Behavior DO at comm. error is only analyzed if the failsafe mode is ON.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behavior DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1005

Name Value Internal value Internal value,
type

Default

Substitute value
at output

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0 ... DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behavior DO at comm. error is applied to DC and DO
channels and only analyzed if the failsafe mode is ON.

2) The state "externally voltage detected" appears if the output of a channel
DC0 ... DC7 is to be switched on while an external voltage is connected.
In this case, start-up is disabled while the externally voltage is con-
nected. The monitoring of this state and the resulting diagnosis message
can be disabled by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears if external voltage
at digital outputs DC0 ... DC7 and DO0 ... DO7 has exceeded the
process supply voltage UP3 Ä Chapter 5.2.6.3.3.4 “Connections”
on page 996. The according diagnosis message "Voltage overflow on
outputs " can be disabled by setting the parameters to "OFF". This
parameter should only be disabled in exceptional cases as voltage over-
flow may produce reverse voltage.

Diagnosis

Byte Number Description Possible Values
1 Diagnosis byte, slot number 31 = CI582-CN (e. g. error at integrated 8 DI /

8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

3 Diagnosis byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1006

Byte Number Description Possible Values
4 Diagnosis byte, error code According to the I/O bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to Bit 5, coded error description

5 Diagnosis byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The module performs
reactivation automatically. Thus, an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1..E4 d1 d2 d3 d4 Identi-
fier
000 .. 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0
... 5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1007

E1..E4 d1 d2 d3 d4 Identi-
fier
000 .. 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0
... 5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1008

E1..E4 d1 d2 d3 d4 Identi-
fier
000 .. 063

AC500
display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit 0
... 5

CANope
n diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8...15 46 Externally voltage
detected at digital
output DO0 ... DO7
6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0 ... DC7
6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0 ... DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO0 ... DO77)

Check
terminals

Remarks:

1) In AC500, the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = position of the
communication module; 14 = I/O bus; 31 = module itself
The identifier is not contained in the CI542-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = module itself, 1..10 =
expansion module

3) With "Module" the following allocation applies depending on the master:
Module error: 31 = module itself
Channel error: module type (1 = AI, 2 = DO, 3 = AO)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1009

4) This message appears if external voltages at one or more terminals
DC0 ... DC7 or DO0 ... DO7 cause other digital outputs to be supplied by that
voltage Ä Chapter 5.2.6.3.3.4 “Connections” on page 996. All outputs of the
digital output groups will be turned off for 5 seconds. The diagnosis message
appears for the whole output group.

5) The voltage at digital outputs DC0 ... DC7 and DO0 ... DO7 has exceeded
the process supply voltage UP3 Ä Chapter 5.2.6.3.3.4 “Connections”
on page 996. A diagnosis message appears for the whole module.

6) This message appears if the output of a channel DC0 ... DC7 or DO0 ... DO7
should be switched on while an external voltage is connected. In this case
the start-up is disabled while the external voltage is connected. Otherwise, this
could produce reverse voltage flowing from this output to other digital outputs.
This diagnosis message appears for each channel.

7) Short circuit: After a short circuit has been detected, the output is deactivated
for 100ms. Subsequently, a new start-up will be executed. This diagnosis mes-
sage appears for each channel.

State LEDs
The LEDs are located at the front of the module. There are 2 different groups:
● The 5 system LEDs (PWR, CN-RUN, CN-ERR, S-ERR and I/O bus) show the operation

states of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

CN-RUN Green --- Device config-
ured, CANopen
bus in OPERA-
TIONAL state
and cyclic data
exchange run-
ning

Flashing:
CANopen bus in
PRE-OPERA-
TIONAL state
and slave is
being configured
Single flash:
CANopen bus in
STOPPED state.
Flickering: Auto-
detect is active

States of the 5
system LEDs

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1010

LED Color OFF ON Flashing
CN-ERR Red No system error CANopen Bus is

OFF
Flashing: Config-
uration error
Single flash: error
counter overflow
due to too many
error frames
Double flash: A
node-guard or a
heartbeat event
occurred
Flickering: Auto-
detect is active

S-ERR Red No error Internal error --

I/O bus Green No decentralized
I/O modules con-
nected or com-
munication error

Decentralized I/O
modules con-
nected and
operational

LED Color OFF ON Flashing
DC0 ... DC7 Yellow Input/output is OFF Input/output is ON --

DI8 ...DI15 Yellow Input is OFF Input is ON (the input
voltage is even dis-
played if the supply
voltage is OFF)

--

DO8 ... DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and initi-
alization finished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to
CH-ERR3

Red No error or process
supply voltage
missing

Internal error Error on one channel
of the corresponding
group

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

States of the 29
process LEDs

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1011

Parameter Value
Interface CAN

Protocol CANopen

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the CANopen Node ID for configura-
tion purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Transmission rates 10 / 20 / 50 / 125 / 250 / 500 / 800 kbit/s 1
Mbit/s Auto transmission rate detection is sup-
ported

Bus connection Depending on used terminal unit TU510: 9-pin
D-sub connector TU518: 10-pin terminal block

Processor Hilscher NETX 100

Expandability CI58x can only be used on onboard CAN inter-
face and without any I/O expansion module
Ä Table 215 “CANopen” on page 952.

State display Module state: PWR/RUN, CN-RUN, CN-ERR,
E-ERR, I/O bus

Adjusting elements 2 rotary switches for generation of the node
address

Ambient temperature System data AC500 Ä Chapter 5.1.2 “System
data AC500” on page 166

System data AC500 XC Ä Chapter 5.1.3
“System data AC500-XC” on page 169

Current consumption UP: 0.2 A UP3: 0.06 A + 0.5 A max. per output

Weight (without terminal unit) Ca. 125 g

Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation CANopen interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1012

Parameter Value
Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the CANopen Node ID identifier With 2 rotary switches at the front side of the
module

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518
Ä Chapter 5.2.7.4 “TU517 and TU518 for com-
munication interface modules” on page 1278

All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and continuous overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 3.0 ... 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON
when the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from
0.1 ms ... 32 ms

Input signal voltage 24 V DC

Signal 0 -3 V ... +5 V

Undefined signal > +5 V ... < +15 V

Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

Input voltage +24 V Typ. 5 mA

Input voltage +5 V > 1 mA

Input voltage +15 V > 2 mA

Input voltage +30 V < 8 mA

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1013

Parameter Value
Max. cable length

Shielded 1000 m

Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 to DO7 Terminals 4.0 to 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

Rated value per channel 500 mA at UP3 = 24 V

Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

With resistive load On request

With inductive loads Max. 0.5 Hz

With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

Shielded 1000 m

Unshielded 600 m

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1014

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 190: Circuitry of a digital input/output with the varistors for demagnetization when inductive
loads are switched off

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

Channels DC0...DC07 Terminals 2.0...2.7

If the channels are used as outputs

Channels DC0...DC07 Terminals 2.0...2.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON
when the input/output signal is high (signal 1)

Galvanic isolation From the CANopen network

Please refer to the Technical Data of the Digital Inputs Ä Chapter 5.2.6.3.3.11 “Technical data”
on page 1011. Deviation:
Terminals of the channels DC0 to DC7: Terminals 2.0 to 2.7
Due to the direct connection to the output, the demagnetizing varistor is also effective at the
input. This is why the difference between UPx and the input signal must not exceed the clamp
voltage of the varistor. The varistor limits the clamp voltage to approx. 36 V. Consequently, the
input voltage must range from -12 V to +30 V when UPx = 24 V and from -6 V to +30 V when
UPx = 30 V.

Please refer to the Technical Data of the Digital Outputs Ä Chapter 5.2.6.3.3.11 “Technical data”
on page 1011. Deviation:
Terminals of the channels DC0 to DC7: Terminals 2.0 to 2.7
The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

Technical data
of the digital
inputs/outputs if
used as inputs

Technical data
of the digital
inputs/outputs if
used as outputs

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1015

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 191: Digital input/output (circuit diagram)

1 Digital input/output

2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI8), 3.1 (DI9)

Used outputs Terminal 4.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Detailed description Fast Counter Ä Chapter 5.2.4.3.2.9 “Fast
counter” on page 606

Operating modes Operating modes Ä Chapter 5.2.4.3.2.9 “Fast
counter” on page 606

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1016

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 228 200 R0001 CI582-CN, CANopen

communication interface module with
8 DI, 8 DO and 8 DC

Active

1SAP 428 200 R0001 CI582-CN-XC, CANopen
communication interface module with
8 DI, 8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1017

5.2.6.4 EtherCAT
5.2.6.4.1 CI511-ETHCAT
Features

● 4 analog inputs (resolution 12 bits including sign)
● 2 analog outputs (resolution 12 bits including sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● Cam switch functionality (see also Extended Cam Switch Library)
● Extended Cam switch functionality *) (see also Extended Cam Switch Library)
● Module-wise galvanically isolated - Expandability with up to 10 S500 I/O Modules *)
*) Applicable for device index C0 and above.

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

ETH1

ETH2

CI511

CH−ERR1 CH−ERR3CH−ERR2

1.4

1.0 AI0+

1.2 AI2+

1.7 AO−

1.9 ZP

1.3 AI3+

1.1 AI1+

AI −

1.5 AO0+

1.6 AO1+

1.8 UP

3.0 DO0

3.2 DO2

3.4 DO4

3.6 DO6

3.9 ZP

3.1 DO1

3.3 DO3

3.5 DO5

3.7 DO7

3.8 UP32.8 UP

2.9 ZP

2.0 DI0

2.2 DI2

2.3 DI3

2.5 DI5

2.6 DI6

2.4 DI4

2.7 DI7

2.1 DI1

UP 24VDC 100W 4AI 2AO 8DI 8DO
Analog Input / Output

Digital Input / Output 24VDC 0.5A

S−ERR

I/O−Bus

STA2 ETH

STA1 ETH

PWR/RUN

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5
ADDR

x10H

x01H

ADDR

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 ... AI3,

AO0 ... AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 ... DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 ... DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, NET, DC, S-ERR, I/O-Bus
9 2 rotary switches (reserved for future extensions)
10 Label

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1018

11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Intended purpose
The EtherCAT communication interface module CI511-ETHCAT is used as decentralized I/O
module in EtherCAT networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels with the following properties:
● 4 analog inputs (1.0 ... 1.3)
● 2 analog outputs (1.5 ... 1.6)
● 8 digital inputs 24 V DC in 1 group (2.0 ... 2.7)
● 8 digital outputs 24 V DC in 1 group (3.0 ... 3.7)
● Cam switch functionality
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Functionality

Parameter Value
Interface Ethernet

Protocol EtherCAT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches Not used; reserved for future extensions

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 5.2.7.2 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 1270

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1019

Connections
General

The Ethernet communication interface module CI511-ETHCAT is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH. Properly seat the module and press until it locks in place. The
terminal unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall
mounting (TA526).

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

The assignment of the other terminals:

Terminal Signal Description
1.0 ... 1.3 AI0 ... AI3 Positive pole of the 4 analog

inputs

1.4 AI- Negative pole of the analog
inputs

1.5 ... 1.6 AO0 ... AO1 Positive pole of the 2 analog
outputs

1.7 AO- Negative pole of the analog
outputs

2.0 ... 2.7 DI0 ... DI7 8 digital inputs

3.0 ... 3.7 DO0 ... DO7 8 digital outputs

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1020

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

CAUTION!
There is no galvanic isolation between the analog circuitry and ZP/UP. There-
fore, the analog sensors must be galvanically isolated in order to avoid loops via
the ground potential or the supply voltage.

CAUTION!
Because of their common reference potential, analog current inputs cannot
be circuited in series, neither within the module nor with channels of other
modules.

For the open-circuit detection (wire break), each channel is pulled up to "plus"
by a high-resistance resistor. If nothing is connected, the maximum voltage will
be read in then.

Analog signals are always laid in shielded cables. The cable shields are grounded at both ends
of the cables. In order to avoid unacceptable potential differences between different parts of the
installation, low resistance equipotential bonding conductors must be laid.
For simple applications (low disturbances, no high requirement on precision), the shielding can
also be omitted.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1021

+
−

+
−

+
−

+
−

+
−

+
−

PTC

AI 0+

AI 1+

AI 2+

AI 3+
AI −

AGND

1.0

1.1

1.2

1.3
1.4

PTC

1.5

1.6
1.7

AO 0+

AO 1+
AO −

3.0 DO 0

3.1 DO 1

3.2 DO 2

3.3 DO 3

3.4 DO 4

3.5 DO 5

3.6 DO 6

3.7 DO 7

DI 0 2.0

DI 1 2.1

DI 2 2.2

DI 3 2.3

DI 4 2.4

DI 5 2.5

DI 6 2.6

DI 7 2.7

1.8

1.9

UP +24 V

ZP 0 V

2.8

2.9 3.9

3.8
UP3 +24 V

ZP 0 V

1

2

3 4

Fig. 192: Connection of the communication interface module CI511-ETHCAT

1 4 analog inputs, configurable for 0 ... 10 V, -10 ... +10 V, 0/4 ... 20 mA, Pt100/Pt1000,
Ni1000 and digital signals

2 2 analog outputs, configurable for -10 ... +10 V, 0/4 ... 20 mA
3 8 digital inputs 24 V DC
4 8 digital outputs 24 V DC, 0.5 A max.

In case of voltage feedback, 2 cases are distinguished:

1. The outputs are already active

The output group will be switched off. A diagnosis message will appear. After 5
seconds, the module tries automatic reactivation.

2. The outputs are not active

Only the output with voltage feedback will not be set to active. A diagnosis
message will appear.

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

CAUTION!
 The process supply voltage must be included within the grounding concept of
the plant (e. g. grounding of the negative pole).

The module provide several diagnosis functions Ä Chapter 5.2.6.4.1.9 “Diagnosis”
on page 1039.
The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1022

The function of the LEDs is described in the section State LEDs Ä Chapter 5.2.6.4.1.9 “Diag-
nosis” on page 1039.

Connection of resistance thermometers in 2-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI511-ETHCAT provides a constant current source which is multiplexed over the max. 4 analog
input channels.

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

Fig. 193: Connection of resistance thermometers in 2-wire configuration

1 Pt100 (2-wire), Pt1000 (2-wire), Ni1000 (2-wire); 1 analog sensor requires 1 channel

Pt100 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, 1
channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.
The module CI511-ETHCAT performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Connection of resistance thermometers in 3-wire configuration
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI511-ETHCAT provides a constant current source which is multiplexed over the max. 4 analog
input channels.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1023

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

2

3

1

Fig. 194: Connection of resistance thermometers in 3-wire configuration

1 Pt100 (3-wire), Pt1000 (3-wire), Ni1000 (3-wire); 1 analog sensor requires 2 channels
2 Twisted pair within the cable
3 Return line: The return line is only needed once if measuring points are adjacent to each

other. This saves wiring costs.
With 3-wire configuration, two adjacent analog channels belong together (e. g. the channels 0
and 1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary, to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Pt100 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, 2 chan-
nels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.
The module CI511-ETHCAT performs a linearization of the resistance characteristic.
In order to avoid error messages from unused analog input channels, it is useful to configure
them as "unused".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1024

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

+

–

0...10 V
–10 V...+10 V

AGND

2

1

3

Fig. 195: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply

1 1 analog sensor requires 1 channel
2 By connecting to AI-, the galvanically isolated voltage source of the sensor is referred to ZP
3 Galvanically isolated power supply for the analog sensor

Voltage 0 ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1025

Connection of active-type analog sensors (Current) with galvanically isolated power supply

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–1

2
+

–

0...20 mA
4...20 mA

Fig. 196: Connection of active-type analog sensors (current) with galvanically isolated power
supply

1 1 analog sensor requires 1 channel
2 Galvanically isolated power supply for the analog sensor

Current 0 ... 20 mA 1 channel used

Current 4 ... 20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.
Unused input channels can be left open-circuited, because they are of low resistance.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1026

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply

0...10 V

AGND

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

UP (remote)

ZP (remote)

1

2

3

Fig. 197: Connection of active-type sensors (voltage) with no galvanically isolated power supply

1 1 analog sensor requires 1 channel
2 Power supply not galvanically isolated
3 The connection between the negative pole of the sensor and ZP has to be performed
4 Long cable

NOTICE!
Risk of faulty measurements!
The negative pole/ground potential at the sensors must not have too large a
potential difference with respect to ZP (max. ± 1 V within the full signal range).
Make sure that the potential difference never exceeds ± 1 V.

Voltage 0 ... 10 V 1 channel used

Voltage -10 V ... +10 V *) 1 channel used

*) if the sensor can provide this signal range
The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1027

Connection of passive-type analog sensors (Current)

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

4...20 mA

–

+

Fig. 198: Connection of passive-type analog sensors (current)

1 1 analog sensor requires 1 channel

Current 4 ... 20 mA 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.

CAUTION!
If, during initialization, an analog current sensor supplies more than 25 mA
for more than 1 second into an analog input, this input is switched off by the
module (input protection). In such cases, it is recommended, to protect the
analog input by a 10-volt Zener diode (in parallel to I+ and ZP). But, in general,
it is a better solution to prefer sensors with fast initialization or without current
peaks higher than 25 mA.

Unused input channels can be left open-circuited, because they are of low resistance.

Connection of active-type analog sensors (Voltage) to differential inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1028

The converted analog value is available at the odd channel (higher address).
Important: The ground potential at the sensors must not have a too big potential difference with
respect to ZP (max. ±1 V within the full signal range). Otherwise problems can occur concerning
the common-mode input voltages of the involved analog inputs

+

–

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

3

1
2

0...10 V
–10 V...+10 V

4

Fig. 199: Connection of active-type analog sensors (voltage) to differential inputs

1 1 analog sensor requires 2 channels
2 Galvanically isolated power supply for the analog sensor
3 Grounding at the sensor
4 0 V ... 10 V / -10 V ... +10 V connected to differential inputs

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.
In order to avoid error messages or long processing times, it is useful to configure unused
analog input channels as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital input. The inputs are not galvanically
isolated against the other analog channels.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1029

1.0

1.1

1.8

1.9

AI0+

AI1+

UP

ZP

UP

ZP

PTC

1.5
AI–

1

Fig. 200: Use of analog inputs as digital inputs

1 1 digital signal requires 1 channel

Digital input 24 V 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1030

Connection of analog output loads (Voltage, current)

1.8

1.9

UP

ZP

UP

ZP

1.5

1.7

1.6
AO1+

AO0+

AO–

–10 V...+10 V

0...20 mA
4...20 mA

1

1.9
ZP

1.7
AO–

PTC 2

Fig. 201: Connection of analog output loads (voltage, current)

1 1 analog load requires 1 channel

Voltage -10 V ... +10 V Load ± 10 mA max. 1 channel used

Current 0 ... 20 mA Load 0 Ω ... 500 Ω 1 channel used

Current 4 ... 20 mA Load 0 Ω ... 500 Ω 1 channel used

The measuring ranges are described in the section Measuring Ranges Ä Chapter 5.2.6.4.1.8
“Parameterization” on page 1033 Ä Chapter 5.2.6.4.1.11 “Measuring ranges” on page 1042.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment. The pin assignment is used for the EtherCAT master (communica-
tion module CM5xy-ETHCAT) as well.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1031

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

Analog inputs (words) 4

Analog outputs (words) 2

Addressing
The Ethernet bus module CI511-ETHCAT does not consider the position of the rotary switches
at the front side of the module. The function of the rotary switches is reserved for future
expansions.

Pin assignment

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1032

I/O configuration

In order to be able to use the CI51X-ETHCAT with device index C0 or above
properly, please download the corresponding device description (.xml-)files
from http://www.abb.com/plc and install them to the device repository of your
Automation Builder. This will allow you to use up to 10 Expandable S500 I/O
modules as well as the Extended Cam Switch Library with your CI51X-ETHCAT
device.

The CI511-ETHCAT does not store configuration data itself.
The analog I/O channels are configured via software.

Parameterization
Module parameter

Name Value Internal value Internal value,
type

Default

Module ID Internal 48155 WORD 48155

Parameter length Internal 28 BYTE 28

Error LED / Fail-
safe function 1)

On
Off by E4
Off by E3 On +
failsafe Off by E4
+ failsafe Off by
E3 + failsafe

0
1
3
16
17
19

BYTE 0

Check Supply Off
On

0
1

BYTE 1

Table 228: Error LED / Failsafe function 1)
Setting Description
On Error LED lights up at errors of all error classes, Failsafemode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3, Failsa-
femode off

Off by E3 Error LED lights up at errors of error classes E1 and E2 auf, Failsa-
femode off

On + failsafe Error LED lights up at errors of all error classes, Failsafemode on *)

Off by E4 + failsafe Error LED lights up at errors of error classes E1, E2 and E3, Failsa-
femode on *)

Off by E3 + failsafe Error LED lights up at errors of error classes E1 and E2, Failsafe-
mode on *)

*) The parameters behaviourAOatCommunicationFault and behaviourDOatCommunicationFault
are only analyzed if the Failsafe-mode is ON.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1033

http://www.abb.com/plc

Group parameters of the cam switch

Name Value Internal value Internal value,
type

Default

numOfUsed-
Cams 1)

0 ... 32
128 ... 160

0 ... 32
218 ... 160

WORD 0

resolution 2) 0 ... 2
-1

0 ... 2
-1

DWORD 36000

zeroShift 3) 0 ... 2
-1

0 ... 2
-1

DWORD 0

EncoderBitReso-
lution 4)

8 ... 32 8 ... 32 WORD 18

Reserve - - WORD -

1) The parameter numOfUsedCams defines the interrupt cycle time (Therefore, it takes effect to
the accuracy of the track) and the behavior of the module if the DC information is lost.

Parameter setting
for numOfUsed-
Cams

Number of cams
used

Interrupt cycle time Behavior if DC infor-
mation is lost

0 0 50 µs Module changes
to "safe-operational"
state; the outputs are
activated trough the
user program

1...8 1...8 80 µs

9...16 9...16 100 µs

17...32 17...32 200 µs

128 0 50 µs Module keeps in
"operational" state;
the outputs are acti-
vated trough the user
program

129 ... 136 1 ... 8 80 µs Module keeps in
"operational" state;
the cam switch out-
puts are activated
according to an inter-
polated timing infor-
mation

137 ... 144 9 ... 16 100 µs

145 ... 170 17 ... 32 200 µs

2) The parameter resolution defines the angle resolution of the track. The value gives the
number of increments related to 360°; e. g. the value 36,000 corresponds to an angle resolution
of 0.01°.
3) The parameter zeroShift defines the zero shift. With it the encoder can be adjusted to the
mounting position. The value of zeroShift is set in encoder-increments. It is not assigned to the
parameter resolution of the cam switch.
4) The parameter EncoderBitResolution defines the resolution of the used encoder (in bits), e. g.
with the default setting 18 bits the encoder has 196,608 divisions.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1034

Channel parameters for the cam switch (max. 32x)

Name Value Internal value Internal value,
type

Default

camToTrack0 *) Digital Output
0 ... 7, none

0 ... 7, FF BYTE FF

: : : : :

camToTrack31 Digital Output
0 ...7, none

0 ... 7, FF BYTE FF

*) The value of the parameter camToTrack# defines which DO (digital output) is assigned to the
track. camToTrack0 = 3 for example means that track 0 is assigned to the digital output 3. If the
value FFh is set to a track, no digital output is assigned to it.

Name Value Referred FB from
extended Cam Switch
Library 2)

Internal
value

Internal
value, type

Default

cam-
Type[0]
1)
...

Common
Pulsed
Timed
Comfort
Cam shift
Binary shift
Multiturn cam
Time timed
Reference
Multiturn timed

MCX_CamSwitchSimple_c
MCX_CamSwitchSimple_dc
MCX_PulseSwitch_dc
MCX_CamSwitchTimed_dc
MCX_CamSwitchCom-
fort_dc
MCX_CamShift_dc
MCX_BinaryShift_dc
MCX_CamSwitchMulti_dc
MCX_SwitchTimeTimed_dc
MCX_BinaryReference_dc
MCX_CamSwitchMulti-
Timed_dc

0

1
2
3
4
5
6
7
8
9

BYTE 0

1) camType additionally to camToTrack identifies the type of each cam switch and enables the
use of a specific function block from the Extended Cam Switch Library.
2) camType parameters and the Extended Camswitch Library are only available for CI511-
ETHCAT and CI512-ETHCAT with device index C0 and above.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1035

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard 0 BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, channel
configuration

see 1) see 1) BYTE 0

Input 0, check
channel

see 2) see 2) BYTE 0

: : : : :

: : : : :

Input 3, channel
configuration

see 1) see 1) BYTE 0

Input 3, channel
configuration

see 2) see 2) BYTE 0

Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 ... 10 V

2 Digital input

3 0 ... 20 mA

4 4 ... 20 mA

5 -10 V ... +10 V

8 2-wire Pt100 -50 °C ... +400 °C

9 3-wire Pt100 -50 °C ...+400 °C *)

10 0 V ... 10 V (voltage diff.) *)

11 -10 V ... +10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C ... +70 °C

15 3-wire Pt100 -50 °C ... +70 °C *)

Channel config-
uration 1)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1036

Internal value Operating modes of the analog inputs, individually configurable
16 2-wire Pt1000 -50 °C ...+400 °C

17 3-wire Pt1000 -50 °C ...+400 °C *)

18 2-wire Ni1000 -50 °C ...+150 °C

19 3-wire Ni1000 -50 °C ...+150 °C *)

 *) In the operating modes with 3-wire configuration or with differential inputs,
two adjacent analog inputs belong together (e.g. the channels 0 and 1). In
these cases, both channels are configured in the desired operating mode.
The lower address must be the even address (channel 0). The next higher
address must be the odd address (channel 1). The converted analog value is
available at the higher address (channel 1).

Table 229: Channel monitoring 2)
Internal Value Check channel
0 Plausibility, wire break, short circuit

3 not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
channel configu-
ration

see 3) see 3) BYTE 0

Output 0, check
channel

see 4) see 4) BYTE 0

Output 0, substi-
tute value

see 5) see 5) WORD 0

Output 1,
channel configu-
ration

see 3) see 3) BYTE 0

Output 1, check
channel

see 4) see 4) BYTE 0

Output 1, substi-
tute value

see 5) see 5) WORD 0

Table 230: Channel configuration 3)
Internal value Operating modes of the analog outputs, individually configu-

rable
0 Not used (default)

128 -10 V ... +10 V

129 0 ... 20 mA

130 4 ... 20 mA

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1037

Table 231: Channel monitoring 4)
Internal value Check channel
0 Plausibility, wire break, short circuit

3 None

Table 232: Substitute value 5)
Intended behavior of
output channel when the
control system stops

Required setting of the module
parameter "Behaviour of outputs
in case of a communication
error"

Required setting of
the channel parameter
"Substitute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s Last value 5 s 0

Last value for 10 s Last value 10 s 0

Substitute value infinite Substitute value Depending on configura-
tion

Substitute value for 5 s Substitute value 5 s Depending on configura-
tion

Substitute value for 10 s Substitute value 10 s Depending on configura-
tion

Group parameters for the digital part

Name Value Internal value Internal
value, type

Default

Input delay 0.01 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.01 ms
0x00

Detect short circuits at
outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at comm.
error *)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute 5 sec
Substitute 10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value at
output

0 ... 255 00h ... FFh BYTE 0
0x0000

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1038

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

ETHCAT
Diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

Module error

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 20 Slave-to-Slave mal-
function

Check
configu-
ration

3 - 31 31 31 41 Distributed Clock
malfunction

Check
configu-
ration

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage
UP

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1039

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

ETHCAT
Diag-
nosis
block

Class Inter-
face

Device Module Channel Error
identi-
fier

Error message Remedy

 1) 2) 3) 4)

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs
4)

Check
terminals

Channel error digital

4 - 31 2 0..7 46 Voltage feedback
on deactivated dig-
ital output
5)

Check
terminals

4 - 31 2 0..7 47 Short circuit at dig-
ital output

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0..1 48 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI511-ETHCAT diagnosis block.

2) With "Device" the following allocation applies:
31 = Module itself or ADR = Hardware address (e. g. of the DC551)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1040

3) With "Module" the following allocation applies dependent of the master:
31 = Module itself (Module error) or Module type (1=AI, 2=DO, 3=AO; channel
error)

4) Diagnosis message appears for the whole output group and not per channel.
The message occurs if the output channel is already active.

5) Diagnosis message appears per channel. The message occurs if the output
channel is not active.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, NET, DC, S-ERR and I/O-Bus) show the operation state of the

module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 233: States of the 5 system LEDs
LED Color Off On Flashing 1x Flash 2x Flash
PWR/RUN Green Error in the

internal
supply
voltage or
process
voltage
missing

Internal
supply
voltage OK

Module is
not config-
ured

-- --

Yellow -- -- -- -- --

NET Green Init Operational Pre-opera-
tional

Safe-opera-
tional

--

Red No error PDI
Watchdog
Timeout

Invalid Con-
figuration

Unsolicited
State
Change

Application
time out

DC *) Green Distributed
Clock not
active

Distributed
Clock active

-- -- --

Red -- -- -- -- --

S-ERR Red No error Internal
error

-- -- --

I/O-Bus Green No commu-
nication
interface
modules
connected
or commu-
nication
error

--- --- -- --

ETH1 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1041

LED Color Off On Flashing 1x Flash 2x Flash
ETH2 Green No

EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

*) The state of this LED is only significant if the cam switch functionality is enabled

Table 234: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 ... AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 ... AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 ... DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 ... DO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1042

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10,0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 1.7593 < -11.7589 < 0.0000 < 1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value

 Decimal Hex.
Overflow > +450.0 °C > +160.0 °C 32767 7FFF

Measured value
too high

+450.0 °C
:
+400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

 800
:
701

0320
:
02BD

Normal range +400.0 °C
:
:
:
+0.1 °C

+150.0 °C
:
:
+ 0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0 0000

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1043

Range Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value

 Decimal Hex.
Measured value
too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C -32768 8000

Output ranges voltage and current

Range -10 V ... +10 V 0 mA ... 20 mA 4 mA ... 20
mA

Digital value

 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1044

Parameter Value
Bus connection 2 x RJ45

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability (S500 I/O modules) Up to 10 S500 I/O modules (Index C0 and
above), not available (Index below C0)

Indicators 5 LEDs for state indication

Adjusting elements 2 rotary switches (used for future topology
extensions)

Quantity of input/output data CI512-ETHCAT: 10 bytes input and 14 bytes
output
CI511-ETHCAT: 18 bytes input and 18 bytes
output

Limit of data for input and output 144 byte

Acyclic services SDO (1500 bytes max.)
Emergency ECAT_SLV_DIAG

Protective functions (according to
CODESYS)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation to network

Parameter Value
Process supply voltage UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1045

Parameter Value
Number of analog outputs 2

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Diagnosis See Diagnosis and Displays Ä Chapter
5.2.6.4.1.9 “Diagnosis” on page 1039

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (Negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1046

Parameter Value
 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 ... DO7 Terminals 3.0 ... 3.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (Negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1047

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 202: Digital input/output (circuit diagram)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ ... AI3+ Terminals 1.0 ... 1.3

Reference potential for AI0+ ... AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminals 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V ... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V ... +10 V

Galvanic isolation Against Ethernet network

Configurability 0 V ... 10 V, -10 V ... +10 V, 0/4 mA ... 20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 ... 10 V: 12 bits
Range -10 ... +10 V: 12 bits including sign
Range 0 ... 20 mA: 12 bits
Range 4 ... 20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): +0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1048

Parameter Value
Relationship between input signal and hex
code Ä Chapter 5.2.6.4.1.11.2 “Input ranges resist-

ance temperature detector” on page 1043

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ ... AI3+ Terminals 1.0 ... 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+...AO1+ Terminals 1.5 ... 1.6

Reference potential for AO0+ ... AO1+ Terminal 1.7 (AO-) for voltage outputTerminals
1.9, 2.9 and 3.9 (ZP) for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against Ethernet network

Configurability -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA
(each output can be configured individually)

Output resistance (load),
as current output

0 W ... 500 W

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1049

Parameter Value
Output loadability,
as voltage output

± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output Ranges Voltage and Current
Ä Chapter 5.2.6.4.1.11.3 “Output ranges
voltage and current” on page 1044

Unused outputs Are configured as unused (default value) and
can be left open-circuited

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1050

Ordering data

Part no. Description Product life cycle phase *)
1SAP 220 900 R0001 CI511-ETHCAT, EtherCAT communi-

cation interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.6.4.2 CI512-ETHCAT
Features

● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Cam switch functionality (see also Extended Cam Switch Library)
● Extended Cam switch functionality *)

(see also Extended Cam Switch Library)
● Module-wise galvanically isolated
● Expandability with up to 10 S500 I/O modules *)
*) Applicable for device index C0 and above.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1051

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

ETH1

ETH2

CI512

CH−ERR1 CH−ERR3CH−ERR2

3.0 DO8

3.2 DO10

3.4 DO12

3.6 DO14

3.9 ZP

3.1 DO9

3.3 DO11

3.5 DO13

3.7 DO15

3.8 UP32.8 UP

2.9 ZP

2.0 DI8

2.2 DI10

2.3 DI11

2.5 DI13

2.6 DI14

2.4 DI12

2.7 DI15

2.1 DI9

UP 24VDC 200W 8DC 8DI 8DO
Digital Input 24VDC

Digital Output 24VDC 0.5A

S−ERR

I/O−Bus

STA2 ETH

STA1 ETH

PWR/RUN

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5
ADDR

x10H

x01H

ADDR

1.0 DC0

1.2 DC2

1.9 ZP

1.3 DC3

1.1 DC1

1.5 DC5

1.6 DC6

1.8 UP

1.7 DC7

1.4 DC4

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs

(DC0 ... DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 ... DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 ... DO7)
6 2 green LEDs to display the supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 System LEDs: PWR/RUN, NET, DC, S-ERR, I/O-Bus
9 2 rotary switches (reserved for future extensions)
10 Label
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Intended purpose
The EtherCAT communication interface module CI512-ETHCAT is used as decentralized I/O
module in EtherCAT networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0 ... 1.7)
● 8 digital inputs 24 V DC in 1 group (2.0 ... 2.7)
● 8 digital outputs 24 V DC in 1 group (3.0 ... 3.7)
● Cam switch functionality

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1052

The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.

Functionality

Parameter Value
Interface Ethernet

Protocol EtherCAT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches Not used; reserved for future extensions

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 5.2.7.2 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 1270

Connections
The Ethernet communication interface module CI512-ETHCAT is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH. Properly seat the module and press until it locks in place. The
terminal unit is mounted on a DIN rail or with 2 screws plus the additional accessory for wall
mounting (TA526).
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1053

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

The assignment of the other terminals:

Terminals Signal Description
1.0 ... 1.7 DC0 ... DC7 8 digital inputs/outputs (con-

figurable via software)

2.0 ... 2.7 DI0 ... DI7 8 digital inputs (delay time
configurable via software)

3.0 ... 3.7 DO0 ... DO7 8 digital outputs

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1054

3.0 DO 8

3.1 DO 9

3.2 DO 10

3.3 DO 11

3.4 DO 12

3.5 DO 13

3.6 DO 14

3.7 DO 15

DI 8 2.0

DI 9 2.1

DI 10 2.2

DI 11 2.3

DI 12 2.4

DI 13 2.5

DI 14 2.6

DI 15 2.7

1.8

1.9

UP +24 V

ZP 0 V

2.8

2.9 3.9

3.8
UP3 +24 V

ZP 0 V

2 3

DC 0 1.0

DC 1 1.1

DC 2 1.2

DC 3 1.3

DC 4 1.4

DC 5 1.5

DC 6 1.6

DC 7 1.7

1

Fig. 203: Connection of the communication interface module CI512-ETHCAT

1 8 digital configurable inputs/outputs 24 V DC
2 8 digital inputs 24 V DC
3 8 digital outputs 24 V DC

In case of voltage feedback, 2 cases are distinguished:

1. The outputs are already active

The output group will be switched off. A diagnosis message will appear. After 5
seconds, the module tries automatic reactivation.

2. The outputs are not active

Only the output with voltage feedback will not be set to active. A diagnosis
message will appear.

CAUTION!
The process supply voltage must be included within the grounding concept of
the plant (e. g. grounding of the negative pole).

The module provides several diagnosis functions Ä Chapter 5.2.6.4.2.10 “Diagnosis”
on page 1060.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment. The pin assignment is used for the EtherCAT master (communica-
tion module CM5xy-ETHCAT) as well.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1055

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

The EtherCAT network differentiates between input-connectors (IN) and output-
connectors (OUT):

At the EtherCAT slaves (communication interface modules), the ETH1-con-
nector is IN and the ETH2-connector is OUT.

At the EtherCAT master (communication module), the ETHCAT1 connector has
to be used. The ETHCAT2 connector is reserved for future extensions.

Internal data exchange

Parameter Value
Digital inputs (bytes) 1

Digital outputs (bytes) 1

Configurable digital inputs/outputs (bytes) 1 + 1

Addressing
The Ethernet communication interface module CI512-ETHCAT does not consider the position
of the rotary switches at the front side of the module. The function of the rotary switches is
reserved for future expansions.

Pin assignment

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1056

I/O configuration

In order to be able to use the CI51X-ETHCAT with device index C0 or above
properly, please download the corresponding device description (.xml-)files
from http://www.abb.com/plc and install them to the device repository of your
Automation Builder. This will allow you to use up to 10 Expandable S500 I/O
modules as well as the Extended Cam Switch Library with your CI51X-ETHCAT
device.

The CI512-ETHCAT does not store configuration data itself.
The analog I/O channels are configured via software.

Parameterization
Module parameter

Name Value Internal value Internal value,
type

Default

Module ID Internal 49435 WORD 49435

Parameter length Internal 10 BYTE 10

Error LED / Fail-
safe function 1)

On
Off by E4
Off by E3 On +
failsafe Off by E4
+ failsafe Off by
E3 + failsafe

0
1
3
16
17
19

BYTE 0

Check Supply Off
On

0
1

BYTE 1

Table 235: Error LED / Failsafe function 1)
Setting Description
On Error LED lights up at errors of all error classes, Failsafe mode off

Off by E4 Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode off

Off by E3 Error LED lights up at errors of error classes E1 and E2 auf, Failsafe
mode off

On + failsafe Error LED lights up at errors of all error classes, Failsafe mode on *)

Off by E4 + failsafe Error LED lights up at errors of error classes E1, E2 and E3, Failsafe
mode on *)

Off by E3 + failsafe Error LED lights up at errors of error classes E1 and E2, Failsafe mode
on *)

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1057

http://www.abb.com/plc

Group parameters of the cam switch

Name Value Internal value Internal value,
type

Default

numOfUsed-
Cams 1)

0 ... 32
128 ... 160

0 ... 32
218 ... 160

WORD 0

resolution 2) 0 ... 2
-1

0 ... 2
-1

DWORD 36000

zeroShift 3) 0 ... 2
-1

0 ... 2
-1

DWORD 0

EncoderBitReso-
lution 4)

8 ... 32 8 ... 32 WORD 18

Reserve - - WORD -

Remarks:
1) The parameter numOfUsedCams defines the interrupt cycle time (Therefore, it takes effect to
the accuracy of the track) and the behavior of the module if the DC information is lost.

Parameter setting
for numOfUsed-
Cams

Number of cams
used

Interrupt cycle time Behavior if DC infor-
mation is lost

0 0 50 µs Module changes
to "safe-operational"
state; the outputs are
activated trough the
user program

1 ... 8 1 ... 8 80 µs

9 ... 16 9 ... 16 100 µs

17 ... 32 17 ... 32 200 µs

128 0 50 µs Module keeps in
"operational" state;
the outputs are acti-
vated trough the user
program

129 ... 136 1 ... 8 80 µs Module keeps in
"operational" state;
the cam switch out-
puts are activated
according to an inter-
polated timing infor-
mation

137 ... 144 9 ... 16 100 µs

145 ... 170 17 ... 32 200 µs

2) The parameter resolution defines the angle resolution of the track. The value gives the
number of increments related to 360°; e. g. the value 36,000 corresponds to an angle resolution
of 0.01°.
3) The parameter zeroShift defines the zero shift. With it the encoder can be adjusted to the
mounting position. The value of zeroShift is set in encoder-increments. It is not assigned to the
parameter resolution of the cam switch.
4) The parameter EncoderBitResolution defines the resolution of the used encoder (in bits), e. g.
with the default setting 18 bits the encoder has 196,608 divisions.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1058

Channel parameters for the cam switch (max. 32x)

Name Value Internal value Internal value,
type

Default

camToTrack0 1) Digital Output
0 ... 15, none

0 ... 15, FF BYTE FF

: : : : :

camToTrack31 Digital Output
0 ... 15, none

0 ... 15, FF BYTE FF

1) The value of the parameter camToTrack# defines which DO (digital output) is assigned to the
track. camToTrack0 = 3 for example means that track 0 is assigned to the digital output 3. If the
value FFh is set to a track, no digital output is assigned to it.

Name Value Referred FB from extended
Cam Switch Library 2)

Internal
value

Internal
value,
type

Default

cam-
Type[0]
1)
...

Common
Pulsed
Timed
Comfort
Cam shift
Binary shift
Multiturn cam
Time timed
Reference
Multiturn
timed

MCX_CamSwitchSimple_c
MCX_CamSwitchSimple_dc
MCX_PulseSwitch_dc
MCX_CamSwitchTimed_dc
MCX_CamSwitchComfort_dc
MCX_CamShift_dc
MCX_BinaryShift_dc
MCX_CamSwitchMulti_dc
MCX_SwitchTimeTimed_dc
MCX_BinaryReference_dc
MCX_CamSwitchMulti-
Timed_dc

0

1
2
3
4
5
6
7
8
9

BYTE 0

1) camType additionally to camToTrack identifies the type of each cam switch and enables the
use of a specific function block from the Extended Cam Switch Library.
2) camType parameters and the Extended Camswitch Library are only available for CI511-
ETHCAT and CI512-ETHCAT with device index C0 and above.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.01 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.01 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1059

Name Value Internal value Internal value,
type

Default

Behaviour DO at
comm. error *)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute values
DO

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

*) The parameter behaviourDOatCommunicationFault is only analyzed if the Failsafe-mode is
ON.

Diagnosis
In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

ETHCAT
Diagnosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3)

Module error

3 - 31 31 31 43 Internal error in the
module

Replace
I/O module

3 - 31 31 31 20 Slave-to-Slave malfunc-
tion

Check
configura-
tion

3 - 31 31 31 41 Distributed Clock mal-
function

Check
configura-
tion

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP too
low

Check
process
supply
voltage

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1060

E1 ... E4 d1 d2 d3 d4 Identifier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit 6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit 0 ... 5

ETHCAT
Diagnosis
block

Class Interface Device Module Channel Error
identifier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 45 Process voltage UP3
too low

Check
process
voltage

4 - 31 31 31 34 No response during ini-
tialization of the I/O
module

Replace
I/O module

4 - 31 31 31 46 Voltage feedback on
activated digital outputs
4)

Check ter-
minals

Channel error digital

4 - 31 2 0 ... 15 46 Voltage feedback on
deactivated digital
output
5)

Check ter-
minals

4 - 31 4 0 ... 7 47 Short circuit at digital
output

Check ter-
minals

4 - 31 2 8 ... 15 47 Short circuit at digital
output

Check ter-
minals

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module; 14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI512-ETHCAT diagnosis block.

2) With "Device" the following allocation applies:
31 = Module itself or ADR = Hardware address (e. g. of the DC551)

3) With "Module" the following allocation applies dependent of the master:
31 = Module itself (Module error) or Module type (1=AI, 2=DO, 3=AO; channel
error)

4) Diagnosis message appears for the whole output group and not per channel.
The message occurs if the output channel is already active.

5 Diagnosis message appears per channel. The message occurs if the output
channel is not active.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1061

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, NET, DC, S-ERR and I/O-Bus) show the operation state of the

module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 236: States of the 5 system LEDs
LED Color Off On Flashing 1x flash 2x flash
PWR/RUN Green Error in the

internal
supply
voltage or
process
voltage
missing

Internal
supply
voltage OK

Module is
not config-
ured

-- --

Yellow -- -- -- -- --

NET Green Init Operational Pre-opera-
tional

Safe-opera-
tional

--

Red No error PDI
Watchdog
Timeout

Invalid Con-
figuration

Unsolicited
State
Change

Application
time out

DC *) Green Distributed
Clock not
active

Distributed
Clock active

-- -- --

Red -- -- -- -- --

S-ERR Red No error Internal
error

-- -- --

I/O-Bus Green No commu-
nication
interface
modules
connected
or commu-
nication
error

--- --- -- --

ETH1 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

ETH2 Green No
EtherCAT
connection

Link OK
No data
transfer

Link OK
Data
transfer OK

-- --

Yellow -- -- -- -- --

*) The state of this LED is only significant if the camswitch functionality is enabled

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1062

Table 237: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 ... DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 ... DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 ... DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Bus connection 2 x RJ45

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability (S500 I/O modules) Up to 10 S500 I/O modules (Index C0 and
above), not available (Index below C0)

Indicators 5 LEDs for state indication

Adjusting elements 2 rotary switches (used for future topology
extensions)

Quantity of input/output data CI512-ETHCAT: 10 bytes input and 14 bytes
output
CI511-ETHCAT: 18 bytes input and 18 bytes
output

Limit of data for input and output 144 byte

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1063

Parameter Value
Acyclic services SDO (1500 bytes max.)

Emergency ECAT_SLV_DIAG

Protective functions (according to
CODESYS)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation to network

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Diagnosis See Diagnosis and Displays Ä Chapter
5.2.6.4.2.10 “Diagnosis” on page 1060

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1064

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

 undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1065

Parameter Value
Terminals of the channels DO0 ... DO7 Terminals 3.0 ... 3.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 204: Digital input/output (circuit diagram)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off
Figure:

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1066

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0 ... DC07 Terminals 1.0 ... 1.7

If the channels are used as outputs

 Channels DC0 ... DC07 Terminals 1.0 ... 1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 1.0 ... 1.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V *)

 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V *)

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1067

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 1.0 ... 1.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1068

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 205: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1069

Ordering data

Part no. Description Product life cycle phase *)
1SAP 221 000 R0001 CI512-ETHCAT, EtherCAT communi-

cation interface module, 8 DI, 8 DO
and 8 DC

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.6.5 Modbus
5.2.6.5.1 CI521-MODTCP
Features

● 4 analog inputs (resolution 12 bits including sign)
● 2 analog outputs (resolution 12 bits including sign)
● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1070

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 ... AI3, AO0 ...

AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 ... DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 ... DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the IP address
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1071

Intended purpose
The Modbus TCP communication interface module CI521-MODTCP is used as decentralized
I/O module in Modbus TCP networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit. The communication interface module contains 22
I/O channels with the following properties:
● 4 analog inputs (1.0 ... 1.3)
● 2 analog outputs (1.5 ... 1.6)
● 8 digital inputs 24 V DC in 1 group (2.0 ... 2.7)
● 8 digital outputs 24 V DC in 1 group (3.0 ... 3.7)
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches for setting the last BYTE of the IP (00h to FFh)

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Required terminal unit TU507 or TU508 Ä Chapter 5.2.7.2 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 1270

Connections
General

The Ethernet communication interface module CI521-MODTCP is plugged on the I/O terminal
unit TU507-ETH or TU508-ETH Ä Chapter 5.2.7.2 “TU507-ETH and TU508-ETH for Ethernet
communication interface modules” on page 1270. Properly seat the module and press until
it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the addi-
tional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1072

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Conditions for undisturbed operating with older I/O expansion modules
All I/O expansion modules that are attached to the CI52x-MODTCP must be
powered up together with the CI52x-MODTCP if the firmware version of these
I/O expansion modules is V1.9 or lower.

The firmware version is related to the index. The index is printed on the module type label on
the right side.
Modules as of index listed in the following table can be powered up independently.

S500 I/O module type First index with firmware version above 1.9
AI523 D0

AI523-XC D0

AI531 A3

AI531-XC A0

AO523 D0

AO523-XC D0

AX521 D0

AX521-XC D0

AX522 D0

AX522-XC D0

CD522 A2

CD522-XC A0

DA501 A2

DA501-XC A0

DA502 A1

DA502-XC A1

DC522 D0

DC522-XC D0

DC523 D0

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1073

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

S500 I/O module type First index with firmware version above 1.9
DC523-XC D0

DC532 D0

DC532-XC D0

DI524 D0

DI524-XC D0

DO524 A2

DO524-XC A2

DX522 D0

DX522-XC D0

DX531 D0

AC522 D0

PD501 D0

Do not connect any voltages externally to digital outputs!

Reason: Externally voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This ist not intended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0..DO7.

Table 238: Assignment of the other terminals
Terminal Signal Description
1.0 AI0+ Positive pole of analog input signal 0

1.1 AI1+ Positive pole of analog input signal 1

1.2 AI2+ Positive pole of analog input signal 2

1.3 AI3+ Positive pole of analog input signal 3

1.4 AI- Negative pole of analog input signals 0 to 3

1.5 AO0+ Positive pole of analog output signal 0

1.6 AO1+ Positive pole of analog output signal 1

1.7 AI- Negative pole of analog output signals 0 and 1

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI0 Signal of the digital input DI0

2.1 DI1 Signal of the digital input DI1

2.2 DI2 Signal of the digital input DI2

2.3 DI3 Signal of the digital input DI3

2.4 DI4 Signal of the digital input DI4

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1074

Terminal Signal Description
2.5 DI5 Signal of the digital input DI5

2.6 DI6 Signal of the digital input DI6

2.7 DI7 Signal of the digital input DI7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO0 Signal of the digital output DO0

3.1 DO1 Signal of the digital output DO1

3.2 DO2 Signal of the digital output DO2

3.3 DO3 Signal of the digital output DO3

3.4 DO4 Signal of the digital output DO4

3.5 DO5 Signal of the digital output DO5

3.6 DO6 Signal of the digital output DO6

3.7 DO7 Signal of the digital output DO7

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (wire break), each analog input channel is pulled
up to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1075

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Fig. 206: Connection of the communication interface module CI521-MODTCP

Ä Chapter 6.8.4.1 “Modbus communication interface module” on page 4568

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1076

Connection of the digital inputs

Fig. 207: Connection of the digital inputs (DO0 ... DO7) to the module CI521-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.5.1.10 “State LEDs”
on page 1101.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1077

Connection of the digital outputs

Fig. 208: Connection of configurable digital inputs/outputs (DO0 ... DO7) to the module CI521-
MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.5.1.10 “State LEDs”
on page 1101.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module CI521-
MODTCP provides a constant current source which is multiplexed over the max. 4 analog input
channels.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1078

Fig. 209: Connection of resistance thermometers in 2-wire configuration to the analog inputs
(AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102:

Pt100 -50 °C ... +70 °C 2-wire configuration, 1
channel used

Pt100 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
The module CI521-MODTCP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must flow
through them to build the necessary voltage drop for the evaluation. For this, the module CI521-
MODTCP provides a constant current source which is multiplexed over the max. 4 analog input
channels.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1079

Fig. 210: Connection of resistance thermometers in 3-wire configuration to the analog inputs
(AI0 ... AI3)

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.
The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 and Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102:

Pt100 -50 °C ... +70 °C 3-wire configuration, 2 chan-
nels used

Pt100 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
The module CI521-MODTCP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1080

Connection of active-type analog sensors (voltage) with galvanically isolated power supply to the analog
inputs

Fig. 211: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102:

Voltage 0 ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1081

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

Fig. 212: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102:

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ...20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range
4 mA ... 20 mA, these channels should be configured as "Not used".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1082

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

Fig. 213: Connection of active-type sensors (voltage) with no galvanically isolated power supply
to the analog inputs (AI0 ... AI3)

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ± 1 V).
Make sure that the potential difference never exceeds ± 1 V (also not with long
cable lengths).

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102.

Voltage 0 ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of passive-type analog sensors (Current) to the analog inputs
The following figure shows the connection of passive-type analog sensors (current) to the
analog input AI0. Proceed with the analog inputs AI1 ... AI3 in the same way.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1083

Fig. 214: Connection of passive-type analog sensors (current) to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102:

Current 4 mA ... 20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range
4 mA ... 20 mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1084

With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V.

The following figure shows the connection of active-type analog sensors (voltage) to differential
analog inputs AI0 and AI1. Proceed with AI2 and AI3 in the same way.

Fig. 215: Connection of active-type analog sensors (voltage) to differential analog inputs (AI0 ...
AI3)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102:

Voltage 0 V ... 10 V With differential inputs, 2
channels used

Voltage -10 V ... +10 V With differential inputs, 2
channels used

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1085

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs Ä Chapter 5.2.6.5.1.12.5
“Technical data of the analog inputs if used as digital inputs” on page 1108. The inputs are not
galvanically isolated against the other analog channels.

Fig. 216: Connection of digital sensors to the analog inputs (AI0 ... AI3)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 and Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102 :

Digital input 24 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1086

Connection of analog output loads (Voltage)

Fig. 217: Connection of analog output loads (voltage) to the analog outputs (AO0 ... AO1)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102

Voltage -10 V ... +10 V Load ± 10 mA max. 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
Unused analog outputs can be left open-circuited.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1087

Connection of analog output loads (Current)

Fig. 218: Connection of analog output loads (current) to the analog outputs (AO0 and AO1)

The following measuring ranges can be configured Ä Chapter 5.2.6.5.1.8 “Parameterization”
on page 1090 Ä Chapter 5.2.6.5.1.11 “Measuring ranges” on page 1102:

Current 0 mA ... 20 mA Load 0 ... 500 W 1 channel used

Current 4 ... 20 mA Load 0 ... 500 W 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096.
Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

Pin assignment

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1088

Interface Pin Signal Description
7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

Replacement of a Modbus TCP communication interface module:

The module must be powered off before it is replaced. If the configuration
data is stored in the module, then the configuration data must be downloaded
into the new module, either by using Modbus communication or by using the
Modbus configurator which is contained in the Automation Builder distribution.

Ä Chapter 6.3.2.12.2 “Unbundled CI52x-MODTCP configuration” on page 1565

Addressing

The module reads the position of the rotary switches only during power-up, i.e.
changes of the switch position during operation will have no effect until the next
module initialization.

The IP address of the CI521-MODTCP Module can be set with the "ABB IP Configuration
Tool" Ä Chapter 6.3.2.2.4.3 “Configuration of the IP settings with the IP configuration tool”
on page 1457.
If the last byte of the IP is set to 0, the address switch will be used instead.
Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other stored
settings. This is a backup so the module can always get a valid IP address and can be
configured by the “ABB IP Configuration Tool”.
Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1089

The factory setting for the IP is 192.168.0.x (last byte is address switch).

I/O configuration
The CI521-MODTCP stores configuration parameters (IP address configuration, module param-
eters).
The analog/digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 5.2.6.5.1.8 “Parame-
terization” on page 1090.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7400 WORD 7000

Ignore Module Internal 0 BYTE 0

Parameter length Internal 63 BYTE 63

Error LED / Fail-
safe function see
table Error LED /
Failsafe function
Ä Table 239 “Err
or LED / Failsafe
function”
on page 1091

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1090

Name Value Internal value Internal value,
type

Default

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Timeout for Bus
supervision

No supervision
10 ms timeout
20 ms timeout

0
1
2

BYTE No supervision

IO Mapping
Structure 3)

Fixed Mapping
Dynamic Map-
ping

0
1

BYTE 0

Reserved Internal 0 ARRAY[0..2] OF
BYTE

0,0,0

Check supply off
on

0
1

BYTE 1

Fast counter 0
:

10 3)

0
:
10

BYTE 0

1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic
process data transmission.
2) Counter operating modes Ä Chapter 6.8.2.12 “Fast counters in AC500 devices”
on page 4536.
3) Fixed Mapping means each module has its own Modbus registers for data transfer
independent of the IO bus constellation Ä Chapter 6.8.4.1.2 “Modbus TCP registers”
on page 4570.
Dynamic mapping means the structure of the IO Date is dependent on the I/O bus constella-
tion. Each I/O bus expansion module starts directly after the module before on the next Word
address.
4) If none of the parameters is set all masters / clients in the network have read and write rights
on the CI52x-MODTCP device and its connected expansion modules.
If at least one parameter is set only the configured masters / clients have write rights on
the CI52x-MODTCP device, all other masters / clients still have read access to the CI52x-
MODTCP device.

Table 239: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1091

Setting Description
Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error

classes E1 and E2, Failsafe-mode on *)

*) The parameters Behaviour AO at comm. error and Behaviour DO at comm. error are only
analyzed if the Failsafe-mode is ON.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 240 “Ch
annel configura-
tion”
on page 1093

Table Operating
modes of the
analog inputs
Ä Table 240 “Ch
annel configura-
tion”
on page 1093

BYTE 0

Input 0, Check
channel

Table Channel
montoring
Ä Table 241 “Ch
annel monitoring”
on page 1093

Table Channel
montoring
Ä Table 241 “Ch
annel monitoring”
on page 1093

BYTE 0

: : : : :

: : : : :

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1092

Name Value Internal value Internal value,
type

Default

Input 3, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 240 “Ch
annel configura-
tion”
on page 1093

Table Operating
modes of the
analog inputs
Ä Table 240 “Ch
annel configura-
tion”
on page 1093

BYTE 0

Input 3, Check
channel

Table Channel
montoring
Ä Table 241 “Ch
annel monitoring”
on page 1093

Table Channel
montoring
Ä Table 241 “Ch
annel monitoring”
on page 1093

BYTE 0

Table 240: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 ... 10 V

2 Digital input

3 0 ... 20 mA

4 4 ... 20 mA

5 -10 V ... +10 V

8 2-wire Pt100 -50 ... +400 °C

9 3-wire Pt100 -50 ... +400 °C *)

10 0 ... 10 V (voltage diff.) *)

11 -10 V ... +10 V (voltage diff.) *)

14 2-wire Pt100 -50 ... +70 °C

15 3-wire Pt100 -50 ... +70 °C *)

16 2-wire Pt1000 -50 ... +400 °C

17 3-wire Pt1000 -50 ... +400 °C *)

18 2-wire Ni1000 -50 ... +150 °C

19 3-wire Ni1000 -50 ... +150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 241: Channel monitoring
Internal Value Check Channel
0 (default) Plausibility, wire break, short circuit

3 Not used

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1093

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Table 242 “Ch
annel configura-
tion”
on page 1094

Table Operating
modes of the
analog outputs
Ä Table 242 “Ch
annel configura-
tion”
on page 1094

BYTE 0

Output 0, Check
channel

Table Channel
monitoring
Ä Table 243 “Ch
annel monitoring”
on page 1094

Table Channel
monitoring
Ä Table 243 “Ch
annel monitoring”
on page 1094

BYTE 0

Output 0, Substi-
tute value

Table Substitute
value
Ä Table 244 “Su
bstitute value”
on page 1095

Table Substitute
value
Ä Table 244 “Su
bstitute value”
on page 1095

WORD 0

Output 1,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Table 242 “Ch
annel configura-
tion”
on page 1094

Table Operating
modes of the
analog outputs
Ä Table 242 “Ch
annel configura-
tion”
on page 1094

BYTE 0

Output 1, Check
channel

Table Channel
monitoring
Ä Table 243 “Ch
annel monitoring”
on page 1094

Table Channel
monitoring
Ä Table 243 “Ch
annel monitoring”
on page 1094

BYTE 0

Output 1, Substi-
tute value

Table Substitute
value
Ä Table 244 “Su
bstitute value”
on page 1095

Table Substitute
value
Ä Table 244 “Su
bstitute value”
on page 1095

WORD 0

Table 242: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V ... +10 V

129 0 ... 20 mA

130 4 ... 20 mA

Table 243: Channel monitoring
Internal value Check channel
0 Plausibility, wire break, short circuit

3 None

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1094

Table 244: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal
value

Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value 5 sec
Substitute value 10
sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x0000

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE On
0x01

1) The parameters Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0 ... DC7
should be switched on while an externally voltage is connected Ä Chapter 5.2.6.5.1.4 “Con-
nections” on page 1072. In this case the start up is disabled, as long as the externally
voltage is connected. The monitoring of this state and the resulting diagnosis message can be
disabled by setting the parameters to "OFF".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1095

Diagnosis
Table 245: Structure of the diagnosis block
Byte Number Description Possible Values
1 Diagnosis Byte, slot number 31 = CI521-MODTCP (e. g. error at inte-

grated 8 DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

For diagnosis firmware version ³ 3.2.6 is required.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1096

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 No process voltage
UP

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1097

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs DO0...DO7
on UP3 4)

Check
terminals

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1098

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 No process voltage
UP3

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected at digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0..3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0..3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0..3 47 Short circuit at an
analog input

Check
terminals

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1099

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 3 0..1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0..1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI521-MODTCP diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1..10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DO0...DO7 cause that other digital outputs are supplied through that voltage
Ä Chapter 5.2.6.5.1.4 “Connections” on page 1072. All outputs of the apply
digital output groups will be turned off for 5 seconds. The diagnosis message
appears for the whole output group.

5) The voltage on digital outputs DO0...DO7 has overrun the process supply
voltage UP3 Ä Chapter 5.2.6.5.1.4 “Connections” on page 1072. Diagnosis
message appears for the whole module.

6) This message appears, if the output of a channel DO0...DO7 should be
switched on while an externally voltage is connected. In this case the start
up is disabled, as long as the externally voltage is connected. Otherwise this
could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100ms. Then a new start up will be executed. This diagnosis message
appears per channel.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1100

8) In case of an I/O module doesn’t support hot swapping, do not perform any
hot swap operations (also not on any other terminal units (slots)) as modules
may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 246: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with IO Controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Device config-
ured, acyclic data
exchange run-
ning

Red --- Communication
error (timeout)
appeared

IP address error

STA2 ETH
(System LED
"SF")

Green Device has valid
parameters

Device is running
parameterization
sequenze

Device has no
parameters

Red --- --- Device has
invalid parame-
ters

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1101

Table 247: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 ... AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 ... AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 ... DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 ... DO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10,0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1102

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 1.7593 < -11.7589 < 0.0000 < 1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 /
Pt1000
-50 °C ... +70 °C

Pt100 / Pt1000
-50 °C ... +400 °C

Ni1000
-50 °C ... +150 °C

Digital value

 Decimal Hex.
Overflow > +80.0 °C > +450.0 °C > +160.0 °C 32767 7FFF

Measured
value too
high

 +450.0 °C
:
+400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

+80.0 °C
:
+70.1 °C

 800
:
701

0320
:
02BD

Normal range +70.0 °C
:
+0.1 °C

+400.0 °C
:
:
:
+0.1 °C

+150.0 °C
:
:
+ 0.1 °C

4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0.0 °C 0.0 °C 0.0 °C 0 0000

Normal range -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

-0.1 °C
:
-50,0 °C

-1
:
-500

FFFF
:
FE0C

Measured
value too low

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-501
:
-600

FE0B
:
FDA8

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -32768 8000

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1103

Output ranges voltage and current

Range -10 V ... +10 V 0 mA ... 20 mA 4 mA ... 20 mA Digital value
 Decimal Hex.
Overflow 0 V 0 mA 0 mA > 32511 > 7EFF

Measured
value too high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0,0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow 0 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1104

Parameter Value
 Connections Terminals 1.8 and 2.8 for +24 V (UP)

Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Ethernet 10/100 base-TX, internal switch, 2 x RJ45
socket

Setting of the IP address With ABB IP config tool and 2 rotary switches at
the front side of the module

Diagnose See Diagnosis and Displays Ä Chapter
5.2.6.5.1.9 “Diagnosis” on page 1096

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at +40 °C per group)

Extended ambient temperature (XC version) > +60 °C on request

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1...32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1105

Parameter Value
 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 ... DO7 Terminals 3.0 ... 3.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1106

Parameter Value
Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 219: Digital input/output (circuit diagram)

1 Digital Output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ ... AI3+ Terminals 1.0 ... 1.3

Reference potential for AI0+ ... AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V ... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V ... +10 V

Galvanic isolation Against Ethernet network

Configurability 0 V ... 10 V, -10 V ... +10 V, 0/4 mA ... 20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs
Pt/Ni ... 1 s

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1107

Parameter Value
Resolution Range 0 V ... 10 V: 12 bits

Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): +0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code Ä Chapter 5.2.6.5.1.11.2 “Input ranges resist-

ance temperature detector” on page 1103

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ ... AI3+ Terminals 1.0 ... 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+ ... AO1+ Terminals 1.5 ... 1.6

Reference potential for AO0+ ... AO1+ Terminal 1.7 (AO-) for voltage outputTerminal
1.9, 2.9 and 3.9 for current output

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1108

Parameter Value
Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA
(each output can be configured individually)

Output resistance (load), as current output 0 W ... 500 W

Output loadability, as voltage output ± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output ranges voltage and current
Ä Chapter 5.2.6.5.1.11.3 “Output ranges
voltage and current” on page 1104

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI0), 2.1 (DI1)

Used outputs Terminal 3.0 (DO0)

Counting frequency Depending on operation mode:

Mode 1 - 6: max. 200 kHz

Mode 7: max. 50 kHz

Mode 9: max. 35 kHz

Mode 10: max. 20 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1109

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 222 100 R0001 CI521-MODTCP, Modbus TCP com-

munication interface module, 4 AI,
2 AO, 8 DI and 8 DO

Active

1SAP 422 100 R0001 CI521-MODTCP-XC, Modbus TCP
communication interface module, 4 AI,
2 AO, 8 DI and 8 DO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1110

5.2.6.5.2 CI522-MODTCP
Features

● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs

(DC0 ... DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 ... DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 ... DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1111

10 2 rotary switches for setting the IP address
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
Modbus TCP communication interface module CI522-MODTCP is used as decentralized I/O
module in Modbus TCP networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 24 I/O
channels with the following properties:
● 8 digital configurable inputs/outputs in 1 group (1.0 ... 1.7)
● 8 digital inputs 24 V DC in 1 group (2.0 ... 2.7)
● 8 digital outputs 24 V DC in 1 group (3.0 ... 3.7)
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality

Interface Ethernet

Protocol Modbus TCP

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches for setting the last BYTE of the IP ADDRESS
(00h ... FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Required terminal unit TU507 or TU508 Ä Chapter 5.2.7.2 “TU507-
ETH and TU508-ETH for Ethernet communi-
cation interface modules” on page 1270

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1112

Connections
General

The Ethernet communication interface module CI522-MODTCP is plugged on the I/O terminal
unit TU507-ETH Ä Chapter 5.2.7.2 “TU507-ETH and TU508-ETH for Ethernet communication
interface modules” on page 1270 or TU508-ETH Ä Chapter 5.2.7.2 “TU507-ETH and TU508-
ETH for Ethernet communication interface modules” on page 1270. Properly seat the module
and press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws
plus the additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting
accessory” on page 1324.
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Conditions for undisturbed operating with older I/O expansion modules
All I/O expansion modules that are attached to the CI52x-MODTCP must be
powered up together with the CI52x-MODTCP if the firmware version of these
I/O expansion modules is V1.9 or lower.

The firmware version is related to the index. The index is printed on the module type label on
the right side.
Modules as of index listed in the following table can be powered up independently.

S500 I/O module type First index with firmware version above 1.9
AI523 D0

AI523-XC D0

AI531 A3

AI531-XC A0

AO523 D0

AO523-XC D0

AX521 D0

AX521-XC D0

AX522 D0

AX522-XC D0

CD522 A2

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1113

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

S500 I/O module type First index with firmware version above 1.9
CD522-XC A0

DA501 A2

DA501-XC A0

DA502 A1

DA502-XC A1

DC522 D0

DC522-XC D0

DC523 D0

DC523-XC D0

DC532 D0

DC532-XC D0

DI524 D0

DI524-XC D0

DO524 A2

DO524-XC A2

DX522 D0

DX522-XC D0

DX531 D0

AC522 D0

PD501 D0

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0 ... DC7 or
DO8 ... DO15 may cause that other digital outputs are supplied through that
voltage instead of voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0 ... DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO8 ... DO15 and DC0 ... DC7.

The assignment of the other terminals:

Terminal Signal Description
1.0 DC0 Signal of the configurable digital input/output

DC0

1.1 DC1 Signal of the configurable digital input/output
DC1

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1114

Terminal Signal Description
1.2 DC2 Signal of the configurable digital input/output

DC2

1.3 DC3 Signal of the configurable digital input/output
DC3

1.4 DC4 Signal of the configurable digital input/output
DC4

1.5 DC5 Signal of the configurable digital input/output
DC5

1.6 DC6 Signal of the configurable digital input/output
DC6

1.7 DC7 Signal of the configurable digital input/output
DC7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO8 Signal of the digital output DO8

3.1 DO9 Signal of the digital output DO9

3.2 DO10 Signal of the digital output DO10

3.3 DO11 Signal of the digital output DO11

3.4 DO12 Signal of the digital output DO12

3.5 DO13 Signal of the digital output DO13

3.6 DO14 Signal of the digital output DO14

3.7 DO15 Signal of the digital output DO15

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1115

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Fig. 220: Connection of the communication interface module CI522-MODTCP

Ä Chapter 6.8.4.1 “Modbus communication interface module” on page 4568

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1116

Connection of the digital inputs

Fig. 221: Connection of the digital inputs (DI8 ... DI15) to the module CI522-MODTCP

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.5.2.10 “State LEDs”
on page 1128.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1117

Connection of the digital outputs

Fig. 222: Connection of the digital output DO8. Proceed with the digital outputs DO9 ... DO15 in
the same way

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.5.2.10 “State LEDs”
on page 1128.

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 ... DC7 in the same way.

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 5.2.6.5.2.4 “Connections”
on page 1113.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1118

1.0
DC0
1.1
DC1
1.2
DC2
1.3
DC3
1.4
DC4
1.5
DC5
1.6
DC6
1.7
DC7
1.8
UP
1.9
ZP

-
+

24 V DC

2.4

DI14

2.0
DI8
2.1
DI9
2.2
DI10
2.3
DI11

DI12
2.5
DI13
2.6

2.7
DI15
2.8
UP
2.9
ZP

3.0
DO8
3.1
DO9
3.2
DO10
3.3
DO11
3.4
DO12
3.5
DO13
3.6
DO14
3.7
DO15
3.8
UP3
3.9
ZP

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.5.2.10 “State LEDs”
on page 1128.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

Pin assignment

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1119

Internal data exchange

Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Replacement of a Modbus TCP communication interface module:

The module must be powered off before it is replaced. If the configuration
data is stored in the module, then the configuration data must be downloaded
into the new module, either by using Modbus communication or by using the
Modbus configurator which is contained in the Automation Builder distribution.

Ä Chapter 6.3.2.12.2 “Unbundled CI52x-MODTCP configuration” on page 1565

Addressing
The IP address of the CI5221-MODTCP Module can be set with the “ABB IP Configuration
Tool” Ä Chapter 6.3.2.2.4.3 “Configuration of the IP settings with the IP configuration tool”
on page 1457.
If the last byte of the IP is set to 0, the address switch will be used instead.
Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other stored
settings. This is a backup so the module can always get a valid IP address and can be
configured by the “ABB IP Configuration Tool”.
Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.
The factory setting for the IP is 192.168.0.x (last byte is address switch).

The module reads the position of the rotary switches only during power-up, i.e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI522-MODTCP stores configuration parameters (IP address configuration, module param-
eters).
The digital I/O channels are configured via software.
Details about configuration are described in Parameterization Ä Chapter 5.2.6.5.2.8 “Parame-
terization” on page 1120.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7405 WORD 7405

Ignore Module Internal 0 BYTE 0

Parameter length Internal 47 BYTE 47

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1120

Name Value Internal value Internal value,
type

Default

Error LED / Fail-
safe function
(Table Error
LED / Failsafe
function
Ä Table 248 “
Table Error LED /
Failsafe function”
on page 1122)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Master IP for
Write restriction
4)

No master IP
Master IP

0,0,0,0 W,X,y,z ARRAY[0..3] OF
BYTE

0,0,0,0

Timeout for Bus
supervision

No supervision
10 ms timeout
20 ms timeout

0
1
2

BYTE No supervision

IO Mapping
Structure 3)

Fixed Mapping
Dynamic Map-
ping

0
1

BYTE 0

Reserved Internal 0 ARRAY[0..2] OF
BYTE

0,0,0

Check supply off
on

0
1

BYTE 1

Fast counter 0
:

10 2)

0
:
10

BYTE 0

Remarks:

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1121

1) With a faulty ID, the module reports a "parameter error" and does not
perform cyclic process data transmission.

2) Counter operating modes Ä Chapter 5.2.4.3.2.9 “Fast counter”
on page 606

3) Fixed Mapping means each module has its own Modbus registers
for data transfer independent of the I/O bus constellation description
Ä Chapter 6.8.4.1.2 “Modbus TCP registers” on page 4570.
Dynamic mapping means the structure of the IO Date is dependent on
the I/O bus constellation. Each I/O bus expansion module starts directly
after the module before on the next Word address.

4) If none of the parameters is set all masters / clients in the network have
read and write rights on the CI52x-MODTCP device and its connected
expansion modules.
If at least one parameter is set only the configured masters / clients have
write rights on the CI52x-MODTCP device, all other masters / clients still
have read access to the CI52x-MODTCP device.

Table 248: Table Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.

Group parameters for the digital part

Name Value Internal
value

Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1122

Name Value Internal
value

Internal value,
type

Default

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value 5
sec
Substitute value 10
sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 65535 0000h ... FFFFhWORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0 ... DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behaviour DO at comm. error is apply to DC and DO
channels and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a
channel DC0 ... DC7 should be switched on while an externally voltage
is connected. In this case the start up is disabled, as long as the exter-
nally voltage is connected. The monitoring of this state and the resulting
diagnosis message can be disabled by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally
voltage at digital outputs DC0 ... DC7 and accordingly DO8 ... DO15
has exceeded the process supply voltage UP3 Ä Chapter 5.2.6.5.2.4
“Connections” on page 1113. The according diagnosis message "Voltage
overflow on outputs " can be disabled by setting the parameters on
"OFF". This parameter should only be disabled in exceptional cases for
voltage overflow may produce reverse voltage.

Diagnosis
Table 249: Structure of the Diagnosis Block
Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI502-PNIO (e. g. error at integrated
8 DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1123

Byte Number Description Possible Values
3 Diagnosis Byte, channel According to the I/O bus specification

passed on by modules to the fieldbus
master

4 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

6 Reserved 0

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

For diagnosis firmware version ³ 3.2.6 is required.

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1124

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
Master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1125

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1126

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 46 Reverse voltage
from digital out-
puts DO8...DO15 to
UP3 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8..15 46 Externally voltage
detected at digital
output DO8...DO15
6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0...DC7
6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at
digital output
DC0...DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at
digital output
DO8...DO157)

Check
terminals

Remarks:

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1127

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module; 14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI502-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1..10 = Expan-
sion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DC0 ... DC7 oder DO8 ... DO15 cause that other digital outputs are sup-
plied through that voltage (voltage feedback, see description in 'Connections'
Ä Chapter 5.2.6.5.2.4 “Connections” on page 1113. All outputs of the apply
digital output groups will be turned off for 5 seconds. The diagnosis message
appears for the whole output group.

5) The voltage at digital outputs DC0 ... DC7 and accordingly DO8 ... DO15 has
exceeded the process supply voltage UP3 Ä Chapter 5.2.6.5.2.4 “Connections”
on page 1113. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0 ... DC7 or DO8 ... DO15
should be switched on while an externally voltage is connected. In this case the
start up is disabled, as long as the externally voltage is connected. Otherwise
this could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 2000ms.
Then a new start up will be executed. This diagnosis message appears per
channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may be
damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 250: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1128

LED Color OFF ON Flashing
STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Device config-
ured, acyclic data
exchange run-
ning

Red --- Communication
error (timeout)
appeared

IP address error

STA2 ETH
(System LED
"SF")

Green Device has valid
parameters

Device is running
parameterization
sequenze

Device has no
parameters

Red --- --- Device has
invalid parame-
ters

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 251: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 ... DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 ... DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 ... DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1129

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Ethernet 10/100 base-TX, internal switch, 2 x RJ45
socket

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnosis See Diagnosis and Displays Ä Chapter
5.2.6.5.2.9 “Diagnosis” on page 1123

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at +40°C per group)

Extended ambient temperature (XC version) > +60 °C on request

Cooling The natural convection cooling must not be
hindered by cable ducts or other parts in the
control cabinet.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1130

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI8 ... DI15 Terminals 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1131

Parameter Value
Terminals of the channels DO8 ... DO15 Terminals 3.0 ... 3.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 223: Digital input/output (circuit diagram)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1132

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0 ... DC7 Terminals 1.0 ... 1.7

If the channels are used as outputs

 Channels DC0 ... DC7 Terminals 1.0 ... 1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 1.0 ... 1.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (negative pole of the supply
voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V *)

 Undefined Signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V *)

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1133

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 1.0 ... 1.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive pole of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0,8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

Fig. 224: Digital input/output (circuit diagram)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1134

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI8),Terminal 2.1 (DI9)

Used outputs Terminal 3.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

How to prepare a device as fast counter and how to connect it to the PLC is described in an
application example.

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1135

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011148&LanguageCode=en&DocumentPartId=&Action=Launch

Ordering data

Ordering No. Scope of delivery Product life cycle phase *)
1SAP 222 200
R0001

CI522-MODTCP, Modbus TCP com-
munication interface module, 8 DC,
8 DI and 8 DO

Active

1SAP 422 200
R0001

CI522-MODTCP-XC, Modbus TCP
communication interface module,
8 DC, 8 DI and 8 DO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.6.6 PROFIBUS
5.2.6.6.1 CI541-DP
Features

● 4 configurable analog inputs (2-wire/single-ended) or 2 configurable analog inputs (3-wire/
differential)
Resolution 12 bits including sign

● 2 analog outputs
Resolution 12 bits including sign

● 8 digital inputs 24 V DC in 1 group
● 8 digital outputs 24 V DC in 1 group, 0.5 A max.
● Fast counter
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1136

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

BUS

CI541

CH-ERR1 CH-ERR3CH-ERR2

2.4

2.0 AI0+

2.2 AI2+

2.7 AO-

2.9 ZP

2.3 AI3+

2.1 AI1+

AI -

2.5 AO0+

2.6 AO1+

2.8 UP

4.0 DO0

4.2 DO2

4.4 DO4

4.6 DO6

4.9 ZP

4.1 DO1

4.3 DO3

4.5 DO5

4.7 DO7

4.8 UP33.8 UP

3.9 ZP

3.0 DI0

3.2 DI2

3.3 DI3

3.5 DI5

3.6 DI6

3.4 DI4

3.7 DI7

3.1 DI1

UP 24VDC 100W PROFIBUS DP Slave
4AI 2AO 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

S-ERR

I/O-Bus

STA2 DP

STA1 DP

PWR/RUN

ADDR

x10H

x01H

ADDR

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

1

2 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 ... AI3,

AO0 ... AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 ... DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 ... DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 DP, STA2 DP, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the PROFIBUS ID
11 9-pin D-SUB connector to connect the PROFIBUS DP signals
12 Terminal unit
13 DIN rail

Sign for XC version

Intended purpose
The PROFIBUS DP communication interface module is used as decentralized I/O module
in PROFIBUS DP networks. Depending on the used terminal unit the network connection is
performed either via 9-pole female D-sub or via 10 terminals (screw-type or spring terminals)
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels.
The inputs/outputs are galvanically isolated from the PROFIBUS DP network. There is no
potential separation between the channels. The configuration of the analog inputs/outputs is
performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1137

● 4 configurable analog inputs (2-wire/single-ended) or 2 configurable analog inputs (3-wire/
differential)
Resolution 12 bits including sign

● 2 analog outputs
Resolution 12 bits including sign

● 8 digital inputs 24 V DC in 1 group
● 8 digital outputs 24 V DC in 1 group, 0.5 A max.
● Fast counter
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

Diagnosis settings
The current CI54x does not run in combination with a V3 PLC if in the “General” tab the
parameter “Diagnosis behavior” is set to “AC500 V3 compatible”. How to change the setting in
your AB project is described below.

1. Double click in the “Device” tree on “CI541_IO”.

ð The tab for the various settings opens.

2. Double click on the “General” tab.
3. Double click on the “Value” of the parameter “Diagnosis behavior”.
4. Click on the small arrow.

ð A submenu with two values opens.

5. Click on “AC500 V2 compatible” as setting.
6. Close the tab.

After changing the parameter to “AC500 V2 compatible” the CI54x get in “RUN”.
If the CI54x indicates a S500 diagnosis message, following AC500 diagnosis entry (“655374
CI54x communication interface module is sending not supported diagnosis format - Check
configuration and FW revision of communication interface module”) is shown in the diagnosis
editor and history. This diagnosis message does not have impact to cyclic data exchange
between the master and the CI54x.
In case of a parameter change from V2 to V3 the parameter at the CI54x of V3 has the same
value than at the CI54x below V2 (that means AC500 V2 compatible).

Functionality

Parameter Value
Interface PROFIBUS

Protocol PROFIBUS DP (DP-V0 and DP-V1)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1138

Parameter Value
Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the PROFIBUS ID for configuration
purposes (00h to FFh)

Expandability Max. 10 S500 I/O modules

Fast counter Integrated, configurable operating modes

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU509, TU510, TU517 or TU518 Ä Chapter
5.2.7.3 “TU509 and TU510 for communication
interface modules” on page 1274 Ä Chapter
5.2.7.4 “TU517 and TU518 for communication
interface modules” on page 1278

Connections
General

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The PROFIBUS DP communication interface module CI541-DP is plugged on the I/O terminal
units TU509 Ä Chapter 5.2.7.3 “TU509 and TU510 for communication interface modules”
on page 1274 or TU510 Ä Chapter 5.2.7.3 “TU509 and TU510 for communication interface
modules” on page 1274 and accordingly TU517 Ä Chapter 5.2.7.4 “TU517 and TU518 for
communication interface modules” on page 1278 or TU518 Ä Chapter 5.2.7.4 “TU517 and
TU518 for communication interface modules” on page 1278. Properly seat the module and
press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 2.8 and 3.8 as well as 2.9, 3.9 and 4.9 are interconnected within the terminal unit
and have always the same assignment, independent of the inserted module:
Terminals 2.8 and 3.8: Process supply voltage UP = +24 V DC
Terminal 4.8: Process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1139

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Do not connect any voltages externally to digital outputs!

Reason: Externally voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This ist not intended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0 ... DO7.

Possibilities of connection
Connection on terminal units TU509 or TU510

The assignment of the 9-pole female D-sub for the PROFIBUS signals:

1

5

6

9

1 --- Reserved

2 --- Reserved

3 B Data line B (receive and send
line, positive)

4 --- Reserved

5 DGND Reference potential for data
transmissions and +5 V

6 VP (5 V) +5 V (Power supply voltage for
terminating resistors)

7 --- Reserved

8 A Data line A (receive and send
line, negative)

9 --- Reserved

Shield Shield Shield, functional earth

Bus termination
The line ends of the bus segment must be equipped with bus terminating resistors. Normally,
these resistors are integrated in the interface connectors.

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

GND (0 V)

RxD/TxD-P

RxD/TxD-N

Data Line B

Data Line A

6

3

8

5

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1140

The grounding of the shield should take place at the control cabinet Ä Chapter
5.1.2 “System data AC500” on page 166.

Mounting on terminal units TU517 or TU518
The assignment of the terminals 1.0 ... 1.9:

Terminal Signal Description
1.0 B Data line B (receive and send line, positive)

1.1 B Data line B (receive and send line, positive)

1.2 A Data line A (receive and send line, negative)

1.3 A Data line A (receive and send line, negative)

1.4 TermB Bus termination data line B

1.5 TermB Bus termination data line B

1.6 TermA Bus termination data line A

1.7 TermA Bus termination data line A

1.8 DGND Reference potential for data transmission

1.9 DGND Reference potential for data transmission

At the line ends of a bus segment, terminating resistors must be connected. If using TU517/
TU518, the bus terminating resistors can be enabled by connecting the terminals TermA and
TermB to the data lines A and B (no external terminating resistors are required, see figure
below).

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS in

PROFIBUS out

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1141

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS end

If using TU517/TU518, note that the terminating resistors are not located inside
the TU, but inside the communication interface module CI541-DP. I. e. when
removing the device from the TU, the bus terminating resistors are not con-
nected to the bus any more. The bus itself will not be disconnected if a device is
removed.

If using TU517/TU518 the max. permitted transmission rate is limited to 1.5
MBaud.

The grounding of the shield should take place at the control cabinet Ä Chapter
5.1.2 “System data AC500” on page 166.

Technical data bus cable

Parameter Value
Type Twisted pair (shielded)

Characteristic impedance 135...165 W

Cable capacitance < 30 pF/m

Conductor diameter of the cores ³ 0.64 mm

Conductor cross section of the cores ³ 0.34 mm²

Cable resistance per core £ 55 W/km

Loop resistance (resistance of two cores) £ 110 W/km

Cable length
The maximum possible cable length of a PROFIBUS subnet within a segment depends on the
transmission rate (baud rate).

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1142

Transmission rate Maximum cable length
9.6 kBaud to 93.75 kBaud 1200 m

187.5 kBaud 1000 m

500 kBaud 400 m

1.5 MBaud 200 m

3 MBaud to 12 MBaud 100 m

The assignment of the other terminals:

Terminal Signal Description
2.0 AI0+ Positive pole of analog input signal 0

2.1 AI1+ Positive pole of analog input signal 1

2.2 AI2+ Positive pole of analog input signal 2

2.3 AI3+ Positive pole of analog input signal 3

2.4 AI- Negative pole of analog input signals 0
to 3

2.5 AO0+ Positive pole of analog output signal 0

2.6 AO1+ Positive pole of analog output signal 1

2.7 AI- Negative pole of analog output signals 0
and 1

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI0 Signal of the digital input DI0

3.1 DI1 Signal of the digital input DI1

3.2 DI2 Signal of the digital input DI2

3.3 DI3 Signal of the digital input DI3

3.4 DI4 Signal of the digital input DI4

3.5 DI5 Signal of the digital input DI5

3.6 DI6 Signal of the digital input DI6

3.7 DI7 Signal of the digital input DI7

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO0 Signal of the digital output DO0

4.1 DO1 Signal of the digital output DO1

4.2 DO2 Signal of the digital output DO2

4.3 DO3 Signal of the digital output DO3

4.4 DO4 Signal of the digital output DO4

4.5 DO5 Signal of the digital output DO5

4.6 DO6 Signal of the digital output DO6

4.7 DO7 Signal of the digital output DO7

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1143

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (cut wire), each channel is pulled up to "plus" by
a high-resistance resistor. If nothing is connected, the maximum voltage will be
read in then.

Analog signals are always laid in shielded cables. The cable shields are
grounded at both ends of the cables. In order to avoid unacceptable potential
differences between different parts of the installation, low resistance equipoten-
tial bonding conductors must be laid.

For simple applications (low electromagnetic disturbances, no high requirement
on precision), the shielding can also be omitted.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1144

+
-

+
-

+
-

+
-

+
-

+
-

PTC

AI0+

AI1+

AI2+

AI3+
AI-

2.0

2.1

2.2

2.3
2.4

PTC

2.5

2.6
2.7

AO0+

AO1+
AO-

4.0 DO0

4.1 DO1

4.2 DO2

4.3 DO3

4.4 DO4

4.5 DO5

4.6 DO6

4.7 DO7

DI0 3.0

DI1 3.1

DI2 3.2

DI3 3.3

DI4 3.4

DI5 3.5

DI6 3.6

DI7 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 3.9

3.8
UP3 +24 V

ZP 0 V

Fig. 225: Connection of the PROFIBUS DP communication interface module CI541-DP

Connection of the digital inputs

2.0
DI0
2.1
DI1
2.2
DI2
2.3
DI3
2.4
DI4
2.5
DI5
2.6
DI6
2.7
DI7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 226: Connection of the digital input DI0 (Proceed with the digital inputs DI1 ... DI7 in the
same way)

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.6.1.11 “State LEDs”
on page 1165.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1145

Connection of the digital outputs

4.0
DO0
4.1
DO1
4.2
DO2
4.3
DO3
4.4
DO4
4.5
DO5
4.6
DO6
4.7
DO7
4.8
UP3
4.9
ZP

24 V DC
-
+

Fig. 227: Connection of the digital output DO0 (Proceed with the digital outputs DO1 ... DO7 in
the same way)

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.6.1.11 “State LEDs”
on page 1165.

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI541-DP provides a constant current source which is multiplexed over the max. 4 analog input
channels.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
3.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 228: Connection of resistance thermometers in 2-wire configuration to the analog input AI0
(Proceed with the analog inputs AI1 ... AI3 in the same way)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1146

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Pt100 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, 1
channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.
The module CI541-DP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI541-DP provides a constant current source which is multiplexed over the max. 4 analog input
channels.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Pt100
Pt1000
Ni1000

Fig. 229: Connection of resistance thermometers in 3-wire configuration to the analog inputs AI0
and AI1 (Proceed with the analog inputs AI2 and AI3 in the same way)

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1147

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Pt100 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.
The module CI541-DP performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

+

-
UIN

Fig. 230: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog input AI0 (Proceed with the analog inputs AI1 ... AI3 in the same way)

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1148

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-

0 ... +20 mA
+4 ... +20 mA

UIN

Fig. 231: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog input AI0 (Proceed with the analog inputs AI1 ... AI3 in the same way)

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

The function of the LEDs is described under 'State LEDs' Ä Chapter 5.2.6.6.1.11 “State LEDs”
on page 1165.
Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range 4 ... 20 mA,
these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

The following figure shows the connection of active-type analog sensors (voltage) with no
galvanically isolated power supply to the analog input AI0. Proceed with the analog inputs
AI1 ... AI3 in the same way.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1149

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-10 ... +10 V
0 ... +10 V

Fig. 232: Connection of active-type analog sensors (voltage) with no galvanically isolated power
supply to the analog input AI0 (Proceed with the analog inputs AI1 ... AI3 in the same way)

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ± 1 V).
Make sure that the potential difference never exceeds ± 1 V (also not with long
cable lengths).

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1150

Connection of passive-type analog sensors (Current) to the analog inputs

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

-

+

+4 ... +20 mA

Fig. 233: Connection of passive-type analog sensors (current) to the analog input AI0 (Proceed
with the analog inputs AI1 ... AI3 in the same way)

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.9 “Parameterization” on page 1155 :

Current 4 mA ... 20 mA 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt Zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range
4 mA ... 20 mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.
With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1151

The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pole at the sensors must not have too big a potential difference
with respect to ZP (max. ±1 V).
Make sure that the potential difference never exceeds ±1 V.

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

+

-
UIN

Fig. 234: Connection of active-type analog sensors (voltage) to differential analog inputs AI0
and AI1 (Proceed with AI2 and AI3 in the same way)

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Voltage 0 V ... 10 V with differential inputs, 2 chan-
nels used

Voltage -10 V ... +10 V with differential inputs, 2 chan-
nels used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.
To avoid error messages from unused analog input channels, configure them as "unused".

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1152

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 235: Connection of digital sensors to the analog input AI0 (Proceed with the analog inputs
AI1 ... AI3 in the same way)

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Digital input 24 V 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.

Connection of analog output loads (Voltage)

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 236: Connection of analog output loads (voltage) to the analog output AO0 (Proceed with
the analog output AO1 in the same way)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1153

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Voltage -10 V ... +10 V Load ± 10 mA max. 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.11 “State LEDs” on page 1165.
Unused analog outputs can be left open-circuited.

Connection of analog output loads (Current)

2.0
AI0+
2.1
AI1+
2.2
AI2+
2.3
AI3+
2.4
AI-
2.5
AO0+
2.6
AO1+
2.7
AO-
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 237: Connection of analog output loads (current) to the analog output AO0 (Proceed with
the analog output AO1 in the same way)

The following measuring ranges can be configured Ä Chapter 5.2.6.6.1.9 “Parameterization”
on page 1155 Ä Chapter 5.2.6.6.1.12 “Measuring ranges” on page 1166:

Current 0 mA ... 20 mA Load 0 W ... 500 W 1 channel used

Current 4 mA ... 20 mA Load 0 W ... 500 W 1 channel used

The function of the LEDs is described under Diagnosis and displays / Displays Ä Chapter
5.2.6.6.1.10 “Diagnosis” on page 1160.
Unused analog outputs can be left open-circuited.

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1154

Parameter Value
Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i.e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI541-DP PROFIBUS DP bus configuration is handled by PROFIBUS DP master with
the exception of the slave bus ID (via rotary switches) and the transmission rate (automatic
detection).
The analog/digital I/O channels and the fast counter are configured via software.
Details about configuration are described in Parameterization Ä Chapter 5.2.6.6.1.9 “Parame-
terization” on page 1155.

Parameterization
Parameters of the module

Table 252: Parameters of the module:
Name Value Internal value Internal value,

type
Default

Module ID 1) Internal 0x1C20 WORD 0x1C20

Parameter length Internal 47 BYTE 47

Reserved (1
byte)

0 0 BYTE 0

Error LED / Fail-
safe function
(see
Ä Table 253 “Set
tings "Error LED /
Failsafe func-
tion"”
on page 1156)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved (20
bytes)

0 0 BYTE 0

Check supply
(UP and UP3)

On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1155

Name Value Internal value Internal value,
type

Default

10 2) 10
1) With a faulty ID, the Modules reports a "parameter error" and does not perform cyclic
process data transmission
2) Counter operating modes, see description of the fast counter Ä Chapter 5.2.4.3.2.9 “Fast
counter” on page 606.

Table 253: Settings "Error LED / Failsafe function"
Setting Description
On Error LED (S-ERR) lights up at errors of all error classes,

Failsafe mode off

Off by E4 Error LED (S-ERR) lights up at errors of error classes E1, E2
and E3, Failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error classes E1 and
E2, Failsafe mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all error classes,
Failsafe mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1, E2
and E3, Failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error classes E1 and
E2, Failsafe mode on *)

*) The parameters Behaviour analog outputs at communication error and Behaviour digital
outputs at communication error are only evaluated if failsafe function is enabled.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour analog
outputs at com-
munication error
*)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour analog outputs at communication error is only analyzed if the
Failsafe mode is ON.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1156

Channel parameters for the analog inputs (4x)
General

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Operation modes
of analog inputs
Ä Table 254 “Op
eration modes of
analog inputs:”
on page 1157

Operation modes
of analog inputs
Ä Table 254 “Op
eration modes of
analog inputs:”
on page 1157

BYTE 0

Input 0, Check
channel

Settings channel
monitoring
Ä Further infor-
mation
on page 1158

Settings channel
monitoring
Ä Further infor-
mation
on page 1158

BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

Operation modes
of analog inputs
Ä Table 254 “Op
eration modes of
analog inputs:”
on page 1157

Operation modes
of analog inputs
Ä Table 254 “Op
eration modes of
analog inputs:”
on page 1157

BYTE 0

Input 3, Check
channel

Settings channel
monitoring
Ä Further infor-
mation
on page 1158

Settings channel
monitoring
Ä Further infor-
mation
on page 1158

BYTE 0

Channel configuration
Table 254: Operation modes of analog inputs:
Internal value Operating modes of the analog inputs, individually configurable

0 (default) Not used

1 0 ... 10 V

2 Digital input

3 0 mA ... 20 mA

4 4 mA ... 20 mA

5 -10 V ... +10 V

8 2-wire Pt100 -50 °C ... +400 °C

9 3-wire Pt100 -50 °C ... +400 °C *)

10 0 V ... 10 V (voltage diff.) *)

11 -10 V ... +10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C ... +70 °C

15 3-wire Pt100 -50 °C ... +70 °C *)

16 2-wire Pt1000 -50 °C ... +400 °C

17 3-wire Pt1000 -50 °C ... +400 °C *)

18 2-wire Ni1000 -50 °C ... +150 °C

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1157

19 3-wire Ni1000 -50 °C ... +150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Channel monitoring
Table 255: Table settings channel monitoring:
Internal Value Check Channel
0 (default) Plausib(ility), cut wire, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Operation modes
of analog outputs
Ä Table 256 “Tab
le operation
modes of analog
outputs:”
on page 1159

Operation modes
of analog outputs
Ä Table 256 “Tab
le operation
modes of analog
outputs:”
on page 1159

BYTE 0

Output 0, Check
channel

Channel moni-
toring
Ä Table 257 “
Table channel
monitoring:”
on page 1159

Channel moni-
toring
Ä Table 257 “
Table channel
monitoring:”
on page 1159

BYTE 0

Output 0, Substi-
tute value

Substitute value
Ä Table 258 “
Table substitute
value:”
on page 1159

Substitute value
Ä Table 258 “
Table substitute
value:”
on page 1159

WORD 0

Output 1,
Channel configu-
ration

Operation modes
of analog outputs
Ä Table 256 “Tab
le operation
modes of analog
outputs:”
on page 1159

Operation modes
of analog outputs
Ä Table 256 “Tab
le operation
modes of analog
outputs:”
on page 1159

BYTE 0

Output 1, Check
channel

Channel moni-
toring
Ä Table 257 “
Table channel
monitoring:”
on page 1159

Channel moni-
toring
Ä Table 257 “
Table channel
monitoring:”
on page 1159

BYTE 0

Output 1, Substi-
tute value

Substitute value
Ä Table 258 “
Table substitute
value:”
on page 1159

Substitute value
Ä Table 258 “
Table substitute
value:”
on page 1159

WORD 0

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1158

Table 256: Table operation modes of analog outputs:
Internal value Operating modes of the analog outputs,

individually configurable
0 (default) Not used

128 -10 V ... +10 V

129 0 mA ... 20 mA

130 4 mA ... 20 mA

Table 257: Table channel monitoring:
Internal value Check channel
0 Plausib(ility), cut wire, short circuit

3 None

Table 258: Table substitute value:
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Channel config-
uration

Channel moni-
toring

Substitute value

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1159

Name Value Internal value Internal value,
type

Default

Behaviour digital
outputs at com-
muncation error
1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x00

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE Off
0x00

1) The parameters Behaviour digital outputs at communcation error is only analyzed if the
Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0 ... DC7
should be switched on while an externally voltage is connected Ä Chapter 5.2.6.6.1.5 “Con-
nections” on page 1139. In this case the start up is disabled, as long as the externally
voltage is connected. The monitoring of this state and the resulting diagnosis message can be
disabled by setting the parameters to "OFF".

Diagnosis
Structure of the diagnosis block via DPM_SLV_DIAG function block.

Byte Number Description Possible Values
1 Data length (header included) 7

2 PROFIBUS DP V1 coding:
Vendor specific

129

3 Diagnosis Byte, slot number 31 = CI541-DP (e. g. error at integrated 8
DI / 8 DO)
1 = 1st connected S500 I/O Module
...
10 = 10th connected S500 I/O Module

4 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

5 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1160

Byte Number Description Possible Values
6 Diagnosis Byte, error code According to the I/O bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

7 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1161

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O device

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1162

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Reverse voltage
from digital outputs
DO0...DO7 to UP3
4)

Check
connec-
tion

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1163

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected on digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0...3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0...3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0...3 47 Short-circuit at an
analog input

Check
terminals

4 - 31 3 0...1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0...1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0...4 or 10 = Position of
the Communication Module; 14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI541-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1...10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1164

4) This message appears, if externally voltages at one or more termi-
nals DO0...DO7 cause that other digital outputs are supplied through
that voltage (voltage feedback, see description in section 'Connection'
Ä Chapter 5.2.6.6.1.5 “Connections” on page 1139). All outputs of the
apply digital output groups will be turned off for 5 seconds. The diagnosis
message appears for the whole output group.

5) The voltage on digital outputs DO0 ... DO7 has overrun the process
supply voltage UP3 (see description in section 'Connection' Ä Chapter
5.2.6.6.1.5 “Connections” on page 1139). Diagnosis message appears
for the whole module.

6) This message appears, if the output of a channel DO0 ... DO7 should
be switched on while an externally voltage is connected. In this case
the start up is disabled, as long as the externally voltage is connected.
Otherwise this could produce reverse voltage from this output to other
digital outputs. This diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100ms. Then a new start up will be executed. This diagnosis message
appears per channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform
any hot swap operations (also not on any other terminal units (slots)) as
modules may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1-DP, STA2-DP, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 259: States of the 5 system LEDs:
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1-DP Green --- PROFIBUS run-
ning

Invalid device
parameters

STA2-DP Red No error Bus timeout No communica-
tion to master

S-ERR Red No error Internal error --

I/O-Bus Green No communica-
tion interface
modules con-
nected or com-
munication error

Communication
interface
modules con-
nected and
operational

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1165

Table 260: States of the 27 process LEDs:
LED Color OFF ON Flashing
AI0 to AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 to AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 to DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 toDO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Measuring ranges
Input ranges voltage, current and digital input

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10,0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1166

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 1.7593 < -11.7589 < 0.0000 < 1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50 ... +70 °C

Pt100 / Pt1000
-50 ... +400 °C

Ni1000
-50 ... +150 °C

Overflow > +80.0 °C > +450.0 °C > +160.0 °C

Measured value too
high

 +450.0 °C
:
+ 400.1 °C

 +160.0 °C
:
+150.1 °C

Normal range +400.0 °C
:
:
:
+ 0.1 °C

+150.0 °C
:
:
+0.1 °C

 0.0 °C 0.0 °C

 -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

Measured value too
low

 -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C

Range Digital value
 Decimal Hex.
Overflow 32767 7FFF

Measured value too high 4500
:
4001

1194
:
0FA1

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1167

Range Digital value
 Decimal Hex.

1600
:
1501

0640
:
05DD

800
:
701

0320
:
02BD

Normal range 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

0 0000

-1
:
-500

FFFF
:
FE0C

Measured value too low -501
:
-600

FE0B
:
FDA8

Underflow -32768 8000

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA
Overflow >11.7589 V >23.5178 mA >22.8142 mA

Measured value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

Normal range 10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

0.0000 V 0.0000 mA 4.0000 mA

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

Measured value too
low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

Underflow 0 V 0 mA 0 mA

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1168

Range Digital value
 Decimal Hex.
Overflow > 32511 > 7EFF

Measured value too high 32511
:
27649

7EFF
:
6C01

Normal range 27648
:
1

6C00
:
0001

0 0000

-1
-6912
-27648

FFFF
E500
9400

Measured value too low -27649
:
-32512

93FF
:
8100

Underflow < -32512 < 8100

The represented resolution corresponds to 16 bits.

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation PROFIBUS interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1169

Parameter Value
 Connections Terminals 2.8 and 3.8 for +24 V (UP)

Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Configurable digital inputs/outputs 8

Number of digital inputs 8

Number of digital outputs 8

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the PROFIBUS DP identifier With 2 rotary switches at the front side of the
module

Diagnose See Diagnosis Ä Chapter 5.2.6.6.1.10 “Diag-
nosis” on page 1160

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 3.0 ... 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1170

Parameter Value
Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 ... DO7 Terminals 4.0 ... 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1171

Parameter Value
Output current limitation Yes, automatic reactivation after short cir-

cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The module provides several diagnosis functions Ä Chapter 5.2.6.6.1.10 “Diagnosis”
on page 1160.
The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ ... AI3+ Terminals 2.0 ... 2.3

Reference potential for AI0+ ... AI3+ Terminal 2.4 (AI-) for voltage and RTD meas-
urement
Terminal 2.9, 3.9 and 4.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V ... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V ... +10 V

Galvanic isolation Against PROFIBUS

Configurability 0 V ... 10 V, -10 V ... +10 V, 0/4 mA ... 20 mA,
Pt100/1000, Ni1000 (each input can be config-
ured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1172

Parameter Value
Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/

Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits
Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): +0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Tables Input Ranges Voltage, Current and Dig-
ital Input and Input range resistance temper-
ature detector Ä Chapter 5.2.6.6.1.12 “Meas-
uring ranges” on page 1166

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ ... AI3+ Terminals 2.0 ... 2.3

Reference potential for the inputs Terminals 2.9, 3.9 and 4.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +15 V

 Signal 1 +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1173

Parameter Value
Connection of the channels AO0+ ... AO1+ Terminals 2.5 ... 2.6

Reference potential for AO0+ ... AO1+ Terminal 2.7 (AO-) for voltage output
Terminal 2.9, 3.9 and 4.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against PROFIBUS

Configurability -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA
(each output can be configured individually)

Output resistance (load), as current output 0 W ... 500 W

Output loadability, as voltage output ± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output Ranges Voltage and Current
Ä Chapter 5.2.6.6.1.12.3 “Output ranges
voltage and current” on page 1168

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI0), 3.1 (DI1)

Used outputs Terminal 4.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1174

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Ordering No. Scope of delivery Product life cycle phase *)
1SAP 224 100 R0001 CI541-DP, PROFIBUS DP communi-

cation interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

1SAP 424 100 R0001 CI541-DP-XC, PROFIBUS DP com-
munication interface module, 8 DI,
8 DO, 4 AI and 2 AO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1175

5.2.6.6.2 CI542-DP
Features

● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

4.0

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

BUS

CI542

CH-ERR1 CH-ERR3CH-ERR2

4.0 DO8

4.2 DO10

4.4 DO12

4.6 DO14

4.9 ZP

4.1 DO9

4.3 DO11

4.5 DO13

4.7 DO15

4.8 UP33.8 UP

3.9 ZP

3.0 DI8

3.2 DI10

3.3 DI11

3.5 DI13

3.6 DI14

3.4 DI12

3.7 DI15

3.1 DI9

UP 24VDC 200W PROFIBUS DP Slave
8DC 8DI 8DO

Input 24VDC/Output 24VDC 0.5A

S-ERR

I/O-Bus

STA2 DP

STA1 DP

PWR/RUN 2.0 DC0

2.2 DC2

2.9 ZP

2.3 DC3

2.1 DC1

2.5 DC5

2.6 DC6

2.8 UP

2.7 DC7

2.4 DC4

x10H
ADDR

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

ADDR
x01H

4

C

3

B

2

A

1
9

0 8
F

7

E

6

D

5

12 3 4 5

6
7

8

9

10

11 12

13

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the configurable digital inputs/outputs

(DC0 ... DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 ... DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 ... DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 DP, STA2 DP, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the PROFIBUS ID
11 9-pin D-SUB connector to connect the PROFIBUS DP signals
12 Terminal unit
13 DIN rail

Sign for XC version

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1176

Intended purpose
The PROFIBUS DP communication interface module is used as decentralized I/O module in
PROFIBUS networks. Depending on the used terminal unit the network connection is performed
either via 9-pole female D-sub or via 10 terminals (screw-type or spring terminals) which are
integrated in the terminal unit.
The inputs/outputs are galvanically isolated from the PROFIBUS network. There is no potential
separation between the channels. The configuration of the configurable digital inputs/outputs is
performed by software.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Diagnosis settings
The current CI54x does not run in combination with a V3 PLC if in the “General” tab the
parameter “Diagnosis behavior” is set to “AC500 V3 compatible”. How to change the setting in
your AB project is described below.

1. Double click in the “Device” tree on “CI541_IO”.

ð The tab for the various settings opens.

2. Double click on the “General” tab.
3. Double click on the “Value” of the parameter “Diagnosis behavior”.
4. Click on the small arrow.

ð A submenu with two values opens.

5. Click on “AC500 V2 compatible” as setting.
6. Close the tab.

After changing the parameter to “AC500 V2 compatible” the CI54x get in “RUN”.
If the CI54x indicates a S500 diagnosis message, following AC500 diagnosis entry (“655374
CI54x communication interface module is sending not supported diagnosis format - Check
configuration and FW revision of communication interface module”) is shown in the diagnosis
editor and history. This diagnosis message does not have impact to cyclic data exchange
between the master and the CI54x.
In case of a parameter change from V2 to V3 the parameter at the CI54x of V3 has the same
value than at the CI54x below V2 (that means AC500 V2 compatible).

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1177

Connections
General

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The PROFIBUS DP communication interface module CI542-DP is plugged on the I/O terminal
units TU509 Ä Chapter 5.2.7.3 “TU509 and TU510 for communication interface modules”
on page 1274 or TU510 Ä Chapter 5.2.7.3 “TU509 and TU510 for communication interface
modules” on page 1274 and accordingly TU517 Ä Chapter 5.2.7.4 “TU517 and TU518 for
communication interface modules” on page 1278 or TU518 Ä Chapter 5.2.7.4 “TU517 and
TU518 for communication interface modules” on page 1278. Properly seat the module and
press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the
additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory”
on page 1324.
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.
The terminals 2.8 and 3.8 as well as 2.9, 3.9 and 4.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 2.8 and 3.8: Process supply voltage UP = +24 V DC
Terminal 4.8: Process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0...DC7 or DO0...DO7
may cause that other digital outputs are supplied through that voltage instead of
voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0...DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0...DO7 and DC0...DC7.

Possibilities of connection
Assignment

Mounting on terminal units TU509 or TU510:
The assignment of the 9-pole female D-sub for the PROFIBUS DP signals.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1178

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Serial Inter-
face

Pin Signal Description

1

5

6

9

1 --- Reserved

2 --- Reserved

3 B PROFIBUS DP signal B

4 --- Reserved

5 DGND Ground for 5 V power supply

6 VP (5 V) 5 V power supply

7 --- Reserved

8 A PROFIBUS DP signal A

9 --- Reserved

Shield Cable shield Functional earth

Bus termination
The line ends of the bus segment must be equipped with bus terminating resistors. Normally,
these resistors are integrated in the interface connectors.

390 Ohms

220 Ohms

390 Ohms

VP (+5 V)

GND (0 V)

RxD/TxD-P

RxD/TxD-N

Data Line B

Data Line A

6

3

8

5

The grounding of the shield should take place at the control cabinet, see
System-Data AC500 Ä Chapter 5.1.2 “System data AC500” on page 166.

Mounting on terminal units TU517 or TU518:
The assignment of the terminals 1.0 - 1.9:

Terminal Signal Description
1.0 B Data line B (receive and send line, posi-

tive)

1.1 B Data line B (receive and send line, posi-
tive)

1.2 A Data line A (receive and send line, nega-
tive)

1.3 A Data line A (receive and send line, nega-
tive)

1.4 TermB Bus termination data line B

1.5 TermB Bus termination data line B

1.6 TermA Bus termination data line A

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1179

Terminal Signal Description
1.7 TermA Bus termination data line A

1.8 DGND Reference potential for data transmis-
sion

1.9 DGND Reference potential for data transmis-
sion

At the line ends of a bus segment, terminating resistors must be connected. If using TU517/
TU518, the bus terminating resistors can be enabled by connecting the terminals TermA and
TermB to the data lines A and B (no external terminating resistors are required, see figure
below).

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS in

PROFIBUS out

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9
+5 V DC

GND

PROFIBUS end

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1180

If using TU517/TU518, note that the terminating resistors are not located inside
the TU, but inside the communication interface module CI541-DP. I. e. when
removing the device from the TU, the bus terminating resistors are not con-
nected to the bus any more. The bus itself will not be disconnected if a device is
removed.

If using TU517/TU518 the max. permitted transmission rate is limited to 1.5
MBaud.

Technical data bus cable

Parameter Value
Type Twisted pair (shielded)

Characteristic impedance 135 W...165 W

Cable capacitance < 30 pF/m

Conductor diameter of the cores ³ 0.64 mm

Conductor cross section of the cores ³ 0.34 mm²

Cable resistance per core £ 55 W/km

Loop resistance (resistance of two cores) £ 110 W/km

Cable length
The maximum possible cable length of a PROFIBUS subnet within a segment depends on the
transmission rate (baud rate).

Transmission rate Maximum cable length
9.6 kBaud to 93.75 kBaud 1200 m

187.5 kBaud 1000 m

500 kBaud 400 m

1.5 MBaud 200 m

3 MBaud to 12 MBaud 100 m

The assignment of the other terminals:

Terminal Signal Description
2.0 DC0 Signal of the configurable digital input/output DC0

2.1 DC1 Signal of the configurable digital input/output DC1

2.2 DC2 Signal of the configurable digital input/output DC2

2.3 DC3 Signal of the configurable digital input/output DC3

2.4 DC4 Signal of the configurable digital input/output DC4

2.5 DC5 Signal of the configurable digital input/output DC5

2.6 DC6 Signal of the configurable digital input/output DC6

2.7 DC7 Signal of the configurable digital input/output DC7

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1181

Terminal Signal Description
2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DI8 Signal of the digital input DI8

3.1 DI9 Signal of the digital input DI9

3.2 DI10 Signal of the digital input DI10

3.3 DI11 Signal of the digital input DI11

3.4 DI12 Signal of the digital input DI12

3.5 DI13 Signal of the digital input DI13

3.6 DI14 Signal of the digital input DI14

3.7 DI15 Signal of the digital input DI15

3.8 UP Process voltage UP (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

4.0 DO8 Signal of the digital output DO8

4.1 DO9 Signal of the digital output DO9

4.2 DO10 Signal of the digital output DO10

4.3 DO11 Signal of the digital output DO11

4.4 DO12 Signal of the digital output DO12

4.5 DO13 Signal of the digital output DO13

4.6 DO14 Signal of the digital output DO14

4.7 DO15 Signal of the digital output DO15

4.8 UP3 Process voltage UP3 (24 V DC)

4.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1182

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

4.0 DO8

4.1 DO9

4.2 DO10

4.3 DO11

4.4 DO12

4.5 DO13

4.6 DO14

4.7 DO15

DI8 3.0

DI9 3.1

DI10 3.2

DI11 3.3

DI12 3.4

DI13 3.5

DI14 3.6

DI15 3.7

2.8

2.9

UP +24 V

ZP 0 V

3.8

3.9 4.9

4.8
UP3 +24 V

ZP 0 V

DC0 2.0

DC1 2.1

DC2 2.2

DC3 2.3

DC4 2.4

DC5 2.5

DC6 2.6

DC7 2.7

Fig. 238: Connection of the PROFIBUS DP communication interface module CI542-DP

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1183

Connection of the digital inputs

3.0
DI8
3.1
DI9
3.2
DI10
3.3
DI11
3.4
DI12
3.5
DI13
3.6
DI14
3.7
DI15
3.8
UP
3.9
ZP

24 V DC
-
+

Fig. 239: Connection of the digital input DI8 (Proceed with the digital inputs DI9 to DI15 in the
same way)

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.6.2.10 “State LEDs”
on page 1193.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1184

Connection of the digital outputs

4.0
DO8
4.1
DO9
4.2
DO10
4.3
DO11
4.4
DO12
4.5
DO13
4.6
DO14
4.7
DO15
4.8
UP
4.9
ZP

24 V DC
-
+

Fig. 240: Connection of the digital output DO8 (Proceed with the digital outputs DO9 - DO15 in
the same way)

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.6.2.10 “State LEDs”
on page 1193.

Connection of the configurable digital inputs/outputs

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 5.2.6.6.2.4 “Connections”
on page 1178.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1185

2.0
DC0
2.1
DC1
2.2
DC2
2.3
DC3
2.4
DC4
2.5
DC5
2.6
DC6
2.7
DC7
2.8
UP
2.9
ZP

24 V DC
-
+

Fig. 241: Connection of the configurable digital input/output DC0 and DC1 (Proceed with the
configurable digital inputs/outputs DC2 to DC7 in the same way)

The meaning of the LEDs is described in Displays Ä Chapter 5.2.6.6.2.10 “State LEDs”
on page 1193.

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing

The module reads the position of the rotary switches only during power-up, i.e.
changes of the switch position during operation will have no effect until the next
module initialization.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1186

I/O configuration
The CI542-DP PROFIBUS DP bus configuration is handled by PROFIBUS DP master with
the exception of the slave bus ID (via rotary switches) and the transmission rate (automatic
detection).
The digital I/O channels and the fast counter are configured via software.
Details about configuration are described in Parameterization.

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 0x1C25 WORD 0x1C25

Parameter length Internal 31 BYTE 31

Reserved (1
byte)

0 0 BYTE 0

Error LED / Fail-
safe function
Ä Table 261 “Set
tings "Error LED /
Failsafe func-
tion"”
on page 1187
(see table)

On 0 BYTE 0

Off by E4 1

Off by E3 2

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

18

Reserved (20
bytes)

0 0 BYTE 0

Check supply On 0 BYTE

Off 1 1

Fast counter 0 0 BYTE 0

: :

10 2) 10
1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) Counter operating modes, see 'Fast Counter' Ä Chapter 5.2.4.3.2.9 “Fast counter”
on page 606.

Table 261: Settings "Error LED / Failsafe function"
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe mode on *)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1187

Setting Description
Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error

classes E1, E2 and E3, Failsafe mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe mode is ON.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

Preventive
voltage feedback
monitoring for
DC0 ... DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1188

1) The parameter Behaviour DO at comm. error is apply to DC and DO channels
and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a channel
DC0 ... DC7 should be switched on while an externally voltage is connected. In
this case the start up is disabled, as long as the externally voltage is connected.
The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally voltage at dig-
ital outputs DC0 ... DC7 and accordingly DO0 ... DO7 has exceeded the process
supply voltage UP3 Ä Chapter 5.2.6.6.2.4 “Connections” on page 1178. The
according diagnosis message "Voltage overflow on outputs " can be disabled
by setting the parameters on "OFF". This parameter should only be disabled in
exceptional cases for voltage overflow may produce reverse voltage.

Diagnosis
Structure of the diagnosis block via DPM_SLV_DIAG function block.

Byte Number Description Possible Values
1 Data length (header

included)
7

2 PROFIBUS DP V1 coding:
Vendor specific

129

3 Diagnosis Byte, slot number 31 = CI542-DP (e. g. error at integrated 8 DI /
8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

4 Diagnosis Byte, module
number

According to the I/O bus specification passed
on by modules to the fieldbus master

5 Diagnosis Byte, channel According to the I/O bus specification passed
on by modules to the fieldbus master

6 Diagnosis Byte, error code According to the I/O bus specification
Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

7 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1189

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1190

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1191

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 6
Bit
6 ... 7

- Byte 3 Byte 4 Byte 5 Byte 6
Bit
0 ... 5

PROFIB
US DP
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 46 Reverse voltage
from digital outputs
DO0..DO7 to UP3
4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8...15 46 Externally voltage
detected at digital
output DO0 ... DO7
6)

Check
terminals

4 - 31 4 0...7 46 Externally voltage
detected at digital
output DC0 ... DC7
6)

Check
terminals

4 - 31 4 0...7 47 Short circuit at dig-
ital output DC0 ...
DC77)

Check
terminals

4 - 31 2 8...15 47 Short circuit at dig-
ital output DO0 ...
DO77)

Check
terminals

Remarks:

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1192

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI542-DP diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1..10 =
expansion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals DC0 ...
DC7 oder DO0 ... DO7 cause that other digital outputs are supplied through
that voltage.
All outputs of the apply digital output groups will be turned off for 5 seconds.
The diagnosis message appears for the whole output group.

5) The voltage at digital outputs DC0 .. DC7 and accordingly DO0 ... DO7 has
exceeded the process supply voltage UP3 Ä Chapter 5.2.6.6.2.4 “Connec-
tions” on page 1178. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0 ... DC7 or DO0 ... DO7
should be switched on while an externally voltage is connected. In this case
the start up is disabled, as long as the externally voltage is connected. Oth-
erwise this could produce reverse voltage from this output to other digital
outputs. This diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 100ms.
Then a new start up will be executed. This diagnosis message appears per
channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may
be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 DP, STA2 DP, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 262: States of the 5 system LEDs:
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1-DP Green --- PROFIBUS run-
ning

Invalid device
parameters

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1193

LED Color OFF ON Flashing
STA2-DP Red No error Bus timeout No communica-

tion to master

S-ERR Red No error Internal error --

I/O-Bus Green No communica-
tion interface
modules con-
nected or com-
munication error

Communication
interface module
connected and
operational

Table 263: States of the 29 process LEDs:
LED Color OFF ON Flashing
DC0 ... DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 ... DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 ... DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1194

Parameter Value
 Galvanic isolation PROFIBUS interface against the rest of the

module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 2.8 and 3.8 for +24 V (UP)
Terminal 4.8 for +24 V (UP3)
Terminals 2.9, 3.9 and 4.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Reference potential for all digital inputs and
outputs

Negative pole of the supply voltage, signal
name ZP

Setting of the PROFIBUS DP identifier With 2 rotary switches at the front side of the
module

Diagnose See Diagnosis Ä Chapter 5.2.6.6.2.9 “Diag-
nosis” on page 1189

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal
Or vertical with derating (output load reduced to
50 % at +40 °C per group)

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1195

Parameter Value
Terminals of the channels DI0 ... DI7 Terminals 3.0 ... 3.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 ... DO7 Terminals 4.0 ... 4.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1196

Parameter Value
 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0 ... DC07 Terminals 2.0 ... 2.7

If the channels are used as outputs

 Channels DC0 ... DC07 Terminals 2.0 ... 2.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the PROFIBUS network

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1197

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 2.0 2.7

Reference potential for all inputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 2.0 2.7

Reference potential for all outputs Terminals 2.9 ... 4.9 (negative pole of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 4.8 (positive pole of the
supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1198

Parameter Value
 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 3.0 (DI0),Terminal 3.1 (DI1)

Used outputs Terminal 4.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1199

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering Data

Part no. Description Product life cycle phase *)
1SAP 224 200 R0001 CI542-DP, PROFIBUS DP communica-

tion interface module, 8 DI, 8 DO and
8 DC

Active

1SAP 424 200 R0001 CI542-DP-XC, PROFIBUS DP com-
munication interface module, 8 DI,
8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1200

5.2.6.7 PROFINET
5.2.6.7.1 Comparison of the CI5xx-PNIO modules

The PROFINET IO devices combine the advantages of decentralized I/O modules with the
reaction time of AC500 mounted central I/O modules. The devices for PROFINET provide the
extension -PNIO in the device name.
The communication module CM579-PNIO acts as I/O controller in a PROFINET network. It
is connected to the processor module via an internal communication bus. Depending on the
terminal base, several communication modules can be used for one processor module.
The communication interface modules CI5xx-PNIO act as I/O devices in a PROFINET network.
Additionally the communication module CM589-PNIO(-4) can be used to setup a AC500 PLC to
act as I/O module in a PROFINET network.

The difference of the CI5xx-PNIO devices can be found in their input and output characteristics
Ä Chapter 5.2.6.7.1.1 “Characteristics of CI50x-PNIO” on page 1201.

Characteristics of CI50x-PNIO

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1201

Parameter Value
Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Input/Output characteristics of CI501-PNIO
The PROFINET communication interface module CI501-PNIO is used as decentralized I/O
module in PROFINET networks. The network connection is performed via 2 RJ45 connectors
which are integrated in the terminal unit. The communication interface module contains 22 I/O
channels with the following properties:
● 4 analog inputs (1.0 ... 1.3), configurable as:

– -10 V ... +10 V
– 0 V ... +10 V
– -10 V ... +10 V (differential voltage)
– 0 mA ... 20 mA
– 4 mA ... 20 mA
– Pt100 , Pt1000, Ni1000 (for each 2-wire and 3-wire)
– 24 V digital input function

● 2 analog outputs (1.5 ... 1.6), configurable as:
– -10 V ... +10 V
– 0 mA ... 20 mA
– 4 mA ... 20 mA

● 8 digital inputs 24 V DC in 1 group (2.0 ... 2.7)
● 8 digital transistor outputs 24 V DC (0.5 A max.) in 1 group (3.0 ... 3.7)
● Resolution of the analog channels: 12 bits
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Input/Output characteristics of CI502-PNIO
● 8 digital inputs 24 V DC
● 8 digital transistor outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● XC version for usage in extreme ambient conditions available

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1202

Technical data of the serial interfaces of CI504-PNIO

Parameter Value
Number of serial interfaces 3

Connectors for serial interfaces X11 for COM1
X12 for COM2
X13 for COM3

Supported physical layers RS-232
RS-422
RS-485

Supported protocols ASCII

Transmission rate Configurable from 300 bit/s to 115.200 bit/s

5.2.6.7.2 CI501-PNIO
Features

● 4 analog inputs, 2 analog outputs, 8 digital inputs, 8 digital outputs
● Resolution 12 bits including sign
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1203

1 I/O bus
2 Allocation between terminal number and signal name
3 6 yellow LEDs to display the signal states of the analog inputs/outputs (AI0 ... AI3,

AO0 ... AO1)
4 8 yellow LEDs to display the signal states of the digital inputs (DI0 ... DI7)
5 8 yellow LEDs to display the signal states of the digital outputs (DO0 ... DO7)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the I/O device identifier
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1204

Intended purpose
The PROFINET communication interface modules CI501-PNIO and CI502-PNIO are used
as communication interface modules in PROFINET networks. The network connection is per-
formed by Ethernet cables which are inserted in the RJ45 connectors in the terminal unit. An
Ethernet switch in the communication interface module allows daisy chaining of the network.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

Functionality
The communication interface module contains 22 I/O channels with the following properties:
● 4 configurable analog inputs (2-wire / single-ended) or 2 configurable analog inputs (3-wire /

differential) (1.0 ... 1.3)
● 2 analog outputs (1.5 ... 1.6)
● 8 digital inputs 24 V DC in 1 group (2.0 ... 2.7)
● 8 digital outputs 24 V DC, 0.5 A max. in 1 group (3.0 ... 3.7)
The inputs/outputs are galvanically isolated from the PROFINET network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Parameter Value
Interface Ethernet

Protocol PROFINET IO RT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the I/O device identifier for configu-
ration purposes (00h to FFh)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507 or TU508 Ä Chapter 5.2.7.2 “TU507-
ETH and TU508-ETH for Ethernet communica-
tion interface modules” on page 1270

Connections
General

The Ethernet communication interface module CI501-PNIO is plugged on the I/O terminal unit
TU507-ETH or TU508-ETH Ä Chapter 5.2.7.2 “TU507-ETH and TU508-ETH for Ethernet com-
munication interface modules” on page 1270. Properly seat the module and press until it locks
in place. The terminal unit is mounted on a DIN rail or with 2 screws plus the additional acces-
sory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting accessory” on page 1324.
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1205

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

Reason: External voltages at an output or several outputs may cause that
other outputs are supplied through that voltage instead of voltage UP3 (reverse
voltage). This is unintended usage.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is connected at the outputs
DO0 ... DO7.

Table 264: Assignment of the other terminals
Terminal Signal Description
1.0 AI0+ Positive terminal of analog input signal 0

1.1 AI1+ Positive terminal of analog input signal 1

1.2 AI2+ Positive terminal of analog input signal 2

1.3 AI3+ Positive terminal of analog input signal 3

1.4 AI- Negative terminal of analog input signals 0 to 3

1.5 AO0+ Positive terminal of analog output signal 0

1.6 AO1+ Positive terminal of analog output signal 1

1.7 AI- Negative terminal of analog output signals 0 and 1

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI0 Signal of the digital input DI0

2.1 DI1 Signal of the digital input DI1

2.2 DI2 Signal of the digital input DI2

2.3 DI3 Signal of the digital input DI3

2.4 DI4 Signal of the digital input DI4

2.5 DI5 Signal of the digital input DI5

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1206

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Terminal Signal Description
2.6 DI6 Signal of the digital input DI6

2.7 DI7 Signal of the digital input DI7

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO0 Signal of the digital output DO0

3.1 DO1 Signal of the digital output DO1

3.2 DO2 Signal of the digital output DO2

3.3 DO3 Signal of the digital output DO3

3.4 DO4 Signal of the digital output DO4

3.5 DO5 Signal of the digital output DO5

3.6 DO6 Signal of the digital output DO6

3.7 DO7 Signal of the digital output DO7

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

For the open-circuit detection (wire break), each analog input channel is pulled
up to "plus" by a high-resistance resistor. If nothing is connected, the maximum
voltage will be read in then.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1207

Generally, analog signals must be laid in shielded cables. The cable shields
must be grounded at both sides of the cables. In order to avoid unacceptable
potential differences between different parts of the installation, low resistance
equipotential bonding conductors must be laid.

Fig. 242: Connection of the Ethernet bus module CI501-PNIO

Ä Chapter 6.8.4.2 “PROFINET communication interface module” on page 4596

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1208

Connection of the digital inputs

Fig. 243: Connection of the digital inputs (DI0 ... DI7)

Ä Chapter 5.2.6.7.2.10 “State LEDs” on page 1233

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1209

Connection of the digital outputs

Fig. 244: Connection of the digital output (DO0 ... DO7)

Ä Chapter 5.2.6.7.2.10 “State LEDs” on page 1233

Connection of resistance thermometers in 2-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI501-PNIO provides a constant current source which is multiplexed over the max. 4 analog
input channels.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1210

Fig. 245: Connection of resistance thermometers in 2-wire configuration to the analog inputs
(AI0 ... AI3)

Table 265: Configurable measuring ranges
Pt100 -50 °C ... +400 °C 2-wire configuration, 1

channel used

Pt1000 -50 °C ... +400 °C 2-wire configuration, 1
channel used

Ni1000 -50 °C ... +150 °C 2-wire configuration, 1
channel used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

The module CI501-PNIO performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Connection of resistance thermometers in 3-wire configuration to the analog inputs
When resistance thermometers (Pt100, Pt1000, Ni1000) are used, a constant current must
flow through them to build the necessary voltage drop for the evaluation. For this, the module
CI501-PNIO provides a constant current source which is multiplexed over the max. 4 analog
input channels.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1211

Fig. 246: Connection of resistance thermometers in 3-wire configuration to the analog inputs
(AI0 ... AI3)

With 3-wire configuration, 2 adjacent analog channels belong together (e. g. the channels 0 and
1). In this case, both channels are configured according to the desired operating mode. The
lower address must be the even address (channel 0), the next higher address must be the odd
address (channel 1).
The constant current of one channel flows through the resistance thermometer. The constant
current of the other channel flows through one of the cores. The module calculates the meas-
ured value from the two voltage drops and stores it under the input with the higher channel
number (e. g. I1).
In order to keep measuring errors as small as possible, it is necessary to have all the involved
conductors in the same cable. All the conductors must have the same cross section.

Table 266: Configurable measuring ranges
Pt100 -50 °C ... +70 °C 3-wire configuration, 2 chan-

nels used

Pt100 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Pt1000 -50 °C ... +400 °C 3-wire configuration, 2 chan-
nels used

Ni1000 -50 °C ... +150 °C 3-wire configuration, 2 chan-
nels used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

The module CI501-PNIO performs a linearization of the resistance characteristic.
To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1212

Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog
inputs

Fig. 247: Connection of active-type analog sensors (voltage) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

Table 267: Configurable measuring ranges
Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1213

Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog
inputs

Fig. 248: Connection of active-type analog sensors (current) with galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

Table 268: Configurable measuring ranges
Current 0 mA ... 20 mA 1 channel used

Current 4 mA ... 20 mA 1 channel used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range
4 mA ... 20 mA, these channels should be configured as "Not used".

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1214

Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the
analog inputs

Fig. 249: Connection of active-type analog sensors (voltage) with no galvanically isolated power
supply to the analog inputs (AI0 ... AI3)

CAUTION!
Risk of faulty measurements!
The negative pin at the sensors must not have too big a potential difference with
respect to ZP (max. ± 1 V).
Make sure that the potential difference never exceeds ± 1 V (also not with long
cable lengths).

Table 269: Configurable measuring ranges
Voltage 0 V ... 10 V 1 channel used

Voltage -10 V ... +10 V 1 channel used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1215

Connection of passive-type analog sensors (Current) to the analog inputs

Fig. 250: Connection of passive-type analog sensors (current) to the analog inputs (AI0 ... AI3)

Table 270: Configurable measuring ranges
Current 4 mA ... 20 mA 1 channel used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

CAUTION!
Risk of overloading the analog input!
If an analog current sensor supplies more than 25 mA for more than 1 second
during initialization, this input is switched off by the module (input protection).
Use only sensors with fast initialization or without current peaks higher than 25
mA. If not possible, connect a 10-volt zener diode in parallel to AIx+ and ZP.

Unused input channels can be left open-circuited, because they are of low resistance.
To avoid error messages through unused analog input channels in measuring range
4 mA ... 20 mA, these channels should be configured as "Not used".

Connection of active-type analog sensors (Voltage) to differential analog inputs
Differential inputs are very useful, if analog sensors are used which are remotely non-isolated
(e.g. the minus terminal is remotely grounded).
The evaluation using differential inputs helps to considerably increase the measuring accuracy
and to avoid ground loops.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1216

With differential input configurations, two adjacent analog channels belong together (e.g. the
channels 0 and 1). In this case, both channels are configured according to the desired operating
mode. The lower address must be the even address (channel 0), the next higher address must
be the odd address (channel 1). The converted analog value is available at the higher address
(channel 1).
The analog value is calculated by subtraction of the input value with the higher address from the
input value of the lower address.
The converted analog value is available at the odd channel (higher address).

CAUTION!
Risk of faulty measurements!
The negative pin at the sensors must not have too big a potential difference with
respect to ZP (max. ± 1 V).
Make sure that the potential difference never exceeds ± 1 V.

Fig. 251: Connection of active-type analog sensors (voltage) to differential analog inputs (AI0 ...
AI3)

Table 271: Configurable measuring ranges
Voltage 0 V ... 10 V With differential inputs, 2

channels used

Voltage -10 V ... +10 V With differential inputs, 2
channels used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

To avoid error messages from unused analog input channels, configure them as "unused".

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1217

Use of analog inputs as digital inputs
Several (or all) analog inputs can be configured as digital inputs. The inputs are not galvanically
isolated against the other analog channels.

Fig. 252: Connection of digital sensors to the analog inputs (AI0 ... AI3)

Table 272: Configurable measuring ranges
Digital input 24 V 1 channel used

Effect of incorrect input ter-
minal connection

 Wrong or no signal detected,
no damage up to 35 V

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1218

Connection of analog output loads (Voltage)

Fig. 253: Connection of analog output loads (voltage) to the analog outputs (AO0 ... AO1)

Table 273: Configurable measuring ranges
Voltage -10 V ... +10 V Load ± 10 mA max. 1 channel used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

Unused analog outputs can be left open-circuited.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1219

Connection of analog output loads (Current)

Fig. 254: Connection of analog output loads (current) to the analog otputs (AO0 and AO1)

Table 274: Configurable measuring ranges
Current 0 mA ... 20 mA Load 0 W...500 W 1 channel used

Current 4 mA ... 20 mA Load 0 W...500 W 1 channel used

Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Ä Chapter 5.2.6.7.2.9 “Diagnosis” on page 1228

Unused analog outputs can be left open-circuited.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

Pin assignment

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1220

Interface Pin Signal Description
8 NC Not connected

Shield Cable shield Functional earth

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

Internal data exchange

Parameter Value
Digital inputs (bytes) 3

Digital outputs (bytes) 3

Analog inputs (words) 4

Analog outputs (words) 2

Counter input data (words) 4

Counter output data (words) 8

Addressing
The module has 2 rotary switches to set an explicit name to the PROFINET IO device before
commissioning. No engineering tool is needed in this case.
The device gets its name (including the fixed part of the device name) with the switch settings
(01h...FFh). This name can be used directly within the device configuration: “CI5xx-pn-yy”

"CI5xx-pn-yy” xx is the fixed part of the device name (e.g. CI501) and yy repre-
sents the position of the rotary switch (0..FFh). The rotary switch values must
be entered in hexadecimal format. For example, to set the name to “CI5xx-
pn-08”, set the upper rotary switch to “0” and the lower switch to “8”.

The module reads the position of the rotary switches only during power-up, i.e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI501-PNIO stores some PROFINET configuration parameters (I/O device identifier, I/O
device type and IP address configuration). No more configuration data is stored.
The analog/digital I/O channels are configured via software.
Ä Chapter 5.2.6.7.2.8 “Parameterization” on page 1222

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1221

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7000 WORD 7000

Parameter length Internal 25 BYTE 25

Error LED / Fail-
safe function see
table Error LED /
Failsafe function
Ä Table 275 “Err
or LED / Failsafe
function”
on page 1223

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Process cycle
time 2)

1 ms process
cycle time

1 BYTE 1 ms

2 ms process
cycle time

2

3 ms process
cycle time

3

4 ms process
cycle time

4

5 ms process
cycle time

5

6 ms process
cycle time

6

7 ms process
cycle time

7

8 ms process
cycle time

8

9 ms process
cycle time

9

10 ms process
cycle time

10

11 ms process
cycle time

11

12 ms process
cycle time

12

13 ms process
cycle time

13

14 ms process
cycle time

14

15 ms process
cycle time

15

16 ms process
cycle time

16

Check supply off
on

0
1

BYTE 1

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1222

Name Value Internal value Internal value,
type

Default

Input delay 8 ms 8 ms BYTE 8 ms

Fast counter 0
:

10 3)

0
:
10

BYTE 0

Detect short cir-
cuit at outputs

On 1 BYTE On

Behavior digital
outputs at comm.
error

Off 0 BYTE Off

Substitute value
digital outputs

0 0..255 BYTE 0

Overvoltage
behavior on
output

Off 0 BYTE Off

Behavior analog
outputs atcomm.
error

Off 0 BYTE Off

I/O-Bus reset Off 0 BYTE Off

On 1 BYTE Off

Remarks:

1) With a faulty ID, the modules reports a "parameter error" and does not perform
cyclic process data transmission.

2) As for device index C0 the parameter is no longer evaluated.
3) Counter operating modes, see description of the Fast counter Ä Chapter

5.2.4.3.2.9 “Fast counter” on page 606.

Table 275: Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On +Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameters Behaviour AO at comm. error and Behaviour DO at comm. error are only
analyzed if the Failsafe-mode is ON.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1223

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).
● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes

all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

Group parameters for the analog part

Name Value Internal value Internal value,
type

Default

Analog data
format

Standard
Reserved

0
255

BYTE 0

Behaviour AO at
comm. error *)

Off
Last value
Last value 5 s
Last value 10 s
Substitute value
Substitute value
5 s
Substitute value
10 s

0
1
6
11
2
7
12

BYTE 0

*) The parameter Behaviour AO at comm. error is only analyzed if the Failsafe-mode is ON.

IO-BUS reset
after PROFINET
reconnection

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1224

Channel parameters for the analog inputs (4x)

Name Value Internal value Internal value,
type

Default

Input 0, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 276 “Ch
annel configura-
tion”
on page 1225

Table Operating
modes of the
analog inputs
Ä Table 276 “Ch
annel configura-
tion”
on page 1225

BYTE 0

Input 0, Check
channel

Table Channel
montoring
Ä Table 277 “Ch
annel monitoring”
on page 1226

Table Channel
montoring
Ä Table 277 “Ch
annel monitoring”
on page 1226

BYTE 0

: : : : :

: : : : :

Input 3, Channel
configuration

Table Operating
modes of the
analog inputs
Ä Table 276 “Ch
annel configura-
tion”
on page 1225

Table Operating
modes of the
analog inputs
Ä Table 276 “Ch
annel configura-
tion”
on page 1225

BYTE 0

Input 3, Check
channel

Table Channel
montoring
Ä Table 277 “Ch
annel monitoring”
on page 1226

Table Channel
montoring
Ä Table 277 “Ch
annel monitoring”
on page 1226

BYTE 0

Table 276: Channel configuration
Internal value Operating modes of the analog inputs, individually configurable
0 (default) Not used

1 0 V ... 10 V

2 Digital input

3 0 mA ... 20 mA

4 4 mA ... 20 mA

5 -10 V ... +10 V

8 2-wire Pt100 -50 °C ... +400 °C

9 3-wire Pt100 -50 °C ... +400 °C *)

10 0 V ... 10 V (voltage diff.) *)

11 -10 V ... +10 V (voltage diff.) *)

14 2-wire Pt100 -50 °C ... +70 °C

15 3-wire Pt100 -50 °C ... +70 °C *)

16 2-wire Pt1000 -50 °C ... +400 °C

17 3-wire Pt1000 -50 °C ... +400 °C *)

18 2-wire Ni1000 -50 °C ... +150 °C

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1225

Internal value Operating modes of the analog inputs, individually configurable
19 3-wire Ni1000 -50 °C ... +150 °C *)

*) In the operating modes with 3-wire configuration or with differential inputs, two adjacent
analog inputs belong together (e.g. the channels 0 and 1). In these cases, both channels
are configured in the desired operating mode. The lower address must be the even address
(channel 0). The next higher address must be the odd address (channel 1). The converted
analog value is available at the higher address (channel 1).

Table 277: Channel monitoring
Internal Value Check Channel
0 (default) Plausibility, wire break, short circuit

3 Not used

Channel parameters for the analog outputs (2x)

Name Value Internal value Internal value,
type

Default

Output 0,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 1227

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 1227

BYTE 0

Output 0, Check
channel

Table Channel
monitoring
Ä Table 279 “Ch
annel monitoring”
on page 1227

Table Channel
monitoring
Ä Table 279 “Ch
annel monitoring”
on page 1227

BYTE 0

Output 0, Substi-
tute value

Table Substitute
value
Ä Table 280 “Su
bstitute value”
on page 1227

Table Substitute
value
Ä Table 280 “Su
bstitute value”
on page 1227

WORD 0

Output 1,
Channel configu-
ration

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 1227

Table Operating
modes of the
analog outputs
Ä Further infor-
mation
on page 1227

BYTE 0

Output 1, Check
channel

Table Channel
monitoring
Ä Table 279 “Ch
annel monitoring”
on page 1227

Table Channel
monitoring
Ä Table 279 “Ch
annel monitoring”
on page 1227

BYTE 0

Output 1, Substi-
tute value

Table Substitute
value
Ä Table 280 “Su
bstitute value”
on page 1227

Table Substitute
value
Ä Table 280 “Su
bstitute value”
on page 1227

WORD 0

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1226

Table 278: Channel configuration
Internal value Operating modes of the analog outputs, individually configu-

rable
0 (default) Not used

128 -10 V ... +10 V

129 0 mA ... 20 mA

130 4 mA ... 20 mA

Table 279: Channel monitoring
Internal value Check channel
0 Plausibility, wire break, short circuit

3 None

Table 280: Substitute value
Intended behavior of output
channel when the control
system stops

Required setting of the
module parameter "Behav-
iour of outputs in case of a
communication error"

Required setting of the
channel parameter "Substi-
tute value"

Output OFF Off 0

Last value infinite Last value 0

Last value for 5 s and then
turn off

Last value 5 sec 0

Last value for 10 s and then
turn off

Last value 10 sec 0

Substitute value infinite Substitute value Depending on configuration

Substitute value for 5 s and
then turn off

Substitute value 5 sec Depending on configuration

Substitute value for 10 s and
then turn off

Substitute value 10 sec Depending on configuration

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1227

Name Value Internal value Internal value,
type

Default

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 255 00h ... FFh BYTE 0
0x0000

Detect voltage
overflow at out-
puts 2)

Off
On

0
1

BYTE On
0x01

1) The parameters Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.
2) The state "externally voltage detected" appears, if the output of a channel DC0 ... DC7
should be switched on while an externally voltage is connected Ä Chapter 5.2.6.7.2.4 “Con-
nections” on page 1205. In this case the start up is disabled, as long as the externally
voltage is connected. The monitoring of this state and the resulting diagnosis message can be
disabled by setting the parameters to "OFF".

Diagnosis
Table 281: Structure of the diagnosis block via PNIO_DEV_ALARM function block
Byte Number Description Possible Values
1 Diagnosis Byte, slot number 31 = CI501-PNIO (e. g. error at inte-

grated 8 DI / 8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1228

Byte Number Description Possible Values
4 Diagnosis Byte, error code According to the I/O bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1229

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 No process voltage
UP

Check
process
supply
voltage

3 - 31/1...10 31 31 17 No communication
with I/O module

Replace
I/O
module

3 - 1...10 31 31 32 Wrong I/O module
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1...10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1...10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1...10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1...10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1230

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1...10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1...10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1...10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 - 31 31 31 46 Voltage feedback
on activated digital
outputs DO0...DO7
on UP3 4)

Check
terminals

4 - 31/1...10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

4 - 31 31 31 45 No process voltage
UP3

Check
process
supply
voltage

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1231

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 10 Voltage overflow
on outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 0...7 46 Externally voltage
detected at digital
output DO0...DO7
6)

Check
terminals

4 - 31 2 0...7 47 Short circuit at dig-
ital output 7)

Check
terminals

Channel error analog

4 - 31 1 0...3 48 Analog value over-
flow or broken wire
at an analog input

Check
value or
check
terminals

4 - 31 1 0...3 7 Analog value
underflow at an
analog input

Check
value

4 - 31 1 0...3 47 Short circuit at an
analog input

Check
terminals

4 - 31 3 0...1 4 Analog value over-
flow at an analog
output

Check
output
value

4 - 31 3 0...1 7 Analog value
underflow at an
analog output

Check
output
value

Remarks:

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1232

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
communication module;14 = I/O bus; 31 = Module itself
The identifier is not contained in the CI501-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself; 1 ... 10 =
Expansion module

3) With "Module" the following allocation applies:
31 = Module itself
Module type (1 = AI, 2 = DO, 3 = AO)

4) This message appears, if externally voltages at one or more terminals
DO0 ... DO7 cause that other digital outputs are supplied through that
voltage Ä Chapter 5.2.6.7.2.4 “Connections” on page 1205. All outputs of
the apply digital output groups will be turned off for 5 seconds. The diagnosis
message appears for the whole output group.

5) The voltage on digital outputs DO0 ... DO7 has overrun the process supply
voltage UP3 Ä Chapter 5.2.6.7.2.4 “Connections” on page 1205. Diagnosis
message appears for the whole module.

6) This message appears, if the output of a channel DO0 ... DO7 should be
switched on while an externally voltage is connected. In this case the start
up is disabled, as long as the externally voltage is connected. Otherwise this
could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for
100 ms. Then a new start up will be executed. This diagnosis message
appears per channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any
hot swap operations (also not on any other terminal units (slots)) as modules
may be damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 27 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 282: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with I/O Con-
troller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1233

LED Color OFF ON Flashing
Red --- --- Device is not

configured

STA2 ETH
(System LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

S-ERR Red No error Internal error --

I/O-Bus Green No expansion
modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 283: States of the 27 process LEDs
LED Color OFF ON Flashing
AI0 ... AI3 Yellow Input is OFF Input is ON

(brightness
depends on the
value of the
analog signal)

--

AO0 ... AO1 Yellow Output is OFF Output is ON
(brightness
depends on the
value of the
analog signal)

--

DI0 ... DI7 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO0 ... DO7 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1234

Measuring ranges
Input ranges voltage, current and digital input

Range 0 V ... +10
V

-10 V ...
+10 V

0 mA ...
20 mA

4 mA ... 20
mA

Digital
input

Digital value

 Decimal Hex.
Overflow > 11.7589 > 11.7589 > 23.5178 > 22.8142 32767 7FFF

Measured
value too
high

11.7589
:
10.0004

11.7589
:
10.0004

23.5178
:
20.0007

22.8142
:
20.0006

 32511
:
27649

7EFF
:
6C01

Normal
range
Normal
range or
measured
value too
low

10.0000
:
0.0004

10.0000
:
0.0004

20.0000
:
0.0007

20.0000
:
4.0006

:
:
On

27648
:
1

6C00
:
0001

0.0000 0.0000 0 4 Off 0 0000

-0.0004
-1.7593

-0.0004
:
:
-10,0000

 3.9994
1.1858

 -1
-4864
:
-27648

FFFF
ED00
:
9400

Measured
value too
low

 -10.0004
:
-11.7589

 -27649
:
-32512

93FF
:
8100

Underflow < 1.7593 < -11.7589 < 0.0000 < 1.1858 -32768 8000

The represented resolution corresponds to 16 bits.

Input ranges resistance temperature detector

Range Pt100 / Pt1000
-50 ... +70 °C

Pt100 /
Pt1000
-50 ... +400
°C

Ni1000
-50 ... +150
°C

Digital value
Decimal Hex.

Overflow > +80.0 °C > +450.0 °C > +160.0 °C 32767 7FFF

Measured
value too
high

+80.0 °C +450.0 °C
:
+400.1 °C

 4500
:
4001

1194
:
0FA1

 +160.0 °C
:
+150.1 °C

1600
:
1501

0640
:
05DD

Normal
range

 +400.0 °C
:
:
:
+ 0.1 °C

+150.0 °C
:
:
+0.1 °C

800
:
701

0320
:
02BD

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1235

Range Pt100 / Pt1000
-50 ... +70 °C

Pt100 /
Pt1000
-50 ... +400
°C

Ni1000
-50 ... +150
°C

Digital value
Decimal Hex.

 0.0 °C 0.0 °C 4000
1500
700
:
1

0FA0
05DC
02BC
:
0001

 -0.1 °C
:
-50.0 °C

-0.1 °C
:
-50.0 °C

0 0000

Measured
value too
low

< -60.0 °C -50.1 °C
:
-60.0 °C

-50.1 °C
:
-60.0 °C

-1
:
-500

FFFF
:
FE0C

Underflow < -60.0 °C < -60.0 °C < -60.0 °C -501
:
-600

FE0B
:
FDA8

Output ranges voltage and current

Range -10...+10 V 0...20 mA 4...20 mA Digital value
 Decimal Hex.
Overflow > 11.7589 V > 23.5178

mA
> 22.8142
mA

> 32511 > 7EFF

Measured
value too
high

11.7589 V
:
10.0004 V

23.5178 mA
:
20.0007 mA

22.8142 mA
:
20.0006 mA

32511
:
27649

7EFF
:
6C01

Normal
range

10.0000 V
:
0.0004 V

20.0000 mA
:
0.0007 mA

20.0000 mA
:
4.0006 mA

27648
:
1

6C00
:
0001

0.0000 V 0.0000 mA 4.0000 mA 0 0000

-0.0004 V
:
-10.0000 V

0 mA
:
0 mA

3.9994 mA
0 mA
0 mA

-1
-6912
-27648

FFFF
E500
9400

Measured
value too low

-10.0004 V
:
-11.7589 V

0 mA
:
0 mA

0 mA
:
0 mA

-27649
:
-32512

93FF
:
8100

Underflow < -11.7589 V 0 mA 0 mA < -32512 < 8100

The represented resolution corresponds to 16 bits.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1236

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.2 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of analog inputs 4

Number of analog outputs 2

Input data length 19 bytes

Output data length 23 bytes

Reference potential for all digital inputs and
outputs

Negative terminal of the supply voltage, signal
name ZP

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnose See Diagnosis and Displays Ä Chapter
5.2.6.7.2.9 “Diagnosis” on page 1228

Operation and error displays 32 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at +40 °C per group)

Extended ambient temperature (XC version) >+60 °C on request

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1237

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1238

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (negative terminal of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 0-Signal -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 1-Signal +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 ... DO7 Terminals 3.0 ... 3.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative terminal of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive terminal of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1239

Parameter Value
 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the analog inputs

Parameter Value
Number of channels per module 4

Distribution of channels into groups 1 group with 4 channels

Connection if channels AI0+ ... AI3+ Terminals 1.0 ... 1.3

Reference potential for AI0+ ... AI3+ Terminal 1.4 (AI-) for voltage and RTD meas-
urement
Terminal 1.9, 2.9 and 3.9 for current measure-
ment

Input type

 Unipolar Voltage 0 V ... 10 V, current or Pt100/Pt1000/
Ni1000

 Bipolar Voltage -10 V ... +10 V

Galvanic isolation Against Ethernet network

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1240

Parameter Value
Configurability 0 V ... 10 V, -10 V ... +10 V, 0 mA ... 20 mA,

4 mA ... 20 mA Pt100/1000, Ni1000 (each input
can be configured individually)

Channel input resistance Voltage: > 100 kW

Current: ca. 330 W

Time constant of the input filter Voltage: 100 µs
Current: 100 µs

Indication of the input signals 1 LED per channel (brightness depends on the
value of the analog signal)

Conversion cycle 1 ms (for 4 inputs + 2 outputs); with RTDs Pt/
Ni... 1 s

Resolution Range 0 V ... 10 V: 12 bits
Range -10 V ... +10 V: 12 bits including sign
Range 0 mA ... 20 mA: 12 bits
Range 4 mA ... 20 mA: 12 bits
Range RTD (Pt100, PT1000, Ni1000): +0.1 °C

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Unused inputs Are configured as "unused" (default value)

Overvoltage protection Yes

Technical data of the analog inputs, if used as digital inputs

Parameter Value
Number of channels per module Max. 4

Distribution of channels into groups 1 group of 4 channels

Connections of the channels AI0+ ... AI3+ Terminals 1.0 ... 1.3

Reference potential for the inputs Terminals 1.9, 2.9 and 3.9 (ZP)

Indication of the input signals 1 LED per channel

Input signal voltage 24 V DC

 Signal 0 -30 V ... +5 V

 Undefined signal +5 V ... +13 V

 Signal 1 +13 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 7 mA

 Input voltage +5 V Typ. 1.4 mA

 Input voltage +15 V Typ. 3.7 mA

 Input voltage +30 V < 9 mA

Input resistance Ca. 3.5 kW

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1241

Technical data of the analog outputs

Parameter Value
Number of channels per module 2

Distribution of channels into groups 1 group for 2 channels

Connection of the channels AO0+ ... AO1+ Terminals 1.5 ... 1.6

Reference potential for AO0+ ... AO1+ Terminal 1.7 (AO-) for voltage output terminal
1.9, 2.9 and 3.9 for current output

Output type

 Unipolar Current

 Bipolar Voltage

Galvanic isolation Against internal supply and other modules

Configurability -10 V ... +10 V, 0 mA ... 20 mA, 4 mA ... 20 mA
(each output can be configured individually)

Output resistance (load), as current output 0 W ... 500 W

Output loadability, as voltage output ± 10 mA max.

Indication of the output signals 1 LED per channel (brightness depends on the
value of the analog signal)

Resolution 12 bits including sign

Settling time for full range change (resistive
load, output signal within specified tolerance)

Typ. 5 ms

Conversion error of the analog values
caused by non-linearity, adjustment error
at factory and resolution within the normal
range

Typ. 0.5 %, max. 1 %

Relationship between input signal and hex
code

Table Output ranges voltage and current
Ä Chapter 5.2.6.7.2.11.3 “Output ranges
voltage and current” on page 1236

Unused outputs Are configured as "unused" (default value) and
can be left open-circuited

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI0), 2.1 (DI1)

Used outputs Terminal 3.0 (DO0)

Counting frequency Depending on operation mode:
Mode 1 - 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1242

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Part no. Description Product life cycle phase *)
1SAP 220 600 R0001 CI501-PNIO (V3), PROFINET commu-

nication interface module, 8 DI, 8 DO,
4 AI and 2 AO

Active

1SAP 420 600 R0001 CI501-PNIO-XC (V3), PROFINET
communication interface module, 8 DI,
8 DO, 4 AI and 2 AO, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1243

5.2.6.7.3 CI502-PNIO
Features

● 8 digital inputs 24 V DC
● 8 digital outputs 24 V DC, 0.5 A max.
● 8 configurable digital inputs/outputs 24 V DC, 0.5 A max.
● Module-wise galvanically isolated
● Fast counter
● XC version for usage in extreme ambient conditions available

1 I/O bus
2 Allocation between terminal number and signal name
3 8 yellow LEDs to display the signal states of the digital configurable inputs/outputs

(DC0 ... DC7)
4 8 yellow LEDs to display the signal states of the digital inputs (DI8 ... DI15)
5 8 yellow LEDs to display the signal states of the digital outputs (DO8 ... DO15)
6 2 green LEDs to display the process supply voltage UP and UP3
7 3 red LEDs to display errors (CH-ERR1, CH-ERR2, CH-ERR3)
8 5 system LEDs: PWR/RUN, STA1 ETH, STA2 ETH, S-ERR, I/O-Bus
9 Label
10 2 rotary switches for setting the I/O device identifier
11 Ethernet interfaces (ETH1, ETH2) on the terminal unit
12 Terminal unit
13 DIN rail

Sign for XC version

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1244

Intended purpose
The PROFINET communication interface module CI502-PNIO is used as communication inter-
face module in PROFINET networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit.
For usage in extreme ambient conditions (e.g. wider temperature and humidity range), a special
XC version of the device is available.

Functionality
The CI502 communication interface module contains 24 I/O channels with the following proper-
ties:
● 8 digital configurable inputs/outputs
● 8 digital inputs: 24 V DC
● 8 digital outputs: 24 V DC, 0.5 A max.
The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels. The configuration of the analog inputs/outputs is performed
by software.

Parameter Value
Interface Ethernet

Protocol PROFINET IO RT

Power supply From the process supply voltage UP

Supply of the electronic circuitry of the I/O
expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the IO device identifier for configura-
tion purposes (00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via soft-
ware)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

Effect of incorrect input terminal connection Wrong or no signal detected, no damage up to
35 V

Required terminal unit TU507-ETH or TU508-ETH Ä Chapter
5.2.7.2 “TU507-ETH and TU508-ETH for
Ethernet communication interface modules”
on page 1270

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1245

Connections
General

The Ethernet communication interface module CI502-PNIO is plugged on the I/O terminal
unit TU507-ETH Ä Chapter 5.2.7.2 “TU507-ETH and TU508-ETH for Ethernet communication
interface modules” on page 1270 or TU508-ETH Ä Chapter 5.2.7.2 “TU507-ETH and TU508-
ETH for Ethernet communication interface modules” on page 1270. Properly seat the module
and press until it locks in place. The terminal unit is mounted on a DIN rail or with 2 screws
plus the additional accessory for wall mounting Ä Chapter 5.2.8.2.5 “TA526 - Wall mounting
accessory” on page 1324.
The connection of the I/O channels is carried out using the 30 terminals of the I/O terminal unit.
I/O modules can be replaced without re-wiring the terminal units.

For a detailed description of the mounting, disassembly and connection of the
module, please refer to the installation instructions.

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V.
The assignment of the other terminals:

With a separate UP3 power supply, the digital outputs can be switched off
externally. This way, an emergency-off functionality can be realized.

Do not connect any voltages externally to digital outputs!

This ist not intended usage.

Reason: Externally voltages at one or more terminals DC0 ... DC7 or
DO0 ... DO7 may cause that other digital outputs are supplied through that
voltage instead of voltage UP3 (reverse voltage).

This is also possible, if DC channels are used as inputs. For this, the source for
the input signals should be the impressed UP3 of the device.

This limitation does not apply for the input channels DI0 ... DI7.

CAUTION!
Risk of malfunction by unintended usage!
If the function cut-off of the digital outputs is to be used by deactivation of the
supply voltage UP3, be sure that no external voltage is conncted at the outputs
DO0 ... DO7 and DC0 ... DC7.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1246

https://search.abb.com/library/Download.aspx?DocumentID=3ADR024117M02xx&LanguageCode=en&DocumentPartId=&Action=Launch

Table 284: Assignment of the other terminals
Terminal Signal Description
1.0 DC0 Signal of the configurable digital input/output

DC0

1.1 DC1 Signal of the configurable digital input/output
DC1

1.2 DC2 Signal of the configurable digital input/output
DC2

1.3 DC3 Signal of the configurable digital input/output
DC3

1.4 DC4 Signal of the configurable digital input/output
DC4

1.5 DC5 Signal of the configurable digital input/output
DC5

1.6 DC6 Signal of the configurable digital input/output
DC6

1.7 DC7 Signal of the configurable digital input/output
DC7

1.8 UP Process voltage UP (24 V DC)

1.9 ZP Process voltage ZP (0 V DC)

2.0 DI8 Signal of the digital input DI8

2.1 DI9 Signal of the digital input DI9

2.2 DI10 Signal of the digital input DI10

2.3 DI11 Signal of the digital input DI11

2.4 DI12 Signal of the digital input DI12

2.5 DI13 Signal of the digital input DI13

2.6 DI14 Signal of the digital input DI14

2.7 DI15 Signal of the digital input DI15

2.8 UP Process voltage UP (24 V DC)

2.9 ZP Process voltage ZP (0 V DC)

3.0 DO8 Signal of the digital output DO8

3.1 DO9 Signal of the digital output DO9

3.2 DO10 Signal of the digital output DO10

3.3 DO11 Signal of the digital output DO11

3.4 DO12 Signal of the digital output DO12

3.5 DO13 Signal of the digital output DO13

3.6 DO14 Signal of the digital output DO14

3.7 DO15 Signal of the digital output DO15

3.8 UP3 Process voltage UP3 (24 V DC)

3.9 ZP Process voltage ZP (0 V DC)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1247

WARNING!
Removal/Insertion under power
The devices are not designed for removal or insertion under power. Because of
unforeseeable consequences, it is not allowed to plug or unplug devices with
the power being ON.
Make sure that all voltage sources (supply and process voltage) are switched
off before you
– connect or disconnect any signal or terminal block
– remove, mount or replace a module.
Disconnecting any powered devices while energized in a hazardous location
could result in an electric arc, which could create a flammable ignition resulting
in fire or explosion.
Make sure that power is removed and that the area has been thoroughly
checked to ensure that flammable materials are not present prior to proceeding.
The devices must not be opened when in operation. The same applies to the
network interfaces.

NOTICE!
Risk of damaging the PLC modules!
Overvoltages and short circuits might damage the PLC modules.
– Make sure that all voltage sources (supply voltage and process supply

voltage) are switched off before you begin with operations on the system.
– Never connect any voltages or signals to reserved terminals (marked with

---). Reserved terminals may carry internal voltages.

Fig. 255: Connection of the Ethernet communication interface module CI502-PNIO

Ä Chapter 6.8.4.2 “PROFINET communication interface module” on page 4596

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1248

Connection of the Digital inputs

Fig. 256: Connection of the digital inputs (DI8 ... DI15)

The meaning of the LEDs is described in 'Displays' Ä Chapter 5.2.6.7.3.10 “State LEDs”
on page 1261.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1249

Connection of the Digital outputs

Fig. 257: Connection of the digital outputs (DO8 ... DO15)

The meaning of the LEDs is described in 'Displays' Ä Chapter 5.2.6.7.3.10 “State LEDs”
on page 1261.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1250

Connection of the configurable digital inputs/outputs
The following figure shows the connection of the configurable digital input/output DC0 and
DC1. DC0 is connected as an input and DC1 is connected as an output. Proceed with the
configurable digital inputs/outputs DC2 ... DC7 in the same way.

CAUTION!
If a DC channel is used as input, the source for the input signals should
be the impressed UP3 of the device Ä Chapter 5.2.6.7.3.4 “Connections”
on page 1246.

1.0
DC0
1.1
DC1
1.2
DC2
1.3
DC3
1.4
DC4
1.5
DC5
1.6
DC6
1.7
DC7
1.8
UP
1.9
ZP

-
+

24 V DC

2.4

DI14

2.0
DI8
2.1
DI9
2.2
DI10
2.3
DI11

DI12
2.5
DI13
2.6

2.7
DI15
2.8
UP
2.9
ZP

3.0
DO8
3.1
DO9
3.2
DO10
3.3
DO11
3.4
DO12
3.5
DO13
3.6
DO14
3.7
DO15
3.8
UP3
3.9
ZP

Fig. 258: Connection of the configurable digital inputs/outputs (DC0 ... DC7)(DC0 as input, DC1
as output)

The meaning of the LEDs is described in 'Displays' Ä Chapter 5.2.6.7.3.10 “State LEDs”
on page 1261.

Assignment of the Ethernet ports
The terminal unit for the communication interface module provides two Ethernet interfaces with
the following pin assignment:

Interface Pin Signal Description
1 TxD+ Transmit data +

2 TxD- Transmit data -

3 RxD+ Receive data +

4 NC Not connected

5 NC Not connected

6 RxD- Receive data -

7 NC Not connected

8 NC Not connected

Shield Cable shield Functional earth

Pin assignment

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1251

In corrosive environment, please protect unused connectors using the TA535
accessory.

Not supplied with this device.

Ä Further information about wiring and cable types

Internal data exchange

Parameter Value
Digital inputs (bytes) 5

Digital outputs (bytes) 5

Counter input data (words) 4

Counter output data (words) 8

Addressing
The module has 2 rotary switches to set an explicit name to the PROFINET IO device before
commissioning. No engineering tool is needed in this case.
The device gets its name (including the fixed part of the device name) with the switch settings
(01h...FFh). This name can be used directly within the device configuration: “CI5xx-pn-yy”

"CI5xx-pn-yy” xx is the fixed part of the device name (e.g. CI501) and yy repre-
sents the position of the rotary switch (0..FFh). The rotary switch values must
be entered in hexadecimal format. For example, to set the name to “CI5xx-
pn-08”, set the upper rotary switch to “0” and the lower switch to “8”.

The module reads the position of the rotary switches only during power-up, i.e.
changes of the switch position during operation will have no effect until the next
module initialization.

I/O configuration
The CI502-PNIO stores some PROFINET configuration parameters (I/O device identifier, I/O
device type and IP address configuration). No more configuration data is stored.
The digital I/O channels are configured via software.
Details about configuration are described in 'Parameterization' Ä Chapter 5.2.6.7.3.8 “Parame-
terization” on page 1253.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1252

Parameterization
Parameters of the module

Name Value Internal value Internal value,
type

Default

Module ID 1) Internal 7005 WORD 7005

Parameter length Internal 8 BYTE 8

Error LED / Fail-
safe function
(Table Error
LED / Failsafe
function Ä Fur-
ther information
on page 1253)

On 0 BYTE 0

Off by E4 1

Off by E3 3

On + failsafe 16

Off by E4 + fail-
safe

17

Off by E3 + fail-
safe

19

Process cycle
time

1 ms process
cycle time

1 BYTE 1 ms

2 ms process
cycle time

2

3 ms process
cycle time

3

4 ms process
cycle time

4

5 ms process
cycle time

5

6 ms process
cycle time

6

7 ms process
cycle time

7

8 ms process
cycle time

8

9 ms process
cycle time

9

10 ms process
cycle time

10

11 ms process
cycle time

11

12 ms process
cycle time

12

13 ms process
cycle time

13

14 ms process
cycle time

14

15 ms process
cycle time

15

 16 ms process
cycle time

16

Check supply Off
On

0
1

BYTE 1

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1253

Name Value Internal value Internal value,
type

Default

Fast counter 0
:

10 2)

0
:
10

BYTE 0

I/O-Bus reset Off 0 BYTE Off

On 1 BYTE Off
1) With a faulty ID, the module reports a "parameter error" and does not perform cyclic process
data transmission.
2) Counter operating modes Ä Chapter 5.2.4.3.2.9 “Fast counter” on page 606

Table 285: Table Error LED / Failsafe function
Setting Description
On Error LED (S-ERR) lights up at errors of all

error classes, Failsafe-mode off

Off by E4 Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode off

Off by E3 Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode off

On + Failsafe Error LED (S-ERR) lights up at errors of all
error classes, Failsafe-mode on *)

Off by E4 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1, E2 and E3, Failsafe-mode on *)

Off by E3 + Failsafe Error LED (S-ERR) lights up at errors of error
classes E1 and E2, Failsafe-mode on *)

*) The parameter Behaviour DO at comm. error is only analyzed if the Failsafe-mode is ON.

IO-BUS reset after PROFINET reconnection controls the behavior of PROFINET CI modules in
relation to connected I/O modules (both safety and non-safety I/O modules).

IO-BUS reset
after PROFINET
reconnection

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1254

● IO-BUS reset after PROFINET reconnection = “On” resets and, thus, re-parameterizes
all attached I/O modules. All internal I/O modules states are reset, including the related
diagnosis information.
Note that if the parameter is set to “On” then:
– The bumpless re-start of non-safety I/O modules will not be supported. It means, for

example, that non-safety output channels will go from fail-safe values to “0” values
during the re-connection and re-parameterization time and after that go to new output
values.

– Safety I/O modules will be re-parameterized and re-started as newly started modules,
which may not require their PROFIsafe reintegration, depending on safety CPU state, in
the safety application.

● IO-BUS reset after PROFINET reconnection = “Off” will not reset all attached I/O modules. It
will re-parameterize I/O modules only if parameter change is detected during the reconnec-
tion. All internal I/O modules states are not reset, including the related diagnosis informa-
tion.
Note that if the parameter is set to “Off” then:
– The bumpless re-start of non-safety I/O modules is supported (if no parameters are

changed). It means, for example, that non-safety output channels will not go from fail-
safe values to “0” values during the re-connection and re-parameterization time, but
directly from fail-safe values to new output values.

– Safety I/O modules will not be re-parameterized (if no parameters are changed). Thus,
they may continue their operation, which may require their PROFIsafe reintegration in
the safety application on the safety CPU, e.g., if PROFIsafe watchdog time for this
safety I/O module has expired. Any reintegration of such safety I/O modules will be
not only application specific but also PROFIsafe specific and depend on the safety I/O
handling in the safety application.

Group parameters for the digital part

Name Value Internal value Internal value,
type

Default

Input delay 0.1 ms
1 ms
8 ms
32 ms

0
1
2
3

BYTE 0.1 ms
0x00

Detect short cir-
cuit at outputs

Off
On

0
1

BYTE On
0x01

Behaviour DO at
comm. error 1)

Off
Last value
Last value 5 sec
Last value 10 sec
Substitute value
Substitute value
5 sec
Substitute value
10 sec

0
1
6
11
2
7
12

BYTE Off
0x00

Substitute value
at output

0 ... 65535 0000h ... FFFFh WORD 0
0x0000

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1255

Name Value Internal value Internal value,
type

Default

Preventive
voltage feedback
monitoring for
DC0..DC7 2)

Off
On

0
1

BYTE Off
0x00

Detect voltage
overflow at out-
puts 3)

Off
On

0
1

BYTE Off
0x00

Remarks:

1) The parameter Behaviour DO at comm. error is apply to DC and DO channels
and only analyzed if the Failsafe-mode is ON.

2) The state "externally voltage detected" appears, if the output of a channel
DC0 ... DC7 should be switched on while an externally voltage is connected. In
this case the start up is disabled, as long as the externally voltage is connected.
The monitoring of this state and the resulting diagnosis message can be disabled
by setting the parameters to "OFF".

3) The error state "voltage overflow at outputs" appears, if externally voltage at dig-
ital outputs DC0 ... DC7 and accordingly DO0 ... DO7 has exceeded the process
supply voltage UP3 Ä Chapter 5.2.6.7.3.4 “Connections” on page 1246 (see
description in section). The according diagnosis message "Voltage overflow on
outputs " can be disabled by setting the parameters on "OFF". This parameter
should only be disabled in exceptional cases for voltage overflow may produce
reverse voltage.

Diagnosis
Structure of the Diagnosis Block via function block PNIO_DEV_ALARM.

Byte Number Description Possible Values
1 Diagnosis Byte, slot

number
31 = CI502-PNIO (e. g. error at integrated
8 DI / 8 DO)
1 = 1st connected S500 I/O module
...
10 = 10th connected S500 I/O module

2 Diagnosis Byte, module
number

According to the I/O bus specification
passed on by modules to the fieldbus
master

3 Diagnosis Byte, channel According to the I/O bus specification
passed on by modules to the fieldbus
master

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1256

Byte Number Description Possible Values
4 Diagnosis Byte, error code According to the I/O bus specification

Bit 7 and bit 6, coded error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to bit 5, coded error description

5 Diagnosis Byte, flags According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

In cases of short circuit or overload, the digital outputs are turned off. The modules performs
reactivation automatically. Thus an acknowledgement of the errors is not necessary. The error
message is stored via the LED.

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

Module errors

3 - 31 31 31 19 Checksum error in
the I/O module

Replace
I/O
module3 - 31 31 31 3 Timeout in the I/O

module

3 - 31 31 31 40 Different hard-/firm-
ware versions in
the module

3 - 31 31 31 43 Internal error in the
module

3 - 31 31 31 36 Internal data
exchange failure

3 - 31 31 31 9 Overflow diagnosis
buffer

Restart

3 - 31 31 31 26 Parameter error Check
master

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1257

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

3 - 31 31 31 11 Process voltage UP
too low

Check
process
supply
voltage

3 - 31 31 31 45 Process voltage UP
gone

Check
process
supply
voltage

3 - 31/1 ... 10 31 31 17 No communication
with I/O device

Replace
I/O
module

3 - 1 ... 10 31 31 32 Wrong I/O device
type on socket

Replace
I/O
module /
Check
configu-
ration

4 - 1 ... 10 31 31 31 At least one
module does not
support failsafe
function

Check
modules
and
parame-
terization

4 - 1 ... 10 31 5 8 I/O module
removed from hot
swap terminal unit
or defective module
on hot swap ter-
minal unit 9)

Plug I/O
module,
replace
I/O
module

4 - 1 ... 10 31 5 28 Wrong I/O module
plugged on hot
swap terminal unit
9)

Remove
wrong
I/O
module
and plug
pro-
jected
I/O
module

4 - 1 ... 10 31 5 42 No communication
with I/O module on
hot swap terminal
unit 9)

Replace
I/O
module

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1258

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 1 ... 10 31 5 54 I/O module does
not support hot
swap 8) 9)

Power
off
system
and
replace
I/O
module

4 - 1 ... 10 31 6 8 Hot swap terminal
unit configured but
not found

Replace
terminal
unit by
hot swap
terminal
unit

4 - 1 ... 10 31 6 42 No communication
with hot swap ter-
minal unit 9)

Restart,
if error
persists
replace
terminal
unit

4 1...6 255 2 0 45 The connected
Communication
Module has no con-
nection to the net-
work

Check
cabeling

4 - 31 31 31 45 Process voltage
UP3 too low

Check
process
voltage

4 - 31 31 31 46 Reverse voltage
from digital outputs
DO0..DO7 to UP3
4)

Check
terminals

4 - 31/1 ... 10 31 31 34 No response during
initialization of the
I/O module

Replace
I/O
module

4 - 31 31 31 11 Process voltage
UP3 too low

Check
process
supply
voltage

4 - 31 31 31 45 Process voltage
UP3 gone

Check
process
supply
voltage

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1259

E1 ... E4 d1 d2 d3 d4 Identi-
fier
000 ... 063

AC500-
Display

<− Display in

Class Comp Dev Mod Ch Err PS501
PLC
Browser

Byte 4
Bit
6 ... 7

- Byte 1 Byte 2 Byte 3 Byte 4
Bit
0 ... 5

PNIO
diag-
nosis
block

Class Inter-
face

Device Module Channel Error-
Identi-
fier

Error message Remedy

 1) 2) 3)

4 - 31 31 31 10 Voltage overflow
at outputs (above
UP3 level) 5)

Check
termi-
nals/
check
process
supply
voltage

Channel error digital

4 - 31 2 8 ... 15 46 Externally voltage
detected at digital
output DO0 ... DO7
6)

Check
terminals

4 - 31 4 0 ... 7 46 Externally voltage
detected at digital
output DC0 ... DC7
6)

Check
terminals

4 - 31 4 0 ... 7 47 Short circuit at
digital output
DC0 ... DC77)

Check
terminals

4 - 31 2 8 ... 15 47 Short circuit at
digital output
DO0 ... DO77)

Check
terminals

Remarks:

1) In AC500 the following interface identifier applies:
"-" = Diagnosis via bus-specific function blocks; 0 ... 4 or 10 = Position of the
Communication Module;14 = I/O-Bus; 31 = Module itself
The identifier is not contained in the CI502-PNIO diagnosis block.

2) With "Device" the following allocation applies: 31 = Module itself, 1 ... 10 =
Expansion module

3) With "Module" the following allocation applies dependent of the master:
Module error: 31 = Module itself
Channel error: Module type (1 = AI, 2 = DO, 3 = AO)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1260

4) This message appears, if externally voltages at one or more terminals
DC0 ... DC7 oder DO0 ... DO7 cause that other digital outputs are sup-
plied through that voltage (voltage feedback, see description in 'Connections'
Ä Chapter 5.2.6.7.3.4 “Connections” on page 1246. All outputs of the apply
digital output groups will be turned off for 5 seconds. The diagnosis message
appears for the whole output group.

5) The voltage at digital outputs DC0 ... DC7 and accordingly DO0 ... DO7 has
exceeded the process supply voltage UP3 Ä Chapter 5.2.6.7.3.4 “Connections”
on page 1246. Diagnosis message appears for the whole module.

6) This message appears, if the output of a channel DC0 ... DC7 or DO0 ... DO7
should be switched on while an externally voltage is connected. In this case the
start up is disabled, as long as the externally voltage is connected. Otherwise
this could produce reverse voltage from this output to other digital outputs. This
diagnosis message appears per channel.

7) Short circuit: After a detected short circuit, the output is deactivated for 2000
ms. Then a new start up will be executed. This diagnosis message appears per
channel.

8) In case of an I/O module doesn’t support hot swapping, do not perform any hot
swap operations (also not on any other terminal units (slots)) as modules may be
damaged or I/O bus communication may be disturbed.

9) Diagnosis for hot swap available as of version index F0.

State LEDs
The LEDs are located at the front of module. There are 2 different groups:
● The 5 system LEDs (PWR, STA1 ETH, STA2 ETH, S-ERR and I/O-Bus) show the operation

state of the module and display possible errors.
● The 29 process LEDs (UP, UP3, inputs, outputs, CH-ERR1 to CH-ERR3) show the process

supply voltage and the states of the inputs and outputs and display possible errors.

Table 286: States of the 5 system LEDs
LED Color OFF ON Flashing
PWR/RUN Green Process supply

voltage missing
Internal supply
voltage OK,
module ready for
communication
with IO Controller

Start-up / pre-
paring communi-
cation

Yellow --- --- ---

STA1 ETH
(System-LED
"BF")

Green --- Device config-
ured, cyclic data
exchange run-
ning

Red --- --- Device is not
configured

STA2 ETH
(System LED
"SF")

Green --- --- Got identification
request from I/O
controller

Red No system error System error
(collective error)

S-ERR Red No error Internal error --

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1261

LED Color OFF ON Flashing
I/O-Bus Green No expansion

modules con-
nected or com-
munication error

Expansion
modules con-
nected and
operational

ETH1 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

ETH2 Green No connection at
Ethernet inter-
face

Connected to
Ethernet inter-
face

Yellow --- Device is trans-
mitting telegrams

Device is trans-
mitting telegrams

Table 287: States of the 29 process LEDs
LED Color OFF ON Flashing
DC0 ... DC7 Yellow Input/Output is

OFF
Input/Output is
ON

--

DI8 ... DI15 Yellow Input is OFF Input is ON (the
input voltage is
even displayed if
the supply
voltage is OFF)

--

DO8 ... DO15 Yellow Output is OFF Output is ON --

UP Green Process supply
voltage missing

Process supply
voltage OK and
initialization fin-
ished

--

UP3 Green Process supply
voltage missing

Process supply
voltage OK

--

CH-ERR1 to CH-
ERR3

Red No error or
process supply
voltage missing

Internal error Error on one
channel of the
corresponding
group

Technical data
Technical data of the module

The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1262

Parameter Value
Process supply voltages UP/UP3

 Rated value 24 V DC (for inputs and outputs)

 Max. load for the terminals 10 A

 Protection against reversed voltage Yes

 Rated protection fuse on UP/UP3 10 A fast

 Galvanic isolation Ethernet interface against the rest of the
module

 Inrush current from UP (at power up) On request

 Current consumption via UP (normal
operation)

0.15 A

 Current consumption via UP3 0.06 A + 0.5 A max. per output

 Connections Terminals 1.8 and 2.8 for +24 V (UP)
Terminal 3.8 for +24 V (UP3)
Terminals 1.9, 2.9 and 3.9 for 0 V (ZP)

Max. power dissipation within the module 6 W

Number of digital inputs 8

Number of digital outputs 8

Number of configurable digital inputs/outputs 8

Input data length 12 bytes

Output data length 20 bytes

Reference potential for all digital inputs and
outputs

Negative terminal of the supply voltage, signal
name ZP

Setting of the I/O device identifier With 2 rotary switches at the front side of the
module

Diagnosis See Diagnosis and Displays Ä Chapter
5.2.6.7.3.9 “Diagnosis” on page 1256

Operation and error displays 34 LEDs (totally)

Weight (without terminal unit) Ca. 125 g

Mounting position Horizontal or vertical with derating (output load
reduced to 50 % at +40 °C per group)

Extended ambient temperature (XC version) > +60 °C on request

Cooling The natural convection cooling must not be hin-
dered by cable ducts or other parts in the con-
trol cabinet.

NOTICE!
All I/O channels (digital and analog) are protected against reverse polarity,
reverse supply, short circuit and temporary overvoltage up to 30 V DC.

Multiple overloads
No effects of multiple overloads on isolated multi-channel modules occur, as
every channel is protected individually by an internal smart high-side switch.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1263

Parameter Value
Bus connection 2 x RJ45

Switch Integrated

Technology Hilscher NETX 100

Transfer rate 10/100 Mbit/s (full-duplex)

Transfer method According to Ethernet II, IEEE 802.3

Ethernet 100 base-TX, internal switch, 2x RJ45 socket

Expandability Max. 10 S500 I/O modules

Adjusting elements 2 rotary switches for generation of an explicit
name

Supported protocols RTC - real time cyclic protocol, class 1 *)
RTA - real time acyclic protocol
DCP - discovery and configuration protocol
CL-RPC - connectionless remote procedure
Call
LLDP - link layer discovery protocol
MRP - MRP Client

Acyclic services PNIO read / write sequence (max. 1024 bytes
per telegram)
Process-Alarm service

Supported alarm types Process Alarm, Diagnostic Alarm, Return of
SubModule, Plug Alarm, Pull Alarm

Min. bus cycle 1 ms

Conformance class CC A

Protective functions (according to
IEC 61131-3)

Protected against:
● short circuit
● reverse supply
● overvoltage
● reverse polarity
Galvanic isolation from the rest of the module

*) Priorization with the aid of VLAN-ID including priority level

Technical data of the digital inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DI0 ... DI7 Terminals 2.0 ... 2.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (Negative terminal of the
supply voltage, signal name ZP)

Indication of the input signals 1 yellow LED per channel, the LED is ON when
the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1264

Parameter Value
Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

Technical data of the digital outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DO0 ... DO7 Terminals 3.0 ... 3.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative terminal of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive terminal of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload-proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1265

Parameter Value
Output current limitation Yes, automatic reactivation after short cir-

cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital output
2 Varistors for demagnetization when inductive loads are turned off

Technical data of the configurable digital inputs/outputs
Each of the configurable I/O channels is defined as input or output by the user program. This is
done by interrogating or allocating the corresponding channel.

Parameter Value
Number of channels per module 8 inputs/outputs (with transistors)

Distribution of the channels into groups 1 group for 8 channels

If the channels are used as inputs

 Channels DC0 ... DC07 Terminals 1.0 ... 1.7

If the channels are used as outputs

 Channels DC0 ... DC07 Terminals 1.0 ... 1.7

Indication of the input/output signals 1 yellow LED per channel, the LED is ON when
the input/output signal is high (signal 1)

Galvanic isolation From the Ethernet network

Technical data of the digital inputs/outputs if used as inputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 1.0 ... 1.7

Reference potential for all inputs Terminals 1.9 ... 3.9 (Negative terminal of the
supply voltage, signal name ZP)

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1266

Parameter Value
Indication of the input signals 1 yellow LED per channel, the LED is ON when

the input signal is high (signal 1)

Input type (according EN 61131-2) Type 1

Input delay (0->1 or 1->0) Typ. 0.1 ms, configurable from 0.1 ms ... 32 ms

Input signal voltage 24 V DC

 Signal 0 -3 V ... +5 V

 Undefined Signal > +5 V ... < +15 V

 Signal 1 +15 V ... +30 V

Ripple with signal 0 Within -3 V ... +5 V

Ripple with signal 1 Within +15 V ... +30 V

Input current per channel

 Input voltage +24 V Typ. 5 mA

 Input voltage +5 V > 1 mA

 Input voltage +15 V > 2 mA

 Input voltage +30 V < 8 mA

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

*) Due to the direct connection to the output, the demagnetizing varistor is also effective at
the input (see figure) above. This is why the difference between UPx and the input signal may
not exceed the clamp voltage of the varistor. The varistor limits the voltage to approx. 36 V.
Following this, the input voltage must range from -12 V ... +30 V when UPx = 24 V and from
-6 V ... +30 V when UPx = 30 V.

Technical data of the digital inputs/outputs if used as outputs

Parameter Value
Number of channels per module 8

Distribution of the channels into groups 1 group of 8 channels

Terminals of the channels DC0 ... DC7 Terminals 1.0 ... 1.7

Reference potential for all outputs Terminals 1.9 ... 3.9 (negative terminal of the
supply voltage, signal name ZP)

Common power supply voltage For all outputs terminal 3.8 (positive terminal of
the supply voltage, signal name UP3)

Output voltage for signal 1 UP3 (-0.8 V)

Output delay (0->1 or 1->0) On request

Output current

 Rated value per channel 500 mA at UP3 = 24 V

 Max. value (all channels together) 4 A

Leakage current with signal 0 < 0.5 mA

 Fuse for UP3 10 A fast

Demagnetization with inductive DC load Via internal varistors (see figure below this
table)

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1267

Parameter Value
Output switching frequency

 With resistive load On request

 With inductive loads Max. 0.5 Hz

 With lamp loads 11 Hz max. at 5 W max.

Short-circuit-proof / overload proof Yes

Overload message (I > 0.7 A) Yes, after ca. 100 ms

Output current limitation Yes, automatic reactivation after short cir-
cuit/overload

Resistance to feedback against 24 V signals Yes (software-controlled supervision)

Max. cable length

 Shielded 1000 m

 Unshielded 600 m

The following drawing shows the circuitry of a digital input/output with the varistors for demag-
netization when inductive loads are switched off.

2

1

UPx (+24 V)

ZPx (0 V)

1 Digital input/output
2 For demagnetization when inductive loads are turned off

Technical data of the fast counter

Parameter Value
Used inputs Terminal 2.0 (DI8),Terminal 2.1 (DI9)

Used outputs Terminal 3.0 (DO8)

Counting frequency Depending on operation mode:
Mode 1- 6: max. 200 kHz
Mode 7: max. 50 kHz
Mode 9: max. 35 kHz
Mode 10: max. 20 kHz

Ä Chapter 6.8.2.12 “Fast counters in AC500 devices” on page 4536

Hardware descriptions
Device specifications > Communication interface modules

2024/01/053ADR010583, 1, en_US1268

Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Ordering data

Active Active Product life cycle phase *)
1SAP 220 700 R0001 CI502-PNIO (V3), PROFINET commu-

nication interface module, 8 DI, 8 DO
and 8 DC

Active

1SAP 420 700 R0001 CI502-PNIO-XC (V3), PROFINET
communication interface module, 8 DI,
8 DO and 8 DC, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions

Device specifications > Communication interface modules

2024/01/05 3ADR010583, 1, en_US 1269

5.2.7 Terminal units for communication interface modules
5.2.7.1 Safety instructions

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

Conditions for hot swapping
– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltages (SELV/PELV) are switched off.
– Modules are completely plugged on the terminal unit with both snap fit

engaged before switching on loads or input/output voltage.

Ä Further information about hot swap.

5.2.7.2 TU507-ETH and TU508-ETH for Ethernet communication interface modules
5.2.7.2.1 Features

● TU507-ETH, Ethernet terminal unit, 24 V DC, screw terminals
● TU508-ETH, Ethernet terminal unit, 24 V DC, spring terminals
● TU508-ETH-XC, Ethernet terminal unit, 24 V DC, spring terminals, XC version

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1270

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2x 25 pins) to connect the inserted Ethernet communication interface module
2b Plug (3x 19 pins) to connect the inserted Ethernet communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
4 2 holes for wall mounting
5 2 RJ45 interfaces with indication LEDs for connection with the Ethernet network
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The Ethernet communication interface modules plug into the Ethernet terminal unit. When
properly seated, they are secured with two mechanical locks. All the connections are made
through the Ethernet terminal unit, which allows removal and replacement of the Ethernet
communication interface modules without disturbing the wiring at the Ethernet terminal unit.
The Ethernet terminal units TU507-ETH and TU508-ETH are specifically designed for use with
AC500/S500 Ethernet communication interface modules (e. g. CI501-PNIO).

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1271

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

The terminals 1.8 and 2.8 as well as 1.9, 2.9 and 3.9 are electrically interconnected within the
terminal unit and have always the same assignment, independent of the inserted module:
Terminals 1.8 and 2.8: Process supply voltage UP = +24 V DC
Terminal 3.8: Process supply voltage UP3 = +24 V DC
Terminals 1.9, 2.9 and 3.9: Process supply voltage ZP = 0 V

The assignment of the other terminals is dependent on the inserted communication interface
module.

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC devices
Ä Chapter 5.2.8.3.6 “TA535 - Protective caps for XC devices” on page 1332.

5.2.7.2.2 Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.

XC version

Terminals

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1272

The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (1.0 ... 1.7,
2.0 ... 2.7, 3.0 ... 3.7), the allocation of the
channels is given by the inserted Ethernet bus
module

Network interface connector 2 RJ45, 8-pole

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Ethernet 10/100 base-TX or 100 base-TX (depending
on CI5xx module plugged in), 2 RJ45 socket

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring-type terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

5.2.7.2.3 Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1273

The dimensions are in mm and in brackets in inch.

5.2.7.2.4 Ordering data

Part no. Description Product life cycle phase *)
1SAP 214 200 R0001 TU507-ETH, Ethernet terminal unit,

24 V DC, screw terminals
Active

1SAP 214 000 R0001 TU508-ETH, Ethernet terminal unit,
24 V DC, spring terminals

Active

1SAP 414 000 R0001 TU508-ETH-XC, Ethernet terminal
unit, 24 V DC, spring terminals,
XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.7.3 TU509 and TU510 for communication interface modules
5.2.7.3.1 Features

● TU509, terminal unit, 24 V DC, screw terminals
● TU510, terminal unit, 24 V DC, spring terminals
● TU510-XC, terminal unit, 24 V DC, spring terminals, XC version

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1274

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2 25 pins) to connect the inserted communication interface module
2b Plug (3 19 pins) to connect the inserted communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent terminal unit can

be shoved from each other
4 2 holes for wall mounting
5 D-sub 9 (female) for connection with the PROFIBUS network
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The communication interface modules plug into the terminal unit. When properly plugged-in,
they are secured with two mechanical locks. All the connections are established via the terminal
unit, which allows removal and replacement of the communication interface modules without
disturbing the wiring at the terminal unit.
The terminal units TU509 and TU510 are specifically designed for use with AC500/S500 com-
munication interface modules (e. g. CI451-DP).

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1275

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted module:
Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
Terminal 4.8: process supply voltage UP3 = +24 V DC
Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V

The assignment of the other terminals depends on the inserted communication interface module
(see communication interface modules for CANopen and PROFIBUS).

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC devices
Ä Chapter 5.2.8.3.6 “TA535 - Protective caps for XC devices” on page 1332.

5.2.7.3.2 Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.

XC version

Terminals

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1276

The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (2.0 ... 2.7,
3.0 ... 3.7, 4.0 ... 4.7), the allocation of the
channels is given by the inserted communica-
tion interface module

Network interface connector 9-pin D-sub connector, female

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

5.2.7.3.3 Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1277

5.2.7.3.4 Ordering data

Part no. Description Product life cycle phase *)
1SAP 211 000 R0001 TU509, terminal unit, 24 V DC, screw

terminals
Active

1SAP 210 800 R0001 TU510, terminal unit, 24 V DC, spring
terminals

Active

1SAP 410 800 R0001 TU510-XC, terminal unit, 24 V DC,
spring terminals, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.7.4 TU517 and TU518 for communication interface modules
5.2.7.4.1 Features

● TU517, terminal unit, 24 V DC, screw terminals
● TU518, terminal unit, 24 V DC, spring terminals
● TU518-XC, terminal unit, 24 V DC, spring terminals, XC version

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1278

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2 25 pins) to connect the inserted communication interface module
2b Plug (2 19 pins) to connect the inserted communication interface module
3 With a screwdriver, inserted in this place, the terminal unit and the adjacent I/O terminal unit

can be shoved from each other
4 2 holes for wall mounting
5 10 terminals for connection with the bus system
6 30 terminals for signals and process supply voltages (UP and UP3)
7 DIN rail

The communication interface modules plug into the terminal unit. When properly plugged-in,
they are secured with two mechanical locks. All the connections are established via the terminal
unit, which allows removal and replacement of the communication interface modules without
disturbing the wiring at the terminal unit.
The terminal units TU517 and TU518 are specifically designed for use with AC500/S500 com-
munication interface modules (e. g. CI581-CN, CI541-DP):
● CANopen communication interface modules
● DeviceNet modules
● PROFIBUS DP communication interface modules

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1279

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

Screw terminals Spring terminals
Conductor

1.5

1.6

1.7

1.8

1.9

Screwdriver Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver
(opens ter-
minal)

The terminals 2.8, 3.8, 2.9, 3.9 and 4.9 are electrically interconnected within the terminal unit
and always have the same assignment, irrespective of the inserted communication interface
module:
● Terminals 2.8 and 3.8: process supply voltage UP = +24 V DC
● Terminal 4.8: process supply voltage UP3 = +24 V DC
● Terminals 2.9, 3.9 and 4.9: process supply voltage ZP = 0 V
The assignment of the other terminals depends on the inserted communication interface module
(see communication interface modules for CANopen and PROFIBUS).

5.2.7.4.2 Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.
Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

XC version

Terminals

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1280

Parameter Value
Number of I/O channels per module Max. 24 (depending on the inserted communi-

cation interface module)

Distribution of the channels into groups 3 groups of max. 8 channels each (2.0 ... 2.7,
3.0 ... 3.7, 4.0 ... 4.7), the allocation of the
channels is given by the inserted communica-
tion interface module

Network interface connector 10 screw or spring terminals (1.0 ... 1.9)

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP, UP3 and
ZP)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Screw terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

5.2.7.4.3 Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1281

5.2.7.4.4 Ordering data

Part no. Description Product life cycle phase *)
1SAP 211 400 R0001 TU517, terminal unit, 24 V DC, screw

terminals
Active

1SAP 211 200 R0001 TU518, terminal unit, 24 V DC, spring
terminals

Active

1SAP 411 200 R0001 TU518-XC, terminal unit, 24 V DC,
spring terminals, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.7.5 TU520-ETH for PROFINET communication interface modules
5.2.7.5.1 Features

● TU520-ETH, 2 RJ45 interfaces for connection to PROFIBUS network, 3 removable connec-
tors for bus systems

● TU520-ETH-XC, 2 RJ45 interfaces for connection to PROFIBUS network, 3 removable
connectors for bus systems, XC version

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1282

1 I/O bus (10 pins, female) to connect the first terminal unit
2a Plug (2 25 pins) to connect the inserted PROFINET communication interface module
2b Plug (3 19 pins) to connect the inserted PROFINET communication interface module
3 With a screwdriver, inserted in this place, the PROFINET I/O terminal unit and the adjacent

I/O terminal unit can be shoved from each other
4 2 holes for wall mounting
5 3 removable connectors to connect the subordinated bus systems
6 2 RJ45 interfaces with indication LEDs for connection with the PROFINET network
7 6 spring terminals for process supply voltage (UP)
8 DIN rail

The PROFINET communication interface modules plug into the PROFINET IO terminal unit.
When properly plugged-in, they are secured with two mechanical locks. All the connections are
established via the PROFINET IO terminal unit, which allows removal and replacement of the
communication interface modules without disturbing the wiring at the PROFINET IO terminal
unit.
The PROFINET IO terminal unit TU520-ETH are specifically designed for use with AC500/S500
PROFINET communication interface modules (e. g. CI504-PNIO, CI506-PNIO).

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1283

XC = eXtreme Conditions

Extreme conditions
Terminal units for use in extreme ambient conditions have no sign for
XC version.

The figure 4 in the Part no. 1SAP4... (label) identifies the XC version.

NOTICE!
Risk of corrosion!
Unused connectors and slots may corrode if XC devices are used in salt-mist
environments.
Protect unused connectors and slots with TA535 protective caps for XC devices
Ä Chapter 5.2.8.3.6 “TA535 - Protective caps for XC devices” on page 1332.

Conductor 1.5

1.6

1.7

1.8

1.9

Screwdriver (opens terminal)

The terminals 1.0, 2.0, 3.0, 1.1, 2.1 and 3.1 are electrically interconnected within the PROFINET
IO terminal unit and always have the same assignment, irrespective of the inserted PROFINET
communication interface module:
● Terminals 1.0, 2.0 and 3.0: process supply voltage UP = +24 V DC
● Terminals 1.1, 2.1 and 3.1: process supply voltage ZP = 0 V
The assignment of the bus system terminals depends on the inserted PROFINET communica-
tion interface module (see Ethernet communication interface modules overview).

5.2.7.5.2 Technical data
The system data of AC500 and S500 are applicable to the standard version Ä Chapter 5.1.2
“System data AC500” on page 166.
The system data of AC500-XC are applicable to the XC version Ä Chapter 5.1.3 “System data
AC500-XC” on page 169.

XC version

Spring terminals

Hardware descriptions
Device specifications > Terminal units for communication interface modules

2024/01/053ADR010583, 1, en_US1284

Only additional details are therefore documented below.
The technical data are also applicable to the XC version.

Parameter Value
Ethernet 10/100 base-TX or 100 base-TX (depending

on the plugged CI5xx module), 2 RJ45 socket

Number of bus system connectors 3 (the type of bus system depends on
the PROFINET IO communication interface
module)

Rated voltage 24 V DC

Max. permitted total current 10 A via the supply terminals (UP and ZP)

Grounding Direct connection to the grounded DIN rail or
via the screws with wall mounting

Spring terminals Front terminal, conductor connection vertically
with respect to the printed circuit board

Weight 200 g

Mounting position Horizontal or vertical

5.2.7.5.3 Dimensions

1 Din rail 15 mm
2 Din rail 7.5 mm

The dimensions are in mm and in brackets in inch.

Hardware descriptions

Device specifications > Terminal units for communication interface modules

2024/01/05 3ADR010583, 1, en_US 1285

5.2.7.5.4 Ordering data

Part no. Description Product life cycle phase *)
1SAP 214 400
R0001

TU520-ETH, PROFINET I/O terminal
unit, 24 V DC, spring terminals

Active

1SAP 414 400
R0001

TU520-ETH-XC, PROFINET I/O
terminal unit, 24 V DC, spring
terminals, XC version

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.8 Accessories
5.2.8.1 AC500-eCo
5.2.8.1.1 MC5102 - Micro memory card with adapter

● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter, necessary for use in AC500 processor modules

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500 V3 AC500-XC
V3

AC500-eCo
V3

MC5141 x x x x -

MC5102 with TA5350-AD micro memory
card adapter

x 1) x 1) 2) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - x

1) As of firmware 2.5.x

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1286

2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.
Ä Further information on using the micro memory card in AC500 PLCs

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1287

The dimensions are in mm and in brackets in inch.

Fig. 259: Insert micro memory card into PM56xx

1 Micro memory card
2 TA5350-AD micro memory card adapter
3 Memory card slot
1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Micro memory
card adapter

Insert the micro
memory card
AC500 V3

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1288

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Carefully insert the micro memory card into the micro memory card slot as far as it will go.

Observe orientation of card.
3. Close the micro memory card slot cover by turning it downwards.

NOTICE!
Disturbed PLC operation
Do not remove the micro memory card when it is working!
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

– AC500 V3: Remove the micro memory card only when no black square ()
is shown next to MC in the display.

– AC500-eCo V3: Remove the micro memory card only when the MC LED is
not blinking.

AC500-eCo V3

Remove the
micro memory
card

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1289

Fig. 260: Remove micro memory card from PM56xx

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot
1. To remove the micro memory card adapter with the integrated micro memory card, push

on the micro memory card adapter until it moves forward.
2. By this, the micro memory card adapter is unlocked and can be removed.

AC500 V3

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1290

NOTICE!
Disturbed PLC operation
Do not remove the memory card when it is working!
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

– Remove the memory card only when no black square () is shown next to
MC in the display.

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Micro memory card can be removed from the micro memory card slot by gripping and

pulling with two fingers.
3. Close the micro memory card slot cover by turning it downwards.

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at +40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at +40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

AC500-eCo V3

Technical data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1291

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.8.1.2 TA52xx(-x) - Terminal block sets
Removable terminal blocks are used for power supply and for I/O connectors on AC500-eCo V3
processor modules PM50x2.
For option boards there are different removable terminal blocks in spring version.

For the AC500-eCo V3 Basic CPUs a 3-pin terminal block for power supply and a 13-pin
terminal block for I/O connectors are used.
For the AC500-eCo V3 Standard CPUs and Pro CPUs a 3-pin terminal block for power supply,
a 13-pin terminal block and a 12-pin terminal block for I/O connectors are used.
For all CPUs there is a screw and a spring variant available.

Basic CPU Standard and Pro CPUs
Spring terminal
TA5211-TSPF-B

Screw terminal
TA5211-TSCL-B

Spring terminal
TA5212-TSPF

Screw terminal
TA5212-TSCL

Ordering data

Intended pur-
pose

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1292

Various removable spring terminal blocks are available for option boards.
The following spare parts are available (depending on the number of pins).

Spring terminals
TA5220-SPF5 TA5220-SPF6 TA5220-SPF7 TA5220-SPF8

CAUTION!
Risk of injury and damaging the product!
Improper installation and maintenance may result in injury and can damage the
product!
– Installation and maintenance have to be performed according to the

technical rules, codes and relevant standards, e.g. EN 60204-1.
– Read product documentation carefully before wiring. Improper wiring or

wrong terminal block from other devices can damage the product!
– Only by qualified personnel.

CAUTION!
Risk of injury and damaging the module when using unapproved terminal
blocks!
Only use terminal blocks approved by ABB to avoid injury and damage to the
module.

Terminal block set for PM50x2
Processor modules PM50x2 CPU are not delivered with terminal blocks.

Screw terminal block set:

– TA5211-TSCL-B (1SAP187400R0001) for PM5012-x-ETH
– TA5212-TSCL (1SAP187400R0004) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W), PM5082-T-2ETH

Spring terminal block set:

– TA5211-TSPF-B (1SAP187400R0002) for PM5012-x-ETH
– TA5212-TSPF (1SAP187400R0005) for PM5032-x-ETH, PM5052-x-ETH,

PM5072-T-2ETH(W), PM5082-T-2ETH

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1293

Dimensions

3-pin terminal
block for power
supply
Screw terminal

Spring terminal

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1294

13-pin terminal
block for I/O
connectors
Screw terminal

Spring terminal

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1295

12-pin terminal
block for I/O
connectors
Screw terminal

Spring terminal

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1296

Only these x-pin terminal blocks are available for the option boards.

TA5220-SPFx, with x = 5 ... 8

This results in these dimensions for the available spring terminal blocks.

Description Pin Length [mm] Wide [mm] Height [mm]
TA5220-SPF5 5 18.2 7.7 22.9

TA5220-SPF6 6 21.7 7.7 22.9

TA5220-SPF7 7 25.2 7.7 22.9

TA5220-SPF8 8 28.7 7.7 22.9

x-PIN terminal
blocks for
option boards

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1297

Table 288: Screw terminal block for power supply
Parameter Value
Type

 TA5211-TSCL-B Removable 3-pin terminal block:
screw front/cable side 5.00 mm pitchTA5212-TSCL

Usage Power supply for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm² ... 2.5 mm²

 Flexible (copper) 0.5 mm² ... 2.5 mm²

Stripped conductor end 7 mm

Assembly

Disassembly

Technical data

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1298

Parameter Value
Fastening torque 0.5 Nm

Dimensions

 3-pin terminal block 15 mm x 12.4 mm x 26.05 mm

Weight

 TA5211-TSCL-B 150 g (2 terminal blocks)

 TA5212-TSCL 200 g (3 terminal blocks)

Table 289: Spring terminal block for power supply
Parameter Value
Type

 TA5211-TSPF-B Removable 3-pin terminal block:
spring front/cable front 5.00 mm pitchTA5212-TSPF

Usage Power supply for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm² ... 2.5 mm²

 Flexible (copper) 0.5 mm² ... 2.5 mm²

Stripped conductor end 11 mm

Dimensions

 3-pin terminal block 15 mm x 15 mm x 25.95 mm

Weight

 TA5211-TSPF-B 150 g (2 terminal blocks)

 TA5212-TSPF 200 g (3 terminal blocks)

Table 290: Screw terminal block for onboard I/Os
Parameter Value
Type

 TA5211-TSCL-B Removable 13-pin terminal block:
screw front/cable side 5.00 mm pitch

TA5212-TSCL Removable 13-pin and 12-pin terminal block:
screw front/cable side 5.00 mm pitch

Usage Onboard I/Os for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm² ... 2.5 mm²

 Flexible (copper) 0.5 mm² ... 2.5 mm²

Stripped conductor end 7 mm

Fastening torque 0.5 Nm

Dimensions

 13-pin terminal block 65 mm x 12.4 mm x 26.05 mm

12-pin terminal block 60 mm x 12.4 mm x 26.05 mm

Weight

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1299

Parameter Value
 TA5211-TSCL-B 150 g (2 terminal blocks)

TA5212-TSCL 200 g (3 terminal blocks)

Table 291: Spring terminal block for onboard I/Os
Parameter Value
Type

 TA5211-TSPF-B Removable 13-pin terminal block:
spring front/cable front 5.00 mm pitch

TA5212-TSPF Removable 13-pin and 12-pin terminal block:
spring front/cable front 5.00 mm pitch

Usage Onboard I/Os for AC500-eCo V3 processor
modules

Conductor cross section

 Solid (copper) 0.5 mm² ... 2.5 mm²

 Flexible (copper) 0.5 mm² ... 2.5 mm²

Stripped conductor end 11 mm

Dimensions

 13-pin terminal block 65 mm x 15 mm x 25.95 mm

12-pin terminal block 60 mm x 15 mm x 25.95 mm

Weight

 TA5211-TSPF-B 150 g (2 terminal blocks)

TA5212-TSPF 200 g (3 terminal blocks)

Table 292: Spring terminal block for option boards
Parameter Value
Type

 TA5220-SPF5 Removable 5-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF6 Removable 6-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF7 Removable 7-pin terminal block:
spring front, cable front 3.50 mm pitch

TA5220-SPF8 Removable 8-pin terminal block:
spring front, cable front 3.50 mm pitch

Usage Connectors for AC500-eCo V3 option boards

Conductor cross section

 Solid (copper) 0.2 mm² ... 1.5 mm²

 Flexible (copper) 0.2 mm² ... 1.5 mm²

Stripped conductor end 8 mm ... 10 mm

Dimensions

 TA5220-SPF5 18.2 mm x 7.7 mm x 22.9 mm

TA5220-SPF6 21.7 mm x 7.7 mm x 22.9 mm

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1300

Parameter Value
TA5220-SPF7 25.2 mm x 7.7 mm x 22.9 mm

TA5220-SPF8 28.7 mm x 7.7 mm x 22.9 mm

Weight

 TA5220-SPF5 150 g

TA5220-SPF6 170 g

TA5220-SPF7 180 g

TA5220-SPF8 200 g

Table 293: Terminal block sets for AC500-eCo V3 Basic
Part no. Description
1SAP 187 400 R0001 TA5211-TSCL-B: screw terminal block set for AC500-eCo V3 CPU

Basic
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

1SAP 187 400 R0002 TA5211-TSPF-B: spring terminal block set for AC500-eCo V3 CPU
Basic
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors

Table 294: Terminal block sets for AC500-eCo V3 Standard and Pro
Part no. Description
1SAP 187 400 R0004 TA5212-TSCL: screw terminal block set for AC500-eCo V3 Standard

and Pro CPU
screw front, cable side 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

1SAP 187 400 R0005 TA5212-TSPF: spring terminal block set for AC500-eCo V3
Standard and Pro CPU
spring front, cable front 5.00 mm pitch
● 1 removable 3-pin terminal block for power supply
● 1 removable 13-pin terminal block for I/O connectors
● 1 removable 12-pin terminal block for I/O connectors

Table 295: Spare parts
Part no. Description
1SAP 187 400 R0012 TA5220-SPF5: spring terminal block, removable, 5-pin, spring front,

cable front, 6 pieces per packing unit

1SAP 187 400 R0013 TA5220-SPF6: spring terminal block, removable, 6-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0014 TA5220-SPF7: spring terminal block, removable, 7-pin, spring front,
cable front, 6 pieces per packing unit

1SAP 187 400 R0015 TA5220-SPF8: spring terminal block, removable, 8-pin, spring front,
cable front, 6 pieces per packing unit

Ordering data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1301

5.2.8.1.3 TA5300-CVR - Option board slot cover
TA5300-CVR option board slot covers for PM50xx processor modules are necessary to protect
not used option board slots.

CAUTION!
Risk of injury and damaging the product!
Always plug in the option board slot cover when the option board is not inserted.
If the option board slot cover is lost, please order the replacement TA5300-CVR
(1SAP187500R0001).
Never power up the CPU with uncovered option board slot, otherwise it may
cause serious injury and/or damage the product.

The AC500-eCo V3 processor modules are delivered with option board slot
cover(s).

The option board slot cover has to be removed before inserting an option board.

The TA5300-CVR option board slot covers are available as spare parts.

The dimensions are in mm and in brackets in inch.

Intended pur-
pose

Dimensions

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1302

1. Press on the option board slot cover to insert it in the not used option board slot of the
processor module PM50xx.

2. The option board slot cover must click into the not used option board slot.

1. Press the side of the inserted option board slot cover.
2. At the same time, pull the option board slot cover out of the option board slot of the

processor module PM50xx.

The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Parameter Value
Weight 47 g

Dimensions 42.1 mm x 30.8 mm x 23.55

Part no. Description Product life cycle phase
*)

1SAP 187 500 R0001 TA5300-CVR: option board slot cover,
removable plastic part, 6 pieces per
packing unit

Active

Inserting of the
option board
slot cover

Removing of the
option board
slot cover

Technical data

Ordering data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1303

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1304

5.2.8.1.4 TA5400-SIM - Input simulator
● TA5400-SIM input simulator for 6 digital inputs 24 V DC
● For usage with AC500-eCo V3 processor modules

1 Contacts for connecting the input simulator to the terminal block for I/O connectors
2 6 switches for the digital inputs DI0 ... DI5 (0 means opened switch, 1 means closed switch)
3 Screw terminal block for power supply
4 Screw terminal block(s) for I/O connectors

TA5400-SIM
The TA5400-SIM input simulator is only intended for testing and training pur-
poses for AC500-eCo V3 processor modules PM50x2.

Continuous operation in a productive system is not permitted.

The TA5400-SIM input simulator may only be used with screw-type terminal
blocks.

The TA5400-SIM input simulator must not be used with spring-type terminal
blocks.

Intended
purpose

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1305

Environmental conditions for testing and training purposes
In order not to impair the functionality of the product, avoid any kind of dis-
turbing environmental influences:

– mechanical disturbances
– climatic influences

Make sure that the parameters are within the normal range:

– temperature
– air pressure
– humidity
– altitude

The TA5400-SIM input simulator can simulate 6 digital 24 V DC input signals to the digital inputs
I0 ... I5 of onboard I/Os.
With the TA5400-SIM input simulator, the digital 24 V DC inputs I0 ... I5 can be turned OFF and
ON separately:
● If the lever of the switch is on the right side (1), the input is ON.
● If the lever of the switch is on the left side (0), the input is OFF.

The dimensions are in mm and in brackets in inch.

The diagram below shows the connection of the TA5400-SIM input simulator.

Dimensions

Electrical
diagram

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1306

NOTICE!
Risk of damage to the TA5400-SIM input simulator!
Do not remove the terminal block while the TA5400-SIM input simulator is
connected.
Do not apply mechanical forces to the input simulator when it is connected to
the terminal block.
In both cases the input simulator could be damaged.

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure, that all voltage sources (supply and process voltage) are
switched off before you start working on the system.
Never connect voltages > 24 V DC to the terminal block of the TA5400-
SIM input simulator.

CAUTION!
Risk of damaging the input simulator and/or PLC modules!
The TA5400-SIM input simulator may only be used with AC500-eCo V3
processor modules PM50x2.
Never use the input simulator with other devices.
The input simulator may only be used with screw-type terminal blocks.
The input simulator is only intended for testing and training purposes.
Never use it within productive sytems.

Assembly

Insertion of the
input simulator

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1307

2. Make sure that all clamps of the onboard I/Os are totally open.
3. Insert the TA5400-SIM input simulator into the screw terminal block as shown in the figure.

4. Tighten all screws of the onboard I/O clamps.
5. Make sure all switches are in OFF state (0).
6. Connect 24 V DC to the power supply of the TA5400-SIM (L+ and M). Tighten the screws.
7. Connect the processor module power supply wires (24 V DC) Ä “Pin assignment”

on page 184.

1. Make sure that the power supply of the processor module is turned off.

CAUTION!
Risk of damaging the PLC modules!
The PLC modules can be damaged by overvoltages and short circuits.
Make sure that all voltage sources (supply and process voltage) are
switched off before you start working on the system.

2. Disconnect the TA5400-SIM power supply wires (24 V DC) with a flat-blade screwdriver
from the terminal block for power supply (L+ and M).

3. Loosen all screws of the onboard I/Os.
4. Remove the input simulator by pulling it to the left side.

The system data of AC500-eCo V3 apply Ä Chapter 5.1.1 “System data AC500-eCo”
on page 159

Only additional details are therefore documented below.

Disassembly

Removal of the
input simulator

Technical data

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1308

Table 296: Technical data of the module
Parameter Value
Process supply voltage

 Connections Terminal (L+) for +24 V DC and terminal (M) for
0 V DC

Rated value 24 V DC

Max. ripple 5 %

Weight 18 g

Mounting position Horizontal or vertical

Part no. Description Product life cycle phase *)
1SAP 187 600 R0001 TA5400-SIM, input simulator

for PM50x2
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.8.2 AC500 and AC500-XC
5.2.8.2.1 MC5102 - Micro memory card with adapter

● Solid state flash memory storage

1 Micro memory card
2 TA5350-AD micro memory card adapter, necessary for use in AC500 processor modules

The MC5102 micro memory card has no write protect switch.

The TA5350-AD micro memory card adapter has a write protect switch.

In the position "LOCK", the inserted micro memory card can only be read.

Ordering data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1309

Memory card type AC500 V2 AC500-XC
V2

AC500 V3 AC500-XC
V3

AC500-eCo
V3

MC5141 x x x x -

MC5102 with TA5350-AD micro memory
card adapter

x 1) x 1) 2) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.

The use of other micro memory cards is prohibited. ABB is not responsible nor
liable for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The micro memory card is used to store or backup application data and/or application programs
or project source codes as well as to update the internal CPU firmware.
The micro memory card can only be used temporarily in standard and XC applications.
The memory card can be read/written on a PC with a SDHC compatible memory card reader
when using TA5350-AD micro memory card adapter.
Ä Further information on using the micro memory card in AC500 PLCs

The dimensions are in mm and in brackets in inch.

Purpose

Dimensions

Micro memory
card

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1310

The dimensions are in mm and in brackets in inch.

Fig. 261: Insert micro memory card into PM56xx

1 Micro memory card
2 TA5350-AD micro memory card adapter
3 Memory card slot
1. Unpack the micro memory card and insert it into the supplied micro memory card adapter.
2. Insert the micro memory card adapter with integrated micro memory card into the memory

card slot of the processor module until locked.

Micro memory
card adapter

Insert the micro
memory card
AC500 V3

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1311

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Carefully insert the micro memory card into the micro memory card slot as far as it will go.

Observe orientation of card.
3. Close the micro memory card slot cover by turning it downwards.

NOTICE!
Disturbed PLC operation
Do not remove the micro memory card when it is working!
Otherwise the micro memory card and/or files on it might get corrupted and/or
normal PLC operation might be disturbed.

– AC500 V3: Remove the micro memory card only when no black square ()
is shown next to MC in the display.

– AC500-eCo V3: Remove the micro memory card only when the MC LED is
not blinking.

AC500-eCo V3

Remove the
micro memory
card

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1312

Fig. 262: Remove micro memory card from PM56xx

1 Micro memory card
2 Micro memory card adapter
3 Memory card slot
1. To remove the micro memory card adapter with the integrated micro memory card, push

on the micro memory card adapter until it moves forward.
2. By this, the micro memory card adapter is unlocked and can be removed.

AC500 V3

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1313

NOTICE!
Disturbed PLC operation
Do not remove the memory card when it is working!
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

– Remove the memory card only when no black square () is shown next to
MC in the display.

1 Micro memory card slot cover
2 Micro memory card
3 Micro memory card slot
1. Open the micro memory card slot cover by turning it upwards.
2. Micro memory card can be removed from the micro memory card slot by gripping and

pulling with two fingers.
3. Close the micro memory card slot cover by turning it downwards.

Parameter Value
Memory capacity 8 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at +40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at +40 °C

Write protect switch

 Micro memory card No

 Micro memory card adapter Yes

Weight 0.25 g

Dimensions 15 mm x 11 mm x 0.7 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

AC500-eCo V3

Technical data

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1314

Part no. Description Product life cycle phase *)
1SAP 180 100 R0002 MC5102, micro memory

card with TA5350-AD micro
memory card adapter

Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.8.2.2 MC5141 - Memory card
● Solid state flash memory storage

1 MC5141 memory card

The memory card has a write protect switch.

In the position "LOCK", the memory card can only be read.

Memory card type AC500 V2 AC500-XC
V2

AC500 V3 AC500-XC
V3

AC500-eCo
V3

MC5141 x x x x -

MC5102 with TA5350-AD micro memory
card adapter

x 1) x 1) 2) x x 2) -

MC5102 without TA5350-AD micro
memory card adapter

- - - - x

1) As of firmware 2.5.x
2) Temporary use of MC5102 is possible under normal environmental conditions, but MC5141
should be preferred.

Ordering data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1315

The use of other memory cards is prohibited. ABB is not responsible nor liable
for consequences resulting from use of unapproved memory cards.

Processor modules can be operated with and without (micro) memory card.

Processor modules are supplied without (micro) memory card. It must be
ordered separately.

The memory card is used to store or backup application data and/or application programs or
project source codes as well as to update the internal CPU firmware.
The memory card is intended for long-term use in standard and XC application.
The memory card can be read/written on a PC with a SDHC compatible memory card reader.
Ä Further information on using the memory card in AC500 PLC

The dimensions are in mm and in brackets in inch.

AC500 V3

1. Unpack the memory card.
2. Insert the memory card into the memory card slot of the processor module until locked.

Purpose

Dimensions

Insert the
memory card

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1316

Fig. 263: Insert memory card into PM56xx

1 Memory card
2 Memory card slot

AC500 V3

NOTICE!
Disturbed PLC operation
Do not remove the memory card when it is working!
Otherwise the memory card and/or files on it might get corrupted and/or normal
PLC operation might be disturbed.

– Remove the memory card only when no black square () is shown next to
MC in the display.

1. To remove the memory card, push on the memory card until it moves forward.
2. By this, the memory card is unlocked and can be removed.

Remove the
memory card

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1317

Fig. 264: Remove memory card from PM56xx

1 Memory card
2 Memory card slot

Parameter Value
Memory capacity 2 GB

Total bytes written (TBW) On request

Data retention

 at beginning 10 years at +40 °C

 when number of write processes has been
90 % of lifetime of each cell

1 year at +40 °C

Write protect switch Yes, at the edge of the memory card

Weight 2 g

Dimensions 24 mm x 32 mm x 2.1 mm

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

Part no. Description Product life cycle phase *)
1SAP 180 100 R0041 MC5141, memory card Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Technical data

Ordering data

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1318

5.2.8.2.3 TA521 - Battery
● Manganese dioxide lithium battery, 3 V, 560 mAh
● Non-rechargeable

The TA521 battery is the only applicable battery for the AC500 processor modules Ä Chapter
5.2.1.2.2 “PM56xx-2ETH for AC500 V3 products” on page 313. It cannot be recharged.

The processor modules are supplied without lithium battery. It must be ordered separately. The
TA521 lithium battery is used for data (SRAM) and RTC buffering while the processor module is
not powered.
Ä Chapter 6.8.2.3.2 “AC500 battery” on page 4445

The CPU monitors the discharge degree of the battery. A warning is issued before the battery
condition becomes critical (about 2 weeks before). Once the warning message appears, the
battery should be replaced as soon as possible.

● Do not short-circuit or re-charge the battery! It can cause excessive heating and explosion.
● Do not disassemble the battery!
● Do not heat up the battery and not put into fire! Risk of explosion.
● Store the battery in a dry place.
● Replace the battery with supply voltage ON in order not to risk data being lost.
● Recycle exhausted batteries meeting the environmental standards.

The battery lifetime is the time, the battery can store data while the processor module is not
powered. As long as the processor module is powered, the battery will only be discharged by its
own leakage current.

To avoid a short battery discharge, the battery should always be inserted or
replaced while the process module is under power, then the battery is correctly
recognized and will not shortly discharged.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

Purpose

Handling
instructions

Battery lifetime

Insertion

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1319

WARNING!
Risk of fire or explosion!
Use of incorrect Battery may cause fire or explosion.

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front face of the processor module and cannot
be removed.

2. Remove the TA521 battery from its package and hold it by the small cable. Remove then
the small connector from the socket, do this best by lifting it out with a screwdriver.

3. Insert the battery connector into the small connector port of the compartment. The con-
nector is keyed to find the correct polarity (red = positive pole = above).

4. Insert first the cable and then the battery into the compartment, push it until it reaches the
bottom of the compartment.

5. Arrange the cable in order not to inhibit the door to close.
6. Pull-up the door and press until the locking mechanism snaps.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

To ensure propper operation and to prevent data loss, the battery insertion or
replacement must be always done with the system under power. Without battery
and power supply there is no data buffering possible.

Replacement of
the battery

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1320

1. Open the battery compartment with the small locking mechanism, press it down and slip
down the door. The door is attached to the front view of the processor module and cannot
be removed.

2. Remove the old TA521 battery from the battery compartment by pulling it by the small
cable. Remove then the small connector from the socket, do this best by lifting it out with a
screwdriver.

3. Follow the previous instructions to insert a new battery.

CAUTION!
Risk of explosion!
Do not open, re-charge or disassemble lithium batteries. Attempting to charge
lithium batteries will lead to overheating and can cause explosions.
Protect them from heat and fire and store them in a dry place.
Never short-circuit or operate lithium batteries with the polarities reversed. The
batteries are likely to overheat and explode. Avoid unintentional short circuiting
do not store batteries in metal containers and do not place them on metallic
surfaces. Escaping lithium is a health hazard.

In order to prevent data losses or problems, the battery should be replaced after
3 years of utilisation or at least as soon as possible after receiving the "low
battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries
too long in stock.

Parameter Value
Nominal voltage 3 V

Nominal capacity 560 mAh

Temperature range (index below C0) Operating: 0 °C ... +60 °C
Storage: -20 °C ... +60 °C
Transport: -20 °C ... +60 °C

Technical data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1321

Parameter Value
Temperature range (index C0 and above) Operating: -40 °C ... +70 °C

Storage: -40 °C ... +85 °C
Transport: -40 °C ... +85 °C

Battery lifetime Typ. 3 years at +25 °C

Self-discharge 2 % per year at +25 °C
5 % per year at +40 °C
20 % per year at +60 °C

Protection against reverse polarity Yes, by mechanical coding of the plug.

Insulation The battery is completely insulated.

Connection Red = positive pole = above at plug, black =
negative pole,

Weight 7 g

Dimensions Diameter of the button cell: 24.5 mm
Thickness of the button cell: 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 300 R0001 TA521, lithium battery Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Ordering data

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1322

5.2.8.2.4 TA524 - Dummy communication module

1 Type
2 Label

TA524 is used to cover an unused communication module slot of a terminal base. It protects the
terminal base from dust and inadvertent touch.
Ä Chapter 5.2.3.1 “TB56xx for AC500 V3 products” on page 377

TA524 is mounted in the same way as a common communication module.
Ä Chapter 4.3.5 “Mounting and demounting the communication module” on page 109

Parameter Value
Weight 50 g

Dimensions 135 mm x 28 mm x 62 mm

Part no. Description Product life cycle phase *)
1SAP 180 600 R0001 TA524, dummy communica-

tion module
Active

Purpose

Handling
instructions

Technical data

Ordering data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1323

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.8.2.5 TA526 - Wall mounting accessory

If a terminal base or a terminal unit should be mounted with screws, the wall mounting accesso-
ries TA526 must be inserted at the rear side first. This plastic parts prevent bending of terminal
bases and terminal units while screwing up.
Ä Handling of the wall mounting accessory with terminal units

Ä Handling of the wall mounting accessory with terminal bases

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Purpose

Technical data

Ordering data

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1324

5.2.8.3 S500 and S500-XC
5.2.8.3.1 CP-E - Economic range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
● Wide-range input voltage
● Mounting on DIN rail
● High efficiency of up to 90 %
● Low power dissipation and low heating
● Wide ambient temperature range from -40 °C ... +70 °C
● No-load-proof, overload-proof, continuous short-circuit-proof
● Power factor correction (depending on the type)
● Approved in accordance with all relevant international standards

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1325

Table 297: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR427030R0000 CP-E
24/0.75

100-240 V
AC or
120-370 V
DC

24 V DC,
0.75 A

- 22.5

1SVR427031R0000 CP-E
24/1.25

100 V AC ...
240 V AC or
90V DC ...
375 V DC

24 V DC,
1.25 A

- 40.5

1SVR427032R0000 CP-E 24/2.5 100 V AC ...
240 V AC or
90 V DC ...
375 V DC

24 V DC, 2.5
A

- 40.5

1SVR427034R0000 CP-E 24/5.0 115/230 V
AC auto
select or 210
V DC ... 370
V DC

24 V DC, 5 A - 63.2

1SVR427035R0000 CP-E
24/10.0

115/230 V
AC auto
select or 210
V DC ... 370
V DC

24 V DC, 10
A

- 83

1SVR427036R0000 CP-E
24/20.0

115 V AC ...
230 V AC or
120 V DC ...
370 V DC

24 V DC, 20
A

- 175

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1326

5.2.8.3.2 CP-C.1 - High performance range

The power supplies feature series and parallel connection as well as a true redundant setup via
a redundancy module.
The CP-C.1 power supplies are ABB’s high performance and most advanced range. With
excellent efficiency, high reliability and innovative functionality it is prepared for the most
demanding industrial applications. These power supplies have a 50 % integrated power reserve
and operate at an efficiency of up to 94 %. They are equipped with overheat protection and
active power factor correction. Combinded with a broad AC and DC input range and extensive
worldwide approvals the CP-C.1 power supplies are the preferred choice for professional DC
applications.
● Typical efficiency of up to 94 %
● Power reserve design delivers up to 150 % of the nominal output current
● Signaling outputs for DC OK and power reserve mode
● High power density leads to very compact and small devices
● No-load-proof, overload-proof, continuous short-circuit-proof
● Active power factor correction (PFC)

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1327

Table 298: Ordering data
Order No. Type Input Output Overload

capacity
Module
width [mm]

1SVR360563R1001 CP-C.1
24/5.0

110 V AC ...
240 V AC or
90 V DC ...
300 V DC

24 V DC, 5 A +50 % 40

1SVR360663R1001 CP-C.1
24/10.0

110 V AC ...
240 V AC or
90 V DC ...
300 V DC

24 V DC, 10
A

+50 % 60

1SVR360763R1001 CP-C.1
24/20.0

110 V AC ...
240 V AC or
90 V DC ...
300 V DC

24 V DC, 20
A

+30 % 82

5.2.8.3.3 TA523 - Pluggable label mounting
For labelling the channels of S500 I/O modules.

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1328

1 Pluggable label mounting TA523
2 Plastic labels to be inserted into the holder

The pluggable label mounting is used to hold 4 plastic labels, on which the meaning of the I/O
channels of I/O modules can be written down. The holder is transparent so that after snapping it
onto the module the LEDs shine through.

The plastic labels can be printed out from TA523.doc.

Parameter Value
Use For labelling channels of I/O modules

Mounting Snap-on to the module

Weight 20 g

Dimensions 82 mm x 67 mm x 13 mm

Purpose

Handling
instructions

Technical data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1329

https://library.abb.com/d/3ADR020024X0001

Part no. Description Product life cycle phase *)
1SAP 180 500 R0001 TA523, pluggable label

mounting (10 pieces)
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.8.3.4 TA525 - Plastic labels
Accessory to label AC500 and S500 modules.

DC532

1.0 I0

1.1 I1

1.2 I2

1.3 I3

1.4 I4

1.5 I5

1.6 I6

1.7 I7

1.8 UP

1.9 ZP

2.0 I8

2.1 I9

2.2 I10

2.3 I11

2.4 I12

2.5 I13

2.6 I14

2.7 I15

2.8 UP

2.9 ZP

3.0 C16

3.1 C17

3.2 C18

3.3 C19

3.4 C20

3.5 C21

3.6 C22

3.7 C23

3.8 UP

3.9 ZP

4.0 C24

4.1 C25

4.2 C26

4.3 C27

4.4 C28

4.5 C29

4.6 C30

4.7 C31

4.8 UP

4.9 ZP

CH-ERR3 CH-ERR4

16 DI 16 DC
Input 24 V DC

Output 24 V DC 0.5 A

CH-ERR2CH-ERR1

TA525

DC532

1.0 I0

1.1 I1

1.2 I2

1.3 I3

1.4 I4

1.5 I5

1.6 I6

1.7 I7

1.8 UP

1.9 ZP

2.0 I8

2.1 I9

2.2 I10

2.3 I11

2.4 I12

2.5 I13

2.6 I14

2.7 I15

2.8 UP

2.9 ZP

3.0 C16

3.1 C17

3.2 C18

3.3 C19

3.4 C20

3.5 C21

3.6 C22

3.7 C23

3.8 UP

3.9 ZP

4.0 C24

4.1 C25

4.2 C26

4.3 C27

4.4 C28

4.5 C29

4.6 C30

4.7 C31

4.8 UP

4.9 ZP

CH-ERR3 CH-ERR4

16 DI 16 DC
Input 24 V DC

Output 24 V DC 0.5 A

CH-ERR2CH-ERR1

2
UP 24VDC 200WUP 24VDC 200W

1

1 Module without plastic label TA525
2 Module with plastic label TA525

The plastic labels are suitable for labelling AC500 and S500 modules (CPUs, communication
modules and I/O modules). The small plastic parts can be written on with a standard waterproof
pen.

The plastic labels are inserted under a slight pressure. For disassembly, a small screwdriver is
inserted at the lower edge of the module.

Parameter Value
Use For labelling AC500 and S500 modules

Mounting Insertion under a slight pressure

Ordering data

Purpose

Handling
instructions

Technical data

Hardware descriptions
Device specifications > Accessories

2024/01/053ADR010583, 1, en_US1330

Parameter Value
Disassembly With a small screwdriver

Scope of delivery 10 pieces

Weight 1 g per piece

Dimensions 8 mm x 20 mm x 5 mm

Part no. Description Product life cycle phase *)
1SAP 180 700 R0001 TA525, Set of 10 white plastic

labels
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.8.3.5 TA526 - Wall mounting accessory

If a terminal base or a terminal unit should be mounted with screws, the wall mounting accesso-
ries TA526 must be inserted at the rear side first. This plastic parts prevent bending of terminal
bases and terminal units while screwing up.
Ä Handling of the wall mounting accessory with terminal units

Ä Handling of the wall mounting accessory with terminal bases

Parameter Value
Weight 5 g

Dimensions 67 mm x 35 mm x 5,5 mm

Part no. Description Product life cycle phase *)
1SAP 180 800 R0001 TA526, wall mounting acces-

sory
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

Ordering data

Purpose

Technical data

Ordering data

Hardware descriptions

Device specifications > Accessories

2024/01/05 3ADR010583, 1, en_US 1331

5.2.8.3.6 TA535 - Protective caps for XC devices

Accessory to cover unused connectors of XC devices in salt mist environments.
One TA535 package includes different cap types for the following connectors:
● RJ45 connectors
● 9-pole D-sub connector
● FieldBusPlug connector
Protection should be done for all unused slots of -XC devices.

Part no. Description Product life cycle phase *)
1SAP 182 300 R0001 TA535, Protective Caps for

XC devices
Active

*) Modules in lifecycle Classic are available from stock but not recommended
for planning and commissioning of new installations.

5.2.9 Storage devices
5.2.9.1 Overview

AC500 PLCs offer a variety of storage devices. The following table gives a short overview and a
description on these storage devices:

IEC access means that the storage device can be accessed by function blocks
of an IEC program.

FTP access means that the device can be accessed via FTP server on the PLC
(if available).

Purpose

Ordering data

Hardware descriptions
Device specifications > Storage devices

2024/01/053ADR010583, 1, en_US1332

Component Description IEC access FTP access Processor
modules

userdisk
home/userdisk
(customer data)

User disk for
custom data
(flash)
Internal persis-
tent mass
storage placed in
the internal flash
device
Can be used for
any application
purpose

Yes Yes All

PLCLogic
home/PLCLogic
(customer data)

Internal persis-
tent mass
storage placed in
the internal flash
device
Used for configu-
ration data, user
application (boot
project), WebVisu
files, etc.

Yes Yes All

SRAM Battery-buffered
device, non-vola-
tile RAM
Used for retain/
persistent and
%M variables

Yes No All

system System RAM
disk (Temp direc-
tory) for storing
the firmware
For internal firm-
ware use only!

Yes No All

flash disk Internal persis-
tent mass
storage device
Can be used for
any application
purpose

Yes Yes PM5675-2ETH

memory card memory card
(removable)
Removable per-
sistent mass
storage device
Can be used for
any application
purpose

Yes Yes All

Hardware descriptions

Device specifications > Storage devices

2024/01/05 3ADR010583, 1, en_US 1333

5.2.9.2 Functionalities

Filesystem Name As of CPU firmware Description
userdisk V3.0.0 Boot project (size depends on PLC type)

WebVisu files for web server
Symbol file for OPC server and CP600
panels
User data via CAA_File_xxx.lib *)
Files via Automation Builder file download
Files via FTP server

V3.1.0 Save persistent data

SRAM V3.1.0 Save retain and persistent data

system V3.0.0 Load / save boot project

Firmware update

Internal system files

flash disk V3.1.0 User data via CAA_File_xxx.lib *)
Files via Automation Builder file download
Files via FTP server

sdcard V3.0.0 Firmware update,
User data via CAA_File_xxx.lib *)
Files via Automation Builder file download
Files via FTP server

V3.1.0 Save persistent data
Boot project (size depends on PLC type)

*) Examples for the filename with path (sFileName for FILE.Open) specified by the user ('mydir'
is optional, but must be an existing directory):
● 'userdisk/myfile.txt'
● 'sdcard/mydir/myfile.txt'
● 'flashdisk/myfile.txt'

The maximum number of files opened at the same time is limited to 1007.

The max. length of the user string (path and filename) is 241 characters.

Unlike the PLC's memory areas like %M or Retain, where 1 byte actually con-
sumes 1 byte, all storage device utilize a file system.

That means there is a difference between a files size and its size on the disk.

On disks the files are stored in so-called clusters which are a group of disk
sectors. "Size on disk" refers to the amount of cluster(s) a file is taking up, while
"file size" is an actual byte count of the file data. So you will usually find that
the size on disk is larger than the file size. This is not an error, but a result
of the disk organization via a file system. Since sector and cluster sizes vary
depending on a disk's size and the used file system, the ratios between the size
on disk and the file size also vary between the various storage devices.

Hardware descriptions
Device specifications > Storage devices

2024/01/053ADR010583, 1, en_US1334

5.2.9.3 Memory sizes

PLC type system RAM
disk

userdisk
PlcLogic
...

Retain, %M area flash disk memory
card

PM5012-x-
ETH

Dynamically
 /max. 7.6 MB

30 MB 8 kB
Retain and per-
sistent 4 kB (of
which 88 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 4 kB

None Ä Chapter
5.2.8.2.1
“MC5102 -
Micro
memory card
with adapter”
on page 1309

PM5032-x-
ETH

32 kB
Retain and per-
sistent 16 kB (of
which 88 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 16 kB

PM5052-x-
ETH

PM5072-
T-2ETH(W)
PM5082-
T-2ETH

100 kB
Retain and per-
sistent 36 kB (of
which 88 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 64 kB

PLC type system RAM
disk

userdisk
PlcLogic
...

SRAM
Retain, %M area

flash disk memory
card

PM5630-2ET
H

Dynamically
 /max. 7.6 MB

40 MB
30 MB (as of
V3.4.0)

256 kB
Retain and per-
sistent 128 kB (of
which 68 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 128 kB

None
Ä Chapter
5.2.8.2.2
“MC5141 -
Memory
card”
on page 1315

Ä Chapter
5.2.8.2.1
“MC5102 -
Micro
memory card
with adapter”
on page 1309

PM5650-2ET
H

Dynamically
 /max. 16 MB

246 MB (as
of V3.0.x)
381 MB (as
of V3.1)
285.75 (as of
V3.4.0)

AC500-eCo V3
processor
modules

AC500 V3 pro-
cessor modules

Hardware descriptions

Device specifications > Storage devices

2024/01/05 3ADR010583, 1, en_US 1335

PLC type system RAM
disk

userdisk
PlcLogic
...

SRAM
Retain, %M area

flash disk memory
card

PM5670-2ET
H

Dynamically
 /max. 69 MB

858 MB
643.50 MB
(as of V3.4.0)

1536 MB
1 MB retain and
persistent (of
which 68 byte are
reserved for allo-
cation table and
are not available
to the user)
512 kB %M

PM5675-2ET
H

8 GB

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

5.2.9.4 Storage device details
5.2.9.4.1 SRAM

The SRAM is a battery-buffered, nonvolatile RAM and is used for the retain/persistent and the
%M variables. If a battery is inserted into the processor module, the data stored in the SRAM
will not get lost during a power-down cycle.
During PLC startup, the SRAM will be deleted automatically if no or an empty battery is inserted
into the processor module. In this case the information
ABBInitSram_SetupMemory : SRAM cleared
and the warning
Retain size in config changed, or retain area got corrupted
are written into the log file.
Ä Chapter 6.8.2.1 “Handling of remanent variables for AC500 V3 products” on page 4412

5.2.9.4.2 Flash disk
The flash disk is an internal persistent mass storage device and can be used for any application
purpose.
It has a memory capacity of 8 GB (preformatted).
The flash disk is capable of high data throughput, however, the actual values to be achieved
depend on the use cases. If the performance seems to get insufficient, check the following:
● If the PLCs CPU load is high, reduce overall CPU load of the PLC to have more perform-

ance for file operations.
● If the device has low free space, cleanup the disk.

Please consider the cluster size of 4 kB in your application design to achieve optimal usage
of the flash disks space and access performance. For example, 10 files with 10 byte each
require 10*4 kB disk space, while 1 file with 100 byte requires only 4 kB.

Technically, the flash chip used in the V3 flash disk has 20000 erase cycles (Write cycles).Number of max.
write cycles

Hardware descriptions
Device specifications > Storage devices

2024/01/053ADR010583, 1, en_US1336

Due to the produced write overhead, the optimum achievable number of write cycles is 10000
(for typical payload sizes of 256 kB).

The write overhead is indicated by the write amplification factor (WAF).Example

Table 299: Rule of thumb for assessing the flash lifetime for an application:
Typical payload sizes WAF Max. write cycles

256 kB 2 10000

128 kB 4 5000

64 kB 8 2500

...

1024 Byte 512 < 40

512 Byte 1024 < 20

For monitoring the status

It is recommended to use the respective function blocks to monitor the status of
the flash disk.

Ä Chapter 6.8.2.2.1.4 “Health monitoring” on page 4424

Since FW version 3.3.0, there is also a diagnosis event supported when the
user flash memory reaches the end of its life cycle.

Lifetime of flash disk will also depend on the operating environment.

E.g. high ambient temperatures will impose stress on the user flash memory
and reduce the total overwrites achievable.

● Max. write speed is 20 MB/s (continuous write of sequential data)
● Read cycles are unlimited.

5.2.9.4.3 Memory card
The memory card is a removable persistent mass storage device and can be used for any
application purpose. Both firmware updates and boot project updates can be run from the
memory card.
Ä Chapter 6.3.1.4.5 “Firmware installation and update with memory card” on page 1426

Size Product specific
Ä Chapter 5.2.9.3 “Memory sizes ”
on page 1335

5.2.9.4.4 Further information
Ä Further details on the storage device sizes

Hardware descriptions

Device specifications > Storage devices

2024/01/05 3ADR010583, 1, en_US 1337

Ä Further details on the FTP access

Ä Further details on the PLC shell commands

5.3 Status LEDs, display and control elements
Depending on the device type, various operating elements provided on the front panel can be
used to control the devices of the PLC system and/or to change the operating mode.
Operating elements:
● Status LEDs:

Indicates the availability of devices and components such as communication modules,
communication interface modules or function modules. Functionality and diagnosis of the
status LEDs depends on the specific module and is described in the device description of
the appropriate module. Possible status: on/off/blinking

● I/O LEDs:
Displays the status of the inputs and outputs.

● Display:
Available for some processor modules. It can be used for simple configurations and for
reading out diagnosis information.
Ä Chapter 6.8.2.5 “Display, LEDs and function keys on the front panel” on page 4452
Ä Chapter 6.9.1.3 “Diagnosis in CPU display” on page 4607
Ä Chapter 4.8 “Troubleshooting” on page 149

● Function keys and switches:
Allows to change the current operating modes/status manually Ä Chapter 6.8.2.5.5
“Description of the function keys” on page 4457.

Hardware descriptions
Status LEDs, display and control elements

2024/01/053ADR010583, 1, en_US1338

—
6 Configuration and programming

Configuration and programming

2024/01/05 3ADR010583, 1, en_US 1339

6.1 Cyber security
6.1.1 General

This product is designed to be connected to and to communicate information and data via a
network interface. It is your sole responsibility to provide and continuously ensure a secure con-
nection between the product and your network or any other network (as the case may be). You
shall establish and maintain any appropriate measures (such as but not limited to the installation
of firewalls, application of authentication measures, encryption of data, installation of anti-virus
programs, etc.) to protect the product, the network, its system and the interface against any kind
of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data
or information. ABB Ltd and its affiliates are not liable for damages and/or losses related to such
security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data
or information.

Although ABB provides functionality testing on the products and updates that we release,
you should institute your own testing program for any product updates or other major system
updates (to include but not limited to code changes, configuration file changes, third party
software updates or patches, hardware exchanges, etc.) to ensure that the security measures
that you have implemented have not been compromised and system functionality in your envi-
ronment is as expected. This also applies to the operating system. Security measures (such
as but not limited to the installation of latest patches, installation of firewalls, application of
authentication measures, installation of anti-virus programs, etc.) are in your responsibility. You
have to be aware that operating systems provide a considerable number of open ports that
should be monitored carefully for any threats.
It has to be considered that online connections to any devices are not secured. It is your
responsibility to assure that connections are established to the correct device (and e.g. not to an
unknown device pretending to be a known device type). Furthermore you have to take care that
confidential data exchanged with the PLC is either compiled or encrypted.

Security details for industrial automation is provided on ABB website in a whitepaper.

The firmware update files for the AC500 V3 PLC are digitally signed releases by ABB. During
the update process, these signatures are validated by a hardware security component in the
PLC. This way, the AC500 V3 PLC will only update with valid, authentic firmware, signed by
ABB.

As part of the ABB security concept the AC500 V3 PLC comes with minimal services opened by
default. Only the services needed for initial setup and programming are open before any user
application is downloaded Ä Chapter 5.2.1.2.1.3 “Ethernet protocols and ports for AC500 V3
products” on page 307.

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

An application can be encrypted and signed in order to protect a running application in an
AC500 V3 PLC and to protect a configured project. How to set-up the user management, the
communication and the boot application in order to prevent unauthorized access is explained in
the application note AC500 V3 - Encrypt and sign your application.

Whenever possible, use an encrypted communication between AC500 V3 devices and third
party devices, such as HMI devices. This is necessary to protect passwords and other data.

Cyber security
disclaimer

Security related
deployment
guidelines for
industrial
automation
Signed firmware
updates

Open ports and
services

Encrypted and
signed applica-
tions

Secure commu-
nication

Configuration and programming
Cyber security > General

2024/01/053ADR010583, 1, en_US1340

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010707&LanguageCode=en&DocumentPartId=&Action=Launch

The AC500 V3 PLC contains a secure shell service to access core logging data in case of
problems which need a deeper analysis. This service is inactive by default, which means that no
one can access this privileged shell in the normal operating state.
To activate this service, local access to the PLC is necessary and activation is only valid until
the next power cycle of the PLC. Once activated, the service run on TCP port 22. Each PLC
also protects the secure shell access by an individual password.

For more information around cyber security please see our AC500 cyber security FAQ.

6.1.2 Defense in depth
The defense in depth approach implements multi-layer IT security measures. Each layer pro-
vides its special security measures. All deployed security mechanisms in the system must be
updated regularly. It is also important to follow the system vendor’s recommendations on how
to configure and use these mechanisms. As a basis, the components must include security
functions such as:
● Virus protection
● Firewall protection
● Strong and regularly changed passwords
● User management
● Using VPN tunnels for connections between networks
Additional security components such as routers and switches with integrated firewalls should
be available. A defined user and rights concept managing access to the controllers and their
networks is mandatory. Finally, the manufacturer of the components should be able to quickly
discover weaknesses and provide patches.

Only used services/ports should be enabled (e.g. to enable the functionality of
an FTPS server).

References: CODESYS Security Whitepaper

IT resources vary in the extent to which they can be trusted. A common security architecture is
therefore based on a layered approach that uses zones of trust to provide increasing levels of
security according to increasing security needs. Less-trusted zones contain more-trusted zones
and connections between the zones are only possible through secure interconnections such
as firewalls Fig. 265. All resources in the same zone must have the same minimum level of
trust. The inner layers, where communication interaction needs to flow freely between nodes,
must have the highest level of trust. This is the approach described in the IEC 62443 series of
standards.
Firewalls, gateways, and proxies are used to control network traffic between zones of different
security levels, and to filter out any undesirable or dangerous material. Traffic that is allowed to
pass between zones should be limited to what is absolutely necessary because each type of
service call or information exchange translates into a possible route that an intruder may be able
to exploit. Different types of services represent different risks. Internet access, incoming e-mail
and instant messaging, for example, represent very high risks.

Secure shell
access for ABB
service

Frequently
asked questions

Security zones

Configuration and programming

Cyber security > Defense in depth

2024/01/05 3ADR010583, 1, en_US 1341

https://share.library.abb.com/api/v4?cid=Root&q=3ADR010764
https://customers.codesys.com/fileadmin/data/customers/security/CODESYS-Security-Whitepaper.pdf

Fig. 265: Security zones

Fig. 265 shows three safety zones, but the number of zones is not necessarily decisive, there
can also be more or less - depending on the safety requirement. The use of multiple zones
allows access between zones of different trust levels to be controlled to protect a trusted
resource from attack by a less trusted one.
High-security zones should be kept small and independent. They need to be physically pro-
tected, i.e. physical access to computers, network equipment and network cables must be
limited by physical means to authorized persons only. A high-security zone should obviously not
depend on resources in a less secure zone for its security. Therefore, it should form its own
domain that is administered from the inside, and not depend on, e.g., a domain controller in a
less secure network.
Even if a network zone is regarded as trusted, an attack is still possible: by a user or compro-
mised resource that is inside the trusted zone, or by an outside user or resource that succeeds
to penetrate the secure interconnection. Trust therefore depends also upon the types of meas-
ures taken to detect and prevent compromise of resources and violation of the security policy.
References: Security for industrial automation and control systems

6.1.3 Secure operation
The controller must be located in a protected environment in order to avoid accidental or
intended access to the controller or the application.
A protected environment can be:
● Locked control cabinets without connection from outside
● No direct internet connection
● Use firewalls and VPN to separate different networks
● Separate different production areas with different access controls
To increase security, physical access protection measures such as fences, turnstiles, cameras
or card readers can be added.
Follow these rules for the protected environment:
● Keep the trusted network as small as possible and independent from other networks.
● Protect the cross-communication of controllers and the communication between controllers

and field devices via standard communication protocols (fieldbus systems) using appro-
priate measures.

● Protect such networks from unauthorized physical access.
● Use fieldbus systems only in protected environments. They are not protected by additional

measures, such as encryption. Open physical or data access to fieldbus systems and their
components is a serious security risk.

Configuration and programming
Cyber security > Secure operation

2024/01/053ADR010583, 1, en_US1342

https://search.abb.com/library/Download.aspx?DocumentID=3BSE032547&LanguageCode=en&DocumentPartId=&Action=Launch

● Physically protect all equipment, i.e., ensure that physical access to computers, network
equipment and cables, controllers, I/O systems, power supplies, etc., is limited to authorized
persons

● When connecting a trusted network zone to outer networks, make sure that all connections
are through properly configured secure interconnections only, such as a firewall or a system
of firewalls, which is configured for “deny by default”, i.e., blocks everything except traffic
that is explicitly needed to fulfill operational requirements.

● Allow only authorized users to log on to the system, and enforce strong passwords that are
changed regularly.
Ä Chapter 6.3.1.2.1.1 “General” on page 1409

● Continuously maintain the definitions of authorized users, user groups, and access rights,
to properly reflect the current authorities and responsibilities of all individuals at all times.
Users should not have more privileges than they need to do their job.

● Do not use the system for e-mail, instant messaging, or internet browsing. Use separate
computers and networks for these functions if they are needed.

● Do not allow installation of any unauthorized software in the system.
● Restrict temporary connection of portable computers, USB memory sticks and other remov-

able data carriers. Computers that can be physically accessed by regular users should have
ports for removable data carriers disabled.

● If portable computers need to be connected, e.g., for service or maintenance purposes, they
should be carefully scanned for viruses immediately before connection.

● All CDs, DVDs, USB memory sticks and other removable data carriers, and files with
software or software updates, should also be checked for viruses before being introduced
into the trusted zone.

● Continuously monitor the system for intrusion attempts.
● Define and maintain plans for incident response, including how to recover from potential

disasters.
● Regularly review the organization as well as technical systems and installations with respect

to compliance with security policies, procedures and practices.
A protected local control cabinet could look like in figure 266, page 1343. This network is
not connected to any external network. Security is primarily a matter of physically protecting
the automation system and preventing unauthorized users from accessing the system and from
connecting or installing unauthorized hardware and software.

Fig. 266: Isolated automation system

Servers and workplaces that are not directly involved in the control and monitoring of the
process should preferably be connected to a subnet that is separated from the automation
system network by means of a router/firewall. This makes it possible to better control the
network load and to limit access to certain servers on the automation system network. Note that
servers and workplaces on this subnet are part of the trusted zone and thus need to be subject
to the same security precautions as the nodes on the automation system network.

Configuration and programming

Cyber security > Secure operation

2024/01/05 3ADR010583, 1, en_US 1343

Fig. 267: Plant information network connected to an automation system

For the purposes of process control security, a general-purpose information system (IS) network
should not be considered a trusted network, not the least since such networks are normally
further connected to the Internet or other external networks. The IS network is therefore a
different lower-security zone, and it should be separated from the automation system by means
of a firewall. The IS and automation system networks should form separate domains.

Configuration and programming
Cyber security > Secure operation

2024/01/053ADR010583, 1, en_US1344

Fig. 268: Automation system and IS network

6.1.4 Hardening
System hardening means to eliminate as many security risks as possible. Hardening your
system is an important step to protect your personal data and information. This process intends
to eliminate attacks by patching vulnerabilities and turning off inessential services. Hardening a
system involves several steps to form layers of protection.
Commissioning phase
● Protect the hardware from unauthorized access
● Be sure the hardware is based on a secure environment
● Disable unused software and services (network ports)
● Install firewalls
● Disallow file sharing among programs

Configuration and programming

Cyber security > Hardening

2024/01/05 3ADR010583, 1, en_US 1345

● Install virus and spyware protection
● Use containers or virtual machines
● Create strong passwords by applying a strong password policy
● Create and keep backups
● Use encryption when possible
● Disable weak encryption algorithms
● Separate data and programs
● Enable and use disk quotas
● Strong logical access control
● Adjust default settings, especially passwords
Verification phase
● Verification of antivirus - Check antivirus is active and updated
● Verification of the identification - Check that test and unauthorized accounts are removed
● Verification of intrusion detection systems - Check malicious traffic is blocked
● Verification of audit logging - Check audit log is enabled
● You can use the checklist out of the cyber security white paper

Operation phase
● Keep software up-to-date, especially by applying security patches
● Keep antivirus up and running
● Keep antivirus definitions up-to-date
● Delete unused user accounts
● Lock an active session whenever it is unattended, e.g., lock the screen of the PC or of the

control panel (HMI)
Decommissioning phase
● Delete all credentials stored in the device like certificates and user data Ä Chapter 4.10

“Decommissioning” on page 157.
References: Hardening in Wikipedia (2021)

6.1.5 Certificates factory default - no encryption
As of Automation Builder Release 2.6.0, the encryption of the AC500 communication policy
is set to “No encryption” by default. The reason for that is that the PLC clock defaults to
01/01/1970 when shipped from the factory, any pre-installed certificate would already be expired
when the user attempts to connect.

Connection of the PLC to the Automation Builder and internet access.

The PLC must be equipped with a battery to keep the date in case of power off.
Ä Chapter 5.2.8.2.3 “TA521 - Battery” on page 1319

The PLC must be set to the current date and time. Ä Chapter 6.3.4.9.3.5.6 “Time syncro-
nisation” on page 1746

1. If necessary reboot the PLC.
2. Connect the PLC to the Automation Builder again.

The basis for an official trusted signed certificate is the creation of a Certificate Signing
Request.
As an example, the creation of a certificate for a FTP server is described.

Preliminary
work

Create an CA-
signed certifi-
cate

Configuration and programming
Cyber security > Certificates factory default - no encryption

2024/01/053ADR010583, 1, en_US1346

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch
https://en.wikipedia.org/wiki/Hardening_(computing)

1. Double-click to the PLC main node and select the “PLC Shell” tab. Command line input is
on the bottom. Find the index number for the FTP server and type [cert-getapplist] in the
below command line.

2. Type [cert-createcsr <index number> encoding=Base64] in the command line e.g. here:
[cert-createcsr 1 encoding=Base64] and press [ENTER].

For some users it may be necessary to swap “Base64” for “ASN1” if the
user's PKI needs this format.

3. Change to the “Log” tab.
4. Click the refresh button.

ð Wait until the log entry of CSR file created pops up.

5. Change to the “Files” tab.
6. Click the refresh button.
7. Open the “cert” folder in the PLC.
8. Open the “export” folder.
9. Copy the certificate request file [1_IoDrvFTPServer.csr] to any folder on your PC.

10. This file, here [1_IoDrvFTPServer.csr] must then be signed by your Public Key Infrastruc-
ture (PKI).

The signing process itself is outside the scope of this documentation. There are sufficient
sources on the internet for building your own PKI (e.g. PKI tutorial) - or get in touch with your IT
department.

After the signed certificate comes back from the PKI and is stored on the PC, it has to be
imported into the controller.

Integrate a cer-
tificate

Configuration and programming

Cyber security > Certificates factory default - no encryption

2024/01/05 3ADR010583, 1, en_US 1347

https://pki-tutorial-ng.readthedocs.io/en/latest/

Be sure to import into the “Own Certificates” folder.

1. Change to the “Security Screen”.
2. Select tab “Devices”, the folder “Own Certificates” and press the import button.

3. Select the certificate ([1_IoDrvFTPServer.cer]) to be imported in the opening file manager.
4. Press the “Open” button.

ð The new certificate will be shown as “IoDrvFTPServer” in the information column. The
previous self-signed certificate will lose its name and is therefore not valid anymore.

DON’T delete any of the installed certificates.

5. Check the validation and “Issued by” of the new certificate by activating the top PLC
branch.

6. Download and reboot the PLC (repower or use “PLC Shell” and command [reboot].)

We recommend changing the communication policy accordingly so that only
encrypted connections are allowed.

An application can be encrypted and signed in order to protect a running application in an
AC500 V3 PLC and to protect a configured project. How to set-up the user management, the
communication and the boot application in order to prevent unauthorized access is explained in
the application note AC500 V3 - Encrypt and sign your application.

As of Automation Builder 2.6.0 there is also the possibility to activate the “Enforced signing”
mode in the “Change Runtime Security Policy”. Then the controller accepts ONLY signed
downloads.
“Tab Communication Settings è Device è Change Runtime Security Policy... è Code Signing
è New policy è Enforced signing”

Encrypted and
signed applica-
tions

Enforced
signing

Configuration and programming
Cyber security > Certificates factory default - no encryption

2024/01/053ADR010583, 1, en_US1348

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010707&LanguageCode=en&DocumentPartId=&Action=Launch

More information about certificates and cyber security can be found in the white paper
AC500 cyber security.

6.1.6 Open Ports and Services
6.1.6.1 Default open Ethernet ports of AC500 V3 and AC500-eCo V3 CPUs

Protocol Port

ABB NetConfig 1) UDP 24576

Online access with driver 3S Tcp/Ip BlkDrvTcp (no scan) TCP 11740

OPC UA server 2) TCP 4840

Remarks:
1): The port 24576 for ABB NetConfig protocol can be disabled via PLC configuration by
deleting the protocol node from configuration tree of Ethernet interfaces ETH1 and ETH2.
2): The port 4840 for OPC UA server is closed by default as of SystemFW V3.1.0.

6.1.6.2 Open ports and services of the Automation Builder (Engineering PC)

Port Protocol Description
1217 TCP CODESYS Gateway V3

1210 TCP CODESYS Gateway V2

1211 TCP CODESYS Gateway V2

White Paper -
AC500 cyber
security

Configuration and programming

Cyber security > Open Ports and Services

2024/01/05 3ADR010583, 1, en_US 1349

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010317&LanguageCode=en&DocumentPartId=&Action=Launch

Port Protocol Description
22350 TCP/UDP CodeMeter License Server

(runtime) – license

22352 HTTP CodeMeter License Server
(runtime) – WebAdmin

22353 HTTPS CodeMeter License Server
(runtime) – WebAdmin

11040 HTTP Python editor server

6.2 Engineering software Automation Builder
6.2.1 Introduction

ABB Automation Builder is the integrated software suite for machine builders and system inte-
grators wanting to automate their machines and systems in a productive way. Combining the
tools required for configuring, programming, debugging and maintaining automation projects
from a common intuitive interface, Automation Builder addresses the largest single cost element
of most of today's industrial automation projects: software. ABB Automation Builder covers the
engineering of ABB PLCs, Safety PLCs, control panels, drives, motion and robots.

Before starting Automation Builder configuration read the version spe-
cific information provided in the Automation Builder readme file. It
describes new features and functions as well as workarounds on known
problems. The readme file is stored in the installation directory of
Automation Builder, however can be downloaded as well from ABB website
http://new.abb.com/plc/automationbuilder.

6.2.2 Automation Builder updates
An update notification dialog will be shown during Automation Builder startup in case there are
any updates available for the installed version.
The user has the possibility to check for updates manually: “Help è Check for Updates”

Ä Chapter 4.8.3 “Execution of a hotfix” on page 151

6.2.3 Use of open source components
ABB Automation Builder and AC500 V3 firmware are using open source components. A
detailed overview of these open source components and the corresponding licenses are avail-
able from Automation Builder via “Help è About... è License Terms”.
There are separate lists available for Automation Builder and AC500 V3 firmware.

6.2.4 Managing your licenses
6.2.4.1 Identifying the installed license

The title bar of the Automation Builder shows the version and the license information (Basic,
Standard or Premium).
Be aware of the following rule for this information:
The info in the title bar is taken in this order from the first found license.

ABB
Automation
Builder - One
holistic suite

Automation
Builder ReadMe

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1350

http://new.abb.com/plc/automationbuilder

● local licenses (on PC)
● on a dongle (USB key)
● network licenses
So if a local license is only basic and a dongle with premium license is inserted the functionality
is premium (the highest available) but the information in the title bar is basic.

To check your installed licenses, the CodeMeter Control Center tool can be used.
Ä Chapter 6.2.4.3 “Checking licenses with “CodeMeter Control Center”” on page 1352

6.2.4.2 Selecting the license used on Automation Builder startup
You can select, which license the Automation Builder should use on startup.

To select which license should be used:
1. In the Automation Builder menu select “Tools è Options”.

ð The “Options” window is opened.

2. In “Startup settings” under “License” select which license should be used.
● Default: The most comprehensive available license will be selected
● Use only local license: Network licenses will never be selected
● Display licenses selection dialog if shared licenses are available: On every Automation

Builder startup, you will be asked to select a license

3. To apply the setting select [OK].

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1351

6.2.4.3 Checking licenses with “CodeMeter Control Center”
1. Open the “CodeMeter Control Center” via the “Windows start menu è CodeMeter

è CodeMeter Control Center”.

2. In the “CodeMeter Control Center” window you can see the different license “tickets” /
“CmContainers” that are installed on your PC.
To see more details, open the “CodeMeter WebAdmin” by selecting [WebAdmin]

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1352

3. Select “Container è All Container”

ð Here the details of the license containers can be checked.

6.2.4.4 Setting dedicated network servers in search list
In case of a new installation CodeMeter will check for licenses also in the network. If there is
a run-out or wrongly installed license found, the service is closed without any further hint. This
looks like Automation Builder starts and closes after a few moments.
To set the search for licenses to your local machine only follow these steps:
1. Open the CodeMeter Control Center Ä Chapter 6.2.4.3 “Checking licenses with

“CodeMeter Control Center”” on page 1352.
2. Open the CodeMeter WebAdmin by selecting [WebAdmin]

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1353

3. Select “Configuration è Basic è Server Search List”

4. Select “add new Server”

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1354

5. Enter "localhost" in the Server's names field
6. Select [Add]

7. Confirm by selecting [Apply]

ð The "localhost" is added to the Server Search List

8. Restart the license check
9. Add more servers to the search list by entering the IP address or name of the license

servers you know.

6.2.4.5 Restarting license check with a dongle bound license
In case of using a dongle bound license it might be necessary to restart the check for license on
the PC, e.g. if the dongle was removed and reinserted.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1355

1. Open the CodeMeter Control Center Ä Chapter 6.2.4.3 “Checking licenses with
“CodeMeter Control Center”” on page 1352.

2. Select “Process è Restart CodeMeter Service”

6.2.4.6 Removing trial license to remove expiring message
If an unlimited license is installed after having a trial license activated, the warning message for
expiring date of the trial license still pops up at the Startup of the Automation Builder.

To avoid this message the trial license can be removed.

CAUTION!
– If you remove a license from your PC it will be permanently lost.
– Be aware that the trial license includes all premium functionalities, which will

not be available any more if your unlimited license is not a premium license,
e.g. standard.

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1356

1. Check for the Trial CmContainer number in CodeMeter WebAdmin InterfaceCheck for the
Trial CmContainer number in CodeMeter WebAdmin Interface

2. Search CmContainer number in CodeMeter Control Center

3. Remove this selected license in CodeMeter Control Center

6.2.4.7 Network licenses
6.2.4.7.1 General

It allows sharing of licenses between team members, easy switchover between several work-
stations with a single license and allows centralized administration (ordering, registration, activa-
tion).
The Automation Builder License Manager and CodeMeter need to be used to configure the
network server.

– In a typical office LAN (Local Area Network) setup on Client side the default
settings of the Automation Builder (and CodeMeter) are sufficient to get the
Network Licenses working.

– If an opened Automation Builder is loosing contact to the network server
(e.g. due to network problems) Automation Builder will prompt the user to
restore the network. After 30 minutes without connection to the network
server Automation Builder will fall back to basic edition. Opened editors for
non-basic features stay open and usable. So your work will not be lost in
case of troubles with the network.

Ä Information on how to borrow and return a network license.

The network lincenses can be used as of Automation Builder 1.2.0.

6.2.4.7.2 Setting up a network license
General

The following setup works in typical environments.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1357

Configuring a network license server
Network license must be registered.

Automation Builder license must be activated.
1. Launch CodeMeter WebAdmin as described in chapter 'Managing your licenses'

Ä Chapter 6.2.4 “Managing your licenses” on page 1350

2. Select “Configuration è Server è Server Access”

3. Enable Network Server
Keep the default port settings. These should work in most cases.

4. Select [Apply]

5. For the changes to take effect, restart CodeMeter Control Center Ä Chapter 6.2.4.5
“Restarting license check with a dongle bound license” on page 1355

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1358

NOTICE!
– In case you want to control usage of network licenses please refer to

chapter 'View network server license usage' Ä Chapter 6.2.4.7.4 “View
network server license usage” on page 1360

– Activation keys for network licenses are valid for one network license
each. This one license can be shared among many people but only one
Automation Builder instance at the same time. If you want to run more than
one Automation Builder instance at the same time you have to activate
more than one network license. This means you have to purchase and enter
more than one activation key (one per license).

Configuring the client side
The default settings of Automation Builder and the CodeMeter (on client side) are sufficient in
most cases to get the network licenses working. In case of problems accessing the network
license, please set the server search list on the client side.

6.2.4.7.3 View network server licenses
On the Network Server side you can find information on existing network licenses and their
current allocation.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1359

1. Launch CodeMeter WebAdmin Ä Chapter 6.2.4.3 “Checking licenses with “CodeMeter
Control Center”” on page 1352.

2. Select “License Monitoring è All Licenses ”

6.2.4.7.4 View network server license usage
1. Launch CodeMeter WebAdmin Ä Chapter 6.2.4.3 “Checking licenses with “CodeMeter

Control Center”” on page 1352.
2. Select “License Monitoring è Sessions ”

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1360

6.2.4.7.5 Controlling network server license usage
On the Network Server side you can define settings managing the client access to CodeMeter
License Server on a network.
1. Launch CodeMeter WebAdmin Ä Chapter 6.2.4.3 “Checking licenses with “CodeMeter

Control Center”” on page 1352.
2. Select “Configuration è Server è Server Access”

3. Add entries of PCs you want to share licenses with by adding client computers and IP
addresses for accessing CodeMeter License Server on a network.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1361

6.2.4.8 License borrowing manager
6.2.4.8.1 Introduction

The license borrowing manager allows you to borrow a network license for offline use and return
it.

The license borrowing manager is not part of the default software distribution,
but will be handed out on request.

The license borrowing manager is supported as of Automation Builder 2.2.3.

6.2.4.8.2 Borrowing a network license
Network access to the license server required.

Opened the license borrowing manager.
1. Select the license you want to borrow.

2. Select [Borrow License].
3. Select the target CmContainer.

Alternatively a new CmContainer can be created.
4. Select the end of the borrowing period.

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1362

5. Select [Ok].

ð The license has sucessfully been borrowed.

The list of available licenses has been updated.

6.2.4.8.3 Returning a network license
Network licenses will be returned automatically after the expiration of the maximum borrwoing
period. No licenses server access is required.

Automatical
return of a
license

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1363

Network licenses can be returned anytime manually.

Network access to the license server required.

Opened the license borrowing manager.
1. Select a borrowed license.

2. Select [Return License]

ð The license has sucessfully been returned.

6.2.4.9 Transfering an Automation Builder license
6.2.4.9.1 General

It is possible to transfer normal licenses from a PC to another PC or dongle (DM-Key).
This is not possible for ABB internal or temporary licenses, e.g. the 30 day Trial license.
The process consists of two main steps:
1. Return the actual license from the actual PC
2. Reactivate the license on the new PC

6.2.4.9.2 Getting activation code
For all license transfer processes the activation code is required. It is available from the license
paper from purchasing the license.
For Automation Builder licenses purchased April 2020 or later, the activation code is available
from the activated license:

Manual return of
a network
license

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1364

1. Open CodeMeter Control Center and navigate to the [WebAdmin].

2. Identify the right product code.
Automation Builder editions consist of multiple product codes. The activation ID is
available from the product code containing the edition name, e.g. “Automation Builder
Standard”.

3. Select product code to access the product code details. Under “License Information” you
can find the activation code.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1365

6.2.4.9.3 Returning an Automation Builder license
You need the License Activation code of the license you want to return.

1. Go to the following website: http://lc.codemeter.com/32838/depot-return/index.php

The website is also availaible through the Automation Builder menu under
“Help è Return of Automation Builder license”.

2. Insert your Activation code in the field “Ticket”
3. Select [Next]

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1366

http://lc.codemeter.com/32838/depot-return/index.php

4. Select [Re-Host License]

ð If the CmContainer is found, continue with Online licenses transfer Ä Chapter
6.2.4.9.4 “Online license transfer” on page 1367

ð If the CmContainer is not found, continue with Offline license transfer Ä Chapter
6.2.4.9.5 “Offline license transfer” on page 1369

6.2.4.9.4 Online license transfer
Wait till the CmContainer is found, then select [Deactivate Selected License Now]

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1367

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1368

6.2.4.9.5 Offline license transfer
If the CmContainer is not found on this PC, select “file-based license transfer” workflow.

ð The following dialog opens

The instructions will lead you through the main steps of the offline license transfer:

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1369

1. On the offline PC open the CodeMeter Control Center.
2. Select [License Update].

ð The CmFAS Assistant opens.

3. Select “Create a license request file”.

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1370

4. Select a location to store the license request file.
5. Transfer the license request file from the offline PC to an online PC.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1371

6. On the online PC choose the license request file and select
[Upload Request And Continue Now].

ð The next dialog is opened

7. Select [Download License Update File Now].

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1372

8. Save the license update file to a location on your computer.
9. Transfer the license upate file from the online PC to the offline PC.
10. On the offline PC open the CmFAS Assistant.
11. Select “Import license update”.

12. Select the license update file, to import the new license to the offline PC

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1373

13. To confirm a succesful license transfer return to the online PC and select [Next].

ð The last dialog is opened

14. On the offline PC open the CmFAS Assistant.
15. Select “Create receipt”.

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1374

16. Choose a location to save the license receipt file.
17. Transfer the license receipt file from the offline PC to the online PC.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1375

18. On the online PC choose the license receipt file and select [Upload Receipt Now].

ð After a succesful license transfer you will receive the following message

6.2.4.9.6 Return of unconfirmed license
If customers do not complete the offline activation process by uploading the receipt file, they
won't be able to return the license. However, working with Automation Builder is possible.
When the customer tries to return the license, they will see that the license is available, but they
won't be able to rehost the license because the button is not visible.
The only way to proceed here is to either create a receipt file from “CodeMeter” and upload it, or
contact ABB Support who will manually confirm the activation after reviewing the “CmDust”.
Below are the steps to enable the “Re-Host” button again.

Initial situation: No [Re-Host Licenses] button is visible in the “CodeMeter License Central
WebDepot”.

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1376

1. Open the “CodeMeter Control Center” on the PC.
2. Select the correct container under the “License” tab so that it is grayed out.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1377

3. Click the [License Update] button.

ð The “CmFAS Assistant” opens.

4. Click the [Next >] button.

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1378

5. In the window which appears, select the option [Create receipt].

6. Click the [Next >] button.
7. Select a file name for storing the receipt file.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1379

8. Click the [Commit] button.

9. Click the [Finish] button.
10. Open the CodeMeter License Central WebDepot

11. Click on the [Upload activation receipt] button.

Configuration and programming
Engineering software Automation Builder > Managing your licenses

2024/01/053ADR010583, 1, en_US1380

https://lc.codemeter.com/32838/depot/continue.php

12. Click the [Choose File] button and select the receipt file that has just been created by
“CodeMeter”. A new window will open.

13. Click the [Upload activation receipt] button and wait for the success message.

Configuration and programming

Engineering software Automation Builder > Managing your licenses

2024/01/05 3ADR010583, 1, en_US 1381

14. Go again to the return WebDepot and try to return license. Now the [Re-Host Licenses]
button is visible.

6.2.4.10 Generating license information file for support
To create a license information file which includes all license information for the support:
1. Select “Windows start menu è CodeMeter è Tools è CmDust”.

ð The explorer window opens and shows the folder where the created log file CmDust-
Result.log is stored.

2. Please attach this file to any support request regarding your licenses.

6.2.4.11 Generating log files for support
Sometimes more detailed log files are needed to analyse a situation.
Then please also zip the following folder and attach it to your support request.
C:\ProgramData\CodeMeter\Logs
This folder includes
● CmActDiagLogyyyy-mm-dd-hhmmss.log
● CodeMeteryyyy-mm-dd-hhmmss.log
To make it easier to distinguish when the files were created, they are named as follows:
● yyyy – year, mm – month, hh – hour; mm – minutes, ss – seconds.

6.2.4.12 Further information
For more information about the installation and activation of the Automation Builder see:
Automation Builder Installation and Activation

6.2.5 Setting up of communication parameters in Windows
To set up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.
The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.

Setting up of
communication
parameters

Configuration and programming
Engineering software Automation Builder > Setting up of communication parameters in Windows

2024/01/053ADR010583, 1, en_US1382

https://lc.codemeter.com/32838/depot-return/index.php
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010659&LanguageCode=en&DocumentPartId=&Action=Launch

1. Open Windows control panel. Click “Network and Internet
è Network and Sharing Center”.

2. Click “Change adapter settings”.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click “Local Area Connection (Ethernet)” and select [Properties].

4. Double-click “Internet Protocol Version 4 (TCP/IPv4)”.

Changing of the
IP address

Configuration and programming

Engineering software Automation Builder > Setting up of communication parameters in Windows

2024/01/05 3ADR010583, 1, en_US 1383

5. Enter your desired IP address and subnet mask.

6.2.6 Version information
Information on the installed Automation Builder version such as installed packages or license
terms can be found in menu “Help è About”.

Configuration and programming
Engineering software Automation Builder > Version information

2024/01/053ADR010583, 1, en_US1384

Package version informa-
tion

Information about all installed software packages is shown.

Plug-in version information Information about all installed plug-ins is shown.
Safety version information Information about all safety components is shown. This button and

the safety version are only visible if safety option is installed.
User registration data Enter or change your registration data.
License Terms Information about the license terms.
Create package for sup-
port

Creates a package which can be saved or sent to support
Ä Chapter 6.2.8 “Create log files for support” on page 1385.

It is possible to either continue working with a project on an older Automation Builder version or
to update a project to the latest Automation Builder version.

6.2.7 PLC runtime and demo licensing
The use of some libraries and devices require the PLC to have a runtime license. Further it
is possible to try out device features or library features by using a demo license Ä Chapter
6.3.2.2.2 “PLC runtime licensing” on page 1446.

6.2.8 Create log files for support
If a problem persists, contact ABB technical support. In order to be able to solve your problem
as soon as possible, please provide the affected Automation Builder project or Panel Builder
project, the log files and the firmware versions. How to read out log files is described in the
application note How to get log information.

Configuration and programming

Engineering software Automation Builder > Create log files for support

2024/01/05 3ADR010583, 1, en_US 1385

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011110&LanguageCode=en&DocumentPartId=&Action=Launch

6.2.9 Menues, views, windows
6.2.9.1 Display settings

Ensure the full display of Automation Builder editors by choosing
the option “Smaller - 100 % (default)” in “Start è Control Panel
è Appearance and Personalization è Display”.

6.2.9.2 Start page and menus
After start-up of Automation Builder software the start page is displayed.

All items of the Automation Builder user interface are described in the CODESYS documenta-
tion:

Configuration and programming
Engineering software Automation Builder > Menues, views, windows

2024/01/053ADR010583, 1, en_US1386

● Ä Chapter 6.4.1.21.3 “Menu Commands” on page 2551
● Ä Chapter 6.4.1.21.2 “Objects” on page 2409
● Ä Chapter 6.4.1.21.4 “Dialogs” on page 2745

6.2.9.3 “All Messages” window
Errors, warning and success messages are written to the “All messages” window:

Ä Chapter 6.4.1.21.3.4.5 “Command 'Messages'” on page 2583

6.2.10 Device repository
The Device Repository of Automation Builder manages the pool of devices that can be used in
the PLC configuration.
You install or uninstall devices in the “Device Repository” dialog box. The system installs a
device by reading the device description files, which define the device properties for configura-
bility, programmability, and possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.

Configuration and programming

Engineering software Automation Builder > Device repository

2024/01/05 3ADR010583, 1, en_US 1387

1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

[Edit Locations]: Changes the default repository location. The devices can be man-
aged at different locations.
[Install] / [Uninstall]: Installs or uninstalls devices.
[Renew device repository]: Updates the device list, e.g. after uninstallation of a device.
[Details]: Provides technical details on the selected device.

2. Select the install location. “System Repository” is set by default.

The device repository cannot be changed manually, e.g. by copying or deleting
files. Use always the “Device Repository” dialog to add or remove devices.

Dialog device
repository

Installing
devices

Configuration and programming
Engineering software Automation Builder > Device repository

2024/01/053ADR010583, 1, en_US1388

1. Click [Install] and select the appropriate file format.

ð The “Install Device Description” dialog box opens.

2. Select the file path of the device description.
3. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

4. Select the required device description and click [Open].

ð Automation Builder adds the device description to the matching category of your
device repository.
If errors occur during installation (for example, missing files that are referenced by the
device description), then Automation Builder displays them in the lower part of the
“Device Repository” dialog box.

During the installation the device description files and all additional files refer-
enced by that description will be copied to an internal location. Altering the
original files will have no further effects to an internal location.

The changes take only effect after reinstalling the corresponding device(s).
The version number shown in the information section of the device should be
verified.

Select the device you want to remove and click [Uninstall].
The device is removed from the list.

Uninstalled devices which are used in existing projects are indicated by the
symbol . The device will not be configured properly.

Uninstalling
devices

Configuration and programming

Engineering software Automation Builder > Device repository

2024/01/05 3ADR010583, 1, en_US 1389

6.2.11 Creating and configuring projects
● A project contains the objects which are necessary to create a controller program ("applica-

tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410
● Ä Chapter 6.4.1.21.2 “Objects” on page 2409
● Ä Chapter 6.4.1.21.4 “Dialogs” on page 2745
● Ä Chapter 6.4.1.21.3.5.13 “Command 'Project information'” on page 2604
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

When creating, saving or exporting, files may be created and their extensions are briefly listed
here for better understanding. Some of the files are generated when you login for the first time
to the PLC and the boot application is created. The list does not claim to be complete.

File extension Description
*.opt Project specific options.

*.bootinfo Will be created during boot project creation.
When creating a boot project the bootinfo is created. So
that this must not be read in completely to find out whether
the information is relevant, the checksums are created in a
separate file.

*.bootinfo_guids Contains the CRC of the bootinfo.

*.crc Checksum of the boot application.

What is a
project?

Auto generated
files

Configuration and programming
Engineering software Automation Builder > Creating and configuring projects

2024/01/053ADR010583, 1, en_US1390

File extension Description
*.compileinfo Will be created when downloading the project.

The compileinfo is loaded when opening the project, when
logging in it is checked if it matches the project on the
controller, if not the bootinfo-Guids are checked and if they
match then the bootinfo is loaded.

*.xml Contains the symbols exported via symbolconfig symbolfile.

*.precompilecache The precompile cache is only relevant when loading the
project. This is faster if the cache is available.

*.app Application file. A boot application is the application that is
started automatically when the controller is switched on or
started. For this to happen, the application on the controller
must exist as a file.

Handling of AC500 projects such as project creation, export/import, comparison of projects etc.
is described in the sections for AC500 V3 products.
Ä Chapter 6.3.1.1 “Project handling” on page 1398

6.2.12 Handling of AC500 projects
Handling of AC500 projects such as project creation, export/import, comparison of projects etc.
is described in the sections for AC500 V3 products.
Ä Chapter 6.3.1.1 “Project handling” on page 1398

Copy-and-paste from one project to another project in two different Automation Builder
instances is possible. After copying parts of a project to a higher Automation Builder version
the copied components have to be updated.

It is not possible to downgrade a project to an earlier Automation Builder ver-
sion.

– Import of export files is only allowed in the same profile version.
– Copy-and-paste of configurations must not be used to copy objects to an

earlier version.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

Automation Builder supports the creation and the import of project archive files. Archive files
contain all relevant project data including the PLC configuration, the CODESYS project files and
all device descriptions. This allows exchanging Automation Builder projects without taking care
of the target environment General Settings. Ä Chapter 6.3.1 “General settings” on page 1398

Project archive

Configuration and programming

Engineering software Automation Builder > Handling of AC500 projects

2024/01/05 3ADR010583, 1, en_US 1391

The 'User Management' provides functions for defining user accounts and configure the access
rights within a project. The rights to access project objects via specified actions are assigned
only to user groups, not to a single user account. So each user must be member of a group
General Settings. Ä Chapter 6.3.1 “General settings” on page 1398

6.2.13 Connection of devices
6.2.13.1 Configuring devices

All installed devices that are available in Automation Builder are listed in the device repository.
Ä Chapter 6.2.10 “Device repository” on page 1387

Modify your Automation Builder project by adding device objects. Preset items can be replaced
in the same way.
1. In the device tree, right-click an item node. Select [Add object].

2. Select the desired object and click [Add object].
3. Double-click the new object in the device tree to configure the device settings. Depending

on the selected item different configuration tabs are available.

User and access
rights of a
project

Configuration and programming
Engineering software Automation Builder > Connection of devices

2024/01/053ADR010583, 1, en_US1392

6.2.13.2 Symbolic names for variables, inputs and outputs

The IEC naming rules are not checked during input in Automation Builder.

Devices with I/Os provide an “I/O Mapping” tab in their configuration editor where the available
I/O channels can directly be mapped to a global variable.
The corresponding variable declarations are automatically available in the project.
All available I/O channels can easily be assigned to a variable.

AC500 uses Intel Byte Order (Little Endian).

Only entries with a data type set in column “Type” can be mapped. These
entries can be expanded to show the available I/O channels.

If the project has been imported from a previous Automation Builder version,
all variables should be checked to avoid inconsistencies concerning the I/O
mapping.

6.2.13.3 Update of AC500 devices
Perform a firmware update to update AC500 V3 devices. Ä Chapter 6.3.1.4.3 “Installation and
update of the AC500 V3 firmware” on page 1422

6.2.13.4 Comparing objects
To compare similar objects within a project (such as the project configuration) select both
objects. Right-click and select “Compare Objects” to see the differences.

Input and output
mapping

Configuration and programming

Engineering software Automation Builder > Connection of devices

2024/01/05 3ADR010583, 1, en_US 1393

6.2.14 Connection of serial interfaces
Depending on the device type, the configuration of serial interfaces is different.

Ä Chapter 6.3.2.14 “Serial interface” on page 1586

6.2.15 Converting an AC500 V2 project to an AC500 V3 project

A project that has been configured for an AC500 V2 PLC can be converted to a
project for an AC500 V3 PLC. Essentially, the conversion is done in Automation Builder,
however, some additional actions have to be executed manually. The complete conver-
sion procedure of a V2 project to a V3 project is described in the application note
Converting an AC500 V2 project to an AC500 V3 project.

Application
example

Configuration and programming
Engineering software Automation Builder > Converting an AC500 V2 project to an AC500 V3 project

2024/01/053ADR010583, 1, en_US1394

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch

6.2.16 Automation Builder installation manager
6.2.16.1 Introduction

Automation Builder installation manager allows you to install customer specific software pack-
ages, modify the existing installation, update installation information and to uninstall Automation
Builder software packages in a comfortable and flexible way.

You can launch installation manager from the main menu of Automation Builder, “Tools
è Installation Manager”, or from Windows start menu.

ð Installation manager starts.

Uninstall all Uninstalls the currently installed Automation Builder software. Ä Chapter 6.2.16.5 “Uninstal-
ling Automation Builder” on page 1397

Install Package Installs customer specific software packages. Ä Chapter 6.2.16.2 “Installing customer specific
package” on page 1395

Modify Adds or removes installed software packages. Ä Chapter 6.2.16.3 “Adding or removing
installed software packages” on page 1396

Info Export Exports detailed information of installed packages in a notepad.
Check for new
service release

Checks if your installed version of Automation Builder is up to date and checks for updates.
Ä Chapter 6.2.16.4 “Checking for updates” on page 1396

6.2.16.2 Installing customer specific package
Installation manager allows you to install customer specific software packages (CABPKG files).
These packages are separately distributed to the customer based on the customer requirement.

Configuration and programming

Engineering software Automation Builder > Automation Builder installation manager

2024/01/05 3ADR010583, 1, en_US 1395

1. In the installation manager, click [Install Package].
2. Select the package to be installed (.cabpkg file) from the file system.
3. Select the components to be installed.
4. Click [Install].

ð Data installation starts.

5. Successfully installed components are indicated with .

Errors during data download are indicated with . Errors during download of any package
component aborts the installation. In this case click “Show Log” and save the log data.
Send the log file to ABB support team.
Click [Finish] to end the wizard.

6.2.16.3 Adding or removing installed software packages
1. In the installation manager, click “Modify”.

ð The selection page opens.

The selected software packages are installed already.
The not selected software packages are not installed.

2. Select the software packages you want to install.
Unselect the software packages you want to uninstall.

You cannot unselect the main Automation Builder software package.

3. Click “Continue”.

ð First, the unselected software packages will uninstall.

Afterwards, the new selected software packages will be downloaded and installed.
4. Successfully downloaded components are indicated with .

Errors during data download are indicated with . Errors during download of any package
component aborts the installation. In this case click “Show Log” and save the log data.
Send the log file to ABB support team.
Click [Finish] to end the wizard.

6.2.16.4 Checking for updates
In the installation manager, click “Check for new service release”.

ð If a newer Automation Builder version is available, you will get an option to download
and install the new version.

Create a project archive before upgrading Automation Builder. Project
archives contain all project data, including data that is not stored with
a *.project file, e.g. device description files for third party devices.

Ä Chapter 6.3.1.1.8.2 “Creation of an archive ” on page 1408

Configuration and programming
Engineering software Automation Builder > Automation Builder installation manager

2024/01/053ADR010583, 1, en_US1396

6.2.16.5 Uninstalling Automation Builder
Installation manager offers a comfortable way to uninstall the Automation Builder software. This
will uninstall all related packages of Automation Builder platform as well, such as Mint Plug-in,
Automation Builder Extensions, Drive Manager etc.
1. In the installation manager, click [Uninstall all].

ð A warning message is displayed to uninstall Automation Builder software.

Click [Yes] to continue.

2. If Automation Builder instances are running, a warning message is displayed.
Close running instances of Automation Builder and click [Retry] to continue uninstallation.
With [Abort] uninstallation of the current package is stopped. Uninstallation is continued
with the next package. With [Ignore], uninstallation is forced. As this can lead to an
erroneous uninstallation, we recommend you, not to use this option.

3. If installation manager was launched with “Tools è Installation Manager”, the following
message is displayed as Automation Builder is still running:
With [Yes] Automation Builder software is closed to continue uninstallation procedure.
With [No] uninstallation of the current package is stopped. Uninstallation is continued with
the next package.

4. For each of the packages being uninstalled, system may prompt to continue uninstallation.
5. Successfully uninstalled components are indicated with .

Errors during uninstallation are indicated with . Errors during uninstallation of any
package component aborts the uninstallation. In this case click “Show Log” and save
the log data. Send the log file to ABB support team.
Click [Finish] to end the wizard.

Configuration and programming

Engineering software Automation Builder > Automation Builder installation manager

2024/01/05 3ADR010583, 1, en_US 1397

6.3 Configuration in Automation Builder for AC500 V3 products
6.3.1 General settings
6.3.1.1 Project handling
6.3.1.1.1 General

● A project contains the objects which are necessary to create a controller program ("applica-
tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410
● Ä Chapter 6.4.1.21.2 “Objects” on page 2409
● Ä Chapter 6.4.1.21.4 “Dialogs” on page 2745
● Ä Chapter 6.4.1.21.3.5.13 “Command 'Project information'” on page 2604
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

6.3.1.1.2 Creating a new project
1. Select “File è New Project”.
2. Select “AC500 project”, enter a project name and specify the storage location for the new

project.
With “Empty project” a project without a PLC is created.

What is a
project?

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1398

3. Select the device type for the new project and click [Add object].

ð A new project is created and can be configured.

6.3.1.1.3 Opening an existing project

NOTICE!
Risk of damaging Automation Builder projects!
Projects created with Automation Builder are incompatible with CODESYS
V2.3.9.x. Do not open projects with CODESYS V2.3.9.x as this can cause
corrupted Automation Builder projects.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1399

1. Select “File è Open Project”.

ð The “Open Project” dialog appears.

2. Select a previously saved project from the file system.

ð Automation Builder switches to the version of the project and opens the project.

6.3.1.1.4 Exporting and importing a project
Configuration of a complete PLC or of single devices can be reused within the same project by
copy-and-paste the desired nodes in the device tree.
In order to reuse a PLC configuration cross-over projects, the project configuration can be
exported and imported afterwards into another project.

An exported project configuration can only be imported to a project with the
same Automation Builder version. If the versions are not the same, the import
fails with an error message.

Automation Builder performs an integrity check for the PLC configuration before
generating the configuration.

From the menu, select “Project è Export è Project”. Select the objects to be exported. The
configuration of the selected items will be added to an export file (*.export).

“One file per subtree”: If this option is activated, all objects belonging to the same subtree will
be exported into the same export file, otherwise a separate file will be created for each particular
object.

Opening a
project

Project export

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1400

For importing a project a basic and an advanced function is available.
“Basic project import”: Users with a basic or a standard Automation Builder license can perform
a basic project import. Command: “Project è Import è Project”.

A previously exported project configuration is imported into the current project.
With this, the current project configuration is overwritten.

In order to supplement the current project with the project configuration of
a previously exported project, use the compare function. Command: “Project
è Compare”.

Ä Chapter 6.3.1.1.7 “Comparing projects” on page 1405

“Advanced project import”: Users with a premium Automation Builder license can perform an
advanced project import. Command: “Project è Import è Project with compare”. This com-
mand allows to compare two projects, to check on differences and to adapt single parts of the
project configuration easily.

Basic project import
1. From the menu, select “Project è Import è Project”.

A previously exported project configuration is imported into the current
project. With this, the current project configuration is overwritten.

In order to supplement the current project with the project configuration
of a previously exported project, use the compare function. Command:
“Project è Compare”.

Ä Chapter 6.3.1.1.7 “Comparing projects” on page 1405

2. Select the export file from the file system and click [Open] to import the project configura-
tion.

An exported project configuration can only be imported to a project with the
same Automation Builder version. If the versions are not the same, the import
fails with an error message.

Advanced project import
Perform an advanced project import in order to compare two projects, to check on differences
and to adapt single parts of a previously exported project configuration easily.
1. From the menu, select “Project è Import è Project with compare”.
2. Select the export file from the file system and click [Open] to import the project configura-

tion.

ð The project import is started.

Project import

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1401

3. Once the project file is imported, a compare view is displayed. The left pane represents
the current project, the right pane represents the imported project.

ð Differences between the current project and the imported project are highlighted in red
color.

ð Additional modules in the current project that are not available in the imported project
are highlighted in green color.

ð Additional modules in the the imported project or deleted modules in the current
project are highlighted in blue color.

ð A summary of all differences within the projects is given in the “Comparison statistics”
under the device tree.

4. Every highlighted item of both projects can be handled individually and can either be
transferred to the current project or skipped.
● [Accept Block]: All items of the selected node are transferred to the current project

with one click. Use this function for example to copy all nodes of a PLC configuration
from the imported project to the current project (select “I/O_Bus” node).

● [Accept Single]: Only a single item from a node is transferred to the current project.
Use this function for example to copy certain I/O modules from the imported project to
the current project.

ð All accepted items are highlighted in the current project in yellow color.

ð To undo a selection, again, click [Accept Block] or [Accept Single].

ð To accept all changes on the current project, close the “Project Comparison -
Differences” tab and confirm the prompted dialog.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1402

5. If in the import project the PLC contains an AC500-S safety module, a security check is
performed which requires user authentication:

6. After a successful user authentication the AC500-S safety modules are added to the
compare view and can be imported to the current project.

6.3.1.1.5 Upgrade a project to a new Automation Builder version or profile
With the Automation Builder version 2.6.0 a side-by-side installation is possible, i.e. any
Automation Builder versions can be installed in parallel.
Automation Builder 2.5 or a lower version can be installed for access to all required previous
versions.
When updating the Automation Builder version, a previously configured project must be con-
verted in order to be used in a new Automation Builder version.

1.
Create a project archive before upgrading Automation Builder. Project
archives contain all project data, including data that is not stored with a
*.project file, e.g. device description files for third party devices.

Ä Chapter 6.3.1.1.8.2 “Creation of an archive ” on page 1408

“File è Project Archive è Save/Send Archive...”

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1403

2. Use the Automation Builder update notification to inititate the software update.
Ä Chapter 6.2.2 “Automation Builder updates” on page 1350

or:
3. Download the file from the PLC website - all versions of the Automation Builder are

available.
4. Install the new Automation Builder and follow the instructions.
5. Open a previously configured project.

ð Automation Builder performs an integrity check for the PLC configuration before gen-
erating the configuration.
Automatically a window appears with the request to upgrade the project.

6. Click the [OK] button.

ð During the project upgrade, an option for migration of third party devices can be
selected.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1404

https://library.abb.com/r?cid=9AAC177443&dkg=dkg_software&q=Automation%20Builder

7. Click the [OK] button to upgrade third party devices.
If this option was not selected during the upgrade procedure, migration can be initiated
manually after an Automation Builder upgrade in order to migrate all third party devices to
the project.
Ä Chapter 6.3.1.5 “Migration of third party devices” on page 1439

8. The firmware of the communication interface modules will not automatically be upgraded.
You can do this with the IP configuration tool. For this, the IP configuration tool must be
used as stand-alone variant.
Follow the instructions for the firmware upgrade for communication interface modules.

Ä Chapter 6.3.2.2.4.3.2 “Stand-alone installation” on page 1457

A project that has been configured for an AC500 V2 PLC can be converted to a
project for an AC500 V3 PLC. Essentially, the conversion is done in Automation Builder,
however, some additional actions have to be executed manually. The complete conver-
sion procedure of a V2 project to a V3 project is described in the application note
Converting an AC500 V2 project to an AC500 V3 project.

It is not possible to downgrade a project to an earlier Automation Builder ver-
sion.

6.3.1.1.6 I/O mapping export and import
To exchange information on I/O mapping only, data can be exported as .csv file. This allows
maintenance of I/O data outside Automation Builder, e.g. in MS Excel.
Right-click the “Processor Module” node or “I/O_Bus” node in the device tree and select
“Export -> IO mapping”. To export the I/O Mapping for the complete project, e.g. with more
than one configured processor modules, I/O data of the complete project can be exported
“Project -> Export -> I/O mapping”.

A previously exported .csv file can be imported to the project:
“Project -> Import -> I/O mapping”.

6.3.1.1.7 Comparing projects
Introduction

You can compare the currently open project with another project – a reference project. The
differences in contents, properties, or access rights are detected and shown in a comparison
view.

Application example
How to compare Automation Builder projects for an
AC500 V3 PLC is decribed in the application note
Project Comparison - Compare AC500 Projects and Integrate the Differences.

Application
example

Export I/O map-
ping

Import I/O map-
ping

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1405

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010662&LanguageCode=en&DocumentPartId=&Action=Launch

Clicking “Project è Compare” opens the “Project Compare” dialog for you to configure and
run the comparison. Then the result is shown in the comparison view “Project Compare -
Differences” where the objects are aligned in a tree structure. Objects that indicate differences
from the respective reference object are identified by colors and symbols. This is how you
detect whether or not the contents, properties, or access rights are different.
For differences in the contents, you can also open the detailed compare view “Project Compare
- <object name> Differences” in order to zoom into the object. In the detailed compare view,
the contents of the object and reference object are displayed or their source code aligned. The
detected differences are marked. Previously opened views are not closed. In this way, you can
have any number of comparison views open and read them, in addition to the project compare
view.
You can accept the detected differences from the reference project into the current project.
This is possible only from the reference project into the open project. To do this, you activate
differences (for example in the code) that should be accepted in the current project with the
commands , , or in the active comparison view for accepting. These positions are high-
lighted in yellow. Make sure that any other open compare views are inactive (write-protected,
read-only). therefore, you can activate differences to be accepted in exactly one comparison
view only. When exiting the active compare view, if you confirm that the differences that are
activated for acceptance are actually accepted into the current project, then the current project
is modified.
In order to exit the project comparison completely, close the project compare view.

Creating a comparison view
Requirement: You have made changes in your current project and wish, for example, to com-
pare it with the last-saved version. In the meantime, for example, you have added further POUs,
removed a POU, changed single lines of code or the object properties in function blocks.
1. Select the command “Project è Compare”.

ð The “Project Comparison” dialog box opens.

2. Enter the path to the reference project, for example the path to the last-saved version of
your current project.

3. Leave the activation of the comparison option “Ignore Spaces” as it is.
4. Click on “OK”.

ð The comparison view opens. Title: “ Project Comparison – Differences”. The Device
trees of the current project and the reference project are displayed alongside each
other and the changed objects are marked in color.

5. Select an object marked in blue in the tree of the reference project (right). The current
project no longer contains this object.

Click on “Accept Single”

ð The object is added to the tree of the current project (left). The line has a yellow
background. appears in the middle column.

6. Select an object marked in green in the tree of the current project (left). The reference
project does not contain this object.

Click on “Accept Single”

ð The object is removed again from the tree of the current project (left). The line has a
yellow background. appears in the middle column.

7. If changes are detected in the content of an object that is contained in both the current
project and the reference project, this is indicated by red lettering. You can then switch to
the detailed comparison view for the object by double-clicking on the object.

8. Close the comparison view and answer the query whether the changes made are to be
saved with “Yes”.

ð The changes become effective in the project.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1406

Opening the detailed compare view
Requirement: For example, a user modified the code in a POU of the current project. You have
performed the project comparison by clicking “Project è Compare”. The project compare view
shows this POU highlighted in red in the aligned in the project tree.
1. Double-click the line of the aligned POU versions.

ð The compare view switches to the detailed compare view of the POU. The modified
code lines are highlighted in gray and written in red.

2. Click .

ð Code lines with changes (red) are extended by two lines: an line with insert (left,
green) and a line with delete (right, blue).

3. Click again.

ð The code line is marked again as modified.

4. Move the mouse pointer to the code line marked as modified and click “Accept Single”.

ð The code line from the reference project is activated for acceptance into the current
project.

5. Click .

ð The project compare view opens for the entire project. It is write-protected (read-only)
to prevent you from activating differences for acceptance. The link highlighted in
yellow above the tree view also indicates this.

6. Click the link: “Project compare view is read only because there are uncommitted changes
in another view. Click here to switch to the modified view.”

ð The detailed compare view opens again. The unconfirmed changes are highlighted in
yellow.

7. Click in the tab of the view and confirm that the changes should be saved.

ð The detail project view is closed and the POU is overwritten. Now it corresponds to
the POU of the reference project. The project view is active again so that you can
continue working with project compare.

If you do not click the link, but click instead to close the editor of the project
compare view, then you will also confirm the acceptance of changes into the
current project. The detail changes are accepted and then the project compare
is closed completely.

See also
● Ä Chapter 6.4.1.5 “Comparing projects” on page 1817
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607
● Ä Chapter 6.3.1.1.7.2 “Creating a comparison view” on page 1406

6.3.1.1.8 Project archive
General

Automation Builder supports the creation and the import of project archive files. Archive
files contain all relevant project data including the PLC configuration, the project files of the
CODESYS and all device descriptions. This allows exchanging Automation Builder projects
without taking care of the target environment.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1407

Creation of an archive
The following steps describe the creation archive file from an Automation Builder project:

1. Select “File è Project Archive è Save/Send Archive”.
2. Select the information which should be included in the archive file from the list box.

Section/Control Parameter Description
Information
selection list box

Options Not supported

Referenced
devices

The referenced devices can be selected by expanding
the "Referenced devices" item of the list box. It is
strongly recommended to include all devices in the
project archive to maintain consistency.

Additional files - Not supported

Comment - Opening a control window which allows the input of a
comment to the project archive.

Save - Opening a dialog window to determine the path and the
file name of the project archive and storing it to the file
system.

Send - Not supported

Cancel - Canceling the operation and closing the dialog window.

With [Comment] additional information can be added to the project archive, for example to
add a brief description or some information concerning the project.

3. Proceed with [Save...].

It is strongly recommended to keep the default settings.

Section “Options” of the list box is not support. Do not enable this option.

Extraction of an archive

The currently loaded project will be closed automatically when extracting
the selected project archive. It is recommended to open a new instance of
Automation Builder before starting the extraction process.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1408

The following steps describe the extraction of an archive file and the import to Automation
Builder.
1. Select “File è Project Archive è Extract Archive”.
2. Select the desired project file and click [Open].

Section/
Control

Parameter Description

Locations Extract into the
same folder where
the archive is
located

The project archive will be extracted to the same path
where the archive is located.

 Extract into the fol-
lowing folder

Path to which the project archive should be extracted.

 Button ... Opening a folder selection dialog which allows
selecting the desired path.

Contents Items Select the items which should be extracted.

 Comment Displaying comments included inside the Project
archive file.

 Extract Triggering the extraction process. Automation Builder
extracts the archive and creates a project from out
the archive. After creating the project Automation
Builder checks the version of the project. If the
project version and the activated Automation Builder
version is not identical the workflow is the same as
described in "Opening an Existing Project".

 Cancel Closing the Extract Project Archive dialog and can-
celing the extraction process.

6.3.1.2 User and access rights management
6.3.1.2.1 User and access rights
General

The “User Management” provide functions for defining user accounts and configure the access
rights within a project. The rights to access project objects via specified actions are assigned
only to user groups, not to a single user account. So each user must be member of a group.

User management
With the help of the integrated user management, user groups with different access
rights and authorizations can be defined. Configuration and handling of the user man-
agement in Automation Builder and a AC500 V3 is decribed in the application note
User Management with V3 - Configuration and Handling.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1409

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010315&LanguageCode=en&DocumentPartId=&Action=Launch

NOTICE!
For security reasons we recommend activating the user administration for the
PLC (and the Visualization).
Please note that when user management for the PLC is enabled, the username
and password are always required to connect to the PLC.
If you have lost the administrator password, there is no way to recover it and the
PLC must be sent in for reset!
Ä Chapter 6.1 “Cyber security” on page 1340

Before setting up users and user groups, notice the following: The configuration of users and
groups is done in the Project Settings dialog.
Ä Chapter 6.3.1.2.3 “Project Settings - Users and groups” on page 1413

● Automatically there is always a group "Everyone" and by default primarily each defined user
or other groups are members of this group. Thus each user account at least automatically is
provided with defined default settings. Group "Everyone" cannot be deleted, just renamed,
and no members can be removed from this group.

● Also automatically there is always a group "Owner" containing one user "Owner". Users can
be added to or removed from this group, but at least one user must remain. This group also
cannot be deleted and always has all access rights. Thus it is not possible to make a project
unusable by denying the respective rights to all groups. Both group and user "owner" might
be renamed.

● When starting the programming system resp. a project, primarily no user is logged on the
project. But then the user optionally might log on via a defined user account with user name
and password in order to have a special set of access rights.

Notice that each project has its own user management!
So, for example to get a special set of access rights for a library included in a
project, the user must separately log on to this library. Also users and groups,
set up in different projects, are not identical even if they have identical names.

CAUTION!
The user passwords are stored irreversibly!
If a password gets lost, the respective user account gets unusable. If the
"Owner"-password gets lost, the entire project might get unusable!

Access right management
User management in a project is only useful in combination with the access right management.
Notice the following:
● In a new project basically all rights are not yet defined explicitly but set to a default value.

This default value usually is: "granted".
● In the further run of working on the project each right can be explicitly granted or denied

resp. set back to default. The access right management of a project is done in the Permis-
sions dialog Ä “Permissions” on page 1411.

● Access rights on objects get "inherited". If an object has a "father" object (example: if an
action is assigned to a program object, that is inserted in the structure tree below the
program, then the program is the "father" of the action object) , the current rights of the
father automatically will become the default settings of the child. Father-child relations of
objects concerning the access rights usually correspond with the relations shown in the
POUs or Devices tree and are indicated in the Permissions dialog by the syntax "<father
object>.<child object>".

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1410

Action ACT is assigned to POU object PLC_PRG. So in the POUs window ACT is shown in
the objects tree indented below PLC_PRG. In the Permissions dialog ACT is represented by
"PLC_PRG.ACT" indicating that PLC_PRG is the "father" of ACT. If the "modify" right would be
denied explicitly for PLC_PRG and a certain user group, the default value of the "modify" right
for ACT automatically also would be "denied".

Example

6.3.1.2.2 User management commands
The 'User Management UI' plug-in provides commands for command category 'User Manage-
ment'.
These are used for:
● Configuration of access rights on the project objects
● Logging on or off to/from the project via a defined user account in order to get the access

rights which are associated to this account
The configuration of user accounts and groups is done in the “Project Settings” subdialog “User
Management” Ä Chapter 6.3.1.2.3 “Project Settings - Users and groups” on page 1413.
By default the following commands are part of submenu “User Management” in the “Project”
menu: “Logon”, “Logoff”, “Permissions”.

Symbol:
This command opens the “Logon” dialog for logging on to a project or library via a defined user
account.
Logging on with a certain user account means to log on with those object access rights which
are granted to the group which the user belongs to. The configuration of user accounts and
groups is done in the “Project Settings” subdialog “User Management”.
To log on select the project or an included library from the selection list in the Project/Library
field. Enter User name and Password of a valid user account, noticing that each project or
library has an own user and access rights management. Log on with OK.
If already another user is logged on the project, this one will be logged out automatically by the
new log-on action.
When you are logged on to a project or library and try to perform an action for which you
have no right, automatically a Logon dialog will be opened, giving the possibility to log on with
another user account provided with the appropriate rights.
The status bar always displays which user currently is logged on the project.

Symbol:
This command logs off the currently logged on user. If no user had been logged on to the
currently opened project or to a referenced library an appropriate message will appear when
trying to log off.
If the user currently is logged on to more than one project or referenced library (not necessarily
with the same user account) a “Logoff” dialog will appear when trying to log off.
From the Project/Library selection list choose those project/library for which you want to log off.
The name of the current user is displayed just for information.
The status bar always displays which user currently is logged on the project.

This command opens the “Permissions” dialog, where the rights to work on objects or to
perform commands in the current project can be configured.

Logon

Logoff

Permissions

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1411

Any changes made in this dialog will be applied immediately.

The Actions window displays all possible rights, that is all actions which might be performed on
any object of the current project.
The tree is structured in the following way:
● Top-level see the names of some categories, which have been set up just for the

purpose of optical structuring the rights management.
They are grouping concerning the execution of commands, the configuration of User
accounts and Groups, the creation of Object Types, the viewing, editing, removing and
handling of child objects of Project Objects.

● Below each category node there are nodes for the particular actions which might be
performed on the command, user account, group, object type or project object. These nodes
also only have optical function. Possible Actions:
– execute (execution of a menu command)
– create (creating a new object in the current project)
– add or remove children (adding or removing of "child" objects to an existing object)
– modify (editing an object in an editor)
– remove (deleting or cutting an object)
– view (viewing an object in an editor)

Below each action node find the possible targets, that is project objects, of the respective
action.
The Permissions window provides a list of all currently available user groups (except the
"Owner" group) and a toolbar for configuring rights to a group.
Select the group and configure it´s permissions.
Left to each group name one of the following icons indicates the currently assigned permission
concerning the target which is currently selected in the Actions window:
● : The action(s) for the target(s) currently selected in the Actions window are granted

for the selected group.
● : The action(s) for the target(s) currently selected in the Actions window are denied for

the selected group.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1412

● : The right to perform the action(s) which are currently selected for the selected target(s)
 in the Actions window, has not been granted explicitly, but is granted by default, for

example because the corresponding right has been granted to the "father" object. (Example:
The group has got the right for object "myplc", thus it by default it also has got it for object
"myplc.pb_1".) Basically this is the default setting for all rights which not explicitly have
been configured.

● : The right to perform the action(s) which are currently selected for the selected target(s)
 in the Actions window, has not been denied explicitly, but is denied by default, for example

in case because the corresponding right has been assigned to the "father" object.
If currently multiple actions are selected in the Actions window, which do not have unique
settings referring to the currently selected group, no icon will be displayed.

To configure the rights for a group select the desired action(s) and target in the Actions
window and the desired group in the Permissions window. Then use the appropriate button in
the toolbar of the Permissions window:

: Explicit granting.

: Explicit denying.

: The currently granted right for the action(s) currently selected in the Actions window will
be deleted, that is set back to the default.

6.3.1.2.3 Project Settings - Users and groups
General

The “Project Settings” dialog in category “Users and Groups” provides three subdialogs for the
user management for the current project: Users, Groups, Settings.
Ä General description on users and access rights management

Users dialog
The currently registered users are listed in a tree structure. The ownerships of each user is
displayed and each user is a member of a group by default.
Ä Chapter 6.3.1.2.1 “User and access rights” on page 1409

1. Click “Add” to open the “Add User” dialog.
2. Define the user credentials and click [OK] to set up the new user. If there are incorrect

entries (no login name, password mismatch, user already existing) you will get an appro-
priate error message.

Click “Edit” to open the “Edit User” dialog. The entry fields are the same as in the “Add User”
dialog. The password fields however - for security reasons - will show 32 * characters. After
having modified the desired entries close the dialog with [OK] to get applied the new settings.

Enable the entries to be removed in the Users list and click “Remove”. Note that you will get no
further inquiry! An error message appears if you try to delete all users from a group. At least one
entry must remain.

Define a new
user account

Modify a user
account

Remove user
accounts

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1413

Groups dialog
The currently available groups are displayed in a tree structure. A member also might be a
group.
1. Click “Add” to open the “Add Group” dialog.
2. Define a name for the new group and enable all entries (single users or groups) which

should be members of the new group.
3. Click [OK] to set up the new group. If there are incorrect entries (no name defined, group

already existing, in Members having selected a group which would cause a "group cycle",
you will get an appropriate error message.

Click “Edit” to open the “Edit User” dialog. The entry fields are the same as in the “Add Group”
dialog (see above). After having modified the desired entries close the dialog with [OK] to get
applied the new settings.

Enable the entries to be removed in the groups tree and click “Remove”. Note that you will
get no further inquiry! The members of the deleted groups will remain unmodified. An error
message appears if you try to delete the groups "Everyone" and/or "Owner".

Settings dialog
The following basic options and settings concerning the user accounts can be made:
● “Maximum number of authentication trials”: If activated, the user account will be set invalid

after the specified number of trials to log in with a wrong password. If not activated, the
number of erroneous trials is unlimited. Default: option activated, number of trials: 3; permis-
sible values: 1-10.

● “Automatically log out after time of inactivity”: If activated, the user account will be logged
out automatically after the specified number of minutes of inactivity (no user actions via
mouse or keyboard registered in the programming system). Default: option activated, time:
10 minutes; permissible time values: 1-180 minutes.

6.3.1.3 Later change-over of a target system
6.3.1.3.1 Changing the processor module type
General

In a project, you can change the target system by changing the type of processor module or
terminal base type. If possible, the device configuration of fieldbuses and interfaces is kept and
switched over to the device configuration of the new module.
Target change options:
● between platforms: from V2 platform to V3 platform (and vice versa)
● between module types: from AC500 (standard) to AC500-eCo (and vice versa)
● a combination of changed platform and changed module type

Target change from a V2 processor module to a V3 processor module
Target change options:
● AC500 V2 processor module to AC500 V3 processor module
● AC500 V2 processor module to AC500-eCo V3 processor module
● AC500-eCo V2 processor module to AC500-eCo V3 processor module
● AC500-eCo V2 processor module to AC500 V3 processor module

Add a group

Modify a group

Remove groups

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1414

1. Close CODESYS.
2. Double-click the “PLC_AC500_V2 <...>” node and open the “PM5<...> Hardware” tab.
3. Enable “Change to AC500 V3 PLC” and select the desired V3 processor module from the

“PM5xx Type” drop-down list.

4. Click [Create V3 PLC].

ð The new V3 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

In case of a target change from AC500-eCo V2 to AC500-eCo V3, the I/O bus
and Ethernet configuration is kept.

Target change from a V3 processor module to another V3 processor module
Target change options:
● AC500 V3 processor module to AC500 V3 processor module
● AC500 V3 processor module to AC500-eCo V3 processor module
● AC500-eCo V3 processor module to AC500 V3 processor module
● AC500-eCo V3 processor module to AC500-eCo V3 processor module

1. Close CODESYS.
2. Double-click the “PLC_AC500_V3 <...>” node and open the “PM5<...> Hardware” tab.

Procedure:

Procedure:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1415

3. Select the desired V3 processor module from the “PM5xx Type” drop-down list.

Fig. 269: Change_Hardware_V3

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1416

4. Ensure the correct “Terminal Base Type” is selected and click [Change PM / TB type].

ð If possible, the device configurations from the previous processor module will be kept
and switched over to the new processor module.
The device configurations that cannot be kept are listed in a prompted information
dialog.

By default, all device configurations which cannot be switched over will be copied to
a “device pool” section in the navigation tree (option “Copy all objects that cannot
be added to the new PLC into a device pool for further access”). If required, this
backuped configuration can be used in another project or in another processor module
configuration.
If the checkbox is deactivated all device configurations that cannot be switched will be
lost after the execution of the target change.

The configuration of the onboard I/Os, the option board slots and the onboard
RTC cannot be changed-over to the new module.

The configuration of COM1, CAN and the I/O bus cannot be changed-over to
the new module. Depending on the selected target, also the I/O bus configura-
tion and ETH2 configuration cannot be switched.

ETH1 configuration is kept even if the configured protocols are not allowed for
the selected AC500-eCo V3 PLC. In this case error messages are displayed in
the messages window.

Target change
from AC500-eCo
V3 to AC500 V3

Target change
from AC500 V3
to AC500-eCo
V3

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1417

Libraries which are not used anymore are not deleted with the target change.
Libraries of option boards are kept in the Library Manager even if no longer
available at the target module.

6.3.1.3.2 Customer libraries
CODESYS for AC500 V2 products contains different types of libraries:
● Standard CODESYS libraries
● Specific AC500 libraries
● Customer libraries
In general, the Standard CODESYS libraries and the AC500 libraries are automatically con-
verted during a target change from AC500 V2 to AC500 V3. Those libraries that cannot be
converted (e. g. because there is no matching in V3) are created automatically in the V3 Library
Manager and must be manually deleted by the user after the target change.
The customer libraries have to be converted manually using the Library Converter integrated
into the Automation Builder installation:
1. In Automation Builder click “File è Open project”.
2. Select the CODESYS library for AC500 V2 products which has to be converted.
3. After conversion of the library, open the view POUs in the device navigator and double-

click “Project Information”.
4. To have the library automatically available in the V3 project, enter “Company”, “Title” and

“Version” in the specific fields of the dialog.
Then, open the “Properties” tab. For the target change the new “Key” "CoDeSysV2Library"
has to be added. Under “value”, enter the name of the CODESYS library and click the
“Add” button.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1418

Click “File è Save project” and install into the library repository.

6.3.1.4 Firmware identification and update
6.3.1.4.1 General information

Without direct access to the internet, a firmware update with the memory card is
also possible.

Ä Chapter 6.3.1.4.5 “Firmware installation and update with memory card”
on page 1426

6.3.1.4.2 Device state firmware version
Introduction

As a process participant, whether as a user, machine builder, plant operator or maintenance
engineer, it is helpful to be able to see at a glance which component has which firmware
version.
If necessary, an error can then be quickly corrected or versions adjusted. The possible ways of
displaying the various components are shown below.
● CPU
● Communication modules
● AC500-eCo option boards
● Field devices

CPU firmware
Version query via Automation Builder tab “Version information”
Version information

Information on the firmware versions of the processor modules or communication modules, is
provided on the “Version information” tab.
Remarks:
● The “Version information” tab displays the version identified on the device and the version

provided with Automation Builder.
● The firmware on the devices must match to the Automation Builder supported versions. It

might be required to upgrade or downgrade the current firmware for using the PLC with the
current Automation Builder.

● The “Required Version” might contain more than one user selectable version (drop-down
list), this is indicated by an asterisk after the file name.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1419

Firmware version on device matches version supplied with
Automation Builder.

Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Only for communication modules if CPU firmware must be updated
first. This happens when CPU firmware has version below 2.5.0.0.
Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Identified device is different from configured device, thus no firmware
update is possible. Happens only for Communication Modules.

No icon Firmware of device is not updateable or no newer firmware than the
initial version is available.

[Update Firmware] to download the new firmware is only enabled if there is
updateable firmware.

Version query via Automation Builder tab “PLC Shell”
The PLC shell is used for requesting specific information from the controller. By entering a
device specific command the response is returned in a result window. The PLC shell can be
issued without login.
1. Ensure the gateway is configured properly and a connection to the controller can be

established.
2. In Automation Builder double-click the PLC node and open the tab “PLC Shell”.
3. Enter versioninfo or rtsinfo in the command line of the tab window. The current

firmware versions are listed.

Version query via application
The version information are accessible via the function block PmVersion, production data acces-
sible via function block PmProdReadAsync.
Ä Chapter 6.5.14 “Reference, function blocks” on page 4086

State icons

Proceed as fol-
lows:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1420

Version query via IP configuration tool
The IP configuration tool is part of Automation Builder and can be called via “Tools
è IP-Configuration”.
Ä Chapter 6.3.2.2.4.3.2 “Stand-alone installation” on page 1457

Ä Further information on page 1459

Communication modules
Version query via Automation Builder tab “Version information”

Ä Chapter 6.3.1.4.2.2.1 “Version query via Automation Builder tab “Version information””
on page 1419

Version query via Automation Builder tab “PLC Shell”
The PLC shell is used for requesting specific information from the controller. By entering a
device specific command the response is returned in a result window. The PLC shell can be
issued without login.
1. Ensure the gateway is configured properly and a connection to the controller can be

established.
2. In Automation Builder double-click the PLC node and open the tab “PLC Shell”.
3. Enter coupler desc in the command line of the tab window. The current firmware

versions are listed.

Version query via application
The version information are accessible in the property “DeviceInfo” of the module.

AC500-eCo V3 option boards
Version query via Automation Builder tab “Version information”

Ä Chapter 6.3.1.4.2.2.1 “Version query via Automation Builder tab “Version information””
on page 1419

Version query via Automation Builder tab “PLC Shell”
Ä Chapter 6.3.1.4.2.2.2 “Version query via Automation Builder tab “PLC Shell”” on page 1420

Version query via application
The version information are accessible in the property “DeviceInfo” of the module.

Field devices
Version query via Automation Builder

The firmware versions of the ABB communication interface devices for PROFINET (CI50x-
PNIO) and EtherCAT (CI51x-ETHCAT) is available from the respective editor in online mode in
the Automation Builder.

IP configuration
tool

Proceed as fol-
lows:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1421

Version query via application
PROFINET, PROFIBUS, EtherCAT, CANopen: According to standard of the corresponding
fieldbus protocol.

Version query via IP configuration tool
Ä Chapter 6.3.1.4.2.2.4 “Version query via IP configuration tool” on page 1421

Only for Ethernet-based fieldbuses!

6.3.1.4.3 Installation and update of the AC500 V3 firmware

The multi download tool can be used to update multiple PLCs with firmware or
an application at the same time.

Ä Chapter 6.6.4 “Multi download tool” on page 4306

The PLC user management will remain also after a firmware update or downgrade.
Due to a structural change in the PLC user management in firmware version 3.5 there are some
limitations when updating the PLC firmware from a version 3.4 or lower to 3.5 or higher with
activated user management.

If you update the PLC firmware from version 3.4 or lower to version 3.6 or
higher this must be done in two steps. First an update to 3.5 must be done
via Automation Builder. Afterwards the firmware can be updated to any later
firmware version – either via Automation Builder or via memory card.

The PLC firmware can be updated via Automation Builder.

This is also necessary for commissioning V3 CPUs.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered
AC500 firmware, V3 CPUs are delivered with a boot loader only. You need to download a valid
firmware to the CPU. After download, the functionality of the CPU is given.

An Automation Builder project with an AC500 V3 CPU is open.

CPU is in "stop" mode or shows uPdAtE (update) on the display.

After update the CPU shows either donE or StoP on the display

Firmware
update with acti-
vated user man-
agement

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1422

For new modules: IP address is set. (The default IP address is 192.168.0.10)
1. Double-click CPU “PLC_AC500_V3”.
2. Select “Version information”.

3. Select “Update Firmware”.

ð While the update process is running, the RUN and ERR LEDs are toggling, i.e., they
are flashing alternating.

4. Wait for the PLC to finish the update.

Firmware updates that include “UpdateFW” changes must be performed
in two steps:

First, the “UpdateFW” is updated, and once this is done click the update
button again to execute the “SystemFW” update.

Note: Firmware updates via memory card automatically cover both
updates in one step.

A completed update is indicated by a message on the display. Either donE, or StoP.

NOTICE!
Do not disconnect the power supply during the update process! The PLC
could be damaged.

ð StoP indicates a restart has been performed by the CPU. When donE is displayed
sometimes it is necessary to re-boot the CPU manually, e.g., by powering-off. Manual
re-boot might be, e.g., for some older CPU versions or if downgrading to an older
firmware version according to application settings.

The CPU display shows StoP after re-boot. The update process is finished.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1423

5. If necessary, refresh the version information by switching to another tab and back.

ð Successful firmware update:

LED LED flashes Status
RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

6.3.1.4.4 AC500-eCo V3 firmware installation and update

The multi download tool can be used to update multiple PLCs with firmware or
an application at the same time.

Ä Chapter 6.6.4 “Multi download tool” on page 4306

Behavior of
LEDs during
firmware update

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1424

The PLC firmware can be updated via Automation Builder.

This is also necessary for commissioning AC500-eCo V3 CPUs.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered
AC500-eCo firmware, V3 CPUs are delivered with a boot loader only. You need to download a
valid firmware to the CPU. After download, the functionality of the CPU is given.

An Automation Builder project with an AC500-eCo V3 CPU is open.

CPU is in "stop" mode without firmware.

The power LED is ON.

For new modules: IP address is set. (The default IP address is 192.168.0.10)
1. Double-click CPU “PLC_AC500_V3”.
2. Select “Version information”.

3. Select [Update Firmware].

ð While the update process is running, the RUN and ERR LEDs are toggling, i.e., they
are flashing alternating.

4. Wait for the PLC to finish the update.

NOTICE!
Do not disconnect the power supply during the update process! The PLC
could be damaged.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1425

5. If necessary, refresh the version information by switching to another tab and back.

ð Successful firmware update:

● CPU without firmware, only the power LED is on.
● While the firmware update process is running, the RUN and ERR LEDs are toggling, i.e.,

they are flashing alternating.

LED LED flashes Status
RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

● CPU with installed firmware, only the power LED is on.
● If the CPU is running, then the RUN LED is on.
● If the CPU is in STOP mode, the RUN LED is off.

6.3.1.4.5 Firmware installation and update with memory card
General

The memory card is a removable persistent mass storage device and can be used for any
application purpose. Both firmware updates and boot project updates can be run from the
memory card.

NOTICE!
Removal of the memory card
Do not remove the memory card when it is working. For memory card activity
the black square () is shown on PLC display as long as a file is open on
the memory card. Remove the memory card only when no black square () is
shown next to memory card in the display. Otherwise the memory card and/or
files on it might get corrupted and/or normal PLC operation might be disturbed.

Behavior of
LEDs during
firmware update

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1426

Firmware and/or application installation and update
Notes

ABB recommends that users carry out the firmware update via Automation
Builder. Ä Chapter 6.3.1.4 “Firmware identification and update” on page 1419

Not every user has an Automation Builder at his disposal with which a firmware
or boot project update can be easily realized. In this case, the user must be
provided with a prepared memory card from his client.

It is not possible to update the communication interface modules with a
memory card. The firmware of the communication interface modules can only
be updated with the IP configuration tool.

The PLC user management will remain also after a firmware update or downgrade.
Due to a structural change in the PLC user management in firmware version 3.5 there are some
limitations when updating the PLC firmware from a version 3.4 or lower to 3.5 or higher with
activated user management.

If you update the PLC firmware from version 3.4 or lower to version 3.5 this
must be done via Automation Builder. An update via memory card with activated
user management will result in losing all access rights to the PLC.

If you update the PLC firmware from version 3.4 or lower to version 3.6 or
higher this must be done in two steps. First an update to 3.5 must be done
via Automation Builder. Afterwards the firmware can be updated to any later
firmware version – either via Automation Builder or via memory card.

Ä Chapter 6.3.1.4.3 “Installation and update of the AC500 V3 firmware” on page 1422

Preparation of memory card
Ä MC5141 - memory card

Ä MC5102 - micro memory card with adapter

Firmware packages can be downloaded from ABB website or exported from Automation Builder.

In Automation Builder, you can choose if you want to export the firmware only or, in addition, the
boot project as well. If the boot project does not exist yet, it will be created automatically.
The memory card will contain the firmware of the PLC, the firmware of the communication
modules, the application, the visualizations and all related objects (like text lists).

Firmware
update with acti-
vated user man-
agement

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1427

https://library.abb.com/r?cid=9AAC177288&dkg=dkg_software

Fig. 270: Example

1. Right-click “Application” in the device tree.
2. Select “Export è Boot project and firmware” or “Export è Firmware”.
3. Choose a location for the export folder.

Select [Make New Folder] and type in "MEMORY CARD".
4. Select [OK] to add the folder.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1428

5. Select folder “MEMORY CARD”.

ð The "MEMORY CARD" structure has been created and the firmware and application
have been exported.

The created "MEMORY CARD" folder does not contain user data,
remanent data, config data, safety PLC power dip data and safety
PLC password.

Add this data if required by the used application.

6. Copy all subfolders and files of the "MEMORY CARD" folder to a memory card.
The copy process can be performed with the Automation Builder software with the
memory card inserted in the processor module or with the PC with a suitable memory
card slot.

1. Insert memory card into the processor module.
2. Connect the PC to the processor module with an Ethernet cable.
3. In Automation Builder, log-in to the processor module.

4. Double-click on the processor module in the device tree and select “Files”.

Copy process
with Automation
Builder software

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1429

5. On the right side, select and open the folder “sdcard”.
6. On the left side, select all the subfolders and files of the MEMORY CARD folder, but not

the folder itself.
7. Copy all selected subfolders and files from the left side to the memory card by clicking

 to the right side.

1. Insert the memory card into the PC.

2. Mark all subfolders and files of the "MEMORY CARD" folder, but not the "MEMORY
CARD" folder itself, and copy them.

3. Select the memory card and paste the copied subfolders and files.

Execution of update via memory card
Precondition: Prepared memory card with boot project and firmware Ä Chapter

6.3.1.4.5.2.2 “Preparation of memory card” on page 1427.
1. Switch off the device.
2. Insert the memory card.

Copy process
on the PC

Boot project
and firmware
update

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1430

3. Switch on the device.

ð The alternate flashing of the RUN and the ERR LED indicates the running update
process.
At the end of the update process a reboot is executed and the boot project and system
firmware is started for the finishing of the update process.
If RUN LED blinks (ERR LED is off), the update was successful and the display shows
“done”.
If ERR LED blinks (RUN LED is off), the update failed and the display shows “FAIL”.
The text file “SDCARD.RDY” includes the results of the different updates. If the update
fails, the file contains the reasons for the abort. Based on this, further steps can be
taken to fix the problem.

4. Switch off the device.
5. Remove the memory card.
6. Switch on the device.

ð The system starts with the new boot project and firmware.

Precondition: Prepared memory card with boot project and firmware Ä Chapter
6.3.1.4.5.2.2 “Preparation of memory card” on page 1427.
1. Switch off the device.
2. Insert the memory card.
3. Switch on the device.

ð The alternate flashing of the RUN and the ERR LED indicates the running update
process.
At the end of the update process a reboot is executed and the system firmware is
started for the finishing of the update process.
If RUN LED blinks (ERR LED is off), the update was successful and the display shows
done.
If ERR LED blinks (RUN LED is off), the update failed and the display shows FAIL.
The text file “SDCARD.RDY” includes the results of the different updates. If the update
fails, the file contains the reasons for the abort. Based on this, further steps can be
taken to fix the problem.

4. Switch off the device.
5. Remove the memory card.
6. Switch on the device.

ð The system starts with the new firmware.

Description of LEDs
The LEDs below the display indicate the state of the processor module:

Firmware
update

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1431

LED State Color LED = ON LED = OFF LED flashes
Power LED
(PWR)

Denotes the power
supply state of the
processor module

Green Voltage is present
(24 V DC)

Voltage is
missing

-

Run LED
(RUN)

Denotes the
activity state of the
processor module

Green Processor module
is in RUN mode

Processor
module is in
STOP mode

If the LED flashes fast (4
Hz) a firmware update is
finished with no errors.
If the Run LED flashes fast
(4 Hz), alternating with a
flashing Run LED the firm-
ware is updated.
To enforce boot mode 1,
keep the RUN function
key pressed during the
boot procedure. In this
case, the Run LED flashes
slowly (1 Hz). A subsequent
project download (from
within Automation Builder)
cancels the blinking.

Error LED
(ERR)

Denotes an error Red An error has
occured.

No errors or
only warnings
have occurred.

If the Error LED flashes
slowly (1 Hz) a firmware
update from the memory
card is finished with errors.
If the Error LED flashes
fast with AC500 on display
a fatal system error has
occurred.
If the Error LED flashes fast
(4 Hz) alternating with a
flashing Run LED the firm-
ware is updated.

A running processor module is indicated with the state RUN on the display, a deactivated
processor module is indicated with the state STOP. In both cases the display's backlight is off.

Advanced memory card handling for firmware/application update
Memory card file content: Firmware version V3.x

Only advanced users should apply the instructions in this chapter.

Ä Chapter 6.3.1.4.3 “Installation and update of the AC500 V3 firmware” on page 1422

The main components of the V3 CPU firmware are:
● BootFW (boot firmware): responsible for the starting of the UpdateFW or the SystemFW
● UpdateFW (update firmware): responsible for the update of BootFW, UpdateFW, Sys-

temFW, UpdateHook and boot project
● SystemFW (system firmware, CPUFW): Runtime system of the PLC, additionally respon-

sible for the update of the DisplayFW (display firmware) and the firmware of the communica-
tion module

● DisplayFW (display firmware): Firmware of the display

General update
process

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1432

Additionally the update process includes the following parts:
● Communication module (communication module firmware): Firmware of the different com-

munication module
● UpdateHook: Specific patches for the PLC
● UserProgram: Boot project of the application
● License features: Import and export of license files. The license file for the "ImportLicense"

is a Wbb or a WibuCmRaU file. The license file of the "ExportLicense" is a WibuCmRaC file.
The firmware updates are triggered by the command file SDCARD.INI. In addition a result file
of the firmware update is generated (SDCARD.RDY, identical path as SDCARD.INI). For the
group [FirmwareUpdate] the parameters 0, 11, 12 and 13 are defined. For each firmware update
two files are necessary. The firmware file and the corresponding signature file.
For example:
AC500_V3_SystemFirmware_V3.0.1.73.tar.bz2
AC500_V3_SystemFirmware_V3.0.1.73.tar.bz2.sig
AC500_V3_DisplayFirmware_V3.0.0.0.app
AC500_V3_DisplayFirmware_V3.0.0.0.app.sig
For the user program the application file and the application CRC are necessary. For example:
Application.app

Application.crc

If the signature file and the firmware file do not match, no update is performed and the corre-
spondent error result is written to the file SDCARD.RDY.
If the update firmware is running the display shows the text update. The blinking of the RUN and
the ERR LED’s indicates the update process.
The file “SDCARD.RDY” includes the results of the different updates. After an update of a
communication module CODESYS Control is started in safe mode (no download or starting of
the application is possible) and the PLC needs a reboot (power down/up; the display shows
please and reboot alternately).

As of system firmware 3.2 the compatibility file "Version.txt" (with the corresponding signature
file "Version.txt.sig", identical path as "SDCARD.INI") is necessary for the update process. The
update firmware checked the compatibility of the following parts:
● CPUFW (system firmware)
● BootFW (boot firmware
● UpdateFW (update firmware)
● DisplayFW (display firmware)
A missing "Version.txt" or a missing/corrupt "Version.txt.sig" file is signalled at the component
"CPUFW" (file "SDCARD.RDY").
If the update process would result in incompatible parts of firmware no update is performed
in the update firmware. After starting of the system firmware the compatibility of the communica-
tion module firmware is checked additionally. The check of the compatibility of the firmware is
executed always (independent of the parameter for the component). Incompatibility is signalled
at the corresponding component (file SDCARD.RDY").

If a firmware or boot application update is currently being performed via an memory card, the
PLC will wait for the user. To remove the memory card and do a power cycle for completing the
update process.
In the case of an unattended remote update via memory card, this is an obstacle because there
may be no one on site to perform the power cycle. To avoid this situation, additional options
have been added to SDCARD.ini to enable an unattended automatic restart when entering RTS
safe mode after a successful firmware or boot project update.

Automated
reboot of the
PLC

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1433

The changes are an optional behavior that is triggered by the user setting in
SDCARD.ini! The default behavior (RTS stays in safe mode until manual power
cycle) is maintained!

The “FunctionOfCard” is reset from (4-6) to 0 after the update. Which means after a successful
update operation the memory card cannot be used for updating another PLC without manual
modification of the “FunctionOfCard”.
The intended use case is for the memory card to always remain in the respective PLC to be
used as mass storage and for the unattended update.

In case of changed boot parameters, an additional reboot is required. This
additional reboot is never done automatically and herefore it has to be done
manually.

Command file SDCARD.INI for AC500 V3 Products

Only advanced users should apply the instructions in this chapter.

[FirmwareUpdate] 0 = No update

CPUFW=x
x= 0, 11, 12, 13

11 = Update system firmware always with the file specified in mod-
ule's section [CPU] and component's path key “CPUFW”.
12 = Update with different version, the update is only performed if the
version of the file specified by the component path key “CPUFW” in
module’s section [CPU] differs from the current version of the CPU.
13 = Update with newer version, the update is only performed if the
version of the file specified by the component path key “CPUFW” in
module’s section [CPU] is newer than the current version of the CPU.

BootFW=x
x= 0, 11, 12, 13

See description CPUFW. The component's path key for the boot firm-
ware in module’s section [CPU] is “BootFW”.

UpdateFW=x
x= 0, 11, 12, 13

See description CPUFW. The component's path key for the update
firmware in module’s section [CPU] is “UpdateFW”.

DisplayFW=x
x= 0, 11, 12, 13

See description CPUFW. The component's path key for the display
firmware in module’s section [CPU] is “DisplayFW”.

UpdateHook=x
x= 0, 11

11 = Execute UpdateHook always with the file specified in module's
section [CPU] and component's path key “UpdateHook”.

ImportLicense=x
x= 0, 12

12 = Import the license always with the file specified in module's
section [CPU] and component's path key “ImportLicense”. The license
file is a Wbb or a WibuCmRaU file. The update process imports this
file into the plc.
Note: Do not use parameter 11 for license import.

ExportLicense=x
x= 0, 12

12 = Export the license always to the file specified in module's sec-
tion [CPU] and component's path key “ExportLicense”. The exported
license file is a WibuCmRaC file.
Note: Do not use parameter 11 for license export.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1434

Coupler0=x
x= 0, 11, 12, 13

0 = No update.
11 = Update firmware always with the file specified in module's sec-
tion [Coupler0] and component's path key “Boot” and/or “Firmware”.
12 = Update with different version, the update is only performed if the
version of the file specified by the component path key “Boot” and/or
“Firmware” in module’s section [Coupler0] differs from the current ver-
sion of the communication module.
13 = Update with newer version, the update is only performed if the
version of the file specified by the component key “Boot” and/or “Firm-
ware” in module’s section [Coupler0] is newer than the current version
of the communication module.

Coupler1=x
x= 0, 11, 12, 13

Update module slot 1; see description Coupler0, module section is
[Coupler1]*.

Coupler2=x
x= 0, 11, 12, 13

Update module slot 2; see description Coupler0, module section is
[Coupler2]*.

Coupler3=x
x= 0, 11, 12, 13

Update module slot 3; see description Coupler0, module section is
[Coupler3]*.

Coupler4=x
x= 0, 11, 12, 13

Update module slot 4; see description Coupler0, module section is
[Coupler4]*.

Coupler5=x
x= 0, 11, 12, 13

Update module slot 5; see description Coupler0, module section is
[Coupler5]*.

Coupler6=x
x= 0, 11, 12, 13

Update module slot 6; see description Coupler0, module section is
[Coupler6]*.

[UserProg] 0 = No update.

UserProgram=x
x= 0, 11

11 = Update user program always with the file specified in module's
section [CPU] and component's path key “UserProgram”.

Example: SDCARD.INI as of CPU firmware V3.x

Only advanced users should apply the instructions in this chapter.

[Status]
FunctionOfCard $FocValue (0, 1, 2, 3, 4, 5, 6) from SDCARD.INI
0 = No update
1: Load user program according to entry in group [UserProg] and the PLC prompts for manual
reboot.
2: Start firmware update according to entry in group [FirmwareUpdate] and the PLC prompts
for manual reboot.
3: Update firmware according to entry in group [FirmwareUpdate] and load user program
according to entry in group [UserProg] and the PLC prompts for manual reboot.
4: Load user program according to entry in group [UserProg] and the PLC reboots automati-
cally.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1435

5: Start firmware update according to entry in group [FirmwareUpdate] and the PLC reboots
automatically.
6: Update firmware according to entry in group [FirmwareUpdate] and load user program
according to entry in group [UserProg] and the PLC reboots automatically.

[FirmwareUpdate] ;
0 = No update ;
11 = Update with file specified in module's section <modsec>, component's path key
<pathkey> ;
12 = Like 11, but check version of file to be updated differs from current one. ;
13 = Like 11, but check version of file to be updated is newer than current one.
CPUPFW=0 ;<modsec>=|CPU|, <pathkey>= CPUPFW
BootFW=0 ;<modsec>=|CPU|, <pathkey>= BootFW
UpdateFW=0 ;<modsec>=|CPU|, <pathkey>= UpdateFW
DisplayFW=0 ;<modsec>=|CPU|, <pathkey>=DisplayFW
UpdateHook=0 ;<modsec>=|CPU|, <pathkey>=UpdateHook
ImportLicense=0 ;<modsec>=|CPU|, <pathkey>=ImportLicense
ExportLicense=0 ;<modsec>=|CPU|, <pathkey>=ExportLicense
Coupler0=0 ;<modsec>=|Coupler0|, <pathkey>=Firmware
Coupler1=0 ;<modsec>=|Coupler1|, <pathkey>=Firmware
Coupler2=0 ;<modsec>=|Coupler2|, <pathkey>=Firmware
Coupler3=0 ;<modsec>=|Coupler3|, <pathkey>=Firmware
Coupler4=0 ;<modsec>=|Coupler4|, <pathkey>=Firmware
Coupler5=0 ;<modsec>=|Coupler5|, <pathkey>=Firmware
Coupler6=0 ;<modsec>=|Coupler6|, <pathkey>=Firmware

[UserProg] ;
0 = No update ;
11 = Update with file specified in module's section <modsec>, component's path key <pathkey>
UserProgram=0 ;Update user program. <modsec>=[CPU], <pathkey>= UserProgram

[CPU];
CPUFW= ;Path/file of CPU's system firmware to update
BootFW= ;Path/file of CPU's boot firmware to update
UpdateFW= ;Path/file of CPU's update firmware to update
UpdateHook = ;Path/file of UpdateHook to update
DisplayFW= ;Path/file of Display's firmware to update
ImportLicense= ;Path/file of import license file
ExportLicense= ;Path/file for export license file
UserProgram= ;Path/File of user program to update

[Coupler0]
Firmware= ;Path/file of internal coupler's firmware to update
[Coupler1]
Firmware= ;Path/file of external coupler's firmware slot 1 to update
[Coupler2]

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1436

Firmware= ;Path/file of external coupler's firmware slot 2 to update
[Coupler3]
Firmware= ;Path/file of external coupler's firmware slot 3 to update
[Coupler4]
Firmware= ;Path/file of external coupler's firmware slot 4 to update
[Coupler5]
Firmware= ;Path/file of external coupler's firmware slot 5 to update
[Coupler6]
Firmware= ;Path/file of external coupler's firmware slot 6 to update

SDCARD.INI for memory card for update only the system firmware (SystemFW):
[Status]
FunctionOfCard=2
[FirmwareUpdate]
CPUFW=11
[CPU]
CPUFW=/SystemFirmware/AC500_V3_SystemFirmware_V3.7.0.99_zzz.tar.bz2

6.3.1.4.6 Update CI52x-Modbus firmware
Precondition

Requirement: A firmware update file is available, e.g. AC500_CI52x_Firmware_V3.2.8.bin.

The CI52x Modbus firmware update is only available in the Automation Builder
IP Configuration Tool.

Installation of the IP configuration tool
1. In Automation Builder click “Tools è Installation Manager” to start the Installation Man-

ager.
2. Close any other running instances of Automation Builder. Then, click “Modify” in the

Installation Manager.
3. Select the option “IP Configuration Tool” from the list and start the installation of the IP

Configuration Tool.

Firmware update procedure
1. In the IP Configuration Tool click “Scan” to initialize a device scan.
2. From the list select the CI52x-MODTCP device(s) which shall be updated and click “FW

Update”.

Example con-
tent and
description of
the SDCARD.INI
folder

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1437

3. Select the firmware update file (e.g. AC500_CI52x_Firmware_V3.2.8.bin) to initialize a
signature check and start the update procedure.

During the firmware update the operation of the device(s) is stopped. After
the update, all outputs are set to zero.

4. After the update, click “Scan” again to retrieve the firmware version of the device.

Troubleshooting

Fault
description

Cause Remedy

CI firmware
update failed

General hints
● Close all unused applications on the update PC and do not

open Automation Builder or any other applications during the
firmware update.

● Stop the communication between AC500 PLC and the CI52x
devices and disconnect the Ethernet connection of the
update PC and the CI Modbus device(s).

● Do not close the IP Configuration Tool during a firmware
update and do not switch off a CI Modbus device during the
firmware update.

Error 1:
Package
Timeout

Due to a primitive firmware
update protocol a fast and
stable network connection is
required. Otherwise the update
packages cannot be trans-
ferred within the requested
time and a timeout occurs.

Locate the PC on which the update is performed as near as
possible to the stationed CI Modbus devices. Avoid network
switches.

Error 2:
Unable to
read device
status

After the firmware update the
IP Configuration Tool reads
out the status of the updated
device in order to check if the
update was successful.

Rescan and repeat the update. If this doesn't work, power cycle
the device and retry the update.

Error 3: IP is
not unique

If more than one device hold
the same IP address, a firm-
ware update is not possible
as the update command is IP
based.

Correct the IP address, rescan and repeat the update. If this
doesn't work, power cycle the device and retry the update.

Error 4:
Internal Error

An internal error on the
CI52x Modbus device occurred
during the firmware update.

Rescan and repeat the update. If this doesn't work, power cycle
the device and retry the update.

Error 5:
Cannot con-
nect to device

The TCP communication is
not sufficient for a connec-
tion. Increase the connection
quality.

Locate the PC on which the update is performed as near as
possible to the stationed CI Modbus devices. Avoid network
switches.

Signatur
check failed

After the selection of the firm-
ware file (*.bin) a signature
check is performed. If either
the firmware file or the signa-
ture file is corrupt, the signa-
ture check fails.

Example file names:
● Name of the firmware file: c:\AC500\AC500_CI52x_Firm-

ware_V3.2.8.bin
● Correct name of the signature file:

c:\AC500\AC500_CI52x_Firmware_V3.2.8.bin.sig
● Wrong name of the signature file:

c:\AC500\AC500_CI52x_Firmware_V3.2.8.sig

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1438

Fault
description

Cause Remedy

Indeterminate
device firm-
ware version

If the firmware version of the
device cannot be determined,
an error occurs.

Example: Result OK
● PC: 192.168.14.71 / 255.255.255.0
● Device: 192.168.14.10 / 255.255.255.0
Example: Result OK
● PC: 192.168.10.71 / 255.255.0.0
● Device: 192.168.14.10 / 255.255.0.0
Example: Result ERROR
● PC: 192.168.10.71 / 255.255.255.0
● Device: 192.168.14.10 / 255.255.255.0

6.3.1.5 Migration of third party devices
After an update of Automation Builder the device repository contains only ABB devices. The
third party devices which were installed into previous versions of Automation Builder are not
automatically installed in the newest version profile. This has to be triggered by the user.

The feature “Migrate third party devices” is available as of Automation Builder
2.1.1.

1. Click “Tools” in the main menu of Automation Builder.
2. Click “Migrate third party devices” in the drop-down list.

ð The window “Version profile selection” appears.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1439

3. Select a version profile in the drop-down list containing previous Automation Builder /
Control Builder Plus profiles. The active profile does not appear in the list.

ð After selection of a previous version profile, all the third party devices which have been
installed inside this version profile are listed.

It is not possible to select or deselect some third party devices. Importing will affect all
the third party devices which are listed in the list view.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1440

4. Select [Import].

ð During the migration the message window displays success or failure of device migra-
tion.

In case of failure during the migration the affected third party device
description has to be installed manually via main menu “Tools
è Device Repository è Install”.

In the status bar, the third party device which is on “Migrating: <...>” is displayed on
the left side.
The import operation can be cancelled by clicking the “Click here to CANCEL this
operation” link on the right side of the status bar. This becomes effective when the
migration of the just migrating third party device is finished.

5. To close the dialog select the [Close] button of the Version profile selection.

6.3.1.6 Advanced IO device handling
6.3.1.6.1 General

Automation Builder provides the Advanced IO Device Handling feature for configuring identical
IO device types at multiple instances.
This feature is supported by the following commands that works with IO devices only.
● Generate DUT
Ä Chapter 6.3.1.6.2 “Generating DUT” on page 1442

● Map to Existing DUT
Ä Chapter 6.3.1.6.3 “Mapping to existing DUT” on page 1442

● Release DUT mapping
Ä Chapter 6.3.1.6.4 “Releasing DUT mapping” on page 1442

These commands work on individual nodes and on CI level nodes.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/05 3ADR010583, 1, en_US 1441

6.3.1.6.2 Generating DUT
Each device generates two DUTs. One for the input and one for the output. Some devices
contain only input or output type. In such cases, the device generates only one DUT of the
relevant type.
● Right-click on the desired IO device and select “Generate DUT” to generate a DUT for an IO

device.
The following example shows how to generate DUTs at CI level node.
● In the device tree, right-click on a master node such as PNIO_Controller and select

“Generate DUT” to create DUTs for the child nodes.
● The DUTs of child nodes are generated in “Application è App
è IO_Device_Generated_Items” folder.

● Generated DUT considers channels with BYTE datatype as members. If channels with
BYTE datatype are not present in the given hierarchy, it adds the members with another
higher datatype.

● Channels with BOOL datatype are not considered.

6.3.1.6.3 Mapping to existing DUT
This command is enabled for the IO device when the IO device is not mapped and when DUTs
of matching size (calculated based on device channel list) are available in “Application è App
è IO_Device_Generated_Items” folder.
1. Right-click on an IO device and select “Map to Existing DUT”.

ð Enter Instance Name dialog is displayed.

2. Enter the instance name which satisfies IEC naming validations and unique name in
global scope.

3. Click [OK] to create a global variable associated with the mappings in DI (PRG).
If you want to view mapped instances, double-click “DI (PRG)”.

With the “Map to Existing DUT” command:
● Any device can be mapped only to one input DUT and one output DUT. If you have already

mapped an input DUT, only the output DUT is shown in the options list and vice-versa.
● Mapping is also supported at CI level nodes. To create global variables for CI level nodes,

the address of the first child is considered.

6.3.1.6.4 Releasing DUT mapping
This command is enabled on an IO device only when an IO device is mapped either to input,
output or both DUTs. You can use this command to release (or revert) mappings and to delete
global variables created during 'Map to Existing DUT'.
Right-click on an IO device and select “Release DUT Mapping”. The mapped DUT instance is
deleted.

6.3.1.6.5 Using DUT variables in CODESYS application
1. In the Automation Builder project, double-click “Application” to launch CODESYS applica-

tion.

ð CODESYS application is launched. CODESYS application contains mapped DUT
instances.

2. Double-click “PLC_PRG” to create DUT variables.
3. Add DUT variables based on mapped DUTs.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > General settings

2024/01/053ADR010583, 1, en_US1442

For further information on mapping DUTs, see section Ä Chapter 6.3.1.6.3 “Mapping to existing
DUT” on page 1442.
For example, in the PLC_PRG, add analog I/O and digital I/O. If you insert a dot at a position
where an identifier should be inserted, then a selection list is open, offering all the input and
output variables which are found in the project.
After adding DUT variables, rebuild the program in CODESYS application using “Project
è Rebuild”.

6.3.1.6.6 Support for CI level node
The user can create DUTs for the entire hierarchy of CI level node (for example, IO_BUS), by
right-clicking on the desired CI level node and by selecting “Generate DUT”. Further, all the
DUTs are generated in “Application è App è IO_Device_Generated_Items” folder.
● The command generates DUT for the node itself and also for all child nodes.
● The DUT generated for the CI level node contains generated DUTs for the child nodes as

their members.
● For every execution, the command checks, if any new child node is added and generates

DUT.
If you delete child nodes in CI level node (for example, IO_BUS), the DUTs generated for
these child nodes are not deleted automatically. You should delete the DUTs manually in the
“Application è App è IO_Device_Generated_Items” folder if desired.

6.3.1.6.7 Configuration check
Configuration check for size is enabled to ensure that all devices are mapped with DUTs of the
correct size. In case of any changes in the mapped DUT, configuration check verifies the size of
the DUT. If it fails, an error message is displayed in Automation Builder messages window and
does not allow to launch the application. This check can be performed in “Create configuration
data”.

6.3.1.6.8 Flexible Configuration
For improved maintenance AC500 V3 PLCs provide the functionality to handle several S500
devices with a flexible configuration. The application example AC500 V3 - Flexible Configuration
demonstrates how to configure a flexible configuration scenario in AC500 V3 PLCs.

6.3.2 PLC devices and components
6.3.2.1 Device repository

The Device Repository of Automation Builder manages the pool of devices that can be used in
the PLC configuration.
You install or uninstall devices in the “Device Repository” dialog box. The system installs a
device by reading the device description files, which define the device properties for configura-
bility, programmability, and possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1443

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011167&LanguageCode=en&DocumentPartId=&Action=Launch

1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

[Edit Locations]: Changes the default repository location. The devices can be man-
aged at different locations.
[Install] / [Uninstall]: Installs or uninstalls devices.
[Renew device repository]: Updates the device list, e.g. after uninstallation of a device.
[Details]: Provides technical details on the selected device.

2. Select the install location. “System Repository” is set by default.

The device repository cannot be changed manually, e.g. by copying or deleting
files. Use always the “Device Repository” dialog to add or remove devices.

Dialog device
repository

Installing
devices

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1444

1. Click [Install] and select the appropriate file format.

ð The “Install Device Description” dialog box opens.

2. Select the file path of the device description.
3. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

4. Select the required device description and click [Open].

ð Automation Builder adds the device description to the matching category of your
device repository.
If errors occur during installation (for example, missing files that are referenced by the
device description), then Automation Builder displays them in the lower part of the
“Device Repository” dialog box.

During the installation the device description files and all additional files refer-
enced by that description will be copied to an internal location. Altering the
original files will have no further effects to an internal location.

The changes take only effect after reinstalling the corresponding device(s).
The version number shown in the information section of the device should be
verified.

Select the device you want to remove and click [Uninstall].
The device is removed from the list.

Uninstalled devices which are used in existing projects are indicated by the
symbol . The device will not be configured properly.

Uninstalling
devices

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1445

6.3.2.2 PLC start-up
6.3.2.2.1 Initialization of AC500 V3 CPU

To initialize an AC500 V3 CPU, you need to download the firmware.
A new CPU has no pre-installed firmware, it is delivered with a boot loader only. You need to
download a valid firmware to the CPU. See Ä Chapter 6.3.1.4.3 “Installation and update of the
AC500 V3 firmware” on page 1422. After download, the functionality of the CPU is given.

6.3.2.2.2 PLC runtime licensing
Introduction

The use of some libraries and devices require the PLC to have a runtime license. If you have
purchased such a license, activate the license.
Ä Chapter 6.3.2.2.2.2 “Activating a runtime license via license key” on page 1446

If you want to test device functionality or library features in advance, you can activate a demo
license in advance.
Ä Chapter 6.3.2.2.2.3 “Activating a demo license” on page 1450

The license status of a PLC can be displayed at any time.
Ä Chapter 6.3.2.2.2.6 “View license information” on page 1453

The linked application note provides step-by-step instructions on how to activate the runtime
license for the PLC.
AC500 V3 Activating a runtime license

Activating a runtime license via license key
General

The use of some libraries and devices require the PLC to have a runtime license.

PC and PLC are connected. In case of no connection, perform the activation via memory
card Ä Chapter 6.3.2.2.2.4 “Licensing via memory card” on page 1450.

There is a connection to the Internet. In case of no connection, perform the activation
on another PC with internet connection Ä Chapter 6.3.2.2.2.2.2 “Activation without internet
connection” on page 1447.
1. Right-click on the PLC and select “PLC runtime licensing” from the “Runtime Licensing”

menu.

ð A wizard starts. Follow the instructions.

2. Enter the license activation key and select “Next” to finish the licensing procedure.

ð The license is activated on the PLC device.

If the license shall be used on another PLC device, the installed license can be
returned Ä Chapter 6.3.2.2.2.5 “Returning a license” on page 1452.

Activating a run-
time license

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1446

https://search.abb.com/library/Download.aspx?DocumentID=PLC-EOTKN100U-EN&LanguageCode=en&DocumentPartId=&Action=Launch

Activation without internet connection
1. If an error occurs when communicating with the ABB license server, or if Automation

Builder is running on a PC without internet connection, then it is possible to manually com-
plete the ABB license server interaction by using another PC (with internet connection).

2. In the error dialog select [Next] and save the license activation request file to a storage
location the other PC can access, e.g. a file share.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1447

3. In the dialog the web address of the ABB license server is displayed
(http://lc.codemeter.com/32838/depot/index.php). From the PC with internet connection,
upload the license activation request file.

4. After the upload, download and save the license activation file from the ABB license
server. Transfer this file to the PC without Internet connection.

5. Select [Next] to continue the license activation process. Click [Cancel] to continue the
license activation process at a later time Ä Further information on page 1449.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1448

http://lc.codemeter.com/32838/depot/index.php

6. Select [Browse] and select the license activation file (*.WibuCmRaU) from the defined
storage location.

ð The license is validated by the ABB license server and afterwards activated on the
PLC device.
If the license shall be used on another PLC device, the installed license can be
returned Ä Chapter 6.3.2.2.2.5 “Returning a license” on page 1452.

7. To complete the licensing process, a license receipt file must be uploaded to the ABB
license server.
Save the license receipt file and upload it manually from a PC with internet connection to
http://lc.codemeter.com/32838/depot/index.php.

ð A license confirmation is returned.

Offline activation
If the runtime licensing process was closed between saving the license activation request
file and obtaining the license activation file from the ABB license server, perform an offline
activation:
1. Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime

Licensing” menu.

ð A wizard starts. Follow the instructions.

2. Select the option “Complete offline licensing process”.
3. Select [Browse] and select the license activation file (*.WibuCmRaU) from the defined

storage location.

ð The license is activated on the PLC device.

If the license shall be used on another PLC device, the installed license can be
returned Ä Chapter 6.3.2.2.2.5 “Returning a license” on page 1452.

4. To complete the licensing process, a license receipt file must be uploaded to the ABB
license server.
Save the license receipt file and upload it manually from a PC with internet connection to
http://lc.codemeter.com/32838/depot/index.php.

ð A license confirmation is returned.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1449

http://lc.codemeter.com/32838/depot/index.php
http://lc.codemeter.com/32838/depot/index.php

Activating a demo license
It is possible to try out device features or library features by using a demo license on the PLC.
With this, you can use the features for a limited time period.

PC and PLC device are connected. In case of no connection, perform the activation via
memory card Ä Chapter 6.3.2.2.2.4 “Licensing via memory card” on page 1450.

There is a connection to the Internet. In case of no connection, perform the activation
on another PC with Internet connection Ä Chapter 6.3.2.2.2.2.2 “Activation without internet
connection” on page 1447.
1. Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

2. Select the option “Create a demo license” and click [Next] to finish the licensing proce-
dure.

ð The demo license is validated by the ABB license server and afterwards activated on
the PLC device.

The demo license is valid for all licensed features and the duration of the demo license is 10
days PLC in run.
As it is a demo license, there is no grace period after expiration (product licenses do not have
an expiration date).
The demo license can be extended any numbers of times. After expiration, the PLC will not
switch back to run mode until a new license is activated or the features requiring a runtime
license are removed from the PLC application.
For AC500 V3 it is visible on the display, if the PLC is running on demo license.

Licensing via memory card

NOTICE!
After removing a Wibu memory card (which holds the AC500 runtime license),
the PLC system moves into 'Stop' mode after 24 h.
Ensure to insert the Wibu memory card at the time.

The Wibu memory card is different from the "normal" memory card that is required in the
following section. The Wibu memory card is an external product that allows you to use the
runtime license on different PLCs if you have several PLCs. Please note the notice at the
beginning of the chapter.

When you have no connection between your PC and the PLC device the licensing procedure
can be done via a memory card.

There is a connection to the internet.

The memory card can be used with AC500 V3 products.

Wibu memory
card

On the PC:
Create a license
request

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1450

NOTICE!
If a SDCard.ini file is stored on the memory card, the file will be overwritten.

1. Place the memory card in the PC.
2. Right-click on the PLC node and select “Prepare PLC license SD memory card” from the

“Runtime Licensing” menu.
3. From the file system select the root folder of the memory card.

ð A success message is displayed when the creation of the memory card files is com-
pleted.
The license request files are stored to the selected folder.

1. Insert the memory card into the PLC device and reboot the PLC.

ð When the license request file is successfully created by the PLC, “done” is shown on
the display of the PLC.

2. Remove the memory card from the PLC.

For this action, internet connection is required.

1. Place the memory card into the PC.
2. Open the PLC project in Automation Builder. Ensure the PLC is logged out.
3. Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

4. Enter the license activation key.
5. From the filesystem, select the root folder of the memory card.

ð The previously created license request files are sent to the ABB license server. A
license activation is created on the memory card.

6. Remove the memory card from the PC.

1. Insert the memory card into the PLC device and reboot the PLC.

ð “done” is displayed on the PLC if license activation was successful.

2. Remove the memory card from the PLC

On the PLC:
Transfer the
license data

On the PC:
Enter the
license activa-
tion key

On the PLC:
Complete
license activa-
tion for the PLC

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1451

Trying to activate a runtime license, that has already been activated (e.g. via an
online conncetion), will result in following error in the sdcard.rdy file:

;Result of license file import
ImportLicense=13;Internal Error (1)

For this action, internet connection is required.

To complete the licensing process, the license receipt file must be uploaded to the ABB license
server.
1. Place the memory card into the PC.
2. Upload the license receipt file manually from a PC with internet connection to

http://lc.codemeter.com/32838/depot/index.php.

The license receipt on the memory card is located in the subfolder license

ð A license confirmation is returned.

Returning a license

NOTICE!
After returning a AC500 runtime license, the PLC system moves into “Stop”
mode after 24 h.

A license which has been installed on a PLC device can be returned and installed on another
PLC device.

PC and PLC device are connected. In case of no connection, perform the activation via
memory card Ä “Returning a license via memory card” on page 1452.
1. Right-click on the PLC node and select “Return active license” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

2. Enter the license activation key and click “Return license”.

ð The results of the return process will be displayed in the dialog.

The license from the PLC device is removed and can be used now for another PLC
device.

When the PLC is not connected to the PC (PLC logged out) it is possible to return a license via
memory card.

On the PC:
Complete
license activa-
tion on the
license server

Returning a
license without
memory card

Returning a
license via
memory card

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1452

http://lc.codemeter.com/32838/depot/index.php

1. Insert the memory card in the PC and execute “Runtime Licensing
è Prepare PLC license SD card ” on the PLC node.

2. Place the memory card into the PLC.
3. Perform “power cycle” after a successful update reboot the PLC and connect to the PLC.

ð The License is removed from the PLC.

4. Place the memory card into the PC.
5. Right-click on the PLC node and select “Return active license” from the “Runtime

Licensing” menu.

ð A wizard is started. Follow the instructions.

6. Enter the license activation key and click “Return license”.

7. Click [Browse] and select the root folder of the memory card.

ð Returning of the license is started.

8. Place the memory card in the PLC device and reboot the PLC.

ð The license from the PLC device is removed and can be used now for another PLC
device.

9. To complete the licensing process, a license receipt file must be uploaded to the ABB
license server.
Save the license receipt file and upload it manually from a PC with internet connection to
http://lc.codemeter.com/32838/depot/index.php.

ð A license confirmation is returned.

View license information
To view the license information of AC500 V3 products:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1453

http://lc.codemeter.com/32838/depot/index.php

1. In the Automation Builder device tree double-click on the PLC node.

ð The PLC tab is opened.

2. In the PLC tab select “License Information”.

ð The project is scanned for required licenses.

If you are logged into a PLC, then the licenses available on the PLC are displayed.
Missing required licenses are highlighted.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1454

6.3.2.2.3 Connection of devices
Configuring devices

All installed devices that are available in Automation Builder are listed in the device repository.
Ä Chapter 6.3.2.1 “Device repository” on page 1443

Modify your Automation Builder project by adding device objects. Preset items can be replaced
in the same way.
1. In the device tree, right-click an item node. Select [Add object].

2. Select the desired object and click [Add object].
3. Double-click the new object in the device tree to configure the device settings. Depending

on the selected item different configuration tabs are available.

Update of AC500 devices
Perform a firmware update to update AC500 V3 devices. Ä Chapter 6.3.1.4.3 “Installation and
update of the AC500 V3 firmware” on page 1422

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1455

Comparing objects
To compare similar objects within a project (such as the project configuration) select both
objects. Right-click and select “Compare Objects” to see the differences.

6.3.2.2.4 IP settings
Configuration of the IP address

The IP address for AC500 devices can be set or changed in Automation Builder using
● the IP configuration tool which is described in the following.
● the Communication Settings. Ä Chapter 6.3.2.2.4.4 “Configuration of communication via

Ethernet (TCP/IP)” on page 1469

As an alternative the IP address can be changed at the hardware device itself. Ä Chapter
6.8.2.5.5 “Description of the function keys” on page 4457

NOTICE!
For any AC500-ETH device where the IP address can be set, the IP: 0.0.0.0 is
invalid and should not be set.
This may cause damage to the PLC and/or the communication module.

Configuration of the IP settings with the LED display
The IP settings for the PLC can be set directly on the processor module via keypad and LED
display.
Ä Chapter 6.8.2.5.5.5 “CFG - configuration” on page 4462

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1456

Configuration of the IP settings with the IP configuration tool
Introduction

The IP configuration tool can be used
● to set or change the IP address of devices.
● to scan the network for available hardware devices.
● to update the firmware of devices.

This functionality is only supported if the IP configuration tool is used stand-alone.
● to activate certain functionality on hardware devices.

This feature is only available on AC500 V3 devices.

The IP configuration tool is part of Automation Builder and can be called via “Tools
è IP-Configuration”.
Further the IP configuration tool can be used stand-alone without an Automation Builder appli-
cation running. The stand-alone variant requires a separate installation via the Installation
Manager Ä Chapter 6.3.2.2.4.3.2 “Stand-alone installation” on page 1457.
After the installation, the IP configuration tool is started via .exe file / desktop icon.

Some functionality is only supported if the IP configuration tool is used stand-
alone, e.g. for firmware updates for communication interface devices.

Stand-alone installation

The IP configuration tool is part of Automation Builder and can be called via
“Tools è IP-Configuration”. A separate installation is only required if the IP
configuration tool shall be used stand-alone.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1457

1. Open the Installation Manager in Automation Builder: “Tools è Installation Manager”.
2. Close all other instances of Automation Builder as only one instance of the program can

be executed at a time.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1458

3. Click [Modify] and select the “IP Configuration Tool” from the structure tree.

4. Click [Continue] to start the installation.

ð After a successful installation the IP configuration tool is available as stand-alone tool
(.exe).

ð To start the IP configuration tool, click the new created desktop icon.

Network scan
With a network scan all devices that have been found in the network by the scan process are
listed, i.e. ABB devices such as AC500 processor modules, AC500 communication interface
modules or ABB drives.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1459

1. Start the IP configuration tool in Automation Builder (“Tools è IP-Configuration”) or start it
stand-alone (.exe).

2. The “IP-Configuration” dialog opens. Define the device type for the network scan by
selecting the desired option under “Scan Protocol”:
● “ABB Net config protocol”:

Use this option for AC500 devices such as processor modules, CI5xx-Modbus devices
or ABB drives. The device(s) to be scanned must be connected to the PC via a direct
Ethernet connection.

● “Profinet Dynamic Configuration Protocol (DCP)”:
Use this option for PROFINET communication interface modules. The device(s) to
be scanned must be connected to the PC via a direct Ethernet connection (not via
CM579).
For the scan, a NPcap driver needs to be installed separately.

● “EtherCAT”:
Use this option for EtherCAT communication interface modules. The Ethernet cable
must be connected directly to the first EtherCAT slave device of the EtherCAT
fieldbus. Ensure that no EtherCAT master device is available on the bus when a scan
is performed.
“Emergency” option: Enable this option to check on failures in the EtherCAT assembly
during the scan process, i.e. a frame loss or interchanged ports. Errors are displayed.
For the scan, a NPcap driver needs to be installed separately.

3. Click [Scan] to start the scan process.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1460

4. All devices that have been found in the network are listed including hardware and connec-
tion details. The following details can be changed under “IP settings”:

ð ● “IP Address”:
Current IP address of the device.

● “Conf. IP Address”:
Configured IP address of the device. A changed IP address will update this
column.

● “FW Version”:
Current installed firmware version of the device. This field is visible not until a first
network scan. If this field is still empty after a network scan, check on connection
errors.

The IP address of some devices, e.g. EtherCAT devices cannot be
changed.

Changing the IP address
1. In order to change the IP address of devices perform a network scan.

Ä Chapter 6.3.2.2.4.3.3 “Network scan” on page 1459

2. Select a device from the list and select the appropriate protocol under “Scan protocol”.
“DHCP” or “BOOTP” option: If required, DHCP or BOOTP can be used to receive the IP
address for the device from the server.
“IP address”, “subnet mask”, “Std. gateway”: Use these fields to change the IP address
settings including the settings for the subnet mask and the standard gateway. Ensure that
the combination of connection settings is correct.

Note for CI52x-Modbus devices
Consider the behavior of CI52x-Modbus devices if the last number of the
IP address is set to "0".

Ä “Check last number of IP address” on page 1462

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1461

3. Change the settings for the IP configuration and click [Send settings] to transmit the data
to the device.

ð
Note for PROFINET devices
The device name of PROFINET devices can be edited. If changing the
name, ensure the following rules apply:

– Labels must be separated by "."
– Total length: 1 to 240
– Label length: 1 to 63
– Labels can consist of characters [a-z] and numbers [0-9]
– Labels are not allowed to start with "-"
– Labels are not allowed to end with "-"

4. In order to keep all IP changes after a power cycle, the settings can be stored perma-
nently. Confirm the prompted message during the scan process.

This hint is only valid for CI52x-Modbus devices.
Check the last number of the IP address. If it is set to "0", the IP address setting for this last
number will be used from the rotary switches on the hardware device.
Example:

Check last
number of IP
address

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1462

Automation Builder AC500 communication interface module
(rotary switch)

IP address:
192.168.14.0

IP address:
6

As a result, in the field “IP Address” the last number is set to "6":

Firmware update
The firmware of AC500 communication interface modules can be updated with the IP configura-
tion tool.
For this, the IP configuration tool must be used as stand-alone variant.
Ä Chapter 6.3.2.2.4.3.2 “Stand-alone installation” on page 1457

It is not possible to perform a firmware update out of Automation Builder.

– For PROFINET communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.3.3.

– For EtherCAT communication interface modules a firmware update is only
supported for devices with firmware version ³ 2.1.4.

– For Modbus communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.2.13.

Before the firmware update
● Ensure a fast and stable network connection
● Close all unused applications on the executing PC
● Stop the communication between AC500 PLC and the communication interface module that

shall be updated

Requirements:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1463

During the firmware update
● Do not close the IP configuration tool
● Do not open Automation Builder software or any other application
● Do not switch-off the communication interface module that shall be updated
● Do not disconnect the Ethernet connection of a communication interface module or the

executing PC

The firmware update will stop the operation of the affected device(s). Hence,
the device(s) will become unresponsive for 1 - 2 minutes.

1. Start the IP configuration tool stand-alone (.exe).
2. Perform a network scan.

Ä Chapter 6.3.2.2.4.3.3 “Network scan” on page 1459

3. Select the devices that shall be updated from the list and click [Scan] to trigger the scan
process.
A multiple selection of several devices is possible via control key, however, ensure to
select only devices of the same protocol at a time. Otherwise the firmware update fails.

4. This step is only required for devices that require an installed NPcap driver. In this case an
appropriate message including a download link is prompted in the IP-Configuration dialog:

ð Click on the displayed link https://nmap.org/download.html and download the latest
version of the npcap-X.X.exe file.

ð After the download, execute the file as administrator and restart the scan process.

ð The devices that have been scanned are listed.

Procedure:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1464

https://nmap.org/download.html

5. Click [Update Firmware] to start the firmware update for the selected devices.

6. For CI50x, CI51x and CI52x devices a signature check is started. Select the appropriate
firmware update file (*.bin) for the device(s). Example: C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.
After a successful signature check the firmware update file (*.bin) and the respective
signature file (*.bin.sig) are transferred to the device. This can last up to 3 minutes.
If the signature check fails, check the availability of the *.bin file and the *bin.sig file.

7. A status check followed by a device reboot followed by a second status check is per-
formed automatically.

After the firmware update all outputs of the updated devices are set to '0'.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1465

8. After a successful firmware update the update status or the new firmware version is
displayed in the “FW Version” field.
If this field is empty, there possibly is a connection error between the device and the
executing PC.

Exception: For EtherCAT devices an empty “FW Version” field does not indicate a connec-
tion error.

ð If the firmware update fails
● check the requirements for the update procedure.
Ä “Requirements:” on page 1463

● check the hints for trouble-shooting.
● perform a network scan and repeat the update. If the error still persists power

cycle the device and try the update again.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1466

Blink functionality
This function activates flashing of the backlight of an AC500 LED display.
1. From the menu, select “Tools è IP-Configuration”.
2. Click [Scan] to trigger the scan process for devices in the network.

ð A progress bar shows the progress. The IP settings of a selected device is displayed
below the list and can be edited.

3. Adjust your desired time and click [Blink] to activate flashing.

Troubleshooting for IP configuration tool
On a standard Windows 7 installation without third party firewall or security tools installed the IP
configuration tool should work properly.
The Automation Builder setup installs rules or exceptions for the built-in Windows firewall to
allow IPConfig to receive the responses for the IPConfig scan.
To check the Windows firewall is set correctly check the firewall settings.

On the network that is used for communication with the PLC, set “Incoming connections” to
"Block all connections to programs that are not on the list of allowed programs".

Firewall excep-
tions:

Windows 7/
Windows 10:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1467

If a third party firewall is used these exceptions must be configured manually.

Either exceptions for applications can be entered: Automation Builder and IP
configuration tool must be added as application.

Or the protocol and the port number must be given (for IPConfig: UDP protocol
and port number 24576).

Fault description Cause Remedy
Error - general Ensure that all requirements have been con-

sidered before and during the update proce-
dure.

The “FW Version” field
is empty after the net-
work scan or the firm-
ware version has not
been updated after the
update procedure (only
for Modbus devices and
PROFINET devices)

Connection error between the device
and the executing PC.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1468

Fault description Cause Remedy
Signature check failed During the firmware update of CI50x,

CI51x and CI52x devices a signature
check is started. The update proce-
dure expects a firmware update file
(*.bin) and a signature file (*.bin.sig)
in the same directory. Without a signa-
ture file the signature check will fail.

Example:
Firmware update file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Signature file:C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.sig

Error: Package timeout A timeout error may occure due to an
instable network.

Keep the executing PC as near as possible
to the devices that shall be updated. Avoid net-
work switches.

Error: Unable to read
device status

A read error may occure due to errors
in the firmware update protocol. After
the firmware update the IP configura-
tion tool reads out the status of the
updated device in order to check if the
update was successful.

Perform the update again.

Error: IP is not unique If an IP address is obtained by more
than one device an error occures. A
firmware update is not possible.

Change the IP addresses.

Error: Error State Internal device error during the firm-
ware update.

Error: Can’t connect to
device

The TCP communication is not suffi-
cient.

Increase the connection quality. Keep the exe-
cuting PC as near as possible to the devices
that shall be updated. Avoid network switches.

Configuration of communication via Ethernet (TCP/IP)
General

Programming via Ethernet is only possible on a PC with Ethernet board and installed network.
Programming can be done via the internal (onboard) Ethernet communication module.
An application note describes the configuration of an AC500 V3 PLC for
EtherNet/IP communication.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1469

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010825&LanguageCode=en&DocumentPartId=&Action=Launch

Enter a known PLC IP address
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box “Communication Settings <...>” appears.

2. Enter your PLC IP Address and click [OK].

Enter PLC IP address by scanning devices
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box “Communication Settings <...>” appears.

2. Click [...].

ð Dialog box “Communication Settings <...>” appears.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1470

3. Click [Scan], select your desired PLC and click [OK].

ð Entry is transferred to the dialog box “Communication Settings <...>”.

Click [OK].

4. Click to log in the “PLC_AC500_V3” project.

Enter PLC IP address by [Advanced Settings...]
If a remote gateway instead of a local one has to be used it can be configured in the
[Advanced Settings...].
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box “Communication Settings <...>” appears.

2. Enable checkbox “Use advanced settings” and click [Advanced Settings...].

ð Tab “Communication Settings” opens.

3. Check gateway or change if required.

ð Successful connection is indicated by green dot on the gateway icon.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1471

4.
Manual entry of the IP address.

Check IP address or change if required.
5. Press ENTER to confirm changed IP address.

ð Successful communication is indicated by green dot on the PLC icon.

6. Or instead of the last two steps:

Set the IP address via a scan.

Click [Scan Network], select your desired PLC and click [OK].

ð Successful connection is indicated by green dot on the gateway icon.

7. Click to log in the “PLC_AC500_V3” project.

Connect to PLC via hostname
Automation Builder supports the connection to PLCs via hostname.

To access a V3 PLC via hostname, the user should add the prefix “dns:” in the editor view
“Communication Settings” of that PLC.

This enables a login to a V3 PLC via hostname.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1472

Firmware update of a V3 PLC via Automation Builder requires the configuration
of the IP-Address in bytes and will not work with any hostname.

6.3.2.2.5 Online program modification
A fast online program modification of the user program is possible without interrupting the
running operation. If data areas should be saved during power OFF/ON, they can be stored in
the flash EPROM. An optional battery saves data in the RAM.

6.3.2.3 Processor modules
6.3.2.3.1 Configure a processor module in the device tree

1. Add a processor module to your project. Ä Chapter 6.3.1.1.2 “Creating a new project ”
on page 1398

2. Double-click the PLC node in the device tree.

ð This will open a new window with tabs for the device configuration:

● “Communication Settings” Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Set-
tings'” on page 2427

● “PLC Settings” Ä Chapter 6.4.1.21.2.8.10 “Tab 'PLC Settings'” on page 2439
● “Version information” Ä Chapter 6.3.1.4.2.2.1.1 “Version information”

on page 1419
● “Statistics” Ä Chapter 6.9.2.4.2 “Statistics” on page 4646
● “Files” Ä Chapter 6.4.1.21.2.8.8 “Tab 'Files'” on page 2437
● “Log” Ä Chapter 6.9.2.4.3 “Log” on page 4647
● “PLC Shell” Ä Chapter 6.3.5.6 “PLC shell commands” on page 1756
● “Users and Groups” Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'”

on page 2450
● “Access Rights ” Ä Chapter 6.4.1.21.2.8.15 “Tab 'Access Rights'” on page 2453
● “Symbol Rights” Ä Chapter 6.4.1.21.2.8.16 “Tab 'Symbol Rights'” on page 2458
● “PM5xxx Hardware” Ä Chapter 6.3.2.3.2 “Changing the processor module type”

on page 1475
● “CPU Parameters” Ä Chapter 6.4.1.21.2.8.4 “Tab 'Parameters'” on page 2433
● “IEC Objects” Ä Chapter 6.4.1.21.2.8.13 “Tab '<device name> IEC Objects'”

on page 2449
● “I/O mapping list” Ä Chapter 6.3.2.13.8 “I/O mapping list” on page 1572
● “I/O-Bus I/O Mapping” Ä Chapter 6.9.2.5 “Live values in views with I/O compo-

nents” on page 4649
● “Task Deployment” Ä Chapter 6.4.1.21.2.8.18 “Tab 'Task deployment'”

on page 2459
● “Applications” Ä Chapter 6.4.1.21.2.8.5 “Tab 'Applications'” on page 2434
● “Backup and Restore” Ä Chapter 6.4.1.21.2.8.6 “Tab 'Backup and Restore'”

on page 2435
● “Status” Ä Chapter 6.9.2.4.5 “Status” on page 4648
● “Diagnosis” Ä Chapter 6.9.1.4.4 “Device diagnosis” on page 4613
● “Diagnosis History” Ä Chapter 6.9.1.4.5 “Diagnosis history” on page 4614
● “License Information” Ä Chapter 6.3.2.2.2.6 “View license information”

on page 1453
● “Information” General information about the device (name, vendor, version etc.)

3. Select the “CPU Parameters” tab to configure the parameters for the processor module.
Ä Table on page 1555

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1473

4. Use the “PM5xxx Hardware” tab for later on changes of “Terminal Base Type” or
“Processor Module Type” Ä Chapter 6.3.2.3.2 “Changing the processor module type”
on page 1475.

5. Select the “I/O mapping list” tab to create mapping variables with better usability sup-
port compared to the tree structured view. Ä Chapter 6.3.2.13.8 “I/O mapping list”
on page 1572

6. Select the “Backup and Restore” tab to create a backup or restore the project. Ä Chapter
6.4.1.21.2.8.6 “Tab 'Backup and Restore'” on page 2435

7. Select the “Diagnosis” tab to know what errors have occurred in the project. Ä Chapter
6.9.1.4.4 “Device diagnosis” on page 4613

Parameter Default Value Description
Error LED On On The error LED lights up for errors of all

classes, no fail-safe function activated.

Off by E4 Warnings (E4) are not indicated by the
error LED, no fail-safe function activated.

Off by E3 Warnings (E4) and minor errors (E3) are
not indicated by the error LED, no fail-safe
function activated.

POU control Control LED ERR with POU PmErrLedSet

Check battery On On The presence of the battery and the bat-
tery status are checked. If no battery is
available or the battery is empty, a warning
(E4) is generated and the ERR LED lights
up.

Off The presence of the battery is not
checked. No warning (E4) is generated.
The LCD display "Batt" (triangle) can not
be acknowledged! This also applies if a
battery is installed but empty.

Stop on error
class

Diagnosis of
at least error
class 2

Diagnosis of at
least error
class 2

In case of a fatal or severe error (E1-E2),
the user program is stopped.

Diagnosis of at
least error
class 3

In case of a fatal, severe or minor error
(E1-E3), the user program is stopped.

Diagnosis of at
least error
class 4

In case of a fatal, severe or minor error
(E1-E3) or a warning (E4) the user pro-
gram is stopped.

Diagnosis - Add
PLC name to node
name

Off Off Diagnosis - Add PLC name to node name.

On

PLC behavior after
voltage dip

Halt Halt Behavior of the PLC after short voltage
dip: reboot or halt.Reboot

Diagnosis history On On Enable the diagnosis history.

Off Disable the diagnosis history.

Max. Diagnosis
history entries

1000 1000 Max. number of entries kept by the diag-
nosis history.

Missed cycle
behavior

Next Next Skip the current cycle and start task in
time on next cycle.

ASAP Start the task immediately.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1474

Parameter Default Value Description
Communication
Schema

Default Default Balanced priority for communication
via communication modules (CMs) and
onboard Ethernet communication.

Communica-
tion modules

Priority and high performance for commu-
nication module (CM) based communica-
tion via sync tasks. Lower priority for
onboard Ethernet and I/O bus.

Onboard
Ethernet

Priority for onboard Ethernet communica-
tion (e.g. via Modbus TCP). Lower pri-
ority for communication via communication
modules (CMs).

Real time
onboard
Ethernet

Very high priority for onboard Ethernet
communication (e.g. EtherCAT PROFINET
Ethernet). Low priority for communication
via communication modules (CMs).

Automated reboot
after E2 error

Off Off Not automated reboot after E2 error.

On Automated reboot after E2 error.

6.3.2.3.2 Changing the processor module type
General

In a project, you can change the target system by changing the type of processor module or
terminal base type. If possible, the device configuration of fieldbuses and interfaces is kept and
switched over to the device configuration of the new module.
Target change options:
● between platforms: from V2 platform to V3 platform (and vice versa)
● between module types: from AC500 (standard) to AC500-eCo (and vice versa)
● a combination of changed platform and changed module type

Target change from a V2 processor module to a V3 processor module
Target change options:
● AC500 V2 processor module to AC500 V3 processor module
● AC500 V2 processor module to AC500-eCo V3 processor module
● AC500-eCo V2 processor module to AC500-eCo V3 processor module
● AC500-eCo V2 processor module to AC500 V3 processor module

1. Close CODESYS.
2. Double-click the “PLC_AC500_V2 <...>” node and open the “PM5<...> Hardware” tab.

Procedure:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1475

3. Enable “Change to AC500 V3 PLC” and select the desired V3 processor module from the
“PM5xx Type” drop-down list.

4. Click [Create V3 PLC].

ð The new V3 processor module is displayed in the navigation tree.

ð Change the node name of the processor module, if desired.

In case of a target change from AC500-eCo V2 to AC500-eCo V3, the I/O bus
and Ethernet configuration is kept.

Target change from a V3 processor module to another V3 processor module
Target change options:
● AC500 V3 processor module to AC500 V3 processor module
● AC500 V3 processor module to AC500-eCo V3 processor module
● AC500-eCo V3 processor module to AC500 V3 processor module
● AC500-eCo V3 processor module to AC500-eCo V3 processor module

1. Close CODESYS.
2. Double-click the “PLC_AC500_V3 <...>” node and open the “PM5<...> Hardware” tab.

Procedure:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1476

3. Select the desired V3 processor module from the “PM5xx Type” drop-down list.

Fig. 271: Change_Hardware_V3

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1477

4. Ensure the correct “Terminal Base Type” is selected and click [Change PM / TB type].

ð If possible, the device configurations from the previous processor module will be kept
and switched over to the new processor module.
The device configurations that cannot be kept are listed in a prompted information
dialog.

By default, all device configurations which cannot be switched over will be copied to
a “device pool” section in the navigation tree (option “Copy all objects that cannot
be added to the new PLC into a device pool for further access”). If required, this
backuped configuration can be used in another project or in another processor module
configuration.
If the checkbox is deactivated all device configurations that cannot be switched will be
lost after the execution of the target change.

The configuration of the onboard I/Os, the option board slots and the onboard
RTC cannot be changed-over to the new module.

The configuration of COM1, CAN and the I/O bus cannot be changed-over to
the new module. Depending on the selected target, also the I/O bus configura-
tion and ETH2 configuration cannot be switched.

ETH1 configuration is kept even if the configured protocols are not allowed for
the selected AC500-eCo V3 PLC. In this case error messages are displayed in
the messages window.

Target change
from AC500-eCo
V3 to AC500 V3

Target change
from AC500 V3
to AC500-eCo
V3

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1478

Libraries which are not used anymore are not deleted with the target change.
Libraries of option boards are kept in the Library Manager even if no longer
available at the target module.

6.3.2.3.3 Changing the processor module type for AC500-eCo V3 CPU

It is not possible to change from an AC500 V3 processor module to an AC500-
eCo V3 processor module!

Changing an AC500-eCo V3 processor module to another AC500-eCo V3 pro-
cessor module is possible and the same limitation as listed before are applying,
only the available or possible feature from the new processor module will be
kept from the old processor module.

Close CODESYS.
1. Double-click the “PLC_AC500_V3 <...>” node.

2. Open the “PM50xx Hardware” tab and select the new “PM50xx Type” from the drop-down
list.

6.3.2.3.4 Parameters of the processor module
Automated reboot after E2 error

The parameter “Automated reboot after E2 error” allows to set the behavior of the CPU in case
of severe errors (class E2).

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1479

If the default setting “Off” is used, no automated reebot after an E2 error is performed.
If the setting “On” is used, an automated reebot after an E2 error is performed.

PLC behaviour after voltage dip
The parameter “PLC behaviour after voltage dip” allows to set the behavior of the CPU in case
of short voltage dips.

If the default setting “Halt” is used, the CPU is changed to STOP mode if a short voltage dip >10
ms occurs. A new powercycle is required.
If the setting “Reboot” is used, CPU will reboot after power supply has recovered to nominal
value.

Floating point values
A calculation with floating points can lead to the following values:

If a calculation results in an underrun, the value is set to 0 (result near 0, but not presentable).
Depending on the sign bit, it can be a positive zero or a negative zero. The operator "=" of -0
and 0 returns TRUE.

If a calculation results in an overrun, the value is set to Infinity (the result is not presentable).
Depending on the sign bit, it can be a positive infinity (Infinity) or negative infinity (-Infinity).
If Infinity is converted into another data type it results in the maximum value of the other data
type (e.g.. conversion into DWORD with REAL_TO_DWORD: 16#FFFFFFFF, into DINT with
REAL_TO_DINT: 16#7FFFFFFF).
If -Infinity is converted into another data type it results in the maximum value of the other data
type (e.g.. conversion into DWORD with REAL_TO_DWORD: 16#00000000, into DINT with
REAL_TO_DINT: 16#80000000).

Except for:
TRUE := REAL_TO_BOOL(Infinity);
'#Inf' := REAL_TO_STRING(Infinity);
'-#Inf' := REAL_TO_STRING(-Infinity);

0 (zero)

Infinity

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1480

Infinity -Infinity
Infinity := 1.0 / 0.0 -Infinity := -1.0 / 0.0

Infinity := Infinity + Infinity -Infinity := -Infinity -Infinity

Infinity := Infinity + 1.0 -Infinity := -Infinity + 1.0

Infinity := LREAL_TO_REAL(Infinity) -Infinity := LREAL_TO_REAL(-Infinity)

Examples:

If a calculation results in an undefined value the result is set to NaN (Not a Number). The result
of each calculation with NaN is NaN. The operators "<", "<=", ">" and ">=" return FALSE if either
or both operands are NaN.
Operator "=" returns FALSE if one operand is NaN.
Operator "<>" returns TRUE if one operand is NaN.
If NaN is converted into another data type the result is 0.
Except for:
TRUE := REAL_TO_BOOL(NaN);
'#NaN' := REAL_TO_STRING(NaN);

NaN := SQRT(-2.0)
NaN := 0.0 / 0.0
NaN := Infinity -Infinity
NaN := 0.0 * Infinity
NaN := Inifnity / Infinity

Examples:

The result of an operation can be checked with the following program parts:

Check for NaN (REAL): Check for NaN (LREAL):
rX: REAL;
IF (rX <> rX) THEN
(* rX is a NaN *)
...;
END_IF;

lrX: LREAL;
IF (lrX <> lrX) THEN
(* lrX is a NaN *)
...;
END_IF;

NaN

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1481

Check for Infinity (REAL): Check for Infinity (LREAL):
Infinity is represented with sign bit 0, exponent of all 1s and a fraction of all 0s.
-Infinity is represented with sign bit 1, exponent of all 1s and a fraction of all 0s.
rX: REAL;
prX: POINTER TO REAL;
pdwX: POINTER TO DWORD;
prX := ADR(rX);
pdwX := prX;
IF (pdwX^ = 16#7F800000) THEN
(* rX is Infinity *)
...;
END_IF;
IF (pdwX^ = 16#FF800000) THEN
(* rX is -Infinity *)
...;
END_IF;

lrX: LREAL;
plrX: POINTER TO LREAL;
plwX: POINTER TO LWORD;
plrX := ADR(lrX);
plwX := plrX;
IF (plwX^ = 16#7FF0000000000000)
THEN
(* lrX is Infinity *)
...;
END_IF;
IF (plwX^ = 16#FFF0000000000000)
THEN
(* lrX is -Infinity *)
...;
END_IF;

6.3.2.4 AC500-eCo V3 onboard I/Os
According to the used AC500-eCo V3 processor module, the onboard I/Os are different and the
functionality of the I/Os are adapted to the processor module type.

Onboard I/O combina-
tion

PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

6 DI, digital input 24 V
DC / 4 DO, digital output
transistor 24 V DC / 0.5 A

X

6 DI, digital input 24 V
DC / 4 DO, digital output

relay 240 V AC / 2 A

X

12 DI, digital input 24 V
DC / 8 DO, digital output
transistor 24 V DC / 0.5
A / 2 DC, digital in/out

configurable 24 V DC, 24
V DC / 0.5 A

 X X X X

12 DI, digital input 24 V
DC / 6 DO, digital output
relay 240 V AC / 2A / 2

DC, digital in/out configu-
rable 24 V DC, 24 V DC /

0.5 A

 X X

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1482

6.3.2.5 Configure the onboard I/O channel
The onboard I/Os support the following channels functions according to the processor module
type:

Onboard I/O
type

Channel func-
tion

PM5012-T-ETH PM5012-R-ETH Channel name
when available

Digital input
channel total

thereof as

Digital input 6 6 DI0 … DI5

Fast input x,
max. 5 kHz

Digital input 6 6 DI0 … DI5

Interrupt input 4 4 DI0 … DI3

Fast counter 2 2 DI4 … DI5

Digital output
channel total

thereof as

Digital output 4 4 DO0 … DO3

Fast output x,
max. 5 kHz

Digital output 4 4 DO0 … DO3

Limit switch 4 - DO0 … DO3

PWM output 4 - DO0 … DO3

Onboard I/O
type

Channel func-
tion

PM5032-T-ETH
PM5052-T-ETH

PM5072-
T-2ETH(W)

PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Channel name
when available

Digital input
channel total

thereof as

Digital input 12 12 DI0 … DI11

Fast input x,
max. 5 kHz

Digital input 4 4 DI0 … DI3

Interrupt input 4 4 DI0 … DI3

Touch/Reset 4, together with
dedicated
encoder

4, together with
dedicated
encoder

DI0 … DI3

Fast input x,
max. 100 kHz

Digital input 4 4 DI4 … DI7

Encoder input 2, with A/B tracks 2, with A/B tracks DI4 … DI7

Fast counter 4 4 DI4 … DI7

Standard input Digital input 4 4 DI8 … DI11

Digital output
channel total

thereof as

Digital output 8 6 DO0 … DO7
DO0 … DO5

Fast output x,
max. 5 kHz

Digital output 4 - DO0 … DO3

Limit switch 4 - DO0 … DO3

PWM output 4 - DO0 … DO3

Fast output x,
max. 100 ... 200

kHz

Digital output 4 - DO4 … DO7

Limit switch 4 - DO4 … DO7

PWM output 4 - DO4 … DO7

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1483

Onboard I/O
type

Channel func-
tion

PM5032-T-ETH
PM5052-T-ETH

PM5072-
T-2ETH(W)

PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Channel name
when available

PTO output 2, pair of output,
in CW/CCW or
Pulse/Direction

mode
or 4 as Pulse
with standard

outputs as Direc-
tion

- DO4 … DO7

Digital in/output
configurable
channel total

thereof as

Digital in/output 2 2 DC12 … DC13

Standard dig.
channel

Digital In/output 2 2 DC12 … DC13

Fast output, max.
100 ... 200 kHz

Limit switch - 2 DC12 … DC13

PWM output - 2 DC12 … DC13

PTO output - 1, pair of output,
in CW/CCW or
Pulse/Direction

mode

DC12 … DC13

When debugging AC500-eCo V3 applications and reaching a breakpoint, the
onboard outputs are set to zero.

For all CPU versions the configuration of the input channels is the same. The configuration of
the output channels is only available on CPU version with transistor output channels:

Version with relay outputs, same configuration for the input channels, no configuration for the
output channels relay:

Basic CPU:
PM5012-x-ETH

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1484

The following parameter can be configured:

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Digital inputs Input X, input
delay

Channel 0..5 8 ms No delay Configures input
with no delay

1 ms Configures 1 ms
input delay

8 ms Configures 8 ms
input delay

32 ms Configures 32 ms
input delay

Input X,
channel con-
figuration

Channel 0..3 Input/Inter-
rupt

Input/Inter-
rupt

Configures the
channel as normal
digital or interrupt
input

The configu-
ration /func-
tion of the
following
channels is
realized
using func-
tion blocks in
the program

Channel 4..5 Input Input Configures the
channel as normal
digital input

Encoder 0
track-A or B

Configures the pair
of channels as
encoder input track
A or B. When that
value is configured
then both channels
are reserved for that
functionality

Forward
counter

Configures the
channel as forward
counter

The configuration of output channel is only available on the CPU with transistor outputs
Digital out-
puts

Output X,
channel con-
figuration

Channel 0..3 Output Output Configures the
channel as digital
output

Limit switch Configures the
channel as limit
switch output

PWM Configures the
channel as PWM
output

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1485

For all CPU versions the configuration of the input channels is the same. The configuration of
the output channels is only available on CPU version with transistor output channels, the digital
configurable In/Output channels are present on both version (transistor or relay output) but with
different features configurable:

For the CPU with relay outputs, the digital configurable Input/Output channels have specific
functionalities:

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Digital inputs Input X, input
delay

Channel
0..11

8 ms No delay Configures input
with no delay

1 ms Configures 1 ms
input delay

8 ms Configures 8 ms
input delay

32 ms Configures 32 ms
input delay

Fast inputs
max. 5 kHz

Input X,
channel con-
figuration

Channel 0..1 Input/Inter-
rupt

Input/Inter-
rupt

Configures the
channel as normal
digital or interrupt
input

Touch/Reset
0

Configures the pair
of adjacent chan-
nels as Touch/Reset
inputs together with
encoder 0

Channel 2..3 Input/Inter-
rupt

Input/Inter-
rupt

Configures the
channel as normal
digital or interrupt
input

Standard CPU:
PM5032-x-ETH,
PM5052-x-ETH
Pro CPU:
PM5072-T-2ETH,
PM5082-T-2ETH

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1486

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

Touch/Reset
1

Configures the pair
of adjacent chan-
nels as Touch/Reset
inputs together with
encoder 1

Fast inputs
max.
100/200 kHz

The function
of the fol-
lowing chan-
nels is real-
ized using
function
blocks in the
program

Channel 4..5 Input Input Configures the
channel as normal
digital input

Max. fre-
quency 200
kHz

When that
value is con-
figured then
both chan-
nels are
reserved for
that function-
ality

Encoder 0
track-A or B

Configures the pair
of adjacent chan-
nels as encoder 0
input track A or B.

Max. fre-
quency 100
kHz

 Forward
counter

Configures the
channel as forward
counter

Fast inputs
max.
100/200 kHz

 Channel 6..7 Input Input Configures the
channel as normal
digital input

Max. fre-
quency 200
kHz

When that
value is con-
figured then
both chan-
nels are
reserved for
that function-
ality

Encoder 1
track-A or B

Configures the pair
of adjacent chan-
nels as encoder 1
input track A or B.

 Touch/Reset Configures the pair
of adjacent chan-
nels as Touch/Reset
inputs together with
encoder 0

Max. fre-
quency 100
kHz

 Forward
counter

Configures the
channel as forward
counter

The following configuration of output channel is only available on the CPU with tran-
sistor
Fast outputs,
max. 5 kHz

Output X,
channel con-
figuration

Channel 0..3 Output Output Configures the
channel as digital
output

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1487

Onboard I/O
type

Parameter Channel
name

Default
value

Value Description

The configu-
ration / func-
tion of the
following
channels is
realized
using func-
tion blocks in
the program

Limit switch Configures the
channel as limit
switch output

PWM Configures the
channel as PWM
output

Fast outputs
max.
100/200 kHz

Output X,
channel con-
figuration

Channel 4..7 Output Output Configures the
channel as digital
output

The function
of the fol-
lowing chan-
nels is real-
ized using
function
blocks in the
program

Limit switch Configures the
channel as limit
switch output

Max. fre-
quency 100
kHz

PWM Configures the
channel as PWM
output

Max. fre-
quency
100/200 kHz

Depending
on the OBIO-
MotionPTO
or OBIOMo-
tionPWM
function
block used

PTO Configures the pair
of adjacent chan-
nels as PTO output
or one as pulse and
a standard output as
direction

Digital con-
figurable
input/outputs

Output X,
channel con-
figuration

Channel
DC12..DC13

Input/Output Input/Output Configures the
channel as digital
input/output

The following configuration of output channel is only available on the CPU with relay
outputs
Digital con-
figurable
input/outputs

Output X,
channel con-
figuration

Channel
DC12..DC13

Input/Output Input/Output Configures the
channel as digital
input/output

The function
of the fol-
lowing chan-
nels is real-
ized using
function
blocks in the
program

Limit switch Configures the
channel as limit
switch output

Max. fre-
quency 100
kHz

 PWM Configures the
channel as PWM
output

Max. fre-
quency
100/200 kHz

Depending
on the OBIO-
MotionPTO
or OBIOMo-
tionPWM
function
block used

PTO Configures the pair
of channels as PTO
output

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1488

6.3.2.6 Mapping of the onboard I/O channels

1. Double-click “OnBoard_IO” in the device tree.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1489

ð A tab opens in the editor view.

2. Select “12DI/8DO-T/2DC I/O Mapping”.

ð Here, you will map variable names (symbols) for the channels you will need in the
program.

3. Open the list of the digital inputs.
4. Fill in the variable names:

Channel Type Variable
Digital input DI0 BOOL xDI_00_OnBoard_IO_I0

Digital input var-
iables

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1490

5. Open the list of the digital outputs.
6. Fill in the variable names:

Channel Type Variable
Digital output DO0 BOOL xStartDrilling1

The suggested name convention is based on the "Hungarian notation". A name prefix is
describing variable type: e.g., "x" = variable of type BOOL, "w" = WORD, "i" = INT (integer)
etc. This increases the code readability and is helpful for program analysis.

6.3.2.7 Configuration of the onboard I/Os of AC500-eCo V3 PLC
6.3.2.7.1 Digital inputs from the onboard I/Os

Depending on the processor module used, several configurations are possible for the onboard
I/Os mostly different per group of channels.

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Digital inputs PM5012-x-
ETH

I0 … I3 Input/Interrupt Not needed Input delay
can be some-
times config-
ured
according to
channels type

I4 ... I5 Input

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

I0 … I3 Input/Interrupt Not needed Input delay
can be some-
times config-
ured
according to
channels
type, for the
PLC with
relay outputs,
the digital

I4 … I7 Input

Digital output
variables

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1491

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

I8 ... I11 Always inputs,
not configu-
rable

configurable
channels
have some
other configu-
rable features.C12 … C13 Input/Output

6.3.2.7.2 Fast counters in the onboard I/Os
Ä General details on fast counters.

Ä Details on the configuration of the onboard I/Os channels.

Depending on the configuration for the input channels of the onboard I/O from the processor
module different functionality are possible which must be used together with the dedicated
function block of the user program.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1492

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Forward
counter

PM5012-x-
ETH

I0 … I3 Not relevant
for the func-
tionality

OBIOFor-
wardCounter

Up to 2 for-
ward counters
with up to 5
kHz can be
used, the
other inputs
can be used
for other pur-
pose

I4 ... I5 Forward
counter

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

I0 … I3 Not relevant
for the func-
tionality

OBIOFor-
wardCounter

Up to 4 for-
ward counters
with up to 100
kHz can be
used, the
other inputs
can be used
for other pur-
pose

I4…I7 Forward
counter

I8 ... I11 Not relevant
for the func-
tionality

6.3.2.7.3 A/B Encoder in the onboard I/Os
Depending on the configuration for the input channels of the onboard I/O from the processor
module different functionality are possible which must be used together with the dedicated
function block of the user program.

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

A/B encoder 5
kHz with
touch/reset
inputs

PM5012-x-
ETH

I0 Touch/Reset0 OBIOEnco-
derCounter

The function-
ality uses the
4 digital
inputs, the
other can be
used for other
purpose

I1 Touch/Reset0

I2 … I3 Not relevant
for the func-
tionality

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1493

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

I4 Encoder 0
Track A

I5 Encoder 0
Track B

Up to 2 A/B
encoders
200kHz pos-
sible with
touch/reset
standard
inputs

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

I0 Touch/Reset0 OBIOEnco-
derCounter

The function-
ality uses up
to the 4 digital
fast inputs
200 kHz and
the 4 5 kHz,
the other
inputs can be
used for other
purpose.
Select
encoder x
track A for an
input (I4 or I7)
automatically
selects the
adjacent input
for B track

I1 Touch/Reset0

I2 Touch/Reset1

I3 Touch/Reset1

I4 Encoder 0
Track A

I5 Encoder 0
Track B

I6 Encoder 1
Track A

I7 Encoder 1
Track B

I8 ... I11 Not relevant
for the func-
tionality

One A/B
encoder 200
kHz with
touch/reset

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

I0 Not relevant
for the func-
tionality

OBIOEnco-
derCounter

The function-
ality uses the
4 digital fast
inputs 200
kHz, the other
inputs can be
used for other
purpose.
Select
encoder x
track A for the
input (I4)
automatically
selects the
adjacent input
for B track

I1 Not relevant
for the func-
tionality

I2 Not relevant
for the func-
tionality

I3 Not relevant
for the func-
tionality

I4 Encoder 0
Track A

I5 Encoder 0
Track B

I6 Touch/Reset

I7 Touch/Reset

I8 ... I11 Not relevant
for the func-
tionality

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1494

6.3.2.7.4 Configuration of interrupt inputs
Depending on the configuration for the input channels of the onboard I/O from the processor
module different functionality are possible which must be used together with the dedicated
function block of the user program.

Example with
one encoder

Example with
two encoders

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1495

Functionality
to be realized

Processor
module type

Digital input
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Interrupt
inputs

PM5012-x-
ETH

I0 … I3 Input/Interrupt OBIO
InterruptInfo
OBIOInter-
ruptPara

Up to 4 inter-
rupt input
channels can
be used, the
other inputs
can be used
for other pur-
pose

I4 ... I5 Not relevant
for the func-
tionality

PM5032-x-
ETH,
PM5052-x-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

I0 … I3 Input/Interrupt OBIO
InterruptInfo
OBIOInter-
ruptPara

Up to 4 inter-
rupt input
channels can
be used, the
other inputs
can be used
for other pur-
pose

I4 … I11 Not relevant
for the func-
tionality

6.3.2.7.5 Creating an interrupt task
After configuring the parameter, the user needs to create a new task with the “Type” set to
“External” and the “External event” set to “OnBoard_Binary_Input”.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1496

Please see “Use the onboard I/Os as interrupt input with dedicated interrupt task” in the system
technology how to use the function. Ä Chapter 6.8.2.15.3.4 “Use the onboard I/Os as interrupt
input with dedicated interrupt task” on page 4550

6.3.2.7.6 Configuration of digital outputs
According to the processor module type, the digital outputs have several functionalities. To use
them as digital output and as default configuration the following configuration is needed:

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Digital Out-
puts

PM5012-T-
ETH

O0 … O3 Output Not needed -

PM5012-R-
ETH

NO0 ... NO1

NO2 ... NO3

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

O0 … O3 Output Not needed No other con-
figuration
neededO4 … O7 Output

C12 … C13 Input/Output

PM5032-R-
ETH,
PM5052-R-
ETH

NO0 ... NO2 Output Not needed No other con-
figuration
neededNO3 ... NO5 Output

C12 … C13 Input/Output

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1497

6.3.2.7.7 Configuration of outputs as limit switch
The AC500-eCo V33 processor modules provide according to the output variants transistor
or relay some output which can be used as limit switch. For the process modules with relay
outputs, only the digital configurable channels provide this functionality.

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

Limit switch PM5012-T-
ETH

O0 … O3 Limit Switch OBIO-
LimitSwitch

Up to 4 limit
switches

PM5012-R-
ETH

NO0 ... NO1 Not relevant
for the func-
tionality

Relay outputs
without other
functions

NO2 ... NO3 Not relevant
for the func-
tionality

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

O0 … O3 Limit Switch OBIO-
LimitSwitch

Up to 8 limit
switchesO4 … O7 Limit Switch

C12 … C13 Not relevant
for the func-
tionality

PM5032-R-
ETH,
PM5052-R-
ETH

NO0 … NO2 Not relevant
for the func-
tionality

OBIO-
LimitSwitch

Relay outputs
without other
functions

NO3 … NO5 Not relevant
for the func-
tionality

C12 … C13 Limit Switch Up to 2 limit
switches

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1498

6.3.2.7.8 Operating the limit switch output with user program
The OBIOLimitSwitch function block of the library must be used to operate the outputs with help
of user program.

6.3.2.7.9 Configuration of PWM outputs (Pulse Width Modulation)
The AC500-eCo V3 processor modules provide up to 8 PWM output channels with a maximum
frequency of 100 kHz ... 200 kHz. The parameter of PWM output channel of onboard I/O must
be configured before it can be used. User should take these steps to configure the PWM output
function.

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

PWM outputs PM5012-T-
ETH

O0 … O3 PWM OBIOPwm Up to 4 PWM
with 5 kHz

PM5012-R-
ETH

NO0 … NO1 Not relevant
for the func-
tionality

Relay outputs
without other
functions

NO2 … NO3 Not relevant
for the func-
tionality

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

O0 … O3 PWM OBIOPwm Up to 4 PWM
with 5 kHz

O4 … O7 PWM / PTOx
LS Pulse

Up to 4 PWM
with 100...200
kHz

C12 … C13 Not relevant
for the func-
tionality

PM5032-R-
ETH,
PM5052-R-
ETH

NO0 … NO2 Not relevant
for the func-
tionality

OBIOPwm Relay outputs
without other
functions

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1499

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

NO3 … NO5 Not relevant
for the func-
tionality

C12 … C13 PWM Up to 2 PWM
with 100 kHz
only on these
channels

6.3.2.7.10 Operating the PWM output with user program
The OBIOPwm function block of the library must be used to operate the PWM outputs with help
of user program.

6.3.2.7.11 Configuration of PTO outputs (HW fast outputs for Pulse Train Output)
The AC500-eCo V3 processor modules provide up to 2 PTO hardware dedicated output chan-
nels with a maximum frequency of 200 kHz. The parameter of PTO output channel of onboard
I/O must be configured before it can be used. User should take these steps to configure the
PTO output function.
The PTO outputs can be used with 2 different modes either Pulse / Direction or Cc/Ccw mode.
Please refer to the technical data of the onboard I/Os Ä Chapter 5.2.1.1.2.7.8 “Technical data of
the PTO outputs” on page 217.
The PTO channels are always requiring 2 consecutive output channels for the function.

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

PTO outputs PM5012-T-
ETH

O0 … O3 Not possible - No PTO avail-
able

PM5012-R-
ETH

NO0 … NO1

NO2 … NO3

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1500

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

O0 … O3 Not relevant
for the func-
tionality

OBIOPulse-
TrainOutput
OBIOMo-
tionPTO

Up to 2 PTO
with Pulse/
Direction or
Cw/Ccw
modeO4 … O7 PTO0 HS

Pulse/Cw ->
O4 and auto-
matically for
O5 also
PTO1 HS
Pulse/Cw ->
O6 and auto-
matically for
O7 also

C12 … C13 Not relevant
for the func-
tionality

PM5032-R-
ETH,
PM5052-R-
ETH

NO0 … NO2 Not relevant
for the func-
tionality

OBIOPulse-
TrainOutput
OBIOMo-
tionPTO

Relay outputs
without other
functions

NO3 … NO5 Not relevant
for the func-
tionality

C12 … C13 PTO 1 -> C12
and automati-
cally for C13
also

Up to 1 PTO
with Pulse/
Direction or
Cc/Ccw mode

6.3.2.7.12 Operating the PTO hardware output with user program
The OBIOPulseTrainOutput function block of the library can be used to operate the PTO outputs
with help of user program.This FB allows to control the output in PTO mode. The OBIOMo-
tionPTO function block is a dedicated Motion control block to realize point-to-point movement or
velocity control of a motion axis Ä Chapter 6.8.2.15.3.6 “Use the onboard I/Os as pulse-train
output (PTO)” on page 4553.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1501

6.3.2.7.13 Configuration of SW PTO (PWM) outputs (HW fast outputs and standard outputs with soft-
ware dedicated function block)

The AC500-eCo V3 processor modules could also provide up to 4 PTO (PWM) software output
channels. To use that mode, the parameter of output channel of onboard I/O must be configured
before it can be used. User should take these steps to configure this special PTO output
function. The PTO outputs channels can be only used as Pulse / Direction mode. Please refer
to the technical data Ä Chapter 5.2.1.1.2.7.8 “Technical data of the PTO outputs” on page 217
Ä Chapter 5.2.1.1.2.7.9 “Technical data of the PWM outputs” on page 217.
The PTO channel is using a digital fast output configured as PWM output to generate the Pulse
output and a standard digital output to indicate the direction. A dedicated PTO motion block will
then control the channel to realize the functionality.
Up to 4 PTO can be then provided each using 2 digital outputs.
A mixed configuration of one HW PTO channel (e.g. Output 04 ... 05) and Pulse/Direction or
Cc/Ccw mode together with up to 2 other software PTO Channels (e.g. O6, O7 + dedicated
output) and only Pulse/Direction mode is then possible. Please refer to the technical data
Ä Further information on page 217.
To achieve such a software PTO mode the following channel configuration must be done.

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

PTO outputs
(HW fast out-
puts PWM
and software
PTO)

PM5012-T-
ETH

O0 … O3 Not possible - No PTO avail-
able

PM5012-R-
ETH

NO0 … NO1

NO2 … NO3

PM5032-T-
ETH,
PM5052-T-
ETH,
PM5072-
T-2ETH(W)
PM5082-
T-2ETH

O0 Output / PTO0
Dir

OBIOMo-
tionPWM

The 4 soft-
ware PTO
channels will
use the fast
outputs O4…
O7 PWM to
generate the
Pulse signal
of each SW
PTO and the
outputs O0…
O3 will gen-
erate the
direction sig-
nals

O1 Output / PTO1
Dir

O2 Output / PTO2
Dir

O3 Output / PTO3
Dir

O4 PWM / PTO0
LS Pulse or
CPU revision
1 PTO HS
Single 0

O5 PWM / PTO1
LS Pulse or
CPU revision
1 PTO HS
Single 1

O6 PWM / PTO2
LS Pulse or
CPU revision
1 PTO HS
Single 2

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1502

Functionality
to be realized

Processor
module type

Digital output
channels

Configura-
tion of the
channel to be
selected in
Automation
Builder

Dedicated
function
block to be
used in the
user program

Comments

O7 PWM / PTO3
LS Pulse or
CPU revision
1 PTO HS
Single 3

C12 … C13 Not relevant
for the func-
tionality

PM5032-R-
ETH,
PM5052-R-
ETH

NO0 … NO2 Not relevant
for the func-
tionality

OBIOMo-
tionPWM

Relay outputs
without other
functions

NO3 … NO5 Not relevant
for the func-
tionality

C12 … C13 PWM Theoretically
possible up to
2 software
PTO with
Pulse/Direc-
tion but need
an additional
digital ouput
module for the
direction
signal

2 PTO Cw/Ccw

4 PTO Pulse/
Direction – Con-
figuration PTO
HS Single x and
Output / PTOx
Dir

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1503

6.3.2.7.14 Operating the software PTO output channels with user program
The OBIOMotionPWM function block is a dedicated motion control block to realize point-to-
point movement or velocity control of a motion axis. This block will then control the output
channels as PTO mode Pulse/Direction only up to 100 kHz. See the dedicated chapter in the
system technology Ä Chapter 6.8.2.15.3.6 “Use the onboard I/Os as pulse-train output (PTO)”
on page 4553.

6.3.2.8 Option board for processor modules PM50xx
6.3.2.8.1 Select the option board

Depending on processor module type, up to 3 option board slot are available and for each
several option board modules are available.

To add an option board on the processor module, select the desired OptionSlot to be configured
and attach the needed option board from the list.

PTO on CPU
with Relay

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1504

There is no limitation on the number of same option board used on the CPU, no dedicated slot
for a specific function and no specific order to place the option board module.
Depending on the type of option board selected and attached to the CPU some further configu-
ration of channels or function may be needed.

6.3.2.8.2 Attach an option board for digital I/O extension

Just select and attached the module, no other channel configuration is needed. The I/O chan-
nels are directly mapped in the I/O mapping and variables can then be defined.

6.3.2.8.3 Attach an option board for analog I/O extension
The desired analog I/O option board type for the desired option board slot must be selected and
added.
The option board may require some other channel configuration according to your need.
Following example shows how to add a TA5120-2AI-UI analog option board and the desired
channel types which can be selected.

6.3.2.8.4 Attach an option board for COMx serial communication
The desired serial interface option board type for the desired option board slot must be selected
and added.
The option board may require some other channel configuration according to your need.
Following example shows how to add a TA5142-RS485I isolated interface and the desired
protocol.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1505

The desired protocol has also to be added according to your needs, e.g. Modbus RTU client:

The parameter for the serial interface can also be adapted like baudrate, data bit, stop bit or
parity.

6.3.2.9 Onboard Ethernet configuration
6.3.2.9.1 General

Onboard Ethernet is provided for device types with -ETH extension.

6.3.2.9.2 Configuration of the IP settings with the IP configuration tool
Introduction

The IP configuration tool can be used
● to set or change the IP address of devices.
● to scan the network for available hardware devices.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1506

● to update the firmware of devices.
This functionality is only supported if the IP configuration tool is used stand-alone.

● to activate certain functionality on hardware devices.
This feature is only available on AC500 V3 devices.

The IP configuration tool is part of Automation Builder and can be called via “Tools
è IP-Configuration”.
Further the IP configuration tool can be used stand-alone without an Automation Builder appli-
cation running. The stand-alone variant requires a separate installation via the Installation
Manager Ä Chapter 6.3.2.9.2.2 “Stand-alone installation” on page 1507.
After the installation, the IP configuration tool is started via .exe file / desktop icon.

Some functionality is only supported if the IP configuration tool is used stand-
alone, e.g. for firmware updates for communication interface devices.

Stand-alone installation

The IP configuration tool is part of Automation Builder and can be called via
“Tools è IP-Configuration”. A separate installation is only required if the IP
configuration tool shall be used stand-alone.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1507

1. Open the Installation Manager in Automation Builder: “Tools è Installation Manager”.
2. Close all other instances of Automation Builder as only one instance of the program can

be executed at a time.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1508

3. Click [Modify] and select the “IP Configuration Tool” from the structure tree.

4. Click [Continue] to start the installation.

ð After a successful installation the IP configuration tool is available as stand-alone tool
(.exe).

ð To start the IP configuration tool, click the new created desktop icon.

Network scan
With a network scan all devices that have been found in the network by the scan process are
listed, i.e. ABB devices such as AC500 processor modules, AC500 communication interface
modules or ABB drives.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1509

1. Start the IP configuration tool in Automation Builder (“Tools è IP-Configuration”) or start it
stand-alone (.exe).

2. The “IP-Configuration” dialog opens. Define the device type for the network scan by
selecting the desired option under “Scan Protocol”:
● “ABB Net config protocol”:

Use this option for AC500 devices such as processor modules, CI5xx-Modbus devices
or ABB drives. The device(s) to be scanned must be connected to the PC via a direct
Ethernet connection.

● “Profinet Dynamic Configuration Protocol (DCP)”:
Use this option for PROFINET communication interface modules. The device(s) to
be scanned must be connected to the PC via a direct Ethernet connection (not via
CM579).
For the scan, a NPcap driver needs to be installed separately.

● “EtherCAT”:
Use this option for EtherCAT communication interface modules. The Ethernet cable
must be connected directly to the first EtherCAT slave device of the EtherCAT
fieldbus. Ensure that no EtherCAT master device is available on the bus when a scan
is performed.
“Emergency” option: Enable this option to check on failures in the EtherCAT assembly
during the scan process, i.e. a frame loss or interchanged ports. Errors are displayed.
For the scan, a NPcap driver needs to be installed separately.

3. Click [Scan] to start the scan process.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1510

4. All devices that have been found in the network are listed including hardware and connec-
tion details. The following details can be changed under “IP settings”:

ð ● “IP Address”:
Current IP address of the device.

● “Conf. IP Address”:
Configured IP address of the device. A changed IP address will update this
column.

● “FW Version”:
Current installed firmware version of the device. This field is visible not until a first
network scan. If this field is still empty after a network scan, check on connection
errors.

The IP address of some devices, e.g. EtherCAT devices cannot be
changed.

Changing the IP address
1. In order to change the IP address of devices perform a network scan.

Ä Chapter 6.3.2.9.2.3 “Network scan” on page 1509

2. Select a device from the list and select the appropriate protocol under “Scan protocol”.
“DHCP” or “BOOTP” option: If required, DHCP or BOOTP can be used to receive the IP
address for the device from the server.
“IP address”, “subnet mask”, “Std. gateway”: Use these fields to change the IP address
settings including the settings for the subnet mask and the standard gateway. Ensure that
the combination of connection settings is correct.

Note for CI52x-Modbus devices
Consider the behavior of CI52x-Modbus devices if the last number of the
IP address is set to "0".

Ä “Check last number of IP address” on page 1512

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1511

3. Change the settings for the IP configuration and click [Send settings] to transmit the data
to the device.

ð
Note for PROFINET devices
The device name of PROFINET devices can be edited. If changing the
name, ensure the following rules apply:

– Labels must be separated by "."
– Total length: 1 to 240
– Label length: 1 to 63
– Labels can consist of characters [a-z] and numbers [0-9]
– Labels are not allowed to start with "-"
– Labels are not allowed to end with "-"

4. In order to keep all IP changes after a power cycle, the settings can be stored perma-
nently. Confirm the prompted message during the scan process.

This hint is only valid for CI52x-Modbus devices.
Check the last number of the IP address. If it is set to "0", the IP address setting for this last
number will be used from the rotary switches on the hardware device.
Example:

Check last
number of IP
address

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1512

Automation Builder AC500 communication interface module
(rotary switch)

IP address:
192.168.14.0

IP address:
6

As a result, in the field “IP Address” the last number is set to "6":

Firmware update
The firmware of AC500 communication interface modules can be updated with the IP configura-
tion tool.
For this, the IP configuration tool must be used as stand-alone variant.
Ä Chapter 6.3.2.9.2.2 “Stand-alone installation” on page 1507

It is not possible to perform a firmware update out of Automation Builder.

– For PROFINET communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.3.3.

– For EtherCAT communication interface modules a firmware update is only
supported for devices with firmware version ³ 2.1.4.

– For Modbus communication interface modules a firmware update is only
supported for devices with firmware version ³ 3.2.13.

Before the firmware update
● Ensure a fast and stable network connection
● Close all unused applications on the executing PC
● Stop the communication between AC500 PLC and the communication interface module that

shall be updated

Requirements:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1513

During the firmware update
● Do not close the IP configuration tool
● Do not open Automation Builder software or any other application
● Do not switch-off the communication interface module that shall be updated
● Do not disconnect the Ethernet connection of a communication interface module or the

executing PC

The firmware update will stop the operation of the affected device(s). Hence,
the device(s) will become unresponsive for 1 - 2 minutes.

1. Start the IP configuration tool stand-alone (.exe).
2. Perform a network scan.

Ä Chapter 6.3.2.9.2.3 “Network scan” on page 1509

3. Select the devices that shall be updated from the list and click [Scan] to trigger the scan
process.
A multiple selection of several devices is possible via control key, however, ensure to
select only devices of the same protocol at a time. Otherwise the firmware update fails.

4. This step is only required for devices that require an installed NPcap driver. In this case an
appropriate message including a download link is prompted in the IP-Configuration dialog:

ð Click on the displayed link https://nmap.org/download.html and download the latest
version of the npcap-X.X.exe file.

ð After the download, execute the file as administrator and restart the scan process.

ð The devices that have been scanned are listed.

Procedure:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1514

https://nmap.org/download.html

5. Click [Update Firmware] to start the firmware update for the selected devices.

6. For CI50x, CI51x and CI52x devices a signature check is started. Select the appropriate
firmware update file (*.bin) for the device(s). Example: C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.
After a successful signature check the firmware update file (*.bin) and the respective
signature file (*.bin.sig) are transferred to the device. This can last up to 3 minutes.
If the signature check fails, check the availability of the *.bin file and the *bin.sig file.

7. A status check followed by a device reboot followed by a second status check is per-
formed automatically.

After the firmware update all outputs of the updated devices are set to '0'.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1515

8. After a successful firmware update the update status or the new firmware version is
displayed in the “FW Version” field.
If this field is empty, there possibly is a connection error between the device and the
executing PC.

Exception: For EtherCAT devices an empty “FW Version” field does not indicate a connec-
tion error.

ð If the firmware update fails
● check the requirements for the update procedure.
Ä “Requirements:” on page 1513

● check the hints for trouble-shooting.
● perform a network scan and repeat the update. If the error still persists power

cycle the device and try the update again.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1516

Blink functionality
This function activates flashing of the backlight of an AC500 LED display.
1. From the menu, select “Tools è IP-Configuration”.
2. Click [Scan] to trigger the scan process for devices in the network.

ð A progress bar shows the progress. The IP settings of a selected device is displayed
below the list and can be edited.

3. Adjust your desired time and click [Blink] to activate flashing.

Troubleshooting for IP configuration tool
On a standard Windows 7 installation without third party firewall or security tools installed the IP
configuration tool should work properly.
The Automation Builder setup installs rules or exceptions for the built-in Windows firewall to
allow IPConfig to receive the responses for the IPConfig scan.
To check the Windows firewall is set correctly check the firewall settings.

On the network that is used for communication with the PLC, set “Incoming connections” to
"Block all connections to programs that are not on the list of allowed programs".

Firewall excep-
tions:

Windows 7/
Windows 10:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1517

If a third party firewall is used these exceptions must be configured manually.

Either exceptions for applications can be entered: Automation Builder and IP
configuration tool must be added as application.

Or the protocol and the port number must be given (for IPConfig: UDP protocol
and port number 24576).

Fault description Cause Remedy
Error - general Ensure that all requirements have been con-

sidered before and during the update proce-
dure.

The “FW Version” field
is empty after the net-
work scan or the firm-
ware version has not
been updated after the
update procedure (only
for Modbus devices and
PROFINET devices)

Connection error between the device
and the executing PC.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1518

Fault description Cause Remedy
Signature check failed During the firmware update of CI50x,

CI51x and CI52x devices a signature
check is started. The update proce-
dure expects a firmware update file
(*.bin) and a signature file (*.bin.sig)
in the same directory. Without a signa-
ture file the signature check will fail.

Example:
Firmware update file:
C:\AC500\AC500_CI52x_Firmware_V3.2.8.bin
Signature file:C:\AC500\AC500_CI52x_Firm-
ware_V3.2.8.bin.sig

Error: Package timeout A timeout error may occure due to an
instable network.

Keep the executing PC as near as possible
to the devices that shall be updated. Avoid net-
work switches.

Error: Unable to read
device status

A read error may occure due to errors
in the firmware update protocol. After
the firmware update the IP configura-
tion tool reads out the status of the
updated device in order to check if the
update was successful.

Perform the update again.

Error: IP is not unique If an IP address is obtained by more
than one device an error occures. A
firmware update is not possible.

Change the IP addresses.

Error: Error State Internal device error during the firm-
ware update.

Error: Can’t connect to
device

The TCP communication is not suffi-
cient.

Increase the connection quality. Keep the exe-
cuting PC as near as possible to the devices
that shall be updated. Avoid network switches.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1519

6.3.2.9.3 Switch functionality of Ethernet interfaces ETH1/ETH2
As of SystemFW 3.1.0 the Ethernet interfaces ETH1/ETH2 can be configured as an Ethernet
switch.
The default setting is “Two separate interfaces”.

The change of the PLC Boot parameter ETH1 / ETH2 mode will become active
after a PLC reboot.

Create and download a Boot project before rebooting the PLC!

Parameter Value Description
ETH1 / ETH2 mode Two separate interfaces Two separate Ethernet inter-

faces ETH1 and ETH2

Switch functionality ETH1-
ETH2

Switch between ETH1 and
ETH2

If the Switch functionality ETH1-ETH2 is active, only the Ethernet inter-
face ETH1 is available (see Ä Chapter 6.8.2.5.5.5 “CFG - configuration”
on page 4462). Any protocols configured under Ethernet interface ETH2 must
be deleted. Otherwise a compile error will be created.

The setting of ETH1 / ETH2 mode can be checked on LED display with soft key <CFG> (see
Ä Chapter 6.8.2.5.5.5 “CFG - configuration” on page 4462).

6.3.2.10 Onboard CAN configuration
AC500 V3 PLCs provide the following methods for CAN integration:
● Onboard CAN interface
● CANopen master-slave arrangement (with CM598-CN as a master device)

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1520

Table 300: Differences in supported protocols
 Onboard CAN CM598-CN
CANopen Manager X X

CAN 2A/2B X X

J1939 X

Onboard CAN interface is not available on AC500-eCo V3!

Onboard CAN interface supports the following protocols
● CANopen Manager: Connection of CI581 and CI582 without additional I/O modules
● CAN 2A/2B
● J1939
Configuration in Automation Builder is described in chapter 'CANopen' Ä Chapter 6.3.2.11.1.1
“CM598-CAN - CANopen Manager communication module” on page 1521.
Further information can be found in chapter 'CAN onboard' Ä Chapter 6.3.2.16 “CAN onboard”
on page 1594

6.3.2.11 Communication modules
6.3.2.11.1 CANopen
CM598-CAN - CANopen Manager communication module
Configuration of the communication module

– Click menu “Tools è Options” and select “Device editor” in the “Options”
window.

– Enable first checkbox “Show generic device configuration views” and click
[OK].

1. Right-click on your desired Slot below node “Extension_Bus” and click “Add object”.

ð Dialog “Replace object:” appears.

2. Click “CM598_CAN” in the list and click [Replace object].
3. Double-click “CM598_CAN (CM598-CAN)” to get the “CM598-CAN Parameters” in the

editor window.

The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the CM598-CAN communication
module.

Supported pro-
tocols

Append a
CM598-CAN

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1521

Parameter Default value Value Description
CANopen Sync
mode

Sync Bus only Sync Bus only The “CANopen Manager” sends sync
messages (if enabled) to CAN bus
only. The properties of the sync mes-
sage are configured in the “CANopen
Manager” parameters.

Sync Bus and
task

“CANopen Manager” sends sync
messages to CAN bus and triggers
IEC task. Ä Chapter 6.3.2.11.1.1.4
“Configuration of SYNC task”
on page 1532

The tab “CAN Bus” contains the basic settings of the CAN bus and special settings for the CAN
2.0 B protocol.

The settings at “29 Bit COB-ID” are only valid for CAN 2.0 B protocol. Ensure
the option “Enable 29 Bit COB-ID” is enabled. Otherwise no CAN 2.0 B frames
can be received. With the other parameters at “Enable 29 Bit COB-ID” the
receive filter is configured.

An example project which demonstrates using and handling the SAE J1939 protocol in AC500
V3 PLCs is given in the application example AC500 SAE J1939 protocol.

SAE J1939

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1522

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010435&LanguageCode=en&DocumentPartId=&Action=Launch

Parameter Default value Value Description
Bus parameters
Transmission rate 250 kBit/s 10 kBit/s

20 kBit/s
50 kBit/s
100 kBit/s
125 kBit/s
250 kBit/s
500 kBit/s
800 kBit/s
1000 kBit/s

Transmission speed in
[kBit/s]

Node settings
Stop in case of moni-
toring error

Disabled Disabled The manager does
not stop in case of
a monitoring error
(Node Guarding or
Heartbeat Error). A
loss of communica-
tion to one node has
no influence to other
nodes. The manager
tries to reestablish the
communication to the
error affected nodes.

Enabled If this function is ena-
bled, the manager
will also stop the
communication to all
responding and active
nodes.

Send “Global Start
Node”

Enabled Disabled No “Global Start
Node” message is
sent after configuring
the nodes.

Enabled A “Global Start Node”
message is sent after
configuring the nodes.
This synchronize all
nodes again.

29 Bit COB-ID
Enable 29 bit COB-ID Disabled Disabled 29 bit CAN-IDs are

disabled, but 11 bit
CAN-IDs are still ena-
bled.

Enabled 29 bit CAN-IDs are
additional enabled.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1523

Parameter Default value Value Description
Acceptance mask 0 29 bit Specifies the bits of a

CAN-ID which will be
evaluated by the filter.
For instance, with an
acceptance mask =
0x1FFFFFFF all bits
are evaluated.

Acceptance code 0 29 bit Specifies the bits of
a CAN-ID which has
to be set to pass the
filter. Only those bits
which are set in the
acceptance mask are
relevant.

The tab “CM598-CAN I/O Mapping” contains bus cycle option used for CANopen configuration.
The following parameters are available:

Parameter Default value Value Description
Bus cycle task Use parent bus cycle

setting
Use parent bus cycle
settings

Settings from “PLC
settings” tab are used.

Task Name of the task that
triggers the bus cycle

The tab “CM598-CAN IEC Objects” contains the created instance of the IO driver.

Configuration of the CANopen Manager
By adding “CM598-CN ”to configuration, “CANopen Manager” is added automatically.
Double click at “CANopen Manager” to show related parameters/information in a new window.
The tab “General” contains the following parameters:

Parameter Default value Value Description
General
Node-ID 1 1-127 Unique node id for “CANopen

Manager”.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1524

Parameter Default value Value Description
Check and fix
configuration

 This button opens the dialog that
allows checking and fixing the cur-
rent configuration.

Autostart
“CANopen
Manager”

 Not supported (“CANopen Manager”
always starts automatically).

Polling of
optional slaves

 Not supported

Start slaves Not supported

NMT start all (if
possible)

 Not supported

NMT error
behavior

 Not supported

Guarding
Enable hearbeat
producing

Disabled Disabled The heartbeat generation is dis-
abled. Nodeguarding is enabled
instead. Note that CANopen remote
devices can also be configured as
heartbeat producers.

Enabled The “CANopen Manager” sends
heartbeats according to the interval
defined in parameter “Heartbeat
time”. If new remote devices with
heartbeat functionality are added
their behavior will automatically be
enabled and configured appropri-
ately.

Node-ID 1 0 -127 Unique node id for “CANopen
Manager”.

Producer time
(ms) (only if
heartbeat pro-
ducing is active)

200 1..65535 Interval length between successive
heartbeats (in milliseconds).

SYNC
Enable SYNC
producing

Disabled Disabled No SYNC telegrams are sent.

Enabled The “CANopen Manager” sends
SYNC telegrams. The synchrounus
PDOs are sent directly after the
SYNC telegram.

COB-ID (Hex) 80 1-2047 COB-ID of the SYNC telegram.

Cycle period (µs) 1000 1000-65535000 Interval length (in microseconds)
after which the SYNC telegram is
sent.

Window length
(µs)

1200 Not supported

Enable SYNC
consuming

 Not supported

TIME
Enable TIME pro-
ducing

 Not supported

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1525

Parameter Default value Value Description
COB-ID (Hex) Not supported

Producer time
(ms)

 Not supported

Dialog “Check and fix Configuration”

If you insert several devices below the “CANopen Manager”, then error messages may report
multiple assigned Node-IDs or invalid COB-IDs. The “Check and Fix Configuration” button
opens a dialog for solving these conflicts.
For conflicts with Node-IDs or PDO COB-IDs, you can click “Edit Conflicts” to open a dialog with
detailed information.

“Doubled node number ” List of all devices with identical IDs. In the field
of the “Node-ID” column, you can enter new
node numbers for the affected devices.

“ Incorrect and double assignment of PDO
COB-IDs ”

The COB-IDs that are generated automatically
from the device description files may not be
permitted. All incorrect entries are listed with
the respective device names, Node-IDs, and
indexes. There are three options for correcting
invalid COB-IDs:
● Correct the displayed formula for calcu-

lating the COB-IDs so that a valid COB-ID
results. You can change the formula in the
respective table element.

● Accept the automatic suggestion for the
COB-ID by clicking the respective button.

● Accept all automatic suggestions by
clicking the “Use Suggested COB-ID”
button.

Corrected entries are removed from the displayed list automatically.
Solve timing problems automatically by using the “Automatic Repair”. The command modifies all
timing values to compatible values. (The time should be a multiple of the task time.)
The tab “Live list” can be used to check CANopen network for devices. The tab is only shown in
online mode. If communication module is up and running after clicking button “Scan” all remote
devices are listed showing their node-Ids and types.

Configuration of the CANopen remote devices
1. To add CANopen remote devices, right-click on “CANopen Manager” and click “Add

objects”.

ð A dialog is shown where you can choose a CANopen remote device.

2. Double-click at a CANopen remote device to show related parameters/information in a
new window.

The tab “General” contains the following parameters:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1526

Parameter Default value Value Description
General
Node-ID Next unused value 1-127 Unique node id for

CANopen remoter device.

Enable expert settings Enabled Enabled All settings are displayed
that are predefined by the
device description (EDS
file) for the device.

Disabled Only basic settings are
shown

SDO channels (only
if expert settings are
enabled)

 Click this button to open
a dialog for activating the
SDO channels that are
prede- fined in the EDS
file. Service data objects
(SDOs) allow access to
all entries in the CANopen
object directory. An SDO
creates a peer-to-peer
communication channel
between two devices (SDO
server and client channel).

Enable SYNC pro-
ducing

 Not supported

Optional device (only
if expert settings are
enabled)

 Not supported

No initialization (only
if expert settings are
enabled)

 Not supported

Reset node (only if
expert settings are
enabled)

 Not supported

Guarding
Enable nodeguarding
(Only available if
heartbeat producing is
disabled)

Enabled Enabled The “CANopen Manager”
sends a message to
the node in a config-
uredinterval. If the node
does not respond, then
the “CANopen Manager”
resends this message as
many times as defined in
“Lifetime factor” or until the
node responds.
If the node does not
respond, then it is marked
as “unavailable”.

Disabled Nodeguarding is disabled

Guard time (ms) (only
if nodeguarding is
enabled)

200 Interval in which node
guarding telegram is sent.

Enable heartbeat pro-
ducing (only available
if nodeguarding is dis-
abled)

2 1-255 Maximum allowed number
of responses to node-
guarding message before
remote device is marked as
“unavailable”.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1527

Parameter Default value Value Description
Life time factor (only if
nodeguarding is ena-
bled)

Disabled Disabled The remote device doesn’t
send heartbeat messages.

 Enabled The remote device sends
heartbeat messages.

Producer time (ms)
(only if heartbeat pro-
ducing is enabled)

10 1-65535 Time interval in which
heartbeat messages are
sent.

Heartbeat consuming Opens a “Heartbeat
Consuming Properties”
dialog. There you activate
the CANopen devices that
you want to watch.
The number of possible
devices to be monitored is
defined in the EDS file. To
do this, you must select
the “Enable” check box and
enter the Node-ID of the
device and the required
values in the “Heartbeat
time” field (in milliseconds).
When a remote device
is monitoring, a green
check mark is displayed on
the “Heartbeat Consuming”
button.

Emergency (EMCY)
Enable emergency
(EMCY)

Enabled Enabled When internal errors occur,
the node sends emergency
messages. The diagnosis
is shown in diagnosis tab
of node respectively I/O
module in case of S500
diagnosis of CI58x (see
CM598-CN CAN manager
diagnosis for list of possible
diagnosis messages).

Disabled No emergency messages
are sent by this node.

COB-ID (only if
“Enable emergency”
is enabled

“Node-ID” +0x80 0x1-0x7FF COB-ID auf EMCY mes-
sage.

TIME
Enable TIME pro-
ducing

 Not supported

COB-ID (Hex) Not supported

Enable TIME con-
suming

 Not supported

Within the tab “PDO Mapping” PDOs for the CANopen remote device can be configured.
The PDOs are splitted into RPDOs and TPDOs. For each PDO corresponding I/Os are shown.
The following options are available for TPDOs and RPDOs:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1528

Parameter Default value Value Description
COB-ID calculated 0x180-0x57F

0x681-0x6DF
The COB-ID is filled in
automatically dependend
to the node id and number
of PDO but can be
changed manually.

Type Asynchronous –
device profile specific

Asynchronous –
device profile
specific

The PDO is transmitted
according to the CiA
device profile.

Acyclic - synchro-
nous

When a change is made,
the PDO is transmitted
synchronously, but not
periodically.

Asynchronous –
manufacturer
specific

The PDO is transmitted
only after specific events.

Cyclic - syn-
chrounus

PDO is transmitted using
SYNC mechanism.

Synchronous –
only RTR
(TPDOs only)

After a synchronization
message, the PDO is
updated, but not trans-
mitted. Transmission is
by explicit request only
(Remote Transmission
Request).

Asynchronous –
only RTR
(TPDOs only)

The PDO is updated
and transmitted by explicit
request only (Remote
Transmission Request).

Num of syncs (only
for Type “Cyclic –
synchronous”)

1 1-240 Number of SYNC mes-
sages before PDO is sent.

The following options are only available for TPDOs.

Parameter Default value Value Description
Inhibit time (x 100µs) 0 0-65535 Devicedependant. The

inhibit time is the min-
imum time between two
messages of a specific
PDO. You can use this set-
ting for preventing PDOs
from being sent too often
when their values are
edited. Default: "0". Pos-
sible values: 0–65535.

Event time (x 1ms)
(only for types
“asynchronous –
manufacturer specific”
and “asynchrounus –
device profile”)

0 0-65535 Device-dependant. Indi-
cate the time span that
should be between two
PDO transmissions PDOs
(in milliseconds).

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1529

Parameter Default value Value Description
RTR Disabled Disabled RTR(Remote transmis-

sion request) not used.

Enabled A RTR frame can be used
for interrogating the PDO
externally.

The “Bootconfiguration” tab allows the configuration of the boot up behavior of the CANopen
remote device.
The following options are available and can be set by either clicking on the graphics or selecting
the corresponding check box on the right side of the editor window. The graphic illustrates the
order of execution:

Parameter Default value Value Description
Node ID-active Enabled Disabled The remote device is

inactive.

 Enabled The remote device is
active.

Node BootUp
Node reset (send the
reset-node command)

Enabled Disabled No specific node reset
communication command
is sent.

Enabled The manager sends
the CANopen specific
node reset communica-
tion command.

Check node type and
profile (compare the
configured profile and
type object 1000H
with real value)

Disabled Disabled The content of the node
object 1000H are not
compared with the current
parameters.

Enabled The “CANopen Manager”
compares the content
of the mandatory node
object 1000H. If the
values are different, the
manager will report a
parameterization error.

Configuration Guard
Protocol (configure
the guard time and
lifetime factor)

Enabled Disabled The guard time and life-
time factor of the remote
device configuration are
not written.

Enabled A CANopen has 2 spe-
cific register responsible
for the Node guarding
protocol. The “CANopen
Manager” writes the guard
time and Life-Time factor
of the node configuration
into the corresponding
objects of the remote
device during startup.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1530

Parameter Default value Value Description
Configuration SYNC
COB-ID (configure the
COB-ID for the syn-
chronization-telegram)

Enabled Disabled The “CANopen Manager”
does not write the SYNC
COB-ID of the config-
uration into the corre-
sponding objects of the
remote deivce.

Enabled The “CANopen Manager”
will write the SYNC COB-
ID of the configuration into
the corresponding objects
of the remote deivce
during startup.

Configuration EMCY
COB-ID (configure the
COB-ID for the emer-
gency-telegram)

Enabled Disabled The “CANopen Manager”
does not write the EMCY
COB-ID of the config-
uration into the corre-
sponding objects of the
remote device.

Enabled The “CANopen Manager”
writes the EMCY COB-ID
of the configuration into
the corresponding objects
of the remote deivce
during startup.

Configuration down-
load of objects (down-
load the object config-
uration to the node)

Enabled Disabled

Enabled To get a PDO communi-
cation to a remote deivce
working, the “CANopen
Manager” has to send
all relevant configuration
objects to the remote
device. For example, the
COB-IDs of PDOs are
covered here in the map-
ping table.
If enabled, all these
parameter and also the
user specific objects
which are added man-
ually in the remotre
device object configura-
tion window are written
down to the remote
deivce by the manager.

Start node (send the
start-node command)

Enabled Disabled No start node command is
sent.

Enabled To reach the operational
state in CANopen, a
remote device has to
get the CANopen spe-
cific start node command.
The “CANopen Manager”
sends the start node
command to the remote
device at the end of the
boot-up procedure.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1531

Parameter Default value Value Description
Initiate PDO data
(remote request all
TxPDOs and send
current RxPDOs once
after)

Enabled Disabled PDOs are not written
and read by the manager
automatically.

Enabled This item selects if
the installed PDOs
shall be automatically
written and read by
the “CANopen Manager”
directly after the startup
once. This ensures that
the latest output data
which can be found within
the “CANopen Manager”
output process data area
is sent to the remote
device and that the latest
remote device input data
is read from the remote
device and be placed into
the input process data
area.

The tab “CI58x IEC Objects” contains the created instance used for diagnosis access. Only
available for CI58x devices.

Configuration of SYNC task
To create a SYNC task, which is triggered after each SYNC message, several steps are
needed:
1. Set CANopen sync mode to “Sync Bus and Task” at CM598 communication module.
2. Enable “SYNC producing” at CANopen manager.
3. Set at least one PDO to transmission type “cyclic synchronous”.
4. Build the project.

ð A new task is created automatically which is called “ABB SyncTask <slot>” there you
can add POUs which should be executed if the task is triggered.

DO NOT CHANGE task settings!

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1532

Fig. 272: Example of SYNC task configuration

Configuration of the protocols CAN 2.0 A / CAN 2.0 B
The communication module CM598-CAN can be used to realize CAN bus based networks in
combination with library ABB_CM598Can_AC500.library.
To enable the support for the desired protocol it must be appended to CM598-CAN.
1. Right-click “CM598_CAN (CM598-CAN)” in the device tree and select “Add device” in the

context menu.

ð Window “Add object below: CM598_CAN_1” appears.

2. Select “CAN 2.0 A” or “CAN 2.0 B” from the list.

The CAN data transmission requires a buffer for the incoming data that can be read with
function blocks of library ABB_CM598Can_AC500.library.
1. Right-click “CAN_2_0A_11_bit_identifier_ (CAN 2.0A)” or “CAN_2_0B_29_bit_identifier_

(CAN 2.0B)” and select “Add object”.
2. Select “Buffer for CAN 2A” for CAN 2.0A. Or select “Buffer for CAN 2B” for CAN 2.0B from

the list.
3. Double-click on “Buffer_for_CAN_2A (Buffer for CAN2A)” or “Buffer_for_CAN_2B (Buffer

for CAN2B)” in the device tree to open the “Buffer configuration” in the editor window.

The following parameters are available:

Parameter Default value Value Description
Identifier 0 CAN 2A: 0 ... 2047

CAN 2B: 0 ...
536870911

The value of the CAN
identifier that is com-
pared with the identi-
fier of the incoming
telegrams. The tele-
grams will be added
to the buffer if the
identifier matches.

Number of receive
buffers

1 1 ... 16 The size of the buffer
in number of tele-
grams.

Parameteriza-
tion

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1533

Parameter Default value Value Description
Behavior on receive
buffer overflow

Overwrite Overwrite The oldest telegram
in the buffer is
overwritten by the
incoming telegram.

Discard Incoming telegrams
are discarded as long
as the buffer is full.

Enable triggering of
IEC task

No No Disables the triggering
of the execution of the
related IEC task.

Yes Enables the triggering
of the execution of
the related IEC task
as soon as a CAN
frame with the speci-
fied CAN-ID arrives
Ä Chapter 6.8.3.1.1
“Triggering of event
tasks with CAN-IDs”
on page 4565.

Configuration of the CANopen manager
Ä Chapter 6.3.2.16.1.2 “CANopen manager (master)” on page 1594

6.3.2.11.2 PROFINET
CM579-PNIO – PROFINET IO communication module
Configuration of the communication module

Configuration is valid as of Automation Builder 2.2.0 and CPU firmware 3.2.0.

Until Automation Builder 2.5.x and CPU firmware 3.5.x the minimum firmware
version 2.8.4.0 is required for communication module CM579-PNIO.

As of Automation Builder 2.6.0 and CPU firmware 3.6.0 the minimum firmware
version 3.0.0.21 is required for communication module CM579-PNIO.

Ä Description of configuration with Automation Builder < 2.2.0

As of Automation Builder 2.6.0 some component changes of the PROFINET IO con-
troller stack require a manual upgrade of projects created in Automation Builder ver-
sions < 2.6.0. How to perform those steps is described in the application note
AC500 V3 - Upgrade of projects with PROFINET.

1. Right-click on your desired Slot below node “Extension_Bus” and click “Add object”.

ð Dialog “Replace object:” appears.

2. Click “CM579_PNIO” in the list and click [Replace object].

Append a
CM579-PNIO

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1534

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011176&LanguageCode=en&DocumentPartId=&Action=Launch

3. Double-click “CM579_PNIO (CM579-PNIO)” to get the “CM579-PNIO Parameters” in the
editor window.
The following parameters are available:

Parameter Default Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the CM579-PNIO communication
module.

4. Click on tab “CM579-PNIO I/O Mapping” to open the “Bus Cycle Options” in the editor
window.
The following parameters are available:

Parameter Default Value Description
Bus cycle task Use parent bus

cycle settings
Use parent bus
cycle settings

Settings from “PLC Settings” tab
are used.

Task Name of the task that triggers the
bus cycle.

In the tab “CM579-PNIO IEC-Objects” the list of used IEC Objects for information instantiated
I/O driver function block class is shown.

The library “CM579PROFINET” will be added automatically to “Library
Manager” when a CM579-PNIO is appended.

Configuration of the PROFINET IO controller
PROFINET IO controller - Configuration

The PROFINET IO controller node appears automatically below the added communication
module CM579-PNIO.

Double-click on “PNIO_Controller” and open the tab “General” in the editor window.

The following parameters are available:

Parameter Default Value Description Parameter
Station name cm579-pnio Up to 240 char-

acters
Network name of the
PROFINET IO controller
station. Must be conform to
PROFINET standard.

Station name

IP parameters
IP-Address 192.168.0.1 Valid IP address IP address of the

PROFINET IO controller
station.

IP address

Subnet mask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO controller
station.

Subnet mask

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1535

Parameter Default Value Description Parameter
Default
gateway

0.0.0.0 Valid gateway
address

Gateway address of the
PROFINET IO controller
station.

Default
gateway

Address settings for device
First IP-
Address

192.168.0.2 Valid IP address First IP address of the
PROFINET IO devices.
This parameter determines
the address range of the
PROFINET IO devices in
combination with parameter
Last IP address.

First IP address

Last IP-
Address

192.168.0.25
4

Valid IP address Last IP address of the
PROFINET IO devices.
This parameter determines
the address range of the
PROFINET IO devices in
combination with parameter
First IP address.

Last IP address

Subnet mask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO devices.

Default subnet
mask

Default
gateway

0.0.0.0 Valid gateway Gateway address of the
PROFINET IO devices.

Default
gateway
address

Bus State
Bus State in
Stop

Stop Defines the behavior of the
fieldbus when the PLC is in
Stop. In “PLC Settings” IO
update and behavior of out-
puts in stop can be config-
ured.
Ä Chapter 6.4.1.21.2.8.10
“Tab 'PLC Settings'”
on page 2439

Bus State in
Stop

 Stop The protocol of the fieldbus
is stopped. There is no
communication between
PROFINET controller and
devices.

 Operation The protocol of the fieldbus
is executed. The communi-
cation between PROFINET
controller and devices is
enabled.

PROFINET IO controller - Parameters
The tab “PROFINET-IO-Controller Parameters” is a generic view of all PROFINET IO controller
parameters. It is normally hidden and is normally not needed for configuration.

Use tab “PROFINET-IO-Controller Parameters” only, if you need to change a
parameter, which is not visible in other dialogs.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1536

1. Click “Tools è Options” and select “Device editor”.

ð The “Device editor” dialog opens.

2. Enable checkbox “Show generic device configuration views” and click [OK]

ð The tab is now available.

Configuration of PROFINET IO devices
Add PROFINET IO device

1. Right-click on node “PNIO_Controller (PROFINET-IO-controller)” and click “Add object.”

ð A list with all installed PROFINET IO devices appears.

2. Slelect the desired device and click [Add object].

ð The device is added to the PROFINET IO controller in the device tree.

PROFINET IO device - Configuration
Double-click on “PNIO-Device” to open the device configuration in the editor window.
The following parameters are available:

With “Device live list” view the PROFINET IO bus can be scanned for available
devices and the device names and IP addresses can be assigned.

Parameter Default Value Description Parameters
Identification
Station name
Ä Chapter
6.9.2.6.1.4 “
PROFINET
scan and
comparison
view”
on page 4651

Device-spe-
cific

Up to 240
characters

This is a system wide unique
name for addressing the
device. Must be conform to
PROFINET standard.

Slave parame-
ters -> Identifi-
cation -> Sta-
tion name

Communication
Send clock
(ms)

Device-spe-
cific

1
2
4

The Send cycle is divided
into several phases. The Send
clock specifies the length of a
phase. It is a multiple of time
base 31.25 µs.
Send clock and Reduction
ratio determine the Send
cycle:
Send cycle = Send clock x
Reducation ratio

Slave parame-
ters -> Send
clock

Activating tab

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1537

Parameter Default Value Description Parameters
Reduction
ratio

Device-spe-
cific

1 ... 16384 The Reduction ratio deter-
mines how often the IO data
is sent within the Send cycle.
Send clock and Reduction
ratio determine the Send
cycle:
Send cycle= Send clock x
Reducation ratio

Slave parame-
ters -> Reduc-
tion ratio

Phase 1 1 … Reduc-
tion ratio

Defines the part of the Send
cycle at which the IO data is
sent.

Phase

Watchdog 3 1 ... 65535 Time that is used to monitor
the communication between
IO controller and IO device.

Watchdog
interval

RT class
RT class RT Class 1 RT Class 1

(legacy)
Defines the Realtime Class
of cyclic data. Currently only
RT Class 1 (legacy) and
RT Class 1 are supported.

Slave parame-
ters -> RT
ClassRT Class 1

IP Parameter
IP-Address 192.168.0.2 Valid IP

address
IP address of the PROFINET
IO controller station.

Slave parame-
ters -> Identifi-
cation -> IP
address

Subnetmask 255.255.255.
0

Valid subnet
mask

Network mask of the
PROFINET IO controller sta-
tion.

Slave parame-
ters -> Identifi-
cation ->
Subnet mask

Default
gateway

0.0.0.0 Valid gateway
address

Default gateway address of
the PROFINET IO controller
station.

Slave parame-
ters -> Identifi-
cation ->
Default
gateway
address

The following parameter is only supported up to Automation Builder version 2.5.

Parameter Default Value Description Parameter
VLAN ID 0 0 ... 4095 or

0 ... 32767
In case of VLAN
usage the param-
eter VLAN ID
represents the ID
of the virtual net-
work.
For VLAN type
802.1Q the range
is 0..4095 while
VLAN type ISL
accepts values
from 0 to 32767.
The supported
type depends on
the used device.

Slave parameters
-> VLAN ID

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1538

PROFINET IO device – PNIO parameters
The tab “PNIO Parameters” is a generic view of all PROFINET IO device parameters. It is
normally hidden and is normally not needed for configuration.

Use tab “PNIO Parameters” only, if you need to change a parameter, which is
not visible in other dialogs.

1. Click “Tools è Options” and select “Device editor”.

ð The “Device editor” dialog opens.

2. Enable checkbox “Show generic device configuration views” and click [OK]

ð The tab is now available.

Configuration of 3rd party PROFINET IO devices
Before a 3rd party PROFINET IO device can be used, the provided GSDML file has to be
installed in the “Device Repository”.

Go to “Tools è Device Repository è Install”.

Ä Chapter 6.3.2.11.2.1.3 “Configuration of PROFINET IO devices” on page 1537.

I/O mapping of the PROFINET IO devices
1. Double-click on the “PNIO_Controller” or below on the “<...>PNIO-Device” or below on the

“I/O-Module” in the device tree.
2. Select tab “I/O mapping list” to show the list of I/O channels.

The content of the list depends on the selected node.
For instance:
● When the “PNIO_Controller” node is selected all I/O channels of all configured devices are

shown.
● When a “PNIO-Device” is selected all I/O channels of the configured modules are shown.
An IEC variable for an I/O channel that is available in the “Application” can be defined by
double-clicking in column “Variable”.

Activating tab

Installation

Configuration

Open I/O map-
ping list

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1539

Provider and consumer status

Provider and consumer status functionality is available as of Automation
Builder2.7.0 and CPU firmware 3.7.0.

The provider and consumer status of a PROFINET submodule is in the I/O editor available.
For each submodule 4 additional I/O channels exists that can be used to read or write the
provider and consumer status. These channels are updated with the cycle of the specified
buscycle task.

Channel Direction Description
“Input PS” (submodule name) input Provider status of the input

channels

“Output CS” (submodule
name)

input Consumer status of output
channels

“Output PS ”(submodule
name)

output Provider status of the output
channels

“Input CS” (submodule name) output Consumer status of the input
channels

The channels “Output PS” and “Input CS” are handled by the IO driver of the communica-
tion module CM579-PNIO when no mapping variable is assigned. The status value is set to
“Bad_By_Controller” when the PLC is in “Stop” and to “Good” when the PLC is in “Run”.
In case of a mapping variable is assigned the correct status value has to be set in the PLC
application.

The channels “Input PS” and “Output CS” contains the status values as received form the
PROFINET device. If the Application Relation (AR) between PROFINET device and controller is
closed the status is set to “Bad_By_Controller”.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1540

Remanent data
The remanent data of the communication module CM579-PNIO is stored in the PLC filesystem.
It will be read and evaluated by the communication module during configuration.
When a new project is loaded or the communication module is replaced the data is not deleted.
It can be deleted either manually in the file browser or in the Automation Builder menue “Online
è Reset Origin” command.

Shared device

Shared device functionality is available as of Automation Builder 2.6.0 and CPU
firmware 3.6.0.

The shared device functionality allows it to use the same IO device with multiple IO controllers
at the same time. The sharing of an IO device is done on submodule level. A submodule of
PROFINET IO device must be uniquely assigned to a PROFINET IO controller.
The example below shows the configuration of 2 IO controllers using a CM589-PNIO-4 as
shared device. The modules or submodules that are assigned to an IO controller are shown in
black style. The unassigned ones are in gray style.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1541

The following workflow applies to an IO device configuration:
1. Add an IO device to an IO controller.
2. Add IO modules and submodules according to IO device hardware.
3. Setup required parameters of IO device.
4. Repeat the IO device configuration in the same way for further IO controllers.
5. Select the assigned IO submodules for each IO controller with disconnect/connect module

function in context menu.
6. Define one IO controller to be responsible to connect to DAP.

To disconnect DAP and port submodules from IO controller use option “Shared device”:
1. Double-click on “PNIO-Device” to open the device configuration in the editor window.
2. Select tab “Options” to show option “Shared device”.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1542

Parameter Default Value Description
Shared device unchecked unchecked DAP and Port sub-

modules are con-
nected.

checked DAP and Port sub-
modules are discon-
nected.

Rules to be followed on using PROFINET “Shared device” configurations:

– All configurations of the IO device at IO controllers using this IO device have
to look the same.

– IP configuration (IP address, subnet mask) have to be the same.
– The station names has to be the same.
– Each IO submodule has to be connected at one single IO controller only.

Automation Builder is not able to check these details for consistency.

CM589-PNIO / CM589-PNIO-4-PROFINET IO device communication module

Configuration is valid as of CPU firmware 3.5.0 (“CM589-PNIO”) respectively
CPU firmware 3.6.0 (“CM589-PNIO-4”) and “CM589-PNIO” FW 1.6.2.20.

The configuration of the “CM589-PNIO” PROFINET I/O module has to be done in the following
steps:
● Parameterization of the AC500 communication module interface Ä “Parameterization - com-

munication module interface” on page 1543
● Parameterization of the PROFINET IO device protocol stack Ä “Parameterization -

PROFINET I/O stack” on page 1544
● Configuring PROFINET IO device module structure Ä “Configuring PROFINET IO structure”

on page 1544
● Parameterization of the PROFINET IO device modules Ä “Parameterization - PROFINET

IO device modules” on page 1545
● Mapping of the I/Os Ä “Mapping of the I/Os” on page 1546
● Configuration specific to CM589-PNIO-4 Ä “Configuration CM589-PNIO-4” on page 1547

Configuration procedure for “CM589-PNIO” and “CM589-PNIO-4” are basically
the same. Thus this description refers to “CM589-PNIO” only. Differences
between “CM589-PNIO” and “CM589-PNIO-4” will be highlighted explicitly if
necessary!

For connecting a PLC as “PROFINET-IO-Device”, plug “CM589-PNIO” / “CM589-PNIO-4” at the
“Extension_Bus” node.
Double-click on “CM589-PNIO” to open the “CM589-PNIO” configuration in the editor window.
The following parameter is available:

Parameteriza-
tion - communi-
cation module
interface

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1543

Parameter Value Default Value Description
Run on config
fault

No No In case of a configuration error, the
user program is not started.

Yes The user program is started even in
case of configuration error.

Click on tab “CM589-PNIO I/O Mapping” to get “Bus Cycle Options” in the editor window.
The following parameter is available:

Parameter Value Default Value Description
Bus cycle task Use parent bus

cycle settings
Use parent bus
cycle settings

Settings from “PLC settings” tab are
used.

Task Name of task that triggers the bus
cycle.

Click on tab “CM589-PNIO IEC Objects”. Here the IO driver instance of communication module
is specified.

All parameters for “PROFINET-IO-Device” protocol configuration are set automatically by
Automation Builder. These parameters are displayed just for information and in read-only
mode. Double-click on “PROFINET-IO-Device” in tree view will show the parameter set in tab
“PROFINET-IO-Device Parameters”.

– “Station name”: The default name is displayed. The real name used on
acting at the field bus is combined out of this default name and the used
setting of the rotary switches at the CM589 module (“cm589-pnio-00”, “00”
will be replaced by rotary switch value) or the name set via PROFINET set
name service.

– Parameter “IP address”, “Subnet Mask”, “Default gateway”: The default
values are displayed here. These values are not used as communication
settings. PROFINET IO controller supplies the IO devices with IP settings
on communication establishing.

“CM589-PNIO” provides I/O data as modules with different data types and directions. Create an
application specific I/O structure by compiling an appropriate combination of modules.
To assign I/O modules to “PROFINET-IO-Device” node open “Add object” dialog.

Parameteriza-
tion - PROFINET
I/O stack

Configuring
PROFINET IO
structure

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1544

The maximum image size available for I/O data depends on “CM589-PNIO” modules firmware
revision. If firmware revision run by connected “CM589-PNIO” module does not support the
number of I/O data configured, download configuration will fail. Currently see Ä “Calculating
size of I/O data” on page 1546 how to calculate number of I/O data occupied by certain
configuration.
PROFIsafe modules can only be used if a SM560-S-FD1 (for “CM589-PNIO”) respectively
SM560-S-FD4 (for “CM589-PNIO-4”) was configured in project. For details see safety documen-
tation.

PROFINET IO device modules do not need user configuration. All needed parameters are set
automatically by Automation Builder. Double-click on a module node shows the parameter set
just for information. This parameter set is identical for all module types and is displayed in
read-only mode.

Parameteriza-
tion - PROFINET
IO device
modules

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1545

– “API”: Shows the API which is used by the “CM589-PNIO” modules. As API
0 is supported only “CM589-PNIO” modules do not provide configuration
capabilities for this parameter.

– “Slot number”, “SubSlot-Number”, “Offset in DPM”, inputs/outputs: Will be
set to default values on inserting a module. On creating configuration data
Automation Builder calculates real values and overwrites the defaults.

– “Offset IOPS” provider/consumer: Not used and set to 0 values.
– “PROFIsafe module”: “FALSE” if module is not a safety module.

PROFINET defines I/O data and status information to be exchanged between IO controller and
IO device. The status information is called “Provider Status” and “Consumer Status”. Both (I/O
data and status information) have to be considered on calculating allocated memory in input
and output image.
● The number of status bytes depends on the type of module used.
● The different types of modules input, output and in/output have to be considered different.
● Some status bytes are reserved for predefined submodules have to be considered addition-

ally.
A configured I/O module allocates memory space at the corresponding I/O image for data and
status bytes. Additionally memory is allocated at the opposite directions I/O image to store
further status bytes. E.g. an input module allocates memory at the input image but additionally it
allocates one byte for status at the output image. Summarized size of input and output data and
status has to fit to the corresponding image.

Table 301: Overview of I/O module types and corresponding status bytes
Module
type

Input data Output data
Inputs Provider

status
inputs

Consumer
status out-
puts

Outputs Provider
status out-
puts

Consumer
status
inputs

Reserved 0 input
bytes

4 bytes 0 bytes 0 bytes 0 bytes 4 bytes

Input
module
(e.g. 4 byte
input)

n input
bytes

1 byte 0 bytes 0 bytes 0 bytes 1 byte

Output
module

0 input
bytes

0 bytes 1 byte n output
bytes

1 byte 0 bytes

Input/output
module

n input
bytes

1 byte 1 byte n output
bytes

1 byte 1 byte

Following expressions calculate allocated sizes of input and output data:

Size input = Input + status + 4 bytes (reserved status)
Size output = Output + status + 4 bytes (reserved status)

● Input = Summarized number input bytes all modules.
● Output = Summarized number output bytes all modules.
● Status = Count input modules + count output modules + 2 * count input/output modules.

Double-click on the desired “PROFINET-IO-Device” module object in the device tree to show
current I/O mappings connected to this module.

Calculating size
of I/O data

Mapping of the
I/Os

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1546

Symbolic names for variables, inputs and outputs for further details on mapping inputs and
outputs.
Ä Chapter 6.3.2.13.7 “Symbolic names for variables, inputs and outputs” on page 1572

“CM589-PNIO-4” adds PROFINET “Shared Device” feature to already described “CM589-PNIO”
device functionality. Thus “CM589-PNIO-4” is able to communicate to 4 different PROFINET IO
controllers in parallel.
Shared device usage of a “CM589-PNIO-4” does not need to be considered on doing the
configuration of the “CM589-PNIO-4” coupler device itself. It has to be considered only on
doing the configuration of “CM589-PNIO-4” as child to the “CM579-PNIO” IO controller. See
“CM579-PNIO” configuration for details.

“CM589-PNIO” – PROFINET device diagnosis
The diagnosis messages of communication module “CM589-PNIO” are displayed in tab
“Diagnosis” of node “CM589-PNIO” in device tree of Automation Builder. Within PLC application
they can be read with the diagnosis methods of IO driver or function block “Diag”.
Ä Chapter 6.9.1.5.4.2 “Device state” on page 4629

Ä Chapter 6.9.1.5.3.3.2 “Method Ack / DiagAck: acknowledgement” on page 4623

In PLC display the diagnosis messages of “CM589-PNIO” are not shown.
Ä Chapter 6.9.3.6.3 “CM589-PNIO(-4) errors” on page 4688

CM589-PNIO - PROFINET IO slave
Configuration in Automation Builder is described in PROFINET IO slave configuration.
Ä Chapter 6.3.2.18 “PROFINET IO Configurator” on page 1640

6.3.2.11.3 EtherCAT
CM579-ETHCAT - EtherCAT I/O master

Ä Configuration in Automation Builder.

● Double-click on “CM579_ECAT (CM579-ECAT)” to open the CM579-ECAT configuration in
the editor window.

The following parameters are available:

Parameter Default value Value Description
Run on config
fault

No No In case of a configuration error,
the user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the EtherCAT communication
module.

Broken slave
behavior

Leave all broken
slaves down

Leave all broken
slaves down

Broken slaves will not be served.

Leave addressless
slaves down

Only slaves without address will
be left down.

Leave no slaves
down

Broken slaves will be ignored.

Configuration
CM589-PNIO-4

Diagnosis and
debugging for
AC500 V3 prod-
ucts

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1547

Parameter Default value Value Description
Distributed clocks Inactive Inactive Distributed clocks are inactive.

Active Distributed clocks are active.

Bus Target State Operational, OP Operational, OP Target state of the EtherCAT bus
at application start.Safe-Operational,

SAFEOP

Pre-Operational,
PREo

Bus behavior Asynchronous (IEC
bus cycle)

Asynchronous
(IEC bus cycle)

Type of bus behavior (asynchro-
nous/synchronous)

Synchronous
(Sync mode 1)

Minimum lag (1 bus cycle)
between input and output values.

Synchronous
(Sync mode 2)

Extended application time, higher
lag (2 bus cycles) between input
and output values.

Optimize I/O
update

Off On When activated, consecutive I/Os
are merged in one block to opti-
mize the performance.Off

EtherCAT-Master - ABB functionality for sync units
With the EtherCAT sync units, several slaves are configured into groups and subdivided into
smaller units. For each group, the working counter can be monitored for an granular input data
validation. As soon as a slave is missing in a sync unit group, the input data of all other slaves in
the same group becomes invalid.
Detection occurs immediately in the next bus cycle, as the working counter is continuously
checked. Unaffected groups remain operable without any interference.
Right click on the “Application” node and press “Create configuration data”.
Automation Builder creates a set of global variables defining the working counter state of a
“SyncUnit” command.
The variables use the following naming scheme:
"SLOT_" + "CouplerSlot_ " + "SyncUnitName" + "_CMD_" + "LogicalAccess" + "_FRAME_" +
"FrameID CouplerSlot".
CouplerSlot

The communication module slot is the ID of the slot where the communication module is
plugged in.
SyncUnitName

The sync unit name is as defined in the “Sync Unit Assignment” tab.
LogicalAccess

The logical access defines the command List of logical access commands:
● Read = 10;
● Write = 11
● Read/Write = 12
FrameID

The frame ID starts with 1 and increments if the cyclic exchanged data is larger than the
maximum Ethernet frame boundary.
Values

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1548

● FALSE : Working counter is as expected (data from slaves is valid)
● TRUE : Working counter is different to expected value (data from slaves is invalid)
The variables can be used by conditional consumption of slave data in the application:

EtherCAT diagnosis
Automation Builder 2.3 provides an enhanced diagnosis interface for the EtherCAT fieldbus.
The user can get EtherCAT diagnosis information from different editor views. All these views are
accessible within the EtherCAT master device editor and provide information about the master
and all configured or connected slaves. The main diagnosis overview is given in the EtherCAT
master view “Diagnostics main”.

“Diagnostics main” shows EtherCAT state “Operate”.

“Diagnostics main” shows EtherCAT state “Topology error’”.

If the EtherCAT bus state shows “Operate”, the user does not need to check for any more
information.
If the “Diagnostics main” shows any error, like “Topology mismatch detected”, the user can
continue to the next level of information by opening editor view “Master State Control”.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1549

“Master State Control” shows EtherCAT state “Operate”.

“Master State Control” shows EtherCAT state “Toplogy error”.

In editor view “Master State Control” the user can request a master state change or get informa-
tion about configured parameters as well as events and latest communication errors. In case of
any topology error (e.g. slaves are configured in a different order than they exist in hardware)
the Automation Builder shows a hint to the user that it might be helpful to execute a bus scan
in editor view “Diagnostics live list” to compare the scan result of the real hardware with the
configures slaves in the Automation Builder project.

Bus scan result in editor view “Diagnostics live list” shows the connected hardware.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1550

The bus scan result list shows the following information for each connected slave:

ID Position of the found slave device

Type Slave identification (name or Vendor/Device ID number)

State The connection/link state of all ports (0-3) of the given
slave

 Connected => Cable is plugged in

 + Link => Physically connected to another slave

 + Communication => Communication works fine

Name Not used for EtherCAT

Address Not used for EtherCAT

Details E.g. revision number of the slave device

The bus scan shows information about the real connected hardware.

Note that a bus scan will always restart the EtherCAT bus.

This should not be a problem during commissioning but it might not be appli-
cable in a running system.

For runtime diagnosis the Automation Builder provides cyclic information of all configured slaves
and their states in the editor view “Slave diagnosis”.

Slave diagnosis information shows that configured slaves are ok.

“Slave diagnosis” view shows wrong slave at position 1.

The editor view “Slave diagnosis” shows information about the configured slaves. If these slaves
are found in hardware, the states of all slaves are ok. If there is a mismatch between hardware
and configuration the view shows at which position that mismatch was detected.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1551

The “Slave diagnosis” shows the following information for each configured slave:

Topology Position Position of the configured slave device.

Configured Station Address Address that is defined by configuration.
This address is not topology dependent.

Slave Name Configured name of the slave device.

Slave State The state of the slave. Possible slave states are:

 NOT CONNECTED 1)

 INIT

 PREOP

 SAFEOP

 OP

 INIT ERR

 PREOP ERR

 SAFEOP ERR

Port State 2) The state of all ports (0-3) of the given slave.

Shows how many connections this slave has to other
slaves and if the connections are working fine:

 Connected => Cable is plugged in

 + Link => Physically connected to another slave

 + Communication => Communication works fine

Last Error The last error that occurred in this slave. As text, if avail-
able, and error number. If this is any topology error, the
editor view will show a hint to perform a bus scan.

Emergency [CAN application pro-
tocol over EtherCAT (CoE)]

This column contains up to 5 CoE emergency entries.
Each entry has

 Error code

 Address of the error reg-
ister

 Error data (1 byte)

 If there are more than five emergencies reported by the
slave, the columns show a hint that some emergency
entries have been lost.
The column is empty, if no CoE emergencies exist.

Frame Error Counters 2) Counts transmission errors on frame layer, detected by
CRC check of frames. Fast growing values show a
serious problem. Possible root causes include damaged
cables, high electromagnetic noise or misbehavior of
EtherCAT slave devices. Four counter values are shown,
one for each port 0-3. Column has red background in case
of any value other than 0.

Physical Layer Error Counters 2) Counts transmission errors on physical layer. Possible
root causes include electromagnetic disturbance or faulty
devices. Four counter values are shown, one for each port
0-3. Column has red background in case of any value
other than 0.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1552

Link Lost Counters 2) Optional feature of EtherCAT slave devices, not supported
by every device.

Counts loss of physical connection (no link, LED off). Even
short interruptions can be detected. Possible root causes
include power dips, device reset, poor cables or connec-
tors, loose contact. Four counter values are shown, one
for each port 0-3. Column has red background in case of
any value other than 0.

1) Note that columns “Port State”, “Frame Error Counters”, “Physical Layer Error Counters”
and “Link Lost Counters” show “LLD: Timeout”, if this state is NOT CONNECTED, because this
information is not accessible.
2) Note that this column contains “LLD: Timeout”, if slave state is NOT CONNECTED.

General note on the counters
Please note that this kind of errors will be detected by devices when power
state changes, e.g. when the device itself or a neighboring device is powered
on, caused by switching artifacts on the cable. This does not signal an issue,
only counters increasing during normal operation should trigger deeper anal-
ysis. Counters can be reset by the PLC program using corresponding function
blocks.

6.3.2.11.4 PROFIBUS
General

The fieldbus PROFIBUS is supported in AC500 PLC as master and slave. The communication
modules “CM592-DP PROFIBUS DP V0/V1 master module” and “CM582-DP PROFIBUS DP
slave module” are provided for these purposes.

Parameterization of the CM592-DP/CM582-DP communication modules
Configuration is valid as of CPU FW 3.5.0.
To append a communication module, add the communication module to the “Extension_Bus”
node.
● Right-click the desired slot and select “Add object”.
● Select the communication module from the list and click [Replace object].

● Double-click the new node to open the CM592-DP/CM582-DP PROFIBUS DP configura-
tion in the editor window. Click on tab “CM592-DP/CM582-DP Parameters” if not already
opened.

The following parameters are available:

Parameter Default
value

Value Description

Run on config fault No No In case of a configuration error,
the user program is not started.

Yes The user program is started inde-
pendent of a faulty configuration
of the PROFIBUS communica-
tion module.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1553

Click on tab “CM592-DP/CM582-DP I/O Mapping” to open the “Bus Cycle Options” in the editor
window.
The following parameter is available:

Parameter Default value Value Description
Bus cycle task Use parent bus cycle

settings
Use parent bus cycle
settings

Settings from “PLC
settings” tab are used.

Task Name of the task that
triggers the bus cycle

Click on tab “CM592-DP/CM582-DP IEC-Objects” to open the list of used IEC Objects. For
information instantiated I/O driver function block class is shown.

CM592-DP PROFIBUS DP master communication module
Configuration of a PROFIBUS DP master

Double-click on “Profibus_Master_x (Profibus_Master)” to open the “Profibus_Master” configu-
ration in the editor window:
Click on “General” tab if not already opend.

Most of the parameters are calculated automatically. Uncheck [Use defaults] to enable values to
be edited individually. Checking [Use defaults] again will revert all parameters to default values.

All times for the PROFIBUS parameters are given in bit time [tBit]. The bit time
is the result of the reciprocal of the transmission rate:

tBit = 1 / transmission rate in [bit/s]

The conversion from milliseconds into a bit time is shown in following formula:

tBit = Time in [ms] * transmission rate in [bit/s]

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1554

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1)

Adresses
Station address 1 0 ... 125 The individual device address of

the master device on the bus.
DpParameter
-> Station
address

Highest station
address

126 0 ... 126 The highest bus address up to
which a master searches for
another master at the bus in
order to pass on the token.
This station address must on
no account be smaller than the
master station address.

DpParameter
-> Highest
station
address

Mode
Auto-Clear mode Enabled Disabled The master operation mode will

stay in the mode 'Operate' and
the communication to all avail-
able slaves is kept up.

AutoClear-
Supported

Enabled The masters operation mode will
change from 'Operate' to 'Clear'
and it shuts down the communi-
cation to all assigned slaves, if
at least 1 slave is not responding
within the data control time.

Automatic
startup

Enable Disable Do not perform automatic startup AutoStart

Enable Perform automatic startup

Parameters
Baud rate 1500 9.6

19.2
45.45
93.75
187.5
500
1500
3000
6000
12000

Data transfer speed in [kBits/s].
The baud rate must be set to the
same value for all devices on the
bus. The result of changing the
baud rate is that all other param-
eters must be recalculated.

DpParameter
-> Baudrate

T_SL
Slot time

300 37 ...
65535

Monitoring time of the sender
(requester) of a telegram for the
acknowledgement of the recip-
ient (responder). After expiration,
a retry occurs in accordance with
the value of maximum telegram
retries.

DpParameter
-> TSL

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1555

Parameter Default Value Description Parameter
(Remark 1)

min. T_SDR
Minimum station
delay responder
time

11 1 ... 65535 Shortest time period that must
elapsed before a remote recip-
ient (responder) may send an
acknowledgement of a received
query telegram. The shortest
time period between reception of
the last bit of a telegram to the
sending of the first bit of a fol-
lowing telegram.

DpParameter
-> min. TSDR

max. T_SDR
Maximum station
delay responder
time

150 1 ... 65535 Longest time period that
must elapse before a sender
(requestor) may send a further
query telegram. Greatest time
period between reception of the
last bit of a telegram to the
sending of the first bit of a fol-
lowing telegram.
The sender (requestor, master)
must wait at least for this time
period after the sending of an
unacknowledged telegram (e.g.
broadcast only) before a new
telegram is sent.

DpParameter
-> max. TSDR

T_QUI
Quiet time

0 0 ... 127 Time delay that occurs for mod-
ulators (modulator-trip time) and
repeaters (repeater-switch time)
for the change over from sending
to receiving.

DpParameter
-> TQUI

T_SET
Setup time

1 0 ... 255 Minimum period reaction time
between the receipt of an
acknowledgement to the sending
of a new query telegram (reac-
tion) by the sender (requestor).

DpParameter
-> TSET

T_TR
Target rotation
time

11894 1 ... 2
-1
(=1677721
5)

Pre-set nominal token cycle time
within the sender authorization
(token). The available time for
the master to send data tele-
grams to the slaves depends on
the difference between the nom-
inal and the actual token cycle
time.
The Target rotation time (TTR)
is shown in Bit times [tBit] like
the other bus parameters. Below
the displayed bit time, the Target
rotation time is also displayed in
[ms].
The default value depends on the
number of slaves attached to the
master and their module configu-
ration.

DpParameter
-> TTR

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1556

Parameter Default Value Description Parameter
(Remark 1)

Gap
Gap update
factor

10 0 ... 255 Factor for determining after how
many token cycles an added
participant is accepted into the
token ring. After expiry of the
time period G*TTR, the station
searches to see whether a fur-
ther participant wishes to be
accepted into the logical ring.

DpParameter
-> Gap update
factor

Retry limit
Maximum retries

1 1 ... 15 Maximum number of repeats in
order to reach a station.

DpParameter
-> max. retry
limit

Data control time 120 1 ... 224-1 Defines the time in [ms]
within the Data_Transfer_List is
updated at least once. After the
expiration of this period, the
master (class 1) reports its oper-
ating condition automatically via
the Global_Control command.
The default value depends on the
transmission rate.

DpParameter
-> Data con-
trol time

Slave interval
Minimum slave
interval

2000 1 ... 65535 Defines the minimum time period
between two slave list cycles in
[µs]. The maximum value the
active stations require is always
given.
The default value depends on the
slave types.

DpParameter
-> min. slave
interval

Poll timeout
Minimum poll
timeout

10 Sets the maximum period of
time in [ms] during which the
response has to be received.

DpParameter
-> Poll timeout

Remark 1:
To display the parameters of this column, enable the option “Show generic device configuration
views” under “Tools è Options è Device editor”.

Configuration of a PROFIBUS DP slave
A PROFIBUS DP slave can be added by right-clicking on “Profibus_Master_x
(Profibus_Master)” and selecting “Add object”.
If the desired device is not listed it can be installed via the “Device Repository” (menu item
“Tools” -> “Device Repository”).
The slave configuration parameters can be edited in slave related editor window. To open this
editor window, double-click the corresponding slave in the device tree.
Click on tab “General” if not already opened.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1557

All times for the PROFIBUS parameters are given in bit time [tBit]. The bit time
is the result of the reciprocal of the transmission rate:

tBit = 1 / transmission rate in [bit/s]

The conversion from milliseconds into a bit time is shown in following formula:

tBit = Time in [ms] * transmission rate in [bit/s]

The following parameters are available:

Parameter Default Value Description Parameter
(Remark 1)

Identification
Station address 1 0 ... 126 Station address of the

PROFIBUS DP slave device.
StationAd-
dress

Ident number GSD file
specific

---- Ident number of the PROFIBUS
DP slave device.

SlavePrmData
-> ident-
Number

Parameter
T_SDR (tBit) 11 11 ... 255 The parameter T_SDR (tBit) rep-

resents the minimum station
delay of a responder (time a res-
ponder waits before generating
the reply frame).

SlavePrmData
-> minTsdr

Lock/unlock 2 (Lock) 0 (T_SDR
unlock)

The TSDR and slave-specific
parameter may be overwritten.

Bit 6 = 0 and
bit 7 = 0 of bit-
mask Slave-
PrmData ->
stationStatus

1 (Will be
unlocked)

The slave is released to other
masters.

Bit 6 = 1 and
bit 7 = 0 of bit-
mask Slave-
PrmData ->
stationStatus

2 (Lock) The slave is locked to other mas-
ters, all parameters are accepted.

Bit 6 = 0 and
bit 7 = 1 of bit-
mask Slave-
PrmData ->
stationStatus

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1558

Parameter Default Value Description Parameter
(Remark 1)

3 (Unlock) The slave is released to other
masters.

Bit 6 = 1 and
bit 7 = 1 of bit-
mask Slave-
PrmData ->
stationStatus

Watchdog
Watchdog control Enabled Disabled The PROFIBUS Slave does not

utilize the Watchdog Control Time
setting.

SlavePrmData
-> wdFact1

Enabled The PROFIBUS slave utilizes
the Watchdog Control Time set-
ting in order to detect commu-
nication errors to the assigned
Master. When the Slave finds an
interruption of an already opera-
tional communication, defined by
a Watchdog time, then the Slave
carries out an independent Reset
and places the outputs into the
secure condition.

Time (ms) 400 0 ... 2540 Watchdog time in [ms].
The default value depends on the
number of slaves attached to the
master and their configuration.

SlavePrmData
-> wdFact2

User parameter
Symbolic values Enabled Disabled No symbolic names for the user

parameters.
-

Enabled The values for the parameters
are shown with symbolic names.

-

Length of user
parameter (Byte)

3 Device-
specific

The length of the user parame-
ters in [bytes]. By default this
value is 3 due to the existing
reserved values.

-

Defaults - - The button restores the default
values of the user parameters.

-

Remark 1:
To display the parameters of this column, enable the option “Show generic device configuration
views” under “Tools è Options è Device editor”.

Click on tab “Check configuration”.
Following dialog shows values for input/output/parameter data occupied by your configuration.
Here it can be checked how much data is left for further configuration.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1559

CM582-DP PROFIBUS DP slave communication module
Configuration of PROFIBUS DP slave

Double-click on “PROFIBUS_DP_Slave” to open the PROFIBUS slave configuration in the
editor window:

The following parameters can be modified:

Parameter Default value Value Description
Bus address 1 0 ... 126 The bus address is the individual device

address of the slave device on the bus.

Configuration of I/O data objects
To append I/O data, add the desired input / output objects to the Communication Module node.
Right-click the Communication Module node and select “Add object”.
Different types of data objects group I/O variables by size and direction. The I/O driver of the
PLC firmware copies the amount of data bytes configured by these data objects cyclically.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1560

Select the desired I/O objects from the list and click [Add object].

To keep basic load of PLC low, only configure as much I/O data objects as
actually required. If further I/O variables need to be added later, additional data
objects can be inserted.

Technical details on the device such as the maximum amount of bytes used for I/O data is
described in the device specification for Ä Chapter 5.2.2.8.1 “CM582-DP - PROFIBUS DP
slave” on page 354.
Double-click an added I/O object node to open the preset configuration. As the I/O objects do
not need user configuration all parameters in the “Parameters” tab are read-only.
Open the “I/O Mapping” tab to configure the mapping configuration for the I/O object.

On using CM582-DP slave device configured with modules types combining input and output
data the following situation may happen:

Possible incon-
sistency

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1561

CM582-DP communication module configuration uses module type 16 Byte In/Out.
The device representation assigned to CM592-DP master uses module types 16 Byte Output
and 16 Byte Input at the same place instead.

Example

This mismatch will not be detected; neither by Automation Builder nor by PROFIBUS master
and slave.
However, the communication will run stable and I/O data exchange is executed successfully.
Reason:
AC500 defines modules combining input and output directions to be split to two separated
module configurations internally with output direction first.
Thus in AC500 the PROFIBUS configuration data for one module of type 16 Byte In/Out looks
the same as for the combination of module types 16 Byte Output and 16 Byte Input.

Mapping of the I/Os
Double-click on the desired I/O data object in the device tree to show current I/O mapping
connected to this data object Ä Chapter 6.3.2.13.7 “Symbolic names for variables, inputs and
outputs” on page 1572.

6.3.2.11.5 Ethernet
CM5640-2ETH – Ethernet communication modul

Configuration is valid as of CPU FW 3.6.0.

Append a CM5640-2ETH.

All interfaces of the onboard and CM5640-2ETH modules need to be in dif-
ferent subnets. Overlapping of subnets must be avoided. The selection of the
used interface (ETH port) is done automatically according the match of the
IP-address of the server and the subnet of the interfaces.

Configuration of
the communica-
tion module

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1562

1. Right-click on your desired Slot below node “Extension_Bus” and click “Add object”.

ð Dialog “Replace object:” appears.

2. Click “CM5640-2ETH” in the list and click the button [Replace object].

Double-click “CM5640-2ETH (CM5640-2ETH)” to get the “CM5640-2ETH Parameters” in the
editor window.
The communication module CM5640-2ETH is a port extender of the processor module used.
Each communication module adds 2 additional independent ethernet interfaces. The communi-
cation module in the configuration tree is displayed in the same way as the processor module
onboard ethernet interfaces.
The configuration of both interfaces is done as for the onboard ethernet interfaces from a
processor module.

Double-click “ETH1_1 (IP Setting)” will open the windows to select the possible server protocols
and all non-available protocols for that interface are greyed.
The added feature appears below “NetConfig (NetConfig)” for example and the configuration of
each feature is done by clicking on the selected feature and opening new windows.
Both interfaces can be independently configured and the available server protocols always
displayed when available or greyed when disabled.
Selecting “Protocols_1 (Client Protocols)” and right click and use “Add object”, a new window
opens showing the available client protocols.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1563

The configuration of each protocol either server or client is done in the same way as for onboard
ethernet of the processor module.

6.3.2.12 Communication interface modules
6.3.2.12.1 Configuration of communication interface modules

Automation Builder can be used to configure the parameters of CI5xx devices.

Configuration of S500 I/O modules can be performed without CI5xx devices
connected.

1. Right click in the device tree on the node “Slot1” or “Slot2” of the “Extension_Bus” and
click “Add object”.

ð The window “Replace object : Slot <...>” opens.

2. Select your “CM5xx master module” and click [Add object].

ð The “CM5xx master” appears in the Slot.

3. Right click on “CM5xx master module” and click “Add object”.

ð The window “Add object below : <...>_Master” opens.

4. Select your “CI5xx” device and click [Add object].

ð The “CI5xx” device appears in your device tree.

Adding CI5xx
device to the
device tree

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1564

1. Right click on your “CI5xx” device and click [Add object].

ð The window “Add object below:” opens.

2. Select your I/O module and click [Add object].

ð The I/O module is added.

Double-click the “CI5xx” device to open editors and select the “CI5xx_IO Parameters” tab.

This editor shows the parameters that can be set for each device , and .

6.3.2.12.2 Unbundled CI52x-MODTCP configuration
Automation Builder can be used to configure the parameters of CI52x-MODTCP devices.

A direct Ethernet connection is required between the PC running Automation
Builder and the CI52x-MODTCP module.

Configuration of S500 I/O modules can be performed without CI52x-MODTCPs
modules connected.

1. Select “New Project” in menue item “File”.

ð The window “New Project” appears.

2. Select the “CI52x-MODTCP Configuration Project” and click “OK”.

ð The window “Select PLC” opens.

3. Select a “CI52x-MODTCP” device and click “Add device”.

ð A project is created. More modules can be added.

1. Right click in the device tree on the root of the “Project” and click “Add object”.

ð The window “Add object below” opens.

2. Select “Modbus devices” and click “Add object”.

ð The node“Modbus_devices” appears in your device tree.

3. Right click on the node “Modbus_devices” and click “Add object”.

ð The window “Select PLC” opens.

Adding S500 I/O
modules

Configure
parameters

Start a project
from template

Add CI52x-
MODTCP to a
project

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1565

4. Select your “CI52x-MODTCP” device and click “Add device”.

ð The “CI52x-MODTCP” device appears in your device tree.

1. “Add object” to your “CI52x-MODTCP” device.

ð The window “Add object below: CI52x-MODTCP” opens.

2. Select your I/O module and click “Add object”.

ð The I/O module is added.

Double-click the device to open editors and select the “CI52x-MODTCP Parameters” tab.

This editor shows the parameters that can be set for each device. For more information
see Ä Chapter 5.2.6.5.1.8.1 “Parameters of the module” on page 1090 CI521, Ä Chapter
5.2.6.5.2.8.1 “Parameters of the module” on page 1120 CI522 and .

To read or write parameters, the CI52x-MODTCP module must be connected to the PC with an
Ethernet connection.
See Ä Chapter 5.2.6.5.1.6 “Addressing” on page 1089 CI521 and Ä Chapter 5.2.6.5.2.6
“Addressing” on page 1120 CI522 of the CI52x-MODTCP hardware documentation for informa-
tion on configuring the IP address of the device.
On the CI52x-MODTCP device editor, the “Connection Settings” tab allows the IP address of the
device to be entered.

Add S500 I/O
modules

Configure
parameters

Connect to
device

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1566

Read Reads the parameters from the CI52x-MODTCP and also for the attached S500 I/O
modules.

Write Sends the parameters from the editors to the CI52x-MODTCP and also the S500 I/O
modules.

The CI52x-MODTCP module knows which I/O modules are attached.
While reading and writing parameters, the project must match the physical hardware. Otherwise
an error will be given.
Communication errors will also result in error messages.
When the parameters have been read or written correctly, a message is seen in the “All
messages” window:

It is possible to read and write parameters when the S500 I/O modules are not attached to the
CI52x-MODTCP module.

To perform a read, the project structure must still match the configuration of
CI52x-MODTCP.

A warning will be shown if an I/O module is not detected:

When writing parameters, the CI52x-MODTCP configuration is overwritten so the current config-
uration of missing (unplugged) modules does not matter.
If the I/O modules are attached, then the project must match the hardware, otherwise an error
will be given.

As of Automation Builder 2.2.1, the IP Configuration Tool can be used to perform firmware
updates for CI52x-MODTCP devices.

Device checking

Attached S500
modules

Firmware
update

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1567

6.3.2.13 I/O bus and I/O modules
6.3.2.13.1 Hot swap configuration

Table 302: Parameters for hot swap configuration of I/O extension modules
Parameter Purpose Value
Hot-swap terminal unit
required

To include diagnosis
for missing hot-swap ter-
minal unit

Yes:
Communication interface provides
extended diagnosis for missing hot-
swap terminal unit

No (default):
Extended diagnosis not available

Start-up with missing
module on hot-swap ter-
minal unit

Ignore missing module
during start-up on hot-
swap terminal unit.
Incomplete I/O configura-
tions must not prevent the
system from starting.

Yes:
Module is optional, start-up if there is
no module available on hot-swap ter-
minal unit

No (default):
Module is mandatory, start-up only if
correct module is available

In the Automation Builder projects for V3 PLCs, hot-swap parameters can be configured from
“Module Parameters” tab of respective I/O module.

By default, the “Module Parameters” tab is not visible for parameter configuration.
Follow the below steps to enable this tab
1. In the Automation Builder menu select “Tools è Options”

2. Select “Device editor” option from “Options” dialog.
3. Enable the option “Show generic device configuration views” (if not already done)
4. To save the settings and close the dialog select [OK]

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1568

6.3.2.13.2 Parameterization of the I/O bus
Double-click the “IO_Bus” node in the device tree to open the I/O bus configuration.
The following parameters are available:

Parameter Default Value Description
Run on config fault No No In case of configura-

tion fault the user
program will not be
launched.

Yes The user program will
be also launched in
case of configuration
error on the I/O Bus.

Max wait run 3000 0...120000 Maximum waiting time
for valid inputs.

In case of a digital I/O Module, the channels are provided as WORD, BYTE and BOOL.
Because the analog inputs can also be configured as digital inputs, bit 0 of each channel is
also available as BOOL.
The symbolic name of a channel can be entered in front of the string "AT" in the channel
declaration.

 All channels should have a symbolic name and only symbolic names should be
used in the program code. If the hardware configuration has changed or if you
want to download the project to a PLC with another hardware configuration and
thus the PLC configuration has to be changed, the addresses of the inputs and
outputs can change. In case of symbolic programming (i.e., symbolic names are
used), the program code does not have to be changed.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1569

6.3.2.13.3 Parameter 'Ignore module'
All I/O devices provide the parameter “Ignore module”. This parameter can be used for simula-
tion purposes and determines whether an I/O device is considered or ignored during a PLC
configuration check.
This allows to use an existing Automation Builder project/PLC configuration though some hard-
ware devices are not physically available in a hardware installation.

The Automation Builder project for machine A shall be used for machine B. However, the
second DC523 device is missing in the hardware installation of machine B. Hence, for machine
B the value for “Ignore module” is set to "YES".

6.3.2.13.4 I/O bus - Bus cycle task
The term "bus" includes all fieldbuses as well as the Ä I/O bus. Consider that there is no bus
cycle task for Modbus as Modbus does not provide I/O mapping and is controlled by POUs.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in the “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing the EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in the “PLC Settings”.
As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task. The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

Example

General infor-
mation

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1570

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

6.3.2.13.5 Insertion of S500 I/O devices
1. Right-click “IO_Bus” in device tree and select [Add object].

-> The “Add Device” dialog window where all available S500 I/O devices are listed will
open.

2. Append the S500 I/O devices in the same order as they are mounted on the hardware.
Input and output modules connected to the I/O bus occupy the I/O following area: %IB0 ...
%IB999 or %QB0 ... %QB999.

AC500 (Standard): PM56xx support up to 10 S500 I/O devices.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1571

6.3.2.13.6 Configuring the input and output modules and channels
The I/O channel configuration depends on the corresponding S500 I/O device.
The individual configuration parameters can be opened in the editor window via double-click on
the corresponding module and are listed in tab “S500 I/O device name Configuration”.

6.3.2.13.7 Symbolic names for variables, inputs and outputs

The IEC naming rules are not checked during input in Automation Builder.

Devices with I/Os provide an “I/O Mapping” tab in their configuration editor where the available
I/O channels can directly be mapped to a global variable.
The corresponding variable declarations are automatically available in the project.
All available I/O channels can easily be assigned to a variable.

AC500 uses Intel Byte Order (Little Endian).

Only entries with a data type set in column “Type” can be mapped. These
entries can be expanded to show the available I/O channels.

If the project has been imported from a previous Automation Builder version,
all variables should be checked to avoid inconsistencies concerning the I/O
mapping.

6.3.2.13.8 I/O mapping list
Introduction

Automation Builder contains an I/O mapping list feature for creating mapping variables with
better usability support compared to the tree structured view.
Ä Details on the tree structured view.

Input and output
mapping

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1572

Functionalities of the I/O mapping list:
● Displays I/O mappings for current node and all valid subsequent child nodes.
● Displays channel information with additional columns.
● Supports keyboard functions such as cut, copy, paste, delete, and select all within the editor

and within Excel spreadsheet (for bulk editing).
● Contains a toolbar for various actions, e.g. filtering, undo/redo and clear mappings.
● Supports single click edit and easy navigation using arrow keys.
● Improvised error handling:

– Allows to enter invalid mapping variables. This provides flexibility in bulk editing. Only
when saving the project, the errors - according to IEC 61131 standard - are displayed.

– In the message window, the error log is visible. The user can track the errors to their
corresponding channel in the editor.

● Allows multi-selection of rows and columns. (Random selection is not allowed.)

Editing I/O mapping list
1. In the device tree, double-click “IO_Bus” to configure entire I/O mapping list of different I/O

devices.
2. Enter the variables and descriptions to map the I/O devices.

Do not start variable names with a number or a special character. When
saving the project, this generates an error. Example: 12input3, @input4.

3. Click “Save Project” to save the I/O mapping changes.

Configuring I/O mapping list
Automation Builder supports tree and list based editors for creating I/O mapping variables.
1. From the “Tools” menu, select “Options”.
2. Under Automation Builder, select the “Editors” tab.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1573

3. Choose your desired mapping dialog and click [OK].
● Choose “tree based” to display the I/O mapping in tree structure.
● Choose “list based” to display the I/O mapping as list with the functionalities of the

ToolBar.
● Choose “both” to display both the tree structure (“I/O Mapping” tab) and the list view

(“I/O mapping list” tab).

The I/O mapping list displays the channel information in offline and online mode. In online
mode, all columns are read-only. In offline mode, some columns are editable.

The order of the devices in I/O mapping list is synchronized with the order in the device tree.
The channels of a device are ordered by the device description file. If channels have a section,
the channel information is represented in a specific format.
Example: Fast counter: Actual value 1. These channels are listed at last position of a device.

Especially in case of long I/O mapping lists, it might be helpful to filter the I/O mappings. For
this, click the “Filter” icon to display all available criteria for filter options.

When reducing the width of the editor, some filters might be hidden.

● “Undo”: Cancels the last change.
● “Redo”: Repeats the last change.
● “Clear mappings”: Deletes all variables and descriptions.

6.3.2.13.9 Fast counter
Configuration for S500 I/O modules
Configuring the fast counter

1. In the device tree, add a digital I/O module to the “IO-Bus” node.
2. Double-click the node for the I/O module, open the “Parameters” tab and set the operating

mode of the “Fast counter” parameter.
Ä Chapter 6.3.2.13.9.1.3 “Operating modes” on page 1577

3. In the “I/O Mapping” tab channel configuration is displayed.
Ä Chapter 6.3.2.13.9.3 “Control of the fast counter” on page 1583

Available
channel infor-
mation

Filtering

Undo, redo and
clear

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1574

Operands
Table 303: Input information
Description of the
input information

Output information of
the user program

Description

Start value 1 Output double word 0 Double word Set values for the counters 1
and 2:
Each counter can be set to
a start value. Start values are
loaded into the counter by the
user program. Using the set
signal (depending on the oper-
ating mode either via a terminal
or the bit SET within the con-
trol byte 1 or 2), the values of
the double word variables are
loaded into the counter 1 or 2.

Start value 2 Output double word 1 Double word

End value 1 Output double word 2 Double word End value for the counters 1
and 2:
The end values for the
two counters are stored as
comparison values into the
module by the user program.
Both counters compare contin-
uously whether or not their pro-
grammed end value is equal
to their actual value. When the
counter (actual value) reaches
its programmed end value, the
binary output CF of the status
byte is set permanently.

End value 2 Output double word 3 Double word

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1575

Description of the
input information

Output information of
the user program

Description

Control byte 1
see 1)

Output byte 0 Byte:
Bit 0 =
UP/DWN
Bit 1 = EN
Bit 2 = SET
Bit 3 = CF_HW
Bit 4 to Bit 7
free

Control bytes for the counter 1:
UP/DWN: In some operating
modes, the counter can count
downwards, too. If counting
down is desired, set the bit
UP/DWN to TRUE and the bit
SET to 1. When doing so, the
counter starts counting down-
wards from the start value (set
value) to the end value (max.
from 4,294,967,295 to 0 or
hexadecimal from FF FF FF FF
to 00 00 00 00). After
reaching 0 the counter jumps
to 4,294,967,295.
EN: Processing of the counter
signals must be enabled.
Depending on the operating
mode, enabling is done via a
terminal or by the bit EN =
TRUE within the control byte.
SET: The counter can be set to
a start value (see the descrip-
tion of the set values for the
counters 1 and 2 at the begin-
ning of this table.
CF_HW
0 = state of CF is set to hard-
ware channel (only for mode 1
and 2)
1 = normal output is set to
hardware channel
Bit 3 is evaluated only in con-
trol byte of counter 1.

Control byte 2
see 1)

Output byte 0 Byte:
Bit 0 =
UP/DWN
Bit 1 = EN
Bit 2 = SET
Bit 3 to Bit 7
free

Control bytes for the counter 2:
UP/DWN: In some operating
modes, the counter can count
downwards, too. If counting
down is desired, set the bit
UP/DWN to TRUE and the bit
SET to 1. When doing so, the
counter starts counting down-
wards from the start value (set
value) to the end value (max.
from 4,294,967,295 to 0 or
hexadecimal from FF FF FF FF
to 00 00 00 00). After
reaching 0 the counter jumps
to 4,294,967,295.
EN: Processing of the counter
signals must be enabled.
Depending on the operating
mode, enabling is done via a
terminal or by the bit EN =
TRUE within the control byte.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1576

Description of the
input information

Output information of
the user program

Description

SET: The counter can be set to
a start value (see the descrip-
tion of the set values for the
counters 1 and 2 at the begin-
ning of this table.

1) Only for CI581-CN/CI582-CN: Control bytes 1 and 2 are available twice on grounds of
data consistency. Hence, a Start and End evaluation is only effected if the signals "Control
Byte1_0" and "Control Byte1_1" or "Control Byte2_0" and "Control Byte2_1" (process image)
are identical.

Table 304: Output information
Output informa-
tion

Input information for
the user program

Description

Actual Value 0 Input double word 0 Double word Actual value of the counter 0

Actual Value 1 Input double word 1 Double word Actual value of the counter 1

Status Byte 0 Input byte 0 Byte:
Bit 0 = CF
Bit 1 to Bit 7 free

CF: When the counter rea-
ches the programmed end
value, the counter output is
stored permanently as CF =
TRUE (end value reached).
Only when the counter is set
again (set value), CF is reset
to FALSE.

Status Byte 1 Input byte 1

Operating modes
Inputs and outputs which are not used by the counters, are available for other tasks.
Legend:
● A refers to input channel A
● B refers to input channel B
● C refers to output channel C

Operating mode Function Used inputs and out-
puts

Notes

0 No counter none This operating mode
is selected if the inte-
grated fast counter is
not necessary.

1 One count up counter A = Counting input
C = End value
reached

The counting input
and the output "End
value reached) are
enabled by the bit EN
= TRUE within the
control byte.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1577

Operating mode Function Used inputs and out-
puts

Notes

2 One count up counter
with enable input via
terminal

A = Counting input
B = Enable input
C = End value
reached

The enable input ena-
bles the counting
input and the output
"end value reached".
The counter is only
enabled if the enable
input = TRUE (signal
1) AND the bit EN =
TRUE within the con-
trol byte.

3 Two up/down counters A = Counting input 0
B = Counting input 1

With this operating
mode, two counters
exist, which are inde-
pendent of each other.
The state "End value
reached" is only read-
able from the two
status bytes. It is not
readable from output
terminals.
The counting direction
is defined by the bit
UP/DWN within the
control byte.

4 Two up/down coun-
ters (1 counting input
inverted)

A = Counting input 0
B = Counting input 1

This operating mode
equals operating
mode 3 with
one exception: The
counting input B (of
counter 1) is inverted.
It counts the TRUE/
FALSE edges at input
B.

5 One bidirectional
counter with a
dynamic set input via
terminal

A = Counting input
B = Dynamic set input

With this operating
mode, one bidirec-
tional counter is avail-
able which has a
dynamic set input.
Dynamic means that
the set operation
is performed at the
FALSE/TRUE signal
edge (0/1 edge) of the
set input and not while
the signal is TRUE.
The state "End value
reached" is only read-
able from the status
byte, not from an
output terminal.

6 One bidirectional
counter with a
dynamic set input via
terminal

A = Counting input
B = Dynamic set input

This operating mode
equals operating
mode 5 with
one exception: The
dynamic set input
operates at the TRUE/
FALSE edge (1-0
edge).

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1578

Operating mode Function Used inputs and out-
puts

Notes

7 One bidirectional
counter for position
sensors

A = Trace A of the
position sensor
B = Trace B of the
position sensor

With this operating
mode, incremental
position sensors can
be used which inter-
change their counting
signals on tracks A
and B in a 90° phase
sequence. Depending
on the sequence of
the signals at A
and B, the counter
counts up or down.
There is no pulse-mul-
tiplier function (e.g.
x2 or x4). The posi-
tion sensor must pro-
vide 24 V signals. Sig-
nals of 5 V sensors
must be converted.
Zero traces are not
processed. The state
"End value reached"
is only readable from
the state byte 0, not
from an output ter-
minal.
The bit UP/DWN
within the control byte
must be FALSE. Oth-
erwise, a parameter
error occurrs.
In this operating
mode, the maximum
counting frequency is:
I/O modules 35 kHz.
Communucation inter-
face modules 50 kHz.

8 Reserved

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1579

Operating mode Function Used inputs and out-
puts

Notes

9 One bidirectional
counter for position
sensors (pulse multi-
plier x2)

A = Trace A of the
position sensor
B = Trace B of the
position sensor

This operating mode
equals operating
mode 7 with one
exception: There is a
pulse multiplication x2
with the evaluation of
the counting inputs.
This means, that the
counter counts both
the positive edges
and the negative
edges of trace A. This
results in the double
number of counting
pulses. The precision
increases correspond-
ingly.
In this operating
mode, the maximum
counting frequency is:
I/O modules 30 kHz.
Communucation inter-
face modules 35 kHz.

10 One bidirectional
counter for position
sensors (pulse multi-
plier x4)

A = Trace A of the
position sensor
B = Trace B of the
position sensor

This operating mode
equals operating
mode 7 with one
exception: There is a
pulse multiplication x4
with the evaluation of
the counting inputs.
This means that the
counter counts the
positive and negative
edges of the traces A
and B. This results in
the fourfold number of
counting pulses. The
precision increases
correspondingly.
In this operating
mode, the maximum
counting frequency is:
I/O modules 15 kHz.
Communucation inter-
face modules 20 kHz.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1580

Configuration for onboard I/Os
Configuring the fast counter

1. In the device tree, double-click the “Onboard I/O” node (OBIO).
2. In the “Parameters” tab set the counting mode for the fast counter.

Ä Chapter 6.3.2.13.9.2.2 “Counting modes” on page 1582

3. In the “I/O Mapping” tab channel configuration is displayed.
Ä Chapter 6.3.2.13.9.3 “Control of the fast counter” on page 1583

The parameter of the fast counter channels of the Onboard I/O must be configured before they
can be used. User should take these steps to configure the fast counter:

Channel Direction Width Description
Actual
value X

Input DWORD Current value of the fast counter.

State byte
X

Input BYTE Bit 0 = CF
If the counter reaches the programmed end value, the
counter output is stored permanently as CF = TRUE
(end value reached). Only, if the counter is set again
(set value), CF is reset to FALSE.
Bit 1 to Bit 7 free

Start value
X

Output DWORD Each counter can be set to a start value. Start values
are loaded into the counter by the user program. Using
the set signal (dependent on the operating mode either
via a terminal or the bit SET within the control byte X),
the values of the double word variables are loaded into
the counter X.

End value
X

Output DWORD The end values for the two counters are stored as
comparison values into the module by the user pro-
gram. Both counters compare continuously, whether
or not their programmed end value is equal to their
actual value. If the counter (actual value) reaches its
programmed end value, the binary output CF of the
status byte is set permanently.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1581

Channel Direction Width Description
Control
byte 1

Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter can count down-
wards, too. If counting down is desired, the bit UP/DWN
must be set to TRUE. When doing so, the counter starts
counting downwards at the start value (set value) to the
end value (max. from 4,294,967,295 to 0 or hexadec-
imal from FF FF FF FF to 00 00 00 00). After reaching 0,
the counter jumps to 4,294,967,295.
Bit 1 = EN
The processing of the counter signals must be enabled.
Depending on the operating mode, enabling is done via
a terminal or by the bit EN = TRUE within the control
byte.
Bit 2 = SET
The counter can be set to a start value (see the descrip-
tion of the set values for the counters 1 and 2 at the
beginning of this table).
Bit 3 = CF_HW
0 = state of CF is set to hardware channel (only for
mode 1 and 2)
1 = normal output is set to hardware channel
Bit 3 is evaluated only in control byte of counter 1.
Bit 4 to Bit 7 free

Control
byte 2

Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter can count down-
wards, too. If counting down is desired, the bit UP/DWN
must be set to TRUE. When doing so, the counter starts
counting downwards at the start value (set value) to the
end value (max. from 4,294,967,295 to 0 or hexadec-
imal from FF FF FF FF to 00 00 00 00). After reaching 0,
the counter jumps to 4,294,967,295.
Bit 1 = EN
The processing of the counter signals must be enabled.
Depending on the operating mode, enabling is done via
a terminal or by the bit EN = TRUE within the control
byte.
Bit 2 = SET
The counter can be set to a start value (see the descrip-
tion of the set values for the counters 1 and 2 at the
beginning of this table).
Bit 3 to Bit 7 free

Counting modes
The fast counter can be configured as one mode out of 10 possible modes. The desired
operating mode is selected in the PLC configuration using configuration parameters. Inputs and
outputs which are not used by the counter are available for other tasks. In the following table, A
means input channel A, B means input channel B and C means output channel C.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1582

CPUs Integrated
fast counter

Assigned inputs Assigned
Outputs

Remarks

Channel A Channel B Channel C
PM50xx Yes Input channel

0
Input channel
1

Output
channel 0

Only 1 fast
counter is
available on
the module.
Input channel
0 is the
default
channel for
fast counter.
Input channel
1 can be used
as another
fast counter
channel
depending on
fast counter
mode.

Only “Forward Counter” can be configured as fast counter mode for onboard IOs on eCo V3
PLCs.

Parameter PM5012-x-
ETH

PM5032-x-
ETH

PM5052-x-
ETH

PM5072-
T-2ETH(W)

PM5082-
T-2ETH

Onboard digital inputs

Channels 6
(incl. 2 fast
counter inputs
5 kHz and 4
interrupts)

12
(incl. 4 fast counter/encoder inputs (100 kHz/200 kHz),
counter inputs (5 kHz), 4 standard inputs)

Onboard digital outputs

Channels for
transistor version

4
5 kHz
standard and
PWM)

8
(incl. 4 fast outputs or 4 PWM/2PTO (100 kHz/200 kHz), 4
standard outputs (5 kHz))

Ä Chapter 5.2.1.1.2 “Onboard I/Os in processor module PM50x2” on page 196

Control of the fast counter
To control the fast counter configuration open the “I/O Mapping” tab.
The channels can be mapped as described in Symbolic Names for Variables, Inputs and Out-
puts and have the following meaning Ä Chapter 6.3.2.13.7 “Symbolic names for variables,
inputs and outputs” on page 1572:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1583

Channel Direction Width Description
Actual value X Input DWORD Current value of the fast counter

State byte X Input BYTE Bit 0 = CF
If the counter reaches the pro-
grammed end value, the counter
output is stored permanently as CF
= TRUE (end value reached). Only if
the counter is set again (set value),
CF is reset to FALSE.

Bit 1 to Bit 7 free

Start value X Output DWORD Each counter can be set to a start
value. Start values are loaded into
the counter by the user program.
Using the set signal (dependent on
the operating mode either via a ter-
minal or the bit SET within the control
byte X), the values of the double word
variables are loaded into the counter
X.

End value X Output DWORD The end values for the 2 counters
are stored as comparison values into
the module by the user program.
Both counters compare continuously
whether or not their programmed end
value is equal to their actual value.
When the counter (actual value) rea-
ches its programmed end value, the
binary output CF of the status byte is
set permanently.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1584

Channel Direction Width Description
Control byte 1 Output BYTE Bit 0 = UP/DWN

In some operating modes, the counter
can count downwards, too. If counting
down is desired, the bit UP/DWN
must be set to TRUE. If doing so, the
counter starts counting downwards at
the start value (set value) to the end
value (max. from 4,294,967,295 to 0
or hexadecimal from FF FF FF FF to
00 00 00 00). After reaching 0 the
counter jumps to 4,294,967,295.

Bit 1 = EN
The processing of the counter signals
must be enabled. Depending on the
operating mode, enabling is done via
a terminal or by the bit EN = TRUE
within the control byte.

Bit 2 = SET
The counter can be set to a start
value (see the description of the set
values for the counters 1 and 2 at the
beginning of this table. CF = 0
Bit 3 = CF_HW
0 = state of CF is set to hardware
channel (only for mode 1 and 2)
1 = normal output is set to hardware
channel
Bit 3 is evaluated only in control byte
of counter 1.

Bit 4 to Bit 7 free

Control byte 2 Output BYTE Bit 0 = UP/DWN
In some operating modes, the counter
can count downwards, too. If counting
down is desired, the bit UP/DWN
must be set to TRUE. If doing so, the
counter starts counting downwards at
the start value (set value) to the end
value (max. from 4,294,967,295 to 0
or hexadecimal from FF FF FF FF to
00 00 00 00). After reaching 0 the
counter jumps to 4,294,967,295.

Bit 1 = EN
The processing of the counter signals
must be enabled. Depending on the
operating mode, enabling is done via
a terminal or by the bit EN = TRUE
within the control byte.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1585

Channel Direction Width Description
Bit 2 = SET
The counter can be set to a start
value (see the description of the set
values for the counters 1 and 2 at the
beginning of this table.

Bit 3 to Bit 7 free

6.3.2.14 Serial interface

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1586

6.3.2.14.1 Setting up a serial interface
General

The configuration for serial interfaces and their protocols is done via two nodes:
● One node represents the common serial parameters related to the hardware port.
● The node below represents the parameterization for the particularly attached protocol.

Supported protocols
● 3S CAA SerialCom (common serial communication, send/receive data)
Ä Chapter 6.3.2.14.3 “Configuring CAA SerialCom on serial interface” on page 1590

● Modbus RTU (client & server)
Ä Chapter 6.3.2.14.2 “Configuring Modbus RTU on serial interface” on page 1588

Ä How to switch between the protocols.

Configuration
The following parameters are available in the configuration view of the COM port node:

Parameter Value ranges Description
Run on config fault No If this parameter is set to “Yes” the IEC appli-

cation will not be prevented from switching to
RUN state, independent from possibly existing
configuration errors of the particular COM port.

Yes

Transmission rate 9600 baud/sec Sets up the transmission rate to use for the
COM port.19200

38400

57600

115200

Parity None Sets up the parity to use for the COM port.

Odd

Even

Data bits 5 data bits Sets up the number of data bits to use for the
COM port6 data bits

7 data bits

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1587

Parameter Value ranges Description
8 data bits

Stop bits 1 stop bits Sets up the number of stop bits to use for the
COM port.2 stop bits

Flow control No flow control Allows to switch between different flow control
modes (either RTS/CTS hardware or Xon/Xoff
software or none). This setting is only valid for
RS-232 serial interface mode. In case RS-485
is used for parameter “Serial interface”, flow
control must set to “No flow control”. Otherwise
a configuration error is triggered.

Hardware RTS/CTS

Software Xon/Xoff

Boot parameter
Serial interface

RS-232 Allows to switch between RS-232 and RS-485.
Due to technical reasons, it’s not possible to
dynamically switch between the modes. This
means, a reboot (or power cycle) of the PLC is
required to activate the particular setting once
changed.

RS-485

Comparison to AC500 V2 PLCs
The following table shows the differences between AC500 V2 and V3 PLCs regarding the
parameter set for serial interfaces:

V2 Parameter Representation in V3 Remark
Run on config fault Run on config fault Exactly the same

RTS control Flow control (partially) Special modes which allow to use PLC as
modem and mode implicitly setting RS-485 will
not be taken over. Flow control settings will be
limited and only support hardware, software or
none.

Transmission rate Transmission rate For V3, the transmission rate range will be 9600
to 115200. Low modes will not be supported
due to lack of support in Linux. High rates were
only realized in V2 to support field bus plug as
well as CS31 field bus. Both protocols are not
supported anymore in V3, so these transmission
rates won’t be available in V3. Approach: Only
support most common transmission rates

Parity Parity (subset) AC500 V3 doesn’t allow to configure parity
modes “mark” and “space”. This means, only
“none”, “odd” and “even” are configurable.

Data Bits Data Bits Exactly the same

Stop Bits Stop Bits Exactly the same

6.3.2.14.2 Configuring Modbus RTU on serial interface
Enable Modbus RTU

To enable Modbus RTU on a serial interface the protocol setup per default has to be replaced
by either Modbus RTU client or server, depending on required operation mode.
A serial interface supports only one protocol/operation mode at once.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1588

1. Right-click node “CAA_SerialCom” and click “Add object”.
2. Select “Modbus RTU Client” or “Modbus RTU Server” and click “Add object”.

ð “CAA_SerialCom” is replaced by your selection.

Parameters
Serial parameters to be set selecting the interfaces node “COM_1”. They are common for both
operating modes client and server.

The parameter “Data bits” always has to be set to “8” for Modbus.

Server specific parameters to be set selecting the protocol’s node “Modbus_RTU_Server”.

“Address”

Bus address of the PLC as Modbus RTU Server on that interface
“Byte Order ”

Serial

Modbus RTU
server

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1589

Format/Endianess for the transmission of WORD values (register) within the request/response
telegram (default: Big Endian)
“Disable”

Parameter Default Value Description
Disable write to %MB from 0 0 ... 65535 Disable write access starting at

%MBx

Disable write to %MB to 0 0 ... 65535 Disable write access up to %MBx

Disable read from %MB
from

0 0 ... 65535 Disable read access starting at
%MBx

Disable read from %MBx
to

0 0 ... 65535 Disable read access up at %MBx

It is possible to disable read and/or write access to individual segments. Reading/writing is
disabled beginning at the set start address and is valid up to the set end address (inclusive).

“Modbus RTU Client” does not have any protocol parameters.

6.3.2.14.3 Configuring CAA SerialCom on serial interface
Enable CAA_SerialCom

The “CAA SerialCom” protocol is the serial standard protocol from CODESYS. It allows users to
implement a custom protocol.

How to implement a serial communication for ASCII code via RS232 or RS485 within a AC500
V3 or AC500-eCo V3 PLC is described in an application example. The described implemen-
tation is based on the AC500_Com library which implements the CAA SerialCom library to
establish a connection via the COM interfaces.

When creating a new project, the protocol “CAA SerialCom” is automatically attached to the
“COM_1” port of a V3 PLC.

Modbus RTU
client

Default setting

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1590

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011149&LanguageCode=en&DocumentPartId=&Action=Launch

Right-click on the node attached to “COM_1” node in the device tree and click “Delete”.

ð The node is switched back to the “CAA SerialCom” protocol.

Since “CAA SerialCom” doesn’t represent a “real” protocol, there are no specific parameters
required. All common settings can be found at the “COM_1” tab after double-click on the
“COM_1” node.
Ä Chapter 6.3.2.14.1 “Setting up a serial interface” on page 1587

Activate particular configuration parameters
The parameters set up in the Automation Builder device tree are NOT automatically taken over
in the PLC.
It is still required to use the “3S IEC POUs” to activate the particular configuration parameters.

Switch to
default setting

Parameters

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1591

ABB provides the library AC500_Com (“ABB - AC500 / Use Cases / Serial Communication)”
which contains a POU called “ComGetCaaSerialComConfig”.
The function block can be used to obtain the configuration data which is set up in Automation
Builder to directly pass it to “CAA SerialCom-POU Open”. This avoids manual creation of a
parameter list.
The following code snippet shows how the COM port is identified by its node name and how the
parameter list for the function block is read from the configuration data of the currently loaded
IEC application:
FUNCTION_BLOCK GET_CAA_COM_CFG
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR

 ComGetCaaSerialComConfig: ComGetCaaSerialComConfig;
 bExecGetCfg: BOOL := FALSE;
 bDoneGetCfg: BOOL := FALSE;
 bErrorGetCfg: BOOL := FALSE;
 bBusyGetCfg: BOOL := FALSE;
 ErrorIdGetCfg: AC500_Com.ERROR_ID :=
AC500_Com.ERROR_ID.NO_ERROR;
 asParamList: ARRAY[0..31] OF
AC500_Com.Serial_Communication.COM.PARAMETER;
 uiNumParams: UINT := 32;

 uiStep: UINT := 0;
 szNodeName: STRING(80) := 'COM1';
 ComID: AC500_Com.COM_PORT_ID;
 bSuccess: BOOL := FALSE;
 bError: BOOL := FALSE;
END_VAR

VAR CONSTANT

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1592

 STEP_INIT: UINT := 0;
 STEP_GET_ID: UINT := 1;
 STEP_FAILED_GET_ID: UINT := NOT STEP_GET_ID;
 STEP_GET_CFG_CAA: UINT := (STEP_GET_ID + 1);
 STEP_FAILED_GET_CFG_CAA: UINT := NOT STEP_GET_CFG_CAA;
 STEP_DONE_SUCCESS: UINT := (STEP_GET_CFG_CAA + 1);

END_VAR

IF uiStep = STEP_GET_ID THEN
 ComId := ComGetIdByName(szNodeName);
 IF ComId = AC500_Com.COM_PORT.COM_ID_INVALID THEN
 uiStep := STEP_FAILED_GET_ID;
 ELSE
 bExecGetCfg := TRUE;
 uiStep := STEP_GET_CFG_CAA;
 END_IF
END_IF

IF uiStep = STEP_GET_CFG_CAA THEN
 ComGetCaaSerialComConfig(
 Execute:= bExecGetCfg,
 Done=> bDoneGetCfg,
 Busy=> bBusyGetCfg,
 Error=> bErrorGetCfg,
 ComID:= ComID,
 pCaaParamList:= ADR(asParamList[0]),
 NumParams:= uiNumParams,
 ErrorID=> ErrorIdGetCfg);
 IF bDoneGetCfg THEN
 uiStep := STEP_DONE_SUCCESS;
 ELSIF bErrorGetCfg THEN
 uiStep := STEP_FAILED_GET_CFG_CAA;
 END_IF
END_IF

IF uiStep = STEP_DONE_SUCCESS THEN
 bSuccess := TRUE;
END_IF

IF uiStep = STEP_FAILED_GET_ID THEN
 bError := TRUE;
END_IF

IF uiStep = STEP_FAILED_GET_CFG_CAA THEN
 bError := TRUE;
END_IF

6.3.2.15 Gateway configuration
1. In the Automation Builder project, right-click the topmost PLC tree node and select

“Communication Settings”.

ð The dialog window “Communication Settings” appears.

2. Click “Advanced Settings” to open the dialog Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communica-
tion Settings'” on page 2427.

ð This information will be stored in the project file.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1593

3. Click “Gateway” and select the desired action from the “Gateway” menu either to change
the local gateway Ä Chapter 6.4.1.21.3.19.2 “Command 'Configure the Local Gateway'”
on page 2721 or to add a new gateway channel Ä Chapter 6.4.1.21.3.19.1 “Command
'Add New Gateway'” on page 2720.
Confirm your settings with [OK].

6.3.2.15.1 Gateway settings on windows server
To allow multiple concurrent users from different user sessions on the server to connect to
PLCs, the user has to run CODESYS gateway as a system service. This is managed by a
service called "CoDeSys V2.3 Gateway Service Wrapper". The service starts on system start-up
and launch the gateway.
If you want to restart the gateway, use "Services management console" to restart "CoDeSys
V2.3 Gateway Service Wrapper".
This executable is installed only on a windows server system and a related service (CoDeSys
V2.3 Gateway Service Wrapper) is created and started.
For V3 PLC the V3 gateway always runs as a service on windows servers and also on other
Windows OS variants (e.g. Windows 10).

You can set the communication settings in the Automation Builder project for every PLC. Other-
wise, an error message is displayed while trying to open CODESYS.
See the description for Gateway configuration and select "TCP/IP" under
“Connection”Ä Chapter 6.3.2.15 “Gateway configuration” on page 1593.

Windows server usage in Automation Builder requires modifications of the system environment
and of the settings in Automation Builder, e.g. permissions, licensing, session handling etc.
How to setup system and software for Windows server is described in the application note
Windows Server 2016 - RDM access.

6.3.2.16 CAN onboard
6.3.2.16.1 CANopen
General

In Automation Builder, a CANopen network consists of one CANopen manager which acts as
master device and optional CANopen remote devices which act as slave devices.

CANopen manager (master)
General

Tab 'CANopen Manager - General'
Table 305: “General”
“Node-ID” The node number identifies the CANopen Manager as unique (range of values:

1...127).

“Check and Fix Configuration” Opens the dialog of the same name. See below for details.

Gateway as a
service

Gateway set-
tings

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1594

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010656&LanguageCode=en&DocumentPartId=&Action=Launch

“Autostart CANopen Manager” : The CANopen Manager starts automatically (switches to OPERATIONAL
mode) after all required slaves are ready.

: The CANopen Manager has to be started from the application. The function
block CiA405.NMT can be used to do this.

Hint: As long as the CANopen Manager is not in OPERATIONAL mode, no
PDOs are sent (outputs refreshed).

“Polling of optional slaves” : When a slave does not respond during the boot sequence, the CANopen
Manager interrogates it every second until it does respond.
Constantly polling the slave increases the bus cycle time, which can interfere
with the application (especially motion applications). You can deactivate polling
to avoid this behavior. If polling is deactivated, then a slave is detected again
when it sends a bootup message.

“Start slaves” : The CANopen Manager is responsible for starting the slaves.

: You have to start the slaves from the application. Use the CiA405 NMT
function block to do this.

“NMT start all (if possible)” : If the “Start slaves” option is activated, then the CANopen Manager starts
all slaves with an "NMT Start All" command. The "NMT Start All" command is
not executed as long as optional slaves are not yet ready to be started. In this
case, the CANopen Manager starts each slave individually. The "NMT Start All"
command can be guaranteed only in a project without optional slaves.

“NMT error behavior” ● “Restart slave”. If an error occurs during slave monitoring (NMT Error Event),
then the slave is restarted automatically by the stack (NMT Reset + SDO
Configuration + NMT Start).

● “Stop slave”. If an error occurs during slave monitoring (NMT Error Event),
then the slave is stopped. Then you have to reset the slave from the applica-
tion, using the CiA405 NMT function block.

Table 306: “Guarding”
Working with heartbeat messages is an alternative method of monitoring. It can be executed from both master
and slave nodes, as opposed to node guarding. Normally the master sends heartbeat messages to the slaves.

“Enable heartbeat producing” The master sends heartbeats. They define the time interval in the “Producer
time”. When the slaves are provided with the heartbeat function, a heartbeat
consuming entry from the slave is created for the master. Then the Node-ID and
the 1.5x heartbeat interval of the master are applied.

: Node guarding is enabled for the slaves. The settings from the EDS file of
the slaves are used for this. If the values there cannot be used, then default
values are used. Note that a CANopen Slave device can also be configured as a
heartbeat producer.

“Node-ID” Unique identification (1-127) of the heartbeat producer on the bus

“Producer time (ms)” Interval length between successive heartbeats (in milliseconds)

“Redundancy Node-ID” Requirement: A “Redundancy Configuration” object is inserted below the appli-
cation.
Unique identification (1-127) of the redundant heartbeat producer on the bus

“Redundancy wait time (µs)” Requirement: A “Redundancy Configuration” object is inserted below the appli-
cation.
Duration of how long the passive controller waits for the heartbeat of the active
controller. If this time is exceeded, then the passive controller takes on the active
role.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1595

Table 307: “SYNC”
“Enable SYNC producing” : The CANopen manager sends SYNC telegrams (disabled by default)

The synchronous PDOs are sent directly after the SYNC telegram.

“COB-ID (Hex)” CAN-ID of the SYNC telegram. Range of possible values: [1...2047].

“Cycle period (µs)” Interval length (in microseconds) after which the SYNC telegram is sent

“Window length (µs)” Length of the time frame for synchronous PDOs (in microseconds)

“Enable SYNC consuming” : (disabled by default). Another device must produce the SYNC telegrams that
are received by the CANopen Manager.

NOTICE!
If SYNC producing is enabled for the CANopen manager, then you are not per-
mitted to select the “Enable SYNC producing” option for all other bus devices.

Table 308: “TIME”
“Enable TIME producing” : (disabled by default). The CANopen Manager sends TIME messages.

“COB-ID (Hex)” (Communication Object Identifier): identifies the time stamp of the message.
Default values: [0...2047], preset 16#100

“Producer time (ms)”: Interval (in milliseconds) when the time stamp is sent. This value has to be a
multiple of the task cycle time. Possible values [0, 65535]

The run time has to support high resolution timestamps. If not, then an error
message is displayed.

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594
● Ä Chapter 6.3.2.16.1.3.2 “Tab 'CANopen Remote Device - General'” on page 1597

If you insert several devices below the CANopen manager, then error messages may report
multiple assigned Node-IDs or invalid COB-IDs. The “Check and Fix Configuration” button
opens a dialog for solving these conflicts.
For conflicts with Node-IDs or PDO COB-IDs, you can click “Edit Conflicts” to open a dialog with
detailed information.

Table 309: “Node-ID and COB-ID conflicts”
“Doubled node number” List of all devices with identical IDs. In the field of the “Node-ID” column, you can

enter new node numbers for the affected devices.

“Incorrect and double
assignment of PDO COB-IDs”

The COB-IDs that are generated automatically from the device description files
may not be permitted. All incorrect entries are listed with the respective device
names, Node-IDs, and indexes. There are three options for correcting invalid
COB-IDs:
● Correct the displayed formula for calculating the COB-IDs so that a valid

COB-ID results. You can change the formula in the respective table element.
● Accept the automatic suggestion for the COB-ID by clicking the respective

button.
● Accept all automatic suggestions by clicking the “Use Suggested COB-ID”

button.

Corrected entries are removed from the displayed list automatically.

Dialog 'Check
and Fix Configu-
ration'

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1596

You can solve timing problems automatically by using the “Automatic Repair”. The command
modifies all timing values to compatible values. (The time should be a multiple of the task time.)

CANopen remote device (slave)
General

In CODESYS, a CANopen Remote Device is a slave device that you insert below a CANopen
Manager in the device tree of a project. A distinction is made between modular and non-mod-
ular slaves:
● Modular slaves: You can insert CANopen modules (submodules) below a modular slave.

These modules provide a “I/O Mapping” tab to map their inputs and outputs. Modular slaves
can also have fixed I/Os. Then these devices also provide the “I/O Mapping” tab. Modular
devices provide the “Configure PDO mapping automatically” option, which we recommend
for standard applications. You find this option in the “CANopen Remote Device” dialog, on
the “General” tab.

● Non-modular slaves: You cannot insert additional modules below a non-modular device.
The inputs and outputs of these devices are mapped in the “I/O Mapping” dialog. Automatic
mapping is not possible here.

See also
● Ä Chapter 6.3.2.16.1.3.2 “Tab 'CANopen Remote Device - General'” on page 1597

Tab 'CANopen Remote Device - General'
The general settings of the CANopen Slave are defined in this dialog of a CANopen Remote
Device (slave).

Table 310: “General”
“Node-ID” The node number identifies the CANopen Remote Device uniquely. It corre-

sponds to the number (value between 1 and 127) set on the device (hardware).
You have to provide the Node-ID as a decimal.

“Expert settings” : All settings are displayed that are predefined by the device description (EDS
file) for the device.

“SDO channels (...)” Click this button to open a dialog for activating the SDO channels that are prede-
fined in the EDS file. Service data objects (SDOs) allow access to all entries in
the CANopen object directory. An SDO creates a peer-to-peer communication
channel between two devices (SDO server and client channel).

“Optional device” : The slave is optional and not required for starting the CAN network.

“Sync producing” Available only when the “Enable sync producing” option is cleared in the
CANopen Manager.

: The I/O transmission is synchronized on the bus. The slave works as a sync
producer. The parameters of the sync interval are defined in the settings of the
CANopen Manager.

“No initialization” This option is for non-configurable slave that already start with a valid configura-
tion.

: The master does not send configuration SDOs or NMT start commands to
the slave. PDO communication and monitoring (heartbeat, node guarding) are
performed when this has been configured in the configurator.
If the slave does not start automatically, then the user can use the CiA405 NMT
function block to send an NMT start command to the slave.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1597

“Default settings” The availability of this option depends on the contents of the device description
file.

: Activated by default. The slave nodes are reset to the default parameters
before the configuration is loaded to the device or always when the slave is
configured. Which parameters can be set is device-specific. The concrete task is
performed from the subindex of the list box.
● “Sub:001”: All parameters are reset.
● “Sub:002”: Communication parameters (index 1000h - 1FFFh manufacturer-

specific communication parameters) are reset.
● “Sub:003”: Application parameters (index 6000h - 9FFFh manufacturer-spe-

cific application parameters) are reset.
● “Sub:004” - “Sub:127”: Manufacturer-specific, individual selection of parame-

ters is reset.
● “ Sub:128” - “Sub254”: Reserved for future purposes

“Autoconfig PDO mapping”. This option is available for modular devices only.

 PDO mapping is generated automatically from the definitions in the device
description and then cannot be changed in the two mapping dialogs. If the
automatically generated mapping does not match your application, then you can
deactivate the option and configure the mapping manually. We recommend that
this option is activated for standard applications.

Table 311: “Node Guarding”
Node guarding is an outdated monitoring method and should not be used anymore because is uses RTR frames.
You should always use heartbeats whenever possible. In some exceptions, such as for older slaves, you can use
only node guarding.

“Enable node guarding” : The CANopen Manager sends a message to the slave in the “Guard time
(ms)” interval. If the slave does not respond with the given “Guard COB-ID”
(Communication Object Identifier), then the CANopen Manager resends this
message as many times as defined in “Lifetime factor” or until the slave
responds.
If the slave does not respond, then it is marked as "unavailable".

“Guard time (ms)” Interval for sending messages (default: 200 ms)

“Lifetime factor” When the slave does not respond, a node-guarding error is established
according to the “Lifetime factor” time multiplied by the “Guard time”.

“Enable heartbeat producing” : The module sends heartbeats in the time intervals as given in “Producer time
(ms)”.

“Producer time (ms)”: The default setting is 200 as long as there is no special entry or the entry in the
device description file is 0.

“Heartbeat consuming (...)” Opens a “Heartbeat Consuming Properties” dialog. There you activate the slaves
that you want to watch.
The number of possible slaves to be monitored is defined in the EDS file. To do
this, you must select the "Enable" check box and enter the Node-ID of the slave
and the required values in the “Heartbeat time” field (in milliseconds). Then the
slave monitors the heartbeats that are sent from the affected slaves (defined by
the Node-ID). When no more heartbeats are received, the slave switches off the
I/Os.
When a slave is monitoring, a green check mark is displayed on the “Heartbeat
Consuming” button.
Note: When you insert a device with the heartbeat function, its heartbeat settings
are harmonized automatically with the master (CANopen Manager).

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1598

Table 312: “Emergency”
“Activate Emergency” : When internal errors occur, the slave sends emergency messages with a

unique COB-ID. You can read these messages by using the function blocks from
the library CAA Can Low Level Extern (RECV_EMCY_DEF, RECV_EMCY).

“COB-ID” CAN ID of the EMCY message. Range of possible values: [1...2047].

Table 313: “TIME”
The availability of this function depends on the device description.

“Enable TIME producing” : The device sends TIME messages.

“COB-ID (Hex)” (Communication Object Identifier): identifies the time stamp of the message.

“Enable TIME consuming” : The device processes TIME messages.

Table 314: “Checks at Startup”
The respective information is read from the firmware of the CANopen Slave (0x1018 identity object) and com-
pared to the information from the EDS file. In case of disparities, the configuration is stopped and the slaves are
not started.

“Vendor ID” : Check of the vendor ID at startup

“Product number” : Check of the product number at startup

“Revision number” : Check of the revision number at startup

See also
● Ä Chapter 6.3.2.16.1.2.2 “Tab 'CANopen Manager - General'” on page 1594
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

Tab 'CANopen Device - PDOs'
Object: CANopen Remote Device, CANopen Local Device
This dialog is available only in the device editor of a CANopen Slave of version V3.5.6.0 or
higher. It shows all PDOs and their default settings. In this dialog, you can add new objects and
delete or edit existing objects.
On the left side, there are the PDOs that the slave receives from the master. On the right side,
there are the PDOs that the slave sends to the master.

“Add PDO” Opens the “Select PDO” dialog where all available PDOs are displayed. In this
dialog, you select the PDOs to be added to “Receive PDOs” or “Transmit PDOs”.

“Add Mapping” Opens the “Select Item from Object Directory” dialog. Objects are listed there
that you can add to the PDO mapping.

“Edit” When a PDO is selected, the “PDO Properties” dialog opens.
When a PDO mapping is selected, the “Select Item from Object Directory” dialog
opens.

“Delete” Deletes the selected objects from the list

“Move Up” Moves the selected object upwards by one line.

“Move Down” Moves the selected object downwards by one line.

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1599

“COB-ID” Every PDO message must have a COB-ID (Communication Object Identi-
fier). You can input explicit values (example: 16#201) or formulas (example:
$NODEID+16#200).

“RTR” Remote Transmission Request. This option is available for transmit PDOs only.

 You can use an RTR frame for interrogating the PDO externally.

“Inhibit time (x 100µs)” You can edit this field only if the device supports this functionality. The inhibit
time is the minimum time between two messages of a specific PDO. You can
use this setting for preventing PDOs from being sent too often when their values
are edited. Default: "0". Possible values: 0–65535.

“Transmission type” ● “Acyclic - synchronous”: When a change is made, the PDO is transmitted
synchronously, but not periodically. (default)

● “Cyclic - synchronous”: The PDO is transmitted every nth sync.
● “Synchronous – only RTR”: Available for transmit PDOs only. After a syn-

chronization message, the PDO is updated, but not transmitted. Transmis-
sion is by explicit request only (Remote Transmission Request).

● “Asynchronous – only RTR”: Available for transmit PDOs only. The PDO
is updated and transmitted by explicit request only (Remote Transmission
Request).

● “Asynchronous – manufacturer specific”: The PDO is transmitted only after
specific events.

● “Asynchronous – device profile”: The PDO is transmitted according to the
CiA device profile.

“Number of syncs” For transmission type “Cyclic - synchronous” only.
Indicate the interval for transmitting the PDOs. The value is a multiple of the
“Cycle period (µs)” of the CANopen Manager. Default: 1. Possible values: 1–240.
Example: Number of syncs = 4, Cycle Period = 1000 µs à transmission interval
= 4000 µs

“Event time (x 1ms)” Only for transmission types “Asynchronous - manufacturer specific” and
“Asynchronous - device profile”.
You can edit this field only if the device supports this functionality. Indicate the
time span that should be between two PDO transmissions PDOs (in millisec-
onds). Default: "0". Possible values: 0–65535.

“Processing by CANopen
Manager”

: Default settings

: The CANopen Manager does not process the PDO any longer. It is no longer
transmitted or received.

For modular slave, you have to clear the “Autoconfig PDO mapping” option to be able to
configure the mapping manually.
The table shows all object directory entries from the EDS file of the device. For receive PDOs,
CODESYS provides only the objects here with write permission (flag = w); for transmit PDOs,
read permission.

“Name” COB-ID of the PDO or the name of the mapped object as it is used in the device
description and in the object directory.

“Index” Index of the object

“Subindex” Subindex of the object

Dialog 'PDO
Properties'

Dialog 'Select
Item from
Object Direc-
tory'

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1600

“Access type” ● “RW”: Read/Write
● “RO”: Read Only
● “WO”: Write Only
● “RWW”: Read/Write per SDO; write permission per PDO (==> RxPDO,

output from the master viewpoint, input from point of view of the slave).
● “RWR”: Read/Write per SDO; read permission per PDO (==> TxPDO, input

from the master viewpoint, output from the point of view of the slave).
● CONST=constant

“Type” Data type of the object

“Default value” Default value of the object

“Bit length” Length of the object

Tab 'CANopen Remote Device - SDOs'
During the initialization of the CAN bus, CODESYS transmits the current configuration settings
by using SDOs (service data objects).
On this tab, you configure the necessary SDOs. You configure the necessary SDOs and deter-
mine the transmission order of the objects and the actions taken in case of a transmission error.
The object order in this list corresponds to the transmission order of SDOs to the module.

NOTICE!
If the “Expert settings” option is not activated for the current device, then only
the user-defined SDOs are shown here.

“Add SDO” Opens the “Select Item from Object Directory” dialog where all available SDOs
are displayed. The selected object is inserted after the selected object.

“Edit” Opens the “Select Item from Object Directory” dialog and marks the corre-
sponding object. You can modify the object parameters or replace the object
with another one.

“Delete” Deletes the selected objects from the list

“Move Up” Moves the selected object upwards by one line.

“Move Down” Moves the selected object downwards by one line.

“Abort on Error” : If an error is detected for this SDO, then the stack stops the configuration
phase of the current slave. The slave remains in PREOPERATIONAL mode.

“Jump to Line on Error” : The transmission is continued with the SDO that you indicated in the “Next
Line” column.

“Next Line” Line number where processing continues if there an error is detected

“SDO Timeout (ms)” Timeout for the SDO transmission. If the slave does not respond to the SDO
request within this time, then the transmission is canceled with a timeout.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1601

“Create all SDOs” : Creates an SDO for all writable objects starting at index 16#2000 for which a
default value is given in the EDS. Only experts should use this option. It should
be deactivated for standard use.

“Write complete PDO
configuration”

: This option forces the writing of all PDO configuration objects. In this way,
you make sure that the settings in the project correspond to those of the slave.

: PDOs are not deactivated explicitly. The requirement is that the “Default
settings” option is activated in the common settings of the slave and the PDOs
are also deactivated in the EDS. If the default values in the EDS do not match
the default settings of the slave firmware, then this procedure may cause prob-
lems. In this case, you should activate this option.

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

The table shows all object directory entries from the device EDS file for each SDO that are
writable and not larger than 4 bytes. Before you add an SDO for selection in the SDO dialog,
you can modify its parameters in the fields below the table. In this way, you can also created an
SDO that is not writable in the EDS file by entering a new index/subindex value.

“Name” COB-ID of the PDO or the name of the mapped object as it is used in the device
description and in the object directory.

“Index” Index of the object

“Subindex” Subindex of the object

“Access type” ● “RW”: Read/Write
● “WO”: Write Only
● “RWW”: Read/Write per SDO; write permission per PDO (==> RPDO, output

from the master viewpoint, input from point of view of the slave).
● “RWR”: Read/Write per SDO; read permission per PDO (==> TPDO, input

from the master viewpoint, output from the point of view of the slave).

“Type” Data type of the object

“Default value” Default value of the object

“Bit length” Length of the object

“Value”

CANopen module
CANopen modules are components that you insert below a CANopen remote device.

6.3.2.16.2 J1939
General

J1939 is a CAN-based protocol (CAN stands for "Controller Area Network"). It was developed
for serial data transmission between electronic control units (ECU) in heavy goods vehicles. The
CODESYS plug-in 'DeviceEditorJ1939' provides dialogs to configure J1939 devices according
to SAE J1939 standards.
See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

Dialog 'Select
Item from
Object Direc-
tory'

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1602

Bus Cycle Task

(1) Receive single package PG (4) Receive multi-package
PGs, send PGs
See also
● Tab '<device name> I/O Mapping'

J1939 manager
General

The J1939 Manager is inserted in the device tree below the CAN bus node. It provides the
J1939 parameter groups and signal database. The ECUs are inserted below the J1939 Man-
ager.
The “Scan Devices” command is not available for J1939.

Behavior of the
bus cycle for
J1939

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1603

ms-its:codesys.chm::/_cds_edt_device_io_mapping.htm

(1) CANopen Manager (2): J1939 Manager (3) J1939 ECU
See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594
● Ä Chapter 6.3.2.16.2.3.2 “Tab 'J1939 Manager - General'” on page 1604

Tab 'J1939 Manager - General'

In CODESYS version 3.5 SP17 and CODESYS J1939 Manager SL version
4.0.0.0, the J1939 configurator is no longer supplied with a parameter group /
signal database. The old database is no longer supported.

However, you can post-install a DBC database in the J1939 Manager.
A database can be purchased, for example from CSS Electronics:
https://www.csselectronics.com/screen/product/j1939-dbc-file-pgn-spn

If you do not install a database, then you can also configure parameter groups
and signals manually on the “User-Defined” tab.

“Databases” List with names of installed databases (DBC or DB format)

“Install” Opens the file manager to select a J1939 file (DBC or DB format). The J1939
files are usually stored in "C:\ProgramData\CODESYS\J1939 Databases".

“Uninstall” Uninstalls the selected database

“Set as default” Sets a database as the default database. This database is then set as default in
the “Add Parameter Group” and “Add Signal” dialogs.

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

J1939 ECU
6.3.2.16.2.4.1 Tab 'J1939 ECU - General'.. 1604
6.3.2.16.2.4.2 Tab 'J1939 ECU - TX Signals'... 1605
6.3.2.16.2.4.3 Tab 'J1939 ECU - P2P RX Signals'... 1607

Tab 'J1939 ECU - General'
In this dialog of the J1939 ECU editor, the general parameters of a J1939 ECU can be dis-
played and modified.

Table 315: “General”
“Preferred address” Address of the ECU. If more than one ECU with the same address exists in the

network, then all affected ECUs get a new address. The requirement is that the
ECUs allow an address change (“Arbitrary Address Capable”).

“Local Device” You can configure any number of local ECUs. Then every local ECU is its
own ECU instance in the J1939 network. For local devices, an additional “RX
Signals (P2P)” dialog is provided to configure received signals.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1604

https://www.csselectronics.com/screen/product/j1939-dbc-file-pgn-spn

Table 316: “ECU NAME”
“NAME (64 bit): 16#” Hexadecimal 64-bit code that contains complete information about the subse-

quent parameters. Each time this code is modified, the respective parameter is
also modified. The same is true for the other direction.

“Arbitrary address capable” If the ECU detects an address conflict, then it tries independently to set
another address.

“Industry group” List of industry groups according to the definition from SAE J1939.

“Vehicle system instance” The parameter depends on the “Vehicle system”. The 4-bit value assigns a
number to each instance of the “Vehicle system”.

“Vehicle system” The value is defined in the SAE J1939 standard.

“Reserved” Always deactivated and reserved for future SAE definitions.

“Function” The parameter is defined and assigned by SAE. The range of values is 0...255,
but not all values are assigned.
The interpretation of values, which are greater than or equal to 127, depends on
the “Industry” selection. For example, the value "133" means "Product Flow" in
the "Agricultural and Forestry Equipment" industry. If "Construction Equipment"
is selected for “Industry”, then the same value means "Land Leveling System
Display".
If the value is less than 128 (0 – 127), then there is no dependency to other
parameters.

“Function instance” The parameter is related to the “Function” field. A J1939 network can consist of
multiple ECUs with the same “Function”. The 5-bit “Function instance” assigns
a number to each instance of the “Function”, where 0 is assigned to the first
instance.

“ECU instance” A J1939 network can include multiple ECUs that have the same task. For
example, a vehicle can have two identical ECUs, where one measures vehicle
speed and the other measures the trailer speed.

“Manufacturer code” The 11-bit manufacturer code is assigned by SAE and indicates the company
that manufactured the ECU. This code is defined in the SAE J1939 document.

“Identity number” The 21-bit identity number is assigned by the manufacturer and should be used
for assuring unique names in a product line. The manufacturer can also add
more information to the identity number, such as serial number and date of
manufacture.

Table 317: “Communication Watchdog”
“Enable communication
watchdog”

 The stack checks whether the ECU transmits data within the given “Watchdog
time”. If this does not happen, then the device is classified as "not available" and
highlighted in red in the device tree.

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

Tab 'J1939 ECU - TX Signals'
This dialog shows the parameter groups that are transmitted to all other ECUs (broadcast) or
to a specific ECU (P2P). In this dialog, you can activate and deactivate individual groups and
modify their parameters. You can also add new groups or signals to the list.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1605

“Enable” : The parameter group is transmitted.

 The parameter group is not transmitted for a local device. For a remote
device, the PLC does not process this group.

“Type” ● “Broadcast”: The parameter group is transmitted to all ECUs.
● “Peer-to-Peer P2P”: The parameter group is transmitted to a specific ECU.

“Add PG” Opens the “Add Parameter Groups” dialog.

“Add Signal” Opens the “Add Signal” dialog. The button is enabled only if you have selected a
parameter group.

Table 318: “General”
“PGN” The "parameter group number" is a unique number for addressing a parameter

group.

“Name” Name of the parameter group

“Description” Description of the parameter group

“Length” The length of the message data (0...1785 bytes). Due to the maximum array
length of 8 bytes, messages with over 8 bytes are transmitted as multipackages.

Table 319: “Transmission settings”
These settings are provided only for the TX parameter groups of local devices.

“Priority” Priority of the parameter group (0..7). Priority 0 is the highest and 7 is the lowest.

“Target address” The target address is needed for P2P parameter groups only.

“Transmission mode” Determines the time when a parameter group is transmitted (for local devices).
● “Mode change”: The PG is transmitted when the value of the signal changes.
● “Cyclic”: The PG is transmitted after a specified number of PLC cycles (see

cycle time factor).
● “On request”: The PG is transmitted on request of another device.
● “Application-controlled”: The PG is transmitted when triggered by the appli-

cation.

“Cycle time factor” Number of PLC cycles after which the parameter group is transmitted.
Only applies for cyclic transmission.

Table 320: “General”
“SPN” Suspect Parameter Number. One of the numbers assigned by the SAE for a

specific parameter in a parameter group.

“Name” Name of the parameter

“Description” Description of the parameters

“Length (bits)” Length of the signal (in bits: 1...14280).

“Byte position (0..1784)” Start byte in the parameter group (0...1784).

“Bit position (0..7)” Bit position of the start byte (0..7).

Parameter
group proper-
ties

Signal parame-
ters

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1606

Table 321: “Conversion”
“Conversion” TRUE: The value is calculated with scaling and offset.

“RAW data type” Format of the raw data: Unsigned / Signed / Float / Double

“Byte order” Little endian or big endian of the raw signal

“Scaling” Factor (for “Conversion” =TRUE)

“Offset” Offset (for “Conversion” =TRUE)

“Minimum value” Expected minimum value of the converted signal (for informational purposes
only)

“Maximum value” Expected maximum value of the converted signal (for informational purposes
only)

“Unit” Unit of the converted signal

“ICE data type” Resulting data type of the I/O channels

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

Tab 'J1939 ECU - P2P RX Signals'
This dialog is available for local ECUs only. It shows all PGs (parameter groups) that should be
received by other ECUs. In this dialog, individual groups can be activated and deactivated as
well as their parameters modified. New groups or signals can also be added to the list.
The commands and parameters of this dialog are the same as those on the “TX Signals” tab.
See also
● Ä Chapter 6.3.2.16.2.4.2 “Tab 'J1939 ECU - TX Signals'” on page 1605

6.3.2.16.3 Command 'Scan for Devices'
Function: The command establishes a brief connection to the hardware and determines the
devices in the network. Then you can apply the devices found into the device tree of your
project.
Call: Menu bar: “Project”; context menu of a device object in the device tree
Requirement: The communication settings to the controller are correct. The gateway and the
PLC are started. The device supports the scan function.
The following devices provide the scan function: EtherCAT master, EtherNet/IP Scanner
(IEC), Sercos master, CANopen Manager, CANopen Manager SIL2, PROFINET controller and
PROFIBUS DP master.

You can perform the device scan immediately if the scan function is perma-
nently implemented in the PLC. When scan function is implemented in a library,
you have to log in only one time to download the library to the controller.

The command refers to the master controller selected in the device tree. For example, an
already inserted PROFINET IO controller can be selected and the command used to determine
the I/O devices and I/O modules assigned to it.
After performing the scan operation, the “Scan Devices” dialog opens and displays the found
devices.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1607

Table 322: “Scanned Devices”
“Device name, Device type,
Address, Station name, etc.”

Data about the scanned device depending on network type.
When you change a value in the list of scanned devices, the value is shown
in italics. This indicates that the new value has been changed in the editor in
CODESYS, but not in the device. When you download the value to the device, it
is shown normally.
Value that indicate differences between the project and the scanned device are
shown in orange.
If multiple device descriptions are available for the scanned device, then the
name is displayed in bold. The selection of the matching device description is
resolved differently for different fieldbuses. For more detailed information, see
the corresponding fieldbus chapters.
If a device description cannot be found, then the following message is shown:
"Attention! The device was not found in the repository." Depending on the bus
system, additional information is displayed, such as manufacturer number and
product number. The device cannot be inserted into the project without the
installed device description.

“Show differences to project” : The table in the dialog also shows additional configured devices (in the
device tree of the project).

: The table shows all scanned devices. The configured devices are not shown.

“Scan for Devices” Starts a new search.

“Copy All Devices to Project” The device that is selected in the table is inserted into the device tree in the
project. If nothing is selected, then all scanned devices are shown.

NOTICE!
If you insert devices, which are available in the device tree, to the device tree
with “Copy All Devices to Project”, then the following should be noted. The data
of the “Process Data” and “<...> I/O Mapping” tabs of the existing devices can
be overwritten with the data of the recently inserted devices.

Table 323: “Configured Devices”
This part of the dialog is visible only when you select the “Show differences to project” option.
Differences between the scanned and configured devices are color-coded. Devices displayed in green are iden-
tical on both sides. Devices displayed in red are available only in the view of the scanned or configured devices.

If you have selected a device in both views, then the scanned devices are
inserted above the selected configured device.

If you have selected a device in both views, then the scanned devices are
inserted below the selected configured device.

If you have selected a device in both views, then the configured devices are
replaced by the selected scanned device.

All scanned devices are copied to the project.

Deletes the selected configured device.

Dialog 'Scan
Devices'

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1608

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

6.3.2.16.4 Tab 'CANbus - General'
Table 324: “General”
“Network” Number of the CAN network that is linked via the CAN bus interface. Permitted

values: 0 to 100.

“Baud rate” Baud rate (in bits per second) for transmitting data on the bus. The default value
is used from the device description file (*.devdesc) of the CAN bus device. You
can select the baud rate from the list box or type it directly into the input field.

See also
● Ä Chapter 6.3.2.16 “CAN onboard” on page 1594

6.3.2.17 EtherCAT configurator
6.3.2.17.1 General

Onboard EtherCAT support is currently limited to AC500-eCo PM5072-ETH and
PM5082-ETH. It is not supported by any other AC500 PLC.

Two alternatives are available for using EtherCAT:

– Onboard EtherCAT for the AC500-eCo
– EtherCAT for the AC500 with the CM579 communication module

Further information can be found here:

Onboard EtherCAT

Ä EtherCAT configurator

Ä Communication schema onboard Ethernet/EtherCAT

Ä Motion Control

EtherCAT

Ä CM579-ETHCAT

Ä Communication schema onboard Ethernet/EtherCAT

Ä Motion Control

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1609

Refer to the general description for information about the following tabs of the
device editor.

– Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'”
on page 2444

– Ä Chapter 6.4.1.21.2.8.13 “Tab '<device name> IEC Objects'”
on page 2449

– Ä Chapter 6.4.1.21.2.8.4 “Tab 'Parameters'” on page 2433
– Ä Chapter 6.4.1.21.2.8.19 “Tab 'Status'” on page 2460
– Ä Chapter 6.4.1.21.2.8.20 “Tab 'Information'” on page 2460

Only in the case of special features is there an additional help page for the
specific device editor.

If the "<device name> Parameters" tab is not shown, then select the “Show
generic device configuration editors” option in the CODESYS options (“Device
Editor” category).

The configuration of EtherCAT modules is based on the device description files for the used
master and slave devices employed and can be adapted in the project in configuration dialogs.
In order to make sure that the simplest and most error-free use possible, we recommend for
standard applications that you enable the option for the “Automatic Configuration” of the master,
so that the majority of the configuration settings are dopne automatically.

The “Optional devices” function can be used for variable hardware configurations. At the start
of the stack, the system checks whether optional devices are available. If the devices are not
found, then they are deactivated automatically. However, the devices can also be activated at
a later date if, for example, it is a device at the end of the network line. On the other hand, if
the “Automatically restart slaves” option is selected, then the activated devices are automatically
switched to "operational", thereby activating the process data.

The bus cycle task is set in the general PLC settings.

Access to the EtherCAT configuration by the application takes place via instances of the
EtherCAT master and EtherCAT slave. If the EtherCAT master or EtherCAT slaves are inserted
as objects into a project, instances are automatically created for master and slaves which can
be addressed in the application program. For example a restart, a stop or a status check of the
EtherCAT device can be performed from the application.
Furthermore, the EtherCAT library offers function blocks for the reading and writing of individual
parameters, even during bus operation.
See also
● Ä Chapter 6.3.2.17.2.1 “Tab 'EtherCAT Master - General' ” on page 1610
● Ä Chapter 6.4.1.21.4.14.7 “Dialog 'Options' - 'Device Editor'” on page 2786
● Ä Chapter 6.4.1.21.2.8.10 “Tab 'PLC Settings'” on page 2439

6.3.2.17.2 EtherCAT master
Tab 'EtherCAT Master - General'

Object: EtherCAT Master
The tab is used for the configuration of the basic settings for the EtherCAT Master. The basic
settings are preset from the device description file.

Optional
devices

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1610

NOTICE!
The auto-configuration mode (“Autoconfig master/slaves” option) is selected by
default and is adequate for standard applications. If the mode is not selected,
then all configuration settings for the master and the slave(s) have to be done
manually. Expert knowledge is required to do this. The auto-configuration mode
option has to be switched off to configure slave-to-slave communication.

“Autoconfig master/slaves” The main part of the master and slave configuration is done automatically,
based on the device description file and implicit calculations. The dialog for the
FMMU/Sync settings is not available.
Even if this option of the master is selected, an expert mode can be enabled
explicitly for each individual slave, which allows for manual editing of the auto-
matically generated process data configuration.

Table 325: “EtherCAT NIC Settings”
“Target address (MAC)” MAC address of the device in the EtherCAT network that is to receive the

telegrams.
Options
● “Broadcast”: A “Target address (MAC)” does not have to be specified.
● “Redundancy”: Enabled when the bus is constructed in a ring topology and

redundancy is to be supported. With this function, the EtherCAT network
remains functional even in the case of a broken cable. When this function is
enabled, the parameters have to be defined in the “Redundancy EtherCAT
NIC Settings” area.

“Source address (MAC)” MAC address of the controller (target system) or network name (name of the
adapter or PLC (target system))

“Network name ” Name or MAC of the network, depending on which of the following options is
selected:

“Select network by MAC” : The network is specified by the MAC ID. Then the project cannot be used on
another device because each network adapter has a unique MAC ID.

“Select network by name” : Network is identified by the network name and the project is device-inde-
pendent.

“Scan” Scans the network for the MAC IDs or names of the target devices that are
currently available.

Table 326: “Redundancy EtherCAT NIC Settings”
These settings are displayed only when the “Redundancy” option is selected. Here the parameters of the addi-
tional device are defined according to the description for “EtherCAT NIC Settings”.

Settings of the
configuration
parameters

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1611

Table 327: “Distributed Clock”
“Cycle time (µs)” Time span after which a new data telegram is dispatched on the bus. When

the “Distributed Clock” function is enabled in the slave, the master cycle time
specified here is transferred to the slave clocks. As a result, a precise synchro-
nization of the data exchange can be achieved. This is particularly important
when spatially distributed processes require simultaneous actions. An example
of a simultaneous action is applications in which multiple axes have to execute
coordinated movements at the same time. A very precise, network-wide time
base with a jitter of considerably less than 1 microsecond can be achieved in this
way.

“Sync offset” Parameter for setting the delay time between the DC time base of the EtherCAT
Slave and the cycle start of the PLC. The default value is 20%. This time is
active at the same time for all slaves with DC. An offset of 20% means that the
timer interrupt in the EtherCAT Slave takes place 20% before the next IEC cycle.
This means in the case of
● FrameAtTaskStart = FALSE when the EtherCAT data is sent at the end of

the PLC cycle:
The PLC cycle may require 80% of the bus cycle time minus the delay time
in the runtime, and this without the master no longer placing the current
process data on the bus in time (assuming that the EtherCAT Slave expects
the new data exactly with the sync interrupt).

● FrameAtTaskStart = TRUE (default value when using CODESYS SoftMo-
tion):
For the controller program, nearly 100% of the cycle is always available.
Here the “Sync offset” determines only when the EtherCAT data of the
master is exchanged to and from the slaves relative to the time base of
the EtherCAT Slave.

If DC is active at the corresponding slave, then the default settings come from
the respective ESI file. The device manufacturer can define additional offsets
here in the form of the Shift time for both Sync 0 and Sync 1 timer interrupts.
When the expert setting is enabled at the slave, these times can be changed
manually. The Shift time is entered into the register 0x990 as an additional start
time. A positive value means that the start takes place later and therefore the
sync interrupt is executed later.
IMPORTANT It must be prevented at all costs that the sync interrupt takes place
near the time of the IEC cycle because otherwise no data can exist for one
cycle and devices go into synchronization error. Both offsets from the master
and the individual offset of each slave have to be considered for this. With the
normal setting of 20% offset for the master and 0% for the slaves, the jitter of
the IEC cycle and the delays of the transmission timing by the system can be a
maximum of +80% and –20%.

“Sync window monitoring” Synchronization of the slaves can be monitored.

“Sync window” Time for “Sync window monitoring”. When the synchronization of all slaves is
within this time window, the variable xSyncInWindow (IoDrvEthercat) is set
to TRUE, otherwise to FALSE.

Table 328: “Options”
“Use LRW instead of LWR/
LRD”

 Direct communication from slave to slave is possible. Combined read/write
commands (LRW) are used instead of separate read commands (LRD) and write
commands (LWR).

“Messages per task” Read and write commands (the handling of the input and output messages)
can be controlled by means of various tasks.

“Automatically restart slaves” The master immediately attempts to restart the slaves in the case of a com-
munication breakdown.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1612

Table 329: “Master Settings”
These settings can be edited only when the “Autoconfig master/slaves” option is deactivated. Otherwise this is
done automatically and they are not visible here.

“Image In Address” First logical address of the first slave for input data

“Image Out Address” First logical address of the first slave for output data

See also
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613
● Ä Chapter 6.3.2.17 “EtherCAT configurator ” on page 1609

Tab 'EtherCAT Master - Sync Unit Assignment'

Sync unit assignment is not supported in Onboard EtherCAT.

Tab 'EtherCAT Master - Parameters'
Object: EtherCAT Master
The tab contains the master parameters which are defined in the device description file.
When the auto-configuration mode is selected in the “Master” dialog, the parameters are set
here automatically according to the specifications from the device description file and the net-
work topology. Nothing should be changed in the generic editor because an invalid configuration
can be set here.

“Value” Editable: A change is effective only when the auto-configuration mode is disa-
bled.
Whether or not the change becomes effective depends on the respective param-
eter.

See also
● Ä Chapter 6.3.2.17.3.9 “Tab 'EtherCAT Slave - Parameters' ” on page 1623
● Ä Chapter 6.3.2.17 “EtherCAT configurator ” on page 1609
● Ä Chapter 6.4.1.21.2.8.4 “Tab 'Parameters'” on page 2433

6.3.2.17.3 EtherCAT slave
Tab 'EtherCAT Slave - General'

Object: EtherCAT Slave
The basic settings for the EtherCAT Slave are configured on this tab. The basic settings are
preset from the device description file.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1613

Table 330: “Address ”
Fields can be edited only when the auto-configuration mode of the EtherCAT Master is disabled.

“AutoInc address” Self-incrementing address (16-bit) that results from the position of the slave
in the network. The address is used only during the system boot when the
master assigns the EtherCAT addresses to its slaves. When the first message
runs through all the slaves for this purpose, each slave increments its “AutoInc
address” by 1. The slave with address 0 then gets the data. A possible input
here is "-8".

“EtherCAT address” Final address of the slaves, assigned by the master during bootup. The address
is independent of the position of the slave in the network.

Table 331: “Additional”
“Expert settings” : Additional settings are possible for the startup checking and time monitoring

(see below). The “Expert Process Data” tab is also available in the device editor.
However, expert settings are not required for standard applications. The auto-
configuration mode is recommended and sufficient for standard applications.

“Optional” At the start of the stack, the system checks whether optional devices are avail-
able.

: The slave is defined as optional and no error message is generated if the
device is missing from the bus system. If a device is not found, then it is disabled
automatically and displayed in gray in the device tree. A corresponding message
is displayed in the logger.
Note: If you define a slave as "optional", then it has to have a unique identi-
fication. You can change this by means of the three possible settings in the
“Identification” section.
Available only when the “Autoconfig master/slaves” option is selected in the
settings of the EtherCAT Master and the EtherCAT Slave supports this function.

Table 332: “Distributed Clock”
“Select DC” List box with all settings for the distributed clocks of the device description file

“Enable ” : Cycle time for the data exchange. It is displayed in the “Sync unit cycle
(µs)” input field and determined by the cycle time of the master. As a result, the
master clock can synchronize the data exchange in the network.

The “Sync0” and “Sync1” settings described below are slave-dependent:

Table 333: “Sync0”
“Enable Sync 0” : Synchronization unit “Sync0” is used. A synchronization unit describes a set

of process data that is exchanged synchronously.

“Sync unit cycle” : The master cycle time (multiplied by the factor selected from the list box) is
used as the synchronization cycle time for the slave. “Cycle time (µs)” displays
the cycle time currently set.

“User-defined” : A custom cycle time (in microseconds) can be specified in the “Cycle time
(µs)” field.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1614

Table 334: “Sync1”
“Enable Sync 1” : Synchronization unit “Sync1” is used. A synchronization unit describes a set

of process data that is exchanged synchronously.

“Sync unit cycle” : The master cycle time (multiplied by the factor selected from the list box) is
used as the synchronization cycle time for the slave. The “Cycle time (µs)” field
displays the cycle time currently set.

“User-defined” : A custom cycle time (in microseconds) can be specified in the “Cycle time
(µs)” field.

Table 335: “Diagnosis”
This area is only displayed in online mode.

“Current State” State of the slave
Possible states: “Init”, “Preoperational”, “Safe Operational”, and “Operational”

The state Operational indicates that the slave configuration has been correctly
completed and that process data (inputs and outputs) are being accepted.

Table 336: “Startup Checking”
“Check vendor ID” By default the vendor ID and product ID of the device are checked against the

current configuration settings when the system boots up. If they do not agree,
then the bus is stopped and no further actions are executed. This is done to
prevent an incorrect configuration from being loaded onto the bus system.
Options for deactivating the corresponding check.

“Check product ID”

“Check revision number” : The revision number is checked during the system bootup according to your
selection in the list box.

“Download expected slot
configuration”

 For online verification of the configured and actual module configuration. If the
configurations do not match, then the device still switches to "Run". In this case,
an entry is made in the device logbook.

Table 337: “Timeouts”
By default, watchdog is not defined for the following actions. If necessary, an appropriate timeout can be specified
here (in milliseconds):

“SDO access” Transmits the SDO list at system start. Specified in milliseconds.

“I -> P” Switch from “Init” mode to “Preoperational” mode. Specified in milliseconds.

“P -> S / S -> O” Switch from “Preoperational” mode to “Safe Operational” mode, or from “Safe
Operational” mode to “Operational” mode. Specified in milliseconds.

Table 338: “DC Cyclic Unit Control: Assign to Local µC”
One or more options for the “Distributed Clock” function can be activated here that should be used on the local
microprocessor. The check is performed in the registry at 0x980 in the EtherCAT Slave. Possible settings:

“Cycle unit”

“Latch unit 0”

“Latch unit 1”

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1615

Table 339: “Watchdog”
“Set multiplier” The PDI watchdog and SM watchdog receive their impulses from the local ter-

minal clock divided by the watchdog multiplier.

“Set PDI watchdog” This watchdog triggers when there is no PDI communication with the EtherCAT
Slave controller for longer than the PDI (Process Data Interface) watchdog time
which has been set and activated.

“Set SM watchdog” This watchdog triggers when there is no EtherCAT process data communication
with the terminal for longer than the SM (SyncManager) watchdog time that has
been set and activated.

Table 340: “Identification”
In this section, you set the device identification of the slave. As a result, you can make the address of the slave
independent of its position in the bus.
The following options are visible only when the “Activate expert settings” option or “Optional” option is selected.
If you have identified the slave as “Optional”, then you have to assign a unique ID to it.

“Disabled” The identification of the slave is not checked.

“Configured station alias (ADO
0x0012)”

Address that is stored in the EEPROM of the device.
You can change the value in the “Scan Devices” dialog or in online mode. For
stock devices, you need to assign this number one time. This means that you
have to connect the device one time to an EtherCAT Master and save the
number.

“Write to EEPROM” Visible in online mode only for “Configured station alias”. Writes the defined
address for “Value” to the EEPROM of the slave.

“Explicit device identification
(ADO 0x0134)”

The device identification is hard set on the hardware (for example, by DIP
switches). It is displayed in “Actual address”.

“Data Word (2 Bytes)” A 2-byte value for the identification is saved in the slave.

“Value” Expected value for the check. If the actual value does not correspond to this
setting, then an error is issued.

“ADO (hex)” Initial value from the device description. You can change this value in the “Data
word” option.

“Actual address” Visible in online mode only. Displays the address of the slave. You can use this
display for checking the success of the “Write to EEPROM” command.

Tab 'EtherCAT Slave - FMMU/Sync'
Object: EtherCAT Slave
The tab shows the FMMUs and Sync Manager of the EtherCAT Slave as they are defined in the
device description file. There is an option to edit the FMMUs and Sync Manager (for example,
for the configuration of slave-to-slave communication).
Requirement: The auto-configuration mode in the EtherCAT Master is disabled.

Note that these are expert settings which are not usually required for standard
applications.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1616

Table 341: “FMMU ”
The table shows the Fieldbus Memory Management Units of the slave, which are used for handling the process
data. In each case the allocation of the logical address (“Global Start Address”) to a physical address (“Phys. start
address”) is defined. Bit-by-bit mapping is possible.

“Edit”

“Add”

“Delete”

Table 342: “Edit FMMU”
“Global Start Address”

“Length”

“Start bit”

“End bit”

“Phys. start address”

“Phys. start bit”

“Access” “Read”

“Write”

“Flags” “Enable”

Table 343: “Sync Manager ”
Display and editing of the synchronization manager of the slave. The physical start address, the type of access,
the buffer, and the physical address to which the interrupts are to be sent (as well as others) are defined for each
available Sync Manager type (mailbox in, mailbox out, inputs, outputs).

Table 344: “Edit Syncman”
“Phys. start address”

“Length”

“Buffer” “1”

“3”

“Access” “Read”

“Write”

“Interrupts” “to EtherCAT”

“to PDI”

“Flag control” “Activate”

“Watchdog” “Trigger”

“SyncMan type” “”

Tab 'EtherCAT Slave - Expert Mode Process Data'
Object: EtherCAT Slave
The tab provides another more detailed view of the process data, which is also displayed
in the “Process Data” dialog. Moreover, the download of the PDO assignment and the PDO
configuration is enabled here.
Requirement: The expert settings for the slave are selected.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1617

Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613

Table 345: “Sync Manager ”
List of the Sync Managers with data size and PDO type

Table 346: “PDO assignment (16#1C12)”
List of the PDOs assigned to the selected “Sync-Manager”.

When a check box is selected, the PDOs are enabled and I/O channels are created. This is similar to the simple
PDO configuration view.

Table 347: “PDO list”
List of the PDOs assigned to the selected “Sync-Manager”.

You can add new entries or edit or delete existing entries by executing the respective commands (“Add”, “Delete”,
“Edit”) in the command bar or context menu.

Table 348: “Edit PDO list”
“Name”

“Index”

“Direction” ● “TxPDO (input)”: : The PDO is transmitted from the master to the slave.
● “RxPDO (output)”: The PDO is transmitted from the slave to the master.

“Flags” ● “Required”: The PDO is required and cannot be disabled in the “PDO
assignment”.

● “Windows contents”: The contents of the PDO are fixed and cannot be modi-
fied. It is then not possible to add entries in “PDO contents”.

● “Virtual PDO”: Reserved for future use

“Exclude PDOs” It is possible to define an exclusion list. When a PDO is enabled in the “PDO
assignment”, others are disabled and cannot be enabled.

“Sync unit” ID of the Sync Manager to which the PDO is to be assigned

Table 349: “PDO Contents”
Displays the contents of the PDOs selected in the “PDO list”. You can add new entries or edit or delete existing
entries by executing the respective commands (“Add”, “Delete”, “Edit”) in the command bar or context menu. You
can change the PDO order by clicking “Move Up” and “Move Down”.

Table 350: “Download”
“PDO assignment” : Specific CoE commands for initializing the 0x1cxx objects are generated

and written to the slave.

“PDO configuration” : The CoE commands for 0x16xx or 0x1axx are generated, and then the
PDO mapping is downloaded to the slave. Normally, the default values originate
from the ESI file and the device has to support this functionality. For example,
if a device has a fixed configuration, then these commands are regarded as
flawed.

“Load PDO info from the
device”

The current PDO configuration is read from the slave and entered into the
configuration. The lists in the upper and lower right are then deleted and filled
with the read data. This is especially useful when the ESI file is incomplete and
the configuration is available only on the slave.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1618

Tab 'EtherCAT Slave - Process Data'
Object: EtherCAT Slave
The tab of the EtherCAT configurator displays the process data for the inputs and outputs of the
slave. The data is preset from the device description file.

Table 351: “Select the Outputs”
The table shows the outputs of the slave defined by “Start address”, “Type”, and “Index”.
If outputs of the device are enabled here (for writing), then these outputs can be assigned to project variables in
the “EtherCAT I/O Mapping” dialog.

Table 352: “Select the Inputs”
The table shows the inputs of the slave defined by “Name”, “Type”, and “Index”.
If inputs of the device are enabled here (for reading), then these inputs can be assigned to project variables in the
“EtherCAT I/O Mapping” dialog.

See also
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613
● Ä Chapter 6.3.2.17 “EtherCAT configurator ” on page 1609

Tab 'EtherCAT Slave - Startup Parameters'
Object: EtherCAT Slave
On the tab, the SDOs (service data objects) for 'CAN over EtherCAT' (CoE) or the IDNs
(identification numbers) for 'Servodrive over EtherCAT' (SoE) are defined for the current slave.
These parameters are determined for the device when the system is started.
The object directory with the required data objects is described in the EtherCAT XML description
file or in an EDS file that is referenced in the XML file.
Requirement: The device supports 'CAN over EtherCAT' or 'Servodrive over EtherCAT'.

Some modules that are inserted below a slave have their own startup parame-
ters. These parameters are also displayed in this list but cannot be edited here.
The parameters are modified in the editor of the corresponding module.

List of SDOs or IDNs
The order (from top to bottom) specifies the order in which the objects are transferred to the
module.

“Line” Line number

“Index:Subindex” For CoE only

“IDN” For SoE only
Identification number

Name

“Bit length” Bit length of the SDO or IDN

“Abort on Error” : In case of error, the transfer is aborted with an error status.

“Jump to Line on Error” : In case of error, the transfer is resumed with the SDO or IDN at
the specified “Line”.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1619

“Next Line” : The transfer is resumed with the SDO or IDN at the next line.

“Comment” Input field for comments

“Move Up” Moves the selected line upwards by one line

“Move Down” Moves the selected line downwards by one line

“Add” Opens the “Select Item from Object Directory” dialog adding SDOs
or IDNs.

“Delete” Removes the selected entry.

“Modify” Opens the “Select Item from Object Directory” dialog for changing
the parameters of the selected SDO or IDN

The dialog lists all available object directory entries as defined in the XML file. The parameters
of the objects can be modified in this dialog. New objects can also be created. This is useful
when none or only an incomplete object directory exists.

Table 353: “CAN over EtherCAT ”
List of available object directory entries as defined in the EDS file.

Column “Index:Subindex” Identifies the entry in the object directory

Column “Name”

Column “Flags” Display of access flags: RW (read/write), RO (read only), WO (write only)

Column “Base Value” Editable (double-click to open)

Input fields

“Name” Input field for displaying and changing the name

“Index: 16#” By specifying new index/subindex entries, a new object can be added to the
SDO that is not yet described in the EDS file.“Subindex: 16#”

“Bit length” Range of values of the object

“Value” Each value may be max. one byte (0-255). It can also be a hexadecimal in IEC
syntax (for example, 16#ad).
If the “Byte array” option is enabled, then the values have to be specified as a
comma-separated list (for example, 1,2,3,4).

“Full access” The complete object is written with one access and all subindexes are set at
the same time. The time needed for the transfer is reduced because not every
subindex has to be transferred individually.

“Byte array” Values can be specified as a comma-separated byte array.

Table 354: Servodrive over EtherCAT
List of available object directory entries as defined in the XML file.

Column “IDN” Identification number

Column “Base Value” Base value of the IDN.
Double-click to modify.

Input fields

“IDN” Identification number: Composed from the subsequent parameters
● “S”: Standard data
● “P”: Product-specific data
● “PSet”: Parameter set
● “Offset”

Dialog 'Select
Item from
Object Direc-
tory'

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1620

“Bit length” List box for selecting the bit length

“Value” List box for selecting the value

“Channel” If the object has multiple subobjects, then this list box is displayed automatically.

“As list” Parameters are loaded as a list. The first four bytes indicate the length.

: The length is calculated automatically.

See also
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613
● Ä Chapter 6.3.2.17 “EtherCAT configurator ” on page 1609

Tab 'EtherCAT Slave - Diagnostics History'
Object: EtherCAT Slave
The tab reads the diagnosis data (0x10f3 object) of the slave and displays it in a tree structure.
Moreover, the messages are issued in plain language.
Requirement: The application is in online mode. The attribute DiagHistory in the ESI file is
set.

“Update history” The data is read again and the view is refreshed.
New messages are displayed in the “Flags” column with “N” (New). Acknowl-
edged messages with “Q”.

“Auto update” The data is updated automatically.

“New messages only” Acknowledged messages are not displayed.

“Acknowledge messages” All messages with the “N” flag are acknowledged. Then the flag changes to “Q”.

See also
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613

Tab 'EtherCAT Slave - Online'
Object: EtherCAT Slave
The tab provides slave status information and functions for the file transfer to the slave via
EtherCAT (FoE).
Requirement: The expert settings for the slave are selected and the application is logged in to
the controller.

Table 355: “State machine”
“Init” Use for debugging purposes

“Boot Strap” The slave is switched to Bootstrap Mode.
Required if firmware files should be transferred to or from the slave

“Pre-Op” Use for debugging purposes

“Safe-Op” Use for debugging purposes

“Op” Use for debugging purposes

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1621

“Current status”

“Requested status”

Table 356: “DLL status”
“Port A”

“Port B”

“Port C”

“Port D”

● No Carrier / Open: No carrier signal exists at the port, but the port is
open.

● No Carrier / Closed: No carrier signal exists at the port and the port is
closed.

● Carrier / Open: A carrier signal exists at the port and the port is open.
● Carrier / Closed: A carrier signal exists at the port, but the port is

closed.
Note: If the function is not supported, then the status can be hidden.

Table 357: “File Access over EtherCAT”
“Download” Download of firmware files

A dialog opens to save the firmware file. In this dialog, the input of a string
as well as a password is necessary in order to execute the file transfer. The
information should be taken from the data sheet of the slave.

“Upload” Upload of firmware files
A dialog opens to open the firmware file. In this dialog, the input of a string
as well as a password is necessary in order to execute the file transfer. The
information should be taken from the data sheet of the slave.

Table 358: “E²PROM access”
“Write E²PROM” Writes the configuration of the slave to the E²PROM.

A dialog for storing the configuration opens in the same way as for “File access
over EtherCAT”.

“Read E²PROM” Reads the configuration of the slave from the E²PROM.
Upload of firmware files
A dialog for opening the configuration opens in the same way as for “File access
over EtherCAT”.

“Write E²PROM XML” Writes the slave configuration directly from the XML file into the device.
Can be executed only when configuration data exists in the XML file (<Config-
Data> section).

● Ä Chapter 6.3.2.17.2.1 “Tab 'EtherCAT Master - General' ” on page 1610
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613

Tab 'EtherCAT Slave - CoE Online'
Object: EtherCAT Slave
The tab shows the object directory of the ESI file or the slave.
Requirement: The application is in online mode. The expert settings in the “Slave” dialog have
to be enabled and the slave has to support CoE.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1622

“Read objects” The object directory is read one time.

“Auto update” The objects are read in cycles.

“Offline from ESI file” The dialog shows the contents of the object directory from the device descrip-
tion.

“Online from device” The dialog shows the contents of the object directory of the device. SDOInfo
has to be enabled in the ESI file.

“Flags” ● “RO”: The value is write-protected.
● “RW”: The value can be modified.

“Type” Data type of the parameter

“Value” You can double-click in the text field to edit this value.

● Ä Chapter 6.3.2.17.2.1 “Tab 'EtherCAT Master - General' ” on page 1610
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613

Tab 'EtherCAT Slave - Parameters'
Object: EtherCAT Slave
The tab contains the slave parameters which are defined in the device description file.
When the auto-configuration mode of the master is selected, the parameters are set here
automatically according to the specifications from the description file and the network topology.
For standard applications, it is also not normally required to edit them.

“Value” Only a few parameters are editable. A change is effective only when the auto-
configuration mode is disabled.
Basically, the user should not modify anything here because doing so could
create an invalid configuration, which would prevent the slave from entering into
the operational state.

● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613
● Ä Chapter 6.3.2.17.2.3 “Tab 'EtherCAT Master - Parameters' ” on page 1613
● Ä Chapter 6.3.2.17 “EtherCAT configurator ” on page 1609

Tab 'EtherCAT Slave - EoE Settings'
Object: EtherCAT Slave
This tab is used to configure the communication settings for the individual slaves that support
Ethernet over EtherCAT (EoE).

Table 359: “Settings”
“Virtual Ethernet Port” : Enables the EOE functionality of the slave. A unique “Virtual MAC ID” has to

be defined.

“Virtual MAC ID” Input field for the “Virtual MAC ID”

“Switch port” : The device acts as a switch. No additional network settings are required.

“IP port” : The device acts as an IP port. The “IP Settings” have to be configured.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1623

Table 360: “IP Settings”
The Ethernet communication parameters have to be set according to the parameters of the virtual Ethernet
adapter.

“IP address” IP address of the slave in the network (length: 4 bytes)
The IP port has to be in the same range as the virtual Ethernet adapter. For
example, if the address of the network adapter is 192.168.1.1 and the subnet
mask is 255.255.255.0, then the IP port has to be in the range from 192.168.1.2
to 192.168.1.254.

“Subnet mask” Subnet mask (length: 4 bytes)

“Default gateway” Default gateway (length: 4 bytes)

“DNS server” IP address of the DNS server

“DNS name” Name of the DNS server

6.3.2.17.4 EtherCAT module
Tab 'EtherCAT Module - Startup Parameters'

Object: EtherCAT Module
The SDOs (Service Data Objects) or IDNs that transmit specified parameters to the device at
the system start are defined on this tab for the current module.
The object directory with the required data objects is described in the EtherCAT XML description
file or in an EDS file that is referenced in the XML file.
Requirement: The device supports CAN over EtherCAT or Servodrive over EtherCAT

Some modules have their own start parameters which are displayed on the
tab. The parameters can be modified there. Likewise, the parameters are also
displayed in the slave, but they are blocked there.

Table 361: SDO table
List of SDOs or IDNs
The order (from top to bottom) in the SDO table specifies the order in which the SDOs are
transferred to the module.

“Line” Line number

“Idn”

“Bit length” Bit length of the SDO

“Abort on Error” : In case of error, the transfer is aborted with an error status.

“Jump to Line on Error” : The transfer is resumed with the SDO at the specified “Line” in
case of error.

“Next Line” : The transfer is resumed with the SDO at the next line.

“Comment” Input field for comments

“Move Up” Moves the selected line upwards by one line

“Move Down” Moves the selected line downwards by one line

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1624

“Add” Opens the “Select Item from Object Directory” dialog. In this dialog
you can change the parameters of the SDO before the SDO is
added to the configuration.
By specifying new index/subindex entries, a new object can be
added to the SDO that is not yet described in the EDS file. This is
useful if only an incomplete object directory or none at all exists.

“Delete” Removes the selected entry.

“Modify” Opens the “Select Item from Object Directory” dialog for changing
the parameters of the selected SDO or IDN in the table

Table 362: “Select Item from Object Directory”
List of available object directory entries as defined in the XML file.

Column “Idn”

Column “Base Value” Base value of the IDN.
Editable (double-click to open)

Input fields

“IDN” ● “S”
● “P”

“PSet” By specifying new “PSeT”/“Offset” entries, a new object can be added to the
IDN that is not yet described in the XML file. This is useful if only an incomplete
object directory or none at all exists.

“Offset” By specifying new PSet/Offset-entries, a new object can be added to the IDN
that is not yet described in the XML file. This is useful if only an incomplete
object directory or none at all exists.

“Bit length” List box for selecting the bit length

“Value” List box for selecting the value

“Channel” If the object has multiple subobjects, then this list box is displayed automatically.

“As list” Parameters are loaded as a list. The first four bytes indicate the length.

: The length is calculated automatically.

Table 363: “Select Item from Object Directory”
List of available object directory entries as defined in the EDS file.

Column “Flags” Display of access flags: RW (read/write), RO (read only), WO (write only)

Column “Base Value” Editable (double-click to open)

Input fields

“Name” Input field for displaying and changing the name

“Index: 16#” By specifying new index/subindex entries, a new object can be added to the
SDO that is not yet described in the EDS file.“Subindex: 16#”

“Bit length” Range of values of the object

Servodrive over
EtherCAT

“CAN over
EtherCAT ”

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1625

“Value” Each value may be max. one byte (0-255). It can also be a hexadecimal in IEC
syntax (for example, 16#ad).
If the “Byte array” option is enabled, then the values have to be specified as a
comma-separated list (for example, 1,2,3,4).

“Full access” The complete object is written with one access and all subindexes are set at
the same time. The time needed for the transfer is reduced because not every
subindex has to be transferred individually.

“Byte array” Values can be specified as a comma-separated byte array.

See also
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613
● Ä Chapter 6.3.2.17 “EtherCAT configurator ” on page 1609

6.3.2.17.5 Bus Cycle Task - EtherCAT
The term "bus" includes all fieldbuses as well as the Ä I/O bus. Consider that there is no bus
cycle task for Modbus as Modbus does not provide I/O mapping and is controlled by POUs.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in the “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing the EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in the “PLC Settings”.
As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task. The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

General infor-
mation

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1626

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

Before the IEC inputs are copied, the pending network messages of the last cycle are read.

When the “Messages per task” option is enabled in the settings of the EtherCAT Master, addi-
tional telegrams are transmitted to the devices employed per task and input or output employed.
Channels that are used in a slow task are also transmitted less frequently. As a result, the bus
load can be reduced.

Behavior of the
bus cycle for
EtherCAT

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1627

See also
● Ä Chapter 6.3.2.17.2.1 “Tab 'EtherCAT Master - General' ” on page 1610

6.3.2.17.6 Command 'Scan for Devices'
Function: The command establishes a brief connection to the hardware and determines the
devices in the network. Then you can apply the devices found into the device tree of your
project.
Call: Menu bar: “Project”; context menu of a device object in the device tree
Requirement: The communication settings to the controller are correct. The gateway and the
PLC are started. The device supports the scan function.
The following devices provide the scan function: EtherCAT master, EtherNet/IP Scanner
(IEC), Sercos master, CANopen Manager, CANopen Manager SIL2, PROFINET controller and
PROFIBUS DP master.

You can perform the device scan immediately if the scan function is perma-
nently implemented in the PLC. When scan function is implemented in a library,
you have to log in only one time to download the library to the controller.

The command refers to the master controller selected in the device tree. For example, an
already inserted PROFINET IO controller can be selected and the command used to determine
the I/O devices and I/O modules assigned to it.
After performing the scan operation, the “Scan Devices” dialog opens and displays the found
devices.

Dialog 'Scan
Devices'

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1628

Table 364: “Scanned Devices”
“Device name, Device type,
Address, Station name, etc.”

Data about the scanned device depending on network type.
When you change a value in the list of scanned devices, the value is shown
in italics. This indicates that the new value has been changed in the editor in
CODESYS, but not in the device. When you download the value to the device, it
is shown normally.
Value that indicate differences between the project and the scanned device are
shown in orange.
If multiple device descriptions are available for the scanned device, then the
name is displayed in bold. The selection of the matching device description is
resolved differently for different fieldbuses. For more detailed information, see
the corresponding fieldbus chapters.
If a device description cannot be found, then the following message is shown:
"Attention! The device was not found in the repository." Depending on the bus
system, additional information is displayed, such as manufacturer number and
product number. The device cannot be inserted into the project without the
installed device description.

“Show differences to project” : The table in the dialog also shows additional configured devices (in the
device tree of the project).

: The table shows all scanned devices. The configured devices are not shown.

“Scan for Devices” Starts a new search.

“Copy All Devices to Project” The device that is selected in the table is inserted into the device tree in the
project. If nothing is selected, then all scanned devices are shown.

NOTICE!
If you insert devices, which are available in the device tree, to the device tree
with “Copy All Devices to Project”, then the following should be noted. The data
of the “Process Data” and “<...> I/O Mapping” tabs of the existing devices can
be overwritten with the data of the recently inserted devices.

Table 365: “Configured Devices”
This part of the dialog is visible only when you select the “Show differences to project” option.
Differences between the scanned and configured devices are color-coded. Devices displayed in green are iden-
tical on both sides. Devices displayed in red are available only in the view of the scanned or configured devices.

If you have selected a device in both views, then the scanned devices are
inserted above the selected configured device.

If you have selected a device in both views, then the scanned devices are
inserted below the selected configured device.

If you have selected a device in both views, then the configured devices are
replaced by the selected scanned device.

All scanned devices are copied to the project.

Deletes the selected configured device.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1629

6.3.2.17.7 Diagnosis
Diagnosis in the Application
EtherCAT Status

An instance of data type IoDrvEtherCAT is created for each EtherCAT Master that is inserted
into the device tree. The name of the instance corresponds to the name of the master in the
device tree. The availability of the instance is displayed on the “IEC Objects” tab of the device
editor.
An instance of data type ETCSlave is created for each EtherCAT Slave that is inserted into the
device tree. The name of the instance corresponds to the name of the slave in the device tree.
The availability of the instance is displayed on the “IEC Objects” tab of the device editor. The
slave instance is used in the application to query or change the state of the slave at runtime.

If the device diagnosis is enabled in the PLC settings, then the data type is
IoDrvEtherCAT_Diag or ETCSlave_Diag.

See also
● FB IoDrvEtherCAT (FB)
● ETCSlave (FB)
● Ä Chapter 6.3.2.17.7.2.9 “Status Page (Master and Slave)” on page 1637

Emergency
When an EtherCAT device supports CoE (CANopen over EtherCAT), emergency messages at
the slave instance can be determined with the following properties:
● LastEmergency: Evaluation of the last received message in the application
● ClearEmergency: Deletion of the last received message and resetting of the property

LastEmergency

The emergency messages are also recorded in the logger.

See also
● ETCSlaveStack.LastEmergency (PROP)
● ETCSlaveStack.ClearEmergency (METH)

Error Code Description
16#00xx Error Reset or No Error

16#10xx Generic error

16#20xx Current

16#21xx Current, device input side

16#22xx Current, inside the device

16#23xx Current, device output side

16#30xx Voltage

16#31xx Main voltage

16#32xx Voltage, inside the device

Error codes

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1630

https://content.helpme-codesys.com/en/libs/IODrvEtherCATDriver/Current/IoDrvEtherCAT.html#
https://content.helpme-codesys.com/en/libs/IODrvEtherCATDriver/Current/ETCSlave.html
https://content.helpme-codesys.com/en/libs/EtherCATStack/Current/EtherCATStack/pou-ETCSlaveStack/LastEmergency.html
https://content.helpme-codesys.com/en/libs/EtherCATStack/Current/EtherCATStack/pou-ETCSlaveStack/ClearEmergency.html

Error Code Description
16#33xx Output voltage

16#40xx Temperature

16#41xx Ambient temperature

16#42xx Device temperature

16#50xx Device hardware

16#60xx Device software

16#61xx Internal software

16#62xx User software

16#63xx Data set

16#70xx Additional modules

16#80xx Monitoring

16#81xx Communication

16#82xx Protocol error

16#8210 PDO not processed due to length error

16#8220 PDO length exceeded

16#90xx External error

16#A0xx ESM transition error

16#F0xx Additional functions

16#FFxx Device specific

Manufacturer-specific error codes need to be checked in the respective docu-
mentation from the vendor.

AL Status
The property ALStatus returns any errors at the start of the stack. For example, configuration
errors at the slave instance are displayed.

The AL status messages are also recorded in the logger.

See also
● ETCSlaveStack.ALStatus (PROP)

Value Error Text Comment
16#0 No error

16#1 Unspecified error

16#2 No memory

16#11 Invalid requested state change

16#12 Unknown requested state

Error codes

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1631

https://content.helpme-codesys.com/en/libs/EtherCATStack/Current/EtherCATStack/pou-ETCSlaveStack/ALStatus.html

Value Error Text Comment
16#13 Bootstrap not supported

16#14 No valid firmware

16#15 Invalid mailbox configuration The configuration is not accepted by
the device because, for example, data
from the ESI file does not match the
device.

16#16 Invalid mailbox configuration

16#17 Invalid sync manager configuration

16#18 No valid inputs available

16#19 No valid outputs

16#1A Synchronization error The DC settings may be incorrect.

16#1B Sync manager watchdog Interruption in the connection, for
example due to a brief disconnection
of the cable, or the PLC has been
stopped.

16#1C Invalid sync manager types

16#1D Invalid output configuration The configuration is not accepted by
the device because, for example, data
from the ESI file does not match the
device.

16#1E Invalid input configuration The configuration is not accepted by
the device because, for example, data
from the ESI file does not match the
device.

16#1F Invalid watchdog configuration

16#20 Slave needs cold start Switch device off and back on

16#21 Slave needs INIT

16#22 Slave needs PREOP

16#23 Slave needs SAFEOP

16#24 Invalid input mapping

16#25 Invalid output mapping

16#26 Inconsistent settings

16#27 Free-Run not supported The device has to be configured with
"Distributed Clock".

16#28 Synchronization not supported The device does not support "Distrib-
uted Clock".

16#29 Free-Run needs 3 buffer mode

16#2A Background watchdog

16#2B No valid inputs and outputs

16#2C Fatal Sync error

16#2D No sync error The synchronization with DC is not suc-
cessful, possibly because the jitter of
the runtime is too large.

16#30 Invalid DC SYNCH configuration

16#31 Invalid DC latch configuration

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1632

Value Error Text Comment
16#32 PLL error The slave synchronization is not suc-

cessful.

16#33 Invalid DC IO error

16#34 Invalid DC timeout error

16#35 DC invalid sync cycle time The configuration of "Distributed Clock"
does not match the device.

16#36 DC Sync0 cycle time The configuration of "Distributed Clock"
does not match the device.

16#37 DC Sync1 cycle time The configuration of "Distributed Clock"
does not match the device.

16#41 MBX_AOE

16#42 MBX_EOE

16#43 MBX_COE

16#44 MBX_FOE

16#45 MBX_SOE

16#4F MBX_VOE

16#50 EEPROM no access

16#51 EEPROM error

16#60 Slave restarted locally

Diagnosis in the User Interface
Device Tree

In online mode, the device tree allows for a pinpointing of a pending diagnosis.
● Green symbol: The device is in the OPERATIONAL state.
● Orange triangle: The device is in the PREOPERATIONAL state and is configured, and it is still

not in the OPERATIONAL state.
● Error flag (red triangle): Hard error, such as an incorrect/missing device or connection

interruption.
● Diagnosis flag (red exclamation mark): Indicates that a diagnosis entry is currently available

for exactly this device. The details are then displayed on the status page of the respective
device.

● Error-cleared flag (gray exclamation mark): Indicates that a previously pending error has
been corrected.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1633

EtherCAT – General (Master and Slave)
In online mode, the state of the device is displayed on the “General” tab for the EtherCAT
Master and Slave.
In the case of the master, any errors or messages are displayed as text as well as the bus load:

In the case of the slave, the current state of the device is displayed.

See also
● Ä Chapter 6.3.2.17.2.1 “Tab 'EtherCAT Master - General' ” on page 1610
● Ä Chapter 6.3.2.17.3.1 “Tab 'EtherCAT Slave - General' ” on page 1613

Table 366: State of the slave
Value Description
Bootstrap State for firmware downloads
Init Communication is established.
Pre-Operational Mailbox communication is possible, but process data is not

transferred

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1634

Value Description
Safe Operational Process data has already been transferred. Inputs are read,

but outputs are not given.
Operational Communication has been established, and all process data is

transferred.

Overview Page in the Master
All slaves and their statuses are displayed together on the “Overview” tab.
Each EtherCAT Slave is listed with its physical address, status, and any error counters. The
error counters (CRC) are read from each device for the active connection and also show
problems (EMC) with the wiring between the devices.

IEC Objects – Master
The driver instance and its inputs and outputs are displayed on the “IEC Objects” tab of the
master. You can use the outputs to check whether or not the configuration has completed. In the
case of “Distributed Clock”, you can see whether or not the controller is synchronized.

IEC Objects – Slave
The respective slave instance is displayed on the “IEC Objects” tab of the slave. The “wState”
output returns the current state of the slave.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1635

Online Page for the Slave
If the controller is in online mode and the “Expert settings” option is selected, then the additional
“Online” tab is displayed. The current status of the device is displayed on this tab.
In addition, the status of the EtherCAT connections are displayed.

See also
● Ä Chapter 6.3.2.17.3.7 “Tab 'EtherCAT Slave - Online' ” on page 1621

CoE Online Display for the Slave
If the “Expert settings” option is selected, then the additional “CoE Online” tab is displayed with
all CoE objects and their current values.
Here you can find and directly correct an incorrect parameters.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1636

See also
● Ä Chapter 6.3.2.17.3.8 “Tab 'EtherCAT Slave - CoE Online' ” on page 1622

Diagnosis History for the Slave
All messages in the respective slave are displayed on the diagnosis history tab. The visibility of
this tab depends on the devices used.

See also
● Ä Chapter 6.3.2.17.3.6 “Tab 'EtherCAT Slave - Diagnostics History' ” on page 1621

Status Page (Master and Slave)
Different error counters are displayed on the “Status” tab of the master. Normally all counters
should be 0.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1637

The different times values indicate the time requirement for sending and receiving the mes-
sages. As a result, they display the properties of the respective operating system and network
driver.

Value Description
LostFrameCount Number of lost packages. This usually indicates connection errors or

EMC problems.
TxErrorCount Shows the packages that cannot be sent if for example the internal

buffer of the operating system is insufficient
RxErrorCount Lost or late messages are displayed here if for example the operating

system is overloaded and the incoming messages are not forwarded
to the EtherCAT stack in time.

A diagnosis message is displayed on the “Status” tab of the slave if errors have occurred. For
example, an emergency message is displayed.

See also
● Ä Chapter 6.3.2.17.7.1.1 “EtherCAT Status” on page 1630

Logger Page (Master and Slave)
All messages of the master and all slaves below it are displayed on the “Log” tab of the master.Master

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1638

Only the messages from this one slave are displayed on the “Log” tab of the slave.

6.3.2.17.8 Libraries
Only the “EtherCATStack” library is to be used for onboard EtherCAT applications.
Ä Chapter 6.5.14 “Reference, function blocks” on page 4086

Reference documentation

“CODESYS - Intern è IoDrivers è EtherCATStack (LIB)”

Ä Chapter 6.5.3.3 “View embedded documentation of all libraries” on page 3775

Slave

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1639

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_6_1/Libraries/index.html

6.3.2.18 PROFINET IO Configurator
6.3.2.18.1 General

PROFINET IO (Process Field Network) is an industrial Ethernet standard widely used in the
field of manufacturing and process automation. It is managed by the user organization PI
(PROFIBUS&PROFINET International) and is considered the successor of PROFIBUS (see
https://www.profibus.com/).

6.3.2.18.2 PROFINET IO controller
Controller – General

Object: PROFINET IO Controller
The PROFINET IO controller, like the slaves, is identified by the station name. For AC500
communication modules, you can also configure the IP settings here. Otherwise the settings
apply from the superordinate Ethernet node.

“Station name” The station name of the device. It is used for unique identification of the device in
the network.

Table 367: IP Parameters
“IP address” Note: Available for AC500 communication module only.

If you insert the controller below an Ethernet adapter, then you have to define the
IP parameters in the dialog of the Ethernet adapter.

“Subnet mask”

“Default gateway”

Table 368: Default Slave IP Parameter
“First IP address” Range of IP addresses that CODESYS uses by default when inserting

PROFINET IO devices into the device tree. If you use the “Auto-IP” function
in the scan dialog, then IP addresses are also used from this range. The next
free IP address is selected here.

“Last IP address”

“Subnet mask”

“Default gateway”

Table 369: IO Provider / Consumer Status
“Application stop --> Substitute
values”

When the user stops the application, the provider state is set to "BAD". Then
the slaves set the inputs and outputs to predefined substitute values. For more
information, see "CODESYS default values – PROFINET IO substitute values" at
the end of this chapter.

“Add to I/O mapping” : The incoming status information is added to the I/O mapping for all modules;
provider state for the input data and consumer state for the output data.

“Substitute input data” ● “Zero”
● “Last valid value”

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1640

https://www.profibus.com/

Table 370: Port Data
“Peer station/port” Neighboring device with port that is connected to this port.

You can accept this setting in the “PROFINET IO Controller Topology” tab.

“Check cable length” Length of the network cable (in meters)
● < 10
● < 25
● < 50
● < 100
When the cable length is specified, it is checked when the controller is powered
up. An incorrect cable length causes an error message.

“Check MAU type” Type of network cable

Table 371: Watchdog
“Activate” Note: Available for AC500 communication module only.

: If the AC500 communication module firmware is not set within the given time
(for example, in the case of an exception error in the application), then it is reset.
The connection is terminated and the slaves switch to their substitute values.
The defaults for the watchdog originate from the device description.

See also
● Ä Chapter 6.3.2.18 “PROFINET IO Configurator” on page 1640

PROFINET IO devices set their inputs and outputs to predefined substitute values when there
is an interruption. These values are defined in the field device in contrast with default values.
These values are usually zero, but specific substitute values can also be configured depending
on the device.
The substitute values are set in the following cases:
● The connection is interrupted.
● The controller sets the provider state for the incoming data to "BAD".
● Other interruptions occur (for example, exception in host application, incorrect parameteriza-

tion)
If the “Application stop --> Substitute values” option is enabled, then the controller sets the
provider states to "BAD" at application stop. In this case, the slaves set their substitute values.
All incoming data from the controller is ignored (including default values).
If the default values defined in the application should be set for an application stop, then you
have to disabled this option. Moreover, you should select the “Update IO while stop” option (in
the “PLC Settings”). Otherwise, the CODESYS PROFINET IO controller is stopped.

PROFINET IO Controller - Bus Cycle Task
The term "bus" includes all fieldbuses as well as the Ä I/O bus. Consider that there is no bus
cycle task for Modbus as Modbus does not provide I/O mapping and is controlled by POUs.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in the “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing the EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in the “PLC Settings”.

CODESYS
default values –
PROFINET IO
substitute
values

General infor-
mation

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1641

As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task. The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

PROFINET IO does not provide any additional settings. Its functionality corresponds to the
general description.

PROFINET IO device
Device – General

Object: PROFINET IO Device

PROFINET IO
bus cycle
behavior

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1642

In this dialog, you configure a communication link (PROFINET IO: application relation) to a
PROFINET IO Field Device.
For all settings in the present dialog, the device description determines if the values here are
editable and the values that are predefined or possible.

“Station name” The station name of the device. It is used for unique identification of the device in
the network.

“Station status” 32-bit error code compliant with the PROFINET IO specification. In case of error,
the status is provided here, for example, when establishing a connection fails or
a link is interrupted. A description is also displayed.

“IP Parameters”

“IP address”
The IP settings of the device. Set when establishing the connection to the con-
troller.“Subnet mask”

“Default gateway”

“Communication Settings”

“Send clock (ms)” Send clock (in milliseconds).

“Reduction ratio” Scaling factor
The send cycle is defined by “Send clock” * “Reduction ratio”. Therefore, a “Send
clock” of 1ms and a “Reduction ratio” of 4 means that I/O data is sent every 4ms.

“Phase” With a “Reduction ratio” of n, the send cycle is divided into phases 1 to n (where
data is sent in one phase only). You can determine in which phase the data is
sent for the purpose of load distribution.
If “Send clock” = 1 and “Reduction ratio” = 4 (as in the example above), then you
could configure phases 1–4. For four slaves with this send clock and reduction
ratio settings, you could assign one of the four phases to each of the four slaves.
In this way, only one data packet is sent in each of the four phases of the send
cycle and the load is distributed equally.

“Watchdog (ms)” Monitoring time. A multiple of the send cycle (send cycle = “Send Clock” *
“Reduction Ratio”). Possible values: 3 ms – 1920 ms.
A connection is terminated when the controller or the PROFINET IO Device does
not receive I/O data from the communication peer within this time period. The
device enters failure mode and switches the outputs to substitute values.

“VLAN ID” VLAN identifier: Number between 0 and 4095 for VLAN type 802.1Q.
Note: For newer devices compliant with PROFINET IOspecification V2.3, only
"0" is still permitted.

“RT class” If available, you can select the required RT class from the list (real-time commu-
nication).

“User Parameters”

“Set All Default Values” CODESYS resets all settings to default values (see default value column) from
the GSDML file.

“Read All Values” CODESYS reads the current values from the device and updates them in the
editor.

“Write All Values” CODESYS writes the current values from the editor to the IO device. Not all IO
devices support parameter updates in run mode. If not, then an error message is
displayed.

See also
● Ä Chapter 6.3.2.18 “PROFINET IO Configurator” on page 1640

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1643

PROFINET IO - Module
Module – General

Object: PROFINET IO Module

Table 372: “Module Information”
“ID number” Identification of the module (from the device description).

“Slot number” Position of the I/O module below the I/O device, starting at "1" for the first
module and incremented for each additional module. This results automatically
from the current structure in the device tree.

Table 373: “User Parameters”
“Set All Default Values” CODESYS resets all settings to default values (see default value column) from

the GSDML file.

“Read All Values” CODESYS reads the current values from the device and updates them in the
editor.

“Write All Values” CODESYS writes the current values from the editor to the I/O module. Not all I/O
modules support parameter updates in run mode. If not, then an error message
is displayed.

See also
● Ä Chapter 6.3.2.18 “PROFINET IO Configurator” on page 1640

6.3.2.18.3 PROFINET IO - Field Device
General

The configuration of the PROFINET IO field device consists of the device itself as well as the
modules inserted below.
CODESYS provides two different PROFINET IO field devices:
● A variant especially for Communication Module CM579-PNIO
● A variant which is hardware-independent, the CODESYS PROFINET IO field device This

variant runs on any number of Ethernet adapters and is also available in a purely program-
matically configurable variant.

When inserting the Ethernet-based CODESYS field device, two tasks are created implicitly that
are required by the PROFINET IO communication stack.
● “Profinet_CommunicationTask”: This task includes the acyclic communication services, such

as establishing connections and diagnostics. These services are not time-critical due to very
weak real-time demands. Therefore the task is low priority.

● “Profinet_IOTask”: This is where the actual PROFINET IO real-time data exchange takes
place. Pending I/O data packets are processed in each cycle (see Slave Configurator:
“Send clock”). Therefore, a cycle time of 1ms is required (for 1ms send clock).

(6) Ä Chapter 6.3.2.18.3.3 “Field Device NetX –
General” on page 1646

(3) Ä Chapter 6.3.2.18.2.4.1 “Module – General”
on page 1644

(4) Ethernet adapter
(7) Ä Chapter 6.3.2.18.3.2 “Field Device – Gen-
eral” on page 1645

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1644

For maximum IO performance with minimum delay when reading/writing, I/O data can be
updated in this task (à insert own POU that updates IOs in this task). No blocking or persisting
operations should be executed in the IO task, such as visualization or file access. If the task is
blocked too long, then the watchdog cancels the connection for communicating with the slave
(see Slave Configurator: “Watchdog”).

NOTICE!
We recommend that you activate the “Refresh I/Os in Stop” option in the PLC
settings. Otherwise the communication is canceled when the application stops
at a breakpoint.

See also
● Device Editor Options
● Ä Chapter 6.3.2.18.3.2 “Field Device – General” on page 1645
● Ä Chapter 6.3.2.18.3.3 “Field Device NetX – General” on page 1646

Field Device – General
Object: PROFINET IO Field Device
The tab displays the basic communication settings.
According to the PROFINET IO standard, the PROFINET IO device is responsible for the IP
settings of the used adapter. It has to save remanent IP settings and be able to reset or modify
at the request of the controller (IP=0.0.0.0). Initial state (Reset to factory) is with deactivated IP
suite (IP=0.0.0.0).
To allow this full reset of the IP configuration, some settings have to be done on most systems
(see chapter Ä Chapter 6.3.2.18 “PROFINET IO Configurator” on page 1640).
However, if the PROFINET IO device is a programmable logic controller and connected with
the (CODESYS) programming environment via one and the same Ethernet adapter, then mod-
ifying and resetting the IP address is interruptive (connection termination between IDE and
PLC). Therefore, one of the modes is provided that deviates from the standard (“Use project
parameters”).

Table 374: “IP and Name Assignment”
“Use remanent data” The IP settings and the station name of the file are used. The file is stored in the

file system.
The data is set by the controller and saved to a file by the device.

“Use project parameters” The IP settings and the station name of the project are used (settings of the
Ethernet adapter).
This option must be selected for Windows, VxWorks, and WinCE, because
changing the IP address is not possible for these systems.

“Station name” Station name of the PROFINET IO Device

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/05 3ADR010583, 1, en_US 1645

ms-its:codesys.chm::/_cds_dlg_options_device_editor.htm

Table 375: “IO Provider / Consumer Status”
“Use incoming” : The I/O data for the provider and consumer states is generated which is

received by the controller.

“Use outgoing” : The I/O data for the provider and consumer states is generated which is sent
to the controller.

“Substitute values” The substitute values for the output data become active when the corresponding
provider status (Output Data PS) is set to Bad. The output data is sent by the
controller and copied to the %I area of the Profinet modules.
The following options are available for the substitute values:
● “Inactive”: The outputs are set to "inactive" (example: 0).
● “Last value”: The output data retains the last valid value (provider status =

GOOD). The value is retained even if the connection to the controller has
been interrupted.

In online mode, the station name and the IP settings are displayed “Status” tab.

See also
● Ä Chapter 6.3.2.18 “PROFINET IO Configurator” on page 1640

Field Device NetX – General
Object: PROFINET IO Field Device
The tab displays the basic communication settings.

“Use remanent data” The IP settings and the station name of the file are used. Initially, the IP address
is 0.0.0.0 according to the standard and the station name is blank. When
a controller sets these values with the "store remanent" option, then they are
stored here.

“Use project parameters” When starting the device, the values defined in the project for IP configuration
and station name are always used initially.

“Station name” The name of the device in the network.
Note: The station name and the IP settings can deviate from the (default) set-
tings configured in the project. They can be set by the controller in runtime mode
and in some cases stored persistently (this means when this is specified for the
controller in the Set IP or Set station name commands). After a restart,
the device is configured with these values as long as the “Use remanent data”
option is set.

“IP address” Initial IP settings
Caution: This data can be modified by the PROFINET IO Controller. The rema-
nent data is stored on the file system of the controller. After the controller is
restarted, this stored data goes into effect. The settings here are then ignored.

“Subnet mask”

“Default gateway”

In online mode, the station name and the IP settings are displayed “Status” tab.

See also
● Ä Chapter 6.3.2.18 “PROFINET IO Configurator” on page 1640

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > PLC devices and components

2024/01/053ADR010583, 1, en_US1646

6.3.3 Windows server
Windows server usage in Automation Builder requires modifications of the system environment
and of the settings in Automation Builder, e.g. permissions, licensing, session handling etc.
How to setup system and software for Windows server is described in the application note
Windows Server 2016 - RDM access.

6.3.4 Protocols and special servers
6.3.4.1 IEC60870-5-104 (Telecontrol)

6.3.4.1.1 General information IEC 60870
Introduction

The implemented IEC60870-5-104 protocol allows link-ups between AC500 CPUs with onboard
Ethernet and external systems. The link-up takes place via the onboard Ethernet interface of the
CPU. The telecontrol protocol according to IEC60870-5 is used.
The CPU can work as both control station and substation. In control direction, setpoints and
commands can be set; in monitoring direction the substation sends status values, real values
and discrete values to the control station. Via general inquiry, the control station requests the
substation to send all status values, real values and discrete values. Otherwise, these values
are sent by the substation on a change-driven basis, cyclically or when triggered by an applica-
tion. Status values, real values and discrete values may contain timestamps. These are filled in
with the time of the process station when sent. The CPU can time-synchronize the telecontrol
link.
A module accepts the configuration of the physical interface (link layer) and the general protocol
parts (application layer).
Send and receive blocks are available for data exchange. These blocks exist for the
IEC60870-5 data types setpoint value, command value, double command value, status value,
double status value, real value and discrete value. The inputs/outputs of the send and receive
blocks are combined with the signals to be communicated. See documentation of IEC60870
library for more information.

The S500 I/O modules do not support the functionality to create and transfer
a timestamp with an event directly at the I/O channel. A workaround is using
SoE logging (Sequence of Event) for a root-cause analysis. For a better under-
standing on how events are processed on a AC500 V3 PLC, refer to the appli-
cation example AC500 sequence of events with V3.

AC500 V3 (Standard):
● PM5630: Support of 5 control stations and/or substations with 1.000 information objects

overall on ETH1 and ETH2.
● PM5650: Support of 10 control stations and/or substations with 5.000 information objects

overall on ETH1 and ETH2.
● PM5670: Support of 20 control stations and/or substations with 10.000 information objects

overall on ETH1 and ETH2.

AC500-eCo V3:
● PM5012/PM5032/PM5052: no support of IEC60870-5-104 protocol.
● PM5072/PM5082: Support of 5 substations with up to 1.000 information objects overall on

ETH1 and ETH2. IEC60870 control stations are not supported.

Limits of sup-
ported devices

Limits of sup-
ported devices

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1647

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010656&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010782&LanguageCode=en&DocumentPartId=&Action=Launch

Data flow control
Each send or receive block can only process one data message. Ideally, new data are available
at each user task run-through or new data can be sent.
If the output OV (send block only) indicates TRUE, the function block computes more quickly
than the data can be sent. This can happen if the receive block is not computed quickly enough
and has thus not collected all the data.
Alternatively, this block sends either cyclically or if the input value is changed. Ideally, the topical
data can be sent via the telecontrol link in connection with every user task run-through.

Data integrity
With IEC60870-5 protocol, a distinction is made between data transmission in the monitoring
direction (status values, real values, discrete values) and in the control direction (commands
and setpoints).
All data transmissions are acknowledged from the link communication level by the receiver. This
acknowledgement is not sent to the sender of the data in every telecontrol link.
For data transmission in control direction, additional acknowledgement (e.g. ACTTERM) is
possible. These acknowledgements are not sent by every telecontrol link either. For safe data
transmission, it is necessary, in such cases, to configure data readback. The receiver then
sends the data received back to the sender via the corresponding send blocks.
Information in the monitoring direction is acknowledged by the receiver on the lowest communi-
cation level (link level) when received. This acknowledgement is generated by the telecontrol
head itself with some telecontrol heads. In the event of overload/overrun, a data message may
be lost. For data in the control direction, so-called ACTTERM acknowledgement can be used.
This additional acknowledgement is sent back to the sender when the data have been executed
in the process. If data are to be sent in the monitoring direction with guaranteed transmission, it
is necessary to read back the sent value via another variable and, after observing a monitoring
time, resend in the event of an error.

Data transmission
Send blocks

On the basis of the communication protocol, it is sensible to restrict the data types at one
send block to one type. Therefore, there are 5 types of send blocks: send of status values,
commands, real values, setpoints and discrete values. These types are mapped to the IEC1131
data types BOOL, REAL and DINT. See documentation of IEC60870 Library for more informa-
tion.
Operating modes of the send blocks
The send blocks know three operating modes to send their data:
● Caused by request pin (SEND)
● Send in connection with a change of data (AUTO)
● Cyclic send of data (CYCLE)

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1648

Send via request pin
The SEND signal is evaluated on the rising edge, the RDY signal remains applied for one
computation cycle. If a rising edge is generated again at the SEND signal although no acknowl-
edgement has yet been received from the receiver, the OV pin is set in order to indicate that
an overrun has happened. The evaluation of the receive acknowledgement is carried out before
the evaluation of whether transmission is to take place. This means, assuming that there is an
appropriately fast telecontrol link, that in connection with change-driven and cyclic transmission,
a transmission job can be sent in connection with every computation of the block. In connection
with send via the request pin it is possible to send only in connection with every second
computation (send takes place only with a rising edge).

Change-driven send of data
Data are always sent when the value of the input variables changes. When changes take place,
there is an internal simulation that the SEND pin changed from 0 to 1.
In order to prevent unnecessarily frequent send in the event of mild fluctuations in the input
value, a threshold value can be configured for real values and setpoints. The input value is not
sent until it differs positively or negatively from the value last sent by more than the threshold
value.
If the input value changes again although no acknowledgement has yet been received from the
receiver, the OV pin is set in exactly the same way as in connection with send via the request
pin. If an error occurs during send, the job is automatically retried until the value has been sent
without error.

Cyclic send
The data are automatically sent after expiration of a configurable cycle time (SCANDOWN).
This cycle time is indicated in multiples of the task cycle time in which the block is computed. In
this operating mode, an overrun error can occur if the transmission is faster than the response
time of the receiver. For setpoints, it is necessary to ensure that an acknowledgement is
generated by the receiver which is not sent until the setpoint is accepted. The send block is not
ready for transmission again until after this acknowledgement has been received.

Receive blocks
In receive direction, the jobs enter the device module via the interface. The device module
selects the correct receive block using the telecontrol address. To this end, during installation
the receive blocks pass their parameterized telecontrol addresses to the device module. The
device module stores the data received and the receive blocks make the data available at their
output pins in connection with the next computation of the user task.

6.3.4.1.2 Configuration
Configuration changes >= Automation Builder 1.1/CBP 2.4

The IEC 60870 protocol allows link-ups between AC500 CPUs with onboard Ethernet (e.g.
PM595-4ETH and PM591-2ETH) and external systems.
The link-up takes place via the onboard Ethernet interface of the CPU. As of Automation Builder
Version 1.1 telecontrol is also supported for CPUs that provide more than one Ethernet interface
(e.g. PM595-4ETH and PM591-2ETH). This allows to use different Ethernet interfaces for IEC
60870 connections, hence, telecontrol configuration is changed. Further, as of this version ter-
minology is aligned with IEC 60870 standard and provides additional features that are described
in this chapter. For a description on principle telecontrol configuration.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1649

For further information on configuration changes, see the following chapters:
Control and Substations ≥ CBP 2.4 Ä Chapter 6.3.4.1.2.2 “Control station and substation
configuration” on page 1650

Import Export ≥ CBP 2.4 Ä Chapter 6.3.4.1.2.1 “Configuration changes >= Automation Builder
1.1/CBP 2.4” on page 1649

Validity Check of Configuration ≥ CBP 2.4 Ä Chapter 6.3.4.1.2.4 “Validity check of configura-
tion” on page 1670

Control station and substation configuration
General

The CPU can work as both, control station and substation.

Control station Client, master, controlling station: Synonyms for a higher-level sta-
tion (central station, monitors other stations)

Control direction Data transfer direction from the control station to the substation

Substation Server, slave, controlled station: synonyms for a subordinate IEC
60870-5-104 telecontrol station (which is monitored)

Monitoring direction Data transfer direction from the substation to the controlling station

Configure a control station in the device tree “PLC”--> “Interfaces” --> “Ethernet” --> “Protocols”:
1. Right-click “ETHx è Add objects”.
2. Select the control station from the list and click “Add object”. Configure substations and

further control stations in the same way. As of Automation Builder 1.1 any combination of
control stations and substations can be configured, in due consideration of a total number
of 10 stations.

3. Double-click the “new control station” node to open parameter configuration. In the “Link
Layer” tab access to the Ethernet interface is configured.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1650

As of Automation Builder 2.2.1 the V3 PLC telecontrol station objects from
GVL IEC60870_5_104_Connection_GVL can only be used in Structured Text
by adding the namespace of the GVL as prefix.

Example:

byteValue := IEC60870_5_104_Connection_GVL.IEC_60870_5_104_Control-
station.Con;

“Link layer” tab

In order to provide flexible usage of control stations and substations as of Automation Builder
1.1 configuration of substations has been changed. As several substations can be operated
with several Ethernet interfaces, select the Ethernet interface to be used from the pull-down
menu. Enter the IP address to the control station and if required to another control station
(redundant connection). If no IP address is defined, the substation accepts connection to any
control station.

This field is not available in the “Link Layer” tab of control stations. Selection
of ETH interface is only possible for substations. The control station is always
configured on both interfaces by default.

T1, T2, T3: The values for the connection control and message replication; timeout1/2/3.

This parameter gives the maximum number of outstanding messages and acknowledgement
behavior.
Send buffer (k): Maximum difference receive sequence number to send state variable.
Rec buffer (w): Latest acknowledge after receiving w I format APDUs.

Timeout set-
tings

Buffer settings

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1651

Network settings
Network settings are available for control stations and for substations. The IP address of the
control station and if available the IP address of another control station (redundant IP address)
can be selected by the user.
For an overview on the configured Ethernet interfaces for the control stations and substations,
double-click the “Protocols” node.

“Application layer” tab
Settings

The application layer is the communication layer with which the send and receive blocks work.

This parameter concerns only setpoints and commands. If this parameter is checked, an
acknowledgement with set ‘actterm’ is generated as reason for transmission at the time at which
the receive block is computed and outputs its telecontrol data at its output pins. On transmission
side, the data block awaits the reception of this ACTTERM acknowledgement and reacts with its
corresponding output to the reception of this acknowledgement. For commands with execution
time, the acknowledgement is generated when the command is terminated, for commands with
continuous execution time and for setpoints, the acknowledgement is generated when the data
are output to the output pins.

If this option is not enabled (default), a message that was sent is considered as ok as soon
as transmission was successful. If you enable this option, a message that was sent is not
considered as ok until a success message (foreign acknowledge) is returned from the receiver.

This time indicates how long an acknowledgement will be awaited on the application level. An
acknowledgement is generated only for commands and setpoints on the application level.

The station address defines which station will be subject to a count query. The values define
the 2 bytes for the common telecontrol address (Common addr.). The values concerned are as
follows:

Use ACTTERM

ForeignAck-
nowledge

Application
timeout

Station address

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1652

0: The station address is not used.
1 ... 254: The count is queried on the station defined by the station address.
255: The count is queried on all accessible stations.

After each new establishment of a link and once per hour, a ‘coarse time synchronisation’
message is generated. This time synchronisation is only supported from AC500 to external sys-
tems. Time synchronisation from an external system to AC500 is not provided! Incoming time
synchronisation messages are confirmed by the process station but not executed. Greenwich
Mean Time (GMT) is used as the time for the synchronisation.

After each establishment of a link or only in connection with the first establishment of a link and
after reconfiguration, an init end message is generated. After the init end message, there is a
general inquiry, if configured.

General inquiry
This parameter concerns only real values, discrete values and status values. The device
module generates a general inquiry message after each new establishment of a link. The other
side then generates a message with the reason for transmission ‘general inquiry’ for every data
point and subsequently an init end message. This procedure ensures that, in the event of a new
establishment of a link, all data are available on the reception side in topical form.

If general inquiry is activated the parameter values are sent.

With a general inquiry no integrated total values are sent.

Counter interrogation
General, 1 ... 4: The count inquiry is executed for a specific group of counters (1 ... 4). The
count inquiry is executed for all groups of counters.

The reset quality bit is sent along with the count inquiry.

The relocate quality bit is sent along with the count inquiry.

“Information objects” tab
General

Open the “Information object” tab to configure so called information objects and a common
address (known as 'data points' and 'Global address' in former Automation Builder versions).
In this tab different information objects and their services for transmission are defined. A data
point or information object is identified via a system-wide unambiguous address containing a
maximum 5 bytes.
1. Right-click in the empty view and select “Add Information Object with ASDU” to add a data

group. Select the desired object from the list (e.g. M_SP_NA_1).

ð An information object with a corresponding ASDU (Application Service Data Unit) is
created.

Timesync

Send 'Init end'
after reconnec-
tion

Activated

With parameters

Without inte-
grated totals

Group

With reset

With relocate

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1653

2. Configure the settings in the “Information Object” tab to your convenience.

3. Double-click a table cell to modify pre-set values. For some ASDUs additional sub infor-
mation objects can be configured. For this, right-click the already existing ASDU and
select “Add Information Object” to selected ASDU option. This allows configuration of 16
data points at the most (depending on the ASDU type). With “Remove Information Object”
the selected ASDU is deleted.

● ASDU name: node name of the information object (name of the ASDU).
● Data type: Data type of the ASDU.
● ASDU type: Type of ASDU.
● Common addr: Common address of the ASDU (known as 'Global Address' in former AB

Versions). Byte 1/2 of the common telecontrol address of the block (range: 0 ... 255).
● Info obj addr: Together with common address Info obj addr defines the endpoint (range: 0 ...

255).
● Norm start: Low limit (0 %) of the normalized range for real values and setpoints.
● Norm end: High limit (100 %) of the normalized range for real values and setpoints.
● Threshold: Threshold limit beyond which a change of the input value referred to.
● Description: Table cell for free text. Use this field to describe your configuration settings e.g.

differences between configuration variants.

Format of common addr and info obj addr
The following address formats of your entries in the columns Common addr and Info obj addr of
the “Information Objects” tab are possible:
● 1.2 and 3.4.5 (Default format)
● 1-2 and 3-4-5
● 258 or hex 0x102 and 197637 or hex 0x30405
● 513 or hex 0x201 and 328707 or hex 0x50403
Previously you have to choose your preferred address format:

Description of
the columns

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1654

1. Click “Tools”and then “Options...”

ð The window “Options” appears

2. Select “IEC 60870-5-104”, make your choice and click [OK].

Import options of information objects
The User can accept the imported IEC60870 information objects as single change or change as
block.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1655

IEC60870-5-104 Multiple connections
General

An AC500 with more than one substation connection must be able to identify the corresponding
control station clearly. This identification takes place exclusively via the control station’s IP
address. In order to make it possible for a non-redundant control station to have redundant
access to a substation with 2 Ethernet connections. The local substation address is ignored
during connection establishment.
In the following descriptions, the term station must not be confused with the individual connec-
tion. One station can have several connections. An IEC60870-5-104 communication always
takes place between a control station and a substation. A control station can manage several
substations and also simultaneously be a substation for one or several control stations. How-
ever, these must then be realized using different stations.
A PLC may not be configured for another PLC repeatedly as a substation or a control station
unless a disjunctive Ethernet infrastructure is used for this.
Redundant connections must be specified as such in the configuration.
An AC500 can be used only once as control station for another AC500, it makes no sense to
use the same AC500 repeatedly as a control station for the same substation. Such a structure
is configured as a redundant control station as long as only one AC500 exists as a control
station per substation. However, this control station may have 2 IP addresses. Therefore, this
configuration must either have the IP address 0.0.0.0 entered on the substation for the control
station, meaning that all IP addresses are accepted and no other control station can access
this AC500 or alternatively the possible control station addresses must be specified (ETH1 and
ETH2).

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1656

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
If you plan to control several substations with the AC500, they can be cascaded. This results in
a tree structure.

(1) 2 control stations
(2) Substation and 3 control stations
(3) Substation and 3 control stations
(4) Substation
(5) Substation

In the following, the notation 192.168.1.0/24 is used for TCP/IP networks. Here, the figure /24
specifies the network mask with 255.255.255.0 and 192.168.1.0 describes the network. The
valid addresses for this Class C network are 192.168.1.1 to 192.168.1.254! Only the last byte of
the address is provided on the respective devices, with e.g. .10. This means that the respective
device has the address 192.168.1.10.

Tree constella-
tion

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1657

Minimal structure
A control station with an Ethernet interface is connected to a substation with an Ethernet
interface.

(1) Control station
(2) Substation

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The respective substation IP address must be specified at the control station. For this, in the
network settings of the control station (1) enter the IP address of the substation (in the example:
192.168.1.25). Option “Enable redundant connection” must be disabled.

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Either the control station IP address or the general address 0.0.0.0 must be specified at the
substation (2). For this, in the network settings of the substation enter the IP address of the
control station (in the example: 192.168.1.10). Option “Enable redundant connection” must be
disabled.

If the general address 0.0.0.0 is used at the substation, no further control station
can be configured on this controller for a further substation.

Configuration at
control station

Configuration at
substation

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1658

Minimal redundancy structure
The most simple redundant structure with an AC500 consists of a redundant control station
(not AC500) which is connected to the AC500 substation with 2 different IP addresses. These
redundant control stations must synchronize which control station is active.
Only one control station can be active at any given time.

(1) Control station 1A (Not AC500)
(2) Control station 1B (Not AC500)
(3) Substation
(4) Redundancy link

The respective substation IP address must be specified at the control stations 1 and 2 (not
AC500). For this, in the network settings of both control stations enter the IP address of the
substation (in the example: 192.168.1.25).

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Either the control station IP addresses or the general address 0.0.0.0 must be specified at the
substation (3). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.1.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control station
can be configured on this controller for a further substation.

Configuration at
control stations

Configuration at
substation

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1659

Network redundancy
General

For network redundancy a control station can reach a substation via 2 paths.
Both the control station and the substation can have 2 different IP addresses. Without special
network routing, 2 separate networks should exist, within which both the substation and the
control station each have 2 interfaces.
Possible variants of network redundancy are described in the following.

Network redundancy with 2 separate networks

(1) Control station with 2 redundant paths
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.2.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

Configuration at
control stations

Configuration at
substation

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1660

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Network redundancy with 1 network and 2 Ethernet ports in substation

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.1.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

Configuration at
control stations

Configuration at
substation

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1661

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Network redundancy with 1 network and 1 Ethernet port in substation

No online redundancy.

Only one connection will be established.

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 1 Ethernet interface

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 0.0.0.0). Option “Enable redundant connection” must be disabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

Configuration at
control stations

Configuration at
substation

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1662

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Network redundancy with 2 Ethernet ports in substation

(1) Control station with 2 paths to reach substation
(2) 1 Substation with 2 Ethernet interfaces

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.1.26). Option “Enable redundant connection” must be enabled.

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses
of the control station (in the example: 192.168.1.11 and 0.0.0.0). Option “Enable redundant
connection” must be disabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1663

Full control station redundancy
A control stationcan consist of two fully redundant units (not AC500s), which are connected via
a redundancy link. These control stations must ensure that only one of them at a time is actively
connected to the substation and communicates with it. The inactive control station, however,
can establish non-active connection with a substation and monitor it with keep alive packages.

(1) 2 redundant Control stations (Not AC500)
(2) 1 Substation with redundant Control station and 2 Ethernet interfaces (2nd port)
(3) Redundancy link

The substation’s IP address must be specified at the control stations (1) (not AC500). For this,
in the network settings of the control station enter the IP addresses of the substation (in the
example: 192.168.1.25 and 192.168.2.26).

PM591-2ETH, PM595-4ETH, PM5650-2ETH:
Either the control station's IP addresses or the general address 0.0.0.0 must be specified at
the substation (2). For this, in the network settings of the substation enter the IP addresses of
the control station (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be enabled.

If the general address 0.0.0.0 is used at the substation, no further control
station on another substation can be configured on this controller. Equally, the
substation connection must be activated for both interfaces.

Configuration at
control stations

Configuration at
substation

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1664

Multiple control stations on the same network
As of firmware version 2.4, an AC500 can be used as a substation for several control stations.
For this, the control stations must be distinguished by their IP addresses. Should a control
station have more than one IP address (redundancy), both possible IP addresses should also
be entered for the allocated substation connection. As a result, even despite being equipped
with several Ethernet interfaces, a device can only be one allocated control station at a time
for a determined substation. Thus, several substations can be configured for different control
stations on a AC500.

(1) Control station 1
(2) Control station 2
(3) 2 Substations (IEC60870-5-104 2nd Connection)

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The substation’s IP address must be specified at the control stations. For this, in the network
settings of the control station (1 and 2) enter the IP addresses of the substation (in the example:
192.168.1.25). Option “Enable redundant connection” must be disabled.

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
Both control station's IP addresses must be specified at the substation (3). For this, in the
network settings of the substation enter the IP addresses of the control stations (in the example:
192.168.1.10 and 192.168.1.11). Option “Enable redundant connection” must be disabled.

Configuration at
control stations

Configuration at
substations

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1665

Multiple control stations on different networks
As of firmware version 2.4, an AC500 can have several local Ethernet interfaces which can
be used for separate control station connections. For this, a control station must be identified
via its IP address. The substation address used locally is not used to distinguish a connection
in order to enable a network and therefore route redundancy. On AC500, the acception of
IEC60870-5-104 connections on an interface can only be prevented.

(1) Control station 1
(2) Control station 2
(3) 2 Substations with 2 Ethernet interfaces (2nd port and 2nd connection)

PM57x-/ PM58x-/ PM59x-ETH, PM5650-2ETH:
The substation’s IP addresses must be specified at the control stations (1 and 2). For this, in the
network settings of the control station enter the IP addresses of the substation (in the example:
192.168.1.25 and 192.168.2.26). Option “Enable redundant connection” must be disabled.

PM591-ETH, PM595-ETH, PM5650-2ETH:
Both control station's IP addresses must be specified at the substation (3) under both substation
connections. For this, in the network settings of the substation enter the IP addresses of the
control stations (in the example: 192.168.1.10 and 192.168.2.11). Option “Enable redundant
connection” must be disabled.

Configuration at
control stations

Configuration at
substations

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1666

Double connection

This configuration does work.

But it is senseless!

It is possible to configure a double connection between 2 stations using 2 separate networks (at
least logically separated sub-networks).
However, such a setup has no advantages via-à-vis the minimal structure right at the start
Ä Chapter 6.3.4.1.2.2.7.2 “Minimal structure” on page 1658.
For this setup, connection data must be double configured and double resources are also
required at the stations, not providing any advantages whatsoever.
Rather the opposite is true, because such configurations are highly prone to errors.

(1) 2 Control stations with 2 Ethernet interfaces
(2) 2 Substations with 2 Ethernet interfaces

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1667

Faulty configuration

This configuration does not work!

If an AC500 is configured as a control station, the interface which is used to reach the substa-
tion is not defined.
The decision as to which interface is used for this is taken by TCP/IP when running.
It is also dependent on the current network configuration.
Here, the current link status and the order of link recognition may be decisive for the interface to
be used.
Such a scenario would not result in stable communication as both substations cannot clearly
distinguish the control stations.
Instead, the connection management for a substation will assume that the control station has
lost the connection and then establishes a connection.

(1) 2 Control stations with 2 Ethernet interfaces
(2) 2 Substations with 2 Ethernet interfaces

Export a CSV file
As an alternative many values can be modified at a time by exporting the configuration to a CSV
file. After modifying the file data, import the CSV file.
Ä Chapter 6.3.4.1.2.3 “Import/Export functionality ” on page 1669

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1668

Import/Export functionality
As of Automation Builder 1.1 (CBP >= 2.4) configuration of control stations and substations
can be exported/imported via CSV file. Open the CSV file with a spreadsheet software (e.g.
Microsoft Excel) and modify the values within the file to your convenience:
1. Export configuration data: right-click the node of the control station or substation to be

exported.

2. Click “Export è IEC 60870-5-104 information objects (CSV)” and store the CSV file to a
desired directory.

3. Open the CSV file with a spreadsheet software (e.g. Microsoft Excel) and change the
values to your convenience. Added table columns are only accepted after the last column.

4. Import configuration data: right-click the node of the control station or substation that has
been exported previously.

5. Click “Import è IEC 60870-5-104 information objects (CSV)” and select the CSV file from
the file system. Configuration data is imported.

As of Automation Builder 1.1.1 during file import the project data is compared with the project
data that is already available. In order to prevent data from being overwritten inadvertently, you
can select the data that shall be imported in the “Project Compare - Differences” window:

Data on the left side of the window refers to already available project data. This data is dis-
played under “Control station è Information objects” tab. Data on the right side of the window
refers to new data that can be imported after your confirmation. Decide whether to import (and
overwrite) the data or not.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1669

● Data in black color means the existing data and the data to be imported is identical.
● Data in red color means the existing data and the data to be imported differ. Decide whether

to import the new data (and to overwrite the existing data) or not.
● Data in blue color means, the data to be imported is new and will be added to the existing

data.
● Data that has been confirmed for the import already is displayed in green color (after

clicking [Accept Single]).
In order to move data from one side of the window to another, select the data and click
[Accept Single]. Data is highlighted in yellow.

To confirm the import of all new data, click the top entry (here: All: ASDU name - ASDU tpye -
Common addr - ...). Then, click [Accept Single].
Close the “Project Compare - Differences” tab, save your project and confirm the message. The
changes are displayed in the “Information objects” tab.

Validity check of configuration
We recommend you to verify the IEC configuration of control stations and substations: Right-
click a control station or substation -> “Check configuration”.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1670

The check will look for the following topics:
● Duplicate addresses.
● Stations without any Information objects.
● ASDU names, which are not unique.
When a check finds errors or incompatibilities this will be reported in a separate messages view
at the buttom of the window:

With a double-click on the error line, the part of the configuration with the violation will be
opened. Now, you can correct the error.

6.3.4.1.3 IEC60870 compatibility list
In order to implement specific telecontrol systems, this companion standard presents sets of
parameters and alternatives from which subsets must be selected.
AC500 – IEC60870-5-104 Protocol Interoperability / Compatibility List

6.3.4.2 IEC 61850 Server
6.3.4.2.1 Introduction to IEC 61850

The IEC 61850 communication protocol standard for electrical substations enables the integra-
tion of all protection, control, measurement, and monitoring functions by one common protocol.
It provides the means of high-speed substation applications, station wide interlocking and other
functions requiring intercommunication between IEDs = blue boxes in the following figure.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1671

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011172&LanguageCode=en&DocumentPartId=&Action=Launch

The well described data modelling, the specified communication services for the most recent
tasks in a station makes the standard to a key element in modern substation systems.
This manual describes mainly how the IEC 61850 standard is applied in AC500. References
and brief descriptions of the IEC 61850 standard are also included in this introduction chapter.
Anyhow, it is assumed that the reader has basic knowledge about the IEC 61850.
To understand the IEC 61850 standard and to be able to find the related information, the
following parts of the standard are important:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1672

IEC 61850-5 explains how substation functions are realized by logical nodes = function blocks
which are running in the IEDs. Operating an isolator from station level for example requires the
logical nodes: “IHMI”, “CSWI”, “CILO” and “XSWI”.

The logical nodes and their data objects are defined in IEC 61850-7-4, for example “CSWI”,
which is an abbreviation for “Switch controller”.

CSWI class
Data object name Common data class Explanation
Status information
LocKey SPS Local or remote key

Loc SPS Local control behavior

OpOpn ACT Operation "Open switch"

SelOpn SPS Selection "Close switch"

OpCIs ACT Operation "Open switch"

SeLCIs SPS Selection "Close switch"

Controls
OpCntRs INC Resettable operation counter

LocSta SPC Switching authority at station level

Pos DPC Switch, general

PosA DPC Switch L1

PosB DPC Switch L2

PosC DPC Switch L3

Data objects are based on common data classes, which are defined in IEC 61850-7-3, for
example the data object “Pos” (Position) of “CSWI” is based on data class “DPC” (Double Point
Controllable).

DPC class
Attribute name Attribute type FC TrgOp Value / Value range
Control and status
ctlVal BOOLEAN CO off (FALSE), on (TRUE)

operTm TimeStamp CO

origin Originator CO, ST

ctlNum INT8U CO, ST 0...255

stVal CODED ENUM ST dchg Intermediate-state, off, on, bad-
state

q Quality ST dchg

t TimeStamp ST

stSeld BOOLEAN ST dchg

Configuration, description and extension
pulseConfig PulseConfig CF

ctlModel CtlModels CF

Part 5: Commu-
nication require-
ments for func-
tions and device
models
Part 7-4: Com-
patible logical
node classes
and data
classes

Part 7-3:
Common data
classes

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1673

DPC class
sboTimeout INT32U CF

sboClass SboClasses CF

d VISIBLE
STRING255

DC Text

dU UNICODE
STRING255

DC

Data attributes can be addressed by their full path, for example “CSWI.Pos.stVal” contains
the switch status of a certain isolator and can have the values: on, intermediate-state or off
(bad-state only in case of defect auxiliary switches).

Abstract communication services between logical nodes are described in IEC 61850-7-2. Fol-
lowing figure shows how a client (e.g. “IHMI”) sends an operate command (“Oper_req”) to a
control object (e.g. “CSWI”). The control objects sends a confirmation (“Oper_rsp”) immediately
and a report with the updated status (“Report_req”) after the “CSWI.Pos.stVal” has changed to
off.

Another service is GOOSE (Generic Object Oriented Substation Event), which is used for fast
communication like tripping a circuit breaker or interlocking. GOOSE messages are always
retransmitted. Slowly in stable conditions and fast after an event has occurred.

T0 Retransmission in stable conditions (no event for a long time).
(T0) Retransmission in stable conditions may be shortened by an event.
T1 Shortest retransmission time after the event.
T2, T3 Retransmission times until achieving the stable conditions time.

Part 7-2:
Abstract Com-
munication
Service Inter-
face (ACSI)

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1674

Communication profile (IEC 61850 stack) is described in IEC 61850-8-1. This part of the
standard maps the abstract services from IEC 61850-7-2 to concrete communication profiles:
While core ASCI services like control and reporting are using MMS and TCP/IP, the fast
GOOSE service is working directly on the Ethernet layer.

 IEC 61850-7-2
 Client/server GOOSE

Application MMS (ISO 9506)

Presentation ASN.1

Session Session

Transport TCP

Network IP Ethertype

Data Link Ethernet

Physical Physical

SCL (Substation Configuration Language) is described in IEC 61850-6. The SCL is an XML
based definition of how to describe substation single line, IEDs with logical nodes and their com-
munication through a communication bus. The following types of SCL files are distinguished:
● SSD (System Specification Description), describing the single line and required logical

nodes.
● ICD (IED Capability Description), containing the capability (possible logical nodes) of one

IED type.
● CID (Configured IED Description), containing the configuration of a concrete IED with

instantiated logical nodes, services and communication addresses.
● SCD (Substation Configuration Description), containing description of the complete substa-

tion, consisting of single line, communication bus and IEDs with logical nodes, which are
linked to the primary equipment in the substation section.

The part IEC 61850-6 also includes the roles of different tools as well as the engineering
concepts. It distinguishes between system wide engineering with a system configurator and IED
specific engineering with an IED Configurator.

Part 8-1: Spe-
cific Communi-
cation Service
Mapping
(SCSM)

Part 6: Configu-
ration descrip-
tion language

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1675

Conformance tests and the basis for conformance documents are handled in IEC 61850-10.

Short list of IEC 61850 related abbreviations.

ASCI Abstract Common Services Interface

CID SCL type: Configured IED Description

CILO Logical node in Group "C -Control functions": Interlocking

CSWI Logical node in Group "C - Control functions": Switch Controller

DPC Common data class “controllable double point”

GOOSE Generic object oriented substation event

ICD SCL type: IED Capability Description

IED Intelligent Electronic Device (e.g. control or protection relay, AC500, ...)

IHMI Logical node in Group "I - Interface and archiving": Generic human – machine
interface

MICS Modeling Information Conformance Statement

MMS Manufacturing Message Specification, ISO 9506

PICS Protocol Information Conformance Statement

PIXIT Protocol Extra Information

Pos Position of a switch or circuit breaker

SCD SCL type: Substation Configuration Description

SCL Substation Configuration Language

SSD SCL type: System Specification Description

stVal status Value

TCP/IP Transmission Control Protocol / Internet Protocol

TICS Tissue Information Conformance Statement

XSWI Logical node in Group "X - Switchgear": Switch, disconnector or earth-switch

Further abbreviations can be found in the standard:
IEC 61850-2: Glossary – Terms and definitions, abbreviations
IEC 61850-7-3: List of all Common data classes, like DPC
IEC 61850-7-4: List of all Logical nodes, like CSWI

6.3.4.2.2 AC500 and IEC 61850
General

After installation of the IEC 61850 - server package, the AC500 can act as an Intelligent
Electronic Device (IED) in an IEC 61850 network. The AC500 IEC 61850 package allows to
connect substation automation systems to PLC applications Automation Builder is used as IED
configurator tool for modelling IEC 61850 data and communication in AC500.

Capabilities
This IEC 61850 server package 4.x allows the AC500 V3 to act as an IED with IEC61850
server, Edition 1, providing following functionality:

Part 10: Con-
formance
testing
Abbreviations

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1676

● Configure a data model with logical nodes and map their data attributes to IEC 61131
application.

● Configure data sets to bundle data objects and attributes for publishing them as MMS
reports or GOOSE control blocks.

● MMS server for core ASCI services like sending MMS reports over TCP/IP.
● GOOSE Publisher, sending GOOSE control blocks in a very fast way by bypassing TCP/IP

layers.
● GOOSE Subscriber, receiving GOOSE reports from other IEDs and map their data attrib-

utes to the IEC 61131 application.
● SNPT client or server for time synchronization (included in the standard package of AC500).

To get information and an understanding about the implemented possibilities of IEC 61850 in
the AC500, the details are described in the IEC 61850 conformance documents.
Conformance documents, which can be found in the example folder.

Example projects for the libraries can be found in the example folder: “Help
è Project examples” in the Automation Builder menu.

Prerequisite: Install the related library package with “Automation Builder
è Tools è Installation Manager” - [Modify].

● MICS (Modeling Information Conformance Statement), contains the declaration of the used
logical node types.

● PICS (Protocol Information Conformance Statement), contains the details and what is sup-
ported regarding protocol facilities.

● PIXIT (Protocol Extra Information), contains additional information on how the IEC 61850 is
implemented and used.

● TICS (Tissue Information Conformance Statement), contains the supported tissues, which
are handled in the tissues process as defined by UCA, Utility Communication Architecture
forum. The tissues handling is found in IEC TICS.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1677

http://www.tissues.iec61850.com

The same folder also contains the TÜV certificate for AC500 V3 midrange CPUs: PM5630,
PM5650, PM5670 and PM5675. AC500-eCo V3 as released after the certification but is capable
of IEC 61850 as well. The certificates can also be accessed online from the UCA database.
Search for organization “ABB Automation GmbH”.
Automation Builder is used as IED configurator tool according to IEC 61850-6 for modelling the
IEC 61850 data structures and connecting them to the PLC application. It allows import and
export of SCL to transfer detailed configuration information between Automation Builder and
other IEC 61850 configuration tools:
● .cid file (from another IED) or .scd file (complete substation with several IEDs) can be

imported.
● .cid file (AC500 configured as IED) can be exported.

Limits/technical data
● Edition 1 of IEC 61850 is supported only.
● MMS server only.
● Data sets for MMS and GOOSE reporting: Max. 20 data sets with max 50 entries each.
● MMS reporting: Max. 5 MMS clients.
● GOOSE Subscriber: Max. 50 Ethernet frames per cycle.

If this is not sufficient, the workaround is to reduce the cycle time.
● Not possible to have 2 or more IEC 61850 server in one Automation Builder project.

Workaround: Create 2 or more projects.
● Only one logical device per IEC 61850 server.
● Only one report per data set.
● Automation Builder is an IED Configurator but no system configurator tool as defined in IEC

61850-6. It cannot export .ssd or .scd files.

Installation
The “IEC 61850 Server (PS5602)” package can be installed with the Automation Builder -
Installation Manager.

To set the IEC 61850 server into RUN, a runtime license PS5602-61850 per CPU must be
purchased through the local sales support.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1678

http://www.ucaiug.org/org/TechnicalO/Testing/Lists/IEC61850Ed1ClientCertificates/AllItems.aspx

Ä Chapter 6.3.2.2.2 “PLC runtime licensing” on page 1446

Engineering workflow
Examples

AC500 as IED can act as IEC 61850 MMS server (Example A) and / or GOOSE Publisher and
Subscriber (Example B). Most of the engineering steps are common and are explained in this
chapter. The examples projects A and B can be found in the Automation Builder example folder.

Example projects for the libraries can be found in the example folder: “Help
è Project examples” in the Automation Builder menu.

Prerequisite: Install the related library package with Automation Builder Installa-
tion Manager - [Modify].

Communicating through MMS server:
A simulated switch in AC500 which can be operated from an operator IED and sends back its
status through an MMS report.

Communication though GOOSE:
AC500 publishes a GOOSE control block (e.g. “ping”) to another IED (for example REF615 or a
second AC500), which itself sends back a GOOSE control block (e.g. “pong”), that is subscribed
by AC500 IED.

Example A

Example B

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1679

For engineering of the above functionalities, the Automation Builder is acting as IED configu-
rator tool according to IEC 61850-6. The following engineering steps (yellow circles in the
figures above) need to be executed:
1. Configure the “IEC 61850 Server” with logical nodes, which are connected to global

variables in the IEC 61131 application.
Ä Chapter 6.3.4.2.2.5.2 “Configuration of IEC 61850 server with logical nodes”
on page 1680

2. Group data objects and attributes of the logical nodes into data sets.
Ä Chapter 6.3.4.2.2.5.5 “DataSet” on page 1688

3. Publish data sets as MMS report.
Ä Chapter 6.3.4.2.2.5.6 “Report (MMS)” on page 1689

4. Publish data sets as GOOSE Publisher.
Ä Chapter 6.3.4.2.2.5.7 “GOOSE Publisher” on page 1691

5. Export server as *.cid file. So that other IEDs can access logical nodes and data sets and
subscribe to MMS reports or GOOSE control blocks.
Ä Chapter 6.3.4.2.2.5.8 “Export Server ” on page 1693

6. Configure GOOSE Subscriber to subscribe GOOSE control blocks from other IEDs after
importing *.cid or *.scd files. The control blocks are connected to the “PLC_PRG (PRG)”
application.
Ä Chapter 6.3.4.2.2.5.9 “GOOSE Subscriber” on page 1694

7. Generate code for IEC 61850 POUs.
Ä Chapter 6.3.4.2.2.5.10 “Generate IEC61850 code” on page 1696

8. Generate the application “PLC_PRG (PRG)” including logical node functionality.
Ä Chapter 6.3.4.2.2.5.11 “Generate the application” on page 1697

Configuration of IEC 61850 server with logical nodes
The following describes how to create an “IEC 61850 Server” and configure the IEC 61850 data
model with logical nodes, data objects and data attributes which can be connected to global
variables in the IEC 61131 application. Starting point is a new or existing project with AC500 V3
CPU.

Add an “IEC 61850 Server” object below Ethernet port “ETH1” or “ETH2”, depending on which
IP address the MMS server should use. The IP addresses of “ETH1” and “ETH2” are configured
with the “IP-Configuration” tool.

Add IEC 61850
Server

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1680

GOOSE Publisher and Subscriber is independent of the IP address. Instead,
the Ethernet MAC addresses must be configured in GOOSE Publisher and/or
Subscriber. Even if only GOOSE is configured like in example B, an “IEC 61850
Server” is required, which can be placed below any Ethernet port.

Ä Chapter 6.3.4.2.2.5.7 “GOOSE Publisher” on page 1691

Ä Chapter 6.3.4.2.2.5.9 “GOOSE Subscriber” on page 1694

The properties of the “IEC 61850 Server” can be configured. For basic functionality, the default
values can be used.

Property Description
Server Name Name of the server.

Max.client count The maximum number of clients that can connect to the IED, possible
values: 1, 2, 3, 4, 5

Allowed IPs Allowed IPs for clients 1...5.
Default is 0.0.0.0, whereby an IP address that equals 0.0.0.0 means that
no IP address validity test will take place. If more than one client connec-
tion was selected above, additional IPs must be configured for each one.
As soon as an IP address is parameterized with 0.0.0.0, testing for all
connected clients is deactivated.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1681

Property Description
Time synchronisation Selection: SNTP

SNTP (only possible option): (S)NTP time synchronization
Ä Chapter 6.3.4.2.2.7.1 “Time sync” on page 1707

The following values should only be used if the PLC time is interpreted as
UTC time:
1. Input field Time zone: Offset between Greenwich (GMT)- and the local
time (for Germany 1 h, for example). The value is limited between -12 and
+ 14.
2. Input field: DLS Mode: Day light saving. Possible values:
● 0 = No automatic summertime/wintertime changeover.
● 1 = Timeover from wintertime to summertime on last the Sunday in

March, changeover from summertime to wintertime on the last Sunday
in October.

Task Prio I Interval Task, which will be generated by Generate IEC 61850 code:
1. Input field - entry of the priority,
2. Input field - entry of the interval in ms.

TCP KeepAlive [sec] The KeepAlive is to check the connection to the client.

User application name Enter the name of the user application for optimized GOOSE performance.
The IEC 61850 task will execute in the following order:
1. GOOSE Subscriber
2. User application
3. GOOSE Publisher and MMS reporting
If this field is empty, the user application (step 2) will not be called by the
IEC 61850 task, but by the standard task.
Two tasks are asynchronous and might lead to slower performance.
Ä Chapter 6.3.4.2.2.6.7 “GOOSE performance optimization” on page 1705

The server is the root object for creating the IEC 61850 data model consisting of
“LogicalDevice”, logical nodes, data objects and data attributes.

Add the “LogicalDevice” by selecting it in the left window and inserting it below the server with
the arrow button “>”.

Following properties of the logical device can be configured.

Property Description
Device Name Name of the LogicalDevice

Add LogicalDe-
vice

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1682

Two standard logical nodes (“LLN0” and “LPHD1”) are added automatically. Further logical
nodes (e.g. “XSWI”) can be added by selecting them from the left window and inserting them
below the logical device with the arrow button “>”.
Following properties of the logical device can be configured.

Property Description
Node prefix Optional prefix for the selected LNC instance.

The prefix is put in front of the LN name in the
server tree.

Logical Node index Index to differentiate between several
instances of the same logical node type. It is
assigned automatically with increasing order,
starting with 1. If it is changed manually, dupli-
cates should be avoided.

Logical nodes are instantiated with their mandatory data objects “DO”. Optional data objects can
be added by selecting them in the left window and inserting them below the logical node with
the button “>”.

Data objects have no properties to be configured.

Add logical
nodes

Add data
objects

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1683

Data objects are instantiated with their mandatory data attributes “DA”. Optional data attributes
can be added by selecting them in the left window and inserting them below the data object with
the button “>”.

Data attributes can be mapped to variables in the IEC 61131 application by the following
properties.

Property Description
Monitoring Var I Initvalue Name of the monitoring variable, which can

be written by AC500 and read by an IEC
61850 client, for example the status stVal of
a switch position / An initial value can be
defined optionally.

Control Variable Name of the control variable which can be
written from an IEC 61850 client and read
by AC500, for example a switch command
Oper.ctlVal.

Add data attrib-
utes and map-
ping to varia-
bles

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1684

Property Description
Autom. declare By activating the Autom. declare checkbox

the variable is declared by the IEC 61850 con-
figurator and stored in the IEC61850_Gener-
ated_GVL (of the IEC61850 generated POUs
folder) after generate code of the IEC 61850
server.
If it is not declared automatically, the variable
must be declared by the user. Instead, an IO
point can be chosen as monitoring or control
variable.

Trigger options With the trigger options you select the events
which might trigger a report. The selected
trigger option is displayed in the status bar.
Ä Chapter 6.3.4.2.2.5.4 “Status bar”
on page 1686

Monitoring - and control direction, reading and writing
It may be the case that the IEC 61850 client will read the monitoring variable of an attribute and
will write the control variable of the same attribute. Monitoring variable and control variable must
not be the same CODESYS variable.
In monitoring direction, the data flow takes place from the “IEC 61850 Server” to the connected
IEC 61850 client to read the CODESYS monitoring variable, for example MMS report service.
In control direction the data flow takes place from the connected IEC 61850 client to the “IEC
61850 Server” to write the CODESYS control variable, for example operate service.
The following figure shows an example where the “ctrlModel” can be changed from server
side (Monitoring variable “control_model_mon” with initial value 1) or from client side (Control
variable “control_model_ctrl”).

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1685

Status bar
In the status bar of the IEC 61850 editor you find object-specific detail information about the
selected object.

Only the information “Name” is displayed for the server and the logical device.

Object informa-
tion: Server and
logical device

Object informa-
tion: LN

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1686

Status Description
Name Name of the selected LN instance.

Description Description of the selected LN instance.

Group Associated group of the LN instance .
Examples:
[Axxx]-Automatic
[Cxxx]-Control
[Gxxxx]-Generic
...

Prefix Prefix of the LNC instance, entered by the user.

Status Description
Name Name of the attribute.

Description Description of the selected CDC instance.

Option Option of the selected CDC instance.
M = Mandatory
O = Optional

CDC Type of the selected CDC instance.

Instno Instance number of the CDC instance.
Only optional CDCs can have instance numbers. If there is
only one optional CDC, it has no instance number. Otherwise
1 to n.

Objects with the mandatory options are inserted automatically when adding the
logical device.

Status Description
Name Name of the attribute.

FC Functional constraint of the selected attribute.

Option Option of the selected attribute:
M = Mandatory
O = Optional

Type Data type of the attribute.

Object informa-
tion: Common
Data Class
Object (CDC
Object)

Object informa-
tion: Attribute
(DA)

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1687

Status Description
Trigger option Trigger option of the attribute.

dchg = data change
dupd = data update
qchg = quality change
<empty> = no trigger option

Value Associated variable

Writeable Access for the attribute.
R = Read
W = Write
RW = Read and write

DataSet
In the tab of the IEC 61850 editor it is possible to create and delete data sets, assign data
attributes (DA) and data objects (DO) to a data set and delete existing assignments.

“DataSet” tab with “LLN0.DS1” data set consisting of data objects and data attributes.

The left window displays the created “IEC 61850 Server”.
Ä Chapter 6.3.4.2.2.5.2 “Configuration of IEC 61850 server with logical nodes” on page 1680

The right part is for creating, editing and deleting of data sets. In the upper right window data
sets are listed. In the lower right window, the attributes and data objects can be inserted by
selecting them in the left window and inserting them by the button “>”.
The maximum number of data sets is given in Limits/technical data.
Ä Chapter 6.3.4.2.2.3 “Limits/technical data” on page 1678

The status bar at the bottom shows more details of the chosen items.

Structure of the
tab

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1688

The order of the attributes of a data set is important for the receiving and the
sending of GOOSE messages. Type and order of the entries from sender and
recipient must be identical for GOOSE communication.

Ä Chapter 6.3.4.2.2.5.9 “GOOSE Subscriber” on page 1694

Buttons:
● [New]: Create a new data set. This is displayed in the “DataSets” section and is

named “LLN0.DataSet_Suffix”. The suffix is incremented beginning with 0 (1. Data set:
LLN0.DataSet_0 ...)

● [Delete]: Delete a data set: Select the desired data set in the “DataSets” section and
activate the [Delete] button.

● [>]: Assign an attribute or a data object to the selected data set. First select the data set
in the upper right window then select the attribute or the data object in the left window and
activate the “>” button.

● [<]: Deletes an element from a data set. First select the data set in the upper right window
then select the attribute or the data object in the lower right window and activate the “<”
button.

● : Moves the selected entry one row up.
● : Moves the selected entry one row down.
Input field:
● “Name: ” Name of the data set can be edited. The name gets the prefix “LLN0.”.

Report (MMS)
In this tab of the IEC 61850 editor it is possible to create and parameterize buffered und
unbuffered reports. A report transports the data, that are assigned to it, to the connected client
in the event of a trigger. Each report a data set must be assigned to.

In the left part the created report control blocks (RCB) are listed. The following buttons are
available:
● [New]: Create a new report control block.
● [Delete]: Delete the selected report control block.
In the middle part you make general settings for the reporting configuration.

Setting Description
Buffersize Buffer size of buffered reports (in bytes).

Name Unique report block name within the logical node.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1689

Setting Description
Description Description of the report block.

Integrity Period [ms] Stealthy general interrogation. After this time the referenced data set will be actuated.
Time (ms) between two messages.
The messages are transferred cyclic, independent from other events.

Buffered Enable / disable the report buffering.
A buffered report stores the data, even if there's no connection to the client. In the
case of an unbuffered report, the messages will get lost, if there is no connection to
the client.

Buffer Time [ms] Buffer time is the amount of time that the server waits to transfer a report after a
given event occurs. Events that occur during this time period are collected and then
transferred as a batch.
If the buffer time is 0, the telegram will be sent immediately. For example, if the buffer
time 10s the telegram will be sent after this time period or when the value changes the
second time.

Config Revision Versioning is used to identify whether or not a member was deleted from a data
set or whether member order has changed. Such changes cause values to not be
transferred, or cause values to be in a different location within the report. Such an
event is communicated to the client with a new version number.
Since all data sets are firmly defined, this identifier does not apply to the solution
described here.

DataSet Data set reference.

The right part is for the setting of the following options:
● “General options”: Control of the reporting behavior. An activated checkbox means, that the

information is transferred by the message.
● “Buffered specific options”: can be activated, if the option “Buffered:” is activated.
● “Trigger options”: Determining of attributes to select the events which may trigger a mes-

sage.
If the checkbox is activated the information will be transferred by the message.

Setting Description
Send Config Revision “Config Revision” information.

Send Data Reference Enable/disable to transfer the complete reference information,
for example: LogicalDevice/GGIO1.ST.Mod.ctlNum

Send DataSet name Enable/disable to transfer the data set name.

Send Reason for Inclusion Enable/disable to transfer the reason of transmission for each
attribute.

Send Sequence Number Enable/disable to transfer a unique sequence number for each
message.

Send Time Stamp Enable/disable to transfer the timestamp of transmission for
each message.

Setting Description
Send Entry ID Enable/disable to transfer the entry ID.

Send Buffer overflow Enable/disable to transfer the message if a buffer overflow
occurs.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1690

Setting Description
Data Change Enable/disable to trigger the report if a “Data Change” event

occurred.

Data Update Enable/disable to trigger the report if a “Data Update” event of
an attribute occurred.

Quality Chance Enable/disable to trigger the report if a “Quality Change” event
of an attribute occurred.

Integrity Enable/disable the cyclic transmission of the report inde-
pendent of any data changes (Stealthy general interrogation).
The time period has to be defined in the “Integrity Period”
general setting.

General Interrogation

1. Activate the [New] button.
2. Select the desired data set from the “DataSet” selection list.

GOOSE Publisher
In the “GOOSE Publisher” tab of the IEC 61850 editor you create, edit and delete GOOSE
messages. If a value changes in the selected data set, a GOOSE message is sent.

NOTICE!
The order of the attributes of a “DataSet” is important for the receiving and the
sending of GOOSE messages. Type and order of the entries from sender and
recipient must be identical for GOOSE communication.

NOTICE!
To receive a GOOSE message from an IED, sender and recipient must have
the identical settings in the following input fields:
– “APPID”
– “GOOSE ID”
– “DataSet” structure (with regard to order and data type of the attributes).

Create a report
control block
and assign it to
a data set

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1691

After the data set is sent, it is sent again after a time interval of 500 ms. The repeat time then
doubles and the data set is sent again. The data set is sent repeatedly until the value set in
the “Repeat Time” input field is reached. The data set is then sent again at the “Repeat Time”
interval.
Sections of the tab:
List of the GOOSE control blocks (GCB) in the left part.
A GOOSE control block is a GOOSE message.
Buttons:
● [New]: Create a new GOOSE control block.
● [Delete]: Delete the selected GOOSE control block.
General settings in the top right part:

Setting Description
Name Name of the GOOSE control block, editable.

Description Description of the GOOSE control block.

GOOSE ID Unique character string of the GOOSE control block, editable.

DataSet Data set sent as a GOOSE message.

MAC Multicast addressing
Multicast addressing is used to send GOOSE messages. Addressing
allows an entire group of devices to exchange data with each other.
Requirement: Unique address allocation of the different device groups.
Valid range of values: 01-0C-CD-01-00-00....01-0C-CD-01-01-FF

APPID Application-ID
Number for the system-wide unique identification of a GOOSE control
block. To exchange GOOSE telegrams, this number must be identical for
sender and recipient.
Valid range of values: 0 ... 4095

Source Address (MAC) [Browse] button: Looks for an Ethernet port in the network.
Requirement - an existing network path to the PLC.

GOOSE Publisher settings in dem middle right part.

Setting Description
Needs Commissioning Indicates whether the control block must be checked.

Value is provided from the configurator. Usage of the flag is customer-spe-
cific.

DataSet Config Revision Integer value with the version of the GOOSE control block.

Max. Time [ms] “timeAllowedtoLive” for slow retransmission phase (no new values).
“timeAllowedtoLive” = 2 * resend-time.
Ä Chapter 6.3.4.2.2.6.6 “Resend of GOOSE messages” on page 1704

Min. Time [ms] Resend-time of first package after change of values. “timeAllowedtoLive”
= 2 * resend-time, This value should be greater than the cycle time of the
IEC61850 task.
Ä Chapter 6.3.4.2.2.6.6 “Resend of GOOSE messages” on page 1704

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1692

Setting Description
VLAN 'Virtual Local Area Network'

Logical subnet within a physical network. Multicast messages can be
passed through and filtered. The configuration is done in managed
Ethernet switches.
If the “VLAN” checkbox is activated, values can be entered into the “VLAN-
ID” and “VLAN-Priority” input fields, concerning the passed through of mas-
sages via switches.

VLAN-ID A value of 0 is a non-configured “VLAN” in which the switch performs no
filtering. This value is recommended when no logical network should be set
up.
Valid range of values: 0 ... 4095.

VLAN-Priority Messages within a managed Ethernet switch can be forwarded depending
on the priority.
Valid range of values: 0 … 7.
Default value for GOOSE: 4.

Content of the data set assigned to the GOOSE control block in the bottom part.
1. Activate the [New] button.
2. Select the desired data set from the “DataSet” selection list.

Export Server
After configuration of the “IEC 61850 Server” including logical nodes, data sets, MMS reports
and GOOSE control blocks the configured IED can be exported as .cid file, by the menu entry
“IEC61850 è Export Server”.

You can choose a folder and a filename, for example: IEC61850_ExampleA_AC500.cid.
This file is based on XML and can be opened in any text editor:

Create an
GOOSE control
block and
assign it to a
data set

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1693

The extension “.cid” (Configured IED Description) contains the configuration of a concrete IED
with instantiated logical nodes (line 41, 61 and 62), data sets (line 42) services (line 47) and
communication addresses (line 8-17).
This file can be imported in other IEC 61850 engineering tools, either system configurator or
IED configurator for other IEDs.
The IP address information (line 9-11) is empty, since in AC500 the IP address configuration is
decoupled; it is done in the “IP-Configuration” tool, possibly in a later step.
If the correct IP address of the AC500 IED is required by the other IEC 61850 engineering tool,
it must be updated in the “.cid” file, which can be done using any text editor:

Ä Chapter 6.3.2.9.2 “Configuration of the IP settings with the IP configuration tool”
on page 1506

GOOSE Subscriber
In the tab “ GOOSE Subscriber” of the IEC 61850 editor you make settings for the receiving of
GOOSE messages.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1694

NOTICE!
The order of the attributes of a “DataSet” is important for the receiving and the
sending of GOOSE messages. Type and order of the entries from sender and
recipient must be identical for GOOSE communication.

NOTICE!
To receive a GOOSE message from an IED, sender and recipient must have
the identical settings in the following input fields:
– “APPID”
– “GOOSE ID”
– “DataSet” structure (with regard to order and data type of the attributes).

Sections of this tab:
List of the GOOSE control blocks in the left part.
Buttons:
● [New]: Create a new GOOSE control block.
● [Delete]: Delete the selected GOOSE control block.
● [Import]: Import a GOOSE control block in the SCL format.
General settings in the top middle part:

Setting Description
Name Name of the GOOSE control block, editable.

Description Description of the GOOSE control block.

GOOSE ID Unique character string of the GOOSE control block, editable.

DataSet Data set sent as a GOOSE message.

MAC Multicast addressing
Multicast addressing is used to send GOOSE messages. Addressing
allows an entire group of devices to exchange data with each other.
Requirement: Unique address allocation of the different device groups.
Valid range of values: 01-0C-CD-01-00-00....01-0C-CD-01-01-FF

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1695

Setting Description
APPID Application-ID

Number for the system-wide unique identification of a GOOSE control
block. To exchange GOOSE telegrams, this number must be identical for
sender and recipient.
Valid range of values: 0 ... 4095

Source Address (MAC) [Browse...] button: Looks for an Ethernet port in the network.
Requirement - an existing network path to the PLC.

List to assign GOOSE messages to global variables in the bottom right part.
All attributes within the selected data set are listed in this list. You can assign incoming GOOSE
messages to global CODESYS variables. For this, select the desired attribute in the list and edit
the name of a global variable in the “Varname” column. If you edit a new variable name a global
variable will be created, if you activate the “Use default name” checkbox, a variable name is
generated automatically. This variable will be written by incoming GOOSE messages.
The variables will be stored “IEC61850_Generated_GVL” (of the “IEC61850 Generated POUs”
folder) after generating the code of the “IEC 61850 Server”.
Ä Chapter 6.3.4.2.2.8.1 “Generate code” on page 1712

Generate IEC61850 code
When all IEC 61850 related configuration is done according to the previous chapters, it must be
translated into IEC 61131 code using the menu entry “IEC61850 è Generate code”.

After a few seconds (depending on the IEC 61850 server size), the following IEC 61131 code is
generated below “Application” in the “Devices” tree:
● Folder “IEC61850 Generated POUs”, containing IEC 61131 code for all IEC 61850 func-

tionality including the global variable list “IEC61850_Generated_GVL”, which contains auto
generated variables which must be connected to the application “PLC_PRG (PRG)”.

● Task “IEC61850Task1”, calling the code in a task which is configured in the configuration
window of IEC 61850 Server object.
Ä Chapter 6.3.4.2.2.5.2 “Configuration of IEC 61850 server with logical nodes”
on page 1680

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1696

Generate the application
Finally, the application (typically “PLC_PRG (PRG)”) including the logical node functionality
needs to be configured. The IEC 61850 generated code only contains the logical node inter-
faces = control and monitoring values.
The “PLC_PRG (PRG)” application consumes the control values which were received by the
“IEC 61850 Server” (e.g. Operate) or GOOSE Subscriber and calculates monitoring values
which are then sent by the “IEC 61850 Server” (e.g. MMS Report) or GOOSE Publisher.
The following figure shows a simple example of a switch simulation in “PLC_PRG (PRG)”,
based on the global variables which were mapped to “XSWI.Pos”.
Ä Chapter 6.3.4.2.2.5.2 “Configuration of IEC 61850 server with logical nodes” on page 1680

The simulated switch is controlled by the control variable “oper_var_ctrl” and the resulting status
(_ON or _OFF) is written to the monitoring variable “status_var_mon”.

Real applications will contain more logic and connections to physical inputs or
outputs.

Runtime and diagnosis
General

After the engineering workflow is completed, the resulting code (“IEC 61850 generated POUs”
and “PLC_PRG (PRG)”) can be compiled and downloaded to the CPU.
In the following, the runtime behavior of operate, reporting and GOOSE, as well as possible
diagnostic and performance optimizations are described.

Operate and reporting
The following explanation is based on the example A, which was configured according to
engineering workflow as MMS server with a switch simulation. The project file of this example
can be found in the example folder of Automation Builder - Example A.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1697

Example projects for the libraries can be found in the example folder: “Help
è Project examples” in the Automation Builder menu.

Prerequisite: Install the related library package with Automation Builder Installa-
tion Manager - [Modify].

First step is to create a physical Ethernet connection between AC500 IED and operator IED =
MMS client and configure IP addresses in a common IP address range. Then, both devices can
be commissioned.

AC500 IED
1. Configure AC500 according to engineering workflow as MMS server with a switch simula-

tion or load the example project “IEC61850_ExampleA_ABxxx.project”.
2. Download program to AC500 and set it to RUN.

ð Now the IEC 61850 server is running and ready to operate.

Operator IED
Any IEC 61850 MMS client can be used. In this example the Omicron tool “IEDScout” is used.
Following figure shows the menu bar.

1. Click on menu button [Discover IED] and enter IP address of AC500.

ð “IEDScout” will find the AC500 IED through Ethernet and read its configuration dynam-
ically.

2. Click on the menu button [Open SCL] and browse for the .cid file which was exported in
chapter Export Server, for example “IEC61850_ExampleA_AC500_withIP.cid”.
Ä Chapter 6.3.4.2.2.5.8 “Export Server ” on page 1693

The browser opens and shows the active connection to the AC500, indicated by the green
checkmark.

Connect to
AC500 IED by
one of the fol-
lowing options

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1698

1. Browse to “DataModel è Logical Device è XSWI1”

2. Ensure that “Pos.ctrlModel” is set to “direct-with-normal-security”. Otherwise, set the value
to “direct-with-normal-security” by clicking the menu button [Write].

3. Click on “XSWI1 è .Pos”.
4. Click the menu button [Control] to open the “Control” dialog.
5. Choose the “Value” (false or true) and press the button [Operate] to send this value to

AC500 IED.

In AC500 online mode, the control and status variables can be monitored in
“IEC61850_Generated_GVL” as well as in the “PLC_PRG” containing the switch simulation.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1699

The Operator IED (Omicron IED Scout), can subscribe (menu button [Enable]) the MMS report
“SwitchReport”, which contains “XSWI1.Pos” including data attributes status (“stVal”), quality
(“q”) and timestamp (“t”).

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1700

MMS diagnosis
The IEC 61850 generated POUs – “Logical Nodes” contain more details and
can be used for diagnosis in online mode. For example, the following property
shows, that the MMS report “SwitchReport” was enabled by one MMS client:
“IEC61850_LLN0.fbSwitchReport.fbSwitchReport[1].rptEna”.

GOOSE
The following explanation is based on the example B, which was configured according to
engineering workflow with GOOSE Publisher and Subscriber. The project file of this example
can be found in the example folder of Automation Builder: Example B.

First step is to create a physical Ethernet connection between AC500 IED and another IED.
Then, both devices can be commissioned.

AC500 IED
1. Configure AC500 according to engineering workflow with GOOSE Publisher and GOOSE

Subscriber or load the example project “IEC61850_ExampleB1_ABxxx.project”.
2. Ensure that the source MAC address for GOOSE Publisher and GOOSE Subscriber are

set correctly.
Ä Chapter 6.3.4.2.2.5.7 “GOOSE Publisher” on page 1691

Ä Chapter 6.3.4.2.2.5.9 “GOOSE Subscriber” on page 1694

3. After a change of MAC address it is required to generate IEC61850 code again.
Ä Chapter 6.3.4.2.2.5.10 “Generate IEC61850 code” on page 1696

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1701

4. Download program to AC500 and set it to RUN.

ð Now the IEC 61850 server with GOOSE Publisher and Subscriber is running and
ready to operate.

Another IED
1. Configure any other IED as bay IED with GOOSE Publisher and GOOSE Subscriber or

load the example project “IEC61850_ExampleB2_ABxxx.project”.
2. Set the source MAC addresses correctly.
3. Generate the IEC 61850 code.
4. Download to a second AC500 CPU.

The ping-pong between the two IEDs can be monitored by opening the 2 projects with 2
Automation Builder instances.

GOOSE diagnosis and troubleshooting
The IEC 61850 library has an object “IEC61850_GooseManager” with several variables,
which can be accessed for diagnosis of the GOOSE manager. Example B1 contains a
“GooseDiagnosis (PRG)”, showing the relevant diagnosis variables.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1702

● “IEC61850_GooseManager.iAdapterCnt”
Number of the Ethernet adapters used for GOOSE Publisher and GOOSE Subscriber,
should be at least 1.

● “IEC61850_GooseManager.wRxCounter”
Counter for received GOOSE messages. Should increase continuously, when other IEDs
are sending GOOSE, otherwise:
– Check if the ‘Source Address (MAC)’ is configured correctly in the GOOSE Subscriber.
– Check with Wireshark if there are GOOSE messages in the network of the configured

adapter.
● “IEC61850_GooseManager. wRxCounterSubscribed”

Counter for received GOOSE messages, which are subscribed. Should increase continu-
ously, when other IEDs are sending GOOSE and same GOOSE messages are subscribed
in AC500. If not:
– Check if “IEC61850_GooseManager.wSubscriberCnt” is > 0.
– Check configuration in GOOSE Subscriber
– Check further diagnosis properties in“ prgIEC61850Subscriber”.

● “IEC61850_GooseManager.wMaxLoopCnt”
Maximum number of received Ethernet packages in one cycle. Maximum
value is 50. If the maximum value is reached, reset it by setting
“IEC61850_GooseManager.xResetIndications” to TRUE for one cycle. If “wMaxLoopCnt”
immediately reaches again the maximum value, the IEC 61850 cycle time is too slow for the
high network traffic and GOOSE messages might be lost. Workaround is to reduce the IEC
61850 cycle time to make the GOOSE Subscriber faster.

● “IEC61850_GooseManager.wTxCounter”
Counter for transmitted GOOSE messages. Should increase continuously when GOOSE
Publisher is configured. If not:
– Check GOOSE Publisher.
– Check “IEC61850_GooseManager.sStatus”.

● “IEC61850_GooseManager.sStatus”
Contains error status of the GOOSE manager and can have the following values:
– '.'< empty> ➔ OK.
– Sending of GOOSE messages failed! Result: 20 (or other results). ➔ Check if the

‘Source Address (MAC)’ is configured correctly in GOOSE Publisher.
– GOOSE Publisher Eth. frame length > = 1500 bytes, reduce DO/DAs in data set. ➔

Reduce the number of data objects and/or data attributes in a data set.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1703

For the GOOSE Subscriber there is an additional possibility for diagnosis. The
“prgIEC61850Subscriber” has an array “afbSubscriber”, containing one entry for each subscrip-
tion.

Following properties should be checked in case of problems:
● “dtLastAction” and “wRxCounter”:

Should increase continuously, when other IEDs are sending GOOSE and same GOOSE
messages are subscribed in this subscriber.

● “sStatus”:
Should show “GOOSE Block receive <GOOSE ID> succsessful”.

● “ xErrorTimeAllowedToLive”:
Should always be “FALSE”. If not, a GOOSE message was received only after the
“timeAllowedtoLive” (as indicated in the previous GOOSE message) expired.
– Decrease cycle time of the IEC 61850 task.
Ä Chapter 6.3.4.2.2.5.2 “Configuration of IEC 61850 server with logical nodes”
on page 1680

– Check Ethernet connection between GOOSE Publisher and GOOSE Subscriber.
– Check in Wireshark if GOOSE Publisher is sending next packages fast enough. Resend

of GOOSE messages shows a correct example where “timeAllowedtoLive” is always
double of the resend time, so that the subscriber has enough time to receive it.

Resend of GOOSE messages
Resending of GOOSE is done according to the IEC 61580 specification.
Ä Chapter 6.3.4.2.1 “Introduction to IEC 61850” on page 1671

In example B as described in the previous chapters, there are not resends because the
ping-pong values are changing quickly before the configured GOOSE “Publish Min. Time” has
expired.
The resend gets visible in Wireshark when the quick value changing is stopped (e.g. by stop-
ping the other IED in the ping-pong example B). The following figure shows an AC500 GOOSE
Publisher with max. time = 4000 ms, min. time = 20 ms and configured IEC 61850 task cycle
time = 5 ms.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1704

Two phases are visible in the Wireshark screenshot.
1. Slow retransmission in stable conditions (no event for a long time) above the blue line. When
the value does not change (column “integer” = pong value = 2):
● The GOOSE message is resent continuously and slowly.

– “timeAllowedtoLive” is 4000 ms (= max. time).
– Message is retransmitted every 2000 ms (half of “timeAllowedtoLive” according to

IEC61850-8-1).
– “sqNum” is increasing, “stNum” is not changing.

2. Change of value and fast retransmission. When the value changes (column integer = pong
value was forced from 2 to 3):
● A new package (“stNum” increased, “sqNum” = 0) is sent immediately (*), see blue line.

– Same package is resent continuously, starting with a high frequency.
– The resend time is starting at 20 ms (= configured min. time) and doubled with every

resend until it has reached half of the max. time to go back to slow retransmission.
– The “timeAllowedtoLive” is always double of the next resend time (*).

The configured GOOSE min. time should always be higher than the configured
IEC 61850 task cycle time!

(*) Sending GOOSE messages is executed in the IEC 61850 task and therefore
can be delayed by the configured task cycle time (worst case).

GOOSE performance optimization
The automatic generated IEC 61850 task is optimized in such a way, that GOOSE Publisher
and GOOSE Subscriber is executed the same task. Anyhow, the example B needs 60 ms for
one complete ping-pong procedure. This is plausible and can be explained with the following
figure.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1705

Although the application task (“PLC_PRG”) could increase the ping or pong every 10 ms, it must
wait for the IEC 61850 task (20 ms cycle time) to subscribe or publish the new data from or to
the other PLC. In consequence it takes 70-10 = 60 ms for one complete ping-pong.
1. Reduce the cycle time of the IEC 61850 task to 10 ms as well. This would increase the

performance, but both tasks are still asynchronous and have to wait for each other.
2. Merge both tasks and by that optimize the execution order according to the IPO principle.

● Input_ GOOSE Subscriber
● Process: In this example - Increase ping or pong.
● Output: GOOSE Publisher

This behavior can be achieved by the following configuration in the IEC 61850 editor.

Optimization
steps

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1706

1. Set “Task Prio I Interval” of IEC 61850 task to 10 ms.
2. Enter the “User application name” (was empty before), here: “PLC_PRG”.
3. Since now the “PLC_PRG” is called by the IEC 61850 task, the “normal” task calling the

“PLC_PRG” must be deleted (red cross in the figure above).
4. Do the same procedure for example B1.

With these settings the total ping-pong roundtrip time is reduced to 10 ms, which can be
observed in Wireshark.

The time format in Wireshark was set to “Seconds since the previous displayed packet”. In this
log the ping takes ~ 4,5 ms, the pong takes ~ 5,5 ms ➔ ping-pong = 10 ms.
Depending on the CPU type and the size of the application, the performance can be further
improved by reducing the IEC 61850 task interval to less than 10 ms.

Advanced features
Time sync

If a (S)NTP server (e. g. Meinberg clock) is available in the network, the AC500 should be
configured as (S)NTP client in order to receive the correct time information, which is set in the
MMS and GOOSE reports along with the correct status bits. This is done in two steps:

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1707

1. A (S)NTP client node must be added below “Protocols” and the IP address of the (S)NTP
server must be entered (192.168.84.250 in this example).

ð Ä Chapter 6.3.4.4.2 “(S)NTP client configuration” on page 1718

2. Set the time quality bit “ClockNotSynchronized” of the IEC 61850 time correctly. There-
fore, the bit must be read from the “fbPmSntpInfo1.SourceInfo1.SrcState” and written to
the IEC 61850 variable “IEC61850_SyncClockOnRTC.xClockNotSynchronized”.

Example A contains a program “prgSNTP”, which reads and updates this time quality bit every
30 seconds.
If the SNTP time is working correctly the “ClockNotSynchronized” is false.

If the SNTP server fails or connection is broken, the “ClockNotSynchronized” is true.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1708

Bulk data engineering
When many logical nodes, related data sets and reports need to be created, there are repeating
configuration steps for similar modules. Copy and paste of such modules or working with MS
Excel is currently not possible, but there is a way to do bulk data engineering via XML file.
1. Create an IEC 61850 configuration by the engineering workflow steps 1 (logical nodes), 2

(DataSets), 3 (Report (MMS)), 4 (GOOSE Publisher).
2. Export the configuration as XML: “Menu è IEC61850 è Export Server” Save as type

XML.

The exported XML file is not according to SCL, but an AC500 propriety
format which contains all configurations done in the IEC 61850 editor.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1709

3. Enhance XML file by copying logical nodes, related data sets and reports.

Ensure that new instances have new and unique IDs.

For example, when duplicating logical node “XSWI1”, the new logical node should be
renamed to XSWI2 by modifying the tags “NodeText” and “NodeInstanz”.

ð
This step requires some experience with XML and an understanding
how the IEC 61850 logical nodes, data sets and reports are repre-
sented and related to each other inside this XML.

4. Import the configuration from the enhanced XML: “Menu è IEC61850 è Import Server”,
type XML.

ð The existing configuration is overwritten by the enhanced configuration.

5. Perform the remaining engineering workflow steps: 5 (Export Server (as .cid)), 6 (GOOSE
Subscriber), 7 (Generate IEC61850 code) and 8 (Generate the application).

Additional or new logical node types
Basic logical nodes are defined in IEC 61850, part 8, further logical nodes are defined in related
standards, for example IEC 61400-25.
AC500 was certified according to IEC61850 for a subset of logical nodes which is listed in the
MICS document.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1710

Documents can be found in the example folder: “Help è Project examples
è PS5602-IEC61850 è Datasheets” in the Automation Builder menu.
Prerequisite: Install the related library package with Automation Builder Installation Manager -
[Modify].
Anyhow, additional logical nodes can be enabled, and even new logical node types can be
defined.
Logical nodes for AC500 are defined in the IEC61850 device description file: “C
è ProgramData è AutomationBuilder è AB_Devices_2.5 è 512 è 1020 0001 è 4.0.7.2
è IEC61850DeviceDesc.xml”. This file can be edited in order to enable prepared logical nodes
or to create new ones.

In this example the “<enable>” of “CSWI” is set from 0 to 1.
After restart of the Automation Builder, the “CSWI” can be chosen.

Limitation of logical nodes which are not enabled by default:
● Their compliance to IEC 61850-7-4 (Ed1) is not fully tested.
● Common Data Classes (“CDC”) are not fully implemented.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1711

They are needed by some (not enabled) logical nodes, for example “MHAI”. Enabling such a
logical node leads to compilation errors.

Disable GOOSE Publisher
For some applications it might be useful to disable the GOOSE activity, for example for high
availability solutions where one of two parallel CPUs should act in standby and not send
GOOSE messages.
Since Automation Builder 2.4.0 and “IEC61850_Server” library 4.0.5.7, the
“IEC61850_GooseManager” has a new property “xEnable”. This property is “TRUE” by default,
but can be set to “FALSE” if required.

Menu Command sorted by Categorie
Generate code

Symbol:
On activating the “Generate code” command of the “IEC61850” category the code generation is
started and the generated IEC 61850 code is stored in the folder “IEC61850 Generated POUs”
in the device tree.
Ä Chapter 6.3.4.2.2.5.10 “Generate IEC61850 code” on page 1696

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1712

Export Server
This command of the “IEC61850” category exports the current configuration. In the “Safe as ”
dialog select the format filter:
● XML files: For IEC 61850 format with all specific data, variable mapping, for example.
● SCL-Files: For IEC 61850 format to export data to other IEC 61850 tools.
If you have changed the configuration since the latest code generation, you will be asked
whether new code should be generated before export.

Import Server
This command of the “IEC61850” category discards the current configuration and imports a new
configuration. In the “Save as” dialog select the format filter:
● XML files: For IEC 61850 format with all specific data, variable mapping, for example.
● SCL Files: For IEC 61850 format to import data from other IEC 61850 tools.

Options
The “Options” command of the “IEC61850” category opens a dialog for the setting of different
display options for the IEC 61850 configurator.

Option Description
“Show FC besides data attribute” Display option, shows functional constraint of attribute as a comment.

“Show type besides data attribute” Display option, shows type of attribute as a comment.

“Show trigger option besides data
attribute”

Display option, shows trigger option of attribute as a comment.

“Show description besides data
objects”

Display option, shows description of attribute as a comment.

“Enable SCL Private block”

“Select all Data Objects” Debug-Option: Selection of all data objects (DO).

“Select all Data Attributes” Debug-Option: Selection of all data attributes (DA).

6.3.4.3 Modbus protocol
6.3.4.3.1 Modbus on TCP/IP protocol

Modbus TCP/IP is simply the Modbus RTU protocol with a TCP interface running on Ethernet.
The Modbus message structure is the application protocol that defines the rules for organizing
and interpreting the data independent of the data transmission medium.
A client is a device that actively polls for data from one or more devices. A server device is the
passive component that waits for the client to poll for data in order to actually send it.
Ä Chapter 6.8.2.10.1 “Protocol description” on page 4523

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1713

6.3.4.3.2 Configuration of Modbus TCP/IP server

A “Modbus TCP/IP Server” instance can be added to any specific Ethernet interface/IP address.
Each interface supports max. one instance of “Modbus TCP/IP Server”. Other protocols can be
added in parallel.
1. Right click on ETH interface and click “Add object”.

ð The window “Add object below: ETH” appears.

2. Select “Modbus TCP/IP Server” and click “Add object”.

ð The node “Modbus_TCP_IP_Server” is added.

Byte Order

Format/Endianess for the transmission of WORD values (register) within the request/response
telegram (default: “Big Endian”).
Port

TCP port on which the server listens.
Startup Behaviour

This parameter specifies how the server behaves when configuration data is loaded (e.g. on
download). It's default value is “Active”. This means the server is immediately addressable after
configuration has been performed. In case the server should be activated later on during run
time by means of function block ModTcpServOnOff this parameter value has to be set to “No
activity”. Parameter Behaviour in state inactive then specifies the server's behaviour during the
inactive phase.
Behaviour in state inactive

Adding a
Modbus TCP/IP
server to device
tree

Setting the
parameters of
Modbus_TCP_IP
_Server

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1714

This parameter specifies how the server behaves in inactive state. This state may be set at the
very beginning (parameter Startup Behaviour = “No activity”) and/or requested during run time
calling function block ModTcpServOnOff. It's default value is “No activity”. This means the server
is not addressable at all (no listening socket on TCP/IP) when it is inactive. Using this setting,
any requests by Modbus TCP clients lead to the result Failed to connect to Server or Timeout.
All other parameter values make the server respond with an exception code to any requests by
Modbus TCP clients.
The presentation of the icon next to the “Modbus TCP/IP Server” in the device tree depends on
the state of the server:

Attention:
Exception code 9 is actually not defined by Modbus specification. This may
cause problems using a different Modbus TCP client than AC500 V3.

Disable

Parameter Default Value Description
Disable write to %MB from 0 0 ... 65535 Disable write access starting at

%MBx

Disable write to %MB to 0 0 ... 65535 Disable write access up to %MBx

Disable read from %MB
from

0 0 ... 65535 Disable read access starting at
%MBx

Disable read from %MBx
to

0 0 ... 65535 Disable read access up at %MBx

It is possible to disable read and/or write access to individual segments. Reading/writing is
disabled beginning at the set start address and is valid up to the set end address (inclusive).
Ä Chapter 6.8.2.10.1 “Protocol description” on page 4523

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1715

6.3.4.3.3 Configuration of Modbus TCP/IP client

The “Modbus_TCP_IP_Client” instance has to be added to the common Ethernet client proto-
cols’ node. This node supports max. one instance of Modbus TCP/IP client. Other protocols can
be added in parallel.
1. Right click on the node “Protocols” and click “Add object”.

ð The window “Add object below: Protocols” appears.

2. Select “Modbus TCP/IP Client” and click “Add object”.

ð Node “Modbus_TCP_IP_Client” is added.

Depending on a server’s IP address the client sends it’s requests via the Ethernet interfaces
available.
Ä Chapter 6.8.2.10.1 “Protocol description” on page 4523

Modbus TCP/IP client does not have any parameters.
Ä Chapter 6.8.2.10.1 “Protocol description” on page 4523

6.3.4.3.4 Modbus on RTU protocol
Protocol description can be found in the chapter for serial interfaces.
Ä Chapter 6.3.2.14.2 “Configuring Modbus RTU on serial interface” on page 1588.
Ä Chapter 6.8.2.9.1 “Protocol description” on page 4506

6.3.4.4 NTP/SNTP protocol

6.3.4.4.1 Introduction of the NTP/SNTP protocol
AC500 V3 support the NTP and the SNTP protocol ((Simple) Network Time Protocol). Com-
pared to SNTP, the NTP protocol achieves higher accuracy in time synchronization, meeting
advanced requirements for accuracy and reliability of a PLC solution.
In case a configured NTP protocol cannot be used, SNTP protocol is used as a fallback
solution.

Adding a
Modbus TCP/IP
client to the
device tree

Setting the
parameters of
Modbus_TCP_IP
_Client

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1716

The S500 I/O modules do not support the functionality to create and transfer
a timestamp with an event directly at the I/O channel. A workaround is using
SoE logging (Sequence of Event) for a root-cause analysis. For a better under-
standing on how events are processed on a AC500 V3 PLC, refer to the appli-
cation example AC500 sequence of events with V3.

The protocols NTP and SNTP provide the functionality to synchronize the clock of a PLC to
an external time source. The application example AC500 V3 - SNTP demonstrates how to
synchronize the PLC time with a time server.
A specification of the (S)NTP protocol itself can be found in the document RFC4330.

The following modes are supported by the implementation of the AC500 V3 PLC:
● (S)NTP client
● (S)NTP server
● (S)NTP client and server
The function block PmSntpInfo can be used to read diagnosis information of the protocol.
Refer to the documentation of the library ABB_Pm_AC500.lib for further information.

– If a high precision of system time is wanted, use a fully functional NTP
server or at least an SNTP server with a high-precision time-source
(e.g. DCF-77 receiver). Avoid cascading several levels of (S)NTP server /
(S)NTP clients.

– Client requests are normally sent at intervals depending on the frequency
tolerance of the client clock and the required accuracy. However, under no
conditions requests should be sent at less than one minute intervals (see
RFC 4330). Keep that in mind when setting polling-interval of the (S)NTP
client, especially if a huge amount of clients use one single server.

– Be sure not to use broadcast or multicast addresses as server or backup-
server since current (S)NTP implementation does not support manycast
mode.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1717

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010782&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011090&LanguageCode=en&DocumentPartId=&Action=Launch

6.3.4.4.2 (S)NTP client configuration

Implementation of (S)NTP client and (S)NTP server is based on protocol ver-
sion 4.

For (S)NTP client configuration add a new object “SNTP Client” under “Protocols (Client
Protocols)”.
For a PLC only one instance of an (S)NTP client is possible.

The following parameters are available:

Not all parameters are shown in the user interface.

It should not be necessary to change the default values of the other parameters
for the most applications.

But there is the possibility to edit them in the generic parameter editor.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1718

Parameter Default Value Description
IP address 0.0.0.0 Valid IP address IP address of a server which is

used as external time source.

Minimum polling rate 6
2^6 = 64 s

-4 ... 24 Specifies the lower limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be lower than this limit.

Maximum polling rate 10
2^10 = 1024 s

0 ... 24 Specifies the upper limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be higher than this limit.

Parameter Default Value Description
Enable FALSE TRUE or FALSE Enable server

IP address 0.0.0.0 Valid IP address IP address of a server which is
used as external time source.

Minimum polling rate 6
2^6 = 64 s

-4 ... 24 Specifies the lower limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be lower than this limit.

Maximum polling rate 10
2^10 = 1024 s

0 ... 24 Specifies the upper limit of the
polling rate.
It is calculated as power of 2 and
has the unit [s].
The actual polling rate is deter-
mined by the protocol itself but it
will not be higher than this limit.

Parameter Default Value Description
Enable TRUE TRUE or FALSE Enables the option 'Time jumps'

Time jump threshold 1.0 s 0 ... 3.403e+38 Specifies the threshold value for
time steps in seconds

Limit -1 -1 …
2147483647

Number of first clock updates
after that this option is deactivated,
a negative value activates this
option permanently.

Server 1

Server 2

Time jumps

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1719

Parameter Default Value Description
Enable TRUE TRUE or FALSE Enables the option 'Max change'

Maximum change
offset

3600 s 0 … 4294967295 Maximum allowed clock offset in
seconds

Start after 3 0 … 4294967295 Specifies the number of first clock
updates after that this option is
activated

Ignore after -1 -1 …
2147483647

Specifies the number of ignored
clock updates which exceed the
maximum offset.
The protocol will be stopped when
this value will be exceed.
It is never stopped when a negative
value is set.

6.3.4.4.3 (S)NTP server configuration

Implementation of (S)NTP client and (S)NTP server is based on protocol ver-
sion 4.

For (S)NTP server configuration add a new object “SNTP Server” under of the available
“Ethernet interfaces (ETH1-ETHn)”.
For a PLC only one instance of an (S)NTP server is possible.

The following parameters are available:

Not all parameters are shown in the user interface.

It should not be necessary to change the default values of the other parameters
for the most applications.

But there is the possibility to edit them in the generic parameter editor.

Max change

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1720

Parameter Default Value Description
Enable FALSE TRUE or FALSE Enables Access Control

Network address 0.0.0.0 Valid IP address Network address of allowed clients

Subnet mask 24 8 ... 32 Subnet mask of the network
address

Parameter Default Value Description
Enable FALSE TRUE or FALSE This option enables the protocol to

run as local server.
That means without synchroniza-
tion to an external time source.

Stratum 10 1 ... 15 Stratum of the server
when it is used as local server

Distance 1 s 0 … 3.403e+38 Distances in seconds of the server
when it is used as local server

Orphan FALSE TRUE or FALSE Enables or disables the orphan
mode

6.3.4.5 FTP server
As of SystemFW 3.1.0 the FTP server is listening only on the Ethernet interface, which the
protocol is configured on. It is not possible to have an FTP server on both Ethernet interfaces.

AC500 V3 PLCs only support explicit authorization. AC500 V3 PLCs do not support implicit
authorization.

1. Under “Ethernet -> ETH [1,2,...]” add a new object and select “FTP Server” from the list.
2. Double-click the “FTP_Server ” item to open FTP server configuration and change the

default settings of the parameters, if required.

Parameter Default Value Description
FTP Server

 Port 21 21 Do not change the default setting. The parameter
specifies the port which is used to connect to the
FTP server on the PLC.

 Sessions 1 1...4 Enter the max. number of allowed simultaneous
and parallel connections to the FTP server. Each
session uses one socket. Note: Some FTP cli-
ents require several connections to work.

Passwords - - Set each user’s passwords for login. No entry =
no password.

 system - - System RAM disk

 sdcard - - Inserted memory card.

 userdisk - - User section of the flash disk.

 flashdisk - - Only available with PM5675-2ETH

Access control

Local server

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1721

6.3.4.6 MQTT client protocol
6.3.4.6.1 System technology

NOTICE!
If the MQTT client protocol is enabled, we recommend using the secure (TLS)
variant of the MQTT protocol for protection of information.
Ä Chapter 6.1 “Cyber security” on page 1340

The MQTT protocol is a lightweight communication protocol which is widely used on the internet
to connect embedded device to the cloud.
The MQTT (Message Queuing Telemetry Transport) client library allows to integrate an AC500
processor module to act as a client in the MQTT protocol. Thus, it is possible to exchange data
between the AC500 and other devices connected to the MQTT network.
In the figure below, there is an MQTT network with one broker (MQTT broker in the middle) and
five clients. The figure shows the main functions of MQTT to send and receive data: publish
and subscribe. The clients can publish messages with a specific topic to send data (e. g. the
temperature of a connected sensor with a timestamp) to the MQTT broker. For example, the
client “AC500_1” publishes a message to topic “topic/2”. On the other hand side clients can
also subscribe to topics to receive data. For example, the client “Laptop” has subscribed topic
“topic/2”. So all messages with the topic “topic/2” which has been published to the MQTT broker
will be sent immediately to the client “Laptop”. This creates a message flow from the client
"AC500_1" to the laptop.

To realize the MQTT behavior, there are several function blocks implemented in the Ä Chapter
6.5.11 “MQTT client library” on page 4048.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1722

Table 376: Function blocks overview
Function Block Description
MqttConnectWithCertBuffer
MqttConnectWithCertFile

Every MQTT use case starts with establishing a connection to
an MQTT broker. Therefore, a connection structure needs to be
created. The connection structure is used to identify the connec-
tion for subsequent operations like publish or subscribe.
It is possible to establish an SSL connection. Using an SSL
connection, at least a certificate for the server is needed. Certif-
icates can be loaded from a buffer (program variable) or a file
which is stored on the PLC.

MqttGetReceivedPacket
MqttPing MqttPublish
MqttSubscribe
MqttUnsubscribe

These function blocks can be used on an established MQTT
connection to realize the desired use case.

MqttDisconnect This function block is the end of each use case.

One MQTT send use case could look like this:

*) It makes sense for several publish messages in a row (e. g. one message per second) not
always open a new connection.
One MQTT receive use case could look like this:

The MQTT client uses the TLS version 1.2.

For the MQTT client no configuration is needed.

All function blocks have to be called in tasks with cyclically processing.
You can use the function blocks with:
● PLC_PRG with automatic task configuration or manual task configuration.
● One single program or different programs.
● One single task or different tasks.
With different programs assigned to different tasks you can define different cycle times and
priorities.

TLS version

Configuration in
Automation
Builder
Configuration in
CODESYS

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1723

● No persistent session. After an interrupted connection, the client needs to subscribe on
topics again in case of reconnect.

● One connection (MQTT_CONNECTION) cannot be shared between multiple tasks. Different
connections can be used by different tasks or even within the same task.

● Only one FB can operate on a single connection at the same time. Always wait for the FB
to complete before calling the next FB. To use two different FB’s in parallel (like publish and
receive) it is necessary to have two different connections, otherwise they must be called one
after the other.

The MQTT protocol requires AC500 devices with integrated Ethernet.

6.3.4.6.2 Application examples
MQTT can be used with an MQTT client library or JSON. Application examples are available for
both methods, which demonstrate the practical implementation:

An introduction to programming with JSON is given in the application example
JSON programming.

How to set-up a cloud-based condition monitoring system with AC500 and the MS Azure cloud
is described in the application example PLC configuration and MS Azure cloud.

How to set-up a local MQTT message broker is described in the application example
PLC configuration and Mosquitto message broker.

How to connect an MQTT message broker with an AC500 PLC is described in the application
example Connection to Mosquitto message broker.

Use cases and how to handle the function blocks of a certain library
is described in sample projects. After the respective library has been
installed the corresponding sample projects are available in the default path
AutomationBuilder Examples. If the default path is inaccessible, click “Help
è Project examples” in the Automation Builder menu.

6.3.4.7 AC500 V3 secure protocols
6.3.4.7.1 Introduction

The following protocols can be secured using certificates:
● Communication between Automation Builder and the PLC (e.g. Programming, Monitoring)
● Communication between the PLC’s webserver and visualization clients (browsers)
● Communication between the PLC’s FTP server and FTP clients
● Communication between the OPC UA server and OPC UA clients
As a prerequisite to enable secure communication on one or more protocols, the required
certificates need to be present on the PLC.

Limitations

Hardware

JSON program-
ming

MS Azure cloud

Setting up an
MQTT message
broker

Connecting an
MQTT message
broker

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1724

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010564&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010344&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010385&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010953&LanguageCode=en&DocumentPartId=&Action=Launch

For security reasons ABB does not encourage the use of self-signed certifi-
cates. ABB shall not be held liable for any damage or loss that arises due to the
use of self-signed certificates on AC500 PLCs.

Self-signed certificates protect against eavesdropping if used correctly. They do
not offer any secure means of authentication.

6.3.4.7.2 Certificate handling
Automation Builder offers a convenient “Security Screen” to manage certificates on connected
PLCs.

It can be accessed through the shield icon on the lower right corner of the main window:

Use the tab “Devices” to manage certificates on the PLC.
It offers to:
● show certificates available on the PLC
● import and export certificates
● create new (self-signed) certificates
● trust or untrust certificates

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1725

6.3.4.7.3 Configuring secure protocols
Encrypted communication between Automation Builder and the PLC
Via tab
“Communicatio
n Settings”

Via “Security
Screen” in
Automation
Builder

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1726

Ensure the PLC clock is set to the current time and date when using certificates
on the PLC. Otherwise the certificate cannot be used to secure a protocol
(see also Ä Chapter 6.8.2.3.2 “AC500 battery” on page 4445 and Ä Chapter
6.3.4.4.2 “(S)NTP client configuration” on page 1718).

When trying to log in or when you set the PLC as active path, there will be a one-time pop-up
asking you to add the PLC’s certificate to the trusted certificates:

After trusting the PLC’s certificate, the communication between the Automation Builder and the
PLC is now encrypted.
This is shown by additional yellow lines around the communication path on the “Communication
Settings” page.

Secure web server

NOTICE!
We recommend configuring an HTTPS connection (encryption with SSL/TLS)
between the visualization clients and the web server to protect the system from
unwanted access.
Ä Chapter 6.1 “Cyber security” on page 1340

1. Generate or import a certificate for the web server

Ensure the PLC clock is set to the current time and date when using
certificates on the PLC. Otherwise the certificate cannot be used to secure
a protocol (see also Ä Chapter 6.8.2.3.2 “AC500 battery” on page 4445
and Ä Chapter 6.3.4.4.2 “(S)NTP client configuration” on page 1718).

Install a trusted
certificate

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1727

2. Attach a web server node to either ETH1 or ETH2 or both and configure security mode.

ð This will automatically insert a visualization into the project.

The available modes of operation are:
● http only
● https only
● Both (http and https)
● Redirect http to https

3. Download and set the PLC to RUN.
4. Connect to the web server using the configured method: https://<your PLC´s IP address>/

webvisu.htm.

In case you are using a self-signed certificate, your browser will show some
warnings.

If you are aware of the risks of self-signed certificates, this can be ignored.

Ä Further information on page 1724

Secure FTP
1. Import a certificate to the PLC for FTP or create a self-signed certificate.

Ensure the PLC clock is set to the current time and date when using
certificates on the PLC. Otherwise the certificate cannot be used to secure
a protocol (see also Ä Chapter 6.8.2.3.2 “AC500 battery” on page 4445
and Ä Chapter 6.3.4.4.2 “(S)NTP client configuration” on page 1718).

2. Add an FTP server to either ETH1 or ETH2
3. Set the parameter “Security Mode” to either “BOTH” or “FTPS only”.

ð You can use any FTP client that supports FTPS explicit mode (FTPES).

In case you are using a self-signed certificate, the FTP client will show some
warnings or notice that it does not know the certificate and wants you to check
it.

Ä Further information on page 1724

OPC UA secure
OPC UA uses mutual authentication, which means that both partners must have their own
certificate and know the other’s certificate, before being able to establish a connection!

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1728

1. Create a new certificate in your OPC UA client.

Ensure the PLC clock is set to the current time and date when using
certificates on the PLC. Otherwise the certificate cannot be used to secure
a protocol (see also Ä Chapter 6.8.2.3.2 “AC500 battery” on page 4445
and Ä Chapter 6.3.4.4.2 “(S)NTP client configuration” on page 1718).

2. Import that certificate to the “Trusted Certificates” in your PLC using the “Security Screen”.
3. Import a certificate for the OPC UA server on the PLC or create a self-signed certificate.
4. Export that cert to the PC and provide it as a trusted certificate to your OPC UA client.
5. Reboot the PLC and check that it is in RUN and both certificates are on the PLC (via the

“Security Screen”).
6. Add the PLC as OPC UA server in your OPC UA client.
7. Connect to the OPC UA Server.

ð You can interact normal with the UA server.

In case you are using a self-signed certificate, you will see some warning
message (depending on the OPC UA client).

If you are aware of the risks of self-signed certificates, this can be ignored.

Ä Further information on page 1724

The certificate warnings will disappear only when using a certificate from a
trusted certification authority or a certificate derived from this by an intermediate
certification authority (e.g. a company CA).

That process is done via PLCShell command “cert-createcsr”, then getting the
file from the PLC via the filebrowser tab in “cert/export” and getting that signing
request turned into a real certificate by a certification authority.

Import the certificate generated by your certification authority using the security
screen.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1729

6.3.4.8 KNX configurator
6.3.4.8.1 Introduction

Refer to the general description for information about the following tabs of the
device editor.

– Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'”
on page 2444

– Ä Chapter 6.4.1.21.2.8.13 “Tab '<device name> IEC Objects'”
on page 2449

– Ä Chapter 6.4.1.21.2.8.4 “Tab 'Parameters'” on page 2433
– Ä Chapter 6.4.1.21.2.8.19 “Tab 'Status'” on page 2460
– Ä Chapter 6.4.1.21.2.8.20 “Tab 'Information'” on page 2460

Only in the case of special features is there an additional help page for the
specific device editor.

If the "<device name> Parameters" tab is not shown, then select the “Show
generic device configuration editors” option in the CODESYS options (“Device
Editor” category).

With the KNX editor from CODESYS, you define the communication objects of your building
automation. The communication objects are exported and made available to the ETS5 program.
Linking the communication objects to the different KNX devices is performed exclusively in the
ETS5 program. Therefore, only the objects are generated in CODESYS. The objects are linked
to variables from the PLC program by means of “I/O mapping”.
You add an Ethernet adapter below the controller. Then you add the KNX device below the
adapter. You can insert only one KNX device per controller.

See also
● Ä Chapter 6.4.1.21.4.14.7 “Dialog 'Options' - 'Device Editor'” on page 2786

6.3.4.8.2 ETS5 Software - 'DCA' Plug-In
Linking the communication objects of the different KNX devices is performed exclusively in the
ETS5 program. To do this, you need the ETS5 software (light or professional version). You also
need the KNX product file available from KNX.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1730

1. Create a project in CODESYS.
2. Download the CODESYS project to the controller.

ð The checksum (CRC) is also downloaded to the controller.

3. Create an export file in CODESYS.

ð The checksum (CRC) is also saved in the export file.

4. Read the export file into the configuration of ETS5.
5. Parameterize the objects in ETS5.
6. Start the program on the controller.
7. Transfer the KNX configuration to the controller.

ð The checksum (CRC) is also transferred. The runtime system checks whether or not
both checksums match. When they match, the KNX device is identified as functional
by the green arrow. If not, then an error is issued in the logger. In case of error, the
process data (inputs/outputs) is not updated.

6.3.4.8.3 Tab 'KNX - General'
Object: KNX
The tab in the configurator of the KNX editor shows an overview of all communication objects.
The I/Os of the communication objects are applied automatically to the I/O mapping.
Entries can be edited directly in the table or in the “Communication object” dialog. Existing
entries can be copied via copy&paste. The next free channel number is used automatically in
this case.

Table 377: “Address settings”
“Add” Opens the “Communication object” dialog for adding objects

“Edit” Opens the “Communication object” dialog for editing objects

“Delete” Deletes the selected communication objects

“Export to ETS” Exports the list of communication objects in an XML file. This file can be
imported by ETS5 if ETS5 has the DCA plug-in installed.
Note: The command is also available in the context menu when the KNX node is
selected.

“Export CSV” Exports the communication objects to a CSV file

“Import CSV” Imports the communication objects from a CSV file

“Identification” Checksum (CRC) of the communication object. This must be identical to the
checksum in ETS5.

“Group Object Number” Unique channel number. Gaps in the numbering is permitted.
If the channel number is already assigned, then an error text is displayed and the
“OK” button is disabled.

“Type” Determines whether or not the object in CODESYS is used as “Input” or
“Output”.

“Data point type” The data types (DPT = Data Point Types) are specified in the KNX standard.
In CODESYS, a selection of the most common data types is available. Only the
basic data type can be selected, without units (for example, DPT9.*).

Programming
steps

Dialog 'Commu-
nication object'

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1731

“Group Object Name” Any object name. Depending on the data type, a predefined text is automatically
added.

“Group Object Function” Any function name. Depending on the data type, a predefined text is automati-
cally added.

“Watchdog Timeout” If a new message has not been received after this elapsed time, then the
Timeout status bit is set.

6.3.4.8.4 Tab 'I/O Mapping'
Object: KNX
The I/O channels are generated for each communication object:

Table 378: General I/Os
Signal Description
“Program LED Status” This input is set by the ETS program. The signal can be used for identifying a special

controller when several controllers are used (for example, by switching a LED).
The status is also set when the “Program Button” is set to TRUE. Then the device is
in programming mode. As soon as ETS5 has successfully set the physical address,
this input switches to FALSE.

“Program Button” The “Program Button” is needed for assigning the physical address from ETS5. If the
output is set to TRUE, then the device is in programming mode and then ETS5 can
assign the address specified there to the device.

Table 379: I/O channels of the communication object
Signal Description
“Status byte” Status byte as defined in the KNX stack. This allows you to determine in the applica-

tion whether or not data has been received. The status can be reset by means of the
ResetStatusFlags method.

“Trigger/Disable Cyclic,
send on change”

“Trigger Output”

Depending on the configuration in the ETS program, this output has the following
function:
● If at least one of the options “send on difference”, “send on change”, or “Cyclic

sending” is enabled, then the output is defined as deactivation. If it is set to
TRUE, then cyclic sending or send on change is stopped.

● If none of the options “send on difference”, “send on change”, or “Cyclic sending”
is enabled, then sending is triggered by a rising edge.

“Value” Value for the input or outputs – depending on the corresponding communication
object.

6.3.4.8.5 ETS5 - Tab 'Parameter'
The parameter page of the ETS5 configuration software is available only after you have
imported the CODESYS configuration file. The parameter page is where you define the sending
behavior of the values.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1732

Table 380: “General Information”
“Default gateway” Default gateway for sending

“Telegram rate” Sending rate of telegrams
Note: This restriction should be applied in exceptional cases only, because this
causes the reaction times to be extended.

“Project title” In CODESYS, these parameters can be defined in the project information. They
are imported to ETS5 in the XML file and displayed here.
“Identifier”: checksum (CRC) of the configuration. The checksum is also dis-
played in CODESYS and must be identical to the checksum displayed here so
that communication can be started.

“Application date”

“Identifier”

“Version”

“Application state”

“Description”

The objects are subdivided into groups of ten (1 .. 10, 11 .. 20, 21 .. 30, etc.). A maximum of
1000 communication objects is possible.

Table 381: “Object 1 .. 10”
“<type>” Type of the object

The parameter cannot be changed.

“Communication direction” “Output (PLC to KNX)”: The value is sent from the CODESYS controller to the
KNX object. For this communication direction, more settings are possible (“Send
condition”, etc.).
“Input (KNX to PLC)”: The value is sent to the CODESYS controller.
The parameter cannot be changed.

“Send condition” “No automatic sending”: No sending when value is changed
“Send on change”: Sending each time value is changed
“Send on difference”: Sending when the change in value corresponds to at least
the value for “Sending difference”.

“Sending difference” Requirement: “Send condition” is “send on difference”.
The value is passed when its change is at least this value.

“Cyclic sending” “Disable”: No cyclic sending
“Enable (seconds)”, “Enable (minutes)”: Cyclic sending – regardless of the “Send
condition”.

“Cycle time [hh:mm:ss]” Rate for cyclic sending (in hours/minutes/seconds)
Requirement: “Cyclic sending” is set to “Enable (seconds)”.

“Cycle time [hh:mm]” Rate for cyclic sending (in hours/minutes)
Requirement: “Cyclic sending” is set to “Enable (minutes)”.

6.3.4.9 BACnet-BC
6.3.4.9.1 Introduction to BACnet

BACnet is a standardized data communication protocol for Building Automation and Control
networks as defined in the ANSI/ASHRAE standard 135 and ISO 16484-5.
The advantage is interoperability between devices of different vendors.
The BACnet protocol defines services to allow communication between devices. Examples
include 'Who is', 'I am', 'Who has' and 'I have' for device and object search and identification,
“Read Property” and “Write Property” for the exchange of data, up to more complex services for
alarm and event management, scheduling and trending.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1733

The BACnet protocol defines a number of object types on which the services operate. Each
object is characterized by its properties.
The BACnet objects are combined in a BACnet device. A BACnet device represents the func-
tionality of a physical device.
More background information and introduction can be found here:
http://www.bacnet.org

http://www.bacnet.org/Bibliography

6.3.4.9.2 AC500 and BACnet
A BACnet device can be described by its “BACnet Interoperability Building Blocks” (BIBB)s,
which are needed to establish services. They are grouped in different areas:
● “Data Sharing” (DS)
● “Alarm and Event Management”(AE)
● “Scheduling” (SCHED)
● “Trending” (T)
● “Device and Network Management” (DM)
“Data Sharing” for example contains two BIBBs which are needed for the “Service Read
Property”:
● Client side: DS-RP-A (Data Sharing - Read Property - A)
● Server side: DS-RP-B (Data Sharing - Read Property - B)
The BACnet standard defines profiles by the minimum required BIBBs, see table below.
“BACnet Simple Sensor” (B-SS) is the simplest one, only containing one BIBB. More complex
devices contain more BIBBs (from right to left).

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1734

http://www.bacnet.org/Overview/index.html
http://www.bacnet.org/Bibliography/ES-7-96/ES-7-96.htm

The AC500 V2 supports BIBBs qualifying it as “BACnet Application Specific Controller” (B-
ASC), by installing the BACnet B-ASC library.
AC500 V3 supports many more BIBBs qualifying it as “BACnet Building Controller” (B-BC),
which contains a server (all BIBBs ending with -B) and a client (all BIBBs ending with -A). In
fact, the AC500 contains some more BIBBs. All BIBBs under B-BC in the table above, plus:

DS-COV-A, -B (Change of Value-A, -B)
DS-COVP-A, -B (Change of Value of Properties-A, -B)
AE-N-E-B (Alarm and Event-Notification External-B)
AE-ASUM-B (Alarm and Event-Alarm Summary-B)
SCHED-I-B (Scheduling-Internal-B)
T-VMT-E-B (Viewing and Modifying Trends External-B)
DM-TS-B (Time Synchronization-B)
DM-UTC-B (UTC Time Synchronization-B)
DM-MTS-A (Manual Time Synchronization-A)
DM-LM-B (List Manipulation-B)
DM-OCD-B (Object Creation and Deletion-B)
NM-BBMDC-B (BBMD Configuration-B)
...

A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-
AC500_V3.pdf. Direction: Help/Project examples/Examples.
The figure below shows a typical application for an AC500 V3, acting as B-BC.

A drive with several actuators and sensors is acting as B-ASC, for example providing a temper-
ature value as “Analog Input” (AI) object on the MS/TP network.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1735

Ä Chapter 6.3.4.9.3.2 “Supported BACnet networks ” on page 1736

AC500 B-BC as client can read this temperature value, perform some processing (scaling, limit
check) and on the server side provide the processed value as “Analog Value” (AV) object and
as “Trend” object on the IP network. Higher level clients like BACnet Operator Workstation
(B-OWS) can access the processed objects “Analog Value” and “Trend” for supervision.
The following chapters describe the possible applications and how to configure an AC500 V3 as
B-BC.

6.3.4.9.3 AC500 V3 as BACnet Building Controller (B-BC)
General

The BACnet integration into CODESYS implements the ANSI/ASHRAE standard 135-2012
(ISO 16484-5) protocol revision 14 and is based on the AMEV AS-A and AS-B standards.
Integration allows access to the properties of BACnet objects and the configuration parameters
of a BACnet device by means of an IEC application. You can program a dynamic BACnet
configuration and have access to the BACnet functions in the BACnet network by reading and
writing BACnet object properties.

Supported BACnet networks
BACnet can run on different local area network types. The AC500 B-BC supports the following
ones:
● MS/TP (Master Slave / Token Passing), based on serial RS-485
● BACnet IP, based on Ethernet / UDP / IP

Different networks can be combined to one common “BACnet internetwork”. The figure above
shows an example of some BACnet devices in one “BACnet internetwork”. Each device has
a device ID (10 to 15) which must be unique on application level. Services on application
level (e.g. read or write request) are working with these device IDs and need no addressing
information of the lower levels.
The example “BACnet internetwork” consists of different BACnet networks:
● BACnet MS/TP network connecting device 10, 11 and 12
● BACnet IP network (UDP port 47808), consisting of one IP subnets with IP range

192.168.0.x, connecting device 12, 13 and 14
● BACnet IP network (UDP port 47809), consisting of one IP subnet with IP range

192.168.2.x, connecting device 14 and 15
Addressing in a BACnet network is done through datalinks which must have a unique BACnet
MAC address (which is different to an Ethernet MAC address).
● In a MS/TP network the BACnet MAC address is just one octet (1, 2, 3 in the example).
Ä Chapter 6.3.4.9.3.5.5 “Configuration of datalinks ” on page 1745

● In an IP network the BACnet MAC address is the combination of the IP address and the
UDP port number (for example 192.168.0.130.47808 for device 13). The following 16 UDP
ports are reserved for BACnet: BAC0 (=47808 decimal) to BACF.
Ä Chapter 6.3.4.9.3.5.5 “Configuration of datalinks ” on page 1745

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1736

To form a common “BACnet internetwork” the single BACnet networks must be combined by
BACnet routers. AC500 can act as a BACnet router between BACnet MS/TP and IP networks
(device 12 in the figure above) or between two different BACnet IP networks (device 14).
Two IP subnets using the same UDP ports can be combined to one BACnet IP network with an
internet router.

The problem is that internet routers block local broadcast messages, which are required for
BACnet communication. This can be solved by “Broadcast Management Devices” (BBDM).
AC500 V3 can be configured as BBDM. In the figure above the devices 12 and 14 should be
configured as BBDM in order to enable the BACnet communication across the internet router.
An alternative is to configure AC500 V3 as foreign BACnet device if an IP subnet contains no
BBDM device to pass broadcast messages over internet routers.
Configuring the AC500 as BBDM or foreign device is described in Ä Chapter 6.3.4.9.3.5.5
“Configuration of datalinks ” on page 1745.

Supported objects and properties
Communication with BACnet is done through objects and properties.
The AC500 B-BC server of the figure below is represented as a BACnet device object with “ID
12”. The device contains more objects like the Analog Input object, representing the input of a
temperature measurement device. An object contains several properties, like “ID, Description,
Present Value, Unit” etc.
Further possible objects of an AC500 B-BC are:
● “Binary Input” for example from connected to a switch
● “Analog / Binary Output” for actuators
● “Analog / Binary Values” for local variables
● “Calender”
● “Schedule”
● “Trend Log”
● ...
● A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-

AC500_V3.pdf. Help/Project examples/.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1737

Fig. 273: BACnet objects, properties, services and BIBBs

Supported BIBBs and services
While objects and properties describe which data are communicated, the communication itself
is done with services between clients and servers. A certain service can only be executed if
client and server have the related BIBBs. The Fig. 273 BACnet objects, properties, services and
BIBBs shows a simple “Service Read Property” which is possible because the client on the right
supports DS-RP-A and the server on the left supports DS-RP-B. The service is executed in two
steps:
1. The client initiates a confirmed request “Read Property”, asking for the present value of

the “Analog Input” of object with “ID 1010”.
2. The server answers with an acknowledge, sending the present value which is 21,89°C in

the example.

A list of all supported BIBBs and services of AC500 V3 is given in the Automation Builder pdf
document ABB-B-BC-PICS-AC500_V3.pdf. Help/Project examples/Examples.

BACnet configuration in Automation Builder
General

To act as a BACnet server or client, the AC500 must be configured accordingly. The figure
below shows the basic configuration of a BACnet server (left) and a BACnet server with client
functionality (right). It is also possible to have server and client functionality in parallel.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1738

Following objects need to be created:
1 “BACnet Server” root object. This is the root object for the server functionality, as well as for

the client functionality. It is mandatory, even if only client functionality is required. Ä Chapter
6.3.4.9.3.5.2 “Configuration of BACnet server root object ” on page 1739

2 BACnet server objects, for example “BACnet Analog Input” Temperature. The properties
of the objects must be controlled (written or read) by the PLC logic. Ä Chapter 6.3.4.9.3.5.3
“Adding BACnet server objects” on page 1741

3 BACnet client objects, represented by a different symbol. For example, “BACnet Client
Read Property”. The functionality of the client objects must be programmed in the PLC logic.
Inserting the client objects below the server is optional. It is also possible to instantiate the
objects only in a PLC logic. Ä Chapter 6.3.4.9.3.5.4 “Adding BACnet client functionality”
on page 1742

4 Datalink for the physical layer. This object links the physical interface (Ethernet IP or serial
MS/TP) to the “BACnet Server” object. In the example above the IP address of ETH1 is
automatically retrieved by inserting the “BACnet IP datalink” below the ETH1 port. Ä “Con-
figuration of an IP datalink” on page 1746. For MS/TP refer to Ä “Configuration of an MS/TP
datalink” on page 1745.

Configuration of BACnet server root object
1. Create an empty project with an AC500 V3 CPU type and call it fpr example “Device_12”.
2. Insert a “BACnet Server” object below the interfaces object in the device tree.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1739

3. Set the device InstanceNumber in the “BACnet Parameters” of the “BACnet Server”,
e.g. to 12 and the InstanceName to Device_12 (according to Fig. 273 BACnet objects,
properties, services and BIBBs).

4. Add a datalink, IP or MS/TP. In the example an IP datalink is inserted below ETH1. Default
parameters are sufficient if only one datalink is used.
Ä “Configuration of an IP datalink” on page 1746

5. Build the project, download to the PLC and set it to [RUN]. The status of the “BACnet
Server” should be green (running). If not, please ensure that you have installed the
runtime license BACnet Protocol B-BC Runtime, verifiable by right-click on the PLC node
and select [Show license information] from the runtime licensing menu. The project is
scanned for required licenses. If you are logged in to a PLC, then the licenses available on
the PLC are displayed. A missing required license is highlighted.
Ä Chapter 6.3.2.2.2 “PLC runtime licensing” on page 1446

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1740

6. Start any BACnet client to find the server, for example Inneasoft BACnet Explorer.

Adding BACnet server objects
Goal is to publish an analog value as BACnet server object. This example is according to
Fig. 273 BACnet objects, properties, services and BIBBs, left part containing a temperature
value.
1. Configure a “BACnet Server” root object according to Ä Chapter 6.3.4.9.3.5.2 “Configura-

tion of BACnet server root object ” on page 1739.
2. Add a “BACnet Analog Input” object below the “BACnet Server”.

3. Rename it to Temperature, adjust the parameters: InstanceNumber: 1010,
Description: Temperature, Units: UNIT_DEGREES_C.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1741

4. The present value of the objects Temperature needs to be fed with the value from the
real temperature device. Alternatively, a simple PLC program can simulate this value.

5. Download the program and observe the temperature value in the BACnet client.

Adding BACnet client functionality
Goal is to configure a second AC500 controller as BACnet client which reads an analog value
from a server. This example is according to Fig. 273 BACnet objects, properties, services and
BIBBs, right part.
1. Add a new controller and configure a “BACnet Server” root object according to Ä Chapter

6.3.4.9.3.5.2 “Configuration of BACnet server root object ” on page 1739.
2. Set InstanceNumber to 14 and InstanceName to Device 14.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1742

3. In addition to BACnet objects, BACnet clients can also be inserted as devices under a
“BACnet Server”. Add a “BACnet Client Read Property” below the “BACnet Server” node.

4. The created object “BACnet Client Read Property” generates a function block instance
which can be used to program the client read functionality. The figure below shows a
simple example.
In line 1-5 of the code part the function block is called with the following parameter:
● Device ID of the server to read from (12) Ä Chapter 6.3.4.9.3.3 “Supported objects

and properties ” on page 1737
● Object ID of the object to read from (1010 for the “Analog Input”)
● Object type (“Analog Input”)
● Property to read (“present value”)
● triggerRead to start the read operation

When the user (or another program part) sets the variable triggerRead from FALSE to
TRUE the edge triggered function block BACnet_Client_Read_Property starts opera-
tion and sends the read request to the server device. After receiving the reply from the
Server, the output .xDone gets TRUE (line 8) and the temperature value can be read from
the output .result (line 14).

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1743

5. Download this program to another AC500 V3 controller, which is in the same IP network
as the server. Set it to run and read the temperature value by setting triggerRead to
TRUE. In online mode the read temperature value can be observed in line 14.

Unlike BACnet objects, a BACnet client does not require a complex (static) configuration, thus a
client function block can be used without creating a BACnet client as device.

There is no BACnet_Client_Read_Property object created below the “BACnet Server”.
Instead a function block BACnet_Client_Read_Property must be declared in the PRG
(line 6 in the declaration) and initially "connected" to its “BACnet Server” in IEC-code via
RegisterToServer(), and thus get activated (line 2 in the code) Ä Chapter 6.5.14 “Refer-
ence, function blocks” on page 4086.

Alternative con-
figuration

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1744

Configuration of datalinks
For communication with other BACnet devices AC500 provides two different possibilities:
MS/TP and IP.
Ä Chapter 6.3.4.9.3.2 “Supported BACnet networks ” on page 1736

For a non-routing device one MS/TP or IP datalink must be configured.
If more than one datalink is configured, routing between the datalinks is automatically enabled.

● Add the “BACnet MS/TP COM” object below the COM port.

In fact the empty COM port is replaced by the “BACnet MS/TP COM”. By that the COM port is
configured as RS-485 with fixed settings for MS/TP: No parity, 8 data bits, 1 stop bits.
● Below the “BACnet MS/TP COM” port object an “BACnet MS/TP datalink” is inserted auto-

matically which can be configured according to the requirements.

Configuration of
an MS/TP data-
link

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1745

● NetworkNumber: Use the default value 1 if no routing is required. For routing, use a unique
network number in one controller.

● ConnectionType: Use the default value Master if no routing is required. For routing, use
“Master – answering always postponed”.

● Baudrate can be set according to requirements in the range of from 9600 to 38400 bits/s,
higher values (57600 and 115200 bits/s) are not recommended.

● DatalayerAddress: This is the MAC address as described in Ä Chapter 6.3.4.9.3.2
“Supported BACnet networks ” on page 1736. The MAC address must be unique in the
MS/TP network.

● For all other parameters the default values are recommended for typical applications.

● Add a “BACnet_IP_datalink” object below the Ethernet port ETH1 or ETH2.

● NetworkNumber: Use the default value if no routing is required. For routing, use a unique
network number in one controller.

● UPDport: Use the default value (47808 decimal) in the normal case. Range is possible
from BAC0 (= 47808 decimal) to BACF. UDPport + IP address form the MAC address
of the IP datalink as described in Ä Chapter 6.3.4.9.3.2 “Supported BACnet networks ”
on page 1736. The IP address cannot be specified here. It is automatically taken from the
parent Ethernet node (ETH1 or ETH2); its IP address is set in the communication settings of
the CPU node, “Device_14” in the example.

● ForeignDevice and BBMD: Special configuration is only needed if an internet router is
located between two BACnet devices.
Ä Chapter 6.3.4.9.3.2 “Supported BACnet networks ” on page 1736
AC500 can be configured as ForeignDevice or BBMD, but not the combination of both. An
example for BBDM can be found in the example folder.

Routing enables the combination of different BACnet networks to one common “BACnet
internetwork”.
Ä Chapter 6.3.4.9.3.2 “Supported BACnet networks ” on page 1736

BACnet devices from different BACnet networks can communicate with each other.
If more than one datalink is configured in one CPU, routing between the different networks
is automatically enabled. It must only be ensured that the network number is unique in one
controller.
Ä Chapter 6.3.4.9.3.2 “Supported BACnet networks ” on page 1736

For MS/TP the ConnectionType must be set to “Master – answering always postponed”. An
example for routing can be found in the example folder.

Time syncronisation
The BACnet clients expect to receive the local time. Currently the AC500 V3 does not distin-
guish between UTC time and local time and its time zone is set to 0. This will be improved in
the near future. In the meantime, it is recommended to store the local time (green color in the
following figure) in the AC500 as a workaround.

Configuration of
an IP datalink

Configuration of
Routing

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1746

Using this workaround, the following time sync mechanisms can be used:
● Set local time from Automation Builder Tab “PLC Shell”:

Set the time by the command “time hh:mm:ss"

● Read the local time from the Automation Builder Tab “Statistics”:
“Current PLC Date and time” shows the PLC time as local time without conversion, if the tab
“Show PLC time in UTC” is enabled.

For storing the local time in AC500, do not use the button [Set PLC to PC Time]
(Tab “Statistics”), since this is always converting from local time to UTC time.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1747

● BACnet clients can read local or UTC time, both requests will deliver the same (local) time
information, since the timezone is 0.

● If an SNTP time sync is required (for example with a Meinberg clock), UTC times are
exchanged. For conversion of UTC to local time in AC500 a proprietary STNP client must be
programmed.
Please contact the PLC support for more information.

Package content
General

The BACnet package PS5607-BACnet-BC can be installed with the Installation Manager and
contains the following components:
● BACnet runtime component, part of AC500 firmware.
● Automation Builder package: CODESYS BACnet

– BACnet plug-in component
– Device descriptions for “BACnet Server”, BACnet objects, BACnet client and datalinks
– Libraries: BACnet, BACnetDefaultImpl and CmpBACnet.
Ä Chapter 6.3.4.9.3.6.2 “BACnet libraries” on page 1748

● Example folder
– Examples and example documentation
Ä Chapter 6.3.4.9.3.6.3 “Application examples” on page 1749

– Datasheet and FAQ
BACnet Protocol Implementation Conformance Statement (PICS), acting as a data-
sheet, describing all BACnet objects, services and communication capabilities.
BACnet Conformance Certificate
FAQ – Frequently Asked Questions, including AC500 specific information, performance
and limit

BACnet libraries
The IEC library CmpBACnet represents the integration of the BACnet stack into a CODESYS
IEC environment and provides the BACnet data types as well as the BACstack methods.
The sole use of the IEC library CmpBACnet (without the BACnet and BACnetDefaultImpl
libraries) would result in complex and lengthy IEC application code.
The BACnet library simplifies BACnet application development considerably as compared to the
sole use of CmpBACnet, especially in the following areas:

● Starting and stopping the BACnet stack
● Using BACnet server objects and their properties
● Triggering asynchronous requests (mainly client service requests) and processing the

request transaction
● Processing of callbacks from the BACnet stack (see IBACnetEventConsumer) and distrib-

uting the callbacks to multiple receivers in the application
Furthermore, the BACnet library provides a plug-in mechanism (BACnetServerPlugin) for
extending certain aspects of the BACnet library. BACnetServerPlugin is the basis for the
BACnetDefaultImpl library.

The BACnetDefaultImpl library is used for the additional simplification of BACnet application
development. The BACnet standard ASHRAE 135 leaves some aspects of the practical use of
BACnet open. The most notable examples include the following:
● Persistence of server objects
● Storage and persistence of Trend Log, Trend Log Multiple, and Event Log entries
● Update of the date/time information of the device object

Example folder

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/053ADR010583, 1, en_US1748

The IEC library BACnet is intended as a layer over the IEC library CmpBACnet. However, the
layer does not hide the library because this would require the BACnet library to have "facade"
functions for CmpBACnet functions. These facade functions would result in larger application
code and increased runtime requirements. This is difficult for the PLC to accept. For this reason,
it is necessary to know when elements from the BACnet library or CmpBACnet library are to be
used.
General rules:
● Starting and stopping the BACnet stack

Always use BACnetServer.StartBACnetStack and
BACnetServer.StopBACnetStack or AutoStart. Never directly use the corresponding
functions of the CmpBACnet library, such as CmpBACnet.BACnetServerInit.

● Using BACnet server objects and their properties
Always use the specified function blocks in IEC-lib-BACnet, such as BACnetAnalogValue.
Never directly use the corresponding functions of the BACnet library, such as
CmpBACnet.BACnetStorePropertyInstance.

● Triggering of asynchronous requests
Always use the specified client function blocks of the BACnet library, such as
BACnetClientReadProperty. Never directly use the corresponding functions of the
CmpBACnet library, such as CmpBACnet.BACnetReadProperty. All functions of the
CmpBACnet library that require a BACnetAsyncTransactionToken belong to this cate-
gory and should never be used directly.

● Processing of callbacks from the BACnet stack and distributing the callbacks to multiple
receivers in the application
Always use IBACnetEventConsumer and BACnetServer.RegisterHook/
UnregisterHook/RegisterCallback/UnregisterCallback. Never directly use the
corresponding functions of the CmpBACnet library, such as CmpBACnet.BACnetSetHook
or CmpBACnet.BACnetSetCallback.

When is it appropriate and safe to directly call the functions of the CmpBACnet library?

Basically, it is only necessary to call functions of CmpBACnet directly when a corresponding
functionality is not provided in the BACnet library. Check the BACnet library first before trying
to use CmpBACnet directly. It is possible to use blocking functions in CmpBACnet, such as
BACnet*CbCompletion, BACnetIam(Ex), or BACnetIHave(Ex), BACnetUnconf*.

Most often, you will use BACnet*CbCompletion to implement your specific
IBACnetEventConsumer.BACnetEventCallbacks. But first check whether or not the
BACnetDefaultImpl library already contains an appropriate standard implementation.

Application examples
● AC500_V3_BACnet_B-BC_Example_ABxxx.project including simple read and write

operations between client and server.
– Use case 1: AC500 as BACnet client, read and write (with priority)
– Use case 2: AC500 as “BACnet Server”, publish the analog value

● AC500_V3_BACnet_B-BC_Example_Routing_ABxxx.project
● Examples from 3S, including

– Read and write operations with more options, notification class, calendar, scheduler, etc.
– Device discovery
– BBMD
– Persistence
– Logging
– Routing

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Protocols and special servers

2024/01/05 3ADR010583, 1, en_US 1749

6.3.4.10 UDP protocol
6.3.4.10.1 Contents of the UDP protocol configuration

UDP and TCP are widely used in network communication. UDP is a connectionless transport
protocol. It has a similar task as the connection oriented TCP. This means that the sender does
not know whether the data packets it has sent have arrived. While TCP sends acknowledge-
ments when receiving data, UDP does without. This has the advantage that the packet header
is much smaller, and the transmission link does not have to transmit acknowledgements.
Typically, UDP is used for DNS requests, VPN connections, audio and video streaming.

UDP in V3 is no longer configured in the hardware tree but only implemented applicatively via a
library.
There are two libraries, one that works on the lowest level (SysSocket2, library, to get access
to the socket interface for TCP/IP communication on the target.) and a user library (Net Base
Services, this library implements a TCP server, TCP client and a UDP peer as a collection of
base services for Ethernet).
Ä Chapter 6.5.3 “Library Manager functionality” on page 3773

Ä Chapter 5.2.1.2.1.3.3 “Overview of protocols, sockets and ports” on page 310

Ä Chapter 6.5.14 “Reference, function blocks” on page 4086

Ä “Data synchronization via UDP” on page 3882

Ä Chapter 6.3.4.9.3.2 “Supported BACnet networks ” on page 1736

The application example Communication via UDP protocol demonstrates the communication
between a AC500 V2 PLC and a AC500 V3 PLCs via UDP protocol.

6.3.4.11 OPC UA
AC500 V3 controllers support the OPC UA protocol - a machine-to-machine communication
protocol for industrial automation. For details on installation and configuration of an OPC UA
server refer to the OPC UA server description Ä Chapter 6.3.6.2 “OPC UA server for AC500 V3
products” on page 1787.

How to connect robot controllers to OPC UA is described in the ABB News.

Details on OPC UA communication with an AC500 V3 PLC are given in the application note
AC500 V3 and OPC UA.

The application example How to use OPC server V3 - for DA and UA is available to gain a
deeper understanding of the OPC protocol and to configure AC500 V3 accordingly.

6.3.5 Data transfer and programming
6.3.5.1 Data exchange between AC500 V3 PLCs via network variables

Network variables can be used to exchange data between two AC500 V3 PLCs. The variables
must be defined in strict and identical lists on both PLCs which are sender and receiver. The
lists can be in one or more projects.
A step-by-step description on how to use network variables can be found in the
application example.

Functionality

Application note

Application
example

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/053ADR010583, 1, en_US1750

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011102&LanguageCode=en&DocumentPartId=&Action=Launch
https://new.abb.com/products/robotics/controllers/opc-ua
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010661&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010407&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011170&LanguageCode=en&DocumentPartId=&Action=Launch

6.3.5.2 Data exchange between AC500 V3 PLCs via EtherCAT
An EtherCAT bridge can be used to exchange data between two AC500 V3 PLCs in real time.
The procedure is described in the application example using an EL6695 bridge terminal.

6.3.5.3 Source download/upload
Prerequisites
● Communication settings are correct
● Project is saved on PC
● PLC is connected
1. Login to the PLC.
2. In the menu click “Online è Source download to connected device”.

ð Project archive will be downloaded to PLC.

3. To verify download double-click node “PLC_AC500_V3”, select view “Files” and double-
click folder “PlcLogic” of the Runtime view (if necessary click refresh button of Runtime
view).

ð File Archive.prj will appear if download was successful.

Source down-
load

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/05 3ADR010583, 1, en_US 1751

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010563&LanguageCode=en&DocumentPartId=&Action=Launch

Prerequisite
● Project archive on PLC available (from previous source download)
● PLC is connected

Depending on the used version of Automation Builder, the layout of the opened
windows may vary.

1. Open the Automation Builder.
2. In the menu click “File è Source upload...”.

ð A window “Pick the device from where you want to upload the source archive...”
appears.

If you get an error click [Scan for other devices].
3. Select your PLC with the archive and click [OK].

ð Dialog “Extract Project Archive” appears.

4. Select your preferred folder and click [Extract].

Source upload

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/053ADR010583, 1, en_US1752

ð Then you are prompted to open the project archive.

5. Click [Yes].

ð The project opens.

Upload was successful.

6.3.5.4 Programming and testing
For information on programming see
● Ä Chapter 6.4.1.9 “Programming of Applications” on page 1844
● Ä Chapter 6.4.1.11.2 “Configuring the Connection to the PLC” on page 1965
● Ä Chapter 6.3.5.5.2 “Enter a known PLC IP address” on page 1754
● Ä Chapter 6.4.1.11 “Downloading an Application to the PLC” on page 1965

For Information on testing/debugging see Ä Chapter 6.4.1.12 “Testing and Debugging”
on page 1980

6.3.5.5 Configuration of communication via Ethernet (TCP/IP)
6.3.5.5.1 General

Programming via Ethernet is only possible on a PC with Ethernet board and installed network.
Programming can be done via the internal (onboard) Ethernet communication module.
An application note describes the configuration of an AC500 V3 PLC for
EtherNet/IP communication.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/05 3ADR010583, 1, en_US 1753

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010825&LanguageCode=en&DocumentPartId=&Action=Launch

6.3.5.5.2 Enter a known PLC IP address
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box “Communication Settings <...>” appears.

2. Enter your PLC IP Address and click [OK].

6.3.5.5.3 Enter PLC IP address by scanning devices
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box “Communication Settings <...>” appears.

2. Click [...].

ð Dialog box “Communication Settings <...>” appears.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/053ADR010583, 1, en_US1754

3. Click [Scan], select your desired PLC and click [OK].

ð Entry is transferred to the dialog box “Communication Settings <...>”.

Click [OK].

4. Click to log in the “PLC_AC500_V3” project.

6.3.5.5.4 Enter PLC IP address by [Advanced Settings...]
If a remote gateway instead of a local one has to be used it can be configured in the
[Advanced Settings...].
1. Right-click the top node “PLC_AC500 <...>” and select “Communication Settings” from the

context menu.

ð Dialog box “Communication Settings <...>” appears.

2. Enable checkbox “Use advanced settings” and click [Advanced Settings...].

ð Tab “Communication Settings” opens.

3. Check gateway or change if required.

ð Successful connection is indicated by green dot on the gateway icon.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/05 3ADR010583, 1, en_US 1755

4.
Manual entry of the IP address.

Check IP address or change if required.
5. Press ENTER to confirm changed IP address.

ð Successful communication is indicated by green dot on the PLC icon.

6. Or instead of the last two steps:

Set the IP address via a scan.

Click [Scan Network], select your desired PLC and click [OK].

ð Successful connection is indicated by green dot on the gateway icon.

7. Click to log in the “PLC_AC500_V3” project.

6.3.5.6 PLC shell commands
The PLC shell is used for requesting specific information from the controller. By entering a
device-specific command the response is returned in a result window. The PLC shell can be
issued without login.
1. Ensure the gateway is configured properly and a connection to the controller can be

established.
2. In Automation Builder double-click the PLC node and open the tab “PLC Shell”.
3. Enter "?" in the command line of the tab window. All available PLC commands are listed.

If the gateway is able to establish a connection to the controller, an online connection to the
PLC is opened automatically.

Proceed as fol-
lows:

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/053ADR010583, 1, en_US1756

The commands listed in online mode can differ from the commands shown
when pressing the button [...] as Automation Builder version and firmware ver-
sion can differ.

Ä Chapter 6.4.1.21.2.8.11 “Tab 'PLC Shell'” on page 2441

Ä Chapter 6.2.6 “Version information” on page 1384

Ä Chapter 6.3.1.4 “Firmware identification and update” on page 1419.

6.3.5.7 Watchlists
Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002

Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003

6.3.5.8 Reference to libraries
Library configuration is described in the chapter .

6.3.5.9 Reference to application libraries
Application libraries can be used in AC500 V3 PLCs. The requirements for the use of the
function blocks of the application libraries and information and prerequisites for the general
handling of application libraries are described in the application examples:

In order to be able to use the PLC as a client for web services, the HTTP function block library
can be used. Setup and use of the HTTP library are described in the application example
AC500 Webservices - HTTP Function Block Library.

With the help of the MySQL function block library, MySQL databases can be used to store and
access AC500 V3 data. Setup and use are described in an application example.

With the help of the MSSQL function block library, MSSQL databases can be used to store and
access AC500 V3 data. Setup and use are described in an application example.

HTTP library

MySQL library

MSSQL library

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Data transfer and programming

2024/01/05 3ADR010583, 1, en_US 1757

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010259&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010476&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010519&LanguageCode=en&DocumentPartId=&Action=Launch

6.3.6 Server installation
6.3.6.1 OPC server for AC500 V3 products
6.3.6.1.1 Introduction
Architecture of the CODESYS OPC server

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1758

Essential documents
Ä Further information

 File name Com-
ment

Where to find

REF1 OPC_V3_how_to_use_E.pd
f

OPC_V3_how_to_use_D.pd
f

OPC V3 C:\Program Files\ABB\CoDeSys OPC Server
3 AE

REF2 AeConfigurator_User-
Guide.pdf

OPC V3 C:\Program Files (x86)\3S
CODESYS\CODESYS OPC Server 3

REF3 ReadMe.rtf OPC V3 Installation ABB DM Suit 1.0.:
\PLC - AC500\OPC Server\OPC-
ServerV3.xAE\

REF4 ReleaseNotesOPCV3 AE for
HA

OPC V3 Installation ABB DM Suit 1.0.:
\PLC - AC500\OPC Server\OPC-
ServerV3.xAE\

Work flow
Consideration and preparation

*) Ä Chapter 6.3.6.1.2.2 “Installation of OPC server” on page 1766

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1759

Commission OPC server

*) Ä Chapter 6.3.6.1.2.3.1 “Define symbols” on page 1769

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1760

1) Ä Chapter 6.3.6.1.2.5 “Configure AlarmEvents” on page 1782
2) Ä Chapter 6.3.6.1.2.5.1 “Check AlarmEvents” on page 1782

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1761

Adjustment to target OPC client

1) Ä Chapter 6.3.6.1.1.2 “Essential documents” on page 1759 REF4.
2) Ä Chapter 6.3.6.1.2.6 “Configure user account for OPC server” on page 1783

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1762

6.3.6.1.2 Hints
Default folder and contents
Windows 7, Windows Server 2008/2016 (64-bit)

OPC Server V3 Windows 7 64-bit, Windows Server 2008
64-bit, Windows Server 2016 64-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

C:\Program Files (x86)\3S CoDeSys\CoDeSys
OPC Server 3\

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\ProgramData\CoDeSysOPC\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\SysWOW64\

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1763

Windows 7 (32-bit), Windows Server 2008/2016 (32-bit)

OPC Server V3 Windows 7 32-bit, Windows Server 2008
32-bit, Windows Server 2016 32-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

C:\Program Files\3S CoDeSys\CoDeSys OPC
Server 3\

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\ProgramData\CoDeSysOPC\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\ProgramData\Gateway Files\
After starting the OPC server:
C:\ProgramData\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1764

Windows Server 2008/2016 (32-bit)

OPC Server V3 Windows Server 2008 32-bit, Windows
Server 2016 32-bit

WinCoDeSysOPC.exe

OPCConfig.exe

AEConfiguration.exe

CoDeSys_OPC_Server_V3_User_Guide.pdf

CoDeSys_OPC_Server_V3_Benutzerhand-
buch.pdf

AeConfigurator_UserGuide.pdf

OPCServer.ini

OPCServerA.ini

OPCServer.log

C:\Program Files\3S CoDeSys\CoDeSys OPC
Server 3\

Symbol file *.SDB, *.SYM CBP open, after project build or rebuild all: in
the project folder

Symbol file *.SDB After login in AC500:
C:\WINDOWS\Gateway Files\
After start CODESYS OPC server:
C:\WINDOWS\Gateway Files\Upload\

Gateway.exe C:\Windows\System32\

If folder C:\ProgramData\ is missing, select “Show hidden files, folders and
drives” at “Control Panel è All Control Panel Items è Folder Options è View
è Hidden files and folders”.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1765

Installation of OPC server
Prerequisites

The following applications are closed:
– All OPC clients
– ABB OPC tunnel
– CODESYS gateway server

Ensure termination of the following processes:
– Gateway.exe
– CoDeSysOPC.exe
– WinCoDeSysOPC.exe
– OCTsvc.exe

Installing with Automation Builder
1. Go to homepage http://new.abb.com/plc/automationbuilder/platform/software .
2. Click [Latest Automation Builder version (recommended)] and run the installer.

3. Open “Installer Options and Additional Tools” and click [Install Additional Tools].

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1766

http://new.abb.com/plc/automationbuilder/platform/software

4. Agree to the “License Terms”.

5. Select “Version 2 and/or 3” and install.

ð All required files are installed for OPC and the OPC server is registered automatically
as user application.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1767

Manual registration and unregistration
It is possible to register or to uninstall the OPC server manually either as COM server (user
application) or as a service.

Register the OPC server as interactive software in the Windows registry:

Command for OPC 3: WinCoDeSysOPC/RegServer

Register the OPC server as system service:

Command for OPC 3: WinCoDeSysOPC/Service

Unregister the OPC server from the Windows registry and from the service
entry:

Command for OPC 3: WinCoDeSysOPC/UnRegServer

Please see REF1 chapter 3 (OPC 3) Ä Table on page 1759 for details.

Prerequisites: All programs, processes and services which connect to the OPC server
are closed.
1. Start the “Command Prompt” with command “cmd” in the “Start è Run... ” window.

2. Go to the CoDeSysOPC V2 installation folder.
3. Unregister the OPC server with WinCoDeSysOPC/UnRegServer.

4. Register the OPC server as system service with WinCoDeSysOPC/Service.

Example: Reg-
ister OPC
server V3 as a
system service

OPC clients for tests
Free of charge test clients can be found in the web:
https://industrial.softing.com

http://www.matrikonopc.com/products/opc-desktop-tools/index.aspx

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1768

https://industrial.softing.com/us/support/downloads.html
http://www.matrikonopc.com/products/opc-desktop-tools/index.aspx

Symbol file
Define symbols

1. Right-click on “Application” in CODESYS V3 project and click “Add Object”.

2. Choose “Symbol Configuration” and click [Add object].

3. Select your programs and/or single symbols and click [Build].

ð A symbol file will be automatically downloaded to the PLC with Project Download.

With double-click in the device tree to “Symbol Configuration” you can change the “Symbol
Configuration” settings.

To restrict traffic and load, choose only symbols you need.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1769

Configure OPC server
Configure OPC Server V3

1. Start CODESYS/ CoDeSysOPC Server V3/OPC Configurator.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1770

2. If the configuration is needed furthermore, save the configuration.
The actual configuration at start of OPC server will always be read from OPCServer.ini.

ð
Update rate
– The “Update Rate” may not be 0 (ms)!
– The default value of 200 ms is a suitable value of many applica-

tions.
– The adjustment for the “Update Rate” depends on the number of

symbols (variables).
– For a big number of symbols it can be better to increase the

“Update Rate”.

The checkboxes “Sync Init” and “Enable logging (Defaultevents)” must
be enabled.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1771

3. Select “PLC_FW3”.

ð
– If the *.sdb files should be loaded from the “Gateway Files” direc-

tory on PC, the project name must be identical with project name
in CODESYS. The extension is not necessary.

– If the symbol information should be loaded from AC500 V2.x, the
project name is not required and can also be empty.

– The parameters displayed in the screenshot above are recom-
mended default settings.

– The checkbox “Active” must be enabled.
– Enabled checkbox “Enable logging” allows a later diagnosis.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1772

4. Select “Connection” and click [Edit].

5. Enter the TCP/IP address of the target PLC at “PLC name or address” and enable “Use
Tcp/Ip blockdriver”.

6. Enter the TCP/IP address of the target PLC at “IP Address of PLC” and click [OK].
7. Click “File è Save” OPCserver.ini and “File è Exit” OPCConfig.

Check OPC function with AC500
Prerequisites

It is urgently recommended to check the function of the configuration steps.

Ä Chapter 6.3.6.1.2.4.1 “Configure OPC Server V3” on page 1770

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1773

Check OPC server V3
1. Start OPCExplorer.exe and connect “CoDeSys.OPC.DA”.

2. Add Group, add Items, select availabe Items in Server “CoDeSys.OPC.DA”.
Add to Tag List, close the Item browser.

ð If anything is right, then “CoDeSys.OPC.DA” is connected, is running and the “Quality”
of the items is good.

Check processes with windows task manager

Correct configuration: All processes run with the same “User Name” and with the same “Session
ID”.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1774

Test OPC function without AC500
AC500 project

1. Open CoDeSys Application.

2. Collect all OPC variables in a separate “Global Variables” list.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1775

3. Under “Project è Options ” select the “Symbol configuration”.
Enable checkbox “Dump symbol entries” and click [Configure symbol file].

4. Disable all the checkboxes and confirm twice with [OK].

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1776

5. Under “Project è Options ” “Symbol configuration” click [Configure symbol file] again.

6. Select the variables which should be communicated as symbol.
Enable the following checkboxes:
● “Export variables of object”
● “Export structure components”
● “Export array entries”
● “Write access”

7. Confirm twice with [OK].
8. Under “Project è Rebuild all” rebuild the project.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1777

9. In the project folder is the subfolder “OPC_test1__AC500_PM573_ETH__OPC_test1”. It
contains symbol files *.SYM and *.SDB with the time of the “Rebuild all”. The items in
the file *.SYM can be checked with Notepad. The binary file *.SDB contains the items for
the OPC server. With <Online> <Login> it will copied in the gateway files directory and
optionally on the AC500.

10. The folder “OPC_test1__AC500_PM573_ETH__OPC_test1” is a temporary folder, if the
CBP project is opened. For the simulation of the server OPC it is copied *.SDB by hand.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1778

Configure OPC server V3

1. Select “Edit”, append “PLC” and keep the default values.

2. You must specify “Project name” with the “directory name”.
Connection settings are not required for the simulation.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1779

Check OPC server with MatrikonOPCExplorer

1. OPC Server V3: “Connect CoDeSys.OPC.DA”. Add “Group”, add “Items”, select “Availabe
Tags” and add to “Tag List”.

2. The OPC Server V3 (“CoDeSys.OPC.DA”) is connected, running and the “Quality” is
good.
One OPC client can read / write the values of the items.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1780

3. Similar configuration as above.
The OPC Server V2 (“CoDeSys.OPC.02”) is connected, running and the configured items
are found. But the “Quality” is bad. One OPC client can not read / write the values of the
items.

Check processes with windows task manager

Correct configuration: All “Processes” run with the same “User Name” and with the same
“Session ID”.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1781

Summary

The correct function of OPC Server V2 and V3 can be checked without AC500.

With OPC Server V3 with the configuration “SIMULATION” the Project name
with the directory name has to be specified. The values of the items can be read
and write by one OPC client.

With OPC Server V2, as well as with OPC Server V3 in configuration
“GATEWAY”, only the project name may be specified. The configured items
are found, but the quality is bad. The values of the items can not be read and
not write by one OPC client.

Refer to REF5 Online Help of PS501 chapter OPC for details Ä Table
on page 1759.

Configure AlarmEvents
Check AlarmEvents

The function of the “AlarmEvents” can be checked with “MatrikonOPC Explorer”.

The “AlarmEvents” can be simulated by writing the value of the Items.

Further information

Refer to REF2 AeConfigurator_UserGuide.pdf for details Ä Table
on page 1759.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1782

Configure user account for OPC server
OPC server V3 on Windows Server 2003/ 2008/ 2012/ 2016

When running the OPC server V3 on Windows Server 2003/ 2008/ 2012 /2016 multiple ses-
sions need to be supported. Therefore the installation of the OPC server as service running with
a dedicated user account is recommended.

● Create specific user, no administrator account is required
● Register V3 OPC server as service
● Configure V3 OPC server as service

Register the OPC Server executable as service from the command line.

Configuration
steps

Create specific
user

Registration

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1783

With command “WinCoDeSysOPC /Service” WinCoDeSysOPC.exe gets
installed as system service.

Started once, the service will stay “started” until the system gets terminated.

The communication to the configured PLCs survives.

Also here the service gets installed in the current position of WinCoDeSy-
sOPC.exe.

At “Computer Management è Services and Applications è Services” open the “Properties” of
the “CoDeSysOPCDAService”.

Complete the Service Configuration

Configuration

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1784

Check Users and Session during Test Cases

Check the “Session ID” and “User Name” of

Testing

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1785

● Gateway.exe,
● WinCoDeSysOPC.exe and
● OPC Client
on different test cases like multi session with terminal service sessions.

Further information

Please refer to REF3 ReadMe.rtf and REF4 ReleaseNotes OPCV3 AE for HA.

Ä Table on page 1759

6.3.6.1.3 Potential issues
Session isolation

With Windows Server 2003, Windows Server 2008, Windows Server 2016 the Windows 7
services are alone in session 0. User applications run in session 1 (2 and so on).
Services:

A Windows service is a computer program that operates in the background.
Windows services can be configured to start when the operating system is started or can be
started manually and run in the background as long as Windows is running. They can operate
when a user is not logged on.
Services are:

Windows operating systems include numerous services. OPC client like S+ OPC scanner
PGIM, Aspen CIM-IO Manager, ICONICS, .. can also installed as a service.
User applications are:

Microsoft Word, Notepad, MatrikonExplorer, ControlBuilderPlus.exe and Codesys.exe

Service and user application are isolated in their session. They can not communicate with each
other directly.
OPC Server uses, like the CBP and CODESYS, the gateway server from CODESYS
(gateway.exe) for the communication with the AC500 and starts the gateway in their session.
That creates undefined behavior, if the OPC Server runs as a service. The gateway server is not
able to run in multi sessions.

● Install all OPC clients and OPC Server, which use the gateway server, in the same session.
● The OPC Server as a service (session 0) may not be connected at the same time (in

parallel) with an OPC server as a user application or CBP or CODESYS (all in session 1)
with the AC500. If this function is necessary, different PC or virtual machines must be used.

● Use tools like OPC tunnel. In a DigiVis 500 setup context the OPC server must not be
registered as service. The OPC tunnel itself starts the OPC server within its service.

See also
http://msdn.microsoft.com/en-us/
windows7trainingcourse_sessionisolation_unit .

Situation

Problem

Resolutions

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1786

http://msdn.microsoft.com/en-us/windows7trainingcourse_sessionisolation_unit
http://msdn.microsoft.com/en-us/windows7trainingcourse_sessionisolation_unit

6.3.6.2 OPC UA server for AC500 V3 products
6.3.6.2.1 General

OPC UA server can be added as an object below the Ethernet interfaces ETH1 or ETH2.
The user can access the variable interface of the PLC via a client. At the same time, communi-
cation can be protected by means of encryption.
The CODESYS OPC UA server supports the following features:
● Browsing of data types and variables
● Standard read/write services
● Notification for value changes: subscription and monitored item services
● Encrypted communication according to "OPC UA standard (profile: Basic256SHA256)"
● Imaging of the IEC application according to "OPC UA Information Model for IEC 61131-3"
● Supported profile: Micro Embedded Device server Profile
● By default, there is no restriction in the number of sessions, monitored items, and subscrip-

tions. The number depends on the performance of the respective platform.
● Sending of events according to the OPC UA standard.

How to install and configure an OPC V2 or OPC V3 server and how to use it for AC500 PLCs is
described in the application note How to use OPC server.

The application example How to use OPC server V3 - for DA and UA is available to gain a
deeper understanding of the OPC protocol and to configure AC500 V3 accordingly.

6.3.6.2.2 Creating a project for OPC UA access
1. Click “File è New Project è AC500 project” in Automation Builder 2.1 or newer.
2. Choose a PLC - AC500 V3 and click [Add object].
3. Right-click on node ETH1 or ETH2 and “Add object”.
4. Choose OPC UA Server in the dialog and click [Add object].
5. Declare some variables of different types in the program.
6. Right-click “Application è Add object”. Choose “Symbol configuration” and click

[Add object].
7. Enable checkbox “Support OPC UA Features” in the dialog “Add symbol configuration”.
8. Double-click “Symbol configuration” in the Devices tree to open the editor “Symbol

configuration”.
9. Click [Build].

ð The variables are displayed in a tree structure.

10. Activate the variables that you want to publish to an OPC UA client. Specify the access
rights.

11. Download the project to the PLC.

6.3.6.2.3 Use node name
1. Double-click node “OPC_UA_Server”.
2. Set parameter “Use node name” to TRUE.
3. Double-click node “PLC_AC500_V3 <...>”.
4. Click “Device” and “Rename active device...”

5. Enter new device name in the following dialog and click [OK].

Application note

Application
example

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1787

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010406&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010407&LanguageCode=en&DocumentPartId=&Action=Launch

6.3.6.2.4 Use UaExpert client
The OPC UA client UaExpert is available for download from the Unified Automation website and
can be used free of charge (freeware license).
Using this client, you can connect to the AC500 OPC UA server.
The following description refers to this program. Other OPC UA clients work in a similar way.
1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the “Add Server” dialog.
4. Enter URL and click [OK].

ð The URL appears in the “Add Server” dialog.

5. Select “Advanced” tab and click [OK].
6. Click [Connect].

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1788

7. Expand the project tree in the “Address Space” window.

8. Drag and drop the needed symbols to “Data Access View”.

6.3.6.2.5 Working with encryption
Creating a certificate for the OPC UA server

Prerequisite: A battery is inserted and the clock is set to actual time.
1. Double-click the Security symbol in the lower right corner of Automation Builder.
2. Select the “Devices” tab.

ð The certificate information opens.

3. Select the PLC in the left “Information” view.

ð All services of the PLC that require a certificate are displayed in the right Information
view.

4. Select the service “OPC UA Server”.
5. Click the icon to create a new certificate for the device.

ð “Certificate Settings” dialog appears.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1789

6. Define the certificate parameters according the figure above and click [OK].

ð The certificate is created on the PLC.

7. Upload the certificate to your PC.
8. Restart the runtime system.

For further information see Ä Chapter 6.3.4.7.3.4 “OPC UA secure” on page 1728.

Encrypted connection with UaExpert client
1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the “Add Server” dialog.
4. Enter URL and click [OK].

ð The URL appears in the “Add Server” dialog.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1790

5. Select “Advanced” tab.

6. Choose option “Basic256ha256” of drop-down list “Security Policy” and “Sign & Encrypt”
of drop-down list “Message Security Mode” and click [OK].

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1791

7. Click menu “Settings” and “Manage Certificates”

8. Click [Create new Application Certificate...].

ð Dialog “New Application Instance Certificate” opens.

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1792

9. Enter the required informations and click [OK].

ð Dialog “Manage Certificates” opens

10. Click [Copy Application Certificate To...] your PC.

11. Download the certificate to AC500 via the “Security Screen” view.
12. Click [Connect] in the UaExpert client.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1793

ð Dialog “Certificate Validation” opens.

Working with a trusted certificate will avoid this error message.

14. Enable checkbox Accept the server certificate temporarily for this session and click
[Continue].

ð Dialog “Connect Error” opens

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1794

15. Click [Ignore]

16. Check settings in dialog “Manage Certificates”.

6.3.6.2.6 Changing variables via UaExpert client
1. Expand in view “Address Space” “Objects è DeviceSet è PM5670 è Resources

è Application è PLC_PRG”.

ð The variables of the global variable list are visible.

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1795

2. Drag and drop the variables to the Data Access View.
3. Change values in the column Value.

6.3.6.2.7 Configuring OPC UA client
Operating modes

● Objects will be continuously updated in a defined interval
● Create higher load then Subscription
● Is recommended only for a few Symbols

Not yet supported

● Updated objects depending on the publishing interval and filters
● Method to reduce load
● Different intervals
● Filter possible (coming in AC500)

Client defines a group of sym-
bols with

Description

Publishing interval Interval, in which server publish data to client

Sampling interval Interval for sampling and storing data at server and send in
each publishing interval

Queue size Array of data to save data if sampling Interval is faster than
publishing Interval (At AC500 in the moment only 1)

Data change filter Can be used to reduce traffic from server to client.
Criteria:
● Change of data,
● Change of status
● Change of time stamp
AC500 is fix configured for change of data and change of
status.

Polling

Pub/Sub

Subscription
(recommended
mode)

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1796

Using OPC UA with subscription mode

Recommendations:

– Define only variables you need as symbols
– Do not configure publishing Intervals to short (increase load)
– Use different subscriptions with different publishing intervals in order to

decrease load
– Do not use sampling intervals faster then publishing intervals as long as

AC500 OPC UA server don‘t support Queue Size different from 1
– Be careful: Setting „0“ at sampling Interval at client will be interpreted in

server as „as fast as possible“, which is 100ms at AC500 and create a high
load.

Publishing and
sampling inter-
vals in UaExpert

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/05 3ADR010583, 1, en_US 1797

1. Right-Click on an Item in “Data Access View” and click “Subscription Settings”.

2. Set the recommended values.
Life Time Count: Number of publishing intervals in which client has to send publish
requests to the server. After this period without request from client, subscription in server
will be deletet.
Max Keep Alive Count: If there are no new data to send, server can skip a publishing
interval. After the alive count, server has to send, even if there are no new data.
Click [OK].

3. Right-Click on an Item in “Data Access View” and click “Monitored Item Settings”.

4. Set the recommended values.

6.3.6.3 Web server
In order to be able to use the PLC as a client for web services, the HTTP function block library
can be used. Setup and use of the HTTP library are described in the application example
AC500 Webservices - HTTP Function Block Library.

HTTP library

Configuration and programming
Configuration in Automation Builder for AC500 V3 products > Server installation

2024/01/053ADR010583, 1, en_US1798

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010259&LanguageCode=en&DocumentPartId=&Action=Launch

6.3.6.4 Windows server
Windows server usage in Automation Builder requires modifications of the system environment
and of the settings in Automation Builder, e.g. permissions, licensing, session handling etc.
How to setup system and software for Windows server is described in the application note
Windows Server 2016 - RDM access.

6.3.7 Converting an AC500 V2 project to an AC500 V3 project

A project that has been configured for an AC500 V2 PLC can be converted to a
project for an AC500 V3 PLC. Essentially, the conversion is done in Automation Builder,
however, some additional actions have to be executed manually. The complete conver-
sion procedure of a V2 project to a V3 project is described in the application note
Converting an AC500 V2 project to an AC500 V3 project.

Application
example

Configuration and programming

Configuration in Automation Builder for AC500 V3 products > Converting an AC500 V2 project to an AC500 V3 project

2024/01/05 3ADR010583, 1, en_US 1799

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010656&LanguageCode=en&DocumentPartId=&Action=Launch
https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010397&LanguageCode=en&DocumentPartId=&Action=Launch

6.4 Programming with CODESYS
6.4.1 CODESYS Development System
6.4.1.1 Introduction

The CODESYS Development System IEC 61131-3 programming tool forms the core of the
CODESYS software platform for tasks in industrial automation technology. With additional, inte-
grated solutions for motion control, visualizations, and fieldbus connections, the usual practical
requirements are covered in one system.

The free CODESYS Development System is a IEC 61131-3 programming platform for
automation devices with control tasks. It provides diverse and comfortable engineering solutions
to support you in your developing tasks:

 For this see in this Online Help:
Project configuration through wizards. Ä Chapter 6.4.1.3 “Creating and Config-

uring a Project” on page 1808

Adaptability of the user interface. Ä Chapter 6.4.1.2.2 “Customizing the
user interface” on page 1802

Creation of professional IEC 61131-3 controller
applications wit a host of standard features.

Ä Chapter 6.4.1.9 “Programming of Appli-
cations” on page 1844

User-friendly programming with mouse and key-
board in all IEC 61131-3 languages.
Appropriate editors for FBD, LD, IL, ST, SFC, addi-
tionally the variants CFC and Extended CFC.

Ä Chapter 6.4.1.20.1 “Programming Lan-
guages and Editors” on page 2047

Input assistance for the input and configuration of
data.

Ä Chapter 6.4.1.9.7 “Using input assis-
tance” on page 1885

CODESYS
System over-
view

Features

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1800

 For this see in this Online Help:
Support of object-oriented programming.
Real object-oriented programming (OOP) fully
compliant with the IEC 61131-3 standard in all
IEC 61131-3 languages, without any additional
tools.
Inheritance of POUS to similar application parts to
reduce development time and errors.
Object-orientation is not a must: Functional and
object-oriented programming can be used and
mixed as required.

Ä Chapter 6.4.1.9 “Programming of Appli-
cations” on page 1844

Comprehensive project comparison, also for
graphic editors.

Ä Chapter 6.4.1.5 “Comparing projects”
on page 1817

Library concept for an easy reutilization of applica-
tion.

Ä Chapter 6.4.1.17 “Using Libraries”
on page 2034

Debugging and online features for the fast optimi-
zation of the application code and to speed up
testing and commissioning.

Ä Chapter 6.4.1.12 “Testing and Debug-
ging” on page 1980

Integrated compilers for many different CPU plat-
forms for optimizing the controller performance.

Ä Chapter 6.4.1.21.4.13.3 “Dialog 'Pro-
ject Environment' - 'Compiler Version'”
on page 2778

Ä Chapter 6.4.1.21.4.12.4 “Dialog Box
'Project Settings' - 'Compileoptions'”
on page 2769

Security features for the protection of the source
code and the operation of the controller.

Ä Chapter 6.4.1.6 “Protecting and Saving
Projects” on page 1819

Ä Chapter 6.4.1.9.18 “Protecting an appli-
cation” on page 1915

Ä Chapter 6.4.1.11.4 “Handling of Device
User Management” on page 1971

Field bus support and programming of devices
from different manufacturers.

Ä Chapter 6.4.1.8 “Configuring I/O Links”
on page 1835

Extensibility and adaptability without leaving the
framework.

Additionally:
Many seamlessly integrated tools for different kinds of automation tasks, for example
CODESYS Visualization, CODESYS SoftMotion, CODESYS Application Composer.
Please always note the possibility to extend the functionalities by "AddOn"-Packages, provided
in the CODESYS Store.

In the “Option è International Settings” dialog you can customize the language of the user
interface of the development system. This change will take effect the next time you start
Automation Builder. You can adjust the help language separately.
If you start Automation Builder from the command line, you can add a parameter to adjust the
user interface language.
Ä Chapter 6.4.1.21.4.14.14 “Dialog 'Options' – 'International Settings'” on page 2790

Ä Chapter 6.4.1.16 “Using the Command-Line Interface” on page 2028

All rights are reserved by the individual copyright holders. Technical specifications are subject
to change. Reproduction or further use of this help resp. of parts of it require the express prior
authorization of ABB AG.

Customization
of the user inter-
face language

Copyrights and
trademarks

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1801

6.4.1.2 Configuring CODESYS
6.4.1.2.1 Introduction
Setting CODESYS options

You can configure the behavior and appearance of the CODESYS Development System in the
different tabs of the “Options” dialog. The dialog opens by clicking “Tools è Options”. Here you
can configure the default settings for different editors and functionalities. These settings apply
throughout CODESYS.
The settings are stored in your current user profile on your local system. For use on other
systems, option settings, either user-specific or machine-specific (computer), can be exported to
an XML file.

In V3.5 SP13 and later, CODESYS checks whether an older version is already
installed when the development system is started for the first time. If this is the
case, then the “Import Assistant” dialog opens for transferring the CODESYS
options set with the older version.

See also
● Ä Chapter 6.4.1.21.3.9.17 “Command 'Options'” on page 2667
● Ä Chapter 6.4.1.21.3.9.18 “Command 'Import and Export Options'” on page 2668
● Ä Chapter 6.4.1.21.4.2 “Dialog 'Import Assistant'” on page 2745
● Ä Chapter 6.4.1.2.2.2 “Customizing menus” on page 1802
● Ä Chapter 6.4.1.2.2.5 “Customizing keyboard shortcuts” on page 1805
● Ä Chapter 6.4.1.2.2.3 “Customizing toolbars” on page 1804

6.4.1.2.2 Customizing the user interface
Introduction

In CODESYS, you can customize the user interface by changing the window layout as well as
the appearance of menus and commands according to your requirements.

Customizing menus
You can customize the menu commands of the CODESYS user interface. In a configuration
dialog, you can add or remove menus.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens. The “Menu” tab is visible.

2. Select a menu in the menu tree or a command in a menu.
3. Click “Delete”.

ð The menu or command is deleted from the menu tree.

4. Click “OK”.

ð The dialog box closes and the menu is customized.

Removing
menus and
commands

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1802

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens. The “Menu” tab is visible.

2. Scroll to the end of the menu tree.
3. Select the blank symbol ().
4. Click “Add Popup Menu”.

ð The “Add Popup Menu” dialog box opens.

5. Type a name for the new menu in the “Default text” field.
If localization is unnecessary, then skip to step 9.

6. Click “Add Language”.

ð A drop-down list opens with available languages.

7. Choose the required language.

ð The language is added to the list of languages.

8. Click into the “Text” field and type the language-specific text.
9. Click “OK”.

ð The new menu is added at the bottom of the menu tree.

10. Change the menu order by clicking “Move up” and “Move down”. Click “OK” to close the
“Customize” dialog box.

The new menu is displayed only when it contains a command.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens. The “Menu” tab is visible.

2. Expand the branch of the menu where the new command should be added.
3. Select the blank symbol ().
4. Click “Add Command”.

ð The “Add Command” opens dialog box.

The dialog box lists all commands grouped by category.
5. Select the command to be added. Click “OK”.

ð The new command is added to the menu tree.

6. Change the menu order by clicking “Move up” and “Move down”. Click “Add separator” to
add a border between commands. Click OK to close the “Customize” dialog box.

ð The new command is now available in the menu.

See also
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801
● Ä Chapter 6.4.1.2.2.3 “Customizing toolbars” on page 1804

Adding menus

Adding com-
mands

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1803

Customizing toolbars
You can customize the toolbars of the CODESYS user interface. In a configuration dialog, you
can add or remove toolbars.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Choose the “Toolbars” tab.
3. Select a toolbar or a command from a toolbar tree.
4. Click “Delete”.

ð The toolbar or command is deleted.

5. Click “OK”.

ð The dialog box closes and the toolbar or command is removed.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Choose the “Toolbars” tab.
3. Select the blank toolbar.
4. Click “Add Toolbar”.

ð The cursor blinks in the new toolbar.

5. Type a name.
6. Change the toolbar order by clicking “Move up” and “Move down”. Click “OK” to close the

“Customize” dialog box.

CODESYS displays the new toolbar only when it contains a command.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Choose the “Toolbars” tab.
3. Expand the tree of the toolbar where the new command should be added.
4. Select the blank symbol ().
5. Click “Add Command”.

ð The “Add Command” dialog box opens.

The dialog box lists all commands grouped by category.
6. Select the command to be added. Click “OK”.

ð The new command is added to the toolbar tree.

Removing tool-
bars and com-
mands

Adding toolbars

Adding com-
mands

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1804

7. Change the toolbar order by clicking “Move up” and “Move down”. Click “Add separator” to
add a border between commands. Click “OK” to close the “Customize” dialog box.

ð The new command is available in the toolbar.

See also
● Ä Chapter 6.4.1.21.4.15.4 “Dialog 'Customize' - 'Toolbars'” on page 2802
● Ä Chapter 6.4.1.2.2.2 “Customizing menus” on page 1802

Customize command icon
CODESYS provides the capability of assigning customized icons to commands.

1. Select the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Click the “Command icons” tab.
3. Select the category “Help” from the list on the left.

ð All commands in this category are listed on the right.

4. Select the command “Information”.
5. Click “Assign”.

ð A dialog box opens for selecting the icon file (*.ico).

6. Select an icon file.
7. Click the “Open” button.

ð The icon is assigned to the selected command.

8. Click “OK”.

See also
● Ä Chapter 6.4.1.21.4.15.3 “Dialog 'Customize' - 'Command Icons' ” on page 2801

Customizing keyboard shortcuts
CODESYS provides the capability of executing commands directly via keyboard shortcuts. You
can customize or extend predefined keyboard shortcuts.

1. Choose the command “Tools è Customize”.

ð The “Customize” dialog box opens.

2. Choose the “Keyboard” tab.
3. Select the category “Help” from the list on the left.

ð All commands in this category are listed on the right.

4. Select the command “Search”.
5. Click into the field “Press Shortcut Keys”.
6. Press [Ctrl]+[Shift]+[S].

ð CODESYS adds the key combination to the field.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1805

7. Click “Assign”.

ð The keyboard shortcut is assigned to the command.

8. Click “OK”.

ð You can call the “Search” command by pressing [Ctrl]+[Shift]+[S].

See also
● Ä Chapter 6.4.1.21.4.15.5 “Dialog Box 'Customize' - 'Keyboard' ” on page 2802

Changing the window layout
In CODESYS, you can easily customize the layout of different views to your individual needs.
1. Drag the view by the caption bar or by the tab.

ð Arrows are shown to mark possible destinations. Example:

2. Drag the view to one of the arrows.

ð The destination is displayed as a blue-shaded area.

3. Release the left mouse button.

ð The window is inserted into the selected destination.

The window can also be placed outside of the CODESYS programming inter-
face.

See also
● Ä Chapter 6.4.1.2.2.7 “Resizing windows” on page 1806
● Ä Chapter 6.4.1.2.2.8 “Auto-hiding windows” on page 1807
● Ä Chapter 6.4.1.2.2.9 “Switching between windows” on page 1807

Resizing windows
1. Move the mouse pointer over the border between two windows or views.

ð The cursor becomes a left-right arrow.

2. Drag the border to another position.

You can resize detached views by moving the frame lines.

See also
● Ä Chapter 6.4.1.2.2.6 “Changing the window layout” on page 1806
● Ä Chapter 6.4.1.2.2.8 “Auto-hiding windows” on page 1807
● Ä Chapter 6.4.1.2.2.9 “Switching between windows” on page 1807

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1806

Auto-hiding windows
When you hide a view, it is minimized to a tab in the frame of the user interface. When you
move the pointer over the tab, the window is shown automatically.
1. Click into the window to be hidden.
2. Click “Window è Auto Hide”.

Or click the PIN symbol () in the upper right corner of the view.

ð The window is hidden and only visible by a small tab on the edge of the main window.

3. Move the mouse pointer over the tab.

ð The window is shown as long as the mouse pointer hovers over the tab.

1. Click the tab of the hidden window.
2. Clear the check box “Window è Auto Hide”.

Or click the PIN symbol () in the upper right corner of the view.

ð The window is permanently shown.

See also
● Ä Chapter 6.4.1.2.2.6 “Changing the window layout” on page 1806
● Ä Chapter 6.4.1.2.2.7 “Resizing windows” on page 1806
● Ä Chapter 6.4.1.2.2.9 “Switching between windows” on page 1807

Switching between windows
It is possible to switch directly between the currently opened views and the editor windows.
1. Press the keystroke combination [Ctrl]+[Tab]. Continue pressing the [Ctrl] key.

ð An overview opens with all active views and editors.

2. Continue pressing the [Ctrl] key and select a window using the arrow keys.
3. Release the [Ctrl] key.

ð The selected view or editor is activated.

See also
● Ä Chapter 6.4.1.2.2.6 “Changing the window layout” on page 1806
● Ä Chapter 6.4.1.2.2.7 “Resizing windows” on page 1806
● Ä Chapter 6.4.1.2.2.8 “Auto-hiding windows” on page 1807

Hiding windows

Showing win-
dows

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1807

6.4.1.3 Creating and Configuring a Project
6.4.1.3.1 Introduction

● A project contains the objects which are necessary to create a controller program ("applica-
tion"):
– Pure POUs, for example programs, function blocks, functions, and GVLs.
– Objects that are also required to be able to run the application on a PLC. For example,

task configuration, Library Manager, symbol configuration, device configuration, visuali-
zations, and external files.

● In a project, you can program multiple applications and connect multiple controller devices.
● CODESYS manages device-specific and application-specific POUs in the “Devices” view

("device tree") and project-wide POUs in the “POUs” view.
● For the creation of projects, there are templates that already contain certain objects.
● Basic configurations and information for the project are defined in the “Project Settings” and

“Project Information”. For example:
– Compiler settings
– User management
– Author
– Data about the project file
There are settings for the version compatibility of the project in the configuration dialogs in
the “Project Environment”.

● You save a project as a file in the file system. As an option, you can pack it together with
project-relevant files and information into a project archive. It is also possible to save files in
a source code management system such as SVN.

● Each project contains the information about the CODESYS version with which it was cre-
ated. When you open it in another version, CODESYS will notify you about possible or
necessary updates regarding file format, library versions, etc.

● You can compare, import/export projects, and create documentation for them.
● You can protect a project from being changed, or even completely protect it from being read.

By using user management, you can selectively control the access to the project and even
to individual objects in the project.

● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410
● Ä Chapter 6.4.1.21.2 “Objects” on page 2409
● Ä Chapter 6.4.1.21.4 “Dialogs” on page 2745
● Ä Chapter 6.4.1.21.3.5.13 “Command 'Project information'” on page 2604
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

6.4.1.3.2 Opening a V3 Project
You can open projects, library projects, or project archives in CODESYS which have been cre-
ated with different installations. When a project is opened, it is automatically checked whether
or not the active installation is appropriate to load the project. At this time, deficiencies can be
detected, such as missing add-ons or deprecated installations. You can correct these deficien-
cies. Then you can load the project with an appropriate installation.
The following actions are possible to correct deficiencies:
● Update existing add-ons and install missing add-ons
● Start another installation which is appropriate for the project
● Install an additional CODESYS version with the appropriate state

Moreover, you can load and read write-protected projects. You have to specify an appropriate
location where you have the necessary write permissions only when you save the file.

What is a
project?

Loading a write-
protected
project

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1808

You can load restricted projects only if you have the access credentials, such as user name and
password.

You have selected a project which is protected by a security key. If the security key is not
plugged into the computer, then you are prompted to plug it in. Otherwise CODESYS opens the
project without any information about the protection.

Backups are created when the “Automatically save” project option is selected. When CODESYS
is not ended properly after a change, the project is saved as a backup.
When you have selected a project, the “Auto Save Backup” dialog opens first when loading.
There you can handle the backup.

See also
● Ä Chapter 6.4.1.3.3 “Opening a V2.3 project” on page 1809
● Ä Chapter 6.4.1.21.4.14.17 “Dialog 'Options' – 'Load and Save'” on page 2791
● Ä Chapter 6.4.1.6.2 “Setting up write protection” on page 1823
● Ä Chapter 6.4.1.6.3 “Assigning Passwords” on page 1824
● Ä Chapter 6.4.1.21.3.2.2 “Command 'Open Project'” on page 2553

See also
● Help on CODESYS Installer

6.4.1.3.3 Opening a V2.3 project

A CoDeSys V2.3 project can be converted into a CODESYS V3 project only
if the CODESYS V2.3 Converter package is installed in CODESYS V3. The
package is available in the CODESYS Store.

Requirement: CODESYS is started (or a project is already open). You should be aware of the
restrictions described below the following instructions.
1. Click “File è Open Project”.
2. In the “Open Project” dialog, click any CoDeSys V2.3 project or project archive in the file

system. For searching, you can set the file filter on the bottom right corner of the dialog.

ð If another project is still open, CODESYS instructs you to close it accordingly. After
that the CoDeSys V2.3 converter automatically starts.

3. The V2.3 converter checks that the project can be compiled without errors. If so, then it
processes the project automatically.

4. NOTE: If the project contains visualization objects with placeholder variables that the
converter cannot resolve, the respective visualizations are shown as a group in place of
the visualization references.

5. Device conversion: When a device (target system) is referenced in the project to be
opened and no conversion rules are defined for the device, then the “Device Conversion”
dialog opens. Specify here whether and how the converter should replace the previous
device reference with a current one.

ð For replacement, the converter added the new device in the place of the old one in the
device tree of the converted project.

Loading a
project with
access restric-
tions
Loading a
project with a
security key

Loading a
backup of a
project

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1809

6. Library conversion: if a library, for which no conversion rule has so far been defined, is
referenced in the project to be opened, then the “Conversion of Library Reference” dialog
opens. Specify here whether and how the converter should replace the existing library
reference with a current one. If you select a library for which the project information is
missing, then the “Enter Project Information” dialog opens in order to specify this informa-
tion.

ð The converter loads the adapted project. Note: The redefined library references are to
be found in the global Library Manager in the POUs view.

Com-
pila-
tion:

The project has to be compilable without errors in CoDeSys V2.3. Note: CODESYS
stills issues warnings in V3 when compiling. These are caused by implicit conversions,
which can lead to a loss of information (for example through sign changes).
CODESYS checks "case" statements against the switch variable: CASE USINT OF
INT is not checked in CoDeSys V2.3, but it issues an error message when imported
into V3.

Con-
troller
config-
ura-
tion:

The “Controller Configuration” of a CoDeSys V2.3 project cannot be imported into V3.
You have to recreate the device configuration and re-declare the variables used in the
controller configuration.

Net-
work
varia-
bles:

For network variables, CODESYS creates V3 GVL objects and imports the variable
declarations. However, the network properties are not imported. See the description of
the network variable exchange for this.

Libra-
ries:

All variables and constants that are used in a library also have to be declared in the
library. It must be possible to compile the library in CoDeSys V2.3 without errors.

Syn-
tactic
and
seman
tic
restrict
ions
since
CoDe
Sys
V2.3:

● FUNCTIONBLOCK is not a valid keyword instead of FUNCTION_BLOCK.
● TYPE (declaration of a structure) must be followed by a “:”.
● ARRAY initialization** must have parentheses.
● INI is no longer supported (you have to replace this in the code by the Init

method).
● In function calls it is no longer possible to mix explicit with implicit parameter

assignments. Therefore the order of the parameter input assignments can be
changed:
fun(formal1 := actual1, actual2); // -> error message
fun(formal2 := actual2, formal1 := actual1); // same
semantics as the following line:
fun(formal1 := actual1, formal2 := actual2);

● CoDeSys V2.3 pragmas are not converted. They produce an warning in V3.
● The TRUNC operator now converts to the data type DINT instead of INT.

CODESYS automatically adds a corresponding type conversion for a CoDeSys
V2.3 import.

Visu-
aliza-
tion:

Place-
holder
s and
their
replac
ement

Placeholders VAR_INPUT Usage Replacement

 PLC_PRG.$Local
Var$.aArr[0]

localVar:
MyStruct;

localVar.aArr[0
]

localVar :=
PLC_PRG.myStruc
tVar

Restrictions
when reusing a
CoDeSys V2.3
project in
CODESYS

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1810

 Var.aArr[0] Var : MyStruct; Var.aArr[0] Var :=
PLC_PRG.myStruc
tVar

 PLC_PRG.myStru
ctVar.aArr[$In
dex$]

Index : INT; PLC_PRG.myStruc
tVar.aArr[Index
]

Index := 0

Prob-
lemati
c pla-
cehold
ers

● Placeholders within a text:
Text: $axle$-Axis
Correction:
localVar : STRING;
Text: %s-Axis
Text variable: localVar

● Placeholder describes only one part of a variable name:
axis$axis$spur$spur$.fActPosition
Correction:
Define only one placeholder for the axis$axis$spur$spur$ placeholder.
axis_spur : MyFunctionBlock;
Then directly transfer the corresponding instance of the function block.
axis_spur := PLC_PRG.axis1spur2;

● Placeholder is replaced by an expression:
$Expression$ -> PLC_PRG.var1 + PLC_PRG.var2
Correction:
You must transfer the expression to an auxiliary variable and then transfer this
auxiliary variable as an instance.

● The placeholder describes a program name: $Program$.bToggle ->
PLC_PRG.bToggle D
The converter cannot transfer this form of setting placeholders in V3. However,
you will rarely use it in practice.

● Placeholder is replaced by different types:
Var
-> replacement 1 : PLC_PRG.n (INT)
-> replacement 2 : PLC_PRG.st (STRING)
Correction:
Define two different placeholders in the interface for this.

● The visualization is located in a library. You replace the placeholder later from any
desired project when you use the visualization there.
Correction:
Here you have to replace the TYPE_NONE data types manually. However, there is
also the possibility for you to integrate the library in a project and the placeholder
is correctly replaced. If you now import this project, the data type is also deter-
mined correctly in the library.

Non-
import
able
ele-
ments:

Trend, ActiveX – the import is not possible, because the implementation differs a
great deal. In V3, a corresponding warning is issued and a corresponding manual
reproduction is required.

Pro-
gram-
ming
lan-
guage
s

ST, IL, FBD: No restrictions

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1811

 LD: CODESYS imports function blocks with parallel branches in such
a way that the part before the branch is repeated for each branch.
This corresponds to the generated code that CoDeSys V2.3 cre-
ates for parallel branches.

 SFC: ● Step variables explicitly declared by the user must be
declared locally in the SFC editor. You may not declare them
as VAR_INPUT, VAR_OUTPUT or VAR_INOUT, because
CODESYS cannot automatically adapt the calls. Explanation:
Steps no longer use Boolean variables for the management
of the internal states in V3, but also structures of the type
SFCStepType.

● Identifier: the following identifiers may not begin with an
underscore character:
– Names of IEC actions in the tree
– Variables that are called in an IEC association list
– Names of transitions that have been programmed out

Explanation: In V3 the implicit variables that CODESYS creates
for actions are given an underscore character as prefix. An invalid
identifier with a double underscore character would result.

 CFC: ● Large boxes: The layout of large boxes can lose quality due
to an import. The boxes may overlap one another too much.
(Correction planned).

● Macros: Macros cannot be imported. (Correction planned).

Ä Chapter 6.4.1.21.2.24 “Object 'Project Information'” on page 2515

Ä Chapter 6.4.1.21.4.5 “Dialog 'Device Conversion' ” on page 2747

Ä Chapter 6.4.1.21.4.3 “Dialog 'Library Reference Conversion'” on page 2746

6.4.1.3.4 Configuring a Project
General

You can configure your project using the following dialogs:
● “Project Settings”: Basic settings on the behavour of editors and of the compiler, on user

management etc.
Ä Chapter 6.4.1.21.4.12 “Dialog 'Project Settings'” on page 2766

● “Project Information”: Adding of individual and tagging information to the project
Ä Chapter 6.4.1.21.2.24 “Object 'Project Information'” on page 2515

● “Project Environment”: Defining which versions of the external and internal modules should
be used, with the aim of achieving up-to-dateness and compatibility with each other.
Ä Chapter 6.4.1.21.4.13 “Dialog 'Project Environment'” on page 2778

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1812

Retrieving and Editing Project Information
You can use the “Project Information” object to retrieve information about your project and the
associated file, and edit certain information.
The object contains information about
● File attributes
● Meta-information, such as manufacturer, title, or author
● Properties with keys
● Statistics
● Licensing
● Signing: This way of signing translated libraries is deprecated, and for security reasons

should only be used if compatibility with older versions is required. If this method is used,
then later you can use a public key token to verify that the library was last signed by the
library vendor. As a library vendor, it is therefore crucial that you make the public key used
available to the customer, for example in the documentation.

CODESYS saves the project information as an object within the project. When you transfer a
project to another system, the “Project Information” object is transferred with it. There is no need
for a project archive.
You can use property keys to access the project information externally via function blocks. For a
library project, you can also query information about the licensing.

1. Click “Project è Project Information”.

ð The “Project Information” dialog opens.

2. Click the “Summary” tab.
3. Specify your data in the input fields (example: 0.0.0.1 in the “Version” input field).

ð CODESYS creates a property with a key for each given value and manages them on
the “Properties” tab. For a library project, CODESYS still uses the properties and sorts
later in the library repository.
If you select the option for CODESYS to create a functions block for these properties,
then you can access the properties programmatically.

1. Click “Project è Project Information”.

ð The “Project Information” dialog opens.

2. Select the “Automatically generate 'Project Information' POUs” option.

Requirement: The following property is defined.

Key = nProp1
Type= number
Value= 333

1. Select the “Automatically generate 'Project Information' POUs” option.
2. Declare a property of the type DINT, for example showprop : DINT;.

Example

Editing meta-
information

Creating func-
tions for
accessing prop-
erties

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1813

3. Call the function GetNumberProperty: showprop :=
GetNumberProperty("nProp1");
ð You are granted access to the value in the application.

Note: The functions that are created with the “Automatically generate 'Project
Information' POUs” option can be used only if the runtime supports the
WSTRING data type. If this is not the case, then instead you can apply the
“Automatically generate 'Library Information' POUs” option. You can use the
functions created in this way at least in the application to access properties.
These functions are not registered in the runtime.

If your project is a library project, then you can activate the library licensing in use here. The
CODESYS Security Key is a dongle.

Requirement: The project is a library project.
1. Click “Project è Project Information”.

ð The “Project Information” dialog opens.

2. Click the “Licensing” tab.
3. Select the “Activate dongle licensing” option.
4. Specify the dongle data in “Firm code”, “Product code”, “Activation URL”, and “Activation

mail”.

ð The library is licensed.

1. Click “Project è Project Information”.
2. Click the “Signing” tab.
3. Click the “Create Private Key File” button.

ð The “Create Private Key File” dialog opens.

4. Select a safe location, e.g. D:\for lib developers only\mycomp_libkey.libpk
and exit the dialog with “Save”.

● Ä Chapter 6.4.1.21.2.24 “Object 'Project Information'” on page 2515

Making project settings
You can configure settings that affect the behavior of CODESYS and that of certain editors
in the “Project Settings” object. The settings are valid throughout the project and are applied
immediately for active editors. You can also access the dialog boxes of the object with the
command “Project è Project Settings”.
CODESYS saves the project settings as an object directly in the project. If you then transfer
a project to another system, the “Project Settings” object is also transferred with it, without a
project archive being required.

Licensing
library projects

Creating private
key files

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1814

See also
●
● Ä Chapter 6.4.1.9.13.3 “Analyzing code statically” on page 1904
● Ä Chapter 6.4.1.21.3.5.14 “Command 'Project Settings'” on page 2604
● Ä Chapter 6.4.1.21.4.12.2 “Dialog 'Project Settings' - 'SFC'” on page 2767
● Ä Chapter 6.4.1.21.4.12.3 “Dialog 'Project Settings' - 'Users and Groups'” on page 2768
● Ä Chapter 6.4.1.21.4.12.4 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 2769
● Ä Chapter 6.4.1.21.4.12.5 “Dialog Box 'Project Settings' - 'Compiler Warnings'”

on page 2770
● Ä Chapter 6.4.1.21.4.12.6 “Dialog 'Project Settings' – 'Source Download'” on page 2770
● Ä Chapter 6.4.1.21.4.12.7 “Dialog 'Project Settings' - 'Page Setup'” on page 2772
● Ä Chapter 6.4.1.21.4.12.8 “Dialog 'Project Settings' - 'Security'” on page 2772
● Ä Chapter 6.4.1.21.4.12.9 “Dialog 'Project Settings' - 'Static Analysis Light'” on page 2773
● Ä Chapter 6.4.1.21.4.12.10 “Dialog 'Project Settings' - 'Visualization'” on page 2776
● Ä Chapter 6.4.1.21.4.12.11 “Dialog 'Project Settings' - 'Visualization Profile'” on page 2777

6.4.1.4 Exporting and Transferring Projects
6.4.1.4.1 General

Export and import functions are available to you for the exchange of the data from CODESYS
projects with other programs.
An exchange of CODESYS projects between CODESYS development systems takes place by
way of a copy of the project file (*.project) or project archive (*.projectarchive).
See also
● Ä Chapter 6.4.1.4.2 “Exporting and importing projects” on page 1815
● Ä Chapter 6.4.1.4.3 “Transferring Projects” on page 1816

6.4.1.4.2 Exporting and importing projects
CODESYS offers commands for the export and import of objects to and from a file. Two
possibilities are available to you here:
● Export to or import from a CODESYS XML file (*.export)

This format is completely compatible with the CODESYS project format. The objects are
saved in a machine-readable XML format.

● Export to or import from an XML file in the PLCopen format (*.xml)
You can use this format to exchange information with other programs (for example program
editors or documentation tools). PLCopen XML defines a subset of the elements known in
CODESYS. 100% compatibility is thus not guaranteed.

Requirement: A project is open in CODESYS.

1. Select the command “Project è Export…” or “Project è Export PLCopenXML”

2. Select the objects that you wish to export in the dialog box “Export” or “Export
PLCopenXML”.

3. Click on “OK”.
4. Enter the file name and the location and click on “Save”.

Requirement: A project is open in CODESYS.

Exporting proj-
ects

Importing proj-
ects

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1815

1. Select the command “Project è Import…” or “Project è Import PLCopenXML”.
2. In the dialog box “Import” or “Import PLCopenXML”, select the export file that you wish to

import.

ð A dialog box opens and displays the objects in a tree structure, which can be inserted
at this point.

3. Select the object in the object tree, under which the objects to be imported are to be
inserted.

4. Select the objects and click “OK”.

ð The objects are added to the existing object tree.

See also
● Ä Chapter 6.4.1.21.4.14.20 “Dialog 'Options' - 'PLCopenXML'” on page 2793
● Ä Chapter 6.4.1.21.3.5.26 “Command 'Export PLCopenXML'” on page 2612
● Ä Chapter 6.4.1.21.3.5.27 “Command 'Import PLCopenXML'” on page 2612
● Ä Chapter 6.4.1.21.3.5.25 “Command 'Import'” on page 2612

6.4.1.4.3 Transferring Projects

If you wish to transfer a project to another computer and connect from there to the same PLC,
without an online change or download being required, observe the following points.
● Make sure that the project requires only fixed versions of libraries (exception: interface

libraries), visualization profile and compiler.
● Make sure that the boot application is up to date.
Then create a project archive, which you unpack on the other computer.

Requirement: A project is open on computer “PC1” that you transfer to another computer “PC2”
and reconnect from there to the same controller.

1. Make sure that only libraries with fixed versions are integrated in the project, with the
exception of pure interface libraries. To do this, open the “Library Manager” and check all
entries that have a “*” instead of a fixed version specification.

2. Make sure that a fixed compiler version is set in the project settings. To check, select
“Project è Project Settings” and the “Compiler Options” category.

3. Make sure that a fixed visualization profile is defined in the project settings. To check,
select “Project è Project Settings” and the “Visualization Profile” category.

4. Make sure that the application that is presently open is the same as that which is presently
in use on the PLC. This means that the “boot application” must be identical to the project
in the programming system. To check, look at the project name in the title bar of the
programming system window: If an asterisk is displayed behind the name, this means that
the project has been modified, but not yet saved. It is then possible that the application
and boot application do not correspond!
In this case, first create a (new) boot application. It depends on the PLC and the appli-
cation properties, whether this takes place automatically during the download of the appli-
cation. For explicit creation, select the command “Online è Create boot application”.
Then execute a download with the help of the commands “Online è Login” and “Online
è Load”.
After that, start the application on the controller with the command “Debug è Start”.

ð Now the desired application is running on the PLC, to which you wish to reconnect
from the same project later on PC2.

Transferring a
project to
another system

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1816

5. Generate a project archive: Select “File è Project Archive è Save/Send Archive”. In the
“Project Archive” dialog box, also select the following information:
● “Download information files”
● “Library profile”
● “Referenced devices”
● “Referenced libraries”
● “Visualization profile”

Save the project archive in a place that is accessible by PC2.
6. Log out from the controller: To do this, select “Online è Logout”. You can stop and restart

the PLC without reservations, before you reconnect from PC2.
7. Extract the project archive to PC2: Select “File è Project Archive è Extract Archive” and

open the archive saved above. In the “Extract Project Archive” dialog box, activate the
same information as described above when generating the archive.

8. Open the project and log in to PLC “xy” again.

ð CODESYS does not demand an online change or download; the project runs.

See also
● Ä Chapter 6.4.1.21.4.12.4 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 2769
● Project Settings - Visualization Profile
● Ä Chapter 6.4.1.21.3.7.4 “Command 'Create Boot Application'” on page 2627
● Ä Chapter 6.4.1.21.3.2.8 “Command 'Save/Send Archive'” on page 2557

6.4.1.5 Comparing projects
6.4.1.5.1 Introduction

You can compare the currently open project with another project – a reference project. The
differences in contents, properties, or access rights are detected and shown in a comparison
view.

Application example
How to compare Automation Builder projects for an
AC500 V3 PLC is decribed in the application note
Project Comparison - Compare AC500 Projects and Integrate the Differences.

Clicking “Project è Compare” opens the “Project Compare” dialog for you to configure and
run the comparison. Then the result is shown in the comparison view “Project Compare -
Differences” where the objects are aligned in a tree structure. Objects that indicate differences
from the respective reference object are identified by colors and symbols. This is how you
detect whether or not the contents, properties, or access rights are different.
For differences in the contents, you can also open the detailed compare view “Project Compare
- <object name> Differences” in order to zoom into the object. In the detailed compare view,
the contents of the object and reference object are displayed or their source code aligned. The
detected differences are marked. Previously opened views are not closed. In this way, you can
have any number of comparison views open and read them, in addition to the project compare
view.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1817

ms-its:core_visualization.chm::/_visu_dlg_project_settings_visualzation_profile.htm
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010662&LanguageCode=en&DocumentPartId=&Action=Launch

You can accept the detected differences from the reference project into the current project.
This is possible only from the reference project into the open project. To do this, you activate
differences (for example in the code) that should be accepted in the current project with the
commands , , or in the active comparison view for accepting. These positions are high-
lighted in yellow. Make sure that any other open compare views are inactive (write-protected,
read-only). therefore, you can activate differences to be accepted in exactly one comparison
view only. When exiting the active compare view, if you confirm that the differences that are
activated for acceptance are actually accepted into the current project, then the current project
is modified.
In order to exit the project comparison completely, close the project compare view.

6.4.1.5.2 Creating a comparison view
Requirement: You have made changes in your current project and wish, for example, to com-
pare it with the last-saved version. In the meantime, for example, you have added further POUs,
removed a POU, changed single lines of code or the object properties in function blocks.
1. Select the command “Project è Compare”.

ð The “Project Comparison” dialog box opens.

2. Enter the path to the reference project, for example the path to the last-saved version of
your current project.

3. Leave the activation of the comparison option “Ignore Spaces” as it is.
4. Click on “OK”.

ð The comparison view opens. Title: “ Project Comparison – Differences”. The Device
trees of the current project and the reference project are displayed alongside each
other and the changed objects are marked in color.

5. Select an object marked in blue in the tree of the reference project (right). The current
project no longer contains this object.

Click on “Accept Single”

ð The object is added to the tree of the current project (left). The line has a yellow
background. appears in the middle column.

6. Select an object marked in green in the tree of the current project (left). The reference
project does not contain this object.

Click on “Accept Single”

ð The object is removed again from the tree of the current project (left). The line has a
yellow background. appears in the middle column.

7. If changes are detected in the content of an object that is contained in both the current
project and the reference project, this is indicated by red lettering. You can then switch to
the detailed comparison view for the object by double-clicking on the object.

8. Close the comparison view and answer the query whether the changes made are to be
saved with “Yes”.

ð The changes become effective in the project.

6.4.1.5.3 Opening the detailed compare view
Requirement: For example, a user modified the code in a POU of the current project. You have
performed the project comparison by clicking “Project è Compare”. The project compare view
shows this POU highlighted in red in the aligned in the project tree.
1. Double-click the line of the aligned POU versions.

ð The compare view switches to the detailed compare view of the POU. The modified
code lines are highlighted in gray and written in red.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1818

2. Click .

ð Code lines with changes (red) are extended by two lines: an line with insert (left,
green) and a line with delete (right, blue).

3. Click again.

ð The code line is marked again as modified.

4. Move the mouse pointer to the code line marked as modified and click “Accept Single”.

ð The code line from the reference project is activated for acceptance into the current
project.

5. Click .

ð The project compare view opens for the entire project. It is write-protected (read-only)
to prevent you from activating differences for acceptance. The link highlighted in
yellow above the tree view also indicates this.

6. Click the link: “Project compare view is read only because there are uncommitted changes
in another view. Click here to switch to the modified view.”

ð The detailed compare view opens again. The unconfirmed changes are highlighted in
yellow.

7. Click in the tab of the view and confirm that the changes should be saved.

ð The detail project view is closed and the POU is overwritten. Now it corresponds to
the POU of the reference project. The project view is active again so that you can
continue working with project compare.

If you do not click the link, but click instead to close the editor of the project
compare view, then you will also confirm the acceptance of changes into the
current project. The detail changes are accepted and then the project compare
is closed completely.

See also
● Ä Chapter 6.3.1.1.7 “Comparing projects” on page 1405
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607
● Ä Chapter 6.4.1.5.2 “Creating a comparison view” on page 1818

6.4.1.6 Protecting and Saving Projects
6.4.1.6.1 Introduction

You can protect a project against unintentional changes by means of access and write protec-
tion. You can also provide it with read protection (knowledge protection).
Write protection:
The following options are available for providing the entire project with simple write protection:
● Select the “Open Read-Only” option when opening the project.
● You set the “Released” status in the “Project Information”.
● You select the "read-only" option in the properties of the project file in the local file system.
In order to protect only certain objects in a project against changes, or to allow access only
to certain users, you can use a user and access rights management (see below). Some target
devices similarly support user and rights management. The access of CODESYS to objects and
files of the target device can thus be restricted.
However, write protection and access protection do not serve as protection of expertise of the
POUs. Both CODESYS itself, automation platform plug-ins and persons with knowledge of the
project file format can view or modify function blocks created with CODESYS.
Knowledge protection:

General infor-
mation about
write and
access protec-
tion

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1819

Knowledge protection of a project is done by encrypting the project file. Either with a project
password, the CODESYS Security Key (dongle), or a certificate. We recommend protection by
means of the key or the certificate because in this case no secret needs to be shared between
authorized users. The desired type of project encryption is enabled in the project settings.
You can attain knowledge protection of a library by providing it as a target-system-independent
"protected library" (*.compiled-library, *.compiled-library-v3). The library file no
longer contains source code in this format, but only encrypted precompile context. The com-
piler is still able to interpret these data. Whether access by other CODESYS components or
additional plug-ins is possible depends on their functionality and is to be observed in individual
cases. Signing can increase protection even more.
Knowledge protection and copy protection of a boot application can be done by means of a
runtime system dongle (simple or licensed) or encryption with a certificate. One of these options
is enabled in the object properties of the application.
See also
● Ä “User management and password manager” on page 1821
● Ä Chapter 6.4.1.6.4 “Protecting Projects Using a Dongle” on page 1825
● Ä Chapter 6.4.1.6.3 “Assigning Passwords” on page 1824
● Ä Chapter 6.4.1.6.6 “Protecting Objects in the Project by Access Rights” on page 1826
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035
● Ä Chapter 6.4.1.9.18 “Protecting an application” on page 1915

In CODESYS, projects and applications can be encrypted with certificates and signed in order
to protect them from unauthorized access.
To do this, you can configure specific security settings for each individual user profile. These
settings are always used automatically when the user works with CODESYS projects. There-
fore, they do not have to be redone for each project. The general configuration of the security
features for a user profile is done in the “Security Screen” view of CODESYS. See the individual
instructions below.
You can also encrypt a project file or an application for download or online change directly with
a certificate:
● User-independent encryption for the current project is configured in the “Security” category

of the “Project Settings”.
● User-independent encryption of the application is configured in the “Properties” dialog of the

application object.

NOTICE!
When you encrypt a project, an application, or online code with a certificate, you
will always require the certificate with a private key in order to open the object
again.

If the CODESYS Security Agent add-on product is installed, then the “Security
Screen” view provides an additional tab: “Devices”. This allows for the configu-
ration of certificates for the encrypted communication with controllers.

Certificates, Windows Certificate Store
All available certificates are located in the Windows Certificate Store (“certmgr”) on your com-
puter. There are two types of keys:
● Certificates with private keys

– for file decryption
– for digital signatures

● Certificates with public keys
– for file encryption
– for verifying digital signatures

Encryption with
certificates

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1820

The local Windows Certificate Store is usually filled with certificates by the IT administrator of
the computer. Certificates are either created using special tools or the creation is requested by a
trusted certification authority (CA).
If you receive a certificate file that you need to install yourself in the Windows Certificate Store,
then double-click the file in the store directory. Depending on the type (certificate with private or
public key only), the appropriate import wizard will appear.
See also
● Ä Chapter 6.4.1.19.2 “General Information” on page 2039
● Ä Chapter 6.4.1.6.8 “Encrypting Projects with Certificates” on page 1829

User accounts with different rights can be managed in CODESYS. For each account you can
define the actions with which the user can access a project object.
The user management is configured in the “Project settings” in the category “Users and
Groups”.
Before the creation of users and groups, please note the following:
● Rights can only be assigned to user groups. Therefore, you must assign each user to a

group.
● There is automatically always a group 'Everyone' and by default every user and every other

group is initially a member of this group. Thus each user account is automatically equipped
with at least the defined standard rights.
You cannot delete the group 'Everyone', you can only rename it, and you cannot remove
members from this group.
Caution: by default "Everyone" does not have the right to change the current user, group
and rights configuration!

● There is automatically always a group 'Owner' containing a user 'Owner'. From V3.5 only
the 'Owner' initially has the right to change the current user, group and rights configuration in
a new project! Hence, only 'Owner' can assign this right to another group.
Initially the 'Owner' can log in with user name 'Owner' and an empty password. You can add
further users to the group 'Owner' or remove users from it, but at least one member must be
retained. Like 'Everyone', you cannot delete the group 'Owner' and it always possesses all
access rights. This prevents a project from being rendered unusable by denying all access
rights to all groups.
You can rename both the group 'Owner' and the user 'Owner'.

● If the programming system or a project is restarted, no user is initially logged in to the
project. However, the user can then log in via a certain user account with user name and
password in order to obtain the access rights defined for the account.

● Each project has its own user management! Therefore, in order to obtain certain access
rights to a library integrated into the project, for example, the user must explicitly log in to
the library project.
Users and groups defined in different projects are not the same, even if they have the same
names.

● A user management in a project only makes sense if it is connected with corresponding
rights assignment for the access to project and objects. The project rights are generally
managed in the dialog box “Rights” of the “User Management”. You can also change the
access rights to an individual project object on the “Access control” tab of the “Properties” of
the object.

● There are standard menu commands under “Project è User Management” for logging into
and out of a project as a defined user. A password manager permits the management of the
login data on your computer.

From V3.5 only the 'Owner' initially has the right to change the current user,
group and rights configuration in a new project! Hence, only 'Owner' can assign
this right to another group.

User manage-
ment and pass-
word manager

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1821

NOTICE!
CODESYS stores the user passwords inaccessibly. If you forget a password,
the user account becomes unusable. If you forget the 'Owner' password, the
entire project may become unusable!

Password manager
The password manager enables you to save login data records that you enter during the login
procedures for projects. It is accessible via a button in the login dialog box and offers fast
access to the login data currently required. This can be helpful, for example, if you are working
in parallel on several library projects that are protected by different passwords.
The password manager itself is protected by an individual master password. If you wish to use
the password manager for the first time, CODESYS requests you to define this password in the
password manager configuration dialog box. CODESYS notes the master password until you
terminate the current CODESYS session. You must always input the password when you wish
to log in to the password manager for the first time during a new session, or after you have
changed it.
See also
● Ä Chapter 6.4.1.6.6 “Protecting Objects in the Project by Access Rights” on page 1826
● Ä Chapter 6.4.1.6.7 “Logging in via User Account and Password Manager” on page 1827
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

Rights management for access to a project and objects in a project is necessary in order to
make a user management meaningful.
The rights for a project are generally managed in the “Rights” editor of the “User Management”.
You can also change the access rights to an individual project object on the “Access control” tab
of the “Properties” dialog box of the object.
Before assigning rights, please observe the following:
● In a new project CODESYS always sets all rights for the execution of actions on objects with

the default value 'allowed' (standard right). The only exception to this is the right to change
the current user, group and rights configuration. Initially only the 'Owner' group has this right.

● If you are member of a group that is permitted to change rights, you can do this at any time
for each right when working further on a project. You change a right by switching between
'allowed' and 'forbidden' or by resetting to the default.

See also
● Ä Chapter 6.4.1.6.5 “Setting up a user management” on page 1825
● Ä Chapter 6.4.1.6.6 “Protecting Objects in the Project by Access Rights” on page 1826

Provide the project file with the desired protection before saving it in the file system; see above.
For a read-only project file you are given various options so that you can still save the file,
depending on the type of write protection.
If the project is to be opened later in an older CODESYS version, it makes sense to save the
project for precisely this version (file type), since CODESYS will also inform you immediately
about possible losses of data in the course of saving it.
If you wish to save library projects, please observe the rules for the creation of libraries. Also
consider the possibility of installing a library directly in a library repository.
If you wish to continue to use a project on another computer, it makes sense not only to save
the project file, but also to create a project archive from all relevant auxiliary files.
You can make a setting so that a backup copy of this project is created each time the project
is saved. In addition you can configure CODESYS so that projects are generally automatically
saved at certain time intervals.
If you wish to keep projects in a source control system, observe the corresponding add-ons for
CODESYS. For example, the link to SVN is supported.

Rights manage-
ment

Filing, saving

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1822

See also
● Ä Chapter 6.4.1.21.4.14.17 “Dialog 'Options' – 'Load and Save'” on page 2791
● Ä Chapter 6.4.1.4 “Exporting and Transferring Projects” on page 1815
● Ä Chapter 6.4.1.6.9 “Saving the Project” on page 1831
● Ä Chapter 6.4.1.6.10 “Saving/Sending the project archive” on page 1832
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035
● Ä Chapter 6.4.1.6.11 “Linking a project to the source control system” on page 1833

6.4.1.6.2 Setting up write protection
A project can be protected against inadvertent changes by means of access and write protec-
tion. In addition, however, it can also be provided with read protection (know-how protection).
You have the following options:

Requirement: No project is opened.

1. Select “File è Open Project”.

ð The dialog box “Open project” appears.

2. Select the project.
3. Click on the arrow button next to the “Open” button and select “Open read-only” from

the menu.

ð CODESYS opens the project. At the top right in the main window a line appears
“'Project file cannot be saved…'”. You must now select one of the offered options if
you wish to save the project file.

● Ä Chapter 6.4.1.3.2 “Opening a V3 Project” on page 1808

Requirement: project is opened.

1. Select “Project è Project Information”, then the “Summary” tab.
2. Activate the option “Released”, confirm with “OK”.
3. Save the project, for example with [Ctrl]+[S].
4. Open the project again with the command “File è Open Project”.

ð CODESYS opens the project. At the top right in the main window a line appears
“'Project file cannot be saved…'”. You can now directly remove the status “Released”
again via the offered option if you wish to save the project file.

● Ä Chapter 6.4.1.21.2.24 “Object 'Project Information'” on page 2515

Open the
project with
write protection

Providing proj-
ects with the
attribute 'Relea-
sed'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1823

Provide the project file in its local file system with the property attribute 'Read-only'.

ð If you had already opened the project and you now attempt to save it under the same
name, a dialog box appears informing you about the existent write protection. This
dialog box provides you with the following options:
You can save the project under another name or another path using the button “Save
As…”.
You can deliberately save the project under the same name and path and thus over-
write the existing version in the file system using the button “Overwrite”.
You can abort the saving procedure using the “Cancel” button, for example to remove
the write protection on the disk.
If you re-open the project, a line appears at the top right in the main window 'The
project cannot not be saved…'. You must now select one of the offered
options if you wish to save the project file.

● Ä “General information about write and access protection” on page 1819

6.4.1.6.3 Assigning Passwords
Requirement: The project is open.
1. Click “Project è Project Settings” and then select the “Security” category.

ð The dialog “Project Settings / Security” opens.

2. Select the “Encryption” option.

ð The option fields “Password”, “Dongle”, and “Certificates” are selectable.

3. Select the option “Password”.

ð The input fields for the encryption password appear.

4. Enter the encryption password in the input field “New Password”.
5. Enter the encryption password for confirmation in the input field “Confirm new password”.
6. Click “OK”.

ð CODESYS saves the encryption password for the project. You must enter this pass-
word in order to be able to open the project again, even if it is to be loaded as a library
reference.

CAUTION!
If you no longer know the encryption password, you can no longer open or
restore the project!

See also
● Ä Chapter 6.4.1.21.4.12.8 “Dialog 'Project Settings' - 'Security'” on page 2772
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

Providing a
project in the
file system with
the property
'Read-only'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1824

6.4.1.6.4 Protecting Projects Using a Dongle
Requirement: The project is opened and you have connected the CODESYS Security Key
(dongle) to your computer.
1. Click “Project è Project Settings” and then select the “Security” category.

ð The dialog “Project Settings / Security” opens.

2. Select the “Encryption” option.

ð The option fields “Password”, “Dongle”, and “Certificates” are selectable.

3. Select the option “Dongle”.

ð The dialog with the drop-down list “Registered Dongles” and the buttons “Add”,
“Remove”, “Comment” and “Flash” opens.

4. Click “Add”.

ð The “Add Registered Dongle” dialog opens.

5. Select the CODESYS Security Key (dongle) from the “Dongle” drop-down list and option-
ally enter a comment.

6. Click “OK”.

ð The added dongle is listed in the list “Registered Dongles”.

7. Click “OK”.

ð The dongle is registered for the project. You must connect the dongle to your com-
puter in order to be able to open the project again, even if it is to be loaded as a library
reference.

NOTICE!
If the CODESYS Security Key registered for the project is lost, you can no
longer open the project or restore it.

See also
● Ä Chapter 6.4.1.21.4.12.8 “Dialog 'Project Settings' - 'Security'” on page 2772
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

6.4.1.6.5 Setting up a user management
With the help of the integrated user management, user groups with different access
rights and authorizations can be defined. Configuration and handling of the user man-
agement in Automation Builder and a AC500 V3 is decribed in the application note
User Management with V3 - Configuration and Handling.

This concerns a user management for a CODESYS project file. Visualizations
and devices can have their own user management.

The following guide describes how you can adapt the user management for the first time in a
project. It deals with the definition of a user and a group to which he belongs.
Requirement: the project for which the user management is to be set up is opened. There is no
adapted user configuration yet.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1825

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010315&LanguageCode=en&DocumentPartId=&Action=Launch

1. Select “Project Settings è Users and Groups” and then the “Users” tab. The user Owner
is already created by default.

2. Click on “Add”.

ð The dialog box “Add User” appears.

3. Enter a login name, for example 'Dev1', and a password. Leave the option “Activated”
activated. Click on “OK”.

ð On creating a group for the first time, CODESYS now requests you to authenticate
yourself to perform this action.
In this case, enter 'Owner' as the “current user”. Do not enter a “password”, just click
on “OK”.
The user Dev1 appears in the list and is automatically a member of the group
'Everyone'.

4. Change to the tab “Groups”, in order to add the user to a new group.

ð The groups Everyone and Owner have already been created.

5. Click on “Add” in order to open the dialog box “Add Group”.
6. Specify at least one name for the new group, for example 'Developers'. Activate the

checkbox next to the entry “User 'Dev1'” in the field “Members”. Click on “OK”.

ð The group “Developers” now appears with has user member 'Dev1'.

7. Switch to the “Users” tab.

ð The user “Dev1” now appears as a member of the groups 'Everyone' and 'Develo-
pers'.

You can take over the user management configuration from another project by
using the “Export/Import” functions in the dialog box “Project Settings”, category
“Users and Groups”.

See also
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819
● Ä “User management and password manager” on page 1821
● Ä Chapter 6.4.1.21.4.12.3 “Dialog 'Project Settings' - 'Users and Groups'” on page 2768
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

6.4.1.6.6 Protecting Objects in the Project by Access Rights

1. Select “Project è User Management è Rights”

ð The window of the “Rights” editor opens. On the left you can see the action catego-
ries, on the right the currently existing user groups.

2. Expand the relevant action category and below it the action for which you wish to change
a right.

3. Select the goal of the action in the “Actions” window. In the “Rights” window, select the
group for which you would like to change the right. Multiple selection is possible.

ð The buttons in the symbol bar are active.

Protection of
individual
objects by set-
ting access
rights in the
“Rights” editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1826

4. Click on the appropriate button in order to change the right of the group for the action on
the target object.

ð CODESYS updates the symbol in front of the group according to the new right. The
right is immediately effective.

See also
● Ä Chapter 6.4.1.21.4.7 “Dialog 'Permissions'” on page 2748

Here you can configure whether the members of a group have the right to view, edit or remove
the object and to add/remove child objects to/from the object.

1. Select the object in the navigator tree.
2. In the context menu, select the command “Properties” and in the dialog box select the

category “Access Control”.
3. In the table under “Groups, Actions and Permissions”, double-click on the symbol of the

right that you wish to change.

ð A selection list of the possible rights appears: “Grant”, “Deny”, “Clear”.

4. Select the desired right and click on “Accept” or “OK”.

ð The right is immediately effective for the action and group. The symbol changes
accordingly.

See also
● Ä Chapter 6.4.1.21.4.11.7 “Dialog 'Properties' - 'Access Control'” on page 2757

6.4.1.6.7 Logging in via User Account and Password Manager
Requirement: A project is open. You wish to log in as a defined user for this project or for a
library integrated in it in order to edit one or the other with certain rights. You have the required
login data for the respective project or the library.

1. Select “Project è User Management è User Logon”.

ð The dialog box “Logon” opens.

2. Select the project file from “Project/Library” and enter the required access data “User
name” and “Password”.

3. Log in with “OK”.

ð If another user is already logged in, this user will automatically be logged out by the
new login.

Requirement: A project is open. The dialog box “Login” is open for you to log in as a defined
user for a project or for a library integrated in the project. You wish to use the password
manager in order to save login data in it.

Protection of
individual
objects by set-
ting access
rights in the
object proper-
ties

Logging in to a
project without
using the pass-
word manager
functions

Setting a master
password for
the password
manager

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1827

1. Select “Project è User Management è User Logon”.
2. In the dialog box “Logon”, click on the button .

ð If you are working for the first time with the password manager, the dialog box
“Password Manager Configuration” opens.

3. Enter a character string as the future master password. Confirm it in the second line and
click on “OK”.

ð CODESYS notes the master password until you terminate the current CODESYS
session. You must always input this password when you wish to log in to the password
manager for the first time during a new session, or after you have changed it.

NOTICE!
If you have forgotten your master password, you no longer have any possibility
to access the login data already saved! In this case you can only reset the
password manager. After that you must start again to save passwords in the
manager!

Requirement: A project is open. You wish to log in as a defined user for this project or for a
library integrated in it in order to edit one or the other with certain rights. You have the required
login data for the respective project or the library. These login data have not yet been saved in
the password manager.
1. Select “Project è User Management è User Logon”, in order to open the “Logon” dialog

box.
2. Select the project file from “Project/Library”.
3. Enter the user name and password for the project or the library.
4. Click on the button .

ð If you are working for the first time with the password manager, you will be requested
to define a master password. Refer to the above guide 'Setting a master password for
the password manager' for this.
When you call the password manager for the first time in this CODESYS session, you
will be requested to enter the master password.

5. Enter the master password when requested to do so.

ð The password manager menu appears.

6. Select the option “Save the credentials locally on this computer”.

ð The login takes place. The data are saved in the password manager.

Requirement: A project is open. You wish to log in as a defined user for this project or for a
library integrated in it in order to edit one or the other with certain rights. The login data required
for this are already saved in the password manager.

1. Select “Project è User Management è User Logon” in order to open the “Logon” dialog
box.

2. Click on the button .

ð If you are working for the first time with the password manager, you will be requested
to define a master password. Refer to the above guide 'Setting a master password for
the password manager' for this.
When you call the password manager for the first time in this CODESYS session, you
will be requested to enter the master password.

Saving login
data in the pass-
word manager

Getting the
login data from
the password
manager

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1828

3. Enter the master password when requested to do so.

ð The password manager menu appears.

4. Select the appropriate entry “Use the stored credentials for <user name>”.

ð The login takes place automatically with the data read from the password manager.

Requirement: A project is open. You wish to open the password manager in order to view and/or
edit the entries or to change the master password. You have already logged in once with the
master password.

1. Select “Project è User Management è User Logon”, in order to open the “Logon” dialog
box.

2. Click on the button .
Select “Open the Password Manager”.

ð The password manager window opens.

3. Click on “Change Master Password” and make the change.

Requirement: A project is open. A user is logged in, which is recognizable by a name entry in
the field “Current User” in the status bar.

Select “Project è User Management è User Logoff”. Alternatively, double-click on the
field “Current User” in the status bar.

ð If the user is logged in to only one project, he will now be logged out without further
interaction. “(nobody)” appears again in the field “Current User” in the status bar
If the user is logged in to several projects, the dialog box “Logoff” opens. There, select
the specific project or library project from which the user is to be logged out.

See also
● Ä “User management and password manager” on page 1821
● Ä Chapter 6.4.1.21.3.5.28 “Command 'User management' – 'Log in User'” on page 2613
● Ä Chapter 6.4.1.6.5 “Setting up a user management” on page 1825

6.4.1.6.8 Encrypting Projects with Certificates
When a project is encrypted with a certificate, this certificate is needed for decryption to open
the project. You can assign this certificate to specific user profiles. To do this, select the certifi-
cate from the Windows Certificate Store on the “User” tab of the “Security Screen”.

1. Double-click in the status bar or click “View è Security Screen”.

ð The “Security Screen” view opens.

2. In the “User” tab, select the user profile for which the communication will be encrypted. By
default, the specified user profile is the one you have used on your computer to sign into
Windows. You can also create a new user profile with .

3. Click the button in the “Project file decryption” area.

ð The “Certificate Selection” dialog opens.

4. Select a certificate with a private key from the list “Available certificates in the local
Windows Certificate Store”. Certificates with a private key are identified by the symbol.

5. Click .

Opening the
password man-
ager, changing
the master
password

Logging out
from the project

Configuring a
certificate for
project file
encryption in a
user profile

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1829

6. The certificate is added to the upper part of the dialog.
7. Click “OK” to confirm your selection.

ð The selected certificate is displayed in the “Security Screen” in the “Project file
decryption” area.

A project encrypted with a certificate in connection with a user management allows you to
restrict access to the project.

1. Click “Project è Project Settings” and then select the “Security” category.

ð The “Project Settings / Security” dialog opens.

2. Select the “Encryption” option.

ð The option fields “Password”, “Dongle”, and “Certificates” are available.

3. Select the “Encryption” option.

ð The certificates available for project encryption are listed in the lower part of the
dialog. If no certificate has been specified yet, then click to select a relevant certifi-
cate in the “Certificate Selection” dialog. Then return to the “Project Settings” dialog.
Now the certificate is specified for encryption. Now the project can only be edited on
computers of users who also have the certificate for file decryption.

You delete the certificate in the “Security Screen” view, either directly on the “User” tab or in the
“Certificate Selection” dialog. The deletion will follow in the other dialog.
● Dialog “Security Screen”, tab “User”, “Digital Signature”, or “Project Data Decryption”: Select

a certificate and click
● Dialog “Certificate Selection”: in the “Security Screen” dialog, click on the “User” tab. In

the upper field of the “Certificate Selection” dialog, select the certificate to be deleted and
click .

To ensure that the project is not only encrypted with a certificate, but also that its authorship and
integrity can be verified, you can add a signature to the project:

1. Double-click in the status bar or click “View è Security Screen”.

ð The “Security Screen” view opens.

2. In the “User” tab, select the user profile for which the digital signature will be created. By
default, the specified user profile is the one you have used on your computer to sign into
Windows. You can also create a new user profile with .

3. Click the button in the “Digital signature” area.

ð The “Certificate Selection” dialog opens.

4. Select a certificate with a private key from the list “Available certificates in the local
Windows Certificate Store”. Certificates with a private key are identified by the symbol.

5. Click .

ð The certificate is added to the upper part of the dialog.

6. Click “OK” to confirm your selection.

ð The selected certificate is displayed in the “Security Screen” in the “Digital signature”
area.

Encrypting a
project with a
certificate

Deleting a certif-
icate in the user
profile

Configuring a
certificate for
the digital sig-
nature in a user
profile

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1830

See also
● Ä “Encryption with certificates” on page 1820
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592
● Ä Chapter 6.4.1.21.4.19 “Dialog 'Certificate Selection'” on page 2811
● Ä Chapter 6.4.1.21.4.11.4 “Dialog: Properties: Security” on page 2754
● Ä Chapter 6.4.1.21.4.12.8 “Dialog 'Project Settings' - 'Security'” on page 2772
● Ä Chapter 6.4.1.9.18 “Protecting an application” on page 1915

6.4.1.6.9 Saving the Project
Requirement: The project is open. The project file is not write-protected.

Select “File è Save”.

ð CODESYS saves the project file with the current project name, which appears in the
title bar of the main window. If the project has been changed since it was last saved,
then the project name is provided with an asterisk. If this is set in the CODESYS
options in the category “Load and Save”, then a backup copy will also be made.

Requirement: The project is open.

1. Select “File è Save Project as”.

ð The “Save Project” dialog box opens.

2. Select a storage location in the file system and the desired “File Type” (project file or
library file) and the desired storage version. If you want to open the project later in an
older version, then it makes sense to save for precisely this version, as you will then be
informed immediately in the message window about possible data loss.

ð If the project file is not write protected, then CODESYS saves it in the selected path.
Otherwise you will be informed how to proceed.

3. If the current project contains add-ons that are not available in the selected memory
format, then the “Extend Profile” dialog box opens.

4. Select the add-ons to extend the memory profile in order for the add-on data to be saved.
5. To save the memory profile permanently, click “Save Profile” and specify a name in the

“Enter profile name” dialog box.
6. In the “Extend Profile” dialog box, select the “Use saved profile” option and click “Yes”.

ð CODESYS saves the project with the saved profile.

Requirement: A read-only project is open.

Select “File è Save”.

If the write protection was assigned in CODESYS, then it will be displayed by a line in the top
right corner of the main window. Depending on the current situation you will be offered one or
more of the following actions so that you can still save the project:
● “Save project under a different file name on the disk”: Always appears and continues to the

“Save File” dialog box, as for the “Save File as” command
● “Exit read-only mode”: Appears if the “Open read-only” option is selected when opening the

project.

Saving a project
under the same
name

Saving a project
under a different
name or format

Saving a read-
only project

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1831

● “Remove read-only attribute from the project on the disk”: Appears if the project file was
provided with the 'Read-only' property in the local file system at the time of opening.

● “Remove identification 'Released' in the project information”: Appears only if this attribute is
currently set.

If the write protection was assigned outside of CODESYS in the properties of the project file in
the file system, you will be offered the following options when you attempt to save under the
same name and path:
● “Save as”: You can save under a different name as with the “Save Project as” command.
● “Overwrite”: The write protection is removed from the project file and the file is saved under

its existing name.
1. Click on the line in the top right corner of the main window that indicates the write

protection.

ð The current options with which you can still save the project appear in a selection
menu.

2. Select one of the options offered and perform any necessary actions.
3. Click “File è Save” or “File è Save as”.

ð The project can be saved.

Requirement: The project is open.

1. Click “Tools è Options” (category “Load and Save”.

ð The “Load and Save” dialog box opens.

2. Activate the “Create backup files” option.
3. Activate the “Automatically save every … minutes” option and select a time interval.
4. Click “OK” to close the “Options” dialog box.

ð Each time the project is saved, CODESYS also creates a backup copy <project
name>.backup.

CODESYS saves the project automatically at the specified time interval to a file
<project name>.autosave in the project directory. If you open the project again
after the development system was closed irregularly, then this file will be offered to you
as an alternative to the file last saved by the user.

See also
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819
● Ä Chapter 6.4.1.21.4.14.17 “Dialog 'Options' – 'Load and Save'” on page 2791

6.4.1.6.10 Saving/Sending the project archive
You can configure a project archive and then save it in the file system or send it directly in an
e-mail.
To send, follow the guide below as far as point 9. There, click on the button “Send” instead
of “Save” in order to directly open the standard e-mail program, in which a new mail will
automatically be created with the project archive file as an attachment.
Requirement: A project is opened.
1. Select “File è Project Archive è Save/Send Archive”.

ð The dialog box “Project Archive” appears.

Saving of the
project automat-
ically; creating a
backup copy

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1832

2. Activate the checkbox next to each object that is to be saved in the archive.

In order to guarantee know-how protection,CODESYS will not automati-
cally add unprotected libraries, not available as "compiled-library", to a
project archive. If you explicitly select such a library in the list of additional
files, you will get an appropriate warning.

3. If you want to pack further files in the archive, click on “Additional Files”.

ð The dialog box “Additional Files” opens.

4. Click on “Add”.
5. Select the files and click “Open”.

ð The files are added to the list of additional files.

6. Click on “OK”.
7. Click on “Comment”.

ð The dialog box “Comment” opens.

8. Enter a comment and click on “OK”.
9. Click on the button “Save”.
10. Select a storage location and a file name and click on “Save”.

ð The project archive is saved in the file directory.

See also
● Ä Chapter 6.4.1.21.3.2.4 “Command 'Save project'” on page 2554
● Ä Chapter 6.4.1.21.3.2.5 “Command 'Save Project as'” on page 2555

6.4.1.6.11 Linking a project to the source control system
To link your CODESYS projects to a source control system, check the following option:
The Professional Version Control add-on provides the capability of directly linking to an SVN
database. You can get the package at the CODESYS Store and install it with the help of the
Package Manager.
Refer to the corresponding help when using Professional Version Control.

6.4.1.7 Localizing projects
You can display your project in different languages when you create and link localization files.
The localization files correspond to those of the GNU gettext system. The format of the
localization template files is *.pot (Portable Object Template), from which localization files *.po
(Portable Object) are generated after translation.

The project can be localized in different languages. However, editing is possible
only in the original version.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1833

You configure which categories of text information are localized in the project. Then you export
these texts into a translation template. This template is a file in *.pot format (example:
project_1.pot). You produce localization files in the format *.po (example: de.po, en.po,
or es.po), either automatically with a corresponding external translation tool or manually with
a neutral text editor. You can import the *.po files back into CODESYS and use them for
localization.
The commands for using project localization are located in the menu “Project
è Project localization”.
See also
● Ä Chapter 6.4.1.21.3.5.16 “Command 'Project Localization' - 'Create Localization Template'”

on page 2604

Requirement: A project is open.

1. Click “Project è Project Localization è Create Localization Template”.

ð The “Create Localization Template” dialog box opens.

2. Activate the categories of text information that should be included in the localization
template.

3. “Position information” can also be included in the template. For each text to be translated,
specify its location in the project. Select the positions to be displayed in the translation
template: only the first position found, all positions found, or none.

4. Click the “Generate” button.

ð The dialog box opens for saving a *.pot file to the file system. Save the localization
template. Then you can process the file in a translation tool and generate localization
files <language>.po in the required languages.

In the first line, the text categories are specified that were selected for the translation when
generating the template:
Example: #: Content:Comments|Identifiers|Names|Strings: All four categories were
selected.
Then each text to be translated is segmented in the form as in the following example:

#: D:\Projects\p1.project\Project_Settings:1
msgid "Project Settings"
msgstr ""

Line 1: Position information displayed as source code reference. Displayed only if this has
been configured when generating the translation file.
Line 2: Untranslated text as entry msgid (example: msgid "Project settings").

Line 3: Placeholder for the translation: msgstr "". Between the single straight quotation
marks, the translation in the *.po file must be inserted in the respective language.

Example

You can generate a *.po file with a translation tool or create one using a neutral text editor
based on the *.pot file. For this purpose, you could change the file extension from *.pot to
*.po and edit the according to *.po standard format.

It is imperative to specify the language in the form of the usual culture abbreviation in the
metadata of the file (example: "Language: de" for German. Then you insert the translations
of the individual texts between the straight quotation marks for the msgstr "" entries.

Generating
localization tem-
plates

Format of the
localization tem-
plate: file *.pot

Format of the
localization file:
*-
<language>.po

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1834

"Language: de\n"
#: Content:Names
#: D:\projects\p1.project\Project_Settings:1
msgid "Project Settings"
msgstr "Projekteinstellungen"

Example

Requirement: For your project, localization files (<language>.po) were generated based on
the translation template *.pot. The project is open.

1. Click “Project è Project Localization è Manage Localizations”.
2. Click on the “Add” button.

ð The “Open Localization File” dialog box appears for selecting a *.po file from the file
system.

3. Select one of the localization files (example: <project name>-de.po).

ð The dialog box closes and the affected texts appear in the project in the respective
language. For example, if you specify the translation msgstr "Main program" for
the POU name "PLC_PRG" in the English localization file, then the object name "Main
program" appears in the device tree.

4. In the same way, you import the localization files for other language targets.

Requirement: All required language are stored in the project by importing the corresponding
*.po file. The project is open.

1. Click “Project è Project Localization è Manage Localization”.

ð The “Manage Localization” dialog box opens. All stored localization files *-
<language>.po appear in “Files”, as well as the entry “<original version>”.

2. Select the desired language and click the “Switch Localization” button.

ð The project appears in the selected language. When you select “<original version>”,
the project is displayed in the original, unlocalized version and it cannot be edited.

Select one of the available localizations and activate the “Default Localization” option.

ð Click “Project è Project Localization è Toggle Localization” to toggle the localization
between the default localization and original version. By default, this command is also
available with the button on the toolbar.

Ä Chapter 6.4.1.21.3.5.17 “Command 'Project Localization' - 'Manage Localizations'”
on page 2605

Ä Chapter 6.4.1.21.3.5.18 “Command 'Project Localization' - 'Toggle Localization'”
on page 2606

6.4.1.8 Configuring I/O Links
6.4.1.8.1 General

With the help of device objects you can map hardware to be controlled in a tree structure in your
CODESYS project. This makes the linking of hardware and application easy to handle.

Importing locali-
zation files /
localizing proj-
ects

Switching locali-
zation, adding
and removing
localization files

Optional:
Defining a
default localiza-
tion, toggling
localizations

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1835

In the configuration editors of the device objects, you can configure the settings for the commu-
nication between CODESYS and the controller, and above all for I/O mapping. The I/O mapping
is the linking of the inputs and outputs of the controller with the variables of your application.
Access to control objects at runtime can be controlled, depending on the device, via an 'online
user management', which you can edit – likewise depending on the device – in the CODESYS
Development System. Moreover, communication with the controller depends on the current
security settings.
See also
● Ä Chapter 6.4.1.8.2 “Configuring Devices and I/O Mapping” on page 1836
● Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”

on page 1967
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

6.4.1.8.2 Configuring Devices and I/O Mapping
You can configure the device objects inserted into the device tree in the associated device
editor. The possibilities depend on the device description. The 'generic device editor' provides
tabs that are supplemented as necessary by device-specific tabs.
Requirement: You have opened a standard project in whose device tree a standard PLC and
below that a fieldbus device object are inserted.
1. Double-click the device object of the standard PLC in the device tree of your project.

ð The “<device name>” editor opens in the CODESYS main window. The
“Communication Settings” tab is in the foreground. Change to the other tabs in order
to make configuration settings for the controller. See the help pages for the generic
device editor.

2. Double-click the fieldbus device object in the device tree of your project.

ð The “<fieldbus device name>” editor opens in the CODESYS main window. Specific
tabs are available depending on the device. For the configuration options, see the
help pages for the respective device editor. If the “Show generic device configuration
views” option is selected in “Tools è Options”, in the “Device Editor” category, then
see also the tabs contributed by the generic device editor.

See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427

Whether or not you can configure an I/O mapping to project variables or even to the entire
function blocks depends on the type of device. Configuring an I/O map means linking input and
output channels of the device with variables of the project. We also use the term 'mapping' for
this.
Pay attention in general to the following for the mapping of inputs and outputs of a device to
variables in CODESYS:
● You do not have write access to variables that are mapped to an input.
● You can map an existing variable to one input only.
● You can directly generate new global implicit variables in the I/O map and map them to a

device channel.
● The memory layout of structures is specified by the device.
● You can change addresses and fix values in the I/O map.
● For each variable that is assigned to an I/O channel in the “I/O Mapping” dialog, you can

cause 'force variables' to be generated during the compilation of the application (see further
below). Using these variables you can, for example during the commissioning of a plant,
force a value on the input or output via a visualization/HMI.

● Changes in the I/O map can be transferred to the controller with an online change.

Configuring
devices

General infor-
mation about I/O
mapping

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1836

● If a pointer to a device input is used, the access is considered to be a write access, for
example pTest := ADR(input);. This leads to a compiler warning when the code is
generated: "...invalid assignment target". If you require a construct of this kind,
you have to first copy the input value input to a variable with write access.

● An I/O address can also be linked with a variable via the 'AT declaration' in the IEC code.
Since a device configuration often changes again, however, we recommend that you make
the assignments only in the device editor.
If you use the AT declaration, note the following:
– An AT declaration is permissible only with local or global variables, not with input or

output variables of function blocks.
– Implicit 'force variables' for I/Os (see below) cannot be generated for AT declarations.
– If you use an AT declaration with structure variables or function block variables, all

instances will access the same memory location. This then corresponds to the use of
'static variables' in classic programming languages such as 'C'.

NOTICE!
If a pointer to a device input is used, then the access (for example, pTest :=
ADR(input);) applies as write access. This leads to a compiler warning when
the code is generated: "...invalid assignment target".

If you require a construct of this kind, you have to first copy the input value
(input) to a variable with write access.

As an alternative, you can assign a variable to an address in the programming
code using the AT declaration. In view of possible changes of the device config-
uration, however, we recommend that you make the assignments only in the
device editor.

You can export the I/O mapping configuration of a device to a csv file or import
it from such a file.

See also
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444
● Ä Chapter 6.4.1.21.3.5.37 “Command 'Export Mappings to CSV'” on page 2616
● Ä “Generating implicit variables for the forcing of I/Os” on page 1843

Requirement: A device that supports an I/O mapping configuration in CODESYS is inserted in
the device tree of your project. On the “I/O Mapping” tab in the device editor you thus get a
tabular display of the input and output channels of the device with specification of the addresses
and data types.

NOTICE!
Mapping 'too large' data types
If a variable of a data type that is larger than a byte is mapped to a byte
address, the value of the variable will be truncated to byte size there. For
monitoring the variable value in the “I/O Mapping” dialog, this means that, in the
root element of the address, the value is displayed which the variable currently
has in the project. The current individual bit values of the byte are displayed in
succession in the bit elements below that, but this may not be sufficient for the
entire variable value.

Linking a device
input with an
existing project
variable ("map-
ping")

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1837

If a UNION is represented by I/O channels in the mapping dialog, it depends on
the device whether mapping to the root element is also possible.

1. In a POU, declare, for example, a variable xBool4 of the type BOOL with which you want
to access an input of the target device from the application.

2. To open the device editor, double-click the device object in the device tree, and then the
“<device name> I/O Mapping” tab.

3. Observe the “Variable” column with the display of the device input channels and device
output channels , which can still be sorted by organizational nodes , depending on the
device. We assume that there is a device input of the type BYTE. It is displayed with its
individual bit addresses (bit channels) below the BYTE node.

4. Note: When mapping structured variables, the editor prevents you from entering both the
structure variable (example: %QB0) and individual structure elements (example: %QB0.1
and QB0.2). Therefore, if there is a main entry with a subtree of bit channel entries in the
mapping table, then the following applies: Then you can specify a variable either into the
line of the main entry, or into the lines of the subelements (bit channels), but not into both.
You can now occupy either the entire channel with a variable of a suitable type OR its
individual bit-channel addresses with suitable variables of the type BOOL or BIT. First of
all, double-click a bit input channel in the “Variables” column.

ð An input field opens.

5. In order to place an existing variable on the channel, you have to enter the desired project
variable with the complete path. Press to open the Input Assistant. Select, for example,
the variable Application.PLC_PRG.xBool4 declared in PLC_PRG.

ð The variable is inserted. The HMI symbol () is displayed in the “ Mapping” column.
The address is now struck through. That does not mean that the address is no longer
available, because values of existing variables are managed at another memory
space. But: in order to avoid ambiguities when writing the values, you should nev-
ertheless not occupy the address with a further variable, especially in the case of
outputs.
Note: For compiler version V3.5 SP11 and higher, the initialization value of the varia-
bles is used automatically as the default value when mapping to an existing variable.
You can edit the “Default value” field only if you map to a new created variable or if no
mapping is specified. In older versions, users had to specify explicitly that the default
value and initialization value were identical.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1838

6. Delete the variable assignment again. Click the root of the channel,
the BYTE node. Use the Input Assistant again to select the variable
Application.PLC_PRG.byte_gotodevice.

ð The variable is inserted, all bit addresses of the main channel are struck through and
you should not additionally occupy them.

See also
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444

In the following you will map a device output to a global implicit variable, which you recently
create for this purpose directly in the “I/O Mapping” dialog.

The “I/O Mapping” dialog is thus a further place for declaring a global variable.

Requirement: A device that supports an I/O mapping configuration in CODESYS is inserted in
the device tree of your project. On the “I/O Mapping” tab in the device editor you will thus see a
tabular display of the input and output channels of the device with specification of the addresses
and data types.
1. To open the device editor, double-click the device object in the device tree, and then the

“<device name> I/O Mapping” tab.
2. Click in the mapping table on a channel entry in the “Variable” column in order to open an

input field.

Mapping a
device input to a
recently created
project variable

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1839

3. Enter a simple name (without '.') for a new variable (for example, myBool).

ð CODESYS creates the variable as an implicit global variable in the project and
assigns it directly to the channel address. Therefore in this case the address does
not appear struck through as in the case of mappings to existing variables .

If supported by the device, you can map entire function blocks to an input or output channel.
This allows you to count the frequency of signal changes or scale a channel value for mainte-
nance purposes, for example.
Here you will map a device output channel to a function block. In this example, the block scales
the channel output value.
Requirement: A device with a digital output that supports FB mapping is linked in the project.
There is a function block “Scale_Output_Int” with the following implementation. The attributes
of the function block itself and before the output parameter with which the channel output is
processed are important.
{attribute 'io_function_block'}
FUNCTION_BLOCK Scale_Output_Int
VAR_INPUT
 iInput : INT;
 iNumerator : INT;
 iDenominator : INT :=1;
 iOffset : INT := 0;
END_VAR
VAR_OUTPUT
 {attribute 'io_function_block_mapping'}
 iOutput : INT;
END_VAR
VAR
END_VAR
IF iDenominator <> 0 THEN
 iOutput := TO_INT(TO_DINT(iInput) * TO_DINT(iNumerator) /
TO_DINT(iDenominator)) + iOffset;
1. Open the “<device name> I/O Mapping” tab of the device editor. Double-click the output

that should be connected to the function block. Click the button “Add FB for IO
channel”.

ð The “Select Function Block” dialog opens. On the left side, you see at least the
function block “Scale_Output_int” below the “Application” node. Libraries linked in the
project that contain corresponding function blocks are also displayed for selection.

2. Select the POU myScaleOutputInt.

ð After clicking “OK”, the path of the function block parameter iOutput in the
“Variable” is entered in the mapping dialog. The path comprises the applica-
tion name, the device channel name, and the selected FB output (example:
App1.Out_4_Int_myScale_Output_Int_1.iOutput).

Linking a device
with a function
block instance

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1840

3. Select the channel and click “Go to Instance”.

ð The focus switches to the “<device name> IEC Objects” tab and the created entry
for the new IEC object Out_4_Int_myScale_Output_Int_1. In this view in
online mode, you see the current value of the parameter iOutput for the channel
Out_4_Int scaled by the FB. You can also write and force the value as in other
monitoring views.

See also
● Ä Chapter 6.4.1.21.4.4 “Dialog 'Select Function Block'” on page 2746
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444
● Ä Chapter 6.4.1.21.2.8.13 “Tab '<device name> IEC Objects'” on page 2449
● Ä Chapter 6.4.1.20.6.3.23 “Attribute 'io_function_block', 'io_function_block_mapping'”

on page 2293

You can change the address value of an entire channel (but not that of an individual subelement
of the channel!) in the mapping table of the “<device name> I/O Mapping” tab. This allows you
to adapt the addressing to a specified machine configuration and to retain the address value
even if the layout of the modules changes. By default, a change of the layout leads to an
automatic adaptation of the address values.
Requirement: Your project has I/O mapping. See the corresponding sections of the help page
above.
1. To open the device editor, double-click the device object in the device tree, and then the

“<device name> I/O Mapping” tab.
2. Click in the mapping table on a channel entry in the “Address” column in order to open an

input field. This is only possible for the 'root' address of a channel, not for a particular one
of its subelements.
Therefore, change the top address entry of a channel in the table, for example from QB0
to QB1. Exit the input field.

ð The address value is changed. The symbol is displayed before the address. It
indicates that the address is fixed. The addresses of the subelements of the channel
are also changed accordingly. If you now change the position of the device object
inside other device objects with input/output channels in the device tree, CODESYS
does not adapt these addresses to the new order as would be the case without fixing.

3. In order to undo the manual change or fixing, open the input field of the address value
again, delete the address entry and press the Enter key.

ð CODESYS resets the address and the subsequent addresses concerned to the values
they had before the change and removes the symbol .

See also
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444
● Ä Chapter 6.4.1.20.4.12 “Addresses” on page 2231

Changing and
fixing an
address value in
the I/O map

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1841

Depending on the device that you link in the project, CODESYS updates the variables applied
to its inputs and outputs in different ways. You can explicitly change the settings for this in the
“I/O Mapping” dialog.
See also
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444

Requirement: You have compiled an application with a device configuration containing I/O maps
without error. The associated hardware and the bus system are running. You have connected
to the controller by means of the “Online è Login” command and have loaded and started the
application.
1. Open the “I/O Mapping” tab of the PLC in the device editor. To open the editor, double-

click the device object in the device tree.

ð The mapping table now additionally contains the “Current Value” and “New Value”
columns.

If a structure variable is mapped to the 'root' element of an address1, CODESYS does
not display a value in this line in online mode. If, for example, a DWORD variable is
mapped to the address, however, the respective values are monitored both in the 'root'
line and in the indented bit-channel lines below it.
As a matter of principle, the field in the 'root' line always remains empty if the value
would be composed of several subelements.
1 'root' = top element of this address in the Mapping dialog

2. Enter a certain variable value for an entry in the column “New value” and press [F7] to
force or [Ctrl]+[F7] to write the value.

ð As in the case of monitoring in the declaration editor or in watch lists, the forced
variable value is displayed in the column “Current Value” with a prefixed red F-symbol
or the written value.

NOTICE!
Inputs and outputs that the PLC code does NOT use are not read by the PLC
in online mode, as a result of which the displayed value could be incorrect. The
“Current Value” of the variables concerned is displayed with a gray background.

(1) Forced values on the controller
(2) Values not used on the controller, value shown in gray

Configuration of
the I/O variable
update

Monitoring of
variables in the
I/O map in
online mode

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1842

During the commissioning of a plant or machine it may be necessary to 'force' the values
applied at the inputs and outputs. If a device supports this you can cause special 'force varia-
bles' to be generated for this purpose and use them, for example, in an HMI visualization.
Requirement: The device supports the functionality. You have a project in which an I/O map is
configured for the device and which contains a program object PLC_PRG.

1. Open the device editor, “PLC Settings” tab, by double-clicking the device object in the
device tree.

2. Activate the option “Generate force variables for IO mapping”.
3. Press [F11] to compile the application.

ð Two variables are created for each I/O channel in accordance with the following
syntax, in the process of which spaces in the channel name are replaced by under-
scores:
<device name>_<channel name>_<IEC address>_Force of type BOOL for the
activation and deactivation of forces.
<device name>_<channel name>_<IEC address>_Value of the data type of
the channel for defining the value that you want to force on the channel.
These variables are available in the Input Assistant in the category “Variables” /
“IoConfig_Globals_Force_Variables.” You can use them in CODESYS in programming
objects, in visualizations, in the symbol configuration, etc.

4. Open the function block “PLC_PRG”, set the focus in the implementation part and press
F2.

ð The Input Assistant opens. The variables are available in the category “Variables” /
“IoConfig_Globals_Force_Variables” as described above.
A rising edge at the 'Force variable' input activates the forcing of the respective input
or output with the value given by the 'Value variable'. A falling edge deactivates the
forcing. Deactivation by resetting the 'Force' variable to FALSE is the requirement for
being able to force a new value.

Take note of the following restrictions.
● Forcing via the implicit force variables is only possible for channels that are mapped in the

“I/O Mapping” of the device to an existing or recently created variable.
● Forcing via the implicit force variables is not possible for unused inputs and outputs or those

that are mapped to a variable via an AT declaration in an application program.
● I/O channels that you want to force via the mechanism have to be used by CODESYS in at

least one task.
● CODESYS identifies forced inputs in the monitoring by the red Force symbol, but not forced

input/outputs. The forced value is used only implicitly by the I/O driver for writing to the
device.

See also
● Ä Chapter 6.4.1.21.2.8.10 “Tab 'PLC Settings'” on page 2439
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

There is a table that displays the I/O map of a device plus the I/O maps of all subelements
inserted below it in the device tree. There you can edit the I/O maps in exactly the same way as
in the individual mapping tables of the respective device editors.
Requirement: In the device tree of your project there are several PLCs inserted that each
enable an I/O mapping configuration.
1. Select the root node of the device tree and click “Edit I/O Mapping” in the context menu .

ð The “Edit I/O Mapping” dialog opens, in which the I/O mapping configurations of all
devices inserted in the project are displayed in a table. You can edit the entries in the
same way as in the “I/O Mapping” dialog of the associated device editor.

Generating
implicit varia-
bles for the
forcing of I/Os

I/O mapping in
one dialog for
multiple devices

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1843

2. Now select one of the control objects in the device tree and select the “Edit I/O Mapping”
command once again in the context menu.

ð The “Edit I/O Mapping” dialog now shows only the I/O table for the I/O mapping
configurations found in and under the selected object.

3. Set a desired “Filter” in the bar above the table or enter a variable name in the “Search for
variable” field in order to see the use of this variable in the mapping.

ð The method of working in this window is the same as that described for the “<device
name> I/O Mapping” tab.

See also
● Ä Chapter 6.4.1.21.3.5.35 “Command 'Edit I/O Mapping'” on page 2615

6.4.1.9 Programming of Applications
6.4.1.9.1 Introduction

To create an application program which can be run on the controller, you fill POUs with decla-
rations and implementation code (source code), establish the link from the controller I/Os to
application variables, and configure the task assignment. After checking and debugging, the
CODESYS compiler creates the application code which can be downloaded to the controller.
The programming of the application POUs is supported by the programming language editors
and other features such as text lists, image pools, alarm configurations, pragmas, refactoring,
and ready-to-use POUs from CODESYS Development System or libraries.
There are features for syntax checking and code analysis, for achieving data persistence, and
for encrypting the application code which is downloaded to the controller.

6.4.1.9.2 Designating identifiers
Identifiers are names of variables and programming objects (for example programs, function
blocks, and methods) and names of other objects of the application and project. There are rules
that you must follow when assigning identifiers. Furthermore, there are also recommendations
to help you designate uniform and expressive identifiers.
You designate variables identifiers in the variables declaration. These identifiers can e changed
in the declaration section of the programming object. You designate identifiers for programming
objects and other objects in the dialog box when adding the object. You can change the
identifier of an existing object of the application or of the project in the properties dialog of the
object. However, you cannot change the identifiers of objects that can be available only one
time per application or project (for example, the “Library Manager” and “ImagePool” identifiers).
See also
● Ä Chapter 6.4.1.20.7 “Identifiers” on page 2327

6.4.1.9.3 UTF-8 Encoding
Applications in CODESYS can process a wide variety of characters, for example, to output
an error message in various languages. Or to display visualizations in a language selected by
the user which accepts user input in a wide variety of languages, characters, or symbols. If
a comprehensive character set is not necessary, or if a project should not be changed, then
strings which are encoded Latin-1 format can still be used.

Basics

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1844

Table 382: Character set tables
Character set Code page

number
Description Character encoding

ASCII 20127 ● 128 characters
● Suitable for english texts

7-bit encoded char-
acter

DOS-Latin-1 819, 850 ● Complies with ISO 8859
● Suitable for western euro-

pean languages in the Win-
dows command line window.

8-bit encoded char-
acter

Latin-1 28591 ● Complies with ISO-8859-1
● Often used for HTML pages

with äöüß but without € or
for example without special
french characters.

8-bit encoded char-
acter

Windows 1252
Encoding

1252 ● Default Windows character
set for western european
countries

● Windows uses the UTF-16
format internally

● Contains all characters
from ISO 8859-1 and ISO
8859-15, but partly with dif-
ferent encoding

8-bit encoded char-
acter

Unicode ● Universal character set
for all possible languages,
including historical lan-
guages, Braille, music, or
emojis.

● More than 100,000 charac-
ters can be displayed.

● Each character has a
numeric code.

● In contrast to ASCII, a sepa-
ration is made between the
assignment of code points to
characters and the encoding
of the characters.

● Numeric code < 128 are
ASCII compatible

● Numeric codes < 256 are
ISO 8859-1 compatible

For more information, see
unicode.org

Unicode 14.0 144,697 characters

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1845

https://home.unicode.org/
https://home.unicode.org/

Character set Code page
number

Description Character encoding

UTF-16 1200 ● Special Unicode
● Used in some operating

systems (Windows, OS X)
and programming languages
(Java, .NET) for internal
character representation.

● It should be noted that
different computer architec-
tures encode the 4-byte
characters differently.
Little endian byte order for
UTF-16LE

16-bit encoded char-
acters
The characters are
encoded either in 2
bytes or 4 bytes.

UTF-8 65001 ● Byte-oriented encoding
format of Unicode charac-
ters.

● Most widespread
● Used in GNU/Linux and

Unix operating systems, and
in various Internet services
(email, web, browser).

● Compatible with ASCII char-
acters in the first 128 charac-
ters (0–127).

Tuple of 8-bit words
per character
The characters are
encoded in different
length from 1 to 4
bytes.

UTF-8 encoding is the encoding with the most comprehensive character set.
Therefore, it is recommended that you enable UTF-8 encoding for new projects
as well as for existing projects to be used in a new context.

Table 383: Project-wide encoding in CODESYS
Data type Compile option: UTF8

Encoding for STRING
Which encoding is used project-wide?

STRING Enabled UTF-8

Disabled Windows 1252 encoding (default Windows
encoding)
Latin-1

WSTRING Enabled UTF-16

Disabled UTF-16

In CODESYS, the “STRING” data type can be encoded in Latin-1 or UTF-8 formats.
The “WSTRING” data type always encodes its characters as Unicode in UTF-16.
Encoding a single string literal in UTF-8 format
Even if the project-wide encoding format is set to Latin-1, you can encode a single literal in
UTF-8 format. To do this, add the “UTF8#” type prefix to the literal.

{attribute 'monitoring_encoding' := 'UTF-8'}
strVarUtf8: STRING := UTF8#'你好,世界!ÜüÄäÖö';
For more information, see:
Constant: UTF8# String; Ä Chapter 6.4.1.20.4.6 “Constant: UTF8# String” on page 2222

UTF-8
in CODESYS

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1846

Pragma Attribute: Ä monitoring_encoding

String conversion for UTF-8 encoding
If you have enabled UTF-8 encoding project-wide, then you can use the string conversion
functions as usual.
String manipulation
Use library functions to manipulate your strings.
If “STRING” variables should be manipulated, then an index access to a variable in ASCII
format often leads to the desired result. It is better not to use this construct. It is not just a
bad programming style. To make matters worse, with UTF-8 encoding, index access leads to
unwanted string manipulation.

UTF-8 encoding only for project-wide configuration
A UTF-8 encoding is used if the project-wide compile option UTF8 encoding
for STRING is enabled. Library functions and add-ons are then also oriented
according to this setting.

If you use single UTF-8 encoded strings, then you have to make sure that they
are interpreted correctly wherever they are used. For example, a string variable
in the OPC server will be converted to UTF-8 before being transferred to a
client if the setting is not selected. Values such as “UTF8#'äöü'” would then
be misinterpreted. Similar problems can arise when outputting strings in the
visualization.

6.4.1.9.4 Declaration of Variables
General

You can declare variables at the following locations:
● Declaration part of a POU

The “Declare Variable” dialog helps you with this.
Hint: If you define a variable in the tabular declaration editor, the correct syntax is automati-
cally produced.

● Declaration part of the GVL or NVL editor
● I/O mapping configuration of an I/O device object
(<pragma>)*
<scope> (<type qualifier>)?
 <identifier> (AT <address>)? : <data type> (:= <initial
value>)? ;
END_VAR

Variable decla-
ration: Where
and how?

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1847

 Declaration See also
● Ä Chapter 6.4.1.9.4.2

“Using the declaration editor”
on page 1851

● Ä Chapter 6.4.1.9.4.3 “Using
the 'Declare variable' dialog
box” on page 1852

● Ä Chapter 6.4.1.21.3.3.32
“Command 'Auto Declare'”
on page 2572

<pragma> Pragma (none, one, or multiple)
Note: By adding a pragma, you can affect
the behavior and the properties of one or
more variables.

See also
● Ä Chapter 6.4.1.9.8 “Using

Pragmas” on page 1888
● Ä Chapter 6.4.1.20.6

“Pragmas” on page 2269
<scope> Scope

● VAR
● VAR_CONFIG

Note: If variables with incomplete
address information are declared in
function blocks (for example, AT %I*),
then the variables in the variable dec-
laration VAR_CONFIG have to be com-
pletely declared. You can access these
variables in a local instance only when
this is done.

● VAR_EXTERNAL
● VAR_GLOBAL
● VAR_INPUT
● VAR_INST
● VAR_IN_OUT
● VAR_OUTPUT
● VAR_STAT
● VAR_TEMP

See also
● Ä Chapter 6.4.1.20.2.2 “Local

variables - VAR” on page 2113
● Ä Chapter 6.4.1.20.2.11

“Configuration variables -
VAR_CONFIG” on page 2121

● Ä Chapter 6.4.1.20.2.9
“External variables
- VAR_EXTERNAL”
on page 2120

● Ä Chapter 6.4.1.20.2.6 “Global
variables - VAR_GLOBAL”
on page 2118
Ä Chapter 6.4.1.21.2.12
“Object 'GVL' - Global Variable
List” on page 2465

● Ä Chapter 6.4.1.20.2.3 “Input
variables - VAR_INPUT”
on page 2113

● Ä Chapter 6.4.1.20.2.10
“Instance variables -
VAR_INST” on page 2120

● Ä Chapter 6.4.1.20.2.5
“Input/Output Variable
(VAR_IN_OUT)” on page 2114

● Ä Chapter 6.4.1.20.2.4 “Output
variables - VAR_OUTPUT”
on page 2114

● Ä Chapter 6.4.1.20.2.8
“Static variables - VAR_STAT”
on page 2119

● Ä Chapter 6.4.1.20.2.7 “Tem-
porary variable - VAR_TEMP”
on page 2119

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1848

<type
qualifier
>

Type qualifier
● CONST
● RETAIN
● PERSISTENT

See also
● Ä Chapter 6.4.1.20.2.12 “Con-

stant Variables - 'CONSTANT'”
on page 2121

● Ä Chapter 6.4.1.20.2.14
“Retain Variable - RETAIN”
on page 2124

● Ä Chapter 6.4.1.20.2.13 “Per-
sistent Variable - PERSIS-
TENT” on page 2122

<identifi
er>

Identifier, variable name
Note: The rules listed in the chapter "Iden-
tifiers" must be followed without exception
when assigning an identifier. In addition,
you will find recommendations for uniform
naming.

See also
● Ä Chapter 6.4.1.20.7 “Identi-

fiers” on page 2327

AT
<address>

Assignment of an address in the input,
output, or flag memory range (I, Q, or M)
AT % <memory area prefix>
(<size prefix>)? <memory
position>
Example
● AT %I* // Incomplete address
● AT %I7.5
● AT %IW0
● AT %QX7.5
● AT %MD48

See also
● Ä Chapter 6.4.1.8.2 “Config-

uring Devices and I/O Map-
ping” on page 1836

● Ä Chapter 6.4.1.9.12.3 “AT
declaration” on page 1902

● Ä Chapter 6.4.1.20.4.12
“Addresses” on page 2231

<data
type>

Data type
● <elementary data type>
● <user defined data type>
● <function block>

See also
● Ä Chapter 6.4.1.20.5 “Data

Types” on page 2234
● Ä Chapter 6.4.1.21.2.9 “Object

'DUT'” on page 2461
Ä Chapter 6.4.1.21.2.21.3
“Object 'Function Block'”
on page 2479

<initial
value>

Initial value
<literal value> | <identifier>
| <expression>

See also
● Ä Chapter 6.4.1.20.7 “Identi-

fiers” on page 2327
● Ä “Constants and literals”

on page 2219
● Ä Chapter 6.4.1.20.1.4.3 “ST

expressions” on page 2050
(...)? Optional
(...)* Optional repetition

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1849

{attribute 'qualified_only'}
{attribute 'linkalways'}
VAR_GLOBAL CONSTANT
 g_ciMAX_A : INT := 100;
 g_ciSPECIAL : INT := g_ciMAX_A - 10;
END_VAR
{attribute 'qualified_only'}
VAR_CONFIG
 // Generated instance path of variable at incomplete address
 PLC_PRG.fbDoItNow.XLOCINPUT AT %I*: BOOL := TRUE;
END_VAR
METHOD METH_Last : INT
VAR_INPUT
 iVar : INT;
END_VAR
VAR_INST
 iLast : INT := 0;
END_VAR

METH_Last := iLast;
iLast := iVar;

FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 wInput AT %IW0 : WORD; (* Input variable *)
END_VAR
VAR_OUTPUT
 wOutput AT %QW0 : WORD; (* Output variable *)
END_VAR
VAR_IN_OUT
 aData_A : ARRAY[0..1] OF DATA_A; // Formal variable
END_VAR
VAR_EXTERNAL
 GVL.g_ciMAX_A : INT; // Declared in object GVL
END_VAR
VAR_STAT
 iNumberFBCalls : INT;
END_VAR
VAR
 iCounter: INT;
 xLocInput AT %I* : BOOL := TRUE; // VAR_CONFIG
END_VAR

iNumberFBCalls := iNumberFBCalls + 1;
PROGRAM PLC_PRG
VAR
 iLoop: INT;
 iTest: INT;
 fbDoItNow : FB_DoIt;
 iTest_200: INT;
 aData_Now : ARRAY[0..1] OF DATA_A := [(iA_1 := 1, iA_2 := 10,
dwA_3 := 16#00FF),(iA_1 := 2, iA_2 := 20, dwA_3 := 16#FF00)];
END_VAR

iTest := GVL.g_ciMAX_A;
iTest_200 := 2 * GVL.g_ciMAX_A;
fbDoItNow(aData_A := aData_Now);
FOR iLoop := 0 TO GVL.g_ciSPECIAL DO
 ;
END_FOR

Example
GVL

GVL_CONFIG

FB_DoIt (FB)

PLC_PRG
(PRG)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1850

The standard initialization value for all declarations is 0. In the declaration part you can also
specify user-defined initialization values for each variable and each data type.
The user-defined initialization starts with the assignment operator := and consists of any valid
expression of the programming language ST (structured text). You thus define the initialization
value with the help of constants, other variables or functions. If you use a variable, you must
also initialize it.

VAR

 var1:INT := 12; // initialization
value 12

 x : INT := 13 + 8; // initalization
value defined by an expression of constants

 y : INT := x + fun(4); // initialization
value defined by an expression,
 // that contains a
function call; notice the order!

 z : POINTER TO INT := ADR(y); // not described in
the standard IEC61131-3:
 // initialization
value defined by an adress function;
 // Notice: In this
case the pointer will not be initialized
 // during an Online
Change *)
 END_VAR

Examples

Notes on the order of initialization

From compiler version 3.5.3.40, variables in a function block are initialized in
the following order: firstly, all constants in accordance with the order of their
declarations, then all other variables in accordance with the order of their decla-
rations.

NOTICE!
From compiler version 3.3.2.0, variables from global variable lists are always
initialized before the local variables of a POU.

See also
● Ä Chapter 6.4.1.20.5.15 “Data Type 'ARRAY'” on page 2247
● Ä “Declaration and initialization of structure variables” on page 2262
● Ä Chapter 6.4.1.20.5 “Data Types” on page 2234
● Ä Chapter 6.4.1.20.6.3.16 “Attribute 'global_init_slot'” on page 2285

Using the declaration editor
The declaration editor is used for declaring variables in the variable lists and POUs.

The declaration editor offers two possible views: textual and tabular .

Variable initiali-
zation

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1851

in the dialog in “Tools è Options è Declaration Editor”, you define whether only the textual
view or only the tabular view is available, or whether you can switch between both views by
means of the buttons on the right side of the editor view.
If the declaration editor is used in conjunction with a programming language editor, it appears as
the declaration part at the top of the window of a POU.

The behavior and the appearance of the textual editor are configured with the settings in the
dialog “Tools è Options è Text Editor”. The settings concern colors, line numbers, tab widths,
indentations etc. The usual Windows functions are available, plus the IntelliMouse functions if
necessary.
Requirement: You have opened a programming object (POU, GVL or NVL) of a project. The
textual declaration editor has the focus.

Enter the variable declarations in correct syntax. With [F2] you can open the dialog “Input
Assistant” for the selection of the data type or a keyword.

In the tabular declaration editor, you add variable declarations to a table with the following
columns: “Scope”, “Name”, “Address”, “Data type”, “Initialization”, “Comment”, and “Attributes”
(pragmas).
Requirement: A programming object (POU or GVL) of a project is open. The tabular declaration
editor has the focus.
1. Click the button in the declaration header or select the command “Insert” in the context

menu.

ð CODESYS inserts a new row for a variable declaration and the input field for the
variable name opens.

2. Specify a valid variable identifier.
3. Open the other fields of the declaration line as required with a double-click and select

the desired specifications from the drop-down lists or with the help of the dialogs which
appear.

See also
● Ä Chapter 6.4.1.20.1.2 “Declaration Editor” on page 2047
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572
● Ä Chapter 6.4.1.9.4.3 “Using the 'Declare variable' dialog box” on page 1852
● Ä Chapter 6.4.1.21.3.17.2 “Command 'Edit Declaration Header'” on page 2717
● Ä “Dialog 'Input Assistant' - Tab 'Categories'” on page 2575

Using the 'Declare variable' dialog box
Requirement: A programming object (POU or GVL) of a project is open.
1. Select the command “Edit è Auto Declare”.

ð The dialog box “Auto Declare” opens.

2. Select the desired scope for the variable from the selection list “Scope”.
3. Enter a variable name in the input field “Name”.
4. Select the desired data type from the selection list “Type”.
5. If the initialization value deviates from the standard initialization value, enter an initializa-

tion value for the variable.
6. Complete your entries with a click on “OK”.

ð CODESYS lists the newly declared variable in the declaration part of your program-
ming object.

Declaring in the
textual declara-
tion editor

Declaring in the
tabular declara-
tion editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1852

With the help of pragmas in the declaration part you can affect the processing of
the declaration by the compiler.

See also
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572
● Ä Chapter 6.4.1.20.5 “Data Types” on page 2234
● Ä Chapter 6.4.1.9.8 “Using Pragmas” on page 1888

Declaring arrays
Requirement: A programming object (POU or GVL) of a project is open.
1. Click “Edit è Declare Variable”.

ð The “Declare Variable” dialog opens.

2. Select the desired scope for the array from the drop-down list “Scope”.
3. Enter an identifier for the array in the “Name” input field.
4. Click the arrow button () next to the “Data type” input field and select the “Array

Assistant” entry from the selection menu.
5. In the input fields “Dimension 1”, type in the lower and upper limit of the first dimension of

the array (example: 1 and 3).

ð The field “Result” displays the 1st dimension of the array (example: ARRAY [1..3]
OF ?).

6. In the input field “Basic type”, type in the data type of the array or use the “Input Assistant”
() or the “Array Assistant” (example: DINT).

ð The field “Result” displays the data type of the array now (example: ARRAY [1..3]
OF DINT).

7. Define the second and third dimensions of the array according to steps 5 and 6 (example:
Dimension 2: 1 and 4, Dimension 3: 1 and 2).

ð The “Result” field displays the array with the defined dimensions: ARRAY [1..3,
1..4, 1..2] OF DINT. The array consists of 3 * 4 * 2 = 24 elements.

In an array of variable length, declare the dimension limits with an
asterisk placeholder (*). Arrays of variable length are permitted to be
used only in VAR_IN_OUT declarations of function blocks, methods,
or functions.

Example of a 2-dimensional array of variable length:
aiUnknownLengthData : ARRAY [*,*] OF INT;

8. Click “OK”.

ð In the dialog “Declare Variable” the field “Data type” displays the array.

9. To modify the initialization values of the array, click the arrow button () next to the
“Initialization value” input field.

ð The “Initialization Value” dialog opens.

10. Select the line of the array element whose initialization value you wish to modify. Example:
Select array component [1, 1, 1].

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1853

11. Enter the desired initialization value in the input field below the list and click button “Use
value on selected lines” (example: value 4).

ð CODESYS displays the changed initialization value of the selected line.

12. Click “OK”.

ð In the “Initialization value” field of the “Declare Variable” dialog, CODESYS displays
the initialization values of the array (example:{4, 23(0)]).

13. You can optionally enter a “Comment” in the input field.
14. Click “OK” in order to conclude the declaration of the array.

ð CODESYS adds the declaration of the array to the declaration part of the program-
ming object.

See also
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572
● Ä Chapter 6.4.1.20.5.15 “Data Type 'ARRAY'” on page 2247

Declaring global variables
Requirement: A project is open.

1. In the Device tree of your project, select the application in which the global variables are to
be valid.

2. Select the context menu command “Add Object è Global Variable List”.

ð CODESYS inserts the “GVL” in the Device tree under the application and opens it in
the editor.

3. Select the menu command “Edit è Auto Declare”.

ð The dialog box “Auto Declare” opens.

4. In the selection list “Scope”, select the entry “VAR_GLOBAL”.
5. In the field “Name”, enter a name for the global variable.
6. Select a data type from the selection list “Type”.
7. If your variable is to have an initialization value other than the standard initialization value,

click on next to the field “Initialization”.

ð The dialog box “Initialization Value” opens.

8. Double-click on the cell “Init value” of your variable and enter the desired valid value.
9. Click on “OK”.

ð The initialization value is displayed in the dialog box “Auto Declare”.

10. Activate one of the “Flags” if necessary.
11. Confirm your entries by clicking on the button “OK”.

ð CODESYS inserts the declared variable in the GVL.

The global variable is available in the total application of your project.

Declaring global
variables that
are available
within the appli-
cation.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1854

1. Select the menu command “View è POUs”.

ð The “POUs” view opens.

2. In the “POUs” view, select the uppermost node with the project name and select the
context menu command “Add Object è Global Variable List”.

ð CODESYS inserts the “GVL” in the “POUs” view and opens it in the editor.

3. Select the menu command “Edit è Auto Declare”.

ð The dialog box “Auto Declare” opens.

4. In the selection list “Scope”, select the entry “VAR_GLOBAL”.
5. In the field “Name”, enter a name for the global variable.
6. Select a data type from the selection list “Type”.
7. If your variable is to have an initialization value other than the standard initialization value,

enter it in the column “Initialization”.
8. Activate one of the “Flags” if necessary.
9. Confirm your entries by clicking on the button “OK”.

ð CODESYS inserts the declared variable in the GVL.

The global variable is now available in the entire project.

See also
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572

Using Task-Local Variables
Task-local variables are cycle-consistent. In a task cycle, they are written only by a defined task,
while all other tasks have read-only access. It is taken into account that tasks can be interrupted
by other tasks or can run simultaneously. The cycle consistency also applies above all if the
application is running on a system with a multicore processor.
Therefore, using task local global variable lists is one way to automatically achieve a synchro-
nization (by the compiler) when multiple tasks are processing the same variables. This is not
the case when using ordinary GVLs. Multiple tasks can write simultaneously to ordinary GVL
variables during a cycle.
However, it is imperative to note: The synchronization of task-local variables requires a relatively
large amount of time and memory and is not always the best solution for every application. For
this reason, see below for more detailed technical information and best practice guidance to
help you make the right decision.

In the CODESYS project, the “Variable List (Task-Local)” object is available for defining task-
local variables. Syntactically, it corresponds to a normal GVL, but also contains the information
of the task that has write access to the variables. Then all variables in such a GVL are not
changed by another task during a cycle of a task.
The next section contains a simple example that demonstrates the principle and functionality of
task-local variables. It includes a writing program and a reading program. The programs run in
different tasks, but they access the same data that is stored in a task-local global variable list so
that they are processed cycle-consistently.

Declaring global
variables that
are available in
the entire
project.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1855

See below for Instructions on reprogramming this sample application.

(* task-local GVL, object name: "Tasklocals" *)
VAR_GLOBAL
 g_diaData : ARRAY [0..99] OF DINT;
END_VAR

PROGRAM ReadData
VAR
 diIndex : DINT;
 bTest : BOOL;
 diValue : DINT;
END_VAR
bTest := TRUE;
diValue := TaskLocals.g_diaData[0];
FOR diIndex := 0 TO 99 DO
 bTest := bTest AND (diValue = Tasklocals.g_diaData[diIndex]);
END_FOR

PROGRAM WriteData
VAR
 diIndex : DINT;
 diCounter : DINT;
END_VAR
diCounter := diCounter + 1;
FOR diCounter := 0 TO 99 DO
 Tasklocals.g_diaData[diIndex] := diCounter;
END_FOR

Sample appli-
cation

The programs “WriteData” and “ReadData” are called by different tasks.
In the program WriteData, the array g_diaData is populated with values. The program
ReadData tests whether or not the values of the array are as expected. If so, then the variable
bTest yields the result TRUE.

The array data that is tested is declared via the variable g_diaData in the object Tasklocals
of type Global Variable List (Task-Local). This synchronizes the data access in the
compiler and guarantees cycle consistency, even when the accessing programs are called from
different tasks. In the sample program, this means that the variable test is always TRUE in the
program ReadData.

If the variable g_diaData were declared only as a global variable list in this example, then the
test (the variable test in the program ReadData) would yield FALSE more often. In this case,
this is because one of the two tasks in the FOR loop could be interrupted by the other task, or
both tasks could run simultaneously (multicore controllers). And therefore the values could be
changed by the writer while the reader reads the list.

NOTICE!
An online change of the application is not possible after changes in declarations
in the list of task-local variables.

Note the following when declaring a global task-local variable list:
● Do not assign direct addresses by means of an AT declaration.
● Do not map to task-local variables in the controller configuration.
● Do not declare any pointers.
● Do not declare any references.

Showing func-
tionality in an
example

Constraints in
the declaration

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1856

● Do not instantiate any function blocks.
● Do not declare any task-local variables as PERSISTENT and RETAIN at the same time.

The compiler reports write access in a task without write access as an error. However, not all
write-access violations can be detected. The compiler can only assign static calls to a task.
However, the call of a function block by means of a pointer or an interface is not assigned to a
task, for example. As a result, any write access is not recorded there either. Moreover, pointers
can point to task-local variables. Therefore, data can be manipulated in a read task. In this case,
a runtime error is not issued. However, values that are modified by means of pointer access are
not copied back in the shared reference of variables.

The variables are located at a different address in the list for each task. For read access, this
means: ADR(variable name) yields a different address in each task.

The synchronization mechanism guarantees the following:
● Cycle consistency
● Freedom from locked states: A task never waits for an action from another task at any time.
With this method, however, no time can be determined when a reading task securely receives a
copy of the writing task. Fundamentally, the copies can deviate. In the example above, it cannot
be concluded that each written copy is processed one time by the reader. For example, the
reading task can edit the same array over multiple cycles, or the contents of the array can skip
one or more values between two cycles. Both can occur and have to be considered.
The writing task can be paused for one cycle between two accesses to the shared reference
by each reading task. This means that when n reading tasks exist, the writing task can have n
cycles of delay until the next update of the shared reference.
In each task, the writing task can prevent a reading task from getting a reading copy. As a
result, no maximum number of cycles can be specified after which a reading task will definitely
receive a copy.
In particular, this can become problematic if very slow running tasks are involved. Assuming
a task runs only every hour and cannot access the task-local variables during this time, then
the task works with a very old copy of the list. Therefore, it can be useful to insert a time
stamp in the task-local variables so that the reading tasks can at least determine whether or
not the list is up-to-date. You can set a time stamp as follows: Add a variable of type LTIME
to the list of task-local variables and add the following code to the writing task, for example:
tasklocal.g_timestamp := LTIME();.

Task-local variables are designed for the use case "Single writer - multiple readers". When
you implement a code that is called by different tasks, using task-local variables is a signifi-
cant advantage. For example, this is the case for the sample application appTasklocal as
described above when it is extended by multiple reading tasks that all access the same array
and use the same functions.
Task-local variables are especially useful on multicore systems. On these systems, you cannot
synchronize tasks by priority. Then other synchronization mechanisms become necessary.
Do not use task-local variables when a reading task always has to work on the newest copy of
the variable. Task-local variables are not suitable for this purpose.
A similar issue is the "Producer - Consumer" dilemma. This happens when a task produces
data and another task processes the data. Choose another type of synchronization for this
configuration. For example, the producer could use a flag to notify that a new date exists. Then
the consumer can use a second flag to notify that it has processed its data and is waiting for
new input. In this way, both can work on the same data. This removes the overhead for cyclic
copying of data, and the consumer does not lose any data generated by the producer.

At runtime, multiple different copies of the task-local variable list may exist in memory. When
monitoring a position, not all values can be displayed. Therefore, the values from the shared
reference are displayed for inline monitoring, in the watch list, and in the visualization for a
task-local variable.

Properties of
task-local global
variables and
possible
behavior

Best practice

Monitoring

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1857

When you set a breakpoint, the data of the task is displayed that ran to the breakpoint and was
halted as a result. Meanwhile, the other tasks continue running. Under certain circumstances,
the shared copy can be changed. In the context of the halted task, however, the values remain
unchanged and are displayed as they are. You need to be aware of this.

For a list of task-local variables, the compiler creates a copy for each task, as well as a shared
reference copy for all tasks. This creates a structure that contains the same variables as the
list of task-local variables. Moreover, an array with this structure is created in which an array
dimension is created for each task. As a result, an array element is indexed for each task. If a
variable in the list is accessed now in the code, then the task-local copy of the list is actually
accessed. Furthermore, it is determined in which task the block is currently running and the
access is indexed accordingly.
For example, the line of code diValue := TaskLocals.g_diaData[0]; from the above
example is replaced by:
diValue := __TaskLocalVarsArray[__CURRENTTASK.TaskIndex].__g_diarr[0];
__CURRENTTASK is an operator that is available in CODESYS V3.5 SP13 and later in order to
determine the current task index quickly.
At runtime, at the end of the writing task, the contents of the task-local list are written to the
global list. For a reading task at the beginning, the contents of the shared reference are copied
to the task-local copy. Therefore, for n tasks, there are n+1 copies of the list: One list serves as
a shared reference and every task also has its own copy of the list.
A scheduler controls the time-based execution of multiple tasks and therefore also task
switching. The strategy, which is tracked by the scheduler in order to control the allocation
of the execution time, has the goal of preventing a task from being blocked. The synchronization
mechanism is therefore optimized to the properties of task-local variables to prevent blocking
states (lock states) and at no time does a task wait for the action of another task.
Synchronization strategy:
● As long as the writing task writes a copy back to the shared reference, none of the reading

tasks gets a copy.
● As long as a reading task gets a copy of the common reference, the writing task does not

write back a copy.

Aim: With a program ReadData, you want to access the same data that is written by a program
WriteData. Both programs should run in different tasks. You make the data available in a
task-local variable list so that it is processed automatically in a cycle-consistent manner.

Requirement: A brand new standard project is created and open in the editor.
1. Rename the application from Application to appTasklocal.

2. Below appTasklocal, add a program in ST named ReadData.

3. Below appTasklocal, add another program in ST named WriteData.

4. Below the object Task Configuration, rename the default task from MainTask to
Read.

5. In the “Configuration” dialog of the task Read, click the “Add Call” button to call the
program ReadData.

6. Below the “Task Configuration” object, add another task named Write, and add the call of
the program Write to this task.

ð Now there are two tasks Write and Read in the task configuration which call the
programs WriteData and ReadData, respectively.

7. Select the application appTasklocal and add an object of type “Global Variable List
(Task-Local)”.

ð The “Add Global Variable List (Task-Local)” dialog opens.

Background:
Technical imple-
mentation

Instructions for
creating the
sample applica-
tion as
described above

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1858

8. Specify the name Tasklocals.

9. Select the Write task from the “Task with write access” list box.

ð The object structure for using task-local variables within an application is complete.
Now you can code the objects as described in the example above.

See also
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572
● Ä Chapter 6.4.1.9.4.5 “Declaring global variables” on page 1854
● Ä Chapter 6.4.1.21.2.13 “Object 'GVL' - Global Variable List (task-local)” on page 2466
● Ä Chapter 6.4.1.9.12.3 “AT declaration” on page 1902
● Ä Chapter 6.4.1.13.2.2 “Calling of monitoring in programming objects ” on page 1996

6.4.1.9.5 Creating Source Code in IEC
General

Source code:
"Source code" is a term used for the implementation code, which you insert in the programming
modules by using the appropriate programming language editors. The following programming
module types are available for this purpose: POU (Program, Function, Function Block), Action,
Method, Property, Interface.
Programming Language:
When creating a POU, you define, in which programming language the implementation should
be inserted. Besides the IEC languages also CFC is available.
Programming Language:Editors:
You get a programming module editable in the corresponding programming language editor
on a double-click on the programming module object. So, the module will appear either in the
textual ST editor or in one of the graphical editors for FBD/LD/IL or CFC. Each editor consists
of two windows: In the upper window you insert the declarations, in textual or tabular form,
depending on the setting. In the lower window you insert the implementation code. The display
and behaviour of each editor can be configured in the corresponding tab of the CODESYS
“Options” dialog.
Regard the possibility to open a programming module for offline-editing even while the applica-
tion is in online mode.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1859

See also
● Ä Chapter 6.4.1.20.1 “Programming Languages and Editors” on page 2047
● Ä Chapter 6.4.1.21.3.5.11 “Command 'Edit Object (Offline)'” on page 2603

FBD/LD/IL
General

A combined editor enables programming in the languages FBD (function block diagram), LD
(ladder diagram) and IL (instruction list).
The basic unit of the FBD and LD programming is a network. Each network contains a structure
that can represent the following: a logical or arithmetic expression, the call of a POU (function,
function block, program etc.), a jump or a return instruction. IL actually requires no networks. In
CODESYS, however , an IL program also consists of at least one network in order to support
conversion to FBD or LD. In view of this you should also divide an IL program meaningfully into
networks.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

The function block diagram is a graphically oriented IEC 61131 programming language. It works
with a list of networks, where each network contains a structure that can contain logical and
arithmetic expressions, calls of function blocks, a jump or a return instruction.
Boxes familiar from boolean algebra are used here. Boxes and variables are connected by
connecting lines. The signal flow in the network runs from left to right. The signal flow in the
editor runs from top to bottom, starting with network 1.

Example

CFC is also a programming language based on the same principle as FBD, but
with the following differences:

– The CFC editor is not network-oriented.
– You can freely place the elements in the CFC editor.
– Direct insertion of feedbacks is possible.
– The order of execution is determined by a list of currently inserted elements,

which you can change.

See also
● Ä Chapter 6.4.1.9.5.2.2 “Programming function block diagrams (FBD)” on page 1862
● Ä Chapter 6.4.1.21.3.14 “Menu 'FBD/LD/IL'” on page 2700(commands)
● Ä Chapter 6.4.1.9.5.3 “Continuous Function Chart (CFC)” on page 1866

The ladder diagram (LD) is a graphically oriented programming language that approximates an
electrical circuit diagram. On the one hand the ladder diagram is suitable for designing logical
switching units, but on the other you can also create networks just as in FBD. Therefore you can
use LD very well for controlling calls of other program blocks.

Function block
diagram (FBD)

Ladder diagram
(LD)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1860

The ladder diagram consists of a series of networks. A network is bounded on the left side by
a vertical line (bus bar). A network contains a circuit diagram of contacts, coils, optional boxes
(POUs) and connecting lines. On the left side of a network there is a contact or a series of
contacts that relay the ON or OFF state, which corresponds to the boolean values TRUE and
FALSE, from left to right. A boolean variable is associated with each contact. If this variable is
TRUE, the status is relayed from left to right via the connection line. Otherwise OFF is relayed.
Thus the coil(s) in the right part of the network receive(s) the value ON and OFF coming from
the left and the value TRUE or FALSE is written accordingly into the boolean variable assigned
to them.
If the elements are connected in series, this means an AND operation. If they are connected
in parallel, this means an OR operation. A line through an element means a negation of the
element. The negation of an input or an output is indicated by a circle symbol.

Example

IEC 61131-3 defines a complete LD command set, consisting of different types of contacts and
coils. Contacts conduct the current (according to their type) from left to right. Coils store the
incoming value. Contacts and coils are assigned to boolean variables. You can supplement an
LD network by jumps, returns, labels and comments.
See also
● Ä Chapter 6.4.1.9.5.2.3 “Programming ladder diagrams (LD)” on page 1864
● Ä Chapter 6.4.1.21.3.14 “Menu 'FBD/LD/IL'” on page 2700(Befehle)

The instruction list is an assembler-like IEC 61131-compliant programming language. It supports
accumulator-based programming.
An instruction list (IL) consists of a series of instructions. Each instruction starts in a new line
and contains an operator and, depending on the type of operation, one or more operands
separated by commas. A label, followed by a colon, can be placed in front of an instruction. It
serves the identification of the instruction and you can use the label as a jump destination. A
comment must be the last element in a line. Empty lines can be inserted between instructions.
All IEC 61131-3 operators are supported, as are multiple inputs, multiple outputs, negations,
comments, set/reset of outputs and conditional/unconditional jumps.
Each instruction is based primarily on the loading of values into the accumulator (LD instruc-
tion). After that the corresponding operation is executed with the parameter from the accumu-
lator. The result of the operation is written again into the accumulator, from where you should
store it purposefully with the help of an ST instruction.

The instruction list supports comparison operators (EQ, GT, LT, GE, LE, NE) and jumps for pro-
gramming of conditional executions or loops. Jumps can be unconditional (JMP) or conditional
(JMPC / JMPCN). In the case of conditional jumps, a check is performed as to whether the
value in the accumulator is TRUE or FALSE.

Instruction list
(IL)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1861

Example

See also
● Ä Chapter 6.4.1.9.5.2.4 “Programming in instruction list (IL)” on page 1865
● Ä Chapter 6.4.1.20.1.6.3 “Modifiers and operators in IL” on page 2087

Programming function block diagrams (FBD)

1. Select an application in the device tree.
2. Select the command “Project è Add Object è POU”.

ð The dialog box “Add POU” opens.

3. Enter a name and select the implementation language “Function Block Diagram (FBD)”.
Click on “Add”.

ð The POU is added to the device tree and opened in the editor. It consists of the
declaration editor in the top part and the implementation part with an empty network
in the lower part. The view “ToolsBox” is also automatically opened , in which the
suitable elements, operators and function blocks for FBD programming are available.

See also
● Ä Chapter 6.4.1.21.2.21 “Object 'POU'” on page 2477
● Ä Chapter 6.4.1.9.5.2 “FBD/LD/IL” on page 1860

1. Click inside the automatically inserted empty network in the implementation part.

ð The network is given a yellow background and the area at the left-hand side with the
network number is given a red background.

Creating a POU
in the function
block diagram
(FBD) imple-
mentation lan-
guage

Programming a
network

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1862

2. Open the context menu with the right mouse button.

ð You obtain amongst other things the insert commands for the elements that can be
inserted at this point.

3. Insert the elements required for your programming using the menu commands or by
dragging in the elements from the toolbox.

4. For example, select the command “Insert Assignment”.

ð An assignment line is inserted. In each case three question marks stand for assign-
ment source and assignment target.

5. Select the question marks and replace them with the desired variable. Input assistance is
available for this purpose.

6. Move the cursor over the assignment line.

ð The possible insertion positions for further elements are displayed as grey diamonds.
A click on a diamond selects that position and the suitable insert commands are once
again available.

7. Alternatively, you can drag an element with the mouse from the toolbox into the network.
For example, click in the tool box on the box element, keep the mouse button pressed and
move the cursor over the network.

ð Each possible insertion position lights up green.

8. Release the mouse button in order to insert the box.

ð The box is displayed in the network. The type of box on the inside and the instance
name above the box, which is required in the case of a function block, are still kept
free with three question marks.

9. Select the string ??? inside the box and replace it with the name of the box. Input
assistance is available for this purpose.

ð The inputs and outputs of the selected box are displayed. They are still kept free with
question marks, as is the instance name in the case of a function block.

See also
● Ä Chapter 6.4.1.21.3.14 “Menu 'FBD/LD/IL'” on page 2700
● Ä Chapter 6.4.1.9.5.2 “FBD/LD/IL” on page 1860

1. In the implementation part of your POU, insert a new network using the command
“FBD/LD/IL è Insert network” or drag it in from the tool box.

2. For example, drag an “ADD” operator into the empty network and replace the charac-
ters ??? with two variables of the type INT.

3. Drag the element “Branch” from the tool box into your implementation and release the
mouse button at the green insertion position directly at the output of the operator.

ð The line branch splits the processing line at the output of the operator box into 2
subnetworks.

4. Further FBD elements and also further line branches can now be added to each of the two
subnetworks.

See also
● Ä Chapter 6.4.1.20.1.6.4.9 “FBD/LD/IL element 'Branch'” on page 2093
● Ä Chapter 6.4.1.21.3.14.33 “Command 'Insert Branch'” on page 2709

Programming
line branches
(subnetworks)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1863

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Programming ladder diagrams (LD)

1. Select the application in the Device tree.
2. Select the command “Project è Add Object è POU”.

ð The dialog box “Add POU” opens.

3. Enter a name and select the implementation language “Ladder Diagram (LD)”.
Click on “Add”.

ð CODESYS adds the POU to the Device tree and opens it in the editor. An empty
network is inserted in the implementation part. The empty network is bounded on
the left by a vertical line, which represents a bus bar. The view “ToolBox” is also
automatically opened, in which the suitable elements, operators and function blocks
for LD programming are available.

Requirement: a POU with the implementation language LD is opened in the editor and an
empty network is inserted.
1. Click on the category “Ladder Elements” in the view “ToolBox”

2. Click on the “Contact” element, drag it into your network and release the mouse button at
the insertion position “Start here”.

ð The contact is added on the left in the network directly against the vertical line.

3. Click on ??? and enter the identifier of a boolean variable. The input assistant is also
available to you for this.

4. Click on the category “Function Blocks” in the view “ToolBox” and drag the function block
“TON” onto an insertion position on the connecting line to the right of the inserted contact.

ð CODESYS inserts the box “TON” to the right of the contact. The contact is connected
with the input IN of the TON box.

5. Enter a time constant at the input PT, for example T#3s.

ð If the variable of your contact goes TRUE, then the input IN of the TON box also goes
TRUE. The TON box forwards the value TRUE to the output Q with a switch-on delay of
T#3s, for example.

Requirement: a POU with the implementation language LD is opened in the editor and an empty
network is inserted.

1. Click inside the empty network and select the command “FBD/LD/IL è Insert Contact”.
2. Select the connecting line to the left of the contact and select the command “FBD/LD/IL

è Set Branch Start Point”.

ð The starting point on the connecting line is marked by a red rectangle. CODESYS
marks all possible end points of the branch with a blue rectangle.

Creating a POU
in the ladder
diagram (LD)
implementation
language

Adding a con-
tact and a func-
tion block (TON)

Inserting a
closed line
branch

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1864

3. Click on a blue rectangle in order to set the end point of your closed line branch.

ð CODESYS inserts the line branch between the starting and end points. The program
flow will go through both branches up to the end point.
If you insert the line branch at a box instead of at a contact, the box will only be called
if none of the other branches is TRUE.

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.14 “Closed branch” on page 2096
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094

Programming in instruction list (IL)

If necessary, IL can be activated in the CODESYS options.

1. Select the application in the device tree.
2. Click “Project è Add Object è POU”.

ð The “Add POU” dialog opens.

3. Enter a name and select the implementation language “Instruction List (IL)”.
Click “Add”.

ð CODESYS adds the POU to the device tree and opens it in the editor. A network is
already inserted in the implementation part.

Requirement: A POU (IL) is opened in the editor and possesses an empty network.

1. Click the line marked in color in the 1st column and enter the operator LD.

2. Press the [Tab] key.

ð The cursor jumps to the 2nd column

3. Enter the first summand of your ADD operation, for example 6.

4. Press [Ctrl]+[Enter] or select the command “FBD/LD/IL è Insert IL Line After”.

ð CODESYS inserts a new instruction line. The first column of this line has the focus.

5. Enter ADD and press [Tab].

6. Enter the second summand of your ADD operation, for example 12.

7. Press [Ctrl]+[Enter]

8. Enter the operator ST and press [Tab].

Creating POUs
in the instruc-
tion list (IL)
implementation
language

Programming
networks
(example: ADD
operation)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1865

9. Specify a variable of the data type INT, for example iVar.

ð The result – 16 in the example – is stored in the iVar.

Requirement: A POU (IL) is opened in the editor and possesses an empty network. A variable of
the data type <function block> is declared in the declaration part (example: C1:CTU;).

1. Click the line marked in color in the 1st column and select the command “FBD/LD/IL
è Insert Box”.

ð The input assistant opens.

2. Select the desired function block in the category “Function Blocks” or “Boxes”, for example
the “CTU” counter from the “Standard” library, and click “OK”.

ð CODESYS inserts the selected function block “CTU” as follows:

3. Replace the strings ??? with the variable name and the values or variables for the inputs/
outputs of the function block.

4. As an alternative to inserting the function block via the input assistant, you can directly
enter the call in the editor as shown in the picture at step 4.

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.3 “Modifiers and operators in IL” on page 2087

Continuous Function Chart (CFC)
General

The “Continuous Function Chart (CFC)” implementation language is a graphical programming
language which extends the standard languages of IEC 61131-3.
You can graphically program a system by means of a POU in CFC. You insert elements and
position them freely. You insert connections and wire the elements to a network so that a
well-structured function block diagram is created. You can also insert feedback. You can read
function block diagrams like an circuit diagram or a block diagram.
The execution order of a function block diagram is based on data flow. Moreover, a POU can
process multiple data flows. Then the data flows do not have any common data. In the editor,
multiple networks do not have any connections to each other.
On the other hand, POUs in FBD, LD, or IL have a network-based execution order.

Calling function
blocks

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1866

Unfortunately, it is not possible to switch a POU between the “Continuous
Function Chart (CFC) - page-oriented” and “Continuous Function Chart (CFC)”
implementation languages.

The "Continuous Function Chart (CFC) - page-oriented" implementation language is a variant
of CFC. The difference from simple CFC is that the code can be distributed on any number of
"pages" in the editor. In this way, you can create extensive function block diagrams which are
still easy to print.
Each page has edge areas where you arrange the connections to the other pages.
● Creating pages
● Setting the page size
● Copying and inserting pages in the page navigator
● Copying the implementation of a POU in the CFC implementation language and inserting

into a page
● Well-structured and space-saving arranging of inputs, outputs, and connection marks in the

border areas
● Connection over pages with connection marks

Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098

Ä Chapter 6.4.1.20.1.7.3 “CFC editor, page-oriented” on page 2101

Ä Chapter 6.4.1.21.3.13 “Menu 'CFC'” on page 2685

Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761

Automatic Execution Order by Data Flow
The execution order in POUs is uniquely determined in text-based and network-based editors.
In the CFC editor, however, you can position the elements freely, so the execution order is
initially not unique. For this reason, CODESYS determines the execution order by data flow and,
in the case of multiple networks, by the topological position of the elements. The elements are
sorted from top to bottom and left to right. Now the execution order is unique and makes sure
that the POU is processed while optimized by time and by cycle.
You can get information about the chronological order of the elements in the chart and tempora-
rily display the execution order. When you program networks with feedback you can define an
element as the starting point in the feedback loop.
You can also explicitly edit the processing order in a CFC object if necessary. To do this, switch
the “Auto Data Flow Mode” property of the CFC object to “Explicit Execution Order Mode”. In
this mode, you have the option of editing the execution order by means of menu commands.
Before CODESYS Development System V3.5 SP15, you had to define the execution order
explicitly for each POU. The was no mode switching.

In general, data flow is described as the chronological order in which data is read or written
when and how in which programming objects. A POU can process any number of data flows,
which can also be executed independently of each other.

By default, the execution order of a CFC object is determined automatically. The “Auto Data
Flow Mode” property is selected for this. You can temporarily display the automatically deter-
mined execution order in the CFC editor.

Data flow

Displaying the
execution order

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1867

1. Create a new project using the “Standard project” template and specify the name
Minimal for example.

2. Extend the application with the function block FB_DOIt in the “ST” implementation lan-
guage with inputs and outputs.

ð
FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 iAlfa : INT;
 iBravo: INT;
 sCharlie : STRING := 'Charlie';
 xItem : BOOL;
END_VAR
VAR_OUTPUT
 iResult : INT;
 sResult : STRING;
 xResult : BOOL;
END_VAR
VAR
END_VAR

iResult := iAlfa + iBravo;

IF xItem = TRUE THEN
 xResult := TRUE;
END_IF

3. Create the function block ExecuteCFC in the “CFC” implementation language.

ð
PROGRAM ExecuteCFC
VAR
 fb_DoIt_0: FB_DoIt;
 fb_DoIt_1: FB_DoIt;
 iFinal_1: INT;
 iFinal_0: INT;
 xFinal: BOOL;
END_VAR

Recently created programming objects in CFC have the Auto Data Flow Mode
selected. The execution order of the programming object is optimally defined inter-
nally.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1868

4. Click “CFC è Execution Order è Display Execution Order”.

ð The execution order of the object is shown. The boxes and inputs are numbered
accordingly and reflect the chronological processing order. The numbering is hidden
as soon as you click again in the CFC editor.

1. Create a CFC program with feedback.

ð The POU PrgPositiveFeedback counts.

PROGRAM PrgPositiveFeedback
VAR
 iResult: INT;
END_VAR

2. Select an element within the feedback.

ð The selected element is highlighted in red.

3. Click “CFC è Execution Order è Set Start of Feedback”.

ð At run time, this POU is processed first. The start POU of the feedback is defined
and decorated with the symbol. The execution order is resorted and the selected
element gets the number 0. (This is the lowest number of the feedback.)

4. Select the start POU again.

Determining the
execution order
in feedback net-
works

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1869

5. Click “CFC è Execution Order è Set Start of Feedback”.

ð The POU is not selected as the start POU.

The execution order is defined internally.
6. Click “CFC è Execution Order è Display Execution Order”.

ð The execution order by data flow is displayed.

The automatically defined execution order by data flow results in time- and
cycle-optimized execution of the POU. You do not need any information about
the internally managed execution order during the development process.

In “Explicit Execution Order Mode”, it is your responsibility to adapt the execu-
tion order and to assess the consequences and impacts. This is another reason
why the execution order is always displayed.

You can change the automatically defined execution order of a CFC object explicitly when you
select the “Explicit Execution Order Mode” option for the object.
1. In the “Devices” or “POUs” view, select a CFC object.
2. In he context menu, click “Properties”.
3. Click the “CFC Execution Order” tab.

ð The “Execution order” list box displays the currently selected mode.

4. In the “Execution order” list box, select “Explicit Execution Order Mode”.
5. Click “OK” to confirm the dialog.

ð The Explicit Execution Order Mode property is selected. The networks are num-
bered in the CFC editor, and the following commands are provided in the “CFC
è Execution Order” menu for editing the execution order.

6. Open a CFC object.
7. Select a numbered element and click “CFC è Execution Order è Send to Front”.

ð The execution order is resorted and the selected element has the number 0.

See also
● Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098
● Ä Chapter 6.4.1.20.1.7.3 “CFC editor, page-oriented” on page 2101
● Ä Chapter 6.4.1.21.3.13 “Menu 'CFC'” on page 2685
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761

Defining the
execution order
explicitly

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1870

Programming in the CFC editor
In the CFC editor, you can wire POUs to each other and create well-structured block diagrams.
The editor supports you in the following ways:
● Programming with elements and connecting lines
● Dragging instances and variables to the editing area
● Auto-routing the connecting lines
● Automatic linking
● Fixing of connecting lines by control points
● Collision detection
● Input assistance for connection marks
● Forcing and writing of values in online mode
● Movement of selection using arrow keys
● Reduced display of a POU without disconnected pins

1. Drag a “Box” element and an “Output” element into the editor.
2. Click the output of the “Box” element.

ð The output is marked with a red box.

3. Drag a connecting line from the box output of the “Box” element to the box input of the
“Output” element.

ð The cursor symbol changes when it reaches the box input.

4. Release the left mouse button.

ð The output pin of the box is wired to the input pin of the output.

You can also hold down the [Ctrl] key, select each pin, and then right-click “Connected Selected
Pins”.

1. Create a new project using the standard template and specify the name First for
example.

ð The project First.project is created.

Inserting ele-
ments and
wiring with con-
necting lines

Calling of
instances

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1871

2. Extend the application with the function block FB_DOIt in the “ST” implementation lan-
guage with inputs and outputs.

ð
FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 iAlfa : INT;
 iBravo: INT;
 sCharlie : STRING := 'Charlie';
 xItem : BOOL;
END_VAR
VAR_OUTPUT
 iResult : INT;
 sResult : STRING;
 xResult : BOOL;
END_VAR
VAR
END_VAR

iResult := iAlfa + iBravo;

IF xItem = TRUE THEN
 xResult := TRUE;
END_IF

3. Select the application and click “Add Object è POU” in the context menu. Select the
“Continuous Function Chart (CFC)” implementation language and the type Program.
Specify the name PrgFirst for example.

Click “OK” to confirm the dialog.

ð The program PrgFirst is created and it opens in the editor. It is still empty.

4. Instantiate function blocks and declare variables.

ð
PROGRAM PrgFirst
VAR
 iCounter: INT;

 fbDoIt_1 : FB_DoIt;
 fbDoIt_2 : FB_DoIt;

 iOut : INT;
 sOut: STRING;
 xOut: BOOL;

END_VAR
5. Drag a “Box” element from the “ToolBox” view into the editor.
6. Click the ??? field and type in ADD.

ð The box type is ADD. The box acts as an adder.

7. Click line 3 in the declaration editor.

ð The declaration line of iCounter is selected.

8. Click in the selection and drag the selected variable into the implementation. Focus there
on an input of the ADD box.

ð An input has been created, declared, and connected to the box.

9. Click again in the selection and drag the variable to the output of the ADD box.

ð An output has been created, declared, and connected to the box.

10. Drag an “Input” element from the “ToolBox” view to the implementation. Click its ??? field
and type in 1.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1872

11. Connect the 1 input to an input of the ADD box.

ð A network is programmed. At runtime, the network counts the bus cycles and stores
the result in iCounter.

12. Click line 5 in the declaration editor.

ð The line is selected.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1873

13. Click in the selection and drag the selected instance into the implementation.

ð The instance appears as a POU in the editor. The type, name, and POU pins are
displayed accordingly.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1874

14. Drag the fbDoIt_2 instance to the editor. Interconnect the instances to each other and to
inputs and outputs.

ð Example:

A program in ST with the same functionality might look like this:

PROGRAM PrgFirstInSt
VAR
 iCounter: INT;

 fbDoIt_1 : FB_DoIt;
 fbDoIt_2 : FB_DoIt;

 iOut : INT;
 sOut: STRING;
 xOut: BOOL;

END_VAR
iCounter := iCounter + 1;
fbDoIt_1(iAlfa := 16, iBravo := 32, sCharlie := 'First',
xItem := TRUE, iDelta := 2, iResult => fbDoIt_2.iAlfa, xResult
=> fbDoIt_2.xItem);
fbDoIt_2(iBravo := fbDoIt_1.iResult, sCharlie := 'Second',
iDelta := 2, iResult => iOut , sResult=> sOut, xResult =>
xOut);

Requirement: A CFC POU has connected elements.
1. Select a connecting line between two elements.

ð The connecting line is displayed as selected. The ends of the connecting line are
marked with red boxes ().

2. Click “CFC è Connection Mark”.

ð The connection is separated into a “Connection Mark - Source” and a “Connection
Mark - Sink”. The name of the mark is generated automatically.

Creating con-
nection marks

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1875

3. Click in the source connection marks.

ð You can edit the name.

4. Specify a name SimpleMark for the source connection mark.

ð The source connection mark and sink connection mark have the same name.

The following example shows how to use the “Route All Connections” command with control
points.

1. Position the “Input” and “Output” elements. Connect the elements.

2. Position two “Box” elements on the line.

ð The connecting line and the boxes are marked red because of the collision.

3. Click “CFC è Routing è Route All Connections”.

ð The collision is resolved.

Resolving colli-
sions and fixing
connecting lines
by means of
control points

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1876

4. Change the connecting lines gradually.

ð The connecting line has been changed manually and is now blocked for auto-routing.
This is shown by a lock symbol at the end of the connection.

5. Select the connecting line and click “CFC è Routing è Create Control Point”.

ð A control point is created on the connecting line. The connecting line is fixed to the
control point.

You can also drag a control point from the “ToolBox” view to a line.
6. Change the connecting line as seen in the following example.

ð Use the control point for changing the connecting line according to your needs. You
can set any number of control points.

7. In the context menu, click “CFC è Routing è Remove Control Point” to remove the
control point.

8. Unlock the connection by clicking “Unlock Connection” or by clicking the lock symbol.
9. Select the connecting line and click “Route All Connections”.

ð The connecting line is routed automatically as seen in Step 3.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1877

NOTICE!
Connections in a group are not auto-routed.

Requirement: A CFC POU is open. In the editor, its POUs with all declared pins are
displayed.
1. Select a POU whose pins are partially disconnected.

ð Example: fb_DoIt_1

The POU needs space for all of the pins.
2. Click “CFC è Pins è Remove Unused Pins”.

ð Now the POU needs less space and is displayed only with the functionally relevant
pins.

See also
● Ä Chapter 6.4.1.20.1.3 “Common functions in graphical editors” on page 2048
● Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098
● Ä Chapter 6.4.1.20.1.7.3 “CFC editor, page-oriented” on page 2101
● Ä Chapter 6.4.1.20.1.7.6 “Elements” on page 2109

Structured Text (ST), Extended Structured Text (ExST)
General

The ST editor is used for the programming of POUs in the IEC-61131-3 programming language
Structured Text (ST) and Extended Structured Text. The Extended Structured Text offers some
additional functions with regard to the IEC 61131-3 standard.

Reducing the
display of a
POU

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1878

Structured Text is a programming language, comparable with other high-level languages such
as C or PASCAL, which permits the development of complex algorithms. The program code
consists of a combination of expressions and instructions, which can also be executed condi-
tionally (IF… THEN… ELSE) or in loops (WHILE… DO).
An expression is a construct that returns a value following its evaluation. Expressions are also
operators and operands together. You can also use assignments as expressions. An operand
can be a constant, a variable, a function call or a further expression.
Instructions control how the expressions are to be processed.
For this text editor you can make various settings with regard to behavior, appearance and
menus in the dialog boxes “Options” and “Adapt” in the “Tools” menu. The familiar Windows
functions (for example IntelliMouse) are also available for this editor.
See also
● Ä Chapter 6.4.1.9.5.4.2 “Programming structured text (ST)” on page 1879
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801

Extended Structured Text (ExST) is a CODESYS-specific extension of the IEC 61131-3
standard for Structured Text (ST).
See also
● Ä Chapter 6.4.1.20.1.4.4.4 “ExST assignment 'R='” on page 2053
● Ä Chapter 6.4.1.20.1.4.4.3 “ExST assignment 'S='” on page 2052
● Ä Chapter 6.4.1.20.1.4.4.5 “ExST – Assignment as expression” on page 2054

Programming structured text (ST)
The programming languages 'Structured Text' and 'Extended Structured Text' are programmed
in the ST editor. The program code consists of a combination of expressions and instructions,
which can also be executed conditionally or in loops. You must conclude each instruction with a
semicolon ;.

The variables are declared in the declaration editor.

1. Select an application in the device tree.
2. Select the command “Project è Add Object è POU”.

ð The dialog box “Add POU” opens.

3. Enter a name and select the “Implementation language”“Structured Text (ST)”. Click on
“Add”.

ð The POU is added to the device tree and opened in the editor.

Now insert the variable declarations in the upper part of the POU and enter the ST
program code in the lower part of the POU.

See also
● Ä Chapter 6.4.1.20.1.4.3 “ST expressions” on page 2050
● Ä Chapter 6.4.1.20.1.4 “Structured Text and Extended Structured Text (ExST)”

on page 2049
● Ä Chapter 6.4.1.20.1.4.5.10 “ST function block call” on page 2060

ExST - Extended
structured text

Principle

Creating a POU
in the structured
text (ST) imple-
mentation lan-
guage

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1879

● Ä Chapter 6.4.1.20.1.4.5.11 “ST – Comments” on page 2061
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851

Sequential Function Chart (SFC)
General

Use the SFC editor for programming POUs in the IEC 61131-3 compliant SFC implementation
language. SFC is a graphical programming language for describing the chronological sequence
of individual actions in a program. For this purpose, actions (discrete programming objects) are
assigned to step elements. Transition elements control the processing order of steps.
See also
● Ä Chapter 6.4.1.20.1.5.1 “SFC editor” on page 2062

Programming in SFC

1. Select an application in the device tree.
2. Click “Project è Add Object è POU”.

ð The “Add POU” dialog opens.

3. Specify a name and select the “Sequential Function Chart (SFC)” implementation lan-
guage.
Click “Add”.

ð CODESYS adds the POU to the device tree and opens it in the editor.

1. Select the transition after the initial step.

ð The transition is marked in red.

2. Click “SFC è Insert Step-Transition After”.

ð CODESYS inserts the “Step0” step and the “Trans0” transition.

3. Select the “Trans0” transition and click “SFC è Insert Step-Transition”.

ð CODESYS inserts the “Trans1” transition and the “Step1” step before the “Trans0”
transition.

You can also drag the “Step” and “Transition” elements into the diagram from the “Toolbox” view.
See also
● Ä Chapter 6.4.1.20.1.5.8.1 “SFC elements 'Step' and 'Transition'” on page 2073
● Ä Chapter 6.4.1.21.3.12.6 “Command 'Insert Step-Transition'” on page 2677
● Ä Chapter 6.4.1.21.3.12.7 “Command 'Insert Step-Transition After'” on page 2677

Creating a POU
in SFC

Adding a step-
transition

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1880

1. Select the “Step0” step.
2. Click “SFC è Add Entry Action”.

ð By default, you are prompted to select the duplication mode for the step actions.
You decide whether the reference information about the existing step action objects
is copied when the step is copied, or the objects are embedded. Embedding results
in new step action objects being created when the step is copied. The duplication
mode is defined in the “Duplicate when copying” step property. When this property is
deactivated, the copied steps call the same actions as the current step.
You can deactivate the prompt completely in the SFC properties.
The display of embedded objects in the “Devices” and “POUs” views can be deacti-
vated by means of a menu command.

3. For this example, accept the “Copy reference” default setting and click “OK” to confirm.

ð The “Add Entry Action” dialog opens.

4. Enter the name "Step0_entry" and select the “Structured Text (ST)” implementation lan-
guage. Click “Add”.

ð CODESYS inserts the “Step0_entry” action below the POU in the device tree and
opens the action in the editor.
In the Step0_entry entry action, you program statements to be executed one time
when the “Step0” step becomes active.

5. Close the editor of Step0_entry.

ð The “Step0” step is now marked with an “E” in the lower left corner. Double-click this
marker to open the editor.

The entry action Step0_entry is now available in the properties of the step in “Entry
action”. Other actions can also be selected there as needed.

6. Select the “Step0” step. Press [Ctrl]+[V] to copy the step.

ð The same entry actions inserted above are available In the inserted copy of the step.
The new step then calls the same exact action.

See also
● Ä Chapter 6.4.1.21.3.12.8 “Command 'Add Entry Action'” on page 2678
● Ä “2. Step actions” on page 2076
● Ä Chapter 6.4.1.21.4.14.23 “ Dialog 'Options' - 'SFC Editor'” on page 2795

1. Select the “Step0” step.
2. Click “SFC è Insert Exit Action”.

ð By default, you are prompted to select the duplication mode for the step actions of the
step. See above for adding an entry action. Then the “Insert Exit Action” dialog opens.

Adding an entry
action

Adding an exit
action

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1881

3. Enter the name "Step0_exit" and select the “Structured Text (ST)” implementation lan-
guage. Click “Add”.

ð CODESYS inserts the “Step0_exit” action below the POU in the device tree and opens
the action in the editor.
In the Step0_exit exit action, you program statements to be executed one time
before the “Step0” step becomes inactive.

4. Close the editor of Step0_exit.

ð The “Step0” step is now marked with an “X” in the lower right corner. Double-click this
marker to open the editor.

You can define the exit action in the properties of the step in “Exit action”. Other actions can
also be selected there.
See also
● Ä Chapter 6.4.1.21.3.12.9 “Command 'Add Exit Action'” on page 2678
● Ä “2. Step actions” on page 2076

1. Double-click the “Step0” step.

ð By default, you are prompted to select the duplication mode for the step actions of the
step. See above for adding an entry action. The “Add Action” dialog opens.

2. Type in the name "Step0_active" and select the “Structured Text (ST)” implementation
language. Click “Add”.

ð CODESYS inserts the “Step0_active” action below the POU in the device tree and
opens the action in the editor.
In the Step0_active step action, you program statements to be executed as long as
the step is active.

3. Close the editor of Step0_active.

ð The “Step0” step is now marked with a black triangle in the upper right corner.

You can define the action in the properties of the step in “Step action”. Other actions can also be
selected there.
See also
● Ä “2. Step actions” on page 2076

Adding an
action

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1882

1. Select the “Step1” step.
2. Click “SFC è Insert Branch Right”.

ð CODESYS inserts the “Step2” step to the right of “Step1”. The steps are connected as
a parallel branch signified by two pairs of double lines.

3. Select one of the double lines.

ð The double line is marked red.

4. Click “SFC è Alternative”

ð CODESYS converts the branch into an alternative branch. The double lines change
into a single line.

You can click “SFC è Parallel” to convert an alternative branch into a parallel branch.
See also
● Ä Chapter 6.4.1.20.1.5.8.3 “SFC element 'Branch'” on page 2078
● Ä Chapter 6.4.1.21.3.12.10 “Command 'Parallel'” on page 2678
● Ä Chapter 6.4.1.21.3.12.12 “Command 'Insert Branch'” on page 2679
● Ä Chapter 6.4.1.21.3.12.13 “Command 'Insert Branch Right'” on page 2679

1. Select the “Step2” step.
2. Click “SFC è Insert Jump After”.

ð CODESYS inserts the “Step” jump after the “Step2” step.

3. Select the “Step” jump destination.

ð You can type the jump destination manually or select it by using the Input Assistant
. Select Step0.

See also
● Ä Chapter 6.4.1.20.1.5.8.4 “SFC element 'Jump'” on page 2079
● Ä Chapter 6.4.1.21.3.12.16 “Command 'Insert Jump'” on page 2681
● Ä Chapter 6.4.1.21.3.12.17 “Command 'Insert Jump After'” on page 2681

1. Select the “Step1” step.
2. Click “SFC è Insert Macro After”.

ð CODESYS inserts the “Macro0” macro after the “Step1” step.

Adding an alter-
native branch

Adding a jump

Adding a macro

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1883

3. Double-click the “Macro0” element.

ð The macro opens in the implementation section of the editor. The name "Macro0" is
displayed in the caption.

4. Click “SFC è Insert Step-Transition”.

ð CODESYS inserts a step-transition combination.

5. Click “SFC è Zoom out of Macro”.

ð The implementation section returns to the main diagram.

See also
● Ä Chapter 6.4.1.20.1.5.8.5 “SFC element 'Macro'” on page 2079
● Ä Chapter 6.4.1.21.3.12.18 “Command 'Insert Macro'” on page 2682
● Ä Chapter 6.4.1.21.3.12.19 “Command 'Insert Macro After'” on page 2682

1. Select the “Step2” step.
2. Click “SFC è Insert Action Association”.

ð CODESYS inserts an association to the right of the “Step2” step.

3. Click in the left field of the association to select the qualifier.

ð You can enter the qualifier manually or use the Input Assistant . Select "P".

4. Click in the right field of the association to select the action.

ð You can type the action or select it by using the Input Assistant .

See also
● Ä “1. IEC actions” on page 2075
● Ä Chapter 6.4.1.20.1.5.4 “Qualifiers for Actions in SFC” on page 2065
● Ä Chapter 6.4.1.21.3.12.14 “Command 'Insert Action Association'” on page 2680
● Ä Chapter 6.4.1.21.3.12.15 “Command 'Insert Action Association After'” on page 2681

The library analyzation.library allows for the analyzation of expressions. It can be used,
for example, in the SFC diagram to examine the result of the flag SFCError. This flag is used
to monitor timeouts in the SFC diagram.
See also
● Ä Chapter 6.4.1.20.1.5.7 “Library "Analyzation"” on page 2072

See also
● Ä Chapter 6.4.1.20.1.5.1 “SFC editor” on page 2062

Adding an asso-
ciation

Using the library
'analyza-
tion.library' for
the analyzation
of expressions

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1884

6.4.1.9.6 Function block — Calling functions or methods with external implementation
A runtime system can include the implementation of a function block, function, or method (for
example, from a library). If you create a POU in your application with the same name by using
the “External implementation” without an implementation, then you can execute the existing
implementation. Please make sure that you declare local variables only in an external function
block. External functions and methods must not contain local variables.
When the application is downloading, CODESYS searches for and links the associated imple-
mentation in the runtime system for each external POU.

Objects with the property “External implementation” are postfixed with (EXT)
after the object name in the “Devices” or “POUs” view.

See also
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755

1. Click “Project è Add Object è POU”.
2. Activate “Function block”, Method, or “Function” and specify the name of the associated

implementation of the runtime system. Close the dialog box by clicking “Add”.

ð The runtime system POU is created in the “POUs” view. The name is postfixed with
(EXT).

3. Right-click the POU and select “Properties”.

ð The dialog box opens.

4. Click the “Build” tab.
5. Select the “External implementation (Late link in the runtime system)” check box.

ð The POU is declared and you can implement a POU call.

1. Select a function block in the device tree or in the POUs view.
2. Select “Add Object è Method” and type the name of the associated implementation of the

runtime system. Click “Add” to close the dialog box.

ð The method is created.

3. Right-click the method and select “Properties”.

ð The dialog box opens.

4. Click the “Build” tab.
5. Select the “External implementation (Late link in the runtime system)” check box.

ð The method is declared and you can implement a method call. The method name is
postfixed with (EXT) in the “Devices” or “POUs” view.

6.4.1.9.7 Using input assistance
CODESYS provides tools and features to help you code when creating programs.

Creating POUs
with external
implementation

Creating
methods with
external imple-
mentation

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1885

The input assistant provides all program elements that you can insert at the current cursor
position. Open the “Input Assistant” dialog by clicking “Edit è Input Assistant” or by pressing
[F2].
See also
● Ä “Dialog 'Input Assistant' - Tab 'Categories'” on page 2575

This dialog supports the declaration of variables.
See also
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572

The "List components" function is an input tool in textual editors to help you input valid identi-
fiers. Activate this function by clicking “Tools è Options” and then the “SmartCoding” category.
Select the “List components after typing a dot (.)” check box.
● If you type a dot (.) instead of a global variable, then a drop-down list opens with all

available global variables. You insert the selected variable after the dot by double-clicking a
variable in the drop-down list or by pressing [Enter].

● If you type a dot (.) instead of a global variable after a function block instance variable or a
structure variable, then CODESYS opens a drop-down list with all global variables, all input
and output variables for the function block, or all structure members.
You insert the selected variable after the dot by double-clicking a variable in the drop-down
list or by pressing [Enter].
Note: When you also want to choose from the local variables of function block instances,
select the “Show all instance variables in input assistant” option in the CODESYS options
(SmartCoding category).

● If a component access (with a dot) for a drop-down list has already happened, then the last
selected entry is preselected at the next component access.

● When you type any sequence of characters and then press [Ctrl]+[Space], a drop-down
list opens with all available POUs and global variables. The first element in this list that
starts with the sequence of characters is selected by default and you can insert it by
double-clicking it or by pressing [Enter].
Matches with the entered character string are highlighted in yellow in the drop-down list.
If the entered character string is changed, then the displayed drop-down list is refreshed.

● In the ST editor, you can filter the displayed drop-down list by scopes:
Depending on the displayed drop-down list, you can use the [Arrow right] and [Arrow left]
keys to toggle between the following drop-down lists:
– “All items”
– “Keywords”
– “Global declarations”
– “Local declarations”

● CODESYS displays a tooltip if you type an opening parenthesis for a POU parameter when
calling a function block, a method, or a function. This tooltip includes information about the
parameters as they are declared in the POU. The tooltip remains open until you click to
close it or you change the focus away from the current view. If you accidentally close the
tooltip, then you can reopen it by pressing [Ctrl]+[Shift]+[Space].

You can use the pragma attribute 'hide' for excluding variables from the "List
components" feature.

Input assistant

Dialog 'Auto
Declare'

"List compo-
nents"

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1886

Typing structure variables:

list
Calling a function block:

Examples

See also
● Ä Chapter 6.4.1.21.4.14.24 “Dialog 'Options' - 'SmartCoding'” on page 2796
● Ä Chapter 6.4.1.20.6.3.17 “Attribute 'hide'” on page 2286

The short form feature allows you to type abbreviated forms for variable declarations in the
declaration editor and in textual editors where variables declarations are possible. Use this
feature by pressing [Ctrl]+[Enter] to end a declaration line.
CODESYS supports the following short forms:
● All identifiers become variable identifiers except the last identifier of a line.
● The data type of the declaration is determined by the last identifier of the line. The following

applies:
– B or BOOL yields BOOL
– I or INT yields INT
– R or BOOL yields BOOL
– S or STRING yields STRING

● If a data type is not defined using this rule, then the data type is automatically BOOL, and the
last identifier is not used as the data type (see Example 1).

● Depending on the type of declaration, every defined constant becomes an initialization or
string length definition (see Example 2 and 3).

● An address, such as %MD12, is automatically extended with the AT attribute (see Example
4).

● Any text after a semicolon (;) is converted into a comment (see Example 3).
● All other characters in the line are ignored (see exclamation mark in Example 5).

Example Short Form Resulting declaration
1 A A: BOOL
2 A B I 2 A, B: INT := 2;
3 ST S 2; A string ST:STRING(2); (* A string *)
4 X %MD12 R 5 Real Number X AT %MD12: REAL := 5.0;(* Real

Number *)
5 B ! B: BOOL

Examples

Short form fea-
ture

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1887

See also
● Ä Chapter 6.4.1.9.4 “Declaration of Variables ” on page 1847

Smart tags make it easier to write program code by suggest appropriate commands directly at
the programming element. When you place the cursor over a programming element that has a
smart tag function, the symbol appears. When you click the symbol, the commands that
you can choose from are shown. Available smart tags:
● The smart tag function provides the “Declare Variable” command for undeclared variables in

the implementation part of the ST editor.
See also
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572

6.4.1.9.8 Using Pragmas
A pragma is a text in the source code of the application that is enclosed in curly brackets.
Pragmas are used to insert special statements in the code, which the compiler can evaluate.
This allows a pragma to influence the properties of one or more variables with respect to
precompilation or compilation (code generation). Pragmas that the compiler does not recognize
are passed over as a comment.
The statement string of a pragma can also extend over multiple lines. For more details about the
syntax, see the descriptions of the individual CODESYS pragmas.
There are different pragmas for different purposes (example: initialization of a variable, moni-
toring of a variable, adding a variable to the symbol configuration, forcing the display of mes-
sages during the compilation process, and behavior of a variable under certain conditions).

NOTICE!
Uppercase and lowercase characters have to be respected.

{warning 'This is not allowed'}

{attribute 'obsolete' := 'datatype fb1 not valid!'}

{attribute 'Test':='TestValue1;
 TestValue2;
 TestValue3'}

Examples

NOTICE!
Pragmas in CODESYS are not one-to-one implementations of C preprocessor
directives. You have to position a pragma like an ordinary statement. You must
not use a pragma within an expression.

A pragma that the CODESYS compiler should evaluate can be inserted at the following posi-
tions:

Smart tag func-
tions

Pragma in
CODESYS

Possible inser-
tion positions

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1888

● In the declaration part of a POU:
– In the textual declaration editor, specify pragmas directly as line(s), either at the begin-

ning of the POU or before a variable declaration.
– In the tabular editor, you specify pragmas that should be located before the first declara-

tion line in the “Edit Declaration Part” / “Attributes” dialog.
● In a global variable list
● In the implementation part of a POU:

– The pragma has to be at a "statement position", meaning at the beginning of a POU on
a separate line, or after a ";" or END_IF, END_WHILE, etc.

– FBD/LD/IL editor: In networks of the FBD/LD/IL editor, you insert pragmas like a label
by means of the “FBD/LD/IL è Insert Label” command. Then, in the text field of the
label with the corresponding pragma statement, replace the default text “Label:”. To use
a pragma in addition to a label, you specify the pragma first and then the label.

{IF defined(abc)}
IF x = abc THEN
{ELSE}
IF x = 12 THEN
{END_IF}
y := {IF defined(cde)} 12; {ELSE} 13; {END_IF}
END_IF
{IF defined(abc)}
IF x = abc THEN
{IF defined(cde)}
 y := 12;
{ELSE}
 y := 13;
{END_IF}
END_IF
{ELSE}
IF x = 12 THEN
{IF defined(cde)}
 y := 12;
{ELSE}
 y := 13;
{END_IF}
END_IF
{END_IF}

Incorrect and
correct posi-
tions for a con-
ditional
pragma
INCORRECT:

CORRECT:

In the “Properties” dialog (“Compile” category), you can specify "defines" that
can be queried in pragmas.

Scope:
Depending on the type and contents of a pragma, it may influence the following:
● Subsequent declarations
● Exactly the next statement
● All subsequent statements until it is canceled by a corresponding pragma
● All subsequent statements until the same pragma is executed with other parameters or the

end of the code is reached. In this context, "code" means the declaration part, implemen-
tation part, global variable list, and type declaration. Therefore, a pragma influences the
entire object when the pragma is alone on the first line of the declaration part and is not
superseded or canceled by another pragma.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1889

The CODESYS pragmas are divided into the following categories:
● Attribute pragmas (influence compiling and precompiling)
● Message pragmas (print user-defined messages when compiling)
● Conditional pragmas (influence code generation)
● User-defined pragmas

See also
● Ä Chapter 6.4.1.9.4.3 “Using the 'Declare variable' dialog box” on page 1852
● Ä Chapter 6.4.1.20.6.3 “Attribute Pragmas” on page 2271
● Ä Chapter 6.4.1.20.6.2 “Message Pragmas” on page 2269
● Ä Chapter 6.4.1.20.6.4 “Conditional Pragmas” on page 2318

6.4.1.9.9 Using Library POUs
Libraries are collections of objects that you can link to your application. You can use the objects
contained in libraries in exactly the same way as objects that you have defined in the project.
Libraries can contain the following objects:
● POUs (for example function blocks, or functions)
● Interfaces and their methods and attributes
● Data types (for example enumerations, structures, aliases, and unions)
● Global variables, constants, and parameter lists
● Text lists, image pools, visualizations, and visual elements
● External files (for example, documentation)
● Cam plate tables
Libraries in a project are managed in the Library Manager. You use the dialog of the library
repository to perform the previous installation of the library on the system.

For "visibility" of library POUs and namespaces of libraries, see also the help
page for the library properties.

See also
● Ä Chapter 6.4.1.21.3.15.3 “Command 'Properties'” on page 2714
● Ä Chapter 6.4.1.17 “Using Libraries” on page 2034
● Ä Chapter 6.4.1.21.3.15.3 “Command 'Properties'” on page 2714

The following instructions describe the example of how to insert the counter POU CTUD from the
library Standard into your program.

1. Open a POU in the editor and place the cursor in the declaration part.
2. Specify the name for the function block instance, followed by a colon (example:

iCounter1:).

3. Press [F2] to open the Input Assistant.
4. In the category “Structured Types”, select the CTUD function block from the Standard

library (subfolder "Counter").
Select the “Insert with namespace prefix” option.

5. Click “OK” to exit the dialog.

ð The function block is inserted with a namespace prefix into the declaration part:
iCounter1:Standard.CTUD.

Pragma catego-
ries in
CODESYS

Using library
POUs

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1890

See also
● Ä Chapter 6.4.1.17 “Using Libraries” on page 2034

6.4.1.9.10 Managing text in text lists
General

Text lists are used for preparing visualization texts is multiple languages. You can specify the
texts in Unicode format so that all languages and characters are possible. You can export text
lists and then translate the texts outside of the current project.
CODESYS differentiates between static text (managed in the “GlobalTextList” object) and
dynamic text (managed in objects of type “TextList”. Static texts exist in the visualization and
can change only the displayed language while in runtime mode. The text ID stays the same.
Dynamic texts can be controlled by means of an IEC variable that contains the text ID. In this
way, you can display varying text in a visualization element in runtime mode. For example, you
can configure a text field so that is shows an error text for an error number.
Both text list types include a table with text entries. An entry consists of an ID for identification,
the output text, and its translation. In a text list or global text list, you can translate an output text
in any number of languages. The translations are the basis for the language selection and the
language switch in visualizations.

Adding a language and translating text
Requirement: A project is open with a text list or global text.
1. Double-click an object of type “TextList” or “GlobalTextList” in the device tree or POUs

view.

ð The “Textlist” menu is shown in the menu bar and the text list opens in the editor.

2. Click “Textlist è Add Language”.
3. Specify a name for the language (example: en-US). Click “OK” to close the dialog.

ð A column is displayed with the heading en-US.

4. Type in the translation of the source text into the column.

You can correct the name of a language in the table by means of the command
“Rename Language” in the context menu of the text list.

Exporting a text list
Requirement: A project is open with a text list or global text.

1. Double-click the object “GlobalTextList” or an object of type “TextList”.

ð The object opens.

2. Click “Textlist è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. At “Choose export file”, click for more () and select the directory and file name
(example: Text_lists_exported).

4. Select the “Export” option.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1891

5. Click “OK” to close the “Import/Export” dialog.

ð CODESYS exports to a file the text list entries of all text lists of the project. The table
contains a column with the text list names.

TextList Id Default en_US
Text_list_A A Information A Infrrmation A_en
Text_list_A B Information B: OK Information B_en: OK
Text_list_A C Information C Information C_en
Text_list_A D Information D Information D_en
Text_list_A E Information E Information E_en
Text_list_A F Information F Information F_en
AlarmGroup 2 Warning 2
AlarmGroup 1 Warning 1
GlobalTextList Information B Information B_en
GlobalTextList Information A Information A_en
GlobalTextList Switch Switch
GlobalTextList Counter: %i Counter : %i

Example
Contents of the
file
Text_lists_e
xported

Preparing the exported file for input assistance
Requirement: A file is created (example : Text_lists_exported) by means of the

command “Import/Export Text Lists”. It contains the texts of the text lists of the project.
1. Click “Tools è Options”, “Visualization” category, “File Options” tab.
2. Click in “Text file for textual "List components" ” and select a file (example:

Text_lists_exported). Click “OK” to close the dialog.

ð When you specify a static text in the “Texts” property for an element in a visualization,
CODESYS offers the source text of the file as input assistance when typing in the first
letter.

(1): “Texts”, “Text”

Ä “"List components"” on page 1886

Importing files with text list entries
A file to be imported has the .csv format. The first line is a header (example: TextList Id
Default en_US). The other lines contain text list entries. You get this kind of file by exporting
the text lists of the project to a file. There you can edit the text list entries and then import the file
outside of CODESYS. When importing, CODESYS handles the text list entries differently for the
GlobalTextList and for dynamic text lists.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1892

GlobalTextList
● CODESYS does not create new text list entries for an unknown ID.
● CODESYS ignores changes that affect the ID or the source text.
● CODESYS accepts changes in the translations.
TextList
● For a new ID, CODESYS supplements the corresponding text list with a text list entry.
● For an existing ID that does not agree in the source text, the source text of the text list is

overwritten with the source text of the file.
● CODESYS accepts changes in the translations.

Requirement: A project is open with a text list or global text.
1. Double-click the object “GlobalTextList” or an object of type “TextList”.

ð The object opens.

2. Click “Textlist è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. In the “Choose file to compare or to import” input field, click for more () and select the
directory and file (example: Text_lists_corrected.csv).

4. Select the “Import” option.
5. Click “OK” to close the dialog.

ð CODESYS imports the text list entries of the file into the respective text lists.

TextList Id Default en_US
Text_list_A A Information A Information A2_en
Text_list_A B Information B: OK Information B_en: OK
Text_list_A C Information C Information C_en
Text_list_A D Information D Information D_en
Text_list_A E Information E Information E_en
Text_list_A F Information F Information F_en
Text_list_A G Information G Information G_en
AlarmGroup 2 Warning 2
AlarmGroup 1 Warning 1
GlobalTextList Information B Information B_en
GlobalTextList Information A Information A_en
GlobalTextList Switch Switch
GlobalTextList Counter: %i Counter : %i

These contents are applied to the text lists with the same name in the project.

Example
Contents of the
file
Text_lists_c
orrected.csv

Ä Chapter 6.4.1.21.3.21.6 “Command 'Import/Export Text Lists'” on page 2729

Comparing text lists with a file and exporting differences
Requirement: A project is open with a text list or global text.

1. Double-click the object “GlobalTextList” or an object of type “TextList”.

ð The object opens.

2. Click “Textlist è Import/Export Text Lists” in the context menu.

ð The “Import/Export” dialog opens.

3. In the “Choose file to compare or to import” input field, click for more () and select the
directory and file name of the comparison file (example: Text_lists_corrected.csv).

Importing a file

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1893

4. For “Choose export file”, click and select the directory and file that contains the
comparison result.

5. Select the “Export only text differences” option.
6. Click “OK” to close the dialog.

ð CODESYS reads the import file and compares the text list entries that have the same
ID. If they do not agree, then CODESYS writes the text list entries of the text list to the
export file.
For the global text list, CODESYS compares the translations of the same source texts.
If they do not agree, then CODESYS writes the text list entries to the export file.

Ä Chapter 6.4.1.21.3.21.1 “Command 'Add Language'” on page 2728

Ä Chapter 6.4.1.21.3.21.6 “Command 'Import/Export Text Lists'” on page 2729

Ä Chapter 6.4.1.21.3.21.7 “Command 'Remove Language'” on page 2730

Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

Managing static text in global text lists
The global text list is the central location for texts that are displayed in the visualization.
When you configure a text for the first time in visualization element, CODESYS creates the
global text list. CODESYS fills in the table as you create more texts. Therefore, the table
includes all texts automatically that you create in the project visualizations. CODESYS assigns
incremental IDs as integers, beginning at 0.
You can check, update, and compare the global text list with the static texts of the visualization.
You cannot edit the source text or the ID directly in the table. However, you can replace
a source text with another source text by creating and importing a replacement file. Menu
commands are provided for this purpose.

A text in a “GlobalTextList” can contain a format definition.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Double-click the visualization.

ð The editor opens.

2. Select an element with the “Text” property (example: “Text field”).
3. Type in some text in the “Text” property (example: Static Information A).

ð CODESYS adds the text to the global text list in the POU view.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The table opens with the static texts.

Configuring vis-
ualization ele-
ments with
static text

Checking the
global text list

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1894

2. Click “Text List è Check Visualization Text IDs”.

ð CODESYS reports when a source text of the text list does not match the static text
that is identified by the ID. The source text in the global text list and the text in the
visualization with the same ID do not match.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The list opens with the text list entries.

2. Click “Text List è Update Visualization Text IDs”.

ð CODESYS adds text to the global text list when a text in the “Static Text” property
does not match the source text in the project visualizations.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Right-click the “GlobalTextList” object in the POUs tree and select the “Delete” command.

ð The object is removed.

2. Open a visualization.
3. Click “Visualization è Create Global Text List”.

ð In the POU view, a new “GlobalTextList” object is created. The global text list contains
the static text from the existing project visualizations.

Requirement: A project is open with a visualization. The “GlobalTextList” object contains
the texts that were defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The table opens with the texts.

2. Click “Text List è Remove Unused Text List Entries”.

ð CODESYS removes the text list entries with IDs not referenced in the project visuali-
zations.

A replacement file has the CSV format. The first row is a header: defaultold defaultnew
REPLACE. The following rows contain the old source texts, the new source texts, and then the
REPLACE command. Tabs, commas, and semicolons are permitted separators. A combination
of separator characters in a file is not permitted.
defaultold defaultnew REPLACE
Information A Information A1 REPLACE

Updating IDs of
the global text
list

Removing the
global text list
and creating
current IDs
again

Removing IDs
from the global
text list

Updating the
global text list
with a replace-
ment file

Example (tab as
separator char-
acter)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1895

When you import a replacement file, CODESYS processes the replacement file row by row and
performs the specified replacements in the “GlobalTextList”. In addition, CODESYS replaces
the previous text with the replacement text in the visualizations. If the replacement text already
exists as static text, then CODESYS recognizes this and harmonizes the static text and leaves
only one text list entry.

Requirement: A project is open with a text list or global text.
1. Double-click the “GlobalTextList” object.

ð The object opens.

2. Click “Text List è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. At the “Choose file to compare or to import” input field, click for more () and select the
directory and file (example: ReplaceGlobalTextList.csv).

4. Select the “Import replacement file” check box.
5. Click “OK” to close the dialog.

ð The texts in the text lists and the visualizations are replaced.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1896

The global text list contains the following source texts:

GlobalTextList Counter: %i
GlobalTextList Counter: %i
GlobalTextList Information A
GlobalTextList Information a
GlobalTextList Information Aa
GlobalTextList Switch

The replacement file contains the following replacements:

defaultold defaultnew REPLACE
Counter: %i Counter2: %i REPLACE
Counter: %i Counter2: %i REPLACE
Information A Information A2 REPLACE
Information a Information A2 REPLACE
Information Aa Information A2 REPLACE
Switch Switch2 REPLACE

CODESYS detects duplicate text list entries and removes them. Afterwards, the global text list
contains the following source texts:

The texts in the visualization have been replaced.

Example

See also
● Ä Chapter 6.4.1.21.3.21.2 “Command 'Create Global Text List'” on page 2728
● Ä Chapter 6.4.1.21.3.21.10 “Command 'Check Visualization Text IDs'” on page 2731
● Ä Chapter 6.4.1.21.3.21.11 “Command 'Update Visualization Text IDs'” on page 2731
● Ä Chapter 6.4.1.21.2.11 “Object 'GlobalTextList'” on page 2465

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1897

Managing dynamic text in text lists
You can create and translate texts in a text list for dynamic texts in order to show them
dynamically in a visualization or in the alarm management. The object of type “Text list” can
be located globally in the POUs view or below an application in the device tree. It contains a
table with text list entries that you can edit and extend. A text list entry consists of an ID for
identification, the output text, and its translation. You can add new text list entries to a text list.
Menu commands are provided for this purpose.

Requirement: A project is open with a visualization.

1. Select an application in the POUs view or device tree and click “Project è Add Object”.
2. Select “Text list”.
3. Type a name (example: Textliste_A). Click “Add” to close the dialog.

ð An object of type “Text list” is created.

4. Click below the “Default” column and open the input field. Type a text (example:
Information).

ð The source text is created. It is used as a key in the table and as a source text for
translations.

5. Type any string in the “ID” column (example: A).

ð A text list entry is defined with source text and ID. If you configure the “Dynamic
texts” property of an element in a visualization, then you can select the text list
Textliste_A and assign the ID A.

6. Double-click in the blank line at the end of the table below “Default” and type in more text
list entries.

In a visualization, you can configure the dynamic output of texts that were created in a text list
by configuring the “Dynamic texts” property of an element. You can directly assign a text list and
an ID, as well as IEC variables, where you set the values programmatically.

Requirement: A project with visualization is open and a text list is in the device tree.
1. Open the text list (example: Text_list_A).

2. Double-click the visualization.

ð The editor opens.

3. Drag an element to the visualization (example: a “Text field”).

Creating text
lists for
dynamic text
output

Displaying text
dynamically

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1898

4. Configure its “Dynamic texts” property by selecting one in the “Text list” property (example:
'Text_list_A') and add an ID from the text list into the “Text index” (example: 'A').
Pay attention to the single straight quotation marks. You can also assign an IEC
variable of type STRING for the text list name and ID.

ð The IEC variables allow for programmatic access to the texts of the text lists.

5. Build the application, download it to the controller, and start it.

ð The visualization shows the text from the text list in the text field : Information A.

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

6.4.1.9.11 Using image pools
An image pool is a table of image files. CODESYS references image files for use in the project
(for example, in a visualization) uniquely by the ID and name of the image pool. A project
can include several image pools. You can create Image pools in the device tree below the
application or in the POU pool. In a library project, you can use the object properties of an
image pool to turn it into a symbol library for the visualization.

We recommend that you reduce the size of image files as much as possible
integrating them. This will optimize the loading time of the visualization in every
visualization type: TargetVisu, WebVisu and development system.

If you insert an image element into a visualization and enter an ID (“Static ID”) in the element
properties, then CODESYS automatically creates a global image pool. CODESYS uses the
default name “GlobalImagePool” for this.
Please note the following when the ID of an image file appears in several image pools.
● Search order: If you selected an image managed in “GlobalImagePool”, then you do not

have to enter the name of the image pool. The search order for image files is as follows:
– 1. GlobalImagePool
– 2. Image pools assigned to the currently active application
– 3. Image pools next to the GlobalImagePool in the POU window
– 4. Image pools in libraries

● Unique access: You can reference a selected image directly and uniquely by appending the
image ID to the name of the image pool in the following syntax "<pool name>.<image
ID>.

See also
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468
● Ä Chapter 6.4.1.21.4.11.18 “Dialog 'Properties' - 'Image Pool'” on page 2764

1. Select the “Application” object in the device tree.
Click “Project è Add Object è Image Pool”.

ð The “Add Image Pool” dialog box opens.

2. Type a name for the image pool (for example, "Images1") and click “Add”.

ð The image pool is added to the device tree.

3. Select the image pool object and open by choosing the command “Project è Edit Object”.

Creating image
pools

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1899

4. Double-click the field in the “ID” column and assign an appropriate ID (for example,
"Icon1").
You can also add new images to the list by clicking “Imagepool è Add Image File”.

5. Double-click the field in the “File name” column. Click for more settings ().

ð The “Select Image” dialog box opens.

6. Click for more settings () and select the image file.

ð A thumbnail of the image file is displayed in the field of the column “Image”. The name
of the file is displayed in the field of the column “File name”.

The image file can be references only by the name Images1.Icon1.

See also
● Ä Chapter 6.4.1.21.3.16.1 “Command 'Insert Image'” on page 2717

When you insert an image element into a visualization, you can define the image type.
● Static image: Enter the image ID of the image file or the name of the image pool plus the

image ID into the element configuration (property “Static ID”). Please note the comments for
the search order and access.

● Dynamic image: Type the variable for defining the image file ID (for example,
PLC_PRG.imagevar) in the element configuration (“Bitmap ID variable” property). You can
exchange a dynamic element in online mode depending on a variable.

See also
● Ä Chapter 6.4.5.20.1.5 “Visualization Element 'Image'” on page 3038

You can set an image in the background definition of a visualization. You can define the
image by the name of the image pool plus the filename, as described above for a visualization
element.
See also
● Ä Chapter 6.4.5.21.2.10 “Command 'Background'” on page 3349

6.4.1.9.12 Programmatic Access to I/Os
General

CODESYS provides the following features for mapping project variables to input, output and
memory addresses:
● Assignment of project variables to input, output and memory addresses in the “I/O Mapping”

tab of the device editor
● Programmed access to I/Os

– Variables configuration
– AT declaration

NOTICE!
We recommend that you define the mapping of project variables to input, output
and memory addresses in the “I/O Mapping” of the editor of the respective
device.

See also
● Ä Chapter 6.4.1.8.2 “Configuring Devices and I/O Mapping” on page 1836

Using image
files in the
'Image' visuali-
zation element

Using image
files for the vis-
ualization back-
ground

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1900

Variables configuration - VAR_CONFIG
Use the variables configuration for mapping variables of functions blocks to the process map.
For declarations in the function block, assign the variables to the device inputs/outputs without
providing the full address. Later, the exact address is provided centrally for all function block
instances of the application in a global variable list including VAR_CONFIG declarations. This
global variables list with the VAR_CONFIG declarations is termed the "variables configuration".

NOTICE!
For changes to variables that are assigned to I/O addresses, CODESYS dis-
plays them immediately In the process map. For changes to variables that are
mapped by a variables configuration, CODESYS displays them not until the end
of the responsible task.

Declaration of variables in functions blocks
When declaring variables in a function block, declare the variables between the keywords
VAR and END_VAR and assign incomplete addresses to the variables. Mark these incomplete
addresses with an asterisk (*).

Syntax:
<identifier> AT %<I|Q>*:<data type>;

Define two local I/O variables: the input variable xLocIn and the output variable xLocOut.
FUNCTION_BLOCK locio
VAR
 xLocIn AT %I*: BOOL := TRUE;
 xLocOut AT %Q*: BOOL;
END_VAR

Example

Final definition of addresses in the variables configuration of the global variables list
In the global variables list that you use as the variables configuration, define the variable
declarations with the absolute addresses between the keywords VAR_CONFIG and END_VAR.

You must declare the VAR_CONFIG variables with the complete instance path, separating the
individual POU and instance name by a dot (.). The declaration must include an address whose
class (input/output) agrees with the class of the incomplete address (%I*, %Q*) in the function
block. The data type must also agree.
Syntax:
<instance variable path> AT %<I|Q><location>: <data type>;
If the path instance does not exist, then an error is reported. CODESYS prints an error also
if there is not an address configuration available for a variable that you declared with an
incomplete address.

The locio function block in the example above is used in a program as follows:
PROGRAM PLC_PRG
VAR
 locioVar1: locio;
 locioVar2: locio;
END_VAR

A correct variables configuration in a global variable list could then look like this:
VAR_CONFIG
 PLC_PRG.locioVar1.xLocIn AT %IX1.0 : BOOL;
 PLC_PRG.locioVar1.xLocOut AT %QX0.0 : BOOL;
 PLC_PRG.locioVar2.xLocIn AT %IX1.0 : BOOL;
 PLC_PRG.locioVar2.xLocOut AT %QX0.3 : BOOL;
END_VAR

Example

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1901

See also
● Ä Chapter 6.4.1.20.2.11 “Configuration variables - VAR_CONFIG” on page 2121
● Ä Chapter 6.4.1.9.12.3 “AT declaration” on page 1902
● Ä Chapter 6.4.1.20.4.12 “Addresses” on page 2231

Requirement: You have a project open that includes a controller configuration with a field
device. The project contains a program (e.g. PLC_PRG) and a function block (e.g. func1).
The field device has inputs and outputs. The textual view is selected in the options for the
declaration editor.
1. Double-click a function block in the device tree (e.g. func1).

ð The function block editor opens.

2. Type the following between the keywords VAR and END_VAR: xLocIn AT %I*:
BOOL := TRUE; and XLocOut AT %Q*:BOOL; in the next line.

ð You have declared an input variable xLocIn and assigned it to the incomplete input
address %I* of a field device. You have assigned the declared output variables have
to the incomplete output address %Q*.

3. Click the PLC_PRG object in the device tree and add the following to the declaration
section of the program between VAR and END_VAR:
locioVar1: func;
locioVar2: func;

4. Right-click the “Application” object in the device tree and click “Add Object
è Global Variable List” and then click “Add” in the “Add Global Variable List” dialog box.

ð The global variables list is added to the device tree and opens in the editor.

5. Change the keyword VAR_GLOBAL to VAR_CONFIG.

6. Click “Declarations è Add All Instance Paths”.

ð The following instance paths are added:

PLC_PRG.logioVar1.xLocIn AT %I*;
PLC_PRG.logioVar2.xLocIn AT %I*;
PLC_PRG.logioVar1.xLocOut AT %Q*;
PLC_PRG.logioVar2.xLocOut AT %Q*;

7. Now, replace the incomplete addresses %I* and %Q* with the absolute, complete
addresses.

See also
● Ä Chapter 6.4.1.21.3.18.4 “Command 'Add all instance paths'” on page 2720

AT declaration
In the variables declaration, the code AT assigns a project variable to a specific input address,
output address, or memory address of the PLC that is configured in the device tree. You can
also define the assignment of variables to an address in the “I/O Mapping” dialog of the device
in the PLC configuration.

<variable name> AT <address> : <data type>;

<address> : %<memory area prefix> (<size prefix>)? <memory position>

Creating a varia-
bles configura-
tion

In the function
block, assign
variables to
device I/Os with
incomplete
addresses and
then create a
variables con-
figuration.

Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1902

The AT declaration allows you to give the address a meaningful name. You can make any
necessary changes for the input or output signals at just one location, for example in the
declaration.

VAR wInput AT %IW0 : WORD; END_VAR Variable declaration with address information of an
input word

VAR xActuator AT %QW0 : BOOL; END_VAR Boolean variable declaration
Note: For Boolean variables, one byte is allocated
internally if a single bit address is not specified. A
change in the value of xActuator affects the range
from QX0.0 to QX0.7.

VAR xSensor AT IX7.5 : BOOL; END_VAR Boolean variable declaration with explicit specification
of a single bit address. On access, only the input bit
7.5 is read.

VAR xSensor AT IX* : BOOL; END_VAR For the address specification, the placeholder * is
given instead of the memory position. The final
address specification is done in the variables configu-
ration.
Note: This is possible in function blocks.

Examples

If you assign a variable to an address, please note the following:
● You cannot write to variables that are placed at inputs. This will cause a compiler error.
● You can perform AT declarations only for local and global variables, not for input/output

variables of POUs.
● Furthermore, AT declarations cannot be used in persistent variable lists.
● If you use AT declarations for structure components or function block variables, then all

instances use the same memory. This is just like using static variables in classic program-
ming languages, such as C.

● The memory layout of structures also depends on the target system.

NOTICE!
If you do not specify a single bit address explicitly, then Boolean variables are
allocated byte-by-byte.

PROGRAM PLC_PRG
VAR
 xVar AT %QW0 : BOOL;
END_VAR

xVar := TRUE;
When the variable xVar is written, the output memory range from QX0.0 to QX0.7 is affected.

Example

See also
● Ä Chapter 6.4.1.9.12.2 “Variables configuration - VAR_CONFIG” on page 1901
● Ä Chapter 6.4.1.20.2.11 “Configuration variables - VAR_CONFIG” on page 2121
● Ä Chapter 6.4.1.20.4.12 “Addresses” on page 2231

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1903

6.4.1.9.13 Checking Syntax and Analyzing Code
General

CODESYS provides useful functions for detecting errors and assisting you while you create
programs. The syntax check flags errors and prints them to the message view as early as the
programming phase.
The static code analysis in CODESYS also assists you in complying with defined coding guide-
lines and detecting weak constructs.
See also
● Ä Chapter 6.4.1.9.13.2 “Checking Syntax” on page 1904
● Ä Chapter 6.4.1.9.13.3 “Analyzing code statically” on page 1904

Checking Syntax
When you input code, the precompile in CODESYS already runs some basic checks. Then,
wavy underlines appear under buggy code in the editor and an error message is printed to the
messages view.
CODESYS automatically generates the application code from the source code that was written
in the development system. This is done automatically before downloading the application to the
PLC. Before the application code is generated, a test is performed for checking the allocations,
the data types, and the availability of libraries. Moreover, the memory addresses are allocated
when the application code is generated. You can click “Build è Generate Code” to execute this
command explicitly, or press the [F11] key. This is useful for detecting any errors in your source
code, even when the PLC is not connected yet.
CODESYS prints all errors and warnings to the "Build" category of the messages view. Double-
clicking the error message opens the respective POU in the editor with the buggy code marked.
As an alternative, you can also jump to the buggy code by right-clicking the error message.
Note the settings for this in the CODESYS options.
See also
● Ä Chapter 6.4.1.21.4.14.24 “Dialog 'Options' - 'SmartCoding'” on page 2796

Analyzing code statically
You can subject your source code also to static analysis (lint) during the code generation.
This determines whether or not your source code complies with the coding guidelines that you
defined - according to the idea behind the lint analysis tool.
● You activate the rules to the checked in the “Project Settings” dialog in the “Static Analysis

Light” category. The check itself is performed automatically each time code is generated,
for example when you click “Build è Generate Code”. If divergence from the rules is
determined, then it is reported as an error message in the “Build” category of the message
view. The reported errors have the prefix SA<number>.

NOTICE!
For static code analysis with “Static Analysis Light”, only the application code of
the project is checked. Libraries are excluded from the check.
GVL variables in the “POUs” view are not necessarily checked: If you have a
project with several applications, then only the objects in the active application
are checked. If you have only one application, then the objects in the common
POU pool are also checked.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1904

“Static Analysis Light” includes only a reduced set of rules in the default devel-
opment system. A larger set of rules, additional naming conventions, and met-
rics are available when you install the CODESYS Static Analysis add-on.

By means of the pragma {analysis ...}, you can mark code so that the specified rules are
not checked. As a result, the marked lines of code are not subjected to static analysis. The
marked code is ignored during the check.
Syntax:
{analysis <sign><rule number>|,<other combinations of signs and rules,
comma-separated>}
-<rule number>: Deactivate the rule SA<rule number>.

-<rule number>: Activate the rule SA<rule number>.

Requirement: Rules are activated in the “Project Settings” dialog.
1. Add the pragma {analysis -<number>} above the line of code that contains code not

to be checked first of all. For example, for the rule SA0024

ð The line of code is the first line of the code snippet that is not checked with rule 24.

2. Add the pragma {analysis -<number>} below the line of code that contains code not
to be checked first of all. For example, for the rule SA0024

ð The line of code above is the last line of the code snippet that is not checked with rule
24.

{analysis -24}
nTest := 99;
iVar := INT#2;
{analysis +24}

The rule “SA0024: Untyped literals only” is deactivated for two lines. An error is not issued
although the code does not correct to: nTest := DINT#99;

Example:
Ignore untyped
literal

{analysis -10, -24, -18}
...
{analysis +10, +24, +18}

“SA0010: Arrays with only one component”

“SA0018: Unusual bit access”

“SA0024: Untyped literals only”

Example:
Ignore several
rules

However, you cannot deactivate the rule SA0004: “Multiple Write Access on
Output” with a pragma.

Deactivating
lines of code in
the implementa-
tions with
pragmas from
the static anal-
ysis

Excluding
implementation
code

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1905

Syntax:
{attribute 'analysis' := '-<rule number>[,<other negative rule
numbers, comma-separated>]'}
When you insert the attribute pragma in the declaration part of a programming object, the
specified rules are excluded for the entire programming object. If multiple rules are excluded,
then the rules are each comma-separated with a dash and a number. A pragma statement for
activation is not required.

{attribute 'analysis' := '-33, -31'}
TYPE LocalData :
STRUCT
 iLocal : INT;
 uiLocal : UINT;
 udiLocal : UDINT;
END_STRUCT
END_TYPE

The rules SA0033 and SA0031 are ignored for the structure LocalData.

{attribute 'analysis' := '-100'}
big: ARRAY[1..10000] OF DWORD;

The rule SA0100 is ignored for the array big.

Example

See also
● Ä Chapter 6.4.1.21.4.12.9 “Dialog 'Project Settings' - 'Static Analysis Light'” on page 2773

6.4.1.9.14 Orientation and Navigation
6.4.1.9.14.1 Using the cross-reference list to find occurrences..................... 1906
6.4.1.9.14.2 Finding declarations... 1908
6.4.1.9.14.3 Setting and using bookmarks... 1908

Using the cross-reference list to find occurrences
The occurrences of symbols of a variable, a POU (program, function block, function), or a
DUT can be displayed in a cross-reference list. Then you can jump from the list directly to the
corresponding locations in the project.
There are two ways to search for occurrence locations of a symbol:
● Plain text search: You manually specify a text (symbol name, placeholder) in the “Cross-

Reference list” view.
● Search for a specific declaration:

– In the “Cross-Reference List” view, you select the declaration from the input assistant.
– The focus is on a symbol name in the POU editor and you start the cross-reference

search from the context menu.
– The focus is on a symbol name in the POU editor, the “Cross-Reference List” view is

open, and the cross-reference search executes automatically.
– In the “Cross-Reference List” view which already lists occurrence locations for several

declarations, you limit these results to a specific declaration.

Excluding pro-
gramming
objects with
pragmas from
the static anal-
ysis

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1906

Requirement: The “Cross-Reference List” view is open.

1. Specify a string in the field next to the name, for example the identifier of the variable for
which you want to find the occurrence location in the project. Example: "iCounter".

For the text search, you can use the asterisk "*" (for any number of characters) or the
question mark "?" (for an exact number of characters) combined with a substring of a
variable identifier.
Use the percent sign "%" to search for IEC addresses. Examples: "%MW8", "%M*".

2. Click the button to start a text search in the project.

ð The view “Cross-Reference List” opens and displays the occurrence locations for the
iCounter variable. The declaration parts are always displayed in the project with the
occurrence location indented.

3. Double-click an occurrence location in the cross-reference list.

ð The respective object opens in the editor with the marked occurrence location.

Requirement: A POU is open in the editor.

1. Set the cursor at the identifier of the symbol (variable, POU) in the declaration part or
implementation part.

2. Click “Browse for Symbol è Browse Cross-References” in the context menu or “Edit”
menu.

ð The “Cross-Reference List” view opens and shows the occurrence locations of the
variables or POU.

If the “Cross-Reference List” view is already open, then you can also search the occurrence
locations for a specific result as follows:

Select the “Automatically list selection in cross reference view” check box in “Tools
è Options” (“SmartCoding” category). Select the name of the symbol in the POU, or
set the cursor in the name.

ð Depending on the position of the selection or cursor, the cross-reference list automati-
cally shows the occurrence locations for the respective symbol.

In the “Cross-Reference List” view, use the input assistant to specify a symbol name in
the field next to “By declaration”.

ð The cross-reference list displays the occurrence locations for the symbol.

If multiple declarations for a symbol are listed in the “Cross-Reference List” view, for
example after a text search, then you can reduce the display to one result: Select the
line with the desired declaration and click the button or click “Limit Results to Current
Declaration” in the context menu.

ð the cross-reference list includes only the occurrence locations for the selected decla-
ration.

Cross refer-
ences with text
search by
symbol name

Cross-refer-
ences for a spe-
cific symbol
declaration
From the POU
editor, with a
menu command

From the POU
editor,
automatic

In the cross-ref-
erence list view,
with input assis-
tance

In the cross-ref-
erence list view,
limited to a spe-
cific declaration

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1907

See also
● Ä Chapter 6.4.1.21.3.4.13 “Command 'Cross Reference List'” on page 2587
● Ä Chapter 6.4.1.21.3.3.29 “Command 'Browse Cross References'” on page 2571
● Ä Chapter 6.4.1.21.4.14.24 “Dialog 'Options' - 'SmartCoding'” on page 2796

Finding declarations
CODESYS provides the capability of searching the entire project for the definition location of a
variable or function. The block that includes the definition opens in the editor with the marked
declaration.

Requirement: You have opened a POU in the editor.

1. Set the cursor at an identifier in the implementation section.
2. Click “Edit è Browse è Go to Definition”.

ð The POU with the declaration opens in the editor with the variable definition marked.
If the definition is located in a compiled library, then the respective block opens in the
library manager.

You can execute this command in both online and offline mode.

The following block includes a function block definition (fbinst), a program call (prog_y()),
and a function block call (fbinst.out):
VAR fbinst:fb1; ivar:INT; END_VAR prog_y(); ivar:=prog_y.y;
res1:=fbinst.out;

If the cursor is located at prog_y, then the command opens the program prog_y in the editor.

If the cursor is located at fbinst, then this command focuses in the declaration section at line
fbinst:fb1;
If you set the cursor at out, then this command opens the function block fb1 in its editor.

Examples

See also
● Ä Chapter 6.4.1.21.3.3.37 “Command 'Go to Definition'” on page 2576

Setting and using bookmarks
Bookmarks are used for easy navigation through long programs. You can use bookmarks in all
implementation language editors, except SFC (sequential function chart). Commands help to
navigate directly to the marked position in the program.

Requirement: The POU is open in the editor.

Finding the dec-
laration of a var-
iable

Setting and
deleting book-
marks

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1908

1. Set the cursor at any program line.
2. Click “Edit è Bookmarks è Toggle Bookmark”.

ð A bookmark is set at this position in the program. This is marked by the bookmark
symbol .

3. Set several bookmarks at different places in the program.
4. Set the cursor at a bookmarked program line.
5. Click “Edit è Bookmarks è Toggle Bookmark”.

ð The bookmark is removed. The bookmark symbol is deleted.

As an alternative to this, you can delete one or more bookmarks in the “Bookmarks”
view by clicking the button. For this purpose, the corresponding bookmarks have to
be selected in the “Bookmarks” view.

Click “Edit è Bookmarks è Clear All Bookmarks (Active Editor)” to
remove all bookmarks from the active POU.

In order to delete all bookmarks in a project, click “Clear All
Bookmarks”. However, for this command to be available, you first
have to add it to a menu by means of the command “Tools
è Customize”.

See also
● Ä Chapter 6.4.1.21.3.3.22 “Command 'Toggle Bookmark'” on page 2569
● Ä Chapter 6.4.1.21.3.3.27 “Command 'Clear All Bookmarks (Active Editor)'” on page 2571
● Ä Chapter 6.4.1.21.3.3.28 “Command 'Clear All Bookmarks'” on page 2571

Requirement: The POU is open in the editor. Multiple bookmarks are set.

1. Click “Edit è Bookmarks è Next Bookmark (Active Editor)”.

ð Depending on the current cursor position, the cursor jumps to the next bookmark (see
below).

2. Click “Edit è Bookmarks è Previous Bookmark (Active Editor)”.

ð Depending on the current cursor position, the cursor jumps to the previous bookmark
(see above).

See also
● Ä Chapter 6.4.1.21.3.3.23 “Command 'Next Bookmark (Active Editor)'” on page 2570
● Ä Chapter 6.4.1.21.3.3.25 “Command 'Previous Bookmark (Active Editor)'” on page 2570

A project is open with multiple POUs. Multiple bookmarks are set in different POUs.

Jumping to
bookmarks
within a POU

Jumping to
bookmarks of
different POUs
in a project

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1909

1. Click “View è Bookmarks”.

ð The “Bookmarks” view opens.

All bookmarks in the project are listed in a table in the view.
2. Click the “Next Bookmark” button.

ð In the “Bookmarks” view, the bookmark in the row below the selected bookmark is
selected.
The POU with the recently selected bookmark in the table opens in the editor and the
row with the bookmark is selected in the POU.

3. As in step 2, you can click the “Previous Bookmark” button to jump to the bookmark in
the project that is displayed in the row above it in the “Bookmarks” view.

See also
● Ä Chapter 6.4.1.21.3.4.11 “Command 'Bookmarks'” on page 2585
● Ä Chapter 6.4.1.21.3.3.26 “Command 'Previous Bookmark'” on page 2570
● Ä Chapter 6.4.1.21.3.3.24 “Command 'Next Bookmark'” on page 2570

6.4.1.9.15 Searching and replacing in the entire project
In CODESYS you can search for strings in single objects or project-wide. If required, you can
replace the string found.
1. Choose the command “Search” in the main menu “Edit è Search Replace”.

ð The dialog “Find” opens.

2. Enter the string to be found in the field “Find what”.
3. Activate the search options
4. Define the objects to be searched by choosing an entry from the combobox “Search”.
5. Click on the button “Find Next”.

ð The first hit is displayed.

6. Click on the button “Replace” to replace the string found by a different one.
7. Click on the button “Find All” to get a list of all hits.

See also
● Ä Chapter 6.4.1.21.3.3.2 “Command 'Find', 'Find in Project'” on page 2563
● Ä Chapter 6.4.1.21.3.3.3 “Command 'Replace', 'Replace in Project'” on page 2564

6.4.1.9.16 Refactoring
In general, refactoring is a technique for improving the design of existing software code without
changing the way it functions.
In CODESYS, refactoring provides functions for renaming objects and variables and updating
referenced pins. You can display all occurrences of renamed objects and variables and then
rename them all at once or individually. In “Tools è Options”, you can also configure where
CODESYS will prompt you for refactoring.

Requirement: A project is open that includes at least a function block “FB” and a global variable
list. The global variable list “GVL” is open in the editor and contains a variable declaration
(example: iGlobal). “FB” uses iGlobal.

Renaming
global variables

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1910

1. Select the global variable name iGlobal.

2. Right-click the variable and click “Refactoring è Rename iGlobal”.
3. In the “Rename” dialog, type a name in the “New name” input field, for example

iGlobalOK, and click “OK”.

ð The “Refactoring” dialog opens. In the device tree view on the left, the “GVL” and “FB”
objects are highlighted in red and yellow. In the view on the right, “FB” in is open in its
editor and iGlobal has already been renamed as iGlobalOK.

4. Click “OK”.

ð No global variable iGlobal is in your project. Now iGlobalOK is everywhere.

1. Select the global variable name iGlobal.

2. Right-click the variable and click “Refactoring è Rename iGlobal”.
3. In the “Rename” dialog, type a name in the “New name” input field, for example

iGlobalTest, and click “OK”.

ð The “Refactoring” dialog opens. In the device tree view on the left, the “GVL” and “FB”
objects are highlighted in red and yellow. In the window on the right, the function block
“FB ” is open in its editor. iGlobalTest is listed instead of iGlobal.

4. Right-click in the view on the right.
5. Click “Reject this Object” and click “OK”.

ð The global variable iGlobal is available in “FB” in your project. The variable
iGlobalTest is now specified in the objects where the previous variable occurred.

The error message in the message view reports that the iGlobal identifier is not
defined.

In the declaration part of blocks, you can add and delete input and output variables by using
the refactoring commands. CODESYS performs updates at the occurrence locations and calling
locations of the blocks. You can accept or reject these updates individually. The “Refactoring”
dialog also opens for this purpose.
Requirement: The FCT (function type) POU is open in the editor. The function already contains
the input variables input1, input2, and inputx. They are called in the PLC_PRG and POU
programs.
1. Set the focus in the declaration part of the FCT function.
2. Click “Refactoring è Add Variable”.

ð The default dialog opens for declaring variables.

3. Declare the variable input_3 with the scope of VAR_INPUT and data type INT. Click
“OK” to close the dialog.

ð The “Refactoring” dialog opens (see figure below). The affected locations are marked
in yellow. (1)+(2)

4. In the upper right corner, select “Add inputs with placeholder text” from the drop-down list.
(3).

5. In the left side of the window, click one of the highlighted objects (for example, PLC_PRG).
Right-click and choose the “Accept Whole Project” command to add the new variable at
the new location of use in FCT for the entire project.

ð You see the change in the implementation part of PLC_PRG in the view on the right:
The placeholder _REFACTOR_ appears at the location where the new variable was
added.

6. Click “OK” to close the “Refactoring” dialog.

Renaming
global variables
throughout the
project

Renaming
global variables
throughout the
project (except
for a POU)

Adding and
removing input
variables

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1911

7. Click “Edit è Find”. Search the project for "_REFACTOR_" to check and edit the affected
locations.

8. Note: As an alternative, you can insert the new variable with another initialization value
without working with a placeholder first. In this case, in Step 4 you select "Add inputs with
the following value" and type the value in the field on the right side of the drop-down list.

Example of a new variable with placeholder text in a CFC block:

Please note that you can also remove variables with refactoring.

In the declaration part of function blocks, you can change the order of declarations by refac-
toring This is possible for declarations with scope VAR_INPUT, VAR_OUTPUT, or VAR_IN_OUT.

Requirement: The declaration part of a POU is open and includes declarations, for example:

Reordering vari-
ables in the dec-
laration

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1912

VAR_INPUT
 invar2 : INT;
 invar1 : INT;
 in : DUT;
 bvar : BOOL;
 invar3 : INT;
END_VAR
1. Right-click in this declaration block to access the context menu.
2. Click “Refactoring è Reorder Variables”.

ð The “Reorder” dialog opens with a list of VAR_INPUT variables.

3. Drag the “invar1 : INT;” entry to the position before the “invar2.” entry.

ð The invar1 declaration is now at the top position.

4. Click “OK” to close the dialog.

ð The “Refactoring” dialog opens. The affected locations are marked in yellow (see
figure above).

5. Click “OK” to accept the new order for the function block.

Refactoring helps you in the declaration when renaming variables (by means of "Auto declare").

Requirement: Function block fb_A.

1. Click “Tools è Options”.

ð The “Options” dialog opens.

2. Select the “Refactoring” category.
3. In “Auto-Declare”, activate the options “On renaming variables” and “On adding or

removing variables, or for changing the namespace”.
4. Double-click the function block fb_A.

5. Select a variable in the declaration of fb_A, for example iA. As an alternative, you can
set the cursor before or in the variable.

6. Specify “Edit è Declare variable” ([Shift]+[F2]).

ð The “Declare Variable” dialog opens. The dialog includes the settings of iA.

7. Change the name of iA to iCounter_A.

8. The option “Changes by means of refactoring” appears and is activated.
9. Click “OK”.

ð The dialog “Refactoring” “Renaming from iA to iCounterA” opens. All locations affected
by the variable renaming are marked there.

10. Click “OK” to close the dialog.

ð The changes are applied.

See also
● Ä Chapter 6.4.1.21.3.3.40 “Command 'Refactoring' - 'Rename <...>'” on page 2577
● Ä Chapter 6.4.1.21.3.3.41 “Command 'Refactoring' - 'Update Referenced Pins'”

on page 2578
● Ä Chapter 6.4.1.21.3.3.42 “Command 'Refactoring' - 'Add Variable'” on page 2578
● Ä Chapter 6.4.1.21.3.3.43 “Command 'Refactoring' - 'Remove <variable>'” on page 2580

Changing a vari-
able declaration
and applying
refactoring
automatically

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1913

6.4.1.9.17 Task Configuration
General

In the task configuration, you define one or more tasks for controlling and executing the applica-
tion program in the controller. Each application must include a “Task Configuration” object.
A task is a time-based flow unit of an IEC program. You define a task with a name, a priority,
and a type, which determines which condition triggers the start of the task. You can define this
condition either by time (cyclic-interval, freewheeling) or by the occurrence of an internal or
external event to process the task. Examples of an event are the rising edge of a global project
variable or an interrupt event of the controller.
A task calls one or more program blocks (POUs). These programs can be application-specific
(objects below the application in the device tree) or project-specific (objects available in the
POU window). In the case of a project-specific program, the application instances the project-
global program. If CODESYS processes the task in the current cycle, then the programs are
executed for the duration of a cycle.
With the combination of priority and condition, you define the order in which the tasks are
processed. You can configure a watchdog for each task, and you can link a start, stop, and
reset directly to the execution of the project block.
Rules for the processing order of the defined tasks:
● If the task condition is satisfied, then CODESYS processes the task.
● If several tasks satisfy the condition for processing at the same time, then CODESYS

processes the tasks with the highest priority first.
● If several tasks with the same priority level satisfy the condition for processing at the same

time, then CODESYS processes the longest waiting task first.
● The program calls are processed in the order they appear in the configuration dialog of the

task.
● If a called program has the same name in the device tree of the application and in a library

or project-global in the POU window, then the application program is used.
Attention
All tasks share one process map. The reason is as follows: When each task has its own indi-
vidual process map, performance is compromised. However, the process map can be consistent
only with one task. When you create a project, you must ensure that the application copies
the input and output data to a safe location in case of conflicts. Modules, such as the library
SysSem, provide the capability of solving consistency and synchronization problems.

Consistency problems can also occur when accessing other global objects, such as global
variables or blocks. Consistency problems always occur if several tasks read and write to one
variable. Modules, such as the library SysSem, are available as a solution.

Creating a task configuration
Requirement: The open project includes a program-type POU and a “Task Configuration” with a
“Task” object has been inserted below “Application” in the device tree.
1. Double-click the task object below “Task Configuration” in the device tree.

ð The “Configuration” tab of the task object opens.

2. In the “Type” dropdown list., click “Cyclic”.

ð The “Interval (e.g. t#200ms)” input field appears.

3. Enter t#300ms in the “Interval (e.g. t#200ms)” input field.

4. Click “Add Call”.

ð The Input Assistant opens.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1914

5. In “Input Assistant è Categories” -> “Programs”, click the desired POU and then click
“OK”.

ð CODESYS inserts the selected POU into the POU list of the “Configuration” tab and
below the task object in the device tree.
When the application is executed from the controller, CODESYS executes the
selected POU in cyclical intervals of 300 ms.

● Ä Chapter 6.4.1.21.2.30.2 “Tab 'Configuration'” on page 2538

Definitions of Jitter and Latency
In the “Task Configuration” object, on the “Watchdog” tab, you can monitor the periodic jitter
values of the individual tasks at runtime. The periodic jitter is differentiated from latency-based
release jitter. See the following definitions:

Periodic jitter (Jper) is the deviation of the cycle time of a task (Tper) from the desired task cycle
time (T0).

Jper = Tper - T0

The desired (ideal) cycle time T0 is specified in the configuration of the task as “Interval”.

You can monitor the current value, as well as the maximum and minimum value of the periodic
jitter, on the “Watchdog” tab of the “Task Configuration”.

If the sum of all negative Jper values and the sum of all positive Jper values do
not balance each other, then a drift results.

Latency is the delay between the invocation of a task and the actual start of its release.

The release jitter Jr is the difference between the maximum and the minimum latency (L) that
has ever occurred.
Jr = Lmax - Lmin

In the case that Lmax = Lmin, a release jitter Jr of 0. results. This corresponds to a plain offset
shift.

See also
● Ä Chapter 6.4.1.9.17 “Task Configuration” on page 1914
● Ä Chapter 6.4.1.21.2.30.2 “Tab 'Configuration'” on page 2538
● Ä Chapter 6.4.1.21.2.29.4 “Tab 'Monitor'” on page 2536

6.4.1.9.18 Protecting an application
You achieve the know-how protection and copy protection of a boot application with the help of
PLC -specific license management and its settings in the object properties of the application.
The download code and the boot application can be encrypted and signed.

Periodic jitter

Latency

Release jitter

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1915

Requirements: You have a project with an application that you want to download to the con-
troller as an encrypted boot application. A security key for license management is connected to
your computer.
1. Select the application in the device tree.
2. Select the “Properties” command in the context menu.

ð The “Properties - <application name>” dialog opens.

3. Click the “Security” tab.
4. For “Encryption Technology”, select the “Simple Encryption” option and type the “Product

Code” that you received from the hardware manufacturer for the controller. Depending on
the controller, it is protected either by a security key (firmcode is shown automatically) or
by an integrated Wibu memory card for example.

5. Click “Online è Login” and download the application.

ð If the matching security key and/or valid license is available, then you can download
the application to the controller. By default, a boot application is automatically created
at this time in the controller directory. The default setting is defined in the application
“Properties”, in the “Boot Application” category.

6. Logout, change the application, and login again.

ð You are prompted to perform an online change. The dialog provides the option of
updating the boot application on the PLC. If the security key and license match, then
you can log in. If not, then you receive a corresponding message.

Requirements: You have a project with an application that you want to download to the con-
troller as an encrypted boot application. In the Windows Certificate Store of your computer,
you have a certificate of this controller for encrypting the application. Note: In case you want
to download the application to different controllers, you will need the appropriate certificate for
each controller.
1. Select the application in the device tree.
2. Select the “Properties” command in the context menu.

ð The “Properties - <application name>” dialog opens.

3. Click the “Security” tab.
4. On “Encryption Technology”, select the “Encryption with certificates” option.

ð The “Certificates” group is enabled.

5. If there are not any certificates listed in the table, then click the button.

ð The “Certificate Selection” dialog opens for selecting a certificate from the local Win-
dows Certificate Store.

6. In the lower area, select a certificate and add it to the upper area by clicking the button,
Click “OK” to confirm.

ð The certificate is shown in the “Certificates” group of the “Encryption” dialog.

7. Select the certificate and click “Apply” or “OK”.

ð The certificate is now used to encrypt the application. It can only be transferred to
the controller on computers that have an corresponding key installed in the Windows
Certificate Store.

See also
● Ä Chapter 6.4.1.19.4 “Security for the Runtime/PLC” on page 2041
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819
● Ä Chapter 6.4.1.6.8 “Encrypting Projects with Certificates” on page 1829
● Ä Chapter 6.4.1.21.4.11.4 “Dialog: Properties: Security” on page 2754

Encryption with
a dongle

Encrypting with
certificates

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1916

1. Click in the status bar of CODESYS to open the “Security Screen” view. Then select
a certificate with a private key for a user profile for the “Digital signature”. The procedure
is described in the instructions "Configuring a certificate for the digital signature in a user
profile".

2. Double-click the certificate for the “Digital signature” in the “User” tab.

ð The “Certificate” dialog opens.

3. On the “Details” tab, click “Copy to file”.

ð The “Certificate Export Wizard” starts.

4. In the “Export Private Key” prompt, select the “No, do not export the private key” option.
5. For “Export File Format”, select the “DER encoded binary X.509 (.CER)” option.
6. In the next step, select a file name and the location for the certificate.
7. After the last step “Finish”, a message appears that the export was successful.
8. After successful export to CODESYS, open the device editor by double-clicking the con-

troller in the device tree and selecting the “Files” tab for the file transfer.
9. Select the “Path” cert/import in the right side of the “Runtime” dialog.

10. On the left side of the dialog for “Host”, select the path in the file system where you saved
the exported certificate and selected the certificate.

11. Click .

ð The certificate is copied to the cert/import folder.

12. Click the “PLC Shell” tab.
13. Type the command cert-import trusted <file name of the

certificate.cer> in the input line of the tab and press the [Enter] key. Note that
the file name is specified with the extension .cer; otherwise the certificate is not imported
successfully.

ð The certificate is created on the controller under trusted. With this certificate, the
controller can test the integrity of the boot application.

14. Open the “Security Screen” by double-clicking in the status bar.
15. If you want that downloads, online changes, and boot applications of your project are

always encrypted, then select the “Enforce signing of downloads, online changes and boot
applications” option in the “Security level” group on the “User” tab. To do this, the “Enforce
encryption of downloads, online changes and boot applications” option also has to be
selected.

See also
● Ä Chapter 6.4.1.6.8 “Encrypting Projects with Certificates” on page 1829
● Ä “Encryption, signature” on page 2039
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592
● Ä Chapter 6.4.1.21.4.11.4 “Dialog: Properties: Security” on page 2754

Requirement: The CODESYS Security Agent add-on product is installed.
The “Security Screen” view provides an additional tab: “Devices”. This allows for the configura-
tion of certificates for the encrypted communication with controllers. In this case, see the help
for CODESYS Security Agent.
Alternatives:

Signing a boot
application only
with a certificat
(no encryption)

Encrypting the
download,
online change,
and boot appli-
cation

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1917

If you the CODESYS Security Agent is not available to you, then you can proceed as follows by
means of the PLC shell of the device editor:
In order to use certificates on the controller for the encryption of downloads, online changes,
and boot applications, these certificates first have to be generated on the controller and loaded
from the controller and installed in the Windows Certificate Store.

Requirement: You are connected to the controller.
1. Open the device editor by double-clicking the controller in the device tree, and select the

“PLC Shell” tab.

ð The tab appears with a blank display window. Below that is a command line.

2. Type ? in the command line and press the [Enter] key.

ð All commands are listed in the display window.

3. Type the following command in the command line: cert-getapplist.

ð All used certificates are listed with information about components and availability with
certificates.

4. If no certificate is available for the CmpApp component, then type the command cert-
genselfsigned <Number of the Component in the applist>.

5. Click the “Log” tab and then the refresh button ().

ð The display shows whether or not the certificate was generated successfully.

6. Type in cert-getcertlist and press the [Enter] key.

ð Your own certificates are listed that can be used for encryption. The information
Number and Key usage(s) are useful in the next step.

Number: The number is specified as a parameter in the next step.

Key usage(s): Data encryption means that this is a certificate of the controller
for a download, online change, and boot application.

7. Export the required certificate by typing in the command cert-export own 0 and
press the [Enter] key. 0 is the Number of the certificate with Key usage(s):Data
encryption.

ð The display shows that the certificate has been exported to a cert directory.

8. Click the “Files” tab of the device editor.
9. Click the refresh button () in the right part of the dialog in “Runtime”.

ð The list of files and directories is refreshed.

10. Open the “cert” folder in the list and then the “export” subfolder.
11. In the left part of the dialog in “Host”, open the directory where the certificate of the

controller will be loaded.
12. In the right part of the dialog, select the certificate that you have exported and click .

ð The certificate is copied to the selected directory.

13. In the file explorer, go to the directory where the certificate was copied and double-click
the certificate.

ð The “Certificate” dialog opens and shows the information about this certificate.

14. On the “General” tab, click “Install Certificate”.

ð The “Certificate Import Wizard” starts.

15. In the “Certificate Storage” dialog, for “Certificate Import Wizard”, select the “Store all
certificates in the following store” option and then select the “Controller Certificates” folder.

ð The controller certificate is imported into the Windows Certificate Store in the
“Controller Certificates” folder. Now the certificate is available for the encryption of
boot applications, downloads, and online changes.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1918

16. Open the “Security Screen” by double-clicking in the status bar.
17. If you want that downloads, online changes, and boot applications of your project are

always encrypted, then select the “Enforce encryption of downloads, online changes and
boot applications” option in the “Security level” group on the “User” tab.

18. Open the “Project” tab and double-click the application in the “Encryption of boot
application, download and online change” area.

ð The properties dialog of the application opens.

19. Click the “Encryption” tab, select “Encryption with certificates” in the “Encryption
technology” list box, and click .
If the “Enforce encryption of downloads, online changes and boot applications” option is
selected in the “Security Screen”, then “Encryption with certificates” is already selected.

20. In the “Certificate Selection” dialog, select the respective certificate from the “Controller
Certificates” folder and click .

21. Click “OK” to confirm the dialog.

ð The certificate is displayed in the properties dialog.

22. Confirm the properties dialog of the application.

ð The certificate is shown on the “Project” tab of the “Security Screen” in the “Encryption
of boot application, download and online change” group.
The boot application, download, and online change are encrypted.

See also
● Help for the CODESYS Security Agent add-on product
● Ä Chapter 6.4.1.21.2.8.11 “Tab 'PLC Shell'” on page 2441
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

Requirement: The CODESYS Security Agent add-on product is installed. A certificate with the
information "Encrypted Application" is already installed on your computer.

1. In the “Security Screen” view, on the “Project” tab, in the bottom view, click the entry for
the application.

ð The “Properties” dialog for the application opens with the “Encryption” tab.

2. For “Encryption Technology”, select “Encryption with certificates”. In the “Certificates”
group, click .

3. In the “Certificate Selection” dialog, delete the certificate as described above.
4. Click “OK” to close the “Certificate Selection” dialog.

ð The certificate is no longer displayed in the “Properties” dialog.

See also
● Help for the CODESYS Security Agent add-on product
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

Deleting a certif-
icate for the
encryption of
boot applica-
tion, download
and, online
change

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1919

6.4.1.9.19 Data Persistence
General

The lifespan of a variable and its data begins at the time when the variable is created and ends
at the time when the variable is deleted and its memory is freed. The time when the variable is
created, initialized, or instantiated depends on the declared scope. The time when the memory
is freed usually depends on the scope as well. For example, the memory of global variables is
freed by exiting the application.
They can retain data longer than usual. The following mechanisms are provided for this pur-
pose.
Mechanisms for data retention

● (A): Persistent global variable list with the keyword PERSISTENT RETAIN
Persistent variables retain their values when the application is reloaded. Moreover, the
values are restored after a download, warm start, or cold start.

● (B): Retain variables with the keyword RETAIN
Retain variables retain their values after a warm start, but not after reloading the application,
a download, or a cold start.

● (C): Variables of the Persistence Manager of the CODESYS Application Composer
Variables of the Persistence Manager are stored in an external file.

● (D): Recipe variables
Recipe variables and their values are stored in a recipe file.

See also
● Ä Chapter 6.4.1.9.19.4 “Retaining data with variables of the persistence manager”

on page 1926
● Ä Chapter 6.4.1.9.19.3 “Preserving data with retain variables” on page 1925
● Ä Chapter 6.4.1.9.19.5 “Preserving data with recipes” on page 1926
● Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122
● Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN” on page 2124
● Ä Chapter 6.4.1.21.2.20 “Object 'Persistent variable list'” on page 2476

Which mechanism is suitable for which application? Some common use cases are considered in
the table. The specific examples refer to a building control system.

Mechanisms in
comparison

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1920

Table 384: Comparison of mechanisms and use cases
 Uses case (A) Persis-

tent varia-
bles

(B) Retain var-
iables

(C) Varia-
bles of the
Persis-
tence
Manager

(D) Recipe
variables

1 The application must maintain
device settings.
Example: After a power failure,
the building control has to have
information available about how
long a window blind needs to be
raised.

Suitable1

Preferred
use case
In this
case, you
can also
use retain
variables
instead of
persistent
variables.
This is
advanta-
geous for
variables
whose dec-
laration is
often
changed.

Suitable
Preferred use
case
Retain varia-
bles are an
advantage
when their dec-
larations are
changed often.

Suitable2

This is
advanta-
geous for
controllers
that do not
have any
hardware
support.
Special
functionali-
ties make
this pos-
sible, such
as double
file buf-
fering.

Possible,
but very
compli-
cated and
therefore
not recom-
mended.

2 The application must main-
tain values also after program
changes or extensions.

 2a: Rare extensions
Example: An application pro-
grammer extends the program
with a new switch and installs
a new light. The building con-
trol must still have saved values
available until then.

Suitable1

Preferred
use case

Suitable Suitable2 Possible,
but compli-
cated.

 2b: Unrestricted changes,
including deleting or changing
the data type of variables
The building control is running
and is persistent. When an appli-
cation programmer adds a new
functionality to the controller and
therefore adds another persistent
variable to a function block, the
values saved up to that point
must be retained. For example,
the program in an FB is extended
with a variable that controls the
automatic switching off of a pre-
viously uncontrolled lamp after a
certain time. The building control
must have the times of all con-
trolled lamps available after the
extension.

Not suit-
able

Suitable
Data from
retain variables
are preserved
as far as pos-
sible after an
online change.

Suitable
as far as
possible 2

Preferred
use case

Possible if
textual, but
compli-
cated

 2c: The application must main-
tain values after a download.

Suitable Not suitable Suitable Suitable

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1921

 Uses case (A) Persis-
tent varia-
bles

(B) Retain var-
iables

(C) Varia-
bles of the
Persis-
tence
Manager

(D) Recipe
variables

3 The application must be able
to use different value sets.
Example: The operating settings
for summer, winter, and holidays
must be saved and imported
when needed.

Not suit-
able

Not suitable Not suit-
able

Suitable
Preferred
use case

4 The application must be able
to use settings from another
system.
It must be possible to transfer
settings to another plant using
similar variables.

Not suit-
able

Not suitable Suitable2 Suitable3

5 The application must provide
human readable data.
The user must be able to read,
compare, and edit the data.

Not suit-
able

Not suitable Suitable2 Suitable3

1 Disadvantage: Only possible if the runtime system supports this mechanism and an NVRAM
memory or UPS is available. Advantage: Speed; recommended application: 1 and 2a
2 Disadvantage: In the case of large variable sets (> 10000), long delays during initialization and
shutdown are to be expected. Advantage: No special memory is required; value retention exists
even in case of changes, extensions, or deletions.
3 Advantage: Editable remotely, transferable. Disadvantage: Complicated

User input in the “Online” menu Variable with usual lifespan
Neither RETAIN nor PERSISTENT

RETAIN PERSISTENT
RETAIN PERSISTENT
PERSISTENT RETAIN

Command “Online Change” x x x

Command “Reset Warm” i x x

Command “Reset Cold” i i x

Command “Download” i i x 1

Command “Reset Origin” i i i

x : The variable retains its value.
i : The variable is initialized.
1 Note: For the structure of persistent data, see the information in "Mechanism for downloading".
See also
● Ä “Mechanism for downloading” on page 1923
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629
● Ä Chapter 6.4.1.21.3.7.12 “Command 'Reset Origin'” on page 2635
● Ä Chapter 6.4.1.21.3.7.10 “Command 'Reset Cold'” on page 2633
● Ä Chapter 6.4.1.21.3.7.5 “Command 'Load'” on page 2628

Lifespan of vari-
ables when
calling online
commands

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1922

The values of ordinary variables lose their value and are reinitialized.
The values of persistent variables are protected when:
● The structure of the persistent variable in memory matches the structure in the persistent

data list.
The values of retain variables are protected when:
● The structure of the persistent variable in memory matches the structure in the persistent

data list.
● The persistent variables match the application (GUID has to agree).
A "Retain mismatch" occurs when the requirements for restoring the values of retain variables
and persistent variables are not met when the application is booted. The response to this
discrepancy is described in the documentation of the hardware manufacturer.
Note: For the structure of persistent data, refer to the information in "Mechanism for down-
loading".
See also
● Ä “Mechanism for downloading” on page 1923

Preserving data with persistent variables
Persistent variables retain their values after reloading the application, and after a download,
warm start, or cold start.
A special non-volatile memory area on the controller, for example as NVRAM or UPS, is
required to extend the lifespan. Securing the data in such a memory does not require any
additional time, which is an advantage over data retention with the Persistence Manager. If the
controller does not provide hardware support, then the data is usually stored in a file. Then the
data will be retained if you shut down the controller correctly. In the event of a power failure or a
pulled plug, however, data will be lost.

Value retained for
● Uncontrolled exit
● Warm start by calling the “Reset Warm” command
● Cold start by calling the “Reset Cold” command
● Repeated download of the application
Reinitialization for
● Call of the “Reset Origin” command
Therefore, persistent variables are reinitialized only if you reset the controller to the factory
settings (for example, when you click “Online è Reset Origin”).
If, on the other hand, you download the application again, the persisted data is retained if
possible. That depends on how profound the changes that led to the download were. Changing
the application name always leads to a full reinitialization. Changes to the implementations
never lead to a reinitialization: the data persistence is completely preserved. Changes to the
declarations lead to an initialization of the new variables only if the existing variables are persis-
tent, when you change the declarations so that the persistent variable list remains consistent.
This is the case when you add a new variable or delete an existing one. Inconsistencies can
occur if you edit and change the identifiers or data types of previously declared persistent
variables.

Editing the variable list in the persistence editor causes the variable list to be edited automati-
cally before it is saved, not to be saved as it is shown in the editor.

Lifespan of vari-
ables when
downloading a
boot project

Behavior

Mechanism for
downloading

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1923

During post-processing, a variable that you have removed is replaced by a placeholder variable
with the same memory requirement. As a result, the subsequent variables retain their addresses
in the process image. Moreover, a variable you add is moved to the end of the list. Post-pro-
cessing can neutralize changes that would lead to a loss of persistence. But you create gaps
that use additional memory.
When downloading, the CRC value of the variable list and the length of the list (number of vari-
ables) are stored on the controller. When downloading again, the new test value is compared
with the test value currently on the controller. Then the variable list is compared successively up
to the specified length. If you have edited a declaration (for example, the name or data type),
then the variable is reinitialized. Otherwise its value is retained. When the download is repeated,
CODESYS checks whether the variable list declared in the persistence editor is still consistent
with the variable list already on the controller.
The mechanism works well when the variables themselves are not modified significantly. Too
extensive changes of the identifiers and the data types continue to lead to a reinitialization and
the loss of persistence. If you anticipate frequent changes due to your application requirements,
then this kind of a list is not recommended. Moreover, in an online change after a data type
change, a persistent variable is less robust than a variable with a normal lifespan.
It is good practice to clear any gaps in the variable list after a while (command “Reorder List and
Clear Gaps”). After cleaning, however, the list no longer matches the list on the controller and
you have triggered an initialization of all persistent variables. The persistence of all variables is
lost.

For versions before V3.5 SP1, changes in the persistence editor always lead to
reinitialization.

Recovering data with the recipe manager
To clean up the global persistent variable list without losing persistence, you can save the data
in a recipe using the Recipe Manager. This creates a list for all variables of the persistent
variable list in the recipe manager, and at the same time its current values are stored by the
controller as a recipe. Then execute the command “Reorder List and Clear Gaps” and perform
a download again. Now when you execute the command “Restore Values from Recipe”, the
values saved in the recipe are restored.

if you change the name or data type of a variable, this is interpreted as a new declaration and
causes a re-initialization of the variables at the next online change or download. For complex
data types, a change occurs when a new component is added, or when you change the type of
a variable from INT to UINT in the depth of a used structure used, for example.

Basically, complex user-defined data types are not suitable for administration in a persistent var-
iable list, because even small changes cause the variable to be initialized with all components.

You can persist global variables or variables declared locally in a function block or program. To
do this, add the keyword PERSISTENT to the declaration. In addition, you insert the instance
path to this variable in the persistent global variable list. To do this, execute the “Add All
Instance Paths” command in the persistence editor.
Persistence is guaranteed by the following mechanism:
● The cyclic tasks in which the variable is accessed are determined.
● At the end of the first cyclic task (in each cycle), the variable is copied to the persistent

global variable list.
● After restarting the controller, the value of the persistent variable is copied to the ordinary

variable.

Changing an
existing declara-
tion in the per-
sistent variable
list

Double alloca-
tion of memory
in the case of
instance paths

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1924

The disadvantage of this mechanism is that memory is allocated both at the place of declaration
and at the place of the instance path. This persistent variable has a double memory allocation.
Moreover, the data is copied to both places in each cycle. This can be time consuming, espe-
cially when large structured values are involved.

A function block instance is always stored completely in memory. This is necessary so that the
same code can work on different instances. If only one variable in a function block is marked
with PERSISTENT, then the function block instance is stored completely with all variables in
remanent memory, although only the one variable is treated as persistent. However, non-volatile
memory is not available to the same extent as main memory.
A function block with a pointer to an instance in SRAM as a variable is not stored in the
protected memory.

When you open a CoDeSys V2.3 project to import it into CODESYS V3, the declarations of
persistent variables are not preserved. You have to revise the declarations and create then
again in a separate persistent global variable list.

See also
● Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122
● Ä Chapter 6.4.1.21.3.18.4 “Command 'Add all instance paths'” on page 2720
● Ä Chapter 6.4.1.3.3 “Opening a V2.3 project” on page 1809

Preserving data with retain variables
Retain variables preserve their values after a warm start. However, the degree of value retention
for persistent variables is higher.
A special non-volatile memory area on the controller, for example as NVRAM or UPS, is
required to extend the lifespan. Securing the retain variables in such a memory does not require
any additional time, which is an advantage over data retention with the Persistence Manager. If
the controller does not provide hardware support, then the data is usually stored in a file. Then
the data will be retained if you shut down the controller correctly. In the event of a power failure
or a pulled plug, however, data will be lost.

To declare a retain variable, add the RETAIN keyword to a variable declaration.

Value retained for
● Uncontrolled exit
● Call of the “Reset Warm” command
Reinitialization for
● Repeated download of the application
● Call of the “Reset Cold” command (in contrast to persistent variables)
● Call of the “Reset Origin” command
When you restart an application, its variables are usually initialized with an explicitly preset
initial value or with a default value. Variables marked with the RETAIN keyword are managed
in a separate memory area depending on the target system and retain their value. Then the
variables are protected from power failure, for example. This means that you can apply retain
variables to a parts counter in a production line so that you can continue counting even after a
power failure.

Memory loca-
tion in the case
of persistent
function block
instances

Importing from
CoDeSys V2.3
projects

Declaration

Behavior

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1925

Function block instances are stored as one block in memory. This is necessary so that the same
code can work on different instances. If a variable is marked with RETAIN in a function block,
then each instance of the function block is protected with all variables. This is also true for the
variables of the function block that are not marked this way. However, non-volatile memory is
not available to the same extent as main memory.
A function block with a pointer to an instance in SRAM as a variable is not stored in the
protected memory.

When you open a CoDeSys V2.3 project to import it into CODESYS V3, the declarations of
retain variables are preserved and remain effective as before.

See also
● Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN” on page 2124
● Ä Chapter 6.4.1.3.3 “Opening a V2.3 project” on page 1809

Retaining data with variables of the persistence manager
Persistent variables are managed in the Persistence Manager of the CODESYS Application
Composer. The functionality of the “Persistence Manager” does not need any special memory
on the controller in order to preserve values and data.

In the declarations, the variables managed in the Persistence Manager are marked with the
pragma {attribute 'ac_persist'}.

The pragma makes sure that the variable with this attribute is managed in the Persistence
Manager of the Application Composer. The variable value is retained even if you change the
declaration of the variable, delete a variable from the application, or add a new one. The value
is retained even if you change the data type and use the appropriate conversions.

The variables of the Persistence Manager are stored with their values in an external archive file
in TXT format.
The application code is extended with the code of the Persistence Manager, which leads to a
greater memory requirement. This is at the expense of performance. Moreover, reading and
especially writing a large number of persistent variables can take a long time. As a result, the
executing task also blocks the execution for a long time.

● You can load and edit the TXT file in an external editor such as Notepad++.
● You can use the persistent variables of the file in another application.
● You can configure the behavior of persistent variables by defining persistence groups,

assigning variables to them, and configuring the groups with their own save and read
behavior.

Preserving data with recipes
Variables are managed persistently in the Recipe Manager. The Recipe Manager does not need
any special memory on the controller in order to preserve values and data.

A recipe definition consists of a set of variables with values and is created and edited in the
“Recipe Manager” object and saved to a file.

Memory loca-
tion of persis-
tent function
block instances

Importing of
CoDeSys V2.3
projects

Declaration

Mechanism

Functionality

Declaration

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1926

● You can include a variable in multiple recipes, each with different values.
● In online mode, you can read in the actual values of the variables from the controller and

save them as recipe values (specified value).
● You can use the Recipe Management library to programmatically implement the creation

and editing of a recipe.
● You can save and backup a recipe as a recipe file.

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.18.2 “Command 'Save Current Values to Recipe'” on page 2719
● Ä Chapter 6.4.1.21.3.18.1 “Command 'Reorder List and Clean Gaps'” on page 2719
● Ä Chapter 6.4.1.21.3.18.3 “Command 'Restore Values from Recipe'” on page 2719
● Ä Chapter 6.4.1.21.2.25 “Object 'Recipe Manager'” on page 2519
● Ä Chapter 6.4.1.21.2.26 “Object 'Recipe Definition'” on page 2522

Declaring VAR PERSISTENT Variables
Below you will declare persistent variables in a persistent variable list and in a POU.
Requirement: A project is opened and contains a program POU. You have selected the option
for the textual view in the “Declaration Editor” category of the options (menu command in “Tools
è Options”).
1. Add the “Persistent Variables” object to the application object with the menu command

“Project è Add Object”.

ð CODESYS adds the persistent variable list “PersistentVars” below the application
object in the device tree and the editor opens.

2. In the editor, enter a variable declaration, for example ivarpersist1 : INT; between
VAR_GLOBAL PERSISTENT RETAIN and END_VAR.

3. Double-click the POU in the device tree.

ð The editor of the POU opens.

4. Specify the following declaration in the declaration part:
VAR PERSISTENT RETAIN
ivarpersist2 : INT;
END_VAR

5. Click “Build è Build”.

ð The message view opens. If CODESYS has compiled the application without errors,
then close the message window and continue with the next step. Otherwise, correct
the error(s) and select the menu command “Build è Build” again.

6. Set the focus in the “PersistentVars” editor. Click “Declarations è Add All Instance Paths”

ð CODESYS adds the persistent variable from the persistent variable list
“PersistentVars” to the POU:
// instance path of the persistent variables created
POU.IVARPERSIST2 : INT

See also
● Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122
● Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN” on page 2124
● Ä Chapter 6.4.1.21.2.20 “Object 'Persistent variable list'” on page 2476
● Ä Chapter 6.4.1.21.3.18.4 “Command 'Add all instance paths'” on page 2720

Functionality

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1927

Saving the values of a persistent variable list in a recipe
Requirement: a project is opened and a persistent variable list with declarations of persistent
variables exists under an application object.
1. Double-click on the controller in the device tree and select the tab “Communication

Settings”.
2. Select your gateway and click on the button “Scan Network”.

ð Your device is shown in bold in the tree view of the gateway.

3. Select your device and click on the button “Set Active Path”.
4. Select your application object in the device tree and select the context menu command

“Set Active Application”.

ð The application object is displayed in bold.

5. Select the menu command “Online è Login”

ð Your application is logged in to the controller and the controller and the application
object in the device tree have a green background.

6. Double-click on the persistent variable list and select the command “Declarations
è Save Current Values to Recipe”.

ð CODESYS creates the objects “Recipe Manager” and “PersistentVariables” under the
application object.

7. Select the menu command “Online è Logout”.

ð The application is logged out from the controller.

See also
● Ä Chapter 6.4.1.21.3.18.2 “Command 'Save Current Values to Recipe'” on page 2719
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920

6.4.1.9.20 Alarm Management
For information about alarm management and alarm visualization, see the help for CODESYS
Visualization.

6.4.1.9.21 Using POUs for implicit checks
CODESYS provides special POUs that implement implicit monitoring functions. At runtime,
these functions check the array limits or subrange types, the validity of pointer addresses, or
division by zero.
1. Select the “Application” object in the device tree.

Click “Project è Add Object è POU for Implicit Checks”

ð The “Add POU for Implicit Checks” dialog box opens.

2. Select the desired functions.
3. Click “Add”.

ð The selected POUs are inserted below the “Application” in the device tree.

4. Open the POUs in the editor.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1928

5. Adapt the implementation suggestion to your requirements.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration
section. However, you are permitted to add local variables.

See also
● Ä Chapter 6.4.1.21.2.21 “Object 'POU'” on page 2477
● Ä Chapter 6.4.1.21.2.22 “Object 'POUs for Implicit Checks'” on page 2500

6.4.1.9.22 Object-Oriented Programming
General

CODESYS supports object oriented programming with function blocks and for this purpose
provides the following features and objects:
● Methods
● Interfaces
● Properties
● Inheritance
● Method call, virtual function call
● Definition of function blocks as extensions of other function blocks

Application example
Basic information on dealing with object-oriented programming (OOP) with
AC500 V3 PLCs is given in an application example.

Application example
In CODESYS V3, keywords can be used in object-oriented programming
(OOP), e.g. to improve the programming style, debugging, etc. The application
note OOP keywords explains how these keywords are used.

See also
● Ä Chapter 6.4.1.21.2.21.5 “Object 'Interface'” on page 2484

Extension of function blocks
The extension of a function block is based on the concept of inheritance in object-oriented
programming. A derived function block thereby extends a basic function block and in doing so is
given the properties of the basic function block in addition to its own properties.
The extension of a function block means:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1929

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010525&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010569&LanguageCode=en&DocumentPartId=&Action=Launch

● The inherited function block contains all data and methods that are defined by the basic
function block. You can use an instance of the basic function block in every context in which
CODESYS expects a function block of the type of the basic function block.

● The derived function block can overwrite the methods that you have defined in the base
function block. This means that the inherited function block can define a method with the
same name, the same inputs and the same output as is defined by the basic function block.
Tip: You have the following support when overwriting methods, actions, attributes, and tran-
sitions that are inherited by the base block: When you insert a method, action, etc. below an
inherited block, the “Add Object” dialog includes a combo box with a list of methods, actions,
etc. used in the base block. You can accept these and adapt them accordingly.

● The derived function block may not contain function block variables with the same names as
used by the basic function block. The compiler reports this as an error.
The only exception: If you have declared a variable in the basic function block as
VAR_TEMP, then the inherited function block may define a variable with the same name.
In this case, the inherited function block can no longer access the variable of the basic
function block.

● You can directly address the variables and methods of the basic function block within the
scope of the inherited function block by using the SUPER pointer.

NOTICE!
Multiple inheritance is not permitted.
Exception: A function block can implement multiple interfaces, and an interface
can extend other interfaces.

Requirement: the currently opened project possesses a basic function block, for example
“POU_1(FB)”, which is to be extended by a new function block.

1. Right-click the “Application” object in the device tree and select “Project è Add Object
è POU”.

ð The “Add POU” dialog opens.

2. Type the name for the new POU in the “Name” input field, for example “POU_Ex”.
3. Select “Function block”.
4. Click “Advanced” and then the more button ().
5. In the category “Function blocks” under “Application” in the input assistant, select the

POU(FB) that is to serve as the basic function block, for example POU_1, and click “OK”.

6. As an option, you can select an “Access modifier” for the new function block from the
drop-down list.

7. Select from the “Implementation language” combo box (example: “Structured text (ST)”.
8. Click “Add”.

ð CODESYS adds the POU_Ex function block to the device tree and opens the editor.
The first line contains the text:
FUNCTION_BLOCK POU_Ex EXTENDS POU_1
The function block POU_Ex extends the basic function block POU_1.

Requirement: The open project possesses a base function block (example: POU_1(FB)) and
another function block (example: POU_Ex(FB)). The function block POU_Ex(FB) is also to be
given the properties of the basic function block. This means that POU_Ex(FB) should extend
POU_1(FB).

Extension of a
basic function
block by a new
function block

Extension of a
basic function
block by an
existing func-
tion block

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1930

1. Double-click the function block POU_Ex(FB) in the device tree.

ð The function block editor opens.

2. Extend the existing entry in the top line FUNCTION_BLOCK POU_Ex with EXTENDS
POU_1.

ð The function block POU_Ex extends the basic function block POU_1.

See also
● Ä Chapter 6.4.1.9.22.3 “Implementing interfaces” on page 1931
● Ä Chapter 6.4.1.9.22.4 “Extending interfaces” on page 1933
● Ä Chapter 6.4.1.20.2.15 “SUPER” on page 2125
● Ä Chapter 6.4.1.20.2.16 “THIS” on page 2126
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.21.2.21.10 “Object 'Action'” on page 2497
● Ä Chapter 6.4.1.21.2.21.11 “Object 'Transition'” on page 2499

Implementing interfaces
Implementing interfaces is based on the concept of object-oriented programming. With common
interfaces, you can use different but similar function blocks the same way.
A function block that implements an interface has to include all methods and attributes that are
defined in that interface (interface methods and interface attributes). This means that the name
and the inputs and outputs of the methods or attributes must be exactly the same. When you
create a new function block that implements an interface, CODESYS adds all methods and
attributes of the interface automatically to the tree below the new function block.

NOTICE!
If you add more interface methods afterwards, then CODESYS does not add
these methods automatically to the affected function block. To perform this
update, you must execute the “Implement Interfaces” command explicitly.
For inherited function blocks, you have to make sure that any methods or
attributes that were derived through the inheritance of an interface also receive
the appropriate implementation. Otherwise they should be deleted in case the
implementation that was provided in the basis should be used. Respective
compile error messages or warnings are displayed, prompted automatically by
added pragma attributes. For more information, refer to the help page for the
“Implementing Interfaces” command.

NOTICE!
– You must assign the interface of a function block to a variable of the inter-

face type before a method can be called via the variable.
– A variable of the interface type is always a reference of the assigned func-

tion block instance.

A variable of the interface type is a reference to instances of function blocks. This kind of
variable can refer to every function block that implements the interface. If there is no assignment
to a variable, then the variable in online mode contains the value 0.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1931

The I1 interface contains the GetName method.
METHOD GetName : STRING

The functions blocks A and B implements the interface I1:
FUNCTION_BLOCK A IMPLEMENTS I1
FUNCTION_BLOCK B IMPLEMENTS I1

For this reason, both function blocks must include a method named GetName and the return
type STRING. Otherwise the compiler reports an error.

A function includes the declaration of a variable of interface I1 type.
FUNCTION DeliverName : STRING
VAR_INPUT
 l_i : I1;
END_VAR

Function blocks that implement the I1 interface can be assigned to these input variables.

Examples of function calls:
DeliverName(l_i := A_instance); // call with instance of type A
DeliverName(l_i := B_instance); // call with instance of type B

Calling of interface methods:
In this case, it depends on the actual type of l_i whether the application calls A.GetName or
B.GetName.
DeliverName := l_i.GetName();

Examples

● Ä Chapter 6.4.1.21.3.23.2 “Command 'Implement Interfaces'” on page 2744

Requirement: The open project has at least one interface object.
1. Right-click “Application” in the device tree and select “Project è Add Object è POU”.

ð The “Add POU” dialog box opens.

2. Type the name for the new POU in the “Name” input field, for example “POU_Im”.
3. Select “Function block”.
4. Click “Implemented” and then the more button ().
5. In the input assistant, select the interface from the category “Interfaces”, for example

ITF1, and click on “OK”.

6. To insert more interfaces, click and select a another interface.
7. As an option, you can select an “Access modifier” for the new function block from the

selection list.
8. Select from the “Implementation language” combo box (example: “Structured text (ST)”.
9. Click “Add”.

ð CODESYS adds the “POU_Ex” function block to the device tree and opens the editor.
The first line contains the text:
FUNCTION_BLOCK POU_Im IMPLEMENTS ITF1
The interface and its methods and properties are now inserted below the function
block in the device tree. Now you can type program code into the implementation part
of the interface and its methods.

Implementing
an interface in a
new function
block

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1932

Requirement: The currently open project has a function block (example: “POU_Im”) and
at least one interface object (example: “ITF1”).
1. Double-click the “POU_Ex(FB)” POU in the device tree.

ð The POU editor opens.

2. Extend the existing entry in the uppermost line FUNCTION_BLOCK POU_Im with
IMPLEMENTS ITF1
ð The “POU_Im” function block implements the “ITF1” interface.

See also
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479

Extending interfaces
You can extend interfaces just like function blocks. The interface is then also given the interface
methods and interface properties of the basic interface in addition to its own.
1. Select the object “Application” in the device tree.
2. Select the command “Project è Add Object è Interface”.

ð The dialog box “Add Interface” opens.

3. Enter a name for the new interface.
4. Activate the option “Extended” and click on the button .
5. The input assistant opens.
6. From the category “Interfaces”, select the interface that is to be extended by the new

interface.

● Ä Chapter 6.4.1.21.2.21.5 “Object 'Interface'” on page 2484

Calling methods
To implement a method call, the actual parameters (arguments) are passed to the interface
variables. As an alternative, the parameter names can be omitted.
Depending on the declared access modifier, a method can be called only within its own name-
space (INTERNAL), only within its own programming module and its derivatives (PROTECTED),
or only within its own programming module (PRIVATE). For PUBLIC, the method can be called
from anywhere.
Within the implementation, a method can call itself recursively, either directly by means of the
THIS pointer, or by means of a local variable for the assigned function block.

Virtual function calls can occur due to inheritance.
Virtual function calls enable one and the same call to call various methods in a program source
code during the runtime.

Implementing
an interface in
an existing
function block

Creation of an
interface that
extends another
interface.

Method call as a
virtual function
call

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1933

In the following cases the method call is dynamically bound:
● You call a method via a pointer to a function block (for example pfub^.method).

In this situation the pointer can point to instances of the type of the function block and to
instances of all derived function blocks.

● You call the method of an interface variable (for example interface1.method).
The interface can refer to all instances of function blocks that implement this interface.

● A method calls another method of the same function block. In this case the method can also
call the method of a derived function block with the same name.

● The call of a method takes place by means of a reference to a function block. In this situa-
tion the reference can point to instances of the type of the function block and to instances of
all derived function blocks.

● You assign VAR_IN_OUT variables of a basic function block type to an instance of a derived
FB type.
In this situation the variable can point to instances of the type of the function block and to
instances of all derived function blocks.

The function blocks fub1 and fub2 extend the function block fubbase and implement the
interface interface1. The methods method1 and method2 exist.
PROGRAM PLC_PRG
VAR_INPUT
 b : BOOL;
END_VAR

VAR pInst : POINTER TO fubbase;
 instBase : fubbase;
 inst1 : fub1;
 inst2 : fub2;
 instRef : REFERENCE to fubbase;
END_VAR

IF b THEN
 instRef REF= inst1; (* reference to fub1 *)
 pInst := ADR(instBase);
ELSE
 instRef REF= inst2; (* reference to fub2 *)
 pInst := ADR(inst1);
END_IF
pInst^.method1(); (* If b is TRUE, fubbase.method1 will
be called, otherwise fub1.method1 is called *)
instRef.method1(); (* If b ist TRUE, fub1.method1 will be
called, otherwise fub2.method1 is called*)

On the assumption that fubbase in the above example contains two methods method1 and
method2, it overwrites fub1 method2, but not method1. The call of method1 takes place
as follows:
pInst^.method1();

If b is TRUE, then CODESYS calls fubbase.method1. If not, then fub1.method1 is called.

Overloading
methods

In accordance with the IEC 61131-3 standard, methods can have additional outputs declared,
like normal functions. With the method call, you assign variables to the additional outputs.
Detailed information about this can be found in the topic “Function”.

Example

Additional out-
puts

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1934

<function block name>.<method name>(<first input name> := <value> (,
<further input assignments>)+ , <first output name> => <first output
variable name> (,<further output assignments>)+);

METHOD PUBLIC DoIt : BOOL
VAR_INPUT
 iInput_1 : DWORD;
 iInput_2 : DWORD;
END_VAR
VAR_OUTPUT
 iOutput_1 : INT;
 sOutput_2 : STRING;
ENDVAR

fbInstance.DoIt(iInput_1 := 1, iInput_2 := 2, iOutput_1 =>
iLocal_1, sOUtput_2 => sLocal_2);

When the method is called, the values of the method outputs are written to the locally declared
output variables.

Example
Declaration

Call

In the device description it is possible to define that a certain function block instance (of a library
function block) always calls a certain method in each task cycle. If the method contains the
input parameters of the following example, CODESYS processes the method even if the active
application is presently in the STOP state:

VAR_INPUT
 pTaskInfo : POINTER TO DWORD;
 pApplicationInfo: POINTER TO _IMPLICIT_APPLICATION_INFO;
END_VAR

(*Now the status of the application can be queried via
pApplicationInfo and the instructions can be implemented: *)
IF pApplicationInfo^.state = RUNNING THEN <instructions> END_IF;

Example

Use recursions mainly for processing recursive data types such as linked lists.
Generally, we recommend that you be careful when using recursion. An unex-
pectedly deep recursion can lead to stack overflow and therefore to machine
downtime.

Within their implementation, a method can call itself:
● Directly by means of the THIS pointer
● Indirectly by means of a local function block instance of the basic function block
Usually, a compiler warning is issued for such a recursive call. If the
method is provided with the pragma {attribute 'estimated-stack-usage' :=
'<sstimated_stack_size_in_bytes>'}, then the compiler warning is suppressed. For
an implementation example, refer to the section "Attribute 'estimated-stack-usage'".

Syntax for the
call:

Calling a
method even if
the application
is in the STOP
state

Calling methods
recursively

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1935

See also
● Ä Chapter 6.4.1.20.6.3.14 “Attribute 'estimated-stack-usage'” on page 2281
● Ä Chapter 6.4.1.20.2.16 “THIS” on page 2126
● Ä Chapter 6.4.1.20.2.15 “SUPER” on page 2125
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493

6.4.1.10 Working with Controller Networks
6.4.1.10.1 General

With the following functionalities, CODESYS supports communication between controllers
(PLC) and the insertion of a safety controller below a PLC:
● Symbol Configuration: CODESYS creates symbols with certain access rights for the varia-

bles in an application. With these symbols, you can access the variables from outside, for
example from an OPC server.

● Data Source Manager: Manages the connection settings and the data transmission to
remote devices (data sources). The transmitted data is mapped in data source variables
that are accessed in the visualization or local application. An example of this is a control
panel that controls remote devices and displays the state of the device as an HMI applica-
tion.

● Network Variables: Network variables are variables whose values are accessible to dif-
ferent controllers in the network. The variables have to be defined in rigid, identical lists in
both the transmitter device and the receiver device. These lists are assigned to applications,
but can be located in different projects.

● A safety controller can be inserted below a PLC in the device tree. The communication
links of the safety controller to the field devices, controller networks, and development
system are routed through this controller.

The “DataServer” object is obsolete.
The data link with CODESYS DataServer has already been superseded with
SP10 by a data link with data sources. With CODESYS 3.5 SP17, the function-
ality has now been completely removed.

In case you want to adapt an existing project with a “DataServer” object, you
can do the following: Open the existing project with CODESYS V3.5 SP16,
select the data server object, and click “Convert Data Server to Data Source
Manager” in the context menu. After the conversion of the data link to a data
source connection, you can open the project with a current CODESYS version.

See also
● Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941
● Ä Chapter 6.4.1.10.6 “Data Link with Data Sources” on page 1947
● Ä Chapter 6.4.1.10.5 “Network Variables” on page 1946
● Ä Chapter 6.4.1.10.2.2 “Network topology” on page 1937
● Ä Chapter 6.4.1.10.2.3 “Addressing and Routing” on page 1937
● Ä Chapter 6.4.1.10.2.4 “Address Structures” on page 1939
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964

6.4.1.10.2 Network and Addressing
General

Constructing a control network hierarchically, so that extensive self-configuration is possible.
In CODESYS the network topology is mapped to clear addresses and the routing algorithm
is kept simple by structured addresses. There is direct and relative addressing and automatic
address determination during the bootup of the system.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1936

See also
● Ä Chapter 6.4.1.10.2.2 “Network topology” on page 1937
● Ä Chapter 6.4.1.10.2.3 “Addressing and Routing” on page 1937
● Ä Chapter 6.4.1.10.2.4 “Address Structures” on page 1939

Network topology
It is recommended to set up a network system so that the following are possible:
● Extensive self-configuration (address assignment)
● Transparent support for every communication medium
● Transport of data packets between different networks
The routing mechanism should be so simple that each network node can reroute data packets,
even if it has a low memory capacity. Therefore, avoid extensive routing tables, complex calcu-
lations or queries at runtime.
Construct the control network hierarchically. Each node may possess a parent node and any
number of child nodes. A node without a parent is a "top level" node. Cycles are not permitted,
i.e. each control network has the structure of a tree.
Parent-child relationships results from the specification of certain network areas. A network
area can be, for example, a local Ethernet or a serial point-to-point connection. We differentiate
between the main network (mainnet) and the subnetworks (subnet). Each node belongs at the
most to one main network, to which its parent node, if one exists, also belongs. For each node
any desired number of subnets can be configured, for which the node acts in each case as a
parent.
A network area may have only one parent node. Therefore, a configuration in which a network
area is defined at the same time as a subnet of several nodes is invalid.
See also
● Ä Chapter 6.4.1.10.2.3 “Addressing and Routing” on page 1937
● Ä Chapter 6.4.1.10.2.4 “Address Structures” on page 1939

Addressing and Routing
Addressing means: the topology of the control network is mapped to unique addresses.
A node address is composed hierarchically: for each network connection the associated block
driver determines a local address, which uniquely identifies the node within the local network.
The complete node address is formed as follows: The local address is placed in front of the
subnet index of the local network assigned by the parent. In turn, the subnet index is placed
in front of the node address of the parent. The length of the subnet index (in bits) is thereby
determined by the device. The length of the local address, conversely, is determined by the type
of network. A node without a main network is a top level node with address 0. A node with a
main network that contains no parent is likewise a top level node. It is given the local address of
the main network.
See an example of a control network here:

Information and
recommenda-
tions for the
topology of a
control network

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1937

In the example the addresses of the nodes are represented in hexadecimal notation. The
first 4 digits represent the address of the respective parent in the main network, for example
0x007A=122 for PLC1. The next byte (in blue lettering) is reserved for the subnet index and
is followed by the local address, for example C=12 for node ID 12. The structuring of the
addresses makes a lean routing algorithm possible. Routing tables, for example, are thus
unnecessary. Information is queried only locally: via its own address and via the address of the
parent node. On this basis a node can correctly process the data packets:
● If the destination address corresponds to the address of the current node, then this is meant

to be the receiver.
● If the destination address starts with the address of the current node, then the data packet is

either meant directly for a child or for a descendant of the node and must be forwarded.
● In all other cases the receiver is not a descendant of the current node and the data packet

must be forwarded to its own parent.
Relative addressing is a special case: relative addresses do not contain the node number
of the receiver, but directly describe the path from the sender to the receiver. The principle
is similar to the relative path in the file system: the address consists of the number of steps
via which the packet must be transported upwards. These are the steps to the corresponding
parent and from the subsequent path downwards to the destination node.
The advantage of relative addressing is that two nodes in the same subtree can continue to
communicate if the complete subtree is shifted to another place in the entire network. Whereas
the absolute node addressing has to be modified due to this shift, the relative addressing is still
valid.
Address determination
For a node to know its own address it must either know the address of its parent node or know
that it is a top level node. For this purpose the node dispatches a message during the bootup
to all network devices for address determination. As long as it receives no response to this
message, the node considers itself to be a top level node, but continues to search for a possible
parent. A parent node responds by announcing its address. The node will thus independently
complete its address and will announce it to the subnets. An address determination can be
accomplished during the bootup or at the request of the PC used for programming.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1938

See also
● Ä Chapter 6.4.1.10.2.2 “Network topology” on page 1937
● Ä Chapter 6.4.1.10.2.4 “Address Structures” on page 1939

Address Structures
Network addresses represent a mapping of the addresses of the network type (for example IP)
to logical addresses within a control network. This mapping is carried out by the corresponding
block driver. The first three bytes of the IP address are identical for all network devices within
an Ethernet network with "Class C" IP addresses. Consequently, the last 8 bits of the IP
address suffice as network address, since they enable unambiguous mapping between the two
addresses on the block driver.
A node has a different network address for each network connection. Different network connec-
tions can have the same network address, since each address need only be locally unique.
Terminology: the network address in the main network is usually designated as the network
address of a node with no specification of the network connection.
The length of a network address is specified in bits and can be chosen by the block driver as
required. The same length must be used for all nodes within a network area. A network address
is represented by an array of bytes in accordance with the following coding:
● Length of the network address: n bits
● Necessary bytes: b = (n + 7) DIV 8
● The (n MOD 8) bits of lowest rank of the first byte and all others (n DIV 8) are used for the

network address.

Length: 11 bit
Address: 111 1000 1100

Example of
network
address coding

The node address indicates the absolute address of a node within a control network and is
therefore unique within the whole "network tree". The address is composed of up to 15 address
components, each of which occupies 2 bytes. The lower a node is located within the network
hierarchy, the longer its address.
The complete node address consists of the partial addresses of all preceding nodes and the
partial address of the node itself. Each partial address consists of one or more address compo-
nents. The length is therefore always a multiple of 2 bytes. The partial address of a node is
formed from the network address of the node in its main network and the subnet index of the
main network in the case of the parent node. The bits required for the subindex are determined
by the router of the parent node. Filler bits can be inserted between the subnet index and the
network address in order to ensure that the length of the partial address is a multiple of 2 bytes.
Special cases:
● A node without a main network: this means that there is neither a subnet index nor a

network address in the main network. In this case the address is set to 0x0000.
● A node in the main network without a parent: In this case a subnet index with the length 0

is assumed. The partial address corresponds to the network address, if necessary extended
by filler bits.

Network
addresses

Node addresses

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1939

Example of
node
addresses

The node address is always specified in hexadecimal. The individual address components (two
bytes in each case) are separated by a colon ":". Since this represents an array of bytes and
not a 16-bit value, the components are not displayed in the Intel format. For manually input
addresses, missing parts in an address component are supplemented by leading zeros: "274"
= "0274". In order to improve the legibility, the display should also always contain the leading
zeros.
Absolute and relative addresses
Communication between two nodes can be based on relative or absolute addresses. Absolute
addresses are identical to node addresses. Relative addresses specify a path from the sender
to the receiver. They consist of an address offset and the descending path to the receiver.
The (negative) address offset describes the number of address components by which a packet
must be passed upwards in the tree before it can be passed back down by the common parent
node. Since nodes can use partial addresses that consist of more than one component, the
number of parent components to be passed is always equal to the address offset. This means
that the demarcation between the parent nodes is no longer clear. For that reason the common
start of the address of the communication partners is used as the parent address. Each address
component is counted as an upward step, independent of the current parent node. Each error
resulting from this assumption can be detected by the corresponding parent node and must be
handled by it accordingly.
After achieving the common parent node the relative path, as an array of address components,
is followed downwards as usual. Formal: the node address of the receiver is formed by
removing the last address offset components from the node address of the sender and by
appending the relative path to the remaining address.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1940

In the following example each address component is represented by a letter; in each case a
dot separates nodes from each other. Since a node can carry several address components,
there are some in the example that are represented with several letters.
Node A: a.bc.d.ef.g
Node B: a.bc.i.j.kl.m
● Address of the lowest common parent: a.bc
● Relative address from A to B: -4/i.j.kl.m (The number 4 results from the 4 compo-

nents, d, e, f and g, which must pass on the data packet in the upward direction)

In order to guarantee correct operation of the routing, the relative address must be adapted
each time it passes an intermediate node. It is sufficient to adapt the address offset. This is
always done by the parent node: If a node receives a data packet from one of its subnets, the
address offset is increased by the length of the address component of this subnet.
● If the new address offset is < 0, then the data packet must be passed further upward.
● If the address offset is >= 0, then the data packet must be passed on to the child node

whose local address corresponds to the relative path, starting from the address offset.
First of all, however, the address offset must be increased by the length of the local
address of the child node, so that the child node sees the correct address.

A special situation results if the error mentioned above occurs during the determination of the
common parent node. In this case the address offset of the actual parent node is negative,
but this value is larger than the length of the partial address of the subnet from which the
packet originated. So that the next node sees a correct relative address in this case, the node
concerned must do the following: it must discover the error, calculate the local address of the
child node on the basis of the address of the predecessor node and the length difference,
and adapt the address offset accordingly. In this case, too, the address components as such
remain unchanged; only the offset is changed.

Example of the
formation of
node
addresses

There are two types of broadcast - global and local. A global broadcast is sent to all the nodes
in a network. The empty node address with a length of 0 is reserved for this purpose.
Local broadcasts are sent to all the devices in a network area. For this purpose, all the bits of
the network address are set to 1. This is permissible both in relative and in absolute addresses.
A block driver must be able to process both kinds of broadcast addresses. This means: empty
network addresses as well as network addresses whose bits were all set to 1 must be inter-
preted and sent to all devices concerned.

6.4.1.10.3 Symbol Configuration
Use the symbol configuration for preparing symbols with specific access rights for project
variables. You can use these symbols to access the variables externally.

For providing symbols to an OPC UA Server, we recommend using the new
configuration editor (IEC Symbol Set Configuration) for CODESYS 3.5 SP18
and higher.

Ä Chapter 6.4.1.10.4 “IEC Symbol Set Configuration” on page 1945

When generating code, CODESYS also generates a symbol file (*.xml) which includes the
description of the symbols.
The symbol file is stored in the project directory. The name of the symbol file is composed as
follows: <project name>.<device name>.<application name>.xml

proj_xy.PLC1.application.xmlExample

Broadcast
addresses

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1941

You can also generate the symbol file with the “Generate Code” command. This
is very useful when downloading to the PLC is not possible.

The variables that you export as symbols can be bundled in the symbol configuration editor
or defined in the variables declaration using the {attribute 'symbol'} pragma. Another
option is using the element in the SFC editor, where you can define the implicitly generated
element variables that should be exported to the symbol configuration.
The name of the symbol is generated in the symbol configuration in the following syntax:
<application name>.<POU name>.<variable name>. When accessing the variable, you
must always provide the complete symbol name in this syntax.

MyApplication.PLC_PRG.a or MyApplication.SymFB.aExample

As a rule, read-only access applies to symbols for input addresses and for
variables that are mapped to input channels. Write access is possible for testing
purposes in simulation mode only.

The number of symbols which can be exchanged via OPC UA is limited based
on the used AC500 V3 PLC type. OPC UA symbols can be configured via two
ways:

– Select the symbols in the “Symbol Configuration” object and enable the flag
“Support OPC UA features”. All selected symbols are counted for the OPC
UA tag limitation.

– Define the symbols in the “Symbol Set” object(s) below
“Communication Manager è OPC UA Server”. All defined symbols are
counted for the OPC UA symbol limitation, independently if they are defined
in several “Symbol Set” objects.

In case both ways are used in parallel the sum of the symbols is considered for
the OPC UA symbols limitation.

The symbol file is downloaded together with the application to the PLC. Depending on the
device description, this file can be generated as an additional (child) application. This applica-
tion is then listed on the “Application” tab of the device editor.
Syntax: <application name>._symbols.

The symbol application is regarded as a "normal" application with respect to the maximum
number of applications on the PLC.
If your controller has a user management, then you can assign different access rights to a
symbol to the individual user groups (clients). To do this, place the same symbol in different
symbol sets and allow the individual user groups (clients) either to access a symbol set or not.
An on-site operator or an operating data record, for example, receives more information and
access to the same symbols as remote maintenance.

NOTICE!
When attribute pragmas are used for POUs and variables, the behavior of these
POUs and variables can change with respect to the symbol configuration.

See also
● Ä Chapter 6.4.1.21.2.27 “Object 'Symbol Configuration'” on page 2523
● Ä Chapter 6.4.1.20.6.3.43 “Attribute 'symbol'” on page 2314
● Ä Chapter 6.4.1.20.6.3.46 “Effects of Pragmas on Symbols ” on page 2315

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1942

● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080
● Ä Chapter 6.4.1.21.2.8.5 “Tab 'Applications'” on page 2434
● Ä Chapter 6.4.1.21.3.7.23 “Command 'Simulation” on page 2640

Requirement: The project can be compiled without any errors.

1. Select the “Application” object in the device tree.
2. Click “Project è Add Object è Symbol Configuration”.

ð The “Symbol Configuration” object is added to the device tree and the objects editor
opens.

3. Open the “View” menu of the editor and activate the categories of variables that should be
provided in the configuration editor. Click “Build” in the symbol configuration editor.

ð All variables (according to the currently defined filter in the “View” menu) are displayed
in a tree structure.

4. Select the check boxes of individual variables.
Note: Pay attention to the current settings (see the “Settings” button in the menu bar of the
editor).

ð In the field below the menu bar of the editor, information is provided about the current
situation with accompanying instructions, as well as controls for corrective actions.

5. Follow the prompt in the field below the menu bar. In the following case, this should be
only the information that the modified symbol configuration is transferred with the next
download or online change.
Click “Build è Generate Code” on the CODESYS menu bar.

ð The <project name>.<device name>.<application name>.xml file is gen-
erated in the project directory.

CODESYS transmits the symbol configuration to the PLC for an application download or online
change.
See also
● Ä Chapter 6.4.1.21.2.27 “Object 'Symbol Configuration'” on page 2523

A symbol set is a defined set of symbols. If supported by the target device, you can combine
different symbol sets from the symbols of the application in the symbol configuration editor. The
information about the symbol sets is downloaded to the controller. Then you can define the user
group that has access to each symbol set. Rights are assigned on the “Symbol Rights” tab of
the device editor.
As a result, symbol sets allow different client-specific access rights to a symbol in the controller.
You can download changes to a symbol set definition to the controller in an online change.
When the application is deleted on the controller, the symbol sets are also deleted. When
building the application, you can create and save a symbol file in XML format for each symbol
set.
When symbol sets should be used with OPC UA, it is a requirement that a certificate has to be
stored for OPC UA.
As a requirement for creating symbol sets and for granting permissions on the controller, the
user management has to be configured both for optional and for forced device user manage-
ment:

Creating a
symbol configu-
ration

Creating symbol
sets with dif-
ferent access
rights for dif-
ferent control
clients

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1943

1. In the editor of the controller, open the “Users and Groups” tab and click the button.
2. When the user management is still not enabled, first click [Yes] to acknowledge the

prompt about enabling the user management. In the “Add Device User” dialog, specify a
new user name and a password for a user of the Administrator group. Then confirm the
password and click [OK].

3. In the “Device User Logon” dialog, specify the “User name” and “Password”. Then click
[OK]. The user and groups are displayed on the “Users and Groups” tab.

In the following section, you will see an example of steps for creating symbol sets and the
assignment of rights on the controller.

● The application has a defined symbol configuration in the project.
● A user management is configured for the controller (see above). For the example here,

there should be a user group that has the necessary rights for the servicing of the plant. By
default, this type of user group, named "Service", is already created.

● The “Enable symbol sets” option is enabled in the settings of the symbol configuration.
● The connection to the controller is configured in the “Communication Settings” of the device

editor.
1. Click the button in the editor of the “Symbol Configuration” in order to create a new

symbol set. In the “Add New Symbol Set” dialog, specify "Startup" as the name for the
group.

2. In the toolbar of the dialog, click the button ([Build]) in order to display all symbols
which are available in the project. Select the users who should belong to the group. Save
the project.

3. Click Online → Login to connect the application to the controller. Click [Yes] to the prompt
of whether or not the application should be downloaded to the device.

4. In the editor of the symbol configuration, click the [Configure Symbol Rights] button. The
“Symbol Rights” tab of the device editor opens.

5. Click the button([Synchronization]) to synchronize the display of the symbol sets with
the device.

ð In “Symbol Sets”, you see all sets that have currently been downloaded for the
application (for this example, at least "Startup"). In “Rights”, a table shows the user
groups that are created in the user management of the controller. In the example,
we assume that the default groups “Administrator” and “Service” have been created.
When a symbol set is selected on the left, you see on the right the permissions of the
individual user groups to this symbol set (access granted; access denied). The
possible type of access is already defined for each symbol in the symbol configuration
(read, write, execute).

6. On the left, select the [Startup] symbol set and double-click the preset minus sign for
"Administrator" as well as for "Service".

ð The symbol changes into a plus sign. The "Administrator" and "Service" groups now
have access to the symbols in the [Startup] symbol set.

See also
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971
Ä Chapter 6.3.6.2.1 “General” on page 1787

Requirements

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1944

6.4.1.10.4 IEC Symbol Set Configuration

The number of symbols which can be exchanged via OPC UA is limited based
on the used AC500 V3 PLC type. OPC UA symbols can be configured via two
ways:

– Select the symbols in the “Symbol Configuration” object and enable the flag
“Support OPC UA features”. All selected symbols are counted for the OPC
UA tag limitation.

– Define the symbols in the “Symbol Set” object(s) below
“Communication Manager è OPC UA Server”. All defined symbols are
counted for the OPC UA symbol limitation, independently if they are defined
in several “Symbol Set” objects.

In case both ways are used in parallel the sum of the symbols is considered for
the OPC UA symbols limitation.

In addition to the known “Symbol Configuration Editor”, with CODESYS Communication there is
also a new editor for configuring IEC symbols for exchanging with other controllers.
Currently, the “IEC Symbol Publishing” object for the publication of symbols via “OPC UA” is
available. The object has to be inserted in the device tree below the application below
the “Communication Manager” object and there again below an “OPC UA Server” object.
You can insert multiple “IEC Symbol Publishing” type objects to configure different symbol sets
for different purposes. Individually assign the object names accordingly. In the OPC UA Client, a
separate folder with the assigned name is then created for each symbol set.
The IEC symbol set configuration is based on precompile information. In contrast to the
known “Symbol Configuration”, the project does not necessarily have to be in an error-free
compilable state to get the variables and types available in the project for a configuration in the
editor. Discrepancies between the editor and the project, which may result due to changes in
the project, will be brought to your attention and you will be assisted in making corrections.
Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941

Requirement:
You have a project with IEC variables and IEC data types. You want to exchange a specific set
of variables as symbols with other OPC UA Clients via an OPC UA Server. For the following
instructions: To control the publication, you have also created a data source of type OPC UA in
the project. See here: Establishing the Connection of a Data Source OPC UA Client to an OPC
UA Server.
Ä Chapter 6.4.1.10.6.7 “Data Source OPC UA Client” on page 1960

In the following, you create the required symbol configuration for a symbol set in the editor of an
object of type “IEC Symbol Publishing”:
Ä Chapter 6.4.1.21.2.14 “Object: IEC Symbol Publishing” on page 2466

1. Click [Add Object] to add a “Communication Manager” below the application.
2. Add an “OPC UA Server” below the communication manager.
3. Add an “IEC Symbol Publishing” object below the “OPC UA Server” and rename the

object (for example, "webvisu", or "client xy", depending on the intended use of the symbol
set to be configured).

4. Double-click the symbol publishing object to open the editor.

ð Below “Precompile Sets” in the left part of the window, the variables and types which
are currently supported in the project for publishing are listed.

5. Select one or more variables or a POU containing variables and drag the selection to the
right part of the window.

ð The variable(s) are inserted into the table.

Creating and
configuring a
symbol set

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1945

6. Configure all desired variables in the table for export as symbols. If necessary, assign a
different symbol name and set the access rights. When assigning the access rights, note
the “Use access rights defined in the user management” option at the top of the editor.
When this option is selected, the rights assigned in the user management of the controller
for the symbol set are also considered in addition to the access rights set here in the
editor. The stronger restriction is applied.

7. If you have structured data types in the project, then on the “Symbol Type Editor” tab you
can make a specific symbol configuration for different variants of the type:

8. For example, on the “Symbol Type Editor” tab, drag a POU of type STRUCT to the table
on the right side of the window. Click the button to open the Data type members of
<STRUCT> dialog.

9. Select the members of the <STRUCT> POU to be exported as symbols and configure
accordingly. Close the dialog.

10. Option: On the “Symbol Type Editor” tab, drag the same POU of type STRUCT to the table
a second time and configure it with the corresponding name as a "variant" of the first one.

11. In the project, change something in the declaration of the STRUCT type, for example, add
another member. Then click “Refresh” in the symbol editor.

ð An icon is displayed at the corresponding entry in the table. In the tooltip of the
icon, you will be prompted to click the button to resynchronize between the editor
and the project.

12. Click the button.

ð The “Data type members of<STRUCT>” dialog opens and by clicking [D] the editor
and project are synchronized again. The new member is added to the configuration
table.

13. When the symbol configuration is finished, log in to the controller and open the data
source object created for OPC UA to check the symbols for publishing.

ð On the “Variables” tab, you can see the symbol set(s) with the variables and types you
have defined as symbols.

6.4.1.10.5 Network Variables
Network variables can be used to exchange data between two AC500 V3 PLCs. The variables
must be defined in strict and identical lists on both PLCs which are sender and receiver. The
lists can be in one or more projects.
A step-by-step description on how to use network variables can be found in the
application example.

The network variable list in the sender is a global variable list where specific log and transfer
parameters are defined in their object properties. By adding these properties, you create a
"network variable list (sender)" from an ordinary “GVL”. You can also insert a “Network
Variable List (Sender)” object directly into the device tree when this object already has these
parameters set.

The network variable list in the receiver is of type “Network Variable List (Receiver)”. When
creating one, select the respective network variable list of the server. As an alternative, you can
read this variable list from an export file that was generated from the sender list. An export file is
required anyway for defining the sender list in another project.
The network variables are transmitted as broadcasting in one direction only: sender to receiver.
However, it is also possible for a device to contain both sender and receiver lists.
For the NetVarUdp library version 3.5.7.0 and later, a receiver channel is no longer assigned
when confirmed transfer is not selected. In this way, network variable exchange is also possible
between two controllers on one hardware device .

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1946

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011170&LanguageCode=en&DocumentPartId=&Action=Launch

NOTICE!
– If the exchanging devices should be senders and receivers, then the vari-

able list identifiers must be unique in order to prevent abnormal operation.
The variable list identifiers are defined in the “Properties” dialog of an object
GVL.

– Data exchange via network variables is not possible when:
– The device (target system) does not support it.
– A firewall blocks the communication.
– Another client or application is using the UDP port that is set in the

properties of the network variable list.
– More than one application per sender device and receiver device use

network variable lists.
– Only arrays that have limits defined with a literal or constant are transmitted

to the receiver application. Constant expressions are not permitted for this
purpose.
Example: "arrVar : ARRAY[0..g_iArraySize-1] OF INT ;" is not
transmitted, but "arrVar : ARRAY[0..10] OF INT ;" is transmitted.

– The maximum size of a network variable is 255 bytes. The possible number
of network variables is unlimited.

– If the size of the GVL exceeds the maximum length of the network telegram,
then the data is split into multiple telegrams. Depending on the configura-
tion, this can result in data inconsistencies.

See also
● Ä Chapter 6.4.1.21.4.11.12 “Dialog 'Properties' - 'Network Variables'” on page 2760
● Ä Chapter 6.4.1.21.2.12 “Object 'GVL' - Global Variable List” on page 2465
● Ä Chapter 6.3.5.2 “Data exchange between AC500 V3 PLCs via EtherCAT” on page 1751

6.4.1.10.6 Data Link with Data Sources
General

In order to have read/write access to the remote devices and their running applications, you can
add a data source manager to your application with one or more data sources.
The functionality of the data source manager allows for establishing connections and communi-
cation to remote devices, and it makes its data available through data source variables. At this
time, the partners communicate by means of a point-to-point connection. Depending on the
network where the controllers are located, a connection is established via the CODESYS data
source types or CODESYS ApplicationV3.

The data source type CODESYS Symbolic is available only together with a CODESYS HMI
device. However, then it is advantageous to use this type.

Below a CODESYS HMI device, you can configure the data link either with
data source type CODESYS Symbolic or with data source type CODESYS
ApplicationV3. We recommend that you select the data source type CODESYS
ApplicationV3 only when there are no resources for the symbol configuration
available on the remote device. For example, this is the case with embedded or
mini PLCs whose applications often do not contain a symbol configuration.

The requirement for a connection setup is that symbols have been configured in the remote
device and as a result a symbol file exists. The application in the remote device has a symbol
configuration. Then the data link can take place via symbolic monitoring.

Data source
type CODESYS
Symbolic

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1947

In the case of symbolic monitoring, the symbol file on the remote device is read and the stored
variable information is used for the data source variables and the data transfer. The advantage
is that the application does not have to be updated in the local device when someone modifies
the remote application without updating its symbol configuration. If the symbol file is also located
on your development system (either a file or a symbol configuration object as part of your
project), then the local symbol file can also be read. Then you can work offline during the
development phase.
During the development phase, you can create a variable list offline by means of local symbol
configuration files. In this way, you can develop a local application offline based on the symbol
information without a connection to a data source.
The following connection types are possible:
● “CODESYS V2”:

The devices exist in the same network. The V2 runtime on the remote PLC provides a
communication interface.

● “CODESYS V2 (Via gateway)”
The devices do not exist in the same network. They are connected via a V2 gateway.
Note: For this connection, a “CoDeSys V2.3 Gateway Server” (V2 gateway) has to be
installed on the development computer where CODESYS V3 is running.

● “CODESYS V3”
The devices exist in the same network. The V3 runtime on the remote PLC provides a
communication interface.

● “CODESYS V3 (Via gateway)”:
The devices do not exist in the same network. They are connected via a V3 gateway.

This data source type is available below all device types.
The data link with CODESYS ApplicationV3 data source type in done by means of address
monitoring. This requires that the address information between the remote PLC and the local
device match. The runtime system of the local application needs valid communication parame-
ters in order to establish the connection.

The network scan function can support you when configuring the data source.

Disadvantage: If you modify the remote application, then you also have to update the local
application afterwards (for example, the HMI application.
The advantage is that a symbol configuration is not required in the remote application.

At runtime of the local application, the data source variables that appear in the data source
editor of the “Variables” tab are updated in configurable time intervals. The remote application
is also executed at this time. Variables that are configured in the visualization, in the trend, as
alarms, or for recipes are transferred and stored automatically. When a variable is accessed in
IEC code only, the variable is not updated automatically. In this case, you have to select the
“Update always” option in the data source editor of the “Variables” tab.
The data source types support the (read or write) data access to variables of the source PLC for
the following data types:
● Scalar value at top level

Example: PLC_PRG.hugo
● Property to a program or GVL by means of a call when it is marked with {attribute

monitoring := 'call'}.
Example: PLC_PRG.PropertyCall

● Variable which is mapped to bit addresses
Example in PLC_PRG: x AT %MX0.5 : BOOL;

Data source
type CODESYS
ApplicationV3

Data transmis-
sion

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1948

● Variable (type BIT) in a function block
Example: Declaration in DUT: x, y : BIT, bit access: PLC_PRG.dutInst.y

● Structured obtainable variable
Example: PLC_PRG.outerInst.innerInst.dwVar

● Property to POU instance when it is marked with {attribute monitoring :=
'call'}.
Example: PLC_PRG.instance.PropertyCall

● Property at top level and to an instance when it is marked with {attribute
monitoring := 'variable'}.
Note: This cannot be written by monitoring or by the data sources.

● Array access with literal index
Example: PLC_PRG.arrOfInts[3], PLC_PRG.inst.arrOfBool[1]

● Nested access (for example, array of structures or structure of arrays)

CAUTION!
Bit access used in visualizations that are transferred via a data source con-
nection function only if they contain literal offset specifications. A visualization
cannot process an offset specification by defined constants.

Ä Chapter 6.4.1.21.2.5 “Object 'Data Source Manager'” on page 2412

Ä “Dialog 'Add Data Source'” on page 2413

Ä Chapter 6.4.1.21.2.6 “Object 'Data Source'” on page 2414

Initially Adding a Data Source
For data exchange between your local device and a remote device, add a “Data Source
Manager” object and then a “Data Source” below your application in the device tree. A wizard
guides you through the configuration of the data source. Afterwards, you can change the
settings at any time in the editor of the object. However, it is not possible to modify the data
source type later.

Use the “CODESYS Symbolic” data source type unless there are no resources
available in the remote PLC for a symbol configuration. As long as the symbol
configuration in the remote device is not impacted by an application change,
you have the advantage that the application in the local device does not have to
be updated.

When adding a data source, select a data source type. Then specify the connection settings of
the point-to-point connection to the remote device. Ideally, the remote device is running during
this time and CODESYS can establish the connection to it immediately. Then all available
data source variables from the remote PLC are displayed. Select the variables that should be
transferred. You can also select all variables. Then the data source is initialized automatically,
the data source variables are created below the “DataSources_Objects” folder, and another
data source is added below the data source manager.
If the data is transferred using symbolic monitoring and the symbol file is stored on your
development system, then you can read the variable information from the symbol file and work
offline. The symbol file is stored either as a file on your development system or as a symbol
configuration object as part of your project (in CODESYS).
The initial settings can be changed at any time in the data source editor.
See also
● Ä Chapter 6.4.1.21.2.5 “Object 'Data Source Manager'” on page 2412

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1949

A “CODESYS Control Win V3” is running on the remote device. Moreover, an application is
running with a symbol configuration.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V3”.
6. For “Type of name or address”, select the “Node name” option.
7. In the “Connection Settings” group, specify the connection parameters for configuring the

remote device. Example: “[03A7)”

ð The connection to the remote device is established and the application is read. The
“Initialize Data Source Wizard - Browse data items” dialog also opens. The read
remote control variables are displayed in the tree view on the “Variables” entry. The
top node is the application, which is displayed with its remote application name.

8. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

A “CODESYS Control Win V3” is running on the remote device. Moreover, an application is
running with a symbol configuration. The remote device exists in another network so that the
communication has to be routed via a gateway.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V3 (Via gateway)”.

ð You can also specify the communication parameters for the gateway.

6. For “Type of name or address”, select the “Node name” option.
7. In the “Connection Settings” group, specify the connection parameters for configuring the

remote device. Example: “[03A7)”

ð The connection to the remote device is established and the application is read. The
“Initialize Data Source Wizard - Browse data items” dialog also opens. The read
remote control variables are displayed in the tree view on the “Variables” entry. The
top node is the application, which is displayed with its remote application name.

Initially con-
necting devices
symbolically via
'CODESYS V3'

Initially con-
necting devices
symbolically via
'CODESYS V3
(Via gateway)'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1950

8. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

A “CoDeSys V2.3 SP PLCWinNT V2.4” is running on the remote device. Moreover, an applica-
tion is running with a symbol configuration.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V2”.
6. In the “Connection Settings” group, specify the connection parameters for configuring the

remote device.
Example: driver type TCP/IP (Level 2 Route), address localhost, port 1200
ð The connection to the remote device is established and the application is read. The

“Initialize Data Source Wizard - Browse data items” dialog also opens. The read
remote control variables are displayed in the tree view on the “Variables” entry.

7. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

A “CoDeSys V2.3 SP PLCWinNT V2.4” is running on the remote device. Moreover, an applica-
tion is running with a symbol configuration. The remote device exists in another network so that
the communication has to be routed via a gateway.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. As the connection type, select “CODESYS V2 (Via gateway)”.

ð You can also specify the communication parameters for the gateway.

Initially con-
necting devices
symbolically via
'CODESYS V2'

Initially con-
necting devices
symbolically via
'CODESYS V2
(Via gateway)'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1951

6. In the “Connection Settings” group, specify the connection parameters for both the
gateway and the device configuring the remote device.
Example: driver type TCP/IP (Level 2 Route), address localhost, port 1200
ð The connection to the remote device is established and the application is read. The

“Initialize Data Source Wizard - Browse data items” dialog opens. The remote control
variables are displayed in the tree view on the “Variables” entry.

7. In the “Connection Settings” group, specify the connection parameters for configuring the
remote device. Example: “[03A7)”

ð The connection to the remote device is established and the application is read. The
“Initialize Data Source Wizard - Browse data items” dialog opens. The read remote
control variables are displayed in the tree view on the “Variables” entry. The top node
is the application, which is displayed with its remote application name.

8. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

Ideally, the same symbol file on the remote device is saved on your development system.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source” in the

context menu.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Symbols
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. In “Variable information”, click the “From symbol file” entry.
6. In “Select symbol file”, specify the location and the file name of the symbol file. When the

code is generated, an XML symbol file is created in the project directory by default.

ð Example: D:\Projects\V3.5 SP11\Project_A.Device.Application.xml
Hint: When a symbol file is specified, no additional connection settings have to be
configured. A connection is not established. You are working offline. You have to
configure the connection settings only when you need current data from the controller
which is transferred online. In the “Variable information” settings, select the “From
connection settings” option.

7. Click the “Next” button.

ð The “Initialize Data Source Wizard - Browse data items” dialog opens. The read
symbols are displayed in the tree view on the “Variables” entry.

8. In the tree view, select the symbols to be transferred. Then click “Finish”.

ð The data source is initially configured. The ds_Symbols object is added below the
“Data Source Manager” node. The object is open, and on the “Variables” tab, the data
source variables that were generated based on the symbol file are displayed in the
tree view. The GVL ds_Symbols, where the data source variables are declared, is
located below the “DataSource_Objects” folder.

Initially adding
data source var-
iables from a
symbol file

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1952

Your active project contains the control application for the remove device. The control applica-
tion includes a symbol configuration with symbols that are added to your local application as
data source variables.

1. Below your local application in the device tree, insert the “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Symbols
4. As the data source type, select “CODESYS Symbolic”.

ð The data transfer is done via symbolic monitoring. The “Initialize Data Source Wizard -
Provider settings” dialog opens.

5. In “Variable information”, select the “<remote device>.<application>.symbol configuration”
entry.

ð Example: Device.Application.Symbol Configuration
Hint: When a symbol file is specified, no additional connection settings have to be
configured. A connection is not established. You are working offline.

6. Click the “Next” button.

ð The “Initialize Data Source Wizard - Browse data items” dialog opens. The read
symbols are displayed in the tree view on the “Variables” entry.

7. In the tree view, select the symbols to be transferred. Click “Finish”.

ð The data source is initially configured. The ds_Symbols object is added below the
“Data Source Manager” node. The object is open, and on the “Variables” tab, the
data source variables that were generated based on the symbol configuration are
displayed in the tree view. The GVL ds_Symbols, where the data source variables
are declared, is located below the “DataSource_Objects” folder.

A “CODESYS Control Win V3” is running on the remote device. The project of the remote
device is located on your development computer. The engineered application there does not
contain a symbol configuration.

Use this communication link only if there are no resources available in the
remote PLC for a symbol configuration.

1. Below your application in the device tree, insert a “Data Source Manager” object.
2. Select the “Data Source Manager” object and click “Add Object è Data Source”.

ð The “Add Data Source” dialog opens.

3. In the “Name” field, specify the data source name.

ð Example: ds_Remote_Device
4. As the data source type, select “CODESYS ApplicationV3”.

ð The data transfer is done by means of address monitoring. The “Initialize Data Source
Wizard - Provider settings” dialog opens.

5. For “Select the project type”, select the “Other Project” option.

Initially adding
data source var-
iables from a
symbol configu-
ration

Initially con-
necting devices
with address
monitoring

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1953

6. For “Choose file”, specify the file and location of the project on the remote device.
Example: C:\Data\Projects\PLC_A.project.

ð The remote device is displayed in the tree view of the window below, and as a result
the connection was established.

7. Click the “From device” link.

ð The connection parameters to the remote device are read and displayed in the dialog.
The connection is configured.

8. Click “Next>”.

ð The “Initialize Data Source Wizard - Browse data items” dialog opens. The remote
control variables are displayed in the tree view on the “Variables” entry.

9. In the tree view, select which control variables should be transferred. Then click “Finish”.

ð The data source is configured. A connection is established. The settings are stored in
the object and can be modified in the editor of the object.
The data source is initially configured. The ds_Remote_Device object is added
below the “Data Source Manager” node. The object is open, and on the “Variables”
tab, the data source variables to be generated are displayed in the tree view. The GVL
ds_Remote_Device, where the data source variables are declared, is located below
the “DataSource_Objects” folder.

See also
● Ä Chapter 6.4.1.21.2.6.4 “Tab 'Communication' via CODESYS Symbolic” on page 2417
● Ä Chapter 6.4.1.21.2.6.5 “Tab 'Communication' via CODESYS ApplicationV3” on page 2422

Editing data source variables
In runtime mode, the remote data is saved to the data source variables. The data source
variables and their mapping to the remote variables are displayed in the data source editor
below of the “Variables” tab. If the local and remote variables have the same names and the
same data types, then the data is mapped 1:1. The variables and the data types are created
automatically. That is the regular procedure.
You can also map to existing variables. This is necessary, for example, if a visualization includes
a data type in an interface. Then the same data must be passed to this visualization. In this
case, the declared local variable and the remote variable have the same data type, for example
from one library. Moreover, you can map a local variable with a conforming data type to a
remote variable. The data type can be created in the “Type Mappings” tab.
The specifically created variables and data types are declared in the “DataSources_Objects”
folder. For each data source, a global variable list of the same name as the data source is
declared there. Moreover, the data source variables usually have the identical or conforming
data type as the remote control variable and they are declared as user-defined data types (DUT
objects). Considering all data sources, multiple declaration of the same data types is avoided.
Do not edit the data interface in the “DataSources_Objects” folder manually. It is created initially
when adding a data source. Changes can be made later in the editor of the data source.
See also
● Ä Chapter 6.4.1.10 “Working with Controller Networks” on page 1936
● Ä Chapter 6.4.1.10.6.5 “ Updating data interfaces” on page 1957
● Ä Chapter 6.4.1.21.2.6.2 “Tab 'Variables'” on page 2415

You can edit the selection of the data source variables.Selecting varia-
bles for data
transfer

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1954

Requirement: The remote device and its application are running. A data source manager
is already inserted below the local application with a data source.
1. Open the editor of the data source.
2. Select the “Variables” tab.
3. Click “Update Variables”.

ð The “Browse Variables” dialog opens.

4. Activate the variables that should be transferred and click “OK” to close the dialog.

ð The data source variables are modified according to the selection. The declaration of
variables and data types is also modified.
The “Variables” tab shows the modified selection. Moreover, the mapped remote vari-
able is listed in the “Remote variable” column.

See also
● Ä Chapter 6.4.1.10 “Working with Controller Networks” on page 1936
● Ä Chapter 6.4.1.10.6.5 “ Updating data interfaces” on page 1957
● Ä Chapter 6.4.1.21.2.6.2 “Tab 'Variables'” on page 2415

You need to map a remote variable to a global implicit variable that is created new. That is the
regular procedure for transposing data source to 1:1.

Requirement: A project is open. A data source manager and a data source below it are
located in the device tree of the local application.
1. Open the editor of the data source.
2. Select the “Variables” tab.

ð The data source variables are listed.

3. Select a variable and click the symbol in the “Create or map” column.
4. Specify a name in “Local variable”.

ð A variable is declared automatically and it contains the same value as the mapped
remote variable.

You need to map a remote variable to an existing variable.

Requirement: A data source manager and a data source below it are located in the device
tree of the local application. The remote data that should be transferred is displayed in the editor
of the data source in the “Variable” tab
1. Open the editor of the data source.
2. Select the “Variables” tab.
3. Select a variable and click the symbol in the “Create or map” column.

ð A variable contains the same value as the mapped remote variable.

Mapping remote
variables to a
new variables

Mapping remote
variables to a
existing varia-
bles

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1955

First, create a conforming data type and then use it for a variable.

Requirement: A data source manager and a data source below it are located in the device
tree of the local application. The remote data that should be transferred is displayed in the editor
of the data source in the “Variable” tab
1. Open the editor of the data source.
2. Select the “Type Mappings” tab.
3. Select the data type in the list that you want to edit.

ð The elements of the data type are listed in the window below the data type list

4. Specify a name for the data type. Example: DataType_A. Select the name for the remote
data types to which the local type should conform. Example: Library1.DataType_A.

5. Modify it in the window below the data type list and remove the elements that are not
necessary for the data transfer.

6. Select the symbol for this data type in the “Create or map” column.

ð The data type DataType_A is declared in the “DataSources_Objects” folder.

7. Select the “Variables” tab.
8. Specify a name in the “Local variable” column. Example: Var_A
9. Select the symbol in the “Create or map” column.
10. Specify the data type DataType_A in the “Mapping type” column.

11. Select the remote variable with the data that should be transferred. Example:
appPLC_A.Data_A. Use the input assistance for this.

ð A variable Var_A is declared automatically with the user-defined data type
DataType_A. During data transfer, it receives the data of the mapped remote vari-
ables.

Mapping remote
variables to
local variables
with a con-
forming data
type

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1956

The example demonstrates how variables of the data source are created. At this time, new
variables are created, data is mapped to existing data types and their variables, and new data
types are created with type-conforming mapping.
The remote PLC uses POU instances from the SnakeUtil library and the HMI device
visualizes these POU instances. This is why the HMI application requires a variable in the
operating interface that has a data type appropriate for a visualization template. As a result,
the SnakeUtil library is linked integrated into the HMI application and the HMI variables
instantiate the SnakeUtil.SnakeVisu visualization function block.

The following library function blocks from the SnakeUtil library are used in the remote PLC.

● Function block SnakeUtil.Snake: Equipped with much logic and calling from external
functions.

● DUT SnakeUtil.PositionInfo: Two values (of the variables x and y)
● DUT: SnakeUtil.DrawingInfo: Image ID
● The SnakeUtil.SnakeVisu visualization function block with transfer parameter

SnakeUtil.Snake visualizes the Snake function block.

The following settings are entered in the editor of the “Type Mappings” tab:

In the visualization, a frame is inserted with a reference to SnakeUtil.SnakeVisu. This
expects to have the type SnakeUtil.Snake.

The data types SnakeUtil.PositionInfo and SnakeUtil.DrawingInfo are mapped to
existing data types (symbol in the “Create or map” column). The data types are small and
contain data only.
The SnakeUtil.Snake function block is very complex and calls external functions that are
not available in the HMI visualization. The function block with code is not required in the
visualization. You need a less extensive but compatible and conforming type in the HMI visuali-
zation. Therefore, do not create the original data type directly. Instead, first modify the original
data type and remove the unnecessary elements. Then create the new data type Snake by
selecting the symbol in the “Create or map” column.

Library
SnakeUtil

Editing Communication
You have added a “Data Source Manager” object and below it a “Data Source” object below
your application in the device tree. The connection parameters are displayed in the data source
editor of the “Communication” tab. You can modify it there.
The data source type and the current connection type are listed in the status bar. It is not
possible to modify the data source type later.
See also
● Ä Chapter 6.4.1.10.6.2 “Initially Adding a Data Source” on page 1949
● Ä Chapter 6.4.1.21.2.6.4 “Tab 'Communication' via CODESYS Symbolic” on page 2417
● Ä Chapter 6.4.1.21.2.6.5 “Tab 'Communication' via CODESYS ApplicationV3” on page 2422

Updating data interfaces
The data source variables are updated cyclically in runtime mode. Only the data is updated that
either is used in the current visualization or has the property “Update always”.

Example

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1957

You can define the time interval. Moreover, you can define variables whose data is transferred
in each update interval, and therefore they are always update. To update variables that are not
used in the application code, you can implement an update programmatically with the help of
interface functions from the data source manager.

NOTICE!
If data traffic between the remote and local device is too high, then the update
rate is reduced automatically. This can lead to an incomplete transfer.

See also
● Ä Chapter 6.4.1.21.2.6.2 “Tab 'Variables'” on page 2415

1. Open the editor of the data source.
2. Click the “General and Diagnosis” tab.
3. Specify a value in the “Update rate” field.

Example: 100
ð The data from the remote device to the local device is transferred every 100 ms.

See also
● Ä Chapter 6.4.1.21.2.6.7 “Tab 'General and Diagnosis'” on page 2426

NOTICE!
Avoid updating too many variables always. Each update produces additional
data traffic at the connection between the remote and local devices. When data
traffic is too high, the update rate is reduced automatically. This can lead to an
incomplete transfer.

1. Open the editor of the data source.
2. Activate the option “Update always” for a variable.

ð The data of the variables is transferred at each update cycle, even when the data has
not changed.

See also
● Ä Further information on page 2415

The data source manager provides interface functions in the Datasources library. If a data
source manager is integrated in the application code, then the global variable g_Datasources
is instantiated automatically. This provides access to the interface functions.
Then you can update individual variables that are not called in the active visualization.

Setting the
update rate

Selecting the
variable for 'Up-
date always'

Updating data
programmati-
cally

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1958

The variable ivar is activated and deactivated by means of methods from the Datasources
library so that its value is transferred. Furthermore, you can configure that the variable is
updated only over a defined duration in order to save transfer capacity.

//Synchronize with DatasourcesTask and block until access is
possible
//Regard the feedback in ERR_OK or in ERR_DE_MULTITASKING_LOCKED
g_Datasources.BeginDataConfiguration(TRUE);
// Activate variable
g_DataServer.UseData(ADR('RemoteDevice.Application.PLC_PRG.iVar'));
// Deactivate variable
//
g_DataServer.ReleaseData(ADR('RemoteDevice.Application.PLC_PRG.iVar'
));
g_DataServer.EndDataConfiguration();

The data configuration is started with BeginDataConfiguration(TRUE), thus initializing
the synchronization of the task DatasourceTask with the application task. The value TRUE
blocks the processing until the access to the variable is possible; FALSE repeats access
attempts without blocking. The return values ERR_OK and ERR_DS_MULTITASKING_LOCKED
provide feedback about the access attempts.
When synchronization is successful, the variable is activated by means of the UseData
method. Then the data configuration is completed with the EndDataConfiguration method
and the synchronization triggered again with the task DatasourceTask.

The ReleaseData method is used in the same way for deactivating the variable again at the
desired processing time.

Example

Using remote data
The variables that are listed in the data source editor of the “Variables” tab (and declared in the
“DataSources_Objects” folder) can be used in your application like IEC variables. For example,
you can visualize the variables.
If multiple data sources are available and therefore conflicts occur regarding unique variable
names, then you must specify the data source name as the prefix. If no conflicts occur, then this
is not necessary and you can map the variables without a data source prefix.
<data source name>.<function block name>.<variable name>

You need to show the variable value iTemp of a remote device in a visualization element of a
visualization in the local application (with the data source manager).
Initial situation: A data source dsRemotePLC is below the local data source manager where the
connection to the remote device is configured. In addition, the variable iTemp is selected in the
data source editor of the “Variables” tab.
1. Select the visualization element in the editor view. Select the properties “Text variables” -

“Text variable” in the “Properties” view.
2. Select the iTemp variable.

ð The variable mapping is qualified. Example: dsRemotePLC.PLC_PRG.iTemp.

3. Select the “Text” property of the visualization element and type in the following:
Temperature: %s
ð The value of the iTemp variable from the remote device RemoteDevice is displayed.

4. Download and start the remote application.
5. Download and start the local application.

ð The visualization starts and displays the actual value of iTemp.

Displaying vari-
able values from
the remote
device

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1959

NOTICE!
The visualization integrated in CODESYS does not display actual values of vari-
ables that are transferred by means of a data source connection. The integrated
visualization displays only the initialization values or the last otherwise delivered
values because they do not establish a connection to the data sources.

NOTICE!
If variables are used that are not called in the visualization code, then the
variables must be updated in the application code by means of functions from
the data source interface.

Data Source OPC UA Client
Establishing the Connection of a Data Source OPC UA Client to an OPC UA Server

Requirement:
● An OPC UA Server is available. For a description of the OPC UA Server which is included in

the standard installation CODESYS, see the chapter "OPC UA Server".
Ä Chapter 6.3.6.2 “OPC UA server for AC500 V3 products” on page 1787

● You have installed the CODESYS Security Agent add-on in CODESYS.
● CODESYS is open.
● The “Allow anonymous login” option is selected for your controller in the “Change

Communication Policy” dialog of the device editor (“Communication Settings” tab, “Change
Communication Policy” command, “Device” menu). Or the user management has been
explicitly disabled (for example, by switching to “Optional user management” in the “Change
Communication Policy” dialog and then “Reset Origin”).

1. Start the OPC UA Server.
2. Create a new CODESYS project.
3. Add a “Data Source Manager” object to the application.
4. Add a “Data Source” “OPC UA-Client” to the “Data Source Manager”.

ð The “Initialize Data Source” dialog opens.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1960

5. In the “Initialize Data Source” dialog, configure the data source for communication in the
following.

With the option “Read Connection Settings from IEC Variable” option,
you can dynamically configure the connection settings instead of defining
them here in the dialog. For more information, see: Using a Dynamic
Connection to an OPC UA Server
Ä Chapter 6.4.1.21.2.6.6 “Tab 'Communication' via OPC UA Server”
on page 2424

Ä Chapter 6.4.1.10.6.7.3 “Using a Dynamic Connection to an OPC UA
Server” on page 1963

The settings from this dialog are reflected accordingly on the Communication tab of the
data source manager:
● For “Where to find the server layout”, define how the information about the existing

variables and types should be detected. When you select the “Browse Live Server”
option, the OPC UA Client connects to the OPC UA Server for this purpose and reads
the information there. When you select “From Information Model”, the client reads the
same information from an installed information model and does not require a running
OPC UA Server to do this.

● Click the [Show All Endpoints] button to open the “Available Endpoints” dialog.
● Select an endpoint which defines an “Encrypt & Sign” message security mode and

a corresponding security strategy. After the dialog is closed, these settings are trans-
ferred to the “Security” section of the “Initialize Data Source” dialog.

● Choose a suitable “Client certificate” to access the server for browsing purposes. If
a certificate is not available for selection yet, then you can have one generated imme-
diately. To do this, click the button to open the “Generate self-signed certificate”
dialog. Define a password for your private key and a file name for the certificate. When
you click [OK], the certificate is generated and automatically entered into the certificate
store. The *.cer and *.pfx certificate files are stored with the project file. As a result,
you can "give" the certificate with the public key (*.cer) to the server so that it "knows"
the certificate. You can also share the private key (*.pfx) to make the project usable on
another machine (for browsing).
Note that this certificate can be used only for browsing the server for variables and
data types. An additional certificate is required for data exchange in online mode. Its
creation is described below.

6. Click “Next”.Now the client scans the OPC UA Server to find the variables and types of the
OPC UA Server. The OPC UA Server has to be online to do this.

7. Now select one or more variables.

ð These variables can be exchanged later via encrypted communication between the
OPC UA Client and the OPC UA Server. For the variables, components are created in
the “Devices” view, in the “DataSources_Objects” folder. The variables can be used in
the application.

8. In the next steps, you create a certificate for the encrypted communication from the OPC
UA Client to the OPC UA Server.

9. Click “View è Security Screen”.
10. Switch to the “Devices” tab.
11. In the view on the left, select the controller.

ð In the right view, all services of the controller are displayed which require a certificate.

12. Select the service “CmpOPCUAClient”.
13. Create a new certificate for the device. To do this, click the icon.

ð The “Certificate Settings” dialog opens.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1961

14. Define the certificate parameters and click “OK” to close the dialog.

ð The certificate is created on the controller.

15. Click the button and save the certificate to the local file directory of the OPC UA Server,
in the folder certs.

ð Now when you restart the OPC UA Server, it will recognize the client certificate. The
the server sends its certificate to the client. In the following steps, this certificate will be
made "trusted" to the client.

16. To do this, in the “Security Screen” view, on the “Devices” tab, click the “Certificates in
Quarantine” folder in the left area.

ð The certificate is displayed in the right area.

17. Drag this certificate to the “Trusted Certificates” folder.

ð Now the server certificate is "trusted" by the client.

18. Now when you connect to the controller and the application starts, the data source varia-
bles of the OPC UA Client can be exchanged with the OPC UA Server via the encrypted
connection.

See also
● Ä Chapter 6.4.1.21.2.6.6 “Tab 'Communication' via OPC UA Server” on page 2424

Error Messages
Message: Identity mismatch
Typical error cause: The application information on the target device and the HMI to not match.
Correction: A new download should be done on the HMI to update the application information.

Message: Login failed
Typical error cause
● The communication settings are incorrect.
● The user name or password is not correct.
Correction: Check the communication settings for the target device. Make sure that the user
name and password are correct.

Message: Login necessary
Typical error cause: There is no connection to the controller.
Correction: Check the communication settings for the target device. Make sure that the user
name and password are correct.

Message: The device cannot be reached.
Typical error cause
● The device is switched off.
● The communication settings are incorrect.
● The network connection does not work.
Correction: Make sure that the target device is switched on. Check the communication settings
and the network connection to the target device.

Error 8448

Error 8449

Error 8450

Error 8452

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1962

Message: The device name is not unique.
Typical error cause: Multiple devices with the same name were found in the target system.
Correction: Make sure that the target device has a unique name.

Message: No symbols available
Typical error cause: Either no application has been downloaded to the target device, or an
application with another symbol configuration.
Correction: Make sure that the application is downloaded with the correct symbol configuration
to the target device.

Message: The connection is denied due to no resources.
Typical error cause: All available communication channels of the target device are used.

Using a Dynamic Connection to an OPC UA Server
The settings for the communication of a OPC UA Client data source to an OPC UA Server can
be dynamically configured from the IEC code and can also be changed at runtime. For this
purpose, a structure is available in the DatasourceOpcUAServer library.

When using this kind of "dynamic connection", at runtime, for example, the server URL can be
changed again if the device is located in a different network than at the time of configuration. It
can also be used to configure detailed settings on the OPC UA connection.
Requirement
● You have created an OPC UA Client data source in the CODESYS project. For more

information, see: Establishing the Connection of a Data Source OPC UA Client to an OPC
UA Server.
Ä Chapter 6.4.1.10.6.7 “Data Source OPC UA Client” on page 1960

1. On the “Communication” tab of the data source, now select the “Read Connection
Settings from IEC Variable” option.

2. In static memory (for example, in a GVL or in a program in your project), create a variable
of type DatasourceOpcUaServer.UserConfigurationV1.

Example: config variable in the PLC_PRG program

PROGRAM PLC_PRG
VAR
 config : DatasourceOpcUaServer.UserConfigurationV1 := (
 SessionName := 'MyCustomSession',
 EndpointUrl := 'opc.tcp://DevXY:4840',
 SecurityPolicyUri :=
DatasourceOpcUaServer.CmpOpcUaStack_Interfaces.OpcUa_SecurityPolic
y_None);
 value : INT;
END_VAR

Error 8453

Error 8454

Error 8457

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1963

3. In the input field below the “Read Connection Settings from IEC Variable” option, refer-
ence the variable created in step 2:
Example: PLC_PRG.config
Now at any time you can fill the fields of this UserConfigurationV1 structure with
values. For example, this can be done when starting the controller, from a configuration
file, or from a visualization dialog.
When filling the structure with setting values, the following applies:
● The EndpointUrl setting always has to be defined.
● All other settings can be assigned as desired. They allow, for example, the use of a

different security mode than in the usual editor. Some settings, which are not available
in the editor, can also be configured on the OPC-UA connection.

When all connection settings are configured, you can set the xValid parameter of
the UserkonfigurationV1 to TRUE.

Example: In the implementation part of PLC_PRG:

config.SubscriptionPublishingInterval := config.SamplingInterval :=
TIME#2S;
config.xValid := TRUE;
Then the data source starts to establish the connection in the next cycle.
Changes to the settings while a connection is established have no effect and are only applied
the next time a new connection is established.
When the xValid setting is set to FALSE, the data source automatically disconnects from the
server and the settings can be changed again.
In the documentation view of the DatasourceOpcUAServer library, you can see an overview
of the currently available setting parameters of the structure and their default values in the
library manager. New versions of the data sources might provide new options.

6.4.1.10.7 Subordinate safety controller
If a safety controller is below the standard controller, then the communication with the develop-
ment system and the data exchange run via the standard controller. The communication links
of the safety controller can interrupted the execution of commands that affect the standard
controller. You find a notice about this for each these command.
Possible interruptions
● Temporary interruption: During the execution of the command (for example: download),

the connections with the safety controller are interrupted first and then are automatically
available again afterwards. If the interruption time is too long, then safety-oriented reactions
can occur in the output devices and connected network variable receiver safety controllers.
Then in the safety controller, the corresponding communication errors must be acknowl-
edged (if not done automatically) in order to end the safety-oriented reactions. This affects
the connection to their field devices and network variable receiver connections to other
sender safety controllers. In the case of a connected safety controller with network variable
senders, the communication errors must be acknowledged in the other safety controllers.

● Permanent interruption: The execution of commands (for example: delete) leads to an
interruption that is ended again by another action (for example: download). As a result of
the interruption, safety-oriented reactions can occur in the output devices and connected
network variable receiver safety controllers. After ending the interruption, the corresponding
communication errors must be acknowledged in the safety controller (if not done automati-
cally) in order to end the safety-oriented reactions.

For a subordinate safety controller, the routing runs via “<Name of SafetyApp>_Mapping”. In
some cases, it can happen that the user can see this application in the device tree.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1964

CAUTION!
No commands may be executed in the application “<Name of
SafetyApp>_Mapping”.

● Ä Chapter 6.4.1.10 “Working with Controller Networks” on page 1936

6.4.1.11 Downloading an Application to the PLC
6.4.1.11.1 General.. 1965
6.4.1.11.2 Configuring the Connection to the PLC... 1965
6.4.1.11.3 Encrypting Communication, Changing Security Settings.............. 1967
6.4.1.11.4 Handling of Device User Management.. 1971
6.4.1.11.5 Generating Application Code... 1976
6.4.1.11.6 Downloading the application code, logging in, and starting the

PLC.. 1977
6.4.1.11.7 Generating boot applications... 1978
6.4.1.11.8 Downloading source code to and from the PLC............................ 1980

6.4.1.11.1 General

The multi download tool can be used to update multiple PLCs with firmware or
an application at the same time.

Ä Chapter 6.6.4 “Multi download tool” on page 4306

In order to transfer your application to the PLC, the program has to be compiled without any
errors and the connection settings for the PLC have to be set.

If the communication with the controller is encrypted and/or restricted to specific
users, then you need the respective certificates and permissions. See here:

– Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971
– Ä Chapter 6.4.1.9.18 “Protecting an application” on page 1915

You can edit the basic security policy for communication with the device in a
dialog on the “Communication Settings” tab of the device editor. See here:

– Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Set-
tings” on page 1967

When these requirements are fulfilled, the application is downloaded to the PLC at login.

6.4.1.11.2 Configuring the Connection to the PLC
The connection to the controller is established by means of a gateway. This gateway can
be your development computer or another network computer connected to the controller. The
“Communication Settings” dialog is available for configuring the connection path. This dialog
opens automatically when you attempt to log in, but the communication settings have not been
configured yet.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1965

If the communication with the controller is encrypted and secured by means of
user management, then you need a corresponding certificate and credentials
to establish the connection to the controller. In this case, see the relevant
instructions on the "Encrypting communication and Changing Security Settings"
help page.

Requirement: The project can be compiled without any errors. A programmable logic controller
(PLC) is inserted in the device tree. The use of a user management is required for the device,
but it is not enabled.
1. In the device tree, select the PLC and click “Project è Edit Object”.

ð The PLC opens in the editor.

2. Click the “Communication Settings” tab.
3. On the menu bar, click “Scan Network”.

ð The “Select Device” dialog opens. All available devices in the network are shown on
the left side.

4. Select the desired device and click “OK”.

ð A dialog prompt is displayed with the notice that a user management is required for
the device, but it is not enabled yet. You are prompted to enable the user management
if you want. The notice is displayed that in this case you have to create a new
administrator account and then log in as this user.

5. Click “Yes” to close the dialog prompt.

ð The “Add Device User” dialog opens to create an initial device administrator.

6. Define the credentials (“Name” and “Password”) for the device administrator. Select the
“Password can be changed by the user” option.

NOTICE!
Remember the seriousness of the password: From within the develop-
ment system, there is no way to access the controller again if you forget
the password.

Click “OK” to close the dialog.

ð The “Device User Logon” dialog opens.

7. Enter the credentials for the device administrator which you defined in the previous step.

ð The connection path for the PLC is set.

You can reset the communication settings view to the original view in the
CODESYS options of the device editor.

See also
● Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”

on page 1967
● Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Settings'” on page 2427
● Ä Chapter 6.4.1.21.4.14.7 “Dialog 'Options' - 'Device Editor'” on page 2786

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1966

6.4.1.11.3 Encrypting Communication, Changing Security Settings

NOTICE!
Recommendations for data protection
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for remote access. Install firewall mechanisms.
Restrict access to authorized persons. Use high-strength passwords. Change
any default passwords regularly before and after commissioning.
Use the security features supported by CODESYS and the respective con-
troller, such as encryption of communication with the controller and intentionally
restricted user access.

Communication with the device can be protected by means of encryption and user management
on the device. You can change the current security preset on the “Communication Settings” tab
of the device editor.

Requirement: Encrypted communication with the controller and user management are
enforced on the controller. However, an individual password does not exist yet. A certificate
has not been installed on your computer and the connection to the controller has not been
configured yet.
1. In the device tree, double-click the controller.

ð The device editor opens.

2. Click the “Communication Settings” tab.
3. Click “Scan Network”.

Establishing a
connection to
the controller,
logging in,
installing a
trusted certifi-
cate for
encrypted com-
munication

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1967

4. Select a controller.

ð A dialog opens, informing you that the certificate of the device does not have a trusted
signature for communication. You are prompted whether or not to install this certificate
as trusted in the local "Controller Certificates" store on your computer, or accept a
session only for this one.

NOTICE!
A controller certificate installed in this way is valid for only 30 days.
This gives you time for the following long-term solutions:
– Creation of an additional self-signed certificate with a longer term

(for example, 365 days). You can do this on the security screen
if you have installed the CODESYS Security Agent, even if a
certificate already exists. Using the PLC shell of the device editor
is not a convenient workaround.
See below: "Configuring encrypted communication with a con-
troller certificate with a more long-term validity period"

– Importing a CA-signed certificate. This is currently only possible
via the PLC shell commands of the runtime. Therefore, we recom-
mend to use self-signed certificates first.

5. If you want to install the certificate, then select the first option and click “OK” to confirm the
dialog prompt.

ð The certificate is listed as trusted. After accepting the self-signed certificate for the first
time, you can establish an encrypted connection with the controller again and again
without further prompts.
A dialog prompt is displayed with the notice that a user management is required for
the device, but it is not enabled yet. You are prompted to enable the user management
if you want. The notice is displayed that in this case you have to create a new
administrator account and then log in as this user.

6. Click “Yes” to close the dialog prompt.

ð The “Add Device User” dialog opens to create an initial device administrator.

7. Create a device user in order to edit the user management as this user. In this case, only
the “Administrator” group is available. Specify a “Name” and “Password” for the user. The
password strength is displayed. Note also the set options regarding a password change.
By default, the password can be changed by the user at any time. Click “OK” to confirm.

ð The “Device User Logon” dialog opens.

8. Enter the credentials for the device administrator which you defined in the previous step.

ð You are logged in on the controller. On the “Users and Groups” tab, you can use the
 button to switch to synchronized mode. The device user management is displayed

there and you can edit it.
After you click “OK” to confirm, the device user management is displayed in the editor
view. It contains the user of the “Administrator” group who you just defined. The name
of this user is also displayed in the taskbar of the window as “Device User”.

9. All saved controller certificates (from Step 5) are stored in the local Windows Certifi-
cate Store on your computer. You can access this memory by means of the “Execute”,
certmgr.msc command.

ð All registered certificates for encrypted communication with controllers are listed here
in “Controller Certificates”.

Requirement: The CODESYS Security Agent add-on product is installed. You want to replace
the temporary certificate (as described above) acquired the first time you connected to the
protected controller with a certificate with a longer validity period.

Configuring a
controller certif-
icate with a
more long-term
validity period

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1968

In this case, the “Security Screen” view provides an additional tab: “Devices”. This allows for
the simple configuration of certificates for the encrypted communication with controllers. For
operation, see the help for CODESYS Security Agent: "Encrypted Communication with Devices
via Controller Certificates".

Choose this less convenient method when the CODESYS Security Agent is unavailable to you.
In this case, you can set up a certificate with a more long-term validity period for communication
encryption on the “PLC Shell” tab of the device editor.

Requirement: You are connected to the controller.
1. At first, you check if a qualified certificate is already on the controller. If no certificate is

available, then you create a new certificate.
Open the device editor by double-clicking the controller in the device tree, and select the
“PLC Shell” tab.

ð The tab appears with a blank display window. Below that is a command line.

2. Type the following command in the command line: cert-getapplist.

ð All used certificates are listed. The list includes information about the runtime compo-
nent and whether or not the certificate is available.

3. If a certificate still does not exist for the component CmpSecureChannel, then type the
following command in the input line:
cert-genselfsigned <number of the component in the applist>

4. Click the “Log” tab and then the refresh button ().

ð The display shows whether or not the certificate was generated successfully.

5. Change back again to the “PLC Shell” tab and type the command cert-getapplist.

ð The new certificate for the component CmpSecureChannel is displayed.

6. In the next two steps, activate encrypted communication in the security screen of
CODESYS.

7. Open the “Security Screen” by double-clicking in the status bar.
8. On the “User” tab, select the “Enforce encrypted communication” option in the “Security

Level” group.

ð The communication to all controllers is encrypted. If there is not a certificate on a
controller, then you cannot log in to it.
The connecting line between the development system, the gateway, and the controller
is displayed in yellow on the “Communication Settings” tab of the device editor of the
controller.

9. As an alternative to the “Enforce encrypted communication” option which applies to all
controllers, you can also define encrypted communication for specific controllers only. To
do this, select the “Communication Settings” tab in the editor of the respective controller.
Then click “Encrypted Communication” in the “Device” list box.

ð The communication with this controller is encrypted. If there is not a certificate on the
controller, then you cannot log in to it.
The connecting line between the development system, the gateway, and the controller
is displayed in yellow on the “Communication Settings” tab of the device editor of the
controller.

for encrypted
communication
by means of
CODESYS
Security Agent
(recommended)
Installing a con-
troller certificate
for encrypted
communication
via the PLC
shell of the
device editor

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1969

10. When you log in to the controller for the first time, a dialog opens with information that the
certificate of the controller is not signed by a trustworthy authority. In addition, the dialog
displays information about the certificate and prompts for you to install it as a trustworthy
certificate in the local store in the “Controller Certificates” folder.
When you confirm the dialog, the certificate is installed in the local store and you are
logged in to the controller.
In the future, communication with the controller will be encrypted automatically with this
control certificate.

11. To increase security for key exchange for controllers < V3.5 13.0, you can generate Diffie-
Hellman parameters on the controller. To do this, type the command cert-gendhparams
in the input line.
This is no longer required for controllers >= V3.5.13.0.

NOTICE!
Caution: Generating the Diffie-Hellman parameters can last for several
minutes or even several hours. However, this process must be executed
only one time for each controller. The Diffie-Hellman parameters increase
security for key exchange and for future attacks against encrypted data
recording.

Requirement: The connection to the device is established.
1. In the device tree, double-click the controller.

ð The device editor opens.

2. Click the “Communication Settings” tab.
3. Open the “Device” menu in the header of the editor. Click “Change Communication

Policy”.

ð The “Change Communication Policy” dialog opens.

4. In the upper part of the dialog, you can toggle between the “Optional encryption”,
“Enforced encryption”, and “No encryption” settings.

5. In the lower part of the dialog, you can toggle between the “Optional user management”
and “Enforced user management” settings.

Requirement: The device supports encrypted communication.
1. In the device tree, double-click the controller.

ð The device editor opens.

2. Click the “Communication Settings” tab.

Changing the
communication
policy (encryp-
tion, user man-
agement)

Enabling and
disabling
enforced
encrypted com-
munication

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1970

3. Open the “Device” menu in the header of the editor. Click “Encrypted Communication”.
The status toggles between enabled and disabled.

ð If the “Encrypted communication” option is selected, then the connection line between
the development system, the gateway, and the device is highlighted in the editor in
bold and in color in the graphical representation.

See also
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971
● Ä “Encryption with certificates” on page 1820

6.4.1.11.4 Handling of Device User Management

NOTICE!
Recommendations for data protection
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for remote access. Install firewall mechanisms.
Restrict access to authorized persons. Use high-strength passwords. Change
any default passwords regularly before and after commissioning.
Use the security features supported by CODESYS and the respective con-
troller, such as encryption of communication with the controller and intentionally
restricted user access.

For devices that support a device user management, the device editor includes the “Users
and Groups” tab and the “Access Rights”. When offered by the device, you can view the user
management for the device here as well as edit it in synchronization mode (not in online mode).
Here, you can grant or deny specific permissions on the controller to the defined user groups.
The device user management can already be set up in the device description.

Note the commands in the “Online è Security” menu. You can easily add, edit,
or remove a user account on the controller where you are currently logged in.

In order for the “Access Rights” tab to be available in the device editor, the
corresponding CODESYS option must be selected in the device editor and
unlocked in the device description. If the device editor is not available, then
contact the manufacturer of the controller.

In order to grant access rights to a user group, first the users and user groups have to be
configured on the “Users and Groups” tab of the device editor. User management first has
to be set up on the controller before access rights can be configured on it. In case the user
management of a device is not enabled yet, it can be enabled in the following way: Either by
switching to the synchronized mode on the “Users and Groups” tab, or by adding a new user by
means of the command “Online è Security è Add Device User”.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1971

For the CODESYS Control devices, a user management is enforced by default.

Access rights can be granted to groups only, not individual users. Therefore every user has to
be a member of a group.
Access rights can be granted for the following actions which are executed on the individual
objects of the controller:
● Add/Remove
● Modify
● View
● Execute
An object on the controller is usually assigned to just one controller component.
Each object can use all of the listed actions, but usually only the permissions for the following
actions are needed on an object:
● “View”
● “Modify”

The objects are organized in a tree structure. There are two root objects for the two kinds of
objects:
● “Runtime objects è Device”: In these objects, all objects are managed that have online

access in the controller and therefore have to control the access rights.
● “File system objects è /”: In these objects, the permissions can be granted to folders of the

current execution directory of the controller.
The child objects inherit the access rights from the root object (also “Device” or "“/”"). If a
permission of a user group is denied or explicitly granted to a parent object, then this affects all
child objects.
A single permission can be explicitly granted or denied (green plus sign or red minus sign),
or remain "neutral" (light gray character). Neutral means that the permission has been neither
explicitly granted nor denied. In this case, the permission of the parent object applies.
If no permission has been explicitly granted or denied in the entire hierarchy of the object, then
it is by definition denied. As a result, all permissions are initially denied (exception: the access
right for the “View” action). Initially, this permission is explicitly granted for every user group both
on the “Device” runtime object as well as on the "“/”" file system object. This allows read access
to all objects, unless it is explicitly denied in child objects.
For an overview table for the objects, see the "Tab 'Access Rights'" chapter.
See the following instructions for handling the editor for the device user management:

Requirement: The connection to the controller is configured. The controller supports a device
user management, but one is not active yet.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Users and Groups” tab.
3. Click .

ð A dialog opens prompting whether the device user management should be activated.

4. Click “Yes” to acknowledge the dialog prompt.

ð The “Add Device User” dialog opens.

General infor-
mation about
device user
management

First-time login
on the controller
in order to edit
or view its user
management

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1972

5. Now create a device user in order to edit the user management as this user. In this
case, only the “Administrator” group is available. Specify a “Name” and “Password” for the
user. The password strength is displayed. Note also the set options regarding a password
change. By default, the password can be changed by the user at any time. Click “OK” to
confirm.

ð The “Device User Logon” dialog opens.

6. Specify a “User name” and “Password” for the user who you just defined.

ð After you click “OK” to confirm, the device user management is displayed in the editor
view. It contains the user of the administrator group who you just defined. The name of
this user is also displayed in the taskbar of the window as “Device User”.

Requirement: The controller has a device user management. You have the corresponding
access data.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Users and Groups” tab.
3. Click (Synchronization) to load the user management configuration from the controller

to the editor. If you are not logged in to the device yet, then the “Device User Logon”
dialog opens for entering the user name and password.

ð The user management configuration of the device is shown in the editor.

4. In the “Users” view, click “Add”.

ð The “Add User” dialog opens.

5. Specify the name of the new user and assign the user to a group. This counts as the
user's minimum required default group. The user can be assigned to other groups later.
Define and confirm a “Password” for the user. Define whether the user can change the
password and whether the user has to change the password at the first login. Click “OK”
to confirm.

ð The new user appears in the “Users” view as a new node and in the “Groups” view as
a new subentry of the selected default group.

Requirement: The controller has a device user management. You have the corresponding
access data.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Access Rights” tab.

Setting up a
new user in the
user manage-
ment of the con-
troller

Changing of
access rights to
controller
objects in the
user manage-
ment of the con-
troller

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1973

3. Click (Synchronization) to load the rights management configuration from the controller
to the editor. If you are not logged in to the device yet, then the “Device User Logon”
dialog opens for entering the access data.

ð The access rights management configuration of the device is shown in the editor.

4. Select the object whose access right you want to change to the left in the object tree.

ð In the “Rights” view, a table shows the access rights to this object for all configured
user groups.

5. Double-click the right in the table that you want to change.

ð If the object has child objects, then a dialog prompts whether you want to modify the
permissions for the child objects.

6. Click “Yes” or “No” to close the prompt.

ð The permissions are switched from "allowed" to "not allowed" , or the other way
around. The symbol in the table cell changes accordingly. Explicitly set permissions
appear in the table as green or red symbols. Rights that are inherited from a parent
object appear as gray symbols.

In V3.5 SP16 and higher, a file (*.dum2) to be encrypted with a password is
used for exporting a user management.

1. Double-click the controller device object in the device tree.

ð The device editor opens.

2. Click the “Users and Groups” tab.
3. Click .

ð The dialog for selecting a file from the local file system opens.

4. Select the file (<file name>.dum2) with the desired user management from the local
file system and click “Open” to confirm.

ð The “Enter Password” dialog opens.

Transferring and
enabling a
saved user man-
agement in off-
line mode from
a DUM2 file to a
controller

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1974

5. Specify the password that was assigned when the user management file was exported
(possible by means of the button).
CAUTION: The import of a device user management by means of a *.dum2 file com-
pletely overwrites the existing user management on the device. In order to log in to the
device again afterwards, you need authentication data from the recently imported user
management.

ð When the password is entered correctly, the configuration from the downloaded user
management file is now displayed in the editor view.

6. Edit the configuration however you like. For example, change the user password or add a
new user.

ð Every change is downloaded immediately to the device.

See also
● Ä Chapter 6.4.1.21.2.8.15 “Tab 'Access Rights'” on page 2453
● Ä Chapter 6.4.1.21.4.14.7 “Dialog 'Options' - 'Device Editor'” on page 2786
● Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'” on page 2450
● Ä Chapter 6.4.1.8.2 “Configuring Devices and I/O Mapping” on page 1836
● Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”

on page 1967

You can configure a password policy and login lock for the runtime system. Using these two
mechanisms makes sure that the credentials configured for the controller are as secure as
possible and that attackers cannot guess the credential by repeated attempts. By default, a
password policy is not enabled. The login lock is enabled by default for the administrator user
group because this user group needs to fulfill increased security criteria and should also be
better protected. When the maximum number of login attempts has been exceeded, the user
will be locked out for the configured amount of time (3600 seconds by default).
Unlocking a locked user
The following options are available for unlocking a user who has been locked for a specific
period of time:
● An administrator or a member of a user group with write permission for the user group of the

locked user assigns a new password for the user.
● The runtime system is restarted.
1. In the device tree, double-click the controller.

ð The device editor opens. The “Communication Settings” tab is displayed.

2. In the header, click the “Scan Network” button, and in the “Select Device” dialog, select
the desired device. Then click “OK”.

ð The active path to the controller is set.

3. In the “Device” menu, select “Change Runtime System Password Policy”.
4. In the “Change Runtime System Password Policy” dialog, select the “Password policy is

active” option.

ð The password policy with the displayed password settings is enabled.

ð The detailed default password settings can be found in the description of the dialog.

5. Change individual password settings as needed.
6. Click “OK” to confirm the changes made.

ð The configured password policy is immediately applied when creating a new user and
when changing the password for an existing user. Only new passwords which fulfill the
password policy can be created.

Configuring the
password policy
and login lock

Enabling and
changing a
password policy

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1975

1. In the device tree, double-click the controller.

ð The device editor opens. The “Communication Settings” tab is displayed.

2. In the header, click the “Scan Network” button, and in the “Select Device” dialog, select
the desired device. Then click “OK”.

ð The active path to the controller is set.

3. In the “Device” menu, select “Change Runtime System Password Policy”.
4. In the “Change Runtime System Password Policy” dialog, you can change the default

settings for the login lock or disable the login lock.
5. Click “OK” to confirm the changes made.

ð The configured login lock is immediately applied when logging in to the device user
management for users of the user group selected in the “Scope”.

ð When the number of login attempts specified in the “Maximal Retries” field is
exceeded, the user will be locked out for the amount of time which is specified in
the “Lock duration” field.

6.4.1.11.5 Generating Application Code
The application code is the machine code that a PLC executes when you start an application.
CODESYS automatically generates the application code from the source code that was written
in the development system. This is done automatically before downloading the application to the
PLC. Before the application code is generated, a test is performed for checking the allocations,
the data types, and the availability of libraries. Moreover, the memory addresses are allocated
when the application code is generated.
You can click “Build è Generate Code” to execute this command explicitly. This is useful for
detecting any errors in your source code, even when the PLC is not connected yet. The errors
are output in the message view in the "Build" category.

NOTICE!
If you have encrypted the application, then consider the following information: If
a (new) boot application is generated on request after an online change, then
the boot application is formed in the RAM with the current code that is not
encrypted.

Requirement: The application can be compiled without any errors.

Click “Build è Generate Code”.

ð The application code is generated. Detailed information about memory allocation is
output in the message view.

See also
● Ä Chapter 6.4.1.11.7 “Generating boot applications” on page 1978
● Ä Chapter 6.4.1.21.3.6.1 “Command 'Generate Code'” on page 2618

When you generate the application code, CODESYS outputs information about memory alloca-
tion in the message view. Gaps form in the memory because reallocation is only for new and
changed POUs and variables due to the incremental memory build. Online changes have the
same effect. This fragmentation reduces the amount of available memory. However, you can
completely reallocate the memory by clicking “Clean” and therefore increase the amount of free
memory.

Configuring a
login lock

Explicitly gener-
ating the appli-
cation code

Messages when
generating the
application code

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1976

Syntax errors and bugs that CODESYS detects during the code generation and memory alloca-
tion are also output in the message view (“Build” category).
Output information about memory allocation:
● “ Size of the generated code” (in bytes): Sum of all code segments
● “Size of global data” (in bytes): Total memory used by the global variables. Inputs and

outputs are not included unless inputs or outputs are mapped in the area of the global
variables.

● “Total allocated memory size for code and data” (in bytes): The total allocated memory
is composed of the already used memory areas plus the reserved, not yet used memory
for incremental builds and online changes. After the first build, the already used memory
is approximately equal to the highest used address (see below). The largest contiguous
memory gap (see below) still corresponds approximately to the difference to the total
allocated memory. However, as the number of incremental builds and online changes
increases, the number of memory gaps also increases, and the largest contiguous memory
gap becomes smaller.

● “Memory area <n>”: Contents of the individual reserved memory areas
Background: It depends on the PLC which data and code is stored in which memory areas.
For example, code and data are located in the same area on the CODESYS Control Win
V3. For the addresses %I, %M, and %Q, memory is always reserved, even when a variable
is not assigned to an address. After cleaning the application, the memory is reallocated
completely. In this case, small gaps could result from the predefined alignment (normally
8). Larger gaps result from changing a date without cleaning, for example by increasing an
array area. In this case, only the affected POUs are recompiled. Furthermore, in the case
of an online change, the memory is used only for new variables and new code. Memory
that was previously reserved by deleted variables and code is made available again. As a
result, memory fragmentation can occur after many incremental builds and online changes.
This creates many small gaps that might not be usable at all in some cases. To clarify how
much memory is safely available, the "largest contiguous memory gap" of the memory area
is output during code generation.
– “highest used address” (Byte) : This is the highest reserved address in the entire

allocated memory area. During the first build after a "Clean" operation, the memory
addresses are output to variables in ascending order, taking into consideration the align-
ment (usually 8 bytes). As a result, the highest address used at this time corresponds
approximately to the amount of memory used. The rest of the allocated memory area is
still completely available for incremental builds and online changes.

– “Largest contiguous memory gap” (in bytes): This is the memory size that is available for
backup.
Resulting gaps in the allocated memory are reused whenever possible for other
changes. When, for example, a global variable of type Byte is added, it is placed in
the first free byte of the memory. Even just a small gap is enough for this. However,
an FB instance, a variable of the type structure or array, or the code for a POU has to
be stored contiguously and therefore occupies more memory accordingly. As a result,
they can be allocated only to the largest contiguous memory area. This is why during
code generation the "largest contiguous memory gap" that is safely available is output
(in bytes), as well as its percentage of the total memory.

Note the options for generating applications.
See also
● Ä Chapter 6.4.1.21.4.11.10 “Dialog 'Properties - Application Build Options'” on page 2759

See also
● Ä Chapter 6.4.1.9.18 “Protecting an application” on page 1915

6.4.1.11.6 Downloading the application code, logging in, and starting the PLC
In order to download the source code of your application to the PLC, you must log in to the PLC
with application. If there are several applications in the project, then you must switch explicitly to
the correct application first.

Encrypting the
application code

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1977

When you download an application to the PLC, CODESYS performs the following checks:
The list of applications on the PLC is compared with the applications available in the project. If
they do not match, then you are prompted to download the application that is not on the PLC yet
or delete existing applications.
For "externally implemented" blocks in the application to be downloaded, CODESYS checks
whether these are available on the PLC. If they are not available, then the message "unresolved
reference(s)" is printed to a dialog prompt and to the message view. Then CODESYS compares
the parameters (variables) of the blocks in the application to be downloaded and the parameters
of the same-named blocks in the application that exists on the PLC (signature check). If there
are any discrepancies, then the message "invalid signature(s)" is printed to a dialog prompt and
to the message view.
If the "Download Application Info" check box is selected in the application properties, then
additional information about the application contents are downloaded to the PLC.
if multiple applications exist for the same device, then notice that the “I/O Mapping” dialog
contains the definition for which of the applications is used for for the I/O mapping of the device.
See also
● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410

Requirement: The application contains no errors and the communication settings of the PLC are
correct. The application does not exist yet on the PLC: The application and the communication
with the controller are not encrypted.

1. Select the required application in the device tree. Skip to Step 3 if you have only one
application.

2. Click “Set Active Application”.

ð The application name appears in bold typeface.

3. Click “Online è Login”.

ð A dialog prompts you whether the application should be created on the PLC.

4. Click “Yes” to confirm.

ð The application is downloaded to the PLC.

5. Click “Debug è Start” or press the [F5] key.

ð The application is running on the controller.

6.4.1.11.7 Generating boot applications
A boot application is the application that is started automatically when the controller is switched
on or started. For this to happen, the application on the controller must exist as a file
<application name>.app.

For each application that is running on the controller, a boot application can also be saved
there.
By default, CODESYS generates the boot application automatically when an application is
downloaded and transfers them to the PLC. The defaults for generating automatically are
located in the “Boot application” category of the application “Properties”. When logging in with a
changed application, you are still prompted whether or not to generate a new boot application.
In addition, you can create a (new) boot application at any time in online mode by clicking
“Online è Create boot application”.
You can create and save a local copy of a boot application in offline mode as well. Then,
you can copy this application to the controller with external tools. In this way, you transfer an
application to the controller, even when there is no connection to CODESYS.

Transferring an
application and
starting the pro-
gram

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1978

Requirement: Offline mode; the application is compiled without errors. The connection to the
controller is configured and the controller is running. The application is active. The following
steps demonstrate the options:

1. Click “Online è Login”.

ð The boot application file <application name>.app is created on the controller with
the checksum of the boot application <application name>.crc.

2. Click “Online è Create Boot Application” explicitly.

ð The files on the controller are replaced by new files.

3. Log out.
4. Change the application. Log back in to the controller.

ð You are prompted whether an online change should be performed. You see the
“Update boot application” check box in the same dialog box. This is cleared by
default, but this can be changed in the “Boot Application” category of the application
“Properties”.

5. Keep the check box cleared and continue login.

ð A new boot application file is not created.

6. Log out. Close the project. Stop the controller. Restart the controller.

ð The boot application that was created above is running on the controller.

You can save the encrypted boot application on the controller. These settings
are defined in the “Application Build Options” category of the application
“Properties”.

See also
● Ä Chapter 6.4.1.21.4.11.10 “Dialog 'Properties - Application Build Options'” on page 2759
● Ä Chapter 6.4.1.21.4.11.3 “Dialog 'Properties' - 'Boot Application'” on page 2754
● Ä Chapter 6.4.1.14.2 “Executing the online change” on page 2025
● Ä Chapter 6.4.1.21.3.7.4 “Command 'Create Boot Application'” on page 2627

Requirement: Offline mode; the application is compiled without errors. You want to generate
a boot application for an application and save it in the file directory for copying it later to the
controller by using external tools (without CODESYS).
1. Click “Online è Create Boot Application”.

ð A dialog box opens for specifying a save location in the local file system.

2. Click a save path and then click “Save”.
3. If the application has changed since the last boot application was generated, then you are

prompted to use a new code for the boot application. In this case, click “Yes”.

ð The “Save as” dialog box opens.

4. Select a directory and click “Save”.

ð The boot application file <application name>.app is created in the given path.

You are prompted whether or not the build information for the boot application is
saved.

Generating boot
applications on
the controller
automatically
and explicitly

Creating boot
applications in
offline mode

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1979

5. Click “Yes”.

ð The build information is saved to the project directory as a file named <application
name>.compileinfo. It is a requirement for a possible online change the next time
the application is updated. Please note: Clicking “Build è Clean” deletes this file.

See also
● Ä Chapter 6.4.1.21.3.7.4 “Command 'Create Boot Application'” on page 2627

6.4.1.11.8 Downloading source code to and from the PLC
The source code of an AC500 V3 project can be downloaded to a V3 PLC memory. At a later
point in time, this project can be uploaded and restored directly from the PLC without the engi-
neering PC being required for this Ä Chapter 6.3.5.3 “Source download/upload” on page 1751.

6.4.1.12 Testing and Debugging
6.4.1.12.1 General

CODESYS provides various options for testing your application and detecting errors. You can
start your application in simulation mode, even without connecting any hardware. Using break-
points and stepping commands, you can examine specific parts of a program. By writing values
to variables, you can influence the running program.
Commands are provided that reset your application in various different ways, from resetting only
non-persistent variables to completely resetting the controller to factory settings.
See also
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985
● Ä Chapter 6.4.1.12.6 “Resetting applications” on page 1990

6.4.1.12.2 Testing in simulation mode
Use simulation mode for testing and debugging your program when you do not have a physical
target device. In this mode, the application is started on a simulated device.
The command is available only when you are logged out.
Requirement: You program contains no errors (compiler error messages or compile errors) and
you are not logged in.
1. Activate simulation mode as follows:

● Click “Online è Simulation”, or
● Right-click the controller in the device tree and click “Simulation”.

ð The name of the controller in the device tree is displayed in italics. In the status line,
"Simulation" appears highlighted in red. The “Simulation” command is selected in the
main menu.

2. Click “Online è Login”.
3. When logging in with the active application, you will be prompted whether the application

"Sim.<device name>.<application name>" should be created and loaded. Click “Yes” to
confirm.

ð The application is logged onto the PLC.

4. Now you can check and correct the program flow with the commands provided in the main
menu in “Debug”.

5. Log out from the controller and end the simulation mode.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1980

See also
● Ä Chapter 6.4.1.21.3.7.23 “Command 'Simulation” on page 2640

● The focus of the simulation mode is testing and debugging your program of the PLC. That
means the functionality of the simulated PLC is limited. Keep in mind that some POUs have
no function. They are not creating any compile or download errors, they will simple not work.

● Without an extra available “Virtual Commissioning” license the “Online mode” of the simu-
lated PLC is limited to 2 hours. After 2 hours starting from the “Login”, the “Online mode” is
automatically terminated and the PLC is logged out.

● It is not possible to create a “Boot Application” in the simulated PLC. Every “Login” starts
with an empty simulated PLC and a download of the application is required.

● When logging in to a simulated PLC the first time a “Windows Security Alert” is displayed.
Depending on the application, e.g. if any network communication is implemented, it might be
necessary to allow the “Virtual AC500” to communicate on one or multiple network types.

6.4.1.12.3 Using Breakpoints
Breakpoints are commonly used for debugging programs. CODESYS supports breakpoints in all
IEC editors.
You can set breakpoints at specific positions in the program to force an execution stop and to
monitor variable values. You can set special data breakpoints to halt program execution when
the value of a specific variable changes.
The halt at a breakpoint or data breakpoint can be linked to additional conditions. You can also
redefine breakpoints and data breakpoints as execution points where specific code is executed
instead of stopping the program.

The “Breakpoints” view provides an overview of all defined breakpoints. It also
includes additional commands for processing batch changes to multiple break-
points.

In the editor, the following symbols identify the status of a breakpoint or execution point:

● The breakpoint is enabled.
● The breakpoint is disabled.
● Breakpoint is set in another instance of the POU open in the editor.
● The program is halted at the breakpoint.
● The conditional breakpoint is enabled.
● The conditional breakpoint is disabled.
● The execution point is enabled.
● The execution point is disabled.
● The conditional execution point is enabled.
● The conditional execution point is disabled.
● The data breakpoint is enabled.
● The data breakpoint is disabled.
● Halt at data breakpoint
● The data execution point is enabled.
● The data execution point is disabled.
● Halt at data execution point
● The conditional data execution point is enabled.
● The conditional data breakpoint is enabled.
See also
● Ä Chapter 6.4.1.21.3.4.12 “Command 'Breakpoints'” on page 2586

Limitations

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1981

The function of data breakpoints depends on the target system. Currently, data
breakpoints are possible only with the CODESYS Control Win V3.

Program execution stops at a data breakpoint when the value of a particular variable or memory
address changes. As with ordinary breakpoints, the halt can be linked to an additional condition,
or specific code can be processed instead of the halt (converted to a data execution point).
You set a data breakpoint either by means of the “New Data Breakpoint” command in the
“Debug” menu or by means of the “New” button in the “Breakpoints” view. You specify a
qualified variable name or a memory address directly which is to be monitored for changes in its
value.

In the following sample code, the memory of the variable iNumber is overwritten unintention-
ally. However, a data breakpoint at the variable iNumber will detect when its value changes.
The processing then stops with a corresponding message at the array access, which over-
writes the variable value: Idx = 7. See also below: "Setting a data breakpoint".
PROGRAM PLC_PRG
VAR
 Idx : INT;
 Ary : ARRAY[0..3] OF BYTE;
 iNumber : INT := 55;
END_VAR
FOR idx := 0 TO 6 DO
 Ary[idx] := 0;
END_FOR

Example

Basically, debugging is not possible for multiple tasks at the same time. While you are working
on a task with breakpoints or stepping, breakpoints are ignored in other tasks.
If a POU containing a breakpoint is used by multiple tasks, then only the debug task is halted
because it reaches the breakpoint first. All other tasks continue. The “Call Stack” dialog shows
which task is currently halted.
If you need a breakpoint to affect only one specific task, then you can define this in the
breakpoint properties.
Breakpoints operate separately for each application so that a "HALT ON BP" does not affect any
other applications. This applies also to parent/child applications, even if the breakpoint is set in
a block that is used by several applications and whose code is located only once on the PLC.

NOTICE!
The I/Os that are called by the debug task are not updated at a halt in the
breakpoint, even if you select the “Refresh I/Os in Stop” check box in the PLC
settings.

If the application stops at a breakpoint on the PLC, then an online change or
download causes all tasks to halt which means the PLC will stop. In this case,
CODESYS prompts you whether or not to continue with the login.

See also
● Ä Chapter 6.4.1.21.3.4.15 “Command 'Call Stack'” on page 2590

Data break-
points

Breakpoints in
applications
with multiple
tasks

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1982

Requirement: The application is in online mode and running. The operating mode is “Debug”.

1. In the editor, open a POU programmed in structured text (ST).
2. Place the cursor in the line where a breakpoint will be set.
3. Click “Debug è Toggle Breakpoint” or press [F9].

ð The line is marked in red and identified by the "breakpoint enabled" symbol (). If the
program is halted at the breakpoint, then the line is marked by the "stop at breakpoint"
symbol (). The processing of the program is stopped. This is identified in the status
line by the HALT ON BP status highlighted in red.

4. Click “Debug è Start” or press [F5].

ð The program continues.

5. Set more breakpoints and check the variable values at the break position.
6. Place the cursor in the line where a breakpoint should be removed.
7. Click “Debug è Toggle Breakpoint” or press [F9].

ð The marking disappears. The breakpoint is deleted.

See also
● Ä Chapter 6.4.1.21.3.8.9 “Command 'Toggle Breakpoint'” on page 2646

1. In the editor, open a POU programmed in structured text (ST).
2. Place the cursor in the line where a breakpoint will be set.
3. Click “Debug è New Breakpoint”.

ð The “Breakpoint Properties” dialog opens.

4. Click the “Condition” tab.
5. Click “Break when the hit count is a multiple of” in the “Hit Count” list box.

Specify the value "5" in the field to the right.
6. In addition, you can define a Boolean condition for when the breakpoint should be active.

Select the “Break, when true” check box. Specify a Boolean variable in the text field to the
right.

7. Select the “Enable breakpoint immediately” check box.
8. Close the dialog.

ð The line is marked red and identified by the "conditional breakpoint enabled" symbol
()

Monitor the running program. As long as the Boolean variable for the condition is FALSE, the
breakpoint condition is not fulfilled and the program continues to run. If you set the variable to
TRUE, then the condition is fulfilled and the program halts at the breakpoint every 5th pass.

See also
● Ä Chapter 6.4.1.21.4.6 “Dialog 'Breakpoint Properties'” on page 2747

Setting a single
breakpoint
(example in ST
editor)

Defining a
breakpoint con-
dition (example
in ST editor)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1983

1. In the editor, open a POU programmed in structured text (ST).
2. Place the cursor at the position for an execution point.
3. Click “Debug è New Breakpoint”.

ð The “Breakpoint Properties” dialog opens.

4. Click the “Execution Point Settings” tab.
5. Select the “Execution point” option.

In the “Execute the following code” field, type the following statement: iCounter :=
iCounter + 1;
In the “Print a message in the device log” field, type the following text: Execution
point reached {iCounter}

6. Close the dialog.

When the program reaches the execution point, it does not halt, but executes the code defined
above. In addition. a message is issued to the device log.
See also
● Ä Chapter 6.4.1.21.4.6 “Dialog 'Breakpoint Properties'” on page 2747

Requirement: The application is in online mode and running.

1. Click “View è Breakpoints”.
2. Click “Debug è New Data Breakpoint”.
3. Click the button in the “New breakpoint” dialog (“Data” tab.
4. In the “Input assistant” dialog (“Watch Variables” tab), select the variables for which the

program should halt when changed.
As an alternative, specify the qualified name of the variable on the “Data” tab directly in
the input line. Example: PLC_PRG.iNumber. The exact number of bytes to be monitored
is specified as the “Size”. A value that corresponds to the data type is set here automati-
cally by default. You can also specify fewer bytes to be monitored.

5. In the “Breakpoints” view, select the line with the data breakpoint and click the button.

ð The line is marked and identified by the "Data breakpoint enabled" symbol (). When
the program reaches the data breakpoint (meaning when the value of the selected
variables changes), the program processing halts. In the implementation part of the
POU, the next line is identified by an arrow . This is identified in the status line by
the HALT ON BP status highlighted in red.

6. Click “Debug è Start” or press [F5].

ð The program continues running and halts again when the value of the variables
changes again.

See also
● Ä Chapter 6.4.1.21.4.6 “Dialog 'Breakpoint Properties'” on page 2747

Defining an exe-
cution point
(example in ST
editor)

Setting a data
breakpoint

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1984

6.4.1.12.4 Stepping Through a Program
You can step through an application and navigate the code. This is useful to check the status of
your code at runtime. You can examine the call process, track variable values, or locate errors.
Stepping commands are provided in the “Debug” menu for this purpose. The commands
become available when you set breakpoints in online mode and then halt execution at a break-
point: the application is in “HALT ON BP” state (debug mode). During debug mode, the current
break position is highlighted in yellow and marked with the symbol in the text editors.

1. Download your application to a controller.

ð The application is highlighted in green. CODESYS and the editors of the POUs are in
online mode.

2. In the POUs, set breakpoints at the locations in the code that you want to examine.

ð All breakpoints are listed in the “Breakpoints” view.

3. Start the application.

ð The application starts and the code is processed until the first breakpoint.

Now the application is in debug mode. In the device tree, the application is labeled
with “[halt on breakpoint]”. The status bar provides information about the operating
state:

The editor was opened at the current break position. The line of code with an active
breakpoint where program execution was halted is highlighted in yellow and marked
by the symbol. This statement highlighted in yellow has not been executed yet.

Now you can select the various stepping commands or display the call tree.

Switching to
debug mode

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1985

Alternatively, you can first start the application and then set a breakpoint.

● Command “Step Over”
The statement at the breakpoint position is executed. Program execution halts before the
next statement in the POU.
If the statement contains a call (from a program, function block instance, function, method,
or action), then the subordinate POU is processed completely in one step.

● Command “Step Into”
The statement at the breakpoint position is executed. Program execution halts before the
next statement.
If the statement contains a call (from a program, function block instance, function, method,
or action), then the program execution jumps to this subordinate POU. The first statement
there is executed and the program execution halts before the next statement. The new
current breakpoint position is then in the called POU.

● Command “Step Out”
The command executes the POU from the current breakpoint position to the end of the POU
and then jumps back to the calling POU. Program execution halts at the calling position (in
the line with the call).
If the current breakpoint position is in the main program, then the POU is run through to the
end. Then the program execution jumps back to the beginning (to the program start at the
first line of code in the POU) and halts there.

● Command “Run to Cursor”
First set the cursor at any line of code and then execute the command. The program is
executed from the current breakpoint position and halts at the current cursor position without
executing the code of this line.

● Command “Set Next Statement”
First set the cursor at any line of code (also before the current breakpoint position) and
then execute the command. The statement marked with the cursor is executed next. All
statements in between are ignored and skipped.

● Command “Show Next Statement”
If you do not see the current breakpoint position, then execute the command. Then the
window with the current breakpoint position comes into focus and the breakpoint position is
visible.

Click “View è Call Stack” to completely show the previous call tree for the breakpoint position
currently reached in the program processing.

The “Call Stack” view shows the location of the block in the call structure of the
program at all times, even before compiling the application.

See also
● Ä Chapter 6.4.1.21.3.8.11 “Command 'Step Into'” on page 2647
● Ä Chapter 6.4.1.21.3.8.10 “Command 'Step Over'” on page 2646
● Ä Chapter 6.4.1.21.3.8.12 “Command 'Step Out'” on page 2647
● Ä Chapter 6.4.1.21.3.8.13 “Command 'Run to Cursor'” on page 2648
● Ä Chapter 6.4.1.21.3.8.14 “Command 'Set Next Statement'” on page 2648
● Ä Chapter 6.4.1.21.3.8.15 “Command 'Show Next Statement'” on page 2648
● Ä Chapter 6.4.1.21.3.4.16 “Command 'Call tree'” on page 2590

Behavior of the
stepping com-
mand in the 'De-
bug' menu

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1986

6.4.1.12.5 Forcing and Writing of Variables

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

In CODESYS, variable values in the PLC can be changed in online mode. Here we make a
distinction between forcing and writing a previously prepared value.
Writing is done with the “Write Values” command ([Ctrl]+[F7]) and sets the variable to the
prepared value one time. In this way, the value can be overwritten again by the program at any
time.
Forcing is done with the “Force Values” command ([F7]) and sets the prepared value perma-
nently. For more information, see below.
The preparation of a value for forcing or writing is possible at different places:
● Declaration part: “Prepared value” field
● Implementation part of the FBD/LD/IL editor: inline monitoring field
● Watch view: “Prepared value” field
For instructions about this, see below. In the case that you want to prepare a value again for
an already forced value, the “Prepare Value” dialog opens with options for handling the current
force value.

The prepared value is set to the respective variable at the beginning and end of a task cycle (or
of a processing loop in the case of other task types).
The processing order in each cycle of a task is as follows:
1. Read the inputs
2. Force: Before the first program call, all prepared values are written to the variables by the
runtime system, regardless of whether or not they are used by the task.
3. Process the IEC code
4. Force: After the last program call, all prepared values are written to the variables by the
runtime system, regardless of whether or not they are used by the task.
5. Write the outputs
Note: It is possible that a forced variable temporarily gets a different value in the cycle while
the code is being processed because the IEC code performs an assignment. Then the variable
receives the forced value again only at the end of the cycle. The variable value can also be
overwritten by the write access of a client to symbols of the application in mid-cycle. For this
case, see the “Access variables in sync with IEC tasks” option in the “Properties” of the device
object, or the “Configure synchronization with IEC tasks” setting in the symbol configuration.
In this way, a PLC handler-supported synchronization of the write accesses by clients can be
enabled with the task cycle.

Functionality of
forcing

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1987

NOTICE!
Forced values are marked with the symbol. CODESYS does the forcing until
the user lifts it explicitly by one of the following actions:
– Executing the “Cancel forcing for all values” command
– Lifting the force operation in the “Prepare Value” dialog
– Logging out of the application

If forced variables still exist when logging out, then a dialog opens,
prompting whether or not forcing should be lifted for all variables. If you
respond by clicking “No”, then the forced values are applied again at the
next login.

See also
● Ä Chapter 6.4.1.9.17 “Task Configuration” on page 1914
● Ä Chapter 6.4.1.21.4.11.20 “Dialog 'Properties' - 'Options'” on page 2765
● Ä “Setting: Configure synchronization with IEC tasks” on page 2527

Requirement: Your application includes a POU with declarations. The application is in online
mode.
1. Open the POU in the editor by choosing the command “Project è Edit Object”.
2. In the declaration part of the editor, double-click in column (1) “Prepared Value” of a

variable.

ð The field can be edited and a value can be entered. When it is a Boolean value, you
change the value by clicking in the field.

3. Perform Step 2 for other variables.
4. Click “Debug è Force Values”.

ð The variable values are overwritten with the prepared values. The values are marked
with the symbol.

Forcing in the
declaration part

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1988

You can also force the variable values in the “Watch” view.

Requirement: The application is in online mode.

1. Open the POU in the editor by choosing the command “Project è Edit Object”.
2. In the implementation part of the editor, double-click an inline monitoring field (1).

ð The “Prepare Value” dialog opens.

3. Enter the new value in the field “Prepare a new value for the next write or force operation”.

ð The prepared value appears in the inline monitoring field.

4. Click “Debug è Force Values”.

ð The value of the variables is overwritten with the prepared values. The values are
marked with the symbol.

Requirement: The application is in online mode. Multiple variables are forced.

1. Click “View è Watch è Watch all Forces”.

ð The “Watch all Forces” view opens. It contains all currently forced variables of the
application in the form of a watch list.

2. Select all lines in the list and click “Unforce è Unforce and Keep All Selected Values” in
the list box in the upper left part of the view.

ð The variables are unforced and they get the values that they had before forcing.

Requirement: An application has a CFC POU that contains a function block, and the application
is in offline mode.

NOTICE!
This kind of forcing uses a data breakpoint internally and is therefore different
from forcing with the “Force Values” command or [F7].
Values that were forced by the command “Force FB Input” do not respond to the
commands “Show All Forces” or “Unforce Values”.

Forcing in the
implementation
part

Viewing and
editing all
forced variables
one list

Forcing a func-
tion block input
in CFC

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1989

1. Open the editor of the CFC POU by double-clicking the object in the tree.
2. When using compiler version 3.5.11.x or 3.5.12.x, enable the "forceability" for

the desired function block. Select the POU element in CFC and click “CFC
è Prepare Box for Forcing”.

3. Log in to the application on the target device. In CFC, select the input of the POU and
click “Force Function Block Input” in the context menu.

ð The “Force Value” dialog opens.

4. Set a new value for the input. Example in the case of a TON POU: FALSE for the Boolean
input IN, or t#4s for the PT input (TIME). Click “OK” to confirm.

ð The set value is forced immediately. A green circle is displayed at the upper left of
the POU element and the name of the input in the element is highlighted in green. In
the case of a Boolean value, a small monitoring view with the value also opens at the
input. In the monitoring views, the forced value is displayed, for example in the “Value”
column, as in the declaration part.

5. To remove the forced value, click “Force Function Block Input” again. In the “Force Value”
dialog, select the “Remove value” option.

ð Forcing is canceled. The input gets the current value from the controller.

See also
● Ä Chapter 6.4.1.21.3.13.34 “Command 'Prepare Box for Forcing'” on page 2697
● Ä Chapter 6.4.1.21.3.13.35 “Command 'Force Function Block Input'” on page 2697
● Ä Chapter 6.4.1.21.4.8 “Dialog Box 'Prepare Value'” on page 2749
● Ä Chapter 6.4.1.21.3.8.16 “Command 'Force Values'” on page 2649
● Ä Chapter 6.4.1.21.3.8.18 “Command 'Unforce Values'” on page 2650
● Ä Chapter 6.4.1.21.3.8.17 “Command 'Write Values'” on page 2649
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002

6.4.1.12.6 Resetting applications
Resetting the application stops the program and resets the variables to their initialization values.
Depending on the type of reset, retain variables and persistent variables are also reset.
● Reset warm: All variables are reset, except RETAIN and PERSISTENT variables.
● Reset cold: All variables are reset, except PERSISTENT variables.
● Reset origin: All variables are reset.
● Reset origin device: All variables are reset and all applications are deleted.
The following sample program and statements clarify the functionality of the various resets.
See also
● Ä “Lifespan of variables when calling online commands” on page 1922

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1990

VAR
 iVar: INT := 0;
END_VAR
VAR RETAIN
 iVarRetain: INT :=0;
END_VAR
VAR PERSISTENT
 iVarPersistent : INT:= 0;
END_VAR

iVar := 100;
iVarRetain := 200;
iVarPersistent :=300;

1. Insert the “Persistent Variables” object below the application and open it in the editor.
2. Click “Build è Build”.
3. Click “Declare è Add All Instance Paths”.

ð The instance path of the persistent variables is inserted.

4. Download the application to the controller.

Example
Declaration

Implementa-
tion

Requirement: The sample program runs on the controller.

1. Click “Online è Login” to switch to online mode.
2. Monitor the variables iVar, iVarRetain, and iVarPersistent.

3. Click “Online è Reset Warm”.

ð You are prompted whether you really want to execute the command.

4. Click “Yes” to confirm the dialog.

ð The application is reset. The iVar variable is set to the initialization value 0. Both of
the other variables retain their values.

5. Click “Online è Reset Cold”.

ð You are prompted whether you really want to execute the command.

6. Click “Yes” to confirm the dialog.

ð The application is reset. The iVar and iVarRetain variables are set to the initializa-
tion value 0. The iVarPersistent variable retains its value.

7. Click “Online è Reset Origin”.

ð You are prompted whether you really want to execute the command.

8. Click “Yes” to confirm the dialog.

ð The application is reset. All variables are reset to their initialization values.

Sample program

Executing a
"Reset warm",
"Reset cold",
and "Reset
origin"

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1991

See also
● Ä Chapter 6.4.1.21.3.7.11 “Command 'Reset Warm'” on page 2634
● Ä Chapter 6.4.1.21.3.7.10 “Command 'Reset Cold'” on page 2633
● Ä Chapter 6.4.1.21.3.7.12 “Command 'Reset Origin'” on page 2635
● Ä Chapter 6.4.1.21.3.7.13 “Command 'Reset Origin Device'” on page 2636

6.4.1.12.7 Flow Control
With flow control, you can monitor the processing of the application program. Flow control is
provided for the ST, FBD, LD, and CFC language editors.
With an activated flow control, CODESYS displays the variable values and results from function
calls and operations at the respective processing location and time. In this way, the exact lines
of code and networks that process the current cycle are marked in colors. Compare this to
standard monitoring, in which CODESYS delivers only the value that a variable has between
two processing cycles.
Flow control works in all parts of the editor view that are currently visible. “Flow control enabled”
is then displayed in the status line as long as the function is active and flow control positions
(processed parts of code) are visible in an editor view.
You can write values in the declaration part and implementation part. Forcing is not possible.

NOTICE!
Values are written at the end of the current cycle.

NOTICE!
When you enable flow control, the cycle time of the application is prolonged.
When “Confirmed Online Mode” is selected in the communication settings, a
dialog prompt appears when switching on the flow control to cancel the opera-
tion.
When flow control is enabled, it is not possible to use breakpoints or step
through the program.

See also
● Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Settings'” on page 2427
● Ä Chapter 6.4.1.21.3.8.22 “Command 'Flow Control'” on page 2652

By default, CODESYS displays the flow control positions of the processed parts of code as
green fields. Unprocessed parts of code are displayed in white.

Note that the displayed value of an unprocessed code position is an ordinary
monitoring value. This is the value between two task cycles.

Display of the
flow control in
different lan-
guage editors

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1992

In network editors, CODESYS marks the processed networks with bars on the left edge in the
flow control color.
In LD, CODESYS displays the currently processed connecting lines in green and all others in
gray. The actual value of the connection is also displayed: TRUE by a bold blue line, FALSE by
a bold black line, and unknown or analog values by thin black lines. Combinations of these lines
are displayed as dashed lines.

In IL, for each statement CODESYS uses two fields for the display of the actual values. One is
located to the left of the operator with the current accumulator value, and one is located to the
right of the operand with the operand value.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1993

6.4.1.12.8 Determining the current processing position with the call stack
You can use the call stack for determining the current position of the program flow. This function
is very useful when stepping into programs.
Requirement: The application is in online mode. The program is halted at a breakpoint or you
are stepping into it.

Open the call stack by clicking “View è Call Stack”.

ð The call stack opens. The list shows the current location with the complete call path.

The call stack is also available in offline mode and normal online mode (without using debug-
ging functions). In this case, it receives the last displayed location during a stepped execution,
but it is displayed in gray.
See also
● Ä Chapter 6.4.1.21.3.4.15 “Command 'Call Stack'” on page 2590
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985

6.4.1.12.9 Checking the Task Deployment
The Tab “Task Deployment” of the device editor indicates in an overview the tasks that process
the individual inputs and outputs of the I/O mapping of your application and the priority with
which they do so. You can check here whether an unintentional overwriting of values is caused,
which can lead to undefined values.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1994

1. Generate code for the application: to do this select, for example, the command “Build
è Generate Code”.

2. Open the device editor by double-clicking on the device object in the device tree. Select
the “Task Deployment” tab.

ð You obtain a display of the inputs and outputs of your application and the assignment
of the tasks and their priorities. See the description of the “Task Deployment” tab for
details.

See also
● Ä Chapter 6.4.1.21.2.8.18 “Tab 'Task deployment'” on page 2459
● Ä “General information about I/O mapping” on page 1836

6.4.1.13 Application at Runtime
6.4.1.13.1 General.. 1995
6.4.1.13.2 Monitoring of Values.. 1995
6.4.1.13.3 Data Recording with Trace.. 2007
6.4.1.13.4 Data Recording with Trend.. 2016
6.4.1.13.5 Monitoring tasks.. 2021
6.4.1.13.6 Reading the PLC log... 2021
6.4.1.13.7 Using PLC shell for requesting information................................... 2022
6.4.1.13.8 PLC operation control via system variables.................................. 2022
6.4.1.13.9 Backup and restore... 2024

6.4.1.13.1 General
When the application is running on the PLC, in the CODESYS Development System there are
some features for monitoring and changing the values of the variables as well as for recording
and storing the value charts.
Furthermore, you can poll some information from the PLC, you can have a look into the PLC-
log, display a core dump and monitor the time behavior of the tasks.
Regard also the possibility to restrict the access on the running application in critical states
of the machine via online commands provided by CODESYS Development System. For this
purpose some system variables are available in a module of the ComponentManager library.

6.4.1.13.2 Monitoring of Values
General

In runtime mode, you can monitor the current variable values of a programming object at
different places in a project. The following is what we refer to as monitoring:
● Online view of the programming editor of an object: inline monitoring
● Online view of the declaration editor of an object
● Object-independent, configurable watchlists
When you set the {attribute 'monitoring'...} pragma, you can monitor the results from function
calls and the current variable values in property-type objects.

More options for recording current variable values:

– Read and save recipes
– Record values on a timeline for displaying the history immediately or later:

trace and trend features

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1995

See also
● Ä Chapter 6.4.1.20.6.3.26 “Attribute 'monitoring'” on page 2295
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.13.3 “Data Recording with Trace” on page 2007
● Ä Chapter 6.4.1.13.4 “Data Recording with Trend” on page 2016

Calling of monitoring in programming objects
When an application is running on the controller, the actual values of variables are displayed in
the editors of the POUs. This is how the values of variables are monitored.

Requirement: The “Enable inline monitoring” option is activated in “Tools è Options” in
the “Text Editor” category on the “Monitoring” tab.
1. Download an application to the controller and start it.
2. Click “Debug è Display Mode è Decimal”.

ð The display format of the actual values is set.

3. Click a programming object in the “Devices” view or “POUs” view.

ð The respective editor opens. Actual values of the variables are refreshed continually
for both the declaration and implementation.

The actual value of an expression (1) is displayed in the “Value” column (3).
You can write and force a value in the “Prepared Value” (4) column. During the forcing, the
actual value is decorated with a red symbol ().
The expression of an interface reference can be expanded. If the interface points to a global
instance, then this global instance is displayed as the first entry below the reference. After-
wards, if the interface reference changes, then the displayed reference is collapsed.

Inline monitoring is the display of the current variable value in the implementation.
Depending on the implementation language, the following displays are possible in the imple-
mentation part:

● Variables have a window with the current value displayed after their name:
If you have prepared values for variables for forcing or writing, then they are displayed in
angle brackets in the inline monitoring view after the current value.
After forcing, the respective values are identified by the symbol.

● Network editors and the CFC editor:
Connecting lines are displayed in color according to their actual Boolean value (blue means
TRUE, black means FALSE).

Monitoring in
the declaration
editor

Monitoring in
the implementa-
tion (inline mon-
itoring)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1996

● LD editor:
The contact and coil elements are also marked.
For contacts and coils, a prepared value (TRUE or FALSE) is shown in a small view next to
the element.

● SFC editor:
Transitions with the value TRUE are displayed in color according to their actual Boolean
value (blue means TRUE, black means FALSE).
Active steps are displayed in blue.
Forced transition values are displayed in red in the implementation.

● IL tabular editor:
Current values are displayed in a separate column.

Monitoring in
the ST editor

Monitoring in
the LD editor

Monitoring in
the SFC editor

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1997

You can deactivate the inline monitoring function in “Tools è Options”, in the
“Text Editor” category on the “Monitoring” tab.

See also
● Ä Chapter 6.4.1.20.1.4.1 “ST Editor” on page 2049
● Ä Chapter 6.4.1.20.1.4.2 “ST editor in online mode” on page 2050
● Ä Chapter 6.4.1.20.1.6.2 “FBD/LD/IL editor in online mode” on page 2086
● Ä Chapter 6.4.1.20.1.5.2 “SFC Editor in Online Mode” on page 2063
● Ä Chapter 6.4.1.20.1.7.5 “CFC Editor in Online Mode” on page 2103

An expanded array shows the actual values for up to 1000 elements. However, this can be
confusing. In addition, an array can contain more than 1000 elements. Then it is helpful to limit
the range of displayed elements. You can do this in online mode in the following way.

Requirement: An application is running. It contains a multidimensional array variable with
more than 1000 elements. Example: arrBig : ARRAY [0..100, -9..10, -19..20] OF
INT;
1. Click in the field of the “Data Type” column for the arrBig variable.

ð The “Monitoring Range” dialog opens.

2. Specify the value [1, -9, -19] for “Start”.

3. Specify the value [1, 10, 20] for “End”.

ð The actual values of 800 array elements are displayed in the declaration editor. The
range is limited to the elements of the index [1, <i>, <j>] with i from -9 to 10 and
j from -19 to 20.

See also
● Ä Chapter 6.4.1.20.1.2 “Declaration Editor” on page 2047
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä Chapter 6.4.1.21.4.10 “Dialog 'Monitoring Range'” on page 2752

When you double-click the editor view of a function block in online mode, a dialog opens where
you can choose between viewing the basic implementation or a specific instance.
If you select the basic implementation, then the code is displayed in the editor without current
values. Now set a breakpoint in the basic implementation. If the execution halts there, then the
current values of the instance that is processed first in the program flow are displayed. Now you
can step successively through all instances.
If you select one of the instances, then the editor opens with the code of the function block
instance. The current values are displayed in the declaration and, if applicable, in the implemen-
tation, and are updated continuously.
See also
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

You can monitor variables in a property object by setting a breakpoint in the function during
online mode. When halted there, the current values are displayed.
In addition to your own values, the values of the variables of the superordinate instance are
displayed automatically. In the declaration part of the property, the THIS pointer, which points to
the superordinate instance, appears in the first line with the current data type information and
values.

Partial moni-
toring of an
array
Limiting the
monitoring
range

Monitoring a
function block

Monitoring a
property

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US1998

FUNCTION_BLOCK FB_BaseAlfa
VAR
 iBaseLocal : INT;
 sBaseLocal : STRING;
END_VAR
iBaseLocal := iBaseLocal + 1;
sBaseLocal := 'Testing Text';

FB_BaseAlfa.PorpBeta.Get
iBaseLocal := iBaseLocal + 1;
IF iBaseLocal > 0 THEN
 PropBeta := TRUE;
END_IF

FB_BaseAlfa.PorpBeta.Set
IF PropBeta = TRUE THEN
 iBaseLocal := 0;
 sBaseLocal := 'Tested IF';
END_IF

PROGRAM PLC_PRG
VAR
 fb_BaseAlfa : FB_BaseAlfa;
END_VAR

fb_BaseAlfa();

IF fb_BaseAlfa.PropBeta = TRUE THEN
 xResult := TRUE;
END_IF
IF xReset THEN
 fb_BaseAlfa.PropBeta := TRUE;
 xReset := FALSE;
END_IF

Example
Code

See also
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 1999

You can monitor the values of subordinate properties in a function block or program in
addition to the variable values.
To do this, add either the pragma {attribute 'monitoring' = 'variable'} or
{attribute 'monitoring' = 'call'} to the subordinate property object in the declara-
tion. If you open the superordinate program instance or function block instance at runtime, then
the current property values are displayed in the editor in addition to the current variable values.
See also
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.20.6.3.26 “Attribute 'monitoring'” on page 2295

You can monitor variables in a method object by setting a breakpoint in the method during
online mode. When halted there, the current values are displayed.
In addition to your own values, the values of the variables of the superordinate instance are
displayed automatically. In the declaration part of the method, the THIS pointer, which points to
the superordinate instance, appears in the first line with the current data type information and
values.

Monitoring of
property access
in the superordi-
nate program-
ming object

Monitoring a
method

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2000

FUNCTION_BLOCK FB_BaseAlfa
VAR
 iBaseLocal : INT;
 sBaseLocal : STRING;
END_VAR
iBaseLocal := iBaseLocal + 1;
sBaseLocal := 'Testing Text';

METHOD MethBaseAlfa : BOOL // Method of FB_BaseAlfa
VAR_INPUT
END_VAR
VAR
 iMethLocal : INT;
END_VAR
iMethLocal := iMethLocal + 1;

PROGRAM PLC_PRG
VAR
 fb_BaseAlfa : FB_BaseAlfa;
END_VAR
fb_BaseAlfa();
fb_BaseAlfa.MethBaseAlfa();

Example
Code

See also
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485

You can monitor variables in a function object by setting a breakpoint in the function during
online mode. When halted there, the current values are displayed.

In the ST editor of a POU, the current return value is displayed as inline monitoring at the
position of the POU where a function is called.
The following conditions must be fulfilled:
● The value can be interpreted as a 4-byte numeric value. Example: INT, SINT, or LINT.
● The pragma {attribute 'monitoring' := 'call'} is inserted into the function.

Monitoring a
function

Monitoring the
return value of a
function call

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2001

See also
● Ä Chapter 6.4.1.21.2.21.4 “Object 'Function'” on page 2482
● Ä Chapter 6.4.1.20.6.3.26 “Attribute 'monitoring'” on page 2295

Using watch lists
A watch list is a user-defined list of project variables that are collected in one view for the
purpose of monitoring their values. In online mode, you can write and force variable values in a
watch list. Monitoring, writing, and forcing are handled the same way as the declaration editor in
online mode. You can customize the format of the representation of floating-point values in the
options for monitoring.
There are four, ready-to-use watch lists (Watch <n>) available in a project. Click “View
è Watch”.

If the expression is an interface reference, then it can be expanded. If the
interface points to a global instance, then this global instance is displayed as
the first entry below the reference. If the interface reference changes, then the
displayed reference is collapsed.

See also
● Ä Chapter 6.4.1.20.1.2 “Declaration Editor” on page 2047
● Ä Chapter 6.4.1.21.4.14.19 “Dialog 'Options' - 'Monitoring'” on page 2792

Requirement: The project is in either online or offline mode. It includes an application with
declared variables that you want added to one of the four possible watch lists.

1. Click “View è Watch è Watch <n>”.

ð The Watch <n> view opens. It contains a blank table row.

2. Double-click the field in the “Expression” column and type a variable to monitor, either
manually or with the input assistant.
Syntax: <device name>.<application name>.<object name>.<variable name>
Example: "Dev1.App1.PLC_PRG.ivar"

If you type the name of a structured variable, then the individual components are dis-
played automatically in other lines in online mode.

3. Define all successive variables that will be monitored with this list. You can change the
order by using drag and drop operations.

ð The “Execution point”, “Type”, “Address”, “Comment” fields are filled in automatically
according to the variables declaration. The symbol before the expression indicates the
type of variable: input variable (), output variable (), or ordinary variable ().

In online mode, you can also create or edit watch lists by right-clicking and
choosing the “Add Watch” command.

See also
● Ä Chapter 6.4.1.21.3.4.8 “Command 'Watch' - 'Watch <n>'” on page 2584

What is a watch
list?

Creating and
editing a watch
list (offline or
online mode)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2002

Requirement: A project is open and running. It includes an application with declared variables
that you want added to a possible watch list.

1. Click “View è Watch <n>” to open the watch list.
2. Place the cursor on a variable in the declaration or implementation part of a POU and

right-click to choose the “Add Watch” command.

ð This adds an entry to the list for the selected variable.

3. You can add other variables in this way or by typing directly into the list in the “Expression”
field as described above.

ð The watch lists are updated immediately.

If a watch list is not open when you click “Add Watch” for a variable, then it is
added automatically to the “Watch 1” list.

Writing and forcing variable values is also possible in the watch lists. In online
mode, the “Prepared value” column is also available.

See also
● Ä Chapter 6.4.1.21.3.23.1 “Command 'Add Watch'” on page 2743
● Ä Chapter 6.4.1.13.2.2 “Calling of monitoring in programming objects ” on page 1996
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

Changing Values with Recipes
Use recipes to change or read recipes values for a specific set of variables (recipe definition) on
the controller at the same time.
You define the basic settings for recipes, such as location and format, in the “Recipe Manager”
object. Insert one or more recipe definitions below this object. A recipe definition is composed of
one or more recipes for the contained variable. The recipe consists of specific variable values.
You can save a recipe to a file or write directly from files to the PLC.
Recipes can be loaded via the CODESYS development interface, the visualization element, or
the application program.

Using recipes on remote devices
The variable values from recipes are transferred automatically to and from
another controller when they are data source variables and a data source
exchange is configured. Reading and writing occurs synchronously. Therefore,
CODESYS updates all variables in a recipe at the same time. After reading or
writing, you can use the call g_RecipeManager.LastError to check whether
or not the transfer was successful (g_RecipeManager.LastError = 0).

Adding varia-
bles by
choosing the
'Add Watch'
command
(online mode)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2003

See also
● Ä Chapter 6.4.1.21.2.25 “Object 'Recipe Manager'” on page 2519
● Ä Chapter 6.4.1.21.2.26 “Object 'Recipe Definition'” on page 2522
● Ä Chapter 6.4.1.10.6 “Data Link with Data Sources” on page 1947

Calling recipe commands in the CODESYS user interface
The development interface of CODESYS provides commands for generating recipes as well as
reading/writing in online mode.
See also
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Calling recipe commands programmatically or in a visualization
At runtime, the recipe definition and the recipe commands can be called in the application
program. To do this, you implement the process for writing, reading, or monitoring recipe defini-
tions in your code by using the methods of the RecipeManCommands function block from the
RecipeManagement library.

In the visualization, the call of the recipe commands is implemented by using the for a visualiza-
tion element. By doing this, a visualization user can control the execution of recipe commands.

During the initialization process, the recipe management reads the values of
the variables that are defined in the recipe definition. This operation takes place
at the end of the initialization phase of the application. At this point, all initial
values of the application variables are set. This is done to initialize missing
values from recipe files correctly.

See also
● RecipeManCommands
● Input Configuration

Special functionality for floating-point numbers
For variables of type REAL or LREAL, a distinction is made whether or not the value is exactly
convertible.
● If it is possible to convert the value exactly, then only the numerical value is saved in the

recipe file.
● If exact conversion is not possible, then a hexadecimal encoded string is written in the

recipe file next to the numeric value. This should have the effect that also a non-convertible
floating-point number returns the same value.

This feature can be disabled with the RECIPE_GENERATE_SIMPLE_STRINGREAL compiler
define.

In the object properties of the parent application under “Build”, you can
enter this RECIPE_GENERATE_SIMPLE_STRINGREAL compiler define in the
“Compiler Defines” option. As a result, no hexadecimal encoded string is stored.

For more information, see: Dialog: Properties: Build

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2004

ms-its:Recipe Management.chm::/index.html
ms-its:core_Visualization.chm::/_visu_dlg_input_configuration.htm
https://content.helpme-codesys.com/en/CODESYS Development System/_cds_dlg_properties_build.html

Creating a recipe
1. In the device tree, select the “Application” object.
2. Click “Project → Add Object → Recipe Manager”.

ð The Recipe Manager is added to the device tree.

3. In the device tree, click the “Recipe Manager” object.
4. Click “Project → Add Object → Recipe Manager”.

ð The recipe definition is added below the Recipe Manager.

5. Open the editor of the recipe definition by double-clicking the object.
6. Double-click the blank field below “Variable”. Specify the name of a variable to define a

recipe for. You can use the Input Assistant (button) for this.
7. Click “Recipes è Add a New Recipe” and specify a name for the new recipe.

ð A column with the new recipe name appears in the editor.

8. Enter the variable value for this recipe in this field.
9. Insert additional fields as needed.
10. Select a variable value for the recipe and click “Recipes è Save Recipe”. Select a

location and file name.

ð The recipe is saved in the format which was defined in the Recipe Manager.

See also
● Ä Chapter 6.4.1.21.2.25 “Object 'Recipe Manager'” on page 2519
● Ä Chapter 6.4.1.21.2.26 “Object 'Recipe Definition'” on page 2522
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Loading a recipe from a file
Requirement: A Recipe Manager is available in the application. In a recipe definition, there is a
“myRec” recipe with variable values. A myRec.txt recipe file is located on the file system and
contains the entries for this recipe.
Example of the recipe file:
PLC_PRG.bVar:=0
PLC_PRG.iVar:=2
PLC_PRG.dwVar:=35232
PLC_PRG.stVar:='first'
PLC_PRG.wstVar:='123443245'
1. Double-click the “Recipe Definition” object in the device tree to open the tabular editor for

the definition of the individual recipes.

ð You see the myRec column with the current values for this recipe.

2. Edit the myRec.txt file in an external text editor and replace the variable values with
other values that you want to load into the recipe definition in CODESYS. Save the file.

3. In the recipe definition, click the “myRec” column and in the context menu click “Load
Recipe”.

ð A dialog prompt notifies you about the possibly needing to perform an online change
when logging in again. An online change is necessary when you change the current
values of the recipe variables by loading the recipe.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2005

4. Click “Yes” to close the dialog and continue. Select the myRec.txt file from the file
explorer for loading.

ð The recipe values in the recipe definition are updated according to the values read in
the file.

If you want to overwrite only individual recipe variables with new values, then
remove the values for the other variables before loading to the recipe file.
Entries without value definitions are not read, and therefore updating leaves
these variables unchanged on the controller and in the project.

For values of the data type REAL/LREAL, the hexadecimal value is also written
to the recipe file in some cases. This is necessary so that the exactly identical
value is restored when converting back. In this case, you change the decimal
value and delete the hexadecimal value.

See also
● Ä Chapter 6.4.1.21.3.20.4 “Command ‘Load Recipe'” on page 2724
● Ä Chapter 6.4.1.21.3.20.8 “Command 'Load and Write Recipe'” on page 2725

Recipe management on the controller; memory usage
When you clear the “Recipe management in the PLC” option, the Recipe Manager and recipe
definitions will not use any memory on the PLC.
If you select this option, then code is generated for the Recipe Manager and all recipe defini-
tions, and this code is stored on the PLC. The size of the used memory primarily depends on
the number pf recipes and their variables, as well as the data type of the variables. Whether or
not the fields of the recipe definition are filled also has an effect. The memory usage of recipes
cannot be calculated. It has to be determined by experimentation at the time it is needed. The
following table merely provides some guiding principles.

 Code Size
(bytes)

Data Size
(bytes)

Total (bytes)

Recipe definition with 100 INT variables 194406 79400 267352

Recipe definition with 200 INT variables 238318 121284 459344

Recipe definition with 300 INT variables 282230 163084 543856

Recipe definition with 100 BOOL variables 192742 69884 343168

Recipe definition with 200 BOOL variables 235446 101568 436872

Recipe definition with 300 BOOL variables 278146 133284 510072

Recipe definition with 100 string variables 203278 870084 1154000

Recipe definition with 200 string variables 255570 1709784 2973296

Recipe definition with 300 string variables 307886 2549484 2964112

Loading recipe values from the controller
You can apply recipe values on the controller to recipe definitions in the project, even if these
definitions have been modified in the project.
Requirement: The “Recipe management in the PLC” is option is selected in the Recipe Man-
ager.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2006

1. Create a recipe definition RecDef1 in the project, containing the variables
PLC_PRG.ivar and PLC_PRG.bvar. Insert a recipe “R1”: value for PLC_PRG.ivar: 33;
value for PLC_PRG.bvar: TRUE.

2. Log in to the controller and download the application.

ð The recipe file R1.RecDef1.txtrecipe is saved to the default directory of the
controller ($PlcLogic$).

3. Logout and add another variable PLC_PRG.dwvar to the recipe definition in the project.

4. Edit the recipe definition file R1.RecDef1.txtrecipe on the device by changing the
value for PLC_PRG.ivar from 33 to 34.

Moreover, add another recipe “R2” on the device. To do this, copy the
R1.RecDef1.txtrecipe and rename it to R2.RecDef1.txtrecipe. Then edit this
file and change the recipe values: PLC_PRG.ivar: 1, PLC_PRG.bvar: FALSE.

ð Now two recipes “R1” and “R2” are available on the device. In the project, there is only
“R1”, and it also contains other values than “R1” on the device.

5. Log in to the controller by means of an online change.
6. Click “Load Recipes from Device” from the context menu.

ð A dialog prompt notifies you that executing the command at the next login may trigger
an online change, and that the recipes on the runtime system will overwrite the recipes
of the current recipe definition.

7. Confirm that you want to continue.

ð A dialog prompt notifies you that the recipe for PLC_PRG.dwvar loaded on the device
cannot yield a value from the controller.

8. Confirm that you want to continue.

ð The value of PLC_PRG.ivar in recipe “R1” of the recipe definition in the project
changes to 34. The recipe “R2” with the values 1 and FALSE is also listed in the
recipe definition now. PLC_PRG.dwvar remains in the recipe definition.

6.4.1.13.3 Data Recording with Trace
General

You can use a “Trace” to follow the value history of variables on the controller in a similar
way as a digital sampling oscilloscope. When the application is in runtime mode with trace,
all statements are executed first within the task cycle. Then, data recording starts with value
storage including time stamps. These time stamps are relative and refer to the start time of the
data recording. The data yields a discrete time signal and CODESYS displays its course in the
trace editor.
A sample (data record) is composed of the value and the time stamp. The runtime system writes
the samples to a buffer with a definable size. CODESYS requests the data, saves it in the
trace editor buffer, and displays it in the trace diagram as a function of time. You can monitor
the value history of the configured variables continually because CODESYS displays the latest
data.
You can trigger the data recording. When this happens, the application saves the data from the
time of the trigger and CODESYS displays the data at the time of the trigger.
The configuration and the display of a trace are possible in the CODESYS project by means of
trace objects in the trace editor. There are the following two object types:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2007

● “Trace”: Inserted below the IEC application in the device tree. This kind of object always
contains a purely application-specific trace configuration. You can download this trace con-
figuration to the controller and run it with the application.

● “DeviceTrace”: Inserted below the device object in the device tree. If the PLC supports
a trace manager, then you can use one or more “DeviceTrace” objects to access one or
more traces that are running on the controller. These can be both application-specific or
controller-specific traces. For example, a controller can support traces for recording the
processor load. Menu commands allow for access from the CODESYS project to the trace
manager in the device.

Access to the trace manager from IEC code is possible by means of the functions from the
library CmpTraceMgr.library. For more information, refer to the library documentation.

NOTICE!
A running data recording with trace can lead to a significant increase in the
cycle time of the IEC task.

NOTICE!
Data recording with trace also continues running after logging out of the device.

The device description of a runtime system with trace manager includes the tracemanager
entry in the TargetSettings section.

In this case, CODESYS transfers only the trace configuration when downloading the application
to the PLC. When you start the trace, the application interprets the configuration on the RTS by
means of the trace manager, executes the data recording, and buffers the data sets on the PLC.
The CmpTraceMgr runtime system component provides extended functionality, as compared to
data recording with IEC code.
Data recording is therefore possible as follows:
● Parameters on the PLC (for example, the processor load (cpuload, plcload), or the tempera-

ture curve of a CPU or a battery). The measurement of the processor load per CPU core
(cpuload) is interesting for multicore controllers.

● Device signals (for example, the current path of a drive)
● System variables of another runtime system component
You can configure parameters like IEC variables in the “Trace Configuration” dialog of the
“Variable Settings”.
The display of traces that run on the controller is possible in the trace editor of a DeviceTrace
object.
See also
● Ä Chapter 6.4.1.13.3.5 “Accessing All Traces on the Controller” on page 2014
● Ä Chapter 6.4.1.21.2.7 “Object 'DeviceTrace'” on page 2426
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804

To monitor data that depends on an event or a condition, you can free the data recording that
depends on a trigger. At runtime, the application checks whether the event has occurred or the
the condition is fulfilled, and then it buffers the data accordingly.
The trace configuration enables triggering by:
● a trigger variable that maps the event
● a condition as expression
● a combination of trigger variable and condition

Runtime system
component
CmpTraceMgr,
"Trace man-
ager"

Data recording
after triggering

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2008

You can save samples from the development system to a file. The file can also include the trace
configuration.

Table 385: Possible file formats
File Extension File type Description
*.trace: “Trace file” Contains the samples and the trace

configuration in XML format. You can
execute the “Load Trace” command to
load the file to the trace editor when off-
line and analyze the samples without a
controller.

*.txt “Text File” Contains the samples in ASCII format.
You can edit the file with an external
tool.

*.trace.csv “Trace dump” File in CSV format includes the trace
configuration and optional samples.
You can create the file by clicking
“Export Symbolic Trace Config”. You
can transfer the file to the controller and
load it to the application. Then you can
execute the “Load Trace” command in
CODESYS to display this in the trace
editor.
You can also click “Trace
è Save Trace” and select the
*.trace.csv file format. You can
transfer the file to the controller and load
it with an HMI for analysis.

*.traceconfig “Symbolic trace configuration” Contains the trace configuration CSV
format. You can create the file by
clicking “Export Symbolic Trace Config”.
The CmpTraceMgr runtime system
component can read the file.

See also
● Ä Chapter 6.4.1.21.3.22.15 “Command 'Save Trace'” on page 2741
● Ä Chapter 6.4.1.21.3.22.8 “Command 'Load Trace'” on page 2737
● Ä Chapter 6.4.1.21.3.22.7 “Command 'Export Symbolic Trace Config'” on page 2735
● Ä Chapter 6.4.1.21.2.27 “Object 'Symbol Configuration'” on page 2523

Ä Chapter 6.4.1.21.2.31 “Object 'Trace'” on page 2541

Ä Chapter 6.4.1.21.2.7 “Object 'DeviceTrace'” on page 2426

Getting started

PROGRAM PLC_PRG
VAR
 iVar : INT;
 rSin : REAL;
 rVar : REAL;
END_VAR

Saving samples
to a file

Program
PLC_PRG

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2009

iVar := iVar + 1;
iVar := iVar MOD 33;

rVar := rVar + 0.1;
rSin := 30 * SIN(rVar);

Requirement: The application is running the PLC_PRG program on the controller.

1. In the device tree, select the application and add a new trace object by clicking “Project
è Add Object”.

ð The respective trace editor opens with the commands available in the “Trace” menu.

2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog box opens.

3. Select a task for running the trace feature. Normally this is the same task that is running in
PLC_PRG.

4. Click “Add Variable” to add an entry to the tree view of the trace configuration and assign
an IEC variable (for example, PLC_PRG.rSin).

5. Click “Trace è Download Trace”.

ð CODESYS loads the trace configuration to the controller. The application starts
recording data and transmits the data to CODESYS, where it is displayed in the trace
diagram as a graph. Commands are provided for navigating through the samples and
controlling the data recording.

The PLC_PRG program is running on the controller. When you follow the instructions for
"Getting Started", CODESYS displays the following trace diagram.

● (1) : “Configuration”
● (2) : “Add Variable”

Trace the sine-
shaped data of
the IEC vari-
able
PLC_PRG.rSin

See also
● Ä Chapter 6.4.1.21.2.31 “Object 'Trace'” on page 2541

Creating trace configuration
For a complete trace configuration, specify at least one task and one variable. In order to trigger
the data recording, activate the trigger option and select a trigger variable or specify a recording
condition.

Example

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2010

See also
● Ä Chapter 6.4.1.21.4.16.1 “Dialog 'Advanced Trace Settings'” on page 2803
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Ä Chapter 6.4.1.21.4.18 “Dialog Box 'Advanced Trend Settings'” on page 2810
● Ä Chapter 6.4.1.13.4.3 “Configuring trend recording” on page 2018

In this task, the data recording is executed in runtime mode. Usually the same task is selected
where the variables are written.
1. Double-click the trace object.

ð The trace editor opens with the commands available in the “Trace” menu.

2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog opens. In the tree view “Trace Record”, the top item
is selected and the subdialog “Record Settings” is shown on the right.

3. Click the "arrow down" symbol () in the “Task” drop-down list.

ð The drop-down list opens with all tasks that are available throughout the application.

4. Select a task for the trace.

See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804

1. Double-click the trace object.

ð The trace editor opens. The commands of the “Trace” menu are available.

2. Click “Add Variable”.

ð The “Trace Configuration” dialog opens. The subdialog “Variable Settings” is displayed
on the right.

3. Click in the input field of the “Variable” setting and select a trace variable in the “Input
Assistant” dialog.

ð The variable is configured for data recording. The trace record tree and the display
tree were extended by the variable.

4. Click the “Add Variable” link.

ð The trace record tree and the display tree receive a new variable. The settings of the
variables are available on the right.

5. Select a trace variable.
6. Click “OK” to close the dialog.

ð The variables are trace variables and are displayed in the trace variable list.

1. Double-click the trace object.
2. Click a variable in the trace record tree.
3. Click the “Delete Variable” command or press [Del].
4. Click “OK” to close the dialog.

ð The variable is removed from the trace variable list.

Assigning a
task

Configuring a
trace variable

Deleting a trace
variable

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2011

1. Double-click the trace object.
2. Click “Add Variable”.

ð The “Trace Configuration” dialog opens. The subdialog “Variable Settings” is displayed
on the right.

3. Click (right of the “Variable” setting, left of the input field).
4. Select the “Parameter” option in the drop-down list.
5. Click and select a parameter from the “Input Assistant” dialog.
6. Configure how the parameter is displayed.
7. Click “OK” to close the dialog.

ð The parameter will be traced and displayed in the trace variable list.

1. Double-click the trace object.

ð The trace editor opens with the commands available in the “Trace” menu.

2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog opens. The subdialog “Record Settings” is displayed
on the right.

3. Select the “Enable trigger” check box.
4. Select the task in which the trend record is to be executed.
5. Select a variable from the “Trigger Variable” field.
6. Click “OK” to close the dialog.

ð The data recording will be triggered.

The trigger time is displayed as a black line in the diagram in runtime mode.
1. Download the application and start it.
2. Click “Trace è Download Trace”.

ð The trace configuration is loaded. After triggering, the runtime system saves the value
graph of the trace variables. The data is displayed in the trace editor. The trigger time
is displayed as a black line in the diagram.

1. Double-click a trace object.
2. Click the “Configuration” link above the configuration tree.

ð The “Trace Configuration” dialog opens.

3. Select “Time axis” in the display tree (below “Presentation (Diagrams)”).

ð The display settings of the time axis are shown on the right.

4. Edit the presets and click the “Preview” link.

ð The changes are seen in the coordinate system preview.

Tracing a
parameter

Configuring a
trigger

Configuring the
display of the
time axis

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2012

5. Click “Y-axis” in the display tree. The “Y-axis” item is below every configured diagram.
Therefore, the display of the value axis is set for each diagram.

ð The subdialog “Display Settings” of the selected axis is displayed on the right.

6. Change the preset value.

ð The changes are applied in the coordinate system preview.

7. Click OK to close the “Trace Configuration” dialog.

ð The display changes are visible in the affected diagrams.

1. Double-click a trace object.
2. Click the “Configuration” link.

ð The “Trace Configuration” dialog opens.

3. Select a variable below “Trace Record”.

ð The subdialog “Variable Settings” of the selected variable is displayed on the right.

4. Change a setting, for example the “Line type”.
5. Click “OK” to close the dialog.

ð The display changes are visible in the affected diagrams.

1. Double-click a trace object.
2. Click “Trace è Configuration”.

ð The “Trace Configuration” dialog opens. The subdialog “Record Settings” is displayed
on the right.

3. Click “Advanced”.

ð The “Advanced Trace Settings” dialog opens.

4. Change the setting “Measure in every n-th cycle” or “Recommended runtime buffer size
(samples)”.

5. Click “OK” to close the dialog.

ð The buffer settings are reconfigured. It is applied after the trace configuration is loaded
to the RTS the next time.

Requirement: The application is running on the controller and a trace configuration is loaded.

1. Double-click a variable in the trace record tree.

ð The “Trace Configuration” dialog opens.

2. Change the color, for example.

ð The variable is displayed in the new color in the affected diagrams without interrupting
the execution of the application.

Configuring the
display of the
trace variable

Configuring the
buffer for data
on the runtime
system

Editing the trace
configuration in
runtime mode

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2013

If you change essential settings, for example a trace variable, then you must
download the trace configuration to the controller again.

Operating the data recording
Use menu commands for controlling how data is recorded.
Requirement: The application is loaded on the runtime system and a trace is configured.
Menu commands
● “Trace è Download Trace”
● “Trace è Start Trace”
● “Trace è Stop Trace”
● “Trace è Reset Trigger”

See also
● Ä Chapter 6.4.1.21.3.22.6 “Command 'Download Trace'” on page 2734
● Ä Chapter 6.4.1.21.3.22.16 “Command 'Start Trace'” on page 2741
● Ä Chapter 6.4.1.21.3.22.17 “Command 'Stop Trace'” on page 2741
● Ä Chapter 6.4.1.21.3.22.13 “Command 'Reset Trigger'” on page 2740

Accessing All Traces on the Controller
If the controller supports the runtime system component CmpTraceMgr (Trace Manager), then
you can access all traces from a CODESYS project which are running on the controller. In
addition to application-related traces that capture the values of IEC variables, these can also
be entirely controller-specific traces (for example, for recording device signal values or the CPU
load).
For each trace running on the controller that you want to present in your project, you have to
insert an individual “DeviceTrace” object in the device tree.
In order to show a trace from the device in this object, the connection to the PLC has to be con-
figured correctly (“Communication Settings”). Then use one of the following menu commands:
● “Trace è Upload Trace”: Establishes the connection to the PLC and opens the “Online List”

dialog for selecting a trace from the controller.
● “Trace è Online List”: Available in online mode only: Also opens the “Online List” dialog.
Now the trace uploaded from the controller can be started and traced in the editor of the
DeviceTrace object. The configuration of the presentation (colors, labels, etc.) is the same as
with traces for application variables configured in the project.

NOTICE!
Closing the DeviceTrace editor terminates the connection to the con-
troller.
Please note that the connections to the controller is also terminated when
the last open “DeviceTrace” editor is closed. In order for device traces to be
displayed again in the project, you have to reload them into the “DeviceTrace”
objects.
At this time, closing the editor is also the recommended procedure for deliber-
ately terminating the connection to the controller. Logging out is not enough for
this.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2014

See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Ä Chapter 6.4.1.21.2.7 “Object 'DeviceTrace'” on page 2426
● Ä Chapter 6.4.1.21.3.22.19 “ Command 'Upload Trace'” on page 2742
● Ä Chapter 6.4.1.21.3.22.12 “Command 'Online List'” on page 2739

Requirement: The PLC device supports the Trace Manager. For the example described here,
this is CODESYS Control Win V3. The device provides traces of the individual CPU loads
(CpuLoad), as well as traces of the CPU load caused by the runtime system (PlcLoad). The
possible display of the CPU load in the project can be helpful when using multicore functionality.

1. In the project, define the “Communication Settings” for the controller.
2. Select the PLC entry in the device tree and add a “DeviceTrace” object.
3. Rename “DeviceTrace” to "Trace_PlcLoad" (“Properties”).
4. Set the focus in the trace editor and click “Trace è Upload Trace”.

ð The connection to the controller is established and the “Online List” dialog opens.

5. Select the “PlcLoad” entry in the dialog and click “Upload”. Click OK to close the dialog.

ð Multiple trace views open in the trace editor to show the CPU load in the runtime
system. There are the traces for the particular CPUs and one trace for the average
value. The following text appears for each: "No samples have been recorded."

6. Click “Trace è Start Trace”.

ð The trace recording for the four parameters is displayed.

7. If you also want to display the traces for the CpuLoad per CPU with their average value
in the project, then insert another “DeviceTrace” object into the device tree. Name it
"Trace_CpuLoad" for example. Load and start the traces for “CpuLoad” in the editor as
described above.

ð Now you can monitor all traces in the project:

8. If you want to change the appearance of the presentation, then click “Configuration”
in the respective trace editor window to access the configuration dialogs. You can use
these dialogs (except variable assignments) in the same way as for an IEC variable trace
created in a project.

9. To disconnect from the controller, close all open DeviceTrace editor windows. If you are
logged in to the device, then logging out is enough to terminate the connection.

See also
● Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Settings'” on page 2427

Navigating into trace data
Use menu commands to navigate the data in the trace diagram.
Requirement: The application is in online mode.
Menu commands
● “Trace è Cursor”
● “Trace è Mouse Zooming”

Displaying the
CPU load with
DeviceTrace
objects in the
CODESYS
project
(example)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2015

● “Trace è Reset View”
● “Trace è AutoFit”
● “Trace è Compress”
● “Trace è Stretch”
● “Trace è Convert to Single-Channel”
● “Trace è Convert to Multi-Channel”

See also
● Ä Chapter 6.4.1.21.3.22.5 “Command 'Cursor'” on page 2733
● Ä Chapter 6.4.1.21.3.22.9 “Command 'Mouse Zooming'” on page 2737
● Ä Chapter 6.4.1.21.3.22.14 “Command 'Reset View'” on page 2740
● Ä Chapter 6.4.1.21.3.22.2 “Command 'AutoFit'” on page 2733
● Ä Chapter 6.4.1.21.3.22.3 “Command 'Compress'” on page 2733
● Ä Chapter 6.4.1.21.3.22.18 “Command 'Stretch'” on page 2742
● Ä Chapter 6.4.1.21.3.22.10 “Command 'Convert to Multi-Channel'” on page 2737
● Ä Chapter 6.4.1.21.3.22.11 “Command 'Convert to Single-Channel'” on page 2738

Managing trace
Use menu commands to load and save traces in various formats.
Menu commands
● “Trace è Save Trace”
● “Trace è Load Trace”
● “Trace è Export Symbolic Trace Config”

See also
● Ä Chapter 6.4.1.21.3.22.15 “Command 'Save Trace'” on page 2741
● Ä Chapter 6.4.1.21.3.22.8 “Command 'Load Trace'” on page 2737
● Ä Chapter 6.4.1.21.3.22.7 “Command 'Export Symbolic Trace Config'” on page 2735

Showing statistics
CODESYS evaluates and displays the recorded data with an option of saving the data to the
clipboard. Click “Trace è Statistics”.
See also
● Ä Chapter 6.4.1.21.3.22.20 “Command 'Statistics'” on page 2742

6.4.1.13.4 Data Recording with Trend
General

When you want to monitor the development of data over a long period of time for the purpose of
reading a trend, you can save the data with “Trend Recording”. You can configure any number
of variables or parameters to save their values in a persistent database. This database is
located on the PLC and is populated continually at runtime.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2016

Trend recording comprises the following objects:
● (1):“Trend recording task” of type “Task”
● (2): Object of type “Trend Recording Manager”
● (3): Object of type “Trend Recording”

NOTICE!
Timeout for trend recording
During a trend recording, it can happen that the application task triggers a
timeout that is caught with an exception when transitioning from “Running” to
“Stop”. Causes can be that file operations with the SQLite database are taking
too long or that too many variables are being recorded. This usually happens on
a target device with weak performance.
You can avoid the occurrence of an exception:
– Configure the trend recording with less memory demand so that the amount

of data that is stored is adapted to the target system.
– Reduce the number of variables.

To display the collected data, you design a visualization with a “Trend” element.
This kind of visualization accesses the database for visualizing the data.

See also
● Ä Chapter 6.4.1.21.2.32 “Object 'Trend Recording Manager'” on page 2545
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545
● Ä Chapter 6.4.1.21.2.34 “Object 'Trend Recording Task'” on page 2548

Getting started with trend recording
To execute trend recording on a runtime system, you need an application with a “Trend
Recording Manager” object that contains at least one “Trend Recording” object. Then you can
configure a database on the runtime system and the data buffering.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2017

1. Add a “Trend Recording Manager” object below your application.
2. Select the “Trend Recording Manager” object and click “Add Object è Trend Recording”.

Type a name in the “Add Trend Recording” dialog box.

ð CODESYS creates the object. The editor opens.

3. Type a task in “Record Settings”.
4. Click “Add Variable”.

ð CODESYS adds another variables. The blank settings open in the “Variable Settings”
to the right of the tree view.

5. Select a valid IEC variable from the “Variable” field.

ð The IEC variable is configured for trend recording.

6. Build the application.
7. Download the application to the controller and click “Start”.

ð The application records data in runtime mode and saves it to a database.

See also
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545
● Ä Chapter 6.4.5.13.2 “Getting Started with Trend Visualization” on page 2928

Configuring trend recording
You can configure a database on the runtime system and the data buffering.

NOTICE!
Timeout for trend recording
During a trend recording, it can happen that the application task triggers a
timeout that is caught with an exception when transitioning from “Running” to
“Stop”. Causes can be that file operations with the SQLite database are taking
too long or that too many variables are being recorded. This usually happens on
a target device with weak performance.
You can avoid the occurrence of an exception:
– Configure the trend recording with less memory demand so that the amount

of data that is stored is adapted to the target system.
– Reduce the number of variables.

In this task, the runtime system records the trend.

In general, trend recording runs in the same task as the main program (for
example, PLC_PRG).

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Click the "arrow down" symbol () in the “Task” drop-down list.

ð The drop-down list opens with all tasks that are available throughout the application.

3. Select a task for trend recording.

Assigning tasks

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2018

See also
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545

NOTICE!
The number of variables is limited for trend recording. You can change this
number in the “Trend storage” dialog.

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Right-click an entry in the tree view.
3. Click “Add Variable”.

ð CODESYS adds another variables. The blank settings open in the “Variable Settings”
to the right of the tree view.

4. Select a valid IEC variable from the “Variable” field.

ð The IEC variable is configured for trend recording.

5. Configure how the variable is displayed in the trend diagram.
6. Configure how the alert color is displayed in the trend diagram.

See also
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545
● Ä Chapter 6.4.1.21.4.17 “Dialog Box 'Trend storage'” on page 2809

1. Double-click a “Trend Recording” object in the device tree.
2. Click a variable in the tree view of the configuration.
3. Click “Delete Variable” or press [Del].

You can configure conditional trend recording for execution. Configuration is not possible when
depending on triggering. For that you need a “Trace” object.

1. Double-click a “Trend Recording” object in the device tree.
2. Click the top node in the tree view of the trend configuration.

ð The name of the trend configuration is selected and on the right you see the current
configuration in “Record Settings”.

3. Assign a Boolean variable, an access to a bit, or a property to the “Record condition” field.

ð When the application is in runtime mode, data is recorded only if the value is TRUE.

See also
● Ä Chapter 6.4.1.13.3 “Data Recording with Trace” on page 2007

Adding IEC vari-
ables

Removing varia-
bles from the
configuration

Starting condi-
tional trend
recording

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2019

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Right-click an entry in the tree view.
3. Click “Add Variable”.

ð CODESYS inserts a new variable. The blank settings open in the “Variable Settings”
to the right of the tree view.

4. Click the "down" symbol () to the right of the “Variable” label.
5. Select “Parameter” from the drop-down list.
6. Click and select a parameter from the “Input Assistant” dialog.
7. Configure how the parameter is displayed in the trend diagram.
8. Configure how the alert color is displayed in the trend diagram.

See also
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Click “Trend Storage”.

ð The “Trend Storage” dialog opens.

3. Now you can change the settings.

See also
● Ä Chapter 6.4.1.21.4.17 “Dialog Box 'Trend storage'” on page 2809

1. Double-click a “Trend Recording” object in the device tree.

ð The respective editor opens. In the tree view of the trend configuration, the top entry is
selected, and on the right you see the current configuration in “Record Settings”.

2. Click “Advanced”.

ð The “Advanced Trace Settings” dialog opens.

3. Now you can change the settings.

See also
● Ä Chapter 6.4.1.21.4.18 “Dialog Box 'Advanced Trend Settings'” on page 2810

Adding param-
eter

Configuring
data buffering
on the RTS

Configuring
additional buf-
fering

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2020

See also
● Ä Chapter 6.4.1.13.3.3 “Creating trace configuration” on page 2010

6.4.1.13.5 Monitoring tasks
In online mode, you can display some statistical values of the tasks in the runtime system.
This information is very useful for testing clock cycles or solving problems in the runtime
performance.
1. Switch to online mode.
2. Select the “Task Configuration” object in the device tree.

Click “Project è Edit Object”.

ð The task configuration opens in the editor.

3. Click the “Monitor” tab.

See also
● Ä Chapter 6.4.1.21.2.29.4 “Tab 'Monitor'” on page 2536

6.4.1.13.6 Reading the PLC log
CODESYS provides the capability to display the events and error messages logged in the
controller.
See also
● Ä Chapter 6.4.1.21.2.8.9 “Tab 'Log'” on page 2437

Requirement: The controller is running.
1. Select the controller in the device tree.
2. Choose the command “Project è Edit Object”.

ð The device editor opens.

3. Choose the tab “Log”.
4. Click on to update the view.

ð A connection to the controller is established. The controller in the device tree is
highlighted in green.
All controller log information are displayed.

5. Click on to delete the current list.
6. Filter the view by clicking on the desired category (for example "Information").
7. Save the log entries. Click on and choose a file name.

See also
● Ä Chapter 6.4.1.21.2.8.9 “Tab 'Log'” on page 2437

Reading the log

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2021

6.4.1.13.7 Using PLC shell for requesting information
The "PLC shell" in CODESYS is a text-based control monitor (terminal) on a tab of the device
editor. There you can enter commands for the request of specific information from the controller,
as well as execute actions like starting, stopping or downloading applications. Also a description
on the meaning and syntax of the possible commands you can get directly via the PLC shell.

Requirement: Your project is connected with a controller; Example: CODESYS Control Win V3,
on which an application App1 is running.

1. Open the device editor double-clicking on the object CODESYS Control Win V3 in the
device tree, and activate tab “PLC Shell”.

ð The tab shows an empty output data window. Below there is an entry field for a
command.

2. Click button .

ð The “Insert Standard Command” dialog appears with a list of commands.

3. Choose command “?” and click button “Execute”.

ð The dialog closes and in the output data window you see a list of the supported com-
mands and their possible parameters. Each the syntax for how to enter the command
is displayed.

4. Click again and choose command “pid”. In the input assistant supplement the com-
mand as follows: pid App1. Press the Enter key.

ð In the output data window the following gets displayed (the GUIDs are just exmples):

pid App1
Project Identification
Application: App1
Code GUID:0x08a893c0
Data GUID:0x762d0e90

5. Click button in the command line.

ð Command pid App1 is added to the history of already entered commands.

See also
● Ä Chapter 6.4.1.21.2.8.11 “Tab 'PLC Shell'” on page 2441

6.4.1.13.8 PLC operation control via system variables

CAUTION!
You are responsible for runtime system services being enabled under safe
application conditions and disabled only under critical conditions.

At runtime, the state of an application or facility can become sensitive and disruptive actions
can endanger the entire machine or facility. However, in this state you can suppress certain
commands and prevent dangerous actions. The “PlcOperationControl” function block and
“Component Manager” library are provided for this purpose.

Requesting
information
about the appli-
cation on the
controller

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2022

Examples of CODESYS commands that can suppress operations when executed:
● “Online Change”, “Download”
● “Enable Breakpoint”
● “Reset Application”, “Stop Application”
● “Transmit Data”
● “Force Values”, “Write Values”

In order that a backup solution is always in place, you are not permitted to suppress the “Reset
origin” and “Delete” commands.
CODESYS will notify you if a currently disabled runtime system service is required when the
application is in runtime mode. Then, you can respond with an appropriate countermeasure.

This function block is used for enabling and disabling operations.

Table 386: Property (PROPERTY)
Name Data Type Initial value Description
xDisableApplic
ationOnlineCha
nge

BOOL FALSE TRUE: Online change is suppressed.

xDisableApplic
ationDownload

BOOL FALSE TRUE: Download is suppressed.

xDisableApplic
ationStop

BOOL FALSE TRUE: Application stop is suppressed.

xDisableApplic
ationBP

BOOL FALSE TRUE: Setting breakpoints is suppressed.

xDisableApplic
ationWrite

BOOL FALSE TRUE: Writing variables is suppressed.

This can also be suppressed via PLCHandler/Iec-
VarAccess.

xDisableApplic
ationForce

BOOL FALSE TRUE: Forcing variables is suppressed.

xDisableApplic
ationReset

BOOL FALSE TRUE: Resetting the application (not "Reset
origin") is suppressed.

xDisableAll BOOL FALSE TRUE: All operations are suppressed.

Requirement
● Compiler version >= 3.4.3.0
● In the device description, the PLC operation control is enabled by system variables.
1. Declare an instance of the PlcOperationControl function block (for example,

PlcOpCtrl_Inst).

ð PlcOpCtrl_Inst : PlcOperationControl;
2. Suppress a command by assigning the respective TRUE property (for example, "Stop

Application".

ð PlcOpCtrl_Inst.xDIsableApplicationStop := TRUE;

Function block
PlcOperationC
ontrol for
operation con-
trol

Implementing
operation con-
trol

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2023

See also
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629
● Ä Chapter 6.4.1.21.3.8.16 “Command 'Force Values'” on page 2649
Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

6.4.1.13.9 Backup and restore
CODESYS and the CODESYS standard runtime systems (with version 3.5.8.0 and later) sup-
port backing up application-specific files on the PLC. You can execute the required actions in
the “Backup and Restore” tab of the generic device editor.
A backup consists of creating and saving a file in zip archive that contains the application-
related files and an information file meta.info. This backup file has the extension TBF
(="Target Backup File") and can be saved in the local file system or on the PLC.
The following applies when restoring the software status from the backup file:
● A dialog opens with a list of affected files on the PLC, and you can deactivate optional

components.
● We highly recommend to set the application to STOP mode for backup or restore. A dialog

prompt will open to warn you about this.
● The user interface is blocked when restoring to the PLC.
● Existing files are overwritten without warning.
● Existing boot applications are deactivated as soon as at least one new boot application is

part of the restore.
See also
● Ä Chapter 6.4.1.21.2.8.6 “Tab 'Backup and Restore'” on page 2435

Requirement: A project is open with an application that is running on the required device. In
addition, for this example an external file myExternalFile.txt is inserted as an object below
the application. This file is downloaded to the PLC implicitly when downloading the application.
1. Open the device editor by double-clicking the device entry in the device tree. Click the

“Backup and Restore” tab.

ð The tab opens with a menu bar including the “Backup” and “Restore” menus.

2. In the “Backup” menu, select the “Read Backup Information from Device” item.

ð If the PLC is not connected at the moment, then CODESYS opens a
temporary connection to the device and reads the relevant files from the
$PlcLogic$ directory of the PLC into a table in the lower part of the
tabbed page. In this example, at least the following files will be listed:
$PlcLogic$/Application/Application.app, $PlcLogic$/Application/
Application.crc, and $PlcLogic$/Application/myExternalFile.txt. In
addition, other external, project-dependent files are listed, which have been inserted
below the application in the device tree. Furthermore, the source code archive file
$PlcLogic$/Archive.prj is listed if you have set the project setting for this
(“Implicitly at program download and online change”) as the loading time.

3. In the table, clear the check box for the $PlcLogic$/Application//
myExternalFile.txt file in the “Active” column.

4. Select “Save Backup File to Device” in the “Backup” menu.

ð The “Save as” dialog opens. The file type is predefine as “Backup files (*.tbf)”.

5. Select a location for the backup file and click “Save”.

See also
● Ä Chapter 6.4.1.21.4.12.6 “Dialog 'Project Settings' – 'Source Download'” on page 2770

Creating backup
files

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2024

Requirement: A project is open with a PLC device connected. A backup file is saved to the local
file system as described above.
1. Open the device editor by double-clicking the device entry in the device tree. Click the

“Backup and Restore” tab.
Click “Restore è Load Backup File from Disc”.

ð The default prompt opens for selecting a backup file tbf in the local file system.

2. Select the backup file and click “Open”.

ð The files are read from the backup file and shown in the table of the dialog below.
The file $PlcLogic$/Application/myExternalFile.txt that was excluded in
the backup is missing.

3. Click “Restore è Restore Backup to Device”.

ð A dialog prompt opens with information about the actions when restoring.

4. Click “OK” to start restoring the files to the PLC file system.

ð When restore is complete, you are prompted to restart the PLC in order to activate the
loaded application.

6.4.1.14 Updating an Application on the PLC
6.4.1.14.1 General

CODESYS basically provides two options to transfer a modified application to the controller:
download and online change.
A download results in a recompilation of the application. In that time, a syntax check is per-
formed and application code is also created and downloaded to the controller. This leads to
the running program being stopped. A download is the recommended method of data transfer
because a defined starting state is always created due to the program stop and the reinitializa-
tion.
In the case of an online change, only the modified parts are downloaded again to the controller.
A running program is not stopped for this. You should perform an online change only in the case
of minor changes to the application. For extensive changes, the behavior of a program cannot
be safely predicted. For more information, read the notes in the description of the “Online
Change” command.
See also
● Ä Chapter 6.4.1.14.2 “Executing the online change” on page 2025
● Ä Chapter 6.4.1.14.3 “Execution of a download” on page 2026
● Ä Chapter 6.4.1.21.3.7.5 “Command 'Load'” on page 2628
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629

6.4.1.14.2 Executing the online change
CODESYS automatically offers you an online change if you log in with an application that
is already present on the controller, but has been changed since the last download in the
programming system. With this procedure only the modified parts are reloaded to the controller.
A running program on the controller is not stopped during the online change.
In the view “Memory reserve for online change”, you can configure memory reserves for the
online change for function blocks of a project. In this way, instance variables do not have to be
moved to the memory after changes are made to a function block for an online change.

NOTICE!
When carrying out the online change, pay attention to the notes in the descrip-
tion of the “Online Change” command.

Restoring from
backup files

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2025

See also
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629
● Ä Chapter 6.4.1.21.3.7.2 “Command 'Login'” on page 2624
● Ä Chapter 6.4.1.11.5 “Generating Application Code” on page 1976

Requirement: The connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged out.
1. Change your application.
2. Click “Online è Login”.

ð A dialog appears with the information that the application has been changed since the
last download.

3. Click the “Details…” button
4. Check the details in the “Application information” tab.

If you have not generated any code since the last change, the command “Application is
not up to date. Generate code now?” appears at the bottom edge of the dialog. In this
case click this command.

ð You are shown a comparison view of the objects (objects marked red are different).

5. Close the dialog.
6. Select the option “Login with Online Change” and click “OK”.

ð The change is loaded to the controller. The running program on the controller is not
stopped while doing this. The application is logged in.

See also
● Ä “View 'Project Comparison' - 'Differences'” on page 2607

Requirement: The connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged in.

1. Select an object in the device tree. It is best to select a POU or a GVL here.
2. Click “Project è Edit Object (Offline)”.

ð The object opens in the editor.

3. Change the object. For example, you can declare a new variable or change a value
assignment here.

4. Click “Online è Online Change”.

ð A query will appear, asking whether you really want to execute the online change.

5. Click “Yes” to confirm the dialog.

ð The change is loaded to the controller.

6.4.1.14.3 Execution of a download
A download of the application causes a compilation of the active application. In the process, a
syntax check is performed and application code is also created and loaded to the controller. A
program running on the controller is stopped during the download.

Executing the
online change
when logging in

Execute online
change in the
logged-in state
(online opera-
tion)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2026

NOTICE!
During the download, pay attention to the notes in the description of the
“Download” command.

See also
● Ä Chapter 6.4.1.21.3.7.5 “Command 'Load'” on page 2628
● Ä Chapter 6.4.1.21.3.7.2 “Command 'Login'” on page 2624
● Ä Chapter 6.4.1.11.5 “Generating Application Code” on page 1976

Requirement: the connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged out.
1. Change your application.
2. Select the command “Online è Login”

ð A dialog box appears with the information that the application has been changed since
the last download.

3. Select the option “Login with download” and click on “OK”.

ð The running program on the controller is stopped and the change is loaded to the
controller. The application is logged in.

Requirement: the connection settings of the controller are correctly set. The applications in
the project and on the controller are identical. The project on the controller is running. The
application is logged in.

1. Select an object in the device tree. It is best to select a POU or a GVL here.
2. Select the command “Project è Edit Object (Offline)”

ð The object opens in the editor.

3. Change the object. For example, you can declare a new variable or change a value
assignment here.

4. Select the command “Online è Download”.

ð A query will appear, asking whether you really want to execute the download.

5. Confirm the dialog box with “Yes”.

ð The running program on the controller is stopped and the change is loaded to the
controller.

6.4.1.15 Copying files to/from PLC
In the generic “Files” tab of the device editor, you can copy files to and from the local file system
and the controller.
Requirement: The vendor has unlocked the tab. In the device tree, the connection to the
controller is configured. The device is running.
1. Double-click the PLC device object in the device tree to open the device editor.
2. Click the “Files” tab.

Downloading
when logging in

Downloading in
the logged-in
state (online
mode)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2027

3. In “Host” | “Location” on the left part of the view, set the path in the local file system where
files will be copied to and from. Example: D:\FileTransferWithPLC. If necessary,
create a new directory by clicking the folder symbol ().

ð The files and directories are shown like in a file manager. Click the refresh symbol ()
to update the display.

4. In “Runtime” on the right side of the view, set the required directory for the data transfer in
the same way.

ð CODESYS shows the files on the controller.

5. Select the required files from the file system tree for the file transfer (multiple selection is
possible). You can also select a directory for transferring all files in a folder.

6. Click the left and right arrow symbols (,) between the two parts of the view.

ð CODESYS copies the selected files to the other file system immediately. If a file is not
already available in the target directory, then it is created. If it is already available and
not write-protected, then it is overwritten. Otherwise a message is shown.

See also
● Ä Chapter 6.4.1.21.2.8.8 “Tab 'Files'” on page 2437

6.4.1.16 Using the Command-Line Interface
You can start the command line with the following options and arguments.
<folder>Automation Builder.exe --<option>

Paths or option parameters must be written inside straight quotation marks
when they contain spaces, dashes, or slash marks.

CODESYS is started in the specified language.

--culture=<culture>
<Culture>: Typical language codes are as follows: de, en, fr, it, es, zh-CHS.

Starting CODESYS with the user interface in English:
Automation Builder.exe --culture=en

Example

See also
● Ä Chapter 6.4.1.21.4.14.14 “Dialog 'Options' – 'International Settings'” on page 2790

CODESYS is started directly with the specified profile. When you start CODESYS without this
option, the “Select Profile” opens.

--profile="<profile name>"
<profile name>: You have to specify the profile name exactly as it is displayed in the “Help
è About” splash screen of the development system or in the start menu on your computer.

Syntax:

Option --
culture (lan-
guage of the
user interface)
Syntax:

Option --
profile
(CODESYS pro-
file)
Syntax:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2028

Automation Builder.exe --culture=de --profile="Automation Builder
2.5"

Example

After CODESYS is started, the comparison of two CODESYS projects is begun immediately.
Type the path of the project file as arguments after the option and then the path of the reference
project. CODESYS starts and opens the “Project Comparison - Differences” view.

--compare="<path of project file>" "<path of reference project file>"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project"

Example

See also
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

CODESYS is started and the specified project is opened.

--project="<path of project file>"
<path of project file>: File path of project

Open the test project:
Automation Builder.exe --culture=de --
project="D:\projects\test.project"

Example

See also
● Ä Chapter 6.4.1.21.3.2.2 “Command 'Open Project'” on page 2553

CODESYS is started, the specified project archive is extracted, and the project is opened.

--projectarchive="<path of project archive file>"
<path of project archive file>: File path of project archive

Extract the test.projectarchive and open the project in the development system:
Automation Builder.exe --
projectarchive="D:\projects\test.projectarchive"

Example

See also
● Ä Chapter 6.4.1.21.3.2.9 “Command 'Extract Archive'” on page 2558

Option --
compare (start
project compar-
ison)
Syntax:

Option --
project (open
CODESYS
project)
Syntax:

Option --
projectarchiv
e (open
CODESYS
project archive)
Syntax:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2029

The specified script file is run by CODESYS.

Table 387: Command-line options for --runscript
--runscript="<scriptfile>.py" CODESYS runs the <scriptfile>.py script file at startup.

You have to provide the complete path of the script file.
--scriptargs:'<arg1>
<arg2> ... <argn>'

Use this option with the --runscript option. As a result, the argu-
ments <arg1> ... <argn> are passed to the script. The arguments are
passed to the Python variable sys.argv.

--noUI Use this option with the --runscript option.

The CODESYS user interface is not opened. CODESYS prints all
errors, warnings, compiler reports, and command-line messages gen-
erated from the script. The script messages (1: Severity Text) can
be separated from other messages (2: Severity FatalError, Error,
Warning, Information) with the ">" operator.

--enablescripttracing Use this option with the --runscript option. As a result, each com-
mand of the script file is shown in the output.

--textPrompts Use this option with the --noUI option. As a result, message service
methods and default dialogs are output in the command line for user
input.
If you do not specify --textPrompts, then all message service
prompts are confirmed automatically with default values.

scriptdebugger {="<debugger>"} Use this option with the --runscript option. It sets IronPython
in debug mode so that external debuggers can be used to debug
Python scripts. The following values are defined for <debugger>
(uppercase/lowercase is irrelevant).
● auto: Automatically detects if a debugger is included in every

script for the current process. At this time, only .NET-based debug-
gers can be detected automatically. A detected debugger over-
writes the --enablescripttracing flag.

● .NET: Activates debugging for .NET-based debuggers, such as
"Python Tools for Visual Studio" (PTVS) and SharpDevelop. With
this option, a debugger can also be included in running scripts, as
opposed to "auto".
Note: This is currently the default value when --
scriptdebugger is used without providing a value.

● disabled: Deactivates debugging and automatic detection.
● script: Switches the IronPython script engine to debug mode for

activating the debugging for set-trace debuggers. The script itself
must connect to and disconnect from the debugger.

● tracing: Activates the simple integrated script tracing mode
and deactivates the automatic detection (same as the option --
scripttracing).

● $absolute_path.py$: Absolute path to a Python script that ini-
tiates the connection to a Python-based debugger. The IronPython
script engine is switched to debug mode for allowing the debug-
ging for set-trace debuggers. This script is run one time during
the initialization and should define the following non-parameterized
functions:
scriptdebuggersetup is run immediately before running the
user script to establish the connection to the debugger.
scriptdebuggershutdown is called immediately after running
the user script or when the script engine is downloaded and
should close the connection to the debugger.

Option --
runscript (run
script)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2030

start /b /wait Automation Builder.exe
--runscript="D:\Script\ArgvAnd__main__Test.py"
--scriptargs:'username password 3.14 "path=\"C:\temp\\"'

Script file: ArgvAnd__main__Test.py
from __future__ import print_function
import sys
print("sys.argv: ", len(sys.argv), " elements:")

for arg in sys.argv:
 print(" - ", arg)
print()
print("__name__: ", __name__)

Output result: stdout:
sys.argv: 6 elements:
- D:\TestScripts\ArgvAnd__main__Test.py
- username
- password
- 3.14
- path= "C:temp"
__name__: __main__

For more information about the __name__ global variable, see the Python documentation.

Examples of
using transfer
parameters in
script files with
'sys.argv'

start /b /wait Automation Builder.exe --
runscript="D:\Script\AmpelTest.py" --noUI 1>ScriptMessages.txt

CODESYS passes all messages that are generated by the script to the
ScriptMessages.txt file. Other messages are printed to the command line.
start /b /wait Automation Builder.exe --
runscript="D:\Script\AmpelTest.py" --noUI 2>NUL

CODESYS suppresses all messages, except for script messages. The script messages are
printed to the command line.

Examples of
the message
output

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2031

The following initdebug.py script was tested successfully with pydevd-based debuggers,
such as PyDev / LiClipse and PyCharm. To use this script, start CODESYS with the following
command line:
--profile="Fanta Development Build" --
scriptdebugger="D:\test\charmdebug\initdebug.py"

File: initdebug.py:
from _future_ import print_function
from _future_ import unicode_literals
import sys
sys.path.append(r"D:\test\Env2\Lib\site-packages\pycharm-debug.egg")
import pydevd
def scriptdebuggersetup():
pydevd.settrace('localhost', port=51234, stdoutToServer=True,
stderrToServer=True)
def scriptdebuggershutdown():
pydevd.stoptrace()

Example of
option --script-
debugger

See also
● http://docs.python.org/tutorial/modules.html

If you add this option after the option --compare <project1> <project2>, then white-
space is ignored in the project comparison. Note that semantically relevant spaces, for example
in STRING literals, are still taken into account.

--compare="<path of project file>" "<path of reference project file>"
--ignorewhitespace="true"|"false"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project" --ignorewhitespace="true"

Example

See also
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

If you add this option after the option --compare <project1> <project2>, then comments
are ignored in the project comparison.

--compare="<path of project file>" "<path of reference project file>"
--ignorecomments="true"|"false"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project" --ignorecomments="true"

Example

See also
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

Option --
ignorewhitesp
ace (ignore
whitespace in
project compar-
ison)
Syntax

Option --
ignorecomment
s (ignore com-
ments in project
comparison)
Syntax:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2032

http://docs.python.org/tutorial/modules.html

If you add this option after the option --compare <project1> <project2>, then object
properties (permissions, compile settings, directories, bitmaps, etc.) are ignored in the project
comparison.

--compare="<path of project file>" "<path of reference project file>"
--ignoreproperties="true"|"false"

Automation Builder.exe --compare "D:\proj\project1.project"
"D:\proj\project2.project" --ignoreproperties="true"

Example

See also
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

CODESYS is started. In this case, the query as to whether unlicensed components should still
be loaded is skipped. If so, then CODESYS does not load these components by implication.

Automation Builder.exe --skipunlicensedpluginsExample

If you add this option after the option --project="<path of project file>", then the
project is opened and the thumbprint of the certificate for signing compiled libraries is passed.

--signaturethumbprint="<thumbprint of digital signature>"

Automation Builder.exe --project="D:\projects\test.project"
signaturethumbprint="3E96C9B61010CBDC3186021A1CAA64946DDCAAF3"

Example

See also
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

If you add this option after the option --project="<path of project file>", then the
“Enforce signing of compiled libraries” option is enabled in the project in the “Security Screen”
on the “User” tab.

NOTICE!
When the “Security Screen” is opened and closed, the current settings are
applied in the user options, even when no active changes have been made.

--enforcesignedcompiledlibraries="true"|"false"

Option --
ignorepropert
ies (ignore
object proper-
ties in project
comparison)
Syntax:

Option --
skipunlicense
dplugins (do
not load compo-
nents without a
license)

Option --
signaturethum
bprint (thumb-
print of the cer-
tificate which is
used for signing
compiled libra-
ries)
Syntax:

Option --
enforcesigned
compiledlibra
ries (enforce
signing of com-
piled libraries)

Syntax:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2033

Automation Builder.exe --project="D:\projects\test.library" --
enforcesignedcompiledlibraries="true"

Example

See also
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

If you add this option after the option --project="<path of project file>", then the
Internet address of the RFC-3161 time stamp server (“Timestamping server”) is set in the
project in the “Security Screen” on the “User” tab.

NOTICE!
When the “Security Screen” is opened and closed, the current settings are
applied in the user options, even when no active changes have been made.

--timestampingserverurl="<URL of RFC-3161 timestamping server>"

Automation Builder.exe --timestampingserverurl="http://
timestamp.comodoca.com/rfc3161"

Example

See also
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

6.4.1.17 Using Libraries
6.4.1.17.1 Library repository... 2034
6.4.1.17.2 Library Manager.. 2034
6.4.1.17.3 Information for Library Developers.. 2035
6.4.1.17.4 Adding a Library to the Application.. 2036
6.4.1.17.5 Adding a library to the repository... 2037
6.4.1.17.6 Exporting library files... 2037

6.4.1.17.1 Library repository
The library repository is the storage location on the development system for libraries and
associated metadata. You can link any installed the libraries into your project by means of a
library manager. Moreover, the libraries are installed with version management for easy library
updates.
You can create and edit more repositories in addition to the preinstalled System repository.

Ä Chapter 6.4.1.21.3.9.5 “Command 'Library Repository'” on page 2657

6.4.1.17.2 Library Manager
In order to be able to use POUs, which are provided in a library POU, in the application, the
library has to be integrated in the Library Manager in the project. The requirement for this is the
installation of the library in the library repository.
The Library Manager displays all integrated libraries according to their library type and the
respective properties. In the Library Manager, you can add more libraries from the library
repository, remove libraries, and edit library properties.

Option --
timestampings
erverurl (set
the time stamp
server address)

Syntax:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2034

The Library Manager can be inserted into the “POUs” view or the “Devices” view. As a result,
a project can have a Library Manager for each application, as well as a Library Manager in the
“POUs” view for use across all applications. The library POUs of the integrated libraries in the
“POUs” view can be called regardless of the application. The library POUs of the integrated
libraries in the “Devices” view can be called in the respective application code only. Further-
more, placeholder libraries behave differently when downloading depending on their positions.
Libraries that are integrated to a specific version in the project also have a placeholder for
that version (placeholder library). You can define special placeholder resolutions. You can also
use the placeholder resolution that is defined for a device in the device description or that
is stored in the library repository for a library. The Library Manager notifies you about the
actual placeholder resolution and shows the version that will be loaded when an application is
downloaded (effective version).
When a Library Manager in the “POUs” view is integrated across all applications, you can
access its contents globally. If placeholder libraries are integrated, then only the placeholder
resolutions in the device description or library repository are checked.
A Library Manager is usually integrated in the “Devices” view. Then only the application code
below it calls library POUs from it. Moreover, the special placeholder resolutions are checked
first for placeholder libraries. Only after that are the placeholder resolutions checked that are in
the device description or that originate from the library repository.
Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469

Ä Chapter 6.4.1.9.9 “Using Library POUs” on page 1890

6.4.1.17.3 Information for Library Developers

In order to avoid consistency problems and to adequately support the user,
be sure to adhere to certain rules for the creation, referencing, encryption,
protection, and documentation of libraries.

The following description provides only an overview of the library development
possibilities. For a more detailed description of these topics, see the "LibDev-
Summary" guidelines for library development.

See also
● Ä Chapter 6.4.1.17 “Using Libraries” on page 2034

General
● You can define categories for libraries. The libraries are then displayed in the library reposi-

tory below these categories.
● You can define a namespace for a library in order to enable unambiguous access to the

integrated objects. The access becomes unambiguous by adding the namespace in front of
the POU name:
<namespace>.<variable name>
Example: AC.Module

● You can open the POUs of unencrypted libraries (*.library) by double-clicking the
respective entry in the Library Manager.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2035

● You can create the following library types:
– *.library: Implementation library (source code of the library)
– *.compiled-library, *.compiled-library-v3: Protected library; source code

no longer accessible.
– *_Itfs.library: Interface library; contains only objects that are used for the interface

definition of a component (for example, constants, structures, or interfaces) and do not
generate any code.

– *_Cnt.library: Container library; does not contain any POUs; instead contains
exclusively other libraries; therefore used to conveniently integrate an entire set of
libraries whose POUs are published on the top level of the container library.

● You can integrate external libraries into the application. External libraries are programmed
outside of CODESYS in a different programming language, for example C.

Protection of libraries
● Source code protection:

When a library is prepared in "compiled-library" format, the source code of the library POUs
is no longer visible after the library is integrated into a project.

● Signing:
In CODESYS V3 SP15 and higher, a certificate is always used for the signing of library
projects (*.compiled-library-v3). The signing can be enforced by means of a setting
in the security screen. Then for generating a compiled library, you need a certificate suitable
for code signing in your user profile.
For library projects that have to be compatible with CODESYS < V3 SP15 (*.compiled-
library), only the less safe signing is possible with a private key and a corresponding
token. These deprecated methods should only be used for reasons of compatibility. Settings
are configured in the “Project Information” on the “Signing” tab.
Note: For signing libraries, you should use compiler version 3.5.15.0 or higher because a
better storage format is used.

● Licensing:
You can protect libraries by means of a license (dongle or soft container). License-protected
libraries can be installed in the library repository. However, for use in the project, the valid
license has to exist on the computer. Licenses are managed in the License Manager.

Library versions
● You can have several versions of a library installed on the system at the same time.
● You can have several versions of a library integrated into your project at the same time.

However, we do not recommend doing this. In this case, each of the libraries must be
assigned a unique namespace and access to the symbols must be qualified. Examples:
V1.SendBlob, V2.SendBlob

Referenced libraries
● You can integrate a library into other libraries (referenced libraries). The nesting can be of

any depth.
● You can define whether referenced libraries should be visible in the Library Manager.
● You can integrate referenced libraries via library placeholders. This way you avoid the prob-

lems that could occur due to version dependencies or the necessity to use vendor-specific
libraries.

See also
● Ä Chapter 6.4.1.3.4.2 “Retrieving and Editing Project Information” on page 1813

6.4.1.17.4 Adding a Library to the Application
The following instructions describe how to integrate for example the library Util into your
application in order to use its library POUs.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2036

1. Select the Library Manager and click “Project è Edit Object” to open it in the editor.

ð The Library Manager opens in the editor.

2. Click “Library è Add Library”.

ð The “Add Library” dialog opens.

3. Type the string "util" into the input field above to search the library.

ð The library Util is displayed in the library view.

4. Select the library Util and click “OK” to close the dialog.

ð The library Util is added to the Library Manager.

See also
● Ä Chapter 6.4.1.9.9 “Using Library POUs” on page 1890
● Ä Chapter 6.4.1.21.3.15.1 “Command 'Add Library'” on page 2712
● Ä Chapter 6.4.1.17.5 “Adding a library to the repository” on page 2037

6.4.1.17.5 Adding a library to the repository
The following instructions describe how to install a library in the library repository.
1. Select the command “Tools è Library Repository”.

ð The dialog box “Library Repository” opens.

2. Click on the “Install” button.
3. Select the library that you wish to install. You can set a file filter here.

Click on “Open”.

ð The library is added to the repository. The library can now be added in the Library
Manager.

See also
● Ä Chapter 6.4.1.17.4 “Adding a Library to the Application” on page 2036

6.4.1.17.6 Exporting library files
You can export a library from the library manager of a project or from the library repository and
then save it as a file to the hard disk.
1. Open a library manager of an application in a project.
2. Select a library in the library manager.
3. Click the export command in the context menu.

ð The “Export Library” dialog box opens.

4. If the selected library is linked in the project not only as a compiled library, but also in
source format, then both file types are in the drop-down list for “File type”. Otherwise, the
filter automatically shows the available type: "*.library or *.compiled-library.

5. Select the file type and storage location and click “Save”.

1. Open the CODESYS library repository (“Tools” menu).
2. Select a library version in the window of the installed libraries.

Export from the
library manager

Export from the
library manager

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2037

3. Click the “Export” button.

ð The “Export Library” dialog box opens.

4. As step 4 and 5 for "Export from the library manager".

See also
● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469
● Ä Chapter 6.4.1.21.3.9.5 “Command 'Library Repository'” on page 2657

6.4.1.18 Managing devices
6.4.1.18.1 General

CODESYS manages the installed devices in the device repository. A device repository is a
defined location in the file system. In the default CODESYS installation, it is defined with
an absolute path as the system repository. You install or uninstall devices in the “Device
Repository” dialog. The system installs a device by reading the device description file. The
properties of a device are defined in these files regarding configurability, programmability, and
possible connections to other devices.
You can use the devices provided in the device repository by adding them to the device tree of
your project.
See also
● Ä Chapter 6.4.1.21.3.9.8 “Command 'Device Repository'” on page 2663
● Ä Chapter 6.4.1.18.2 “Installing devices” on page 2038

6.4.1.18.2 Installing devices
Install a device in the device repository in order to include it in your project.
1. Click “Tools è Device Repository”.

ð The “Device Repository” dialog box opens.

2. Select the install location. “System Repository” is set by default.
3. Click “Install”.

ð The “Install Device Description” dialog box opens.

4. Select the file path of the device description.
5. Select the file type filter of the required device description.

ð All device descriptions of the selected file type are listed.

6. Select the required device description and click “Open”.

ð CODESYS adds the device description to the matching category of your device repo-
sitory.
If errors occur during installation (for example, missing files that are referenced by
the device description), then CODESYS displays them in the lower part of the device
repository dialog box.

See also
● Ä Chapter 6.4.1.21.3.9.8 “Command 'Device Repository'” on page 2663

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2038

6.4.1.19 Security
6.4.1.19.1 General.. 2039
6.4.1.19.2 General Information... 2039
6.4.1.19.3 Security for the development system.. 2041
6.4.1.19.4 Security for the Runtime/PLC.. 2041
6.4.1.19.5 Security for CODESYS WebVisu.. 2042
6.4.1.19.6 FAQ... 2043

6.4.1.19.1 General
Due to the increased networking of controllers and plants, potential threats are also quickly
rising. Therefore, you should carefully consider all possible security measures.
Security measures are absolutely necessary to protect data and communication channels from
unauthorized access.
On the following help pages, you can learn more about the safety functions of CODESYS and
the controller.

6.4.1.19.2 General Information
The following provides some general information about safety functions (security measures).
This information applies regardless of the usage in CODESYS or one with a connection con-
troller.

As a means of protecting against unauthorized access to data, it is necessary to configure user
accounts with specific access rights. Only a user with the credentials has access to the data or
functions.
Creating passwords according to the general recommendations for achieving a high password
strength is a tremendous contribution to security.
The following types of user management are roughly distinguished as follows:
● Simple user management:

To access data, only a password or the valid combination of user name and password
has to be entered. This means that access can be only granted or denied. Graduated
permissions cannot be configured.

● Group-based user management:
The access rights are assigned to user groups. Users who belong to a group can access the
data or functions after entering the credentials with precisely these assigned and different
permissions.

Encryption:
Encryption of data means the following: Data is converted into an unreadable form and can only
be made readable again with a matching key. In the simplest case, the key is a password or a
key pair.
There are two types of encryption methods:

Access protec-
tion with user
management

Encryption, sig-
nature

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2039

● Symmetric method: (the only type of encryption until the mid-1970s)
Characteristic: Use of a secret key
Advantages: Fast, simple encoding
Disadvantages: The key has to be shared secretly.

● Asymmetric method:
Characteristic: Use of a key pair (private/secret key and public key)
Advantages: The public key can be made accessible to anyone, and authentication possible
with it.
Disadvantages: Slow (approx. 1,000 to 10,000 times slower than symmetric methods);
complex encoding; long key lengths

Key exchange is usually performed by asymmetric methods; encryption and decryption by
symmetric methods.
Signature:
In order for the irrefutable ownership and integrity of a message to be verifiable, it should be
provided with a signature. These are usually the steps involved:
● Sender: Determines a unique hash value over the data (H)
● Sender: Encrypts the hash value with private key (He)
● Recipient: Also calculates the hash value and decrypts the He with the public key and

compares the two values. This allows the sender to be identified uniquely and verifies that
the sender owns the private key.

In the case of asymmetric encryption, a public key contained in a certificate is first exchanged
between the sender and the recipient. In addition, each participant needs a private key with
which they can decrypt the data if they have the certificate. So if you want to access a certifi-
cate, you need a certificate AND a private key.
Hash methods are necessary for this:
● Hash method:

Characteristic: Unique thumbprint of the data (for example, checksum of the data)
As low a collision as possible (it is very difficult to find / construct two different data for a
single hash value)

In order to assign the public key to an identity, it is usually embedded in a certificate.
In certificate-based systems, each user receives a digital certificate. The certificate is used for
digital identification. It contains information about the identity and the public key of the user.
Each certificate is authenticated by an issuing authority, which in turn may be authenticated by
higher authorities. The trust system of this PKI (Public Key Infrastructure) is strictly hierarchical.
The common trust anchor is a root certificate.
Contents of a certificate:
● Version
● Serial number
● Algorithm ID
● Issuer (authority or company)
● Validity from (not before) to (not after)
● Certificate owner (subject)
● Certificate owner key information (subject public key)

– Public key algorithm
– Public key of the certificate owner

● Unique ID of the issuer (optional)
● Unique ID of the owner (optional) The owner possess a private key matching the public key.
● Extensions

– Purpose (extended key usage)
– ...

The certificate consists of 2 parts/files:

Certificates

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2040

● Public X.509 certificate (can be issued to anyone)
● Private key that matches the certificate or its public key only (has to be kept secret).
To manage the certificates in your local "Windows Certificate Store", see the following help
page:
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

6.4.1.19.3 Security for the development system
In CODESYS, you can apply access protection to projects, libraries, as well as individual appli-
cations. In addition to a simple write protection for a project, a user management (credentials,
access rights) and encryption using certificates should be used.
See current help:
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819
● Ä Chapter 6.4.1.9.18 “Protecting an application” on page 1915

6.4.1.19.4 Security for the Runtime/PLC
Communication with the controller connected in the CODESYS project should be protected
against unauthorized access in the following ways:
● Enabling user management: simple or group-based
● Certificate-based encryption of communication with the controller

First switch the communication to encryption so that you do not reveal any credentials to other
participants in the network when transferring the user management.
Enforcing encrypted communication
● On the controller:

– Runtime version >= 3.5 SP14: Encryption can be enabled for “Communication Policy”
and enforced for all clients.

● In CODESYS:
– Encrypted communication can be selected as an option in the device editor on the

“Communication Settings” tab (command or “Change Communication Policy” dialog) or
in the “Security Screen” view.
See the current help regarding this:
Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”
on page 1967
If the CODESYS Security Agent is installed, then see the help for CODESYS Security
Agent.

Enforcing a user management
● On the controller:

– Runtime version >= 3.5 SP17: User management is enforced by default for
“Communication Policy”.
Note: For enabling the user management, at least a CODESYS development system
V3.5 SP16 is necessary. This means that, in the case of enforced user management
which has not been enabled yet, you cannot connect to an older development system.

● In CODESYS:
– See the current help regarding this:
Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”
on page 1967
Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

Enabling the
security fea-
tures

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2041

6.4.1.19.5 Security for CODESYS WebVisu
Protect the connection between the web server of the controller and the visualization client with
the following measures against unwanted access:
● Configure an HTTPS connection (encryption with SSL/TSL) between the visualization client

and the web server.
● Restrict access to the visualization and configure a visualization user management.

An HTTPS connection between the web server and the visualization client requires authentica-
tion of the web server by means of a certificate. You can create a self-signed certificate in the
“Security Screen”.
1. Click “View è Security Screen”.
2. Create a certificate for the web server on your controller.

ð The certificate data for the web server is displayed.

3. Stop your controller.
4. Restart the controller.

ð The new certificate is active.

5. Download your application to the controller.
6. Open your browser and specify the URL address of your web server.

The URL of a secure connection corresponds to the following format:
https:// <IP address/URL> :443/ <name of HTM file> .htm.

The HTML file name has to match the configured name as it is set in the “Visualization
Manager” object below the WebVisu variant. You will find the IP address of the controller
in the device editor when the a connection is active.

ð Example: https://localhost:443/webvisu.htm
The browser establishes a connection. If the certificate is not rated as trusted, then a
security notice appears.

7. Confirm that you know the risk and want to proceed.

ð You have created self-signed certificate and confirmed it as trusted.

Now start the web application with the visualization. The lock symbol in the browser
indicates secure communication.

See the chapter "Run as CODESYS WebVisu", which describes in detail how
you use certificates in the security screen.

See also
● Chapter "Run as CODESYS WebVisu"
● Chapter "User management of the visualization"

● Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”
on page 1967

● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

Configure an
encrypted con-
nection.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2042

ms-its:core_visualization.chm::/_visu_execute_webvisu.htm
ms-its:core_visualization.chm::/_visu_struct_user_management.htm

6.4.1.19.6 FAQ
6.4.1.19.6.1 Certificate expired.. 2043
6.4.1.19.6.2 New certificate (while the current one is still valid)..................... 2043
6.4.1.19.6.3 Client does not support security feature..................................... 2043
6.4.1.19.6.4 CA-signed certificates preferred (PLC shell).............................. 2044
6.4.1.19.6.5 Problems at login.. 2045
6.4.1.19.6.6 Disabling User Management.. 2045
6.4.1.19.6.7 Permitting encrypted communication again............................... 2046

Certificate expired
If the certificate from the controller for encrypted communication has expired (valid from "not
before" until "not after"), you get a prompt with a corresponding message in CODESYS when
you attempt to access the controller. For example, to renew the expired certificate, you can
accept the expired certificate and connect to the controller.

You will see this message again every time you try to login until a valid certifi-
cate is installed on the controller.

If you have created or imported a new certificate on the controller, then this new certificate will
be available for you to accept the next time you login.
See also
● Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”

on page 1967

Other clients that communicate encrypted with the controller (for example,
PLCHandler) will typically not accept an expired certificate. This means that
no connection can be established here.

New certificate (while the current one is still valid)
A new certificate can be issued before the existing certificate expires. This makes it possible for
the encrypted communication to continue seamlessly. As soon as a new certificate is available
on the controller parallel to the one currently used, the new certificate will be offered by the
controller at the next login attempt. All you have to do is accept it.
See also
● Ä “Installing a controller certificate for encrypted communication via the PLC shell of the

device editor” on page 1969

Client does not support security feature
The following CODESYS clients do not support user management yet:
● WebServer < V3.5.14.0
In order for these clients to be able to establish a connection to the controller, the user manage-
ment must not be enabled.

The following CODESYS clients do not support encrypted communication yet:

User manage-
ment

Encrypted com-
munication

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2043

● Data servers with compiler version =< V3.5.9.0
● WebVisu < V3.5.14.0 or in the case of enabled file transfer
● WebServer < V3.5.14.0
● Remote TargetVisu
● Data source ApplicationV3
● OPC Server V3
● PLCHandler < V3.5.14.0
In order for these clients to be able to establish a connection to the controller, the encrypted
communication can be set as optional. Therefore clients can establish either an encrypted or an
unencrypted connection.

Do not use the same user or password for encrypted and unencrypted commu-
nication.

See also
● Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”

on page 1967

CA-signed certificates preferred (PLC shell)
Using CA-signed certificates is not conveniently supported yet in CODESYS. However, you can
still request and use these types of certificates. In the device editor, on the “PLC Shell” tab, you
export the required CSR files to the file system and import from there the CER files sent from
the certification authority.

You are connected to the controller.
1. First you generate certificate signing requests (CSR) of all server certificates.

For this purpose, click the “PLC Shell” tab of the controller and type the command cert-
createcsr in the input line.

2. Click the “Log” tab and then the refresh button ().

ð In the log entries, you can see that the CSR files were generated.

3. Click the “Files” tab and open the file path cert/export in the right side of the “Runtime”
dialog.

ð The export folder contains the generated CSR files, for example
0_CmpsecureChannl.csr, 1_CmpApp.csr, 2_CmpWebServer.csr.

4. Select a file path where you wish to insert the CSR files in the left side of the “Host” dialog,
mark the CSR files in the right side of the dialog, and click .

ð The CSR files are copied to the required folder.

5. These requests can be signed for certification signing by a certificate authority (CA), and
then you receive a signed certificate from the certification authority.

Requesting and
providing a CA-
signed certifi-
cate

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2044

6. In the steps that follow, you import these signed server certificates to your controller.

NOTICE!
Caution: Self-signed certificates of the server must be deleted before
importing the CA-signed certificates.

7. Select the “Path” cert/import in the right side of the “Runtime” dialog.

8. In the left side of the “Host” dialog, select the path in the file system where you saved the
signed certificates and selected the certificates.

9. Click .

ð The certificates are copied to the cert/import folder.

10. Click the “PLC Shell” tab.
11. Type the command cert-import own <file name of the certificate.cer> in

the input line of the tab and press the [Enter] key.

ð The signed certificates are available to the runtime system servers.

See also
● Ä Chapter 6.4.1.21.2.8.11 “Tab 'PLC Shell'” on page 2441
● Ä Chapter 6.4.1.21.2.8.9 “Tab 'Log'” on page 2437
● Ä Chapter 6.4.1.21.2.8.8 “Tab 'Files'” on page 2437

Problems at login
If you have entered an incorrect password when logging in to the user management of the con-
troller, then the login dialog reappears immediately afterwards. After three incorrect attempts,
the controller is locked for a defined period of time. However, stricter policies on the controller
can lead to the user being locked out and only authorized again by an administrator.
See also
● Ä Chapter 6.4.1.21.3.7.2 “Command 'Login'” on page 2624

Disabling User Management

NOTICE!
After disabling the user management, your controller is accessible again for
everyone in the network of the controller. Therefore, you should only do this
in justified exceptional cases or if the clients used do not support any user
management.

For enabling the user management, at least a CODESYS development system
V3.5 SP16 is necessary. This means that, in the case of enforced user man-
agement which has not been enabled yet, you cannot connect to an older
development system.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2045

1. If the security policy for device user management is set to "Enforced", first set it back to
"Optional".

2. Execute the “Reset Origin Device” command. This deletes the user management and you
can then reconnect to the controller without having to enter user credentials. Note: In
CODESYS Version 3.5 SP16 Patch 20 and higher, you can exclude the boot application
from the delete operation when you execute “Reset Origin Device”.

See also
● Ä “Changing the communication policy (encryption, user management)” on page 1970
Ä Chapter 6.4.1.21.3.7.13 “Command 'Reset Origin Device'” on page 2636

● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

Permitting encrypted communication again

Remember that not every controller supports the deactivation of encrypted com-
munication.

NOTICE!
We strongly advise against disabling encrypted communication. Especially
in connection with an enabled user management, encrypted communication
should be enabled so that credentials do not fall into the wrong hands.

To disable encrypted communication with the controller again, proceed as follows:
1. If the communication policy for encrypted communication is set to "Enforced", first set it

back to "Optional".
2. In the device editor, on the “Communication Settings” tab in the “Device” menu, disable

“Encrypted communication”. If you have installed the CODESYS Security Agent, then you
can also change the setting in the “Security Screen”.

ð CODESYS establishes unencrypted communication again with the controller. Other
clients can also communicate again without encryption.

See also
● Ä Chapter 6.4.1.11.3 “Encrypting Communication, Changing Security Settings”

on page 1967
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2046

6.4.1.20 Reference, Programming
6.4.1.20.1 Programming Languages and Editors... 2047
6.4.1.20.2 Variables.. 2113
6.4.1.20.3 Operators... 2129
6.4.1.20.4 Operands... 2219
6.4.1.20.5 Data Types.. 2234
6.4.1.20.6 Pragmas.. 2269
6.4.1.20.7 Identifiers... 2327
6.4.1.20.8 Shadowing Rules.. 2333
6.4.1.20.9 Keywords... 2335
6.4.1.20.10 Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'............................... 2336
6.4.1.20.11 Error Messages and Warnings.. 2341

6.4.1.20.1 Programming Languages and Editors
6.4.1.20.1.1 Introduction... 2047
6.4.1.20.1.2 Declaration Editor... 2047
6.4.1.20.1.3 Common functions in graphical editors...................................... 2048
6.4.1.20.1.4 Structured Text and Extended Structured Text (ExST)............... 2049
6.4.1.20.1.5 Sequential Function Chart (SFC)... 2062
6.4.1.20.1.6 Function Block Diagram / Ladder Diagram / Instruction List

(FBD/LD/IL).. 2082
6.4.1.20.1.7 Continuous Function Chart (CFC) and Page-Oriented CFC...... 2097

Introduction
You program a POU in each case in the editor for the implementation language that you
selected when creating the POU. CODESYS offers a text editor for ST and graphic editors for
SFC, FBD/LD/IL and CFC.
The editor opens with a double-click on the POU in the device tree or in the “POUs” view.
Each of the programming language editors consists of two sub-windows:
● In the upper part you make declarations in the “declaration editor”, in text or tabular form

depending on the setting.
● In the lower part you insert the implementation code in the respective language.
You can configure the display and the behavior of each editor project-wide on the associated
tab of the CODESYS options.

Declaration Editor
In the declaration editor, you declare variables in variable lists and POUs.
If the declaration editor is used with an implementation language editor, then is opens in a view
above the implementation language editor.

The declaration editor offers two possible views: textual and tabular . In the “Tools
è Options è Declaration Editor” dialog, you define whether only the textual view or only
the tabular view is available, or whether you can switch between both views by means of the
buttons on the right side of the editor view.
A rectangle selection is possible in the textual view of the declaration editor. The key combina-
tions for the rectangle selection are located on the help page for the ST editor.
See also
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851
● Ä Chapter 6.4.1.9.4 “Declaration of Variables ” on page 1847

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2047

● Ä Chapter 6.4.1.20.1 “Programming Languages and Editors” on page 2047
● Ä Chapter 6.4.1.21.4.14.5 “Dialog 'Options' – 'Declaration Editor'” on page 2785
● Ä Chapter 6.4.1.20.1.4.1 “ST Editor” on page 2049

In online mode, you see the tabular view of the editor. The header always contains the current
object path:<device name>.<application name>.<object name>. In contrast to offline
mode, the table also contains the “Value” and “Prepared Value” columns.
The “Value” column shows the actual value on the PLC, offering monitoring functionality. If
the expression is an array with more than 1,000 elements, then you can define the range of
the array indices to monitor. To do this, double-click in the “Data Type” column to open the
“Monitoring Area” dialog. In this dialog, the declared array range is specified as the “Valid area”
for monitoring. A maximum of 20,000 elements can be monitored per array. You define the
range of the array indices to be monitored by specifying the “Start” and “End” indices. In order
to move this area more easily while maintaining the same size, the available scrollbars can be
used coupled. Tot toggle between coupled and not coupled , click the symbol on the right of
the bar. In non-coupled state, you can increase or decrease the size of the area to be monitored
as desired.

The “Prepared Value” column contains the value that you prepared for forcing or writing.
If you double-click a “Prepared value” field, then you can specify a value explicitly for writing or
forcing. In the case of enumerations, a combo box opens from which you can select a value. In
the case of a Boolean variable you can toggle the prepared value with the help of the [Enter]
key or the [Space] bar. If an expression (variable) is of a structured data type, for example the
instance of a function block or an array variable, then a plus or a minus sign is placed in front.
You can customize the format of the representation of floating-point values in the options for
monitoring.
See also
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851
● Ä Chapter 6.4.1.21.4.8 “Dialog Box 'Prepare Value'” on page 2749
● Ä “Forcing in the declaration part” on page 1988
● Ä Chapter 6.4.1.21.4.14.19 “Dialog 'Options' - 'Monitoring'” on page 2792

Common functions in graphical editors
The implementation part of the graphical editors for FBD, LD, CFC, and SFC contains a toolbar
in the lower right corner.

Return to normal editing mode: The mouse pointer changes back to the shape of
the default arrow. You can select and edit elements in the editor view.

Panning tool: The mouse pointer changes to the shape of two crossed arrows.
You can click and drag anywhere in the editor view to move the visible area of the
FBD/LD/IL editor or also pivot a CFC chart.

Magnification tool: A magnified window opens in the lower right corner of the
editor view and the mouse pointer changes to the shape of a cross. As you
move the mouse pointer over your diagram, the magnification tool shows the
area of the diagram under the cross at 100% magnification. Note: If you click in
the view, then the magnification tool closes and the part of the diagram that the
tool contained is displayed at 100% magnification. If you want to retain the set
zoom factor, then you should use the default arrow () for returning to the default
editing mode.

Zooming tool: This opens a drop-down list with a selection of zoom factors.
Clicking more selections (...) will open the “Zoom” dialog for typing other values.
The current zoom factor is always shown to the left of the symbol.

Declaration
editor in online
mode

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2048

Zooming with the scroll wheel: By holding down the [Ctrl] key and moving the scroll wheel, you
can change the zoom factor in steps of 10%.
Every graphical editor has its own “ToolBox” view that is located on the right of the editor
view by default. The toolbox contains elements that you can drag to insertion points in the
editor view. CODESYS highlights the insertion points with gray position flags in the shape of
diamonds, triangles, or arrows. These flags are green when you move the mouse pointer over
them. When you release the mouse button, CODESYS inserts the element at the selected
position.
It is also possible to use the mouse for moving elements in the editor.
You can drag function block declarations in the FBD, LD, and CFC graphical editors to the
editor view. To do this, select the full declaration (variable name and data type) and drag it
to a suitable position in the editor view. In the ladder diagram, you can also drag Boolean
declarations to the editor and insert them as contacts.
See also
● Ä Chapter 6.4.1.20.1.5.1 “SFC editor” on page 2062
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098

Structured Text and Extended Structured Text (ExST)
6.4.1.20.1.4.1 ST Editor.. 2049
6.4.1.20.1.4.2 ST editor in online mode... 2050
6.4.1.20.1.4.3 ST expressions.. 2050
6.4.1.20.1.4.4 Assignments ... 2051
6.4.1.20.1.4.5 Statements.. 2055

ST Editor
The ST editor is a textual editor used for the implementation of code in Structured Text (ST) and
Extended Structured Text (ExST).
The line numbering is displayed on the left side of the editor. When inputing programming ele-
ments, the "List components" functionality (activated in the CODESYS options, “SmartCoding”
category) and the Input Assistant [F2] are also useful. When the cursor is placed over a
variable, CODESYS shows a tooltip with information for declaring variables.
The box selection can be made with the following key combinations:
● [Shift]+[Alt]+[Arrow Right]: The selected area is extended one position to the right.
● [Shift]+[Alt]+[Arrow Left]: The selected area is extended one position to the left.
● [Shift]+[Alt]+[Arrow Up]: The selected area is extended one position up.
● [Shift]+[Alt]+[Arrow Down]: The selected area is extended one position down.
The behavior (for example parentheses, mouse actions, tabs) and appearance of the editor are
configured in the CODESYS options in the “Text Editor” category.
For an incremental search for strings in the editor, open an input field at the bottom edge of
the editor by means of the key combination [Ctrl]+[Shift]+[i]. As soon as you start typing in
characters, the corresponding search locations are highlighted in color in the editor. The number
of found matches is shown to the right of the input field. You can set the cursor at the search
location by using the arrow keys or the key combinations [Alt]+[Page Up] or [Alt]+[Page Down].
When you place the cursor on a symbol name, all occurrence locations of the symbol within the
editor are highlighted in color. The search locations correspond to the hits in the cross-reference
list. For very large projects, this can cause input delays. In this case, you can disable the
function in the options of the text editor.
CODESYS identifies syntax errors already when inputing in the editor and shows the corre-
sponding messages in the message view (“Precompile” category). If the corresponding option is
selected in the CODESYS options (“SmartCoding” category), then the error locations in the text
are also underlined with a wavy red line.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2049

The “Format Document” command provides an automatic formatting of syntactically correct ST
code.
See also
● Ä Chapter 6.4.1.9.5.4.2 “Programming structured text (ST)” on page 1879
● Ä Chapter 6.4.1.20.1.4.3 “ST expressions” on page 2050
● Ä Chapter 6.4.1.20.1.4.5.11 “ST – Comments” on page 2061
● Ä Chapter 6.4.1.20.1.4 “Structured Text and Extended Structured Text (ExST)”

on page 2049
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798
● Ä Chapter 6.4.1.21.3.4.5 “Command 'Messages'” on page 2583
● Ä Chapter 6.4.1.21.3.3.45 “Command 'Advanced' - 'Format Document'” on page 2581

ST editor in online mode
In online mode CODESYS displays the variables and expressions in the ST editor. The writing
and forcing of the variables and expressions as well as debugging functions (breakpoints, single
step execution) are also possible.
If you use assignments as expressions in ST programming, no further breakpoint positions are
created within a line.
See also
● Ä Chapter 6.4.1.13.2.2 “Calling of monitoring in programming objects ” on page 1996
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981
● Ä Chapter 6.4.1.12 “Testing and Debugging” on page 1980
● Ä Chapter 6.4.1.12 “Testing and Debugging” on page 1980
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985
● Ä Chapter 6.4.1.12.7 “Flow Control” on page 1992
● Ä Chapter 6.4.1.12.8 “Determining the current processing position with the call stack”

on page 1994

ST expressions
An expression is a construct that returns a value following its evaluation.
Expressions are composed of operators and operands. In Extended Structured Text (ExST) you
can also use assignments as expressions. An operand can be a constant, a variable, a function
call or a further expression.

2014 (* Constant *)
ivar (* Variable *)
fct(a,b) (* Function call *)
(x*y)/z (* Expression *)
real_var2 := int.var; (* in ExST: Assignment *) *)

Examples

See also
● Ä “ExST - Extended structured text” on page 1879

The evaluation of an expression takes place by processing the operators according to certain
rules of binding. CODESYS processes the operator with the strongest binding first. Operators
with the same binding strength are processed from left to right.

Evaluation of
expressions

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2050

Operation Symbol Binding strength

Parenthesize (Expression) Strongest binding

Function Call Function name (parameter list)
all operators with syntax: <operator>
()

Exponentiate EXPT

Negate
Complementation

-
NOT

Multiplication
Division
Modulo

*
/
MOD

Addition
Subtraction

+
-

Comparison <,>,<=,>=

Equality
Inequality

=
<>

Bool AND AND
AND_THEN

Bool XOR XOR Weakest binding

Bool OR OR
OR_ELSE

See also
● Ä Chapter 6.4.1.20.3 “Operators” on page 2129

Assignments
6.4.1.20.1.4.4.1 ST assignment operator... 2051
6.4.1.20.1.4.4.2 ST assignment operator for outputs..................................... 2052
6.4.1.20.1.4.4.3 ExST assignment 'S='.. 2052
6.4.1.20.1.4.4.4 ExST assignment 'R='.. 2053
6.4.1.20.1.4.4.5 ExST – Assignment as expression....................................... 2054
6.4.1.20.1.4.4.6 Assignment Operator 'REF='.. 2054

ST assignment operator
Syntax:
<operand> := <expression>
This assignment operator executes the same function as the MOVE operator.

See also
● Ä Chapter 6.4.1.20.3.7 “Operator 'MOVE'” on page 2137

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2051

ST assignment operator for outputs
The assignment operator => assigns the output of a function, a function block, or a method to a
variable. The position on the right side of the operator can also be blank.
Syntax
<output> => <variable>

FBcomp_Output1 => bVar1;
FBcomp_Output2 => ;
FBcom_Output1 and FB_Output2 are outputs of a function block. The value of
FBcom_Output1 is assigned to the variable bVar1.

Example

ExST assignment 'S='
When the operand of the Set assignment switches to TRUE, then TRUE is assigned to the
variable to the left of the operator. The variable is set.
<variable name> S= <operand name> ;
The variables and the operand have the data type BOOL.

PROGRAM PLC_PRG
VAR
 xOperand: BOOL := FALSE;
 xSetVariable: BOOL := FALSE;
END_VAR

xSetVariable S= xOperand;
When the operand xOperand switches from FALSE to TRUE, then TRUE is also assigned
to the variable xSetVariable. But then the variable keeps this state, even if the operand
continues to change its state.

Example

NOTICE!
In the case of multiple assignments within a code line, the individual assign-
ments are not processed from right to left, but all assignments refer to the
operands at the end of the code line.

Multiple assign-
ments

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2052

FUNCTION funCompute : BOOL
VAR_INPUT
 xIn : BOOL;
END_VAR
IF xIn = TRUE THEN
 funCompute := TRUE;
 RETURN;
END_IF

PROGRAM PLC_PRG
VAR
 xSetVariable: BOOL;
 xResetVariable: BOOL := TRUE;
 xVar: BOOL;
END_VAR
xSetVariable S= xResetVariable R= funCompute(xIn := xVar);
xResetVariable gets the R= assignment of the return value of funCompute.
xSetVariable gets the S= assignment of ht return value of funCompute, but not from
xResetVariable.

Example

See also
● Ä “ExST - Extended structured text” on page 1879
● Ä Chapter 6.4.1.20.1.4.4.4 “ExST assignment 'R='” on page 2053

ExST assignment 'R='
When the operand of the Reset assignment switches to TRUE, then FALSE is assigned to the
variable to the left of the operator. The variable is reset.
<variable name> R= <operand name> ;
The variables and the operand have the data type BOOL.

VAR
 xOperand: BOOL := FALSE;
 xResetVariable: BOOL := TRUE;
END_VAR

xResetVariable R= xOperand;
When the operand xOperand switches from FALSE to TRUE, then FALSE is also assigned
to the variable xResetVariable. But then the variable keeps its state, even if the operand
continues to change its state.

Example

NOTICE!
In the case of multiple assignments within a code line, the individual assign-
ments are not processed from right to left, but all assignments refer to the
operands at the end of the code line.

Multiple assign-
ments

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2053

FUNCTION funCompute : BOOL
VAR_INPUT
 xIn : BOOL;
END_VAR
IF xIn = TRUE THEN
 funCompute := TRUE;
 RETURN;
END_IF

PROGRAM PLC_PRG
VAR
 xSetVariable: BOOL;
 xResetVariable: BOOL := TRUE;
 xVar: BOOL;
END_VAR
xSetVariable S= xResetVariable R= funCompute(xIn := xVar);
xResetVariable gets the R= assignment of the return value of funCompute.
xSetVariable gets the S= assignment of ht return value of funCompute, but not from
xResetVariable.

Example

See also
● Ä “ExST - Extended structured text” on page 1879
● Ä Chapter 6.4.1.20.1.4.4.3 “ExST assignment 'S='” on page 2052

ExST – Assignment as expression
In ExST, as an extension to the IEC 61131-3 standard, CODESYS permits the use of assign-
ments as expressions.

int_var1 := int_var2 := int_var3 + 9; (* int_var1 and int_var2 receive the value of
int_var3 + 9 *)

real_var1 := real_var2 := int_var; (* real_var1 and real_var2 receive the value of
int_var *)

int_var := real_var1 := int_var; (* incorrect assignment, the data types do not corre-
spond! *)

IF b := (i = 1) THEN
i := i + 1;
END_IF

Examples

See also
● Ä “ExST - Extended structured text” on page 1879

Assignment Operator 'REF='
The operator generates a reference (pointer) to a value.
Syntax:
<variable name> REF= <variable name> ;

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2054

refA : REFERENCE TO DUT;
B : DUT;
C : DUT;

A REF= B; // corresponds to A := ADR(B);
A := C; // corresponds to A^ := C;

Example

See also
● Ä Chapter 6.4.1.20.5.14 “Reference” on page 2245
● Ä Chapter 6.4.1.21.3.13.8 “Command 'REF= (Reference Assignment)'” on page 2687

Statements
6.4.1.20.1.4.5.1 ST statement 'IF'... 2055
6.4.1.20.1.4.5.2 ST instruction 'FOR'.. 2056
6.4.1.20.1.4.5.3 ST instruction 'CASE'... 2057
6.4.1.20.1.4.5.4 ST instruction 'WHILE'.. 2058
6.4.1.20.1.4.5.5 ST Statement 'REPEAT'... 2058
6.4.1.20.1.4.5.6 ST statement 'RETURN'... 2059
6.4.1.20.1.4.5.7 ST instruction 'JMP'.. 2059
6.4.1.20.1.4.5.8 ST instruction 'EXIT'... 2060
6.4.1.20.1.4.5.9 EXST Statement 'CONTINUE'.. 2060
6.4.1.20.1.4.5.10 ST function block call... 2060
6.4.1.20.1.4.5.11 ST – Comments.. 2061

ST statement 'IF'
The IF statement is used for checking a condition and, depending on this condition, for exe-
cuting the subsequent statements.
A condition is coded as an expression that returns a Boolean value. If the expression returns
TRUE, then the condition is fulfilled and the corresponding statements after THEN are executed.
If the expression returns FALSE, then the following conditions, which are identified with ELSIF,
are evaluated. If an ELSIF condition returns TRUE, then the statements are executed after
the corresponding THEN. If all conditions return FALSE, then the statements after ELSE are
executed.
Therefore, at most one branch of the IF statement is executed. ELSIF branches and the ELSE
branch are optional.

IF <condition> THEN
 <statements>
(ELSIF <condition> THEN
 <statements>)*
(ELSE
 <statements>)?
END_IF;
// (...)* None, once or several times
// (...)? Optional

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2055

PROGRAM PLC_PRG
VAR
 iTemp: INT;
 xHeatingOn: BOOL;
 xOpenWindow: BOOL;
END_VAR

IF iTemp < 17 THEN
 xHeatingOn := TRUE;
ELSIF iTemp > 25 THEN
 xOpenWindow := TRUE;
ELSE xHeatingOn := FALSE;
END_IF;

The program is run as follows at runtime:
For the evaluation of the expression iTemp < 17 = TRUE, the subsequent statement is
executed and the heating is switched on. For the evaluation of the expression iTemp < 17
= FALSE, the subsequent ELSIF condition iTemp > 25 is evaluated. If this is true, then the
statements in ELSIF are executed and the view is opened. If all conditions are FALSE, then
the statement in ELSE is executed and the heating is switched off.

Example

See also
● Ä Chapter 6.4.1.20.1.4.3 “ST expressions” on page 2050

ST instruction 'FOR'
The FOR loop is used to execute instructions with a certain number of repetitions.

Syntax:
FOR <counter> := <start value> TO <end value> {BY <increment> } DO
<instructions>
END_FOR;
The section inside the curly parentheses {} is optional.
CODESYS executes the <instructions> as long as the <counter> is not greater, or - in
case of negative increment - is not smaller than the <end value>. This is checked before the
execution of the <instructions>.

Every time the instructions <instructions> have been executed, the counter <counter>
is automatically increased by the increment <increment>. The increment <increment> can
have any integral value. If you do not specify an increment, the standard increment is 1.

FOR iCounter := 1 TO 5 BY 1 DO
iVar1 := iVar1*2;
END_FOR;
Erg := iVar1;

If you have pre-configured iVar1 with 1, iVar1 has the value 32 after the FOR loop.

Example

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2056

CAUTION!
The end value <end value> may not attain the same value as the upper limit of
the data type of the counter.
If the end value of the counter is equal to the upper limit of the data type of the
counter, an endless loop results. For example, an endless loop results in the
above example if iCounter is of the data type SINT and the <end value>
equals 127, since the data type SINT has the upper limit 127.

As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within the
FOR loop.

See also
● Ä Chapter 6.4.1.20.5.3 “Integer data types” on page 2235
● Ä Chapter 6.4.1.20.1.4.5.9 “EXST Statement 'CONTINUE'” on page 2060

ST instruction 'CASE'
Use this dialog box for pooling several conditional instructions containing the same condition
variable into a construct.
Syntax:
CASE <Var1> OF
<value1>:<instruction1>
<value2>:<instruction2>
<value3, value4, value5>:<instruction3>
<value6 ... value10>:<instruction4>
...
<value n>:<instruction n>

{ELSE <ELSE-instruction>}

END_CASE;
The section within the curly brackets {} is optional.

Processing scheme of a CASE instruction.

● If the value of the variable <Var1> is <value i>, then the instruction <instruction i>
is executed.

● If the variable <Var1> has non of the given values, then the <ELSE-instruction> is
executed.

● If the same instruction is executed for several values of the variable, then you can write the
values in sequence, seperated by commas.

CASE iVar OF
1, 5: bVar1 := TRUE;
 bVar3 := FALSE;

2: bVar2 := FALSE;
 bVar3 := TRUE;

10..20: bVar1 := TRUE;
 bVar3= TRUE;
ELSE
 bVar1 := NOT bVar1;
 bVar2 := bVar1 OR bVar2;
END_CASE;

Example

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2057

ST instruction 'WHILE'
The WHILE loop is used like the FOR loop in order to execute instructions several times until the
abort condition occurs. The abort condition of a WHILE loop is a boolean expression.

Syntax:
WHILE <boolean expression> DO
 <instructions>
 END_WHILE;
CODESYS repeatedly executes the <instructions> for as long as the <boolean
expression> returns TRUE. If the boolean expression is already FALSE at the first evaluation,
then CODESYS never executes the instructions. If the boolean expression never adopts the
value FALSE, then the instructions are repeated endlessly, as a result of which a runtime error
results.

WHILE iCounter <> 0 DO
Var1 := Var1*2
iCounter := iCounter-1;
END_WHILE;

Example

NOTICE!
You must ensure by programming means that no endless loops are caused.

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since
you don't need to already know the number of executions of the loop before its execution. In
some cases it is thus only possible to work with these two kinds of loop. If the number of
executions of the loop is clear, however, then a FOR loop is preferable in order to avoid endless
loops.
As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within the
WHILE loop.
See also
● Ä Chapter 6.4.1.20.1.4.5.2 “ST instruction 'FOR'” on page 2056
● Ä Chapter 6.4.1.20.1.4.5.9 “EXST Statement 'CONTINUE'” on page 2060

ST Statement 'REPEAT'
The REPEAT loop is used like the WHILE loop, but with the difference that CODESYS only
checks the abort condition after the execution of the loop. The consequence of this behavior is
that the REPEAT loop is executed at least once, regardless of the abort condition.

Syntax:
REPEAT
<instructions>
 UNTIL <boolean expression>
 END_REPEAT;

CODESYS executes the <instructions> until the <boolean expression> returns TRUE.

If the boolean expression already returns TRUE at the first evaluation, CODESYS executes the
instructions precisely once. If the boolean expression never adopts the value TRUE, then the
instructions are repeated endlessly, as a result of which a runtime error results.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2058

REPEAT
Var1 := Var1*2;
iCounter := iCounter-1;
UNTIL
iCounter = 0
END_REPEAT;

Example

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since
the number of executions of the loop doesn't already need to be known before its execution. In
some cases you can only work with these two kinds of loop. If the number of executions of the
loop is clear, however, then a FOR loop is preferable in order to avoid endless loops.

As an extension to the IEC 61131-3 standard you can use the CONTINUE instruction within the
WHILE loop.

See also
● Ä Chapter 6.4.1.20.1.4.5.4 “ST instruction 'WHILE'” on page 2058
● Ä Chapter 6.4.1.20.1.4.5.2 “ST instruction 'FOR'” on page 2056
● Ä Chapter 6.4.1.20.1.4.5.9 “EXST Statement 'CONTINUE'” on page 2060

ST statement 'RETURN'
Use the RETURN statement in order to exit from a function block. You can make this dependent
on a condition, for example.

IF xIsDone = TRUE THEN
 RETURN;
END_IF;

iCounter := iCounter + 1;
If the value of xIsDone is equal to TRUE, then the function block is exited immediately and the
statement iCounter := iCounter + 1; is not executed.

Example

See also
● Ä Chapter 6.4.1.20.1.4.5.1 “ST statement 'IF'” on page 2055

ST instruction 'JMP'
The JMP instruction is used to execute an unconditional jump to a program line that is marked
by a jump label.
Syntax:
<label>: <instructions>
JMP <label>;
The jump label <label> is any unique identifier that you place at the beginning of a program
line. On reaching the JMP instruction, a return to the program line with the <label> takes
place.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2059

iVar1 := 0;
_label1: iVar1 := iVar1+1;
(*instructions*)

IF (iVar1 < 10) THEN
JMP _label1;
END_IF;

Example

NOTICE!
You must ensure by programming means that no endless loops are caused. For
example, you can make the jump conditional.

ST instruction 'EXIT'
The EXIT instruction is used in a FOR, WHILE or REPEAT loop in order to end the loop regard-
less of other abort conditions.
See also
● Ä Chapter 6.4.1.20.1.4.5.2 “ST instruction 'FOR'” on page 2056
● Ä Chapter 6.4.1.20.1.4.5.4 “ST instruction 'WHILE'” on page 2058
● Ä Chapter 6.4.1.20.1.4.5.5 “ST Statement 'REPEAT'” on page 2058

EXST Statement 'CONTINUE'
CONTINUE is an instruction of the Extended Structured Text (ExST).

The instruction is used inside FOR, WHILE and REPEAT loops in order to jump to the beginning
of the next execution of the loop.

FOR Counter:=1 TO 5 BY 1 DO
INT1:=INT1/2;
 IF INT1=0 THEN
 CONTINUE; (* to avoid a division by zero *)
 END_IF
Var1:=Var1/INT1; (* executed, if INT1 is not 0 *)
END_FOR;

Erg:=Var1;

Example

See also
● Ä Chapter 6.4.1.20.1.4.5.2 “ST instruction 'FOR'” on page 2056
● Ä Chapter 6.4.1.20.1.4.5.4 “ST instruction 'WHILE'” on page 2058
● Ä Chapter 6.4.1.20.1.4.5.5 “ST Statement 'REPEAT'” on page 2058

ST function block call
Syntax
<FB-instance>(<FB input variable>:=<value or address>|, <other FB input
variables>);

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2060

 TMR:TON;

 TMR (IN:=%OX5, PT:=T#300ms);
 varA:=TMR.Q;

The timer function block TON is instanced in TMR:TON and called with assignments for the
parameters IN and PT.

The output Q is addressed with TMR.Q and assigned to the variable varA.

Example

See also
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479

ST – Comments

Comment Description Example
Single-line There are two ways of marking:

● Starts with // and ends at the end of the
line

● Starts with /// and ends at the end of
the line

In CODESYS, these comments are handled
the same way.
However, if library documentation is created
using the LibDoc Scripting Collection, the
following applies:
● When the property LibDocContent =

DocsOnly is entered in the project infor-
mation, only comments marked with ///
are processed into library documenta-
tion. See the example for this below the
table.

● When LibDocContent =
CommentsAndDocs (default setting) is
defined, all comments are processed
into library documentation.

/// This is a comment.
/// This is a comment.

Multiline Starts with (* and ends with *). (* This is a multiline comment
*)

Nested Starts with (* and ends with *). Additional
comments (*....*) can be contained
within this comment.

(* a:=inst.out; (* comment 1 *)
b:=b+1; (* comment 2 *) *)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2061

A tooltip in the header of a POU is defined by the following
comment:
 // tooltip text – line 1
 // tooltip text – line 2
 // tooltip text – line 3

 Afterwards the documentation is defined as follows:
 /// reStructuredText

Comments for
tooltips and
POU documen-
tation

Note: It is not recommended to mix the different comment types because this can cause
unwanted side-effects when the documentation is generated.

Sequential Function Chart (SFC)
6.4.1.20.1.5.1 SFC editor... 2062
6.4.1.20.1.5.2 SFC Editor in Online Mode.. 2063
6.4.1.20.1.5.3 Processing order in SFC... 2064
6.4.1.20.1.5.4 Qualifiers for Actions in SFC... 2065
6.4.1.20.1.5.5 Implicit variables.. 2066
6.4.1.20.1.5.6 SFC Flags.. 2067
6.4.1.20.1.5.7 Library "Analyzation"... 2072
6.4.1.20.1.5.8 Elements... 2073

SFC editor
The SFC editor is graphical editor. A new SFC POU includes an Init step and a subsequent
transition.
In the SFC editor, you can insert individual elements into the diagram by means of commands in
the “SFC” menu, the context menu, or the “ToolBox” view.
When inserting by means of a menu command, the elements that can be inserted at the
currently selected position are available.
Before inserting branches parallel to multiple actions and transitions, you must highlight these
actions and transitions in a multiple selection.
You can also drag SFC elements from the “ToolBox” view to the diagram. When you drag an
element over the editor, CODESYS marks all possible insertion points with gray boxes. If you
move the mouse over a gray box, then the color of the box changes to green. When you release
the mouse button, the object is inserted at that location.
If you drag a branch into the diagram, then you must set the beginning and the end of the
branch using the mouse pointer. You set the beginning of the branch by releasing the mouse
button at an insertion point. The color of the box then changes to red. You set the end of the
branch by clicking the second insertion point. Then CODESYS inserts a branch around the
objects between the beginning and end markers.
For copying step and transition elements that call action objects or transition objects, two
different duplication modes can be set. Either the references are copied at the same time, or the
referenced objects are embedded and duplicated when copying.
You define the look and feel of the editor in the CODESYS options (“SFC Editor”).
See also
● Ä Chapter 6.4.1.20.1.3 “Common functions in graphical editors” on page 2048
● Ä Chapter 6.4.1.20.1.5 “Sequential Function Chart (SFC)” on page 2062

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2062

● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.21.4.14.23 “ Dialog 'Options' - 'SFC Editor'” on page 2795

SFC Editor in Online Mode
In the SFC editor, the variables and expressions in use on the controller can be displayed at
runtime. You can also write and force variables and expressions. Debugging functions, such as
breakpoints and step-by-step execution, are not available yet.
In the SFC editor options, you can set the online representation of the SFC elements and
attributes.
In the case that you have declared SFC flags explicitly, then they are displayed in the declara-
tion part in online mode. They are not displayed in offline mode.

Note the processing order of elements in an SFC diagram.

In online mode, CODESYS displays active steps in blue.

See also
● Ä Chapter 6.4.1.20.1.5.5 “Implicit variables” on page 2066
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851
● Ä Chapter 6.4.1.20.1.5.3 “Processing order in SFC” on page 2064
● Ä Chapter 6.4.1.21.4.14.23 “ Dialog 'Options' - 'SFC Editor'” on page 2795

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2063

Processing order in SFC
Basic element behavior
● Active step: An active step includes actions currently being executed. In online mode,

CODESYS displays active steps in blue.
● Initial step: In the first cycle after calling a POU in SFC, the initial step is activated automati-

cally and the step action is executed.
● CODESYS executes IEC actions at least two times: the first time is when the step is

activated, and the second time when the step is deactivated (but not until the next cycle).
● Alternative branches: If the step before the branch is active, then CODESYS passes the

first transition of each alternative branch line from left to right. CODESYS activates the
subsequent step in the first branch line with a transition yielding TRUE.

● Parallel branches: If the step before the branch (horizontal double line) is active and the
transition before the branch yields TRUE, then CODESYS activates the first steps in every
branch line. The branch lines are then processed at the same time. The step after the end of
the branch is activated when every last step in each branch line is active and the transition
after the double line yields TRUE.

1. Reset IEC actions
CODESYS resets the internal action control flags of the action qualifiers (N, R, S, L, D, P,
SD, DS, SL). These flags control IEC actions. However, flags are not reset when they are
called within actions.

2. Execute exit actions
CODESYS verifies whether all steps fulfill the condition for executing the exit action for
each step. The order of verification follows the layout in the SFC diagram, from top to
bottom and from left to right.
CODESYS executes an exit action when the step is deactivated (after any entry and step
actions have been executed in the preceding cycle and the condition for the subsequent
step yields TRUE).

3. Execute entry actions
CODESYS verifies whether all steps fulfill the condition for executing the entry action for
each step. The order of verification follows the layout in the SFC diagram, from top to
bottom and from left to right. If the conditions are fulfilled, then CODESYS executes the
entry actions.
CODESYS executes an entry action as soon as the transition of the preceding step has
been processed and yields TRUE, thus indicating that the step has been activated.

4. Time check / Execute step actions
CODESYS performs the following check for each step in the order of the SFC layout:
● CODESYS copies the elapsed time of the active step to the respective implicit step

variable <step name>.t. (not yet implemented)
● If a timeout occurs, then CODESYS sets the respective error flags. (not yet imple-

mented)
● For non-IEC steps: CODESYS executes the step action.

5. Execute IEC actions
CODESYS executes the IEC actions in alphabetical order, passing through the list of
actions two times. In the first pass, CODESYS executes the IEC actions for each step that
was deactivated in the preceding cycle. In the second pass, the IEC actions are executed
for each active step.

6. Transition check / Activate next steps
The transitions are passed as follows: If a step is active in the current cycle and the
subsequent transition yields TRUE and any defined minimum time of the step has elapsed,
then the subsequent step is activated.

Processing
order

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2064

NOTICE!
Please note when executing actions:
An action can be executed multiple times within the same cycle if you use it in
multiple SFC diagrams. For example, if a sequential function chart includes two
IEC actions A and B, both of which are programmed in SFC and call an IEC
action C, then the IEC action C is called two times.
If you use the same IEC action at the same time in different levels of an SFC
diagram, then this can lead to unpredictable results when processing. For this
reason, CODESYS issues a corresponding error message. This error message
can appear for projects that have been created in an earlier version of the
development system.

Please note: It is possible to use implicit variables to monitor the processing
status of steps and actions and to control processing.

See also
● Ä Chapter 6.4.1.20.1.5.5 “Implicit variables” on page 2066
● Ä Chapter 6.4.1.20.1.5.4 “Qualifiers for Actions in SFC” on page 2065

Qualifiers for Actions in SFC
You assign qualifiers to IEC steps. Qualifiers describe how a step action is processed.
Qualifiers are processed by the SFCActionControl function block in the library
IecSfc.library. The library is automatically integrated into the project by the SFC plug-in.

Table 388: Available qualifiers
N Non-stored The action is active as long as the step.
R overriding Reset The action is deactivated.
S Set (Stored) CODESYS executes this action as soon as the step is active. The action

execution is continued even when the step has been deactivated until it
gets a reset.

L time Limited CODESYS executes this action as soon as the step is active. The action is
executed until the step is deactivated or the given time span has elapsed.

D time Delayed CODESYS begins executing the action only after the given delay time has
elapsed following step activation and the step is still active. The action is
executed until the step is deactivated.

P Pulse CODESYS executes the action exactly two times: one time when the step
is activated and one time when the step is deactivated.

SD Stored and time
Delayed

CODESYS begins executing the action only after the given delay time has
elapsed following step activation. The action is executed until it gets a
reset.

DS Delayed and
Stored

CODESYS begins executing the action only after the given delay time has
elapsed following step activation and the step is still active. The action is
executed until it gets a reset.

SL Stored and time
limited

CODESYS executes this action as soon as the step is activated. It is
executed until the specified time has elapsed or it gets a reset.

You have to specify the times for the L, D, SD, DS, and SL qualifiers in the format of a TIME
constant.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2065

When an IEC action is deactivated, it is executed one more time. This means
that CODESYS executes this kind of action at least two times. This also applies
to actions with the P qualifier.

See also
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880

Implicit variables
Every SFC object supplies implicit variables for you to monitor the status of steps and IEC
actions at runtime. These implicit variables are declared automatically by CODESYS for each
step and each IEC action.
The implicit variables are structure instances of the type SFCStepType for steps and type
SFCActionType for actions. The variables have the same names as their elements, for
example "step1" variable name for "step1" step name. The structure members describe the
status of a step or action or the currently elapsed time in an active step.

In the element properties, you can define whether CODESYS should export a
symbol definition for this flag to the symbol configuration.

See also
● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080

Syntax for the implicit variable declaration:
<step name>:SFCStepType;
_<action name>:SFCActionType;

Table 389: The following implicit variables are available for step or IEC action status:
Step
<step name>.x Shows the activation status in the current cycle.

When <step name>.x = TRUE, CODESYS processes the step in the
current cycle.

<step name>._x Shows the activation status for the next cycle.
When <step name>._x = TRUE and <step name>.x = FALSE,
CODESYS processes the step in the next cycle. This means that <step
name>._x is copied to <step name>.x at the beginning of a cycle.

<step name>.t The flag t yields the current elapsed time since the step was activated.
This applies only to steps, regardless of whether a minimum time has been
defined or not in the step properties.
Also see SFC flag SFCError.

<step name>._t For internal use only

IEC action
_<action name>.x TRUE when the action is being executed.

_<action name>._x TRUE when the action is active.

Step and action
status

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2066

NOTICE!
You can use the above variables to force a specific status value to a step
(activate a step). However, note that this can cause an unstable status in the
SFC.

See also
● Ä Chapter 6.4.1.20.1.5.6 “SFC Flags” on page 2067

Syntax for access:
Assign the implicit variable directly in the POU: <variable name>:=<step
name>.<implicit variable> or <variable name>:=_<action name>.<implicit
variable>

status:=step1._x;Example

From another POU, with the POU name: <variable name>:=<POU name>.<step
name>.<implicit variable> or <variable name>:=<POU name>._<action
name>.<implicit variable>

status:=SFC_prog.step1._x;Example

In the element properties of a step or action, you define whether CODESYS should add a
symbol definition for the step or action flag. In the “Properties” view, you have to select the
necessary access rights in the “Symbol” column.
See also
● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080

SFC Flags
SFC flags are implicitly generated variables with predefined names. You can use them to
influence the processing of an SFC diagram. You can use these flags, for example, to display
timeouts or reset step chains. In addition, you can activate jogging mode specifically to activate
transitions. You have to declare and activate these variables in order to have access to them.

Name Data Type Description
SFCInit Bool TRUE: CODESYS resets the sequence to the initial step. The other SFC flags are

also reset (initialization). While the variable is TRUE, the initial step remains set
(active), but its actions are not executed. Only when you set SFCInit again to
FALSE is the POU further processed normally.

SFCReset Bool This function behaves similar to SFCInit. However, CODESYS continues pro-
cessing after the initialization of the initial step. For example, in the initial step, you
could immediately reset the SFCReset flag to FALSE.

SFCError Bool TRUE if a timeout occurs in an SFC diagram. If second timeout occurs in the
program, it is not registered unless you previously reset the variable SFCError.
The declaration of SFCError is a requirement for other flag variables to func-
tion for controlling the chronological sequence (“SFCErrorStep”, SFCErrorPOU,
SFCQuitError).

Access to
implicit varia-
bles

Symbol genera-
tion

SFC flags

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2067

Name Data Type Description
SFCEnableLim
it

Bool Used specifically for activating (TRUE) and deactivating (FALSE) the timeout con-
trol in steps using SFCError. If you declare and activate this variable (SFC
settings), then you must set it to TRUE for SFCError to work. If you do not, then
the timeouts are ignored. The is useful, for example, at start-up or in manual oper-
ation. If you do not declare the variable, then SFCError will work automatically.

The requirement is the declaration of SFCError.

SFCErrorStep String Stores the name of the step that caused a timeout, which was registered by
SFCError. The name is kept until the registered step error is reset by means of
SFCQuitError (FALSE -> TRUE).

The requirement is the declaration of SFCError.

SFCErrorPOU String Stores the name of the block in which a timeout occurred and was registered by
SFCError. The name is saved until the timeout is reset by SFCQuitError.

The requirement is the declaration of SFCError.

SFCQuitError Bool As long as this Boolean variable is TRUE, CODESYS pauses the processing of
the SFC diagram and any timeout, saved in the variable SFCError, is reset. If
you reset the variable to FALSE, then all previous times in the active steps are
reset.
The requirement is the declaration of SFCError.

SFCPause Bool As long as this variable is TRUE, CODESYS pauses the processing of the SFC
diagram.

SFCTrans Bool TRUE if a transition is active.

SFCCurrentSt
ep

String Shows the name of the active step, regardless of the time monitoring. In parallel
branches, the name of the step of the rightmost branch line is always stored.

SFCTip,
SFCTipMode

Bool Controls the jogging mode of the SFC block.
If you enable this flag with SFCTipMode=TRUE, then you can activate the next
step only by setting SFCTip to TRUE. While SFCTipMode is set to FALSE, transi-
tions can also be used to continue activation.

SFCErrorAnal
yzation,

 Contains as string all variables that contribute to the total value TRUE of
SFCError (timeout in one step). SFCError needs to be activated for this.

SFCErrorAnalyzation implicitly uses the function of the POU
AnalyzeExpression of the library Analyzation.

SFCErrorAnal
yzationTable,

 Contains in a table all variables that contribute to the total value TRUE of
SFCError (timeout in one step). SFCError needs to be activated for this.

SFCErrorAnalyzationTable implicitly uses the function of the POU
AnalyzeExpressionTable of the library Analyzation.

CODESYS declares SFC flags automatically when you activate the respective options. You can
set this option in the “SFC Settings” tab of the properties dialog for each POU, or in the “SFC”
project settings dialog for each SFC POU in the project.

The SFC settings for the SFC flags of individual POUs are effective only if you
have not selected the “Use defaults” option. When you select this option, the
settings apply that were defined in the project settings.

Implicit genera-
tion of SFC
flags

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2068

SFC flags that you declare in the SFC settings dialog are visible only in the
online view of the SFC block.

See also
● Ä “Flag” on page 2763

Manual declaration, which was necessary in CoDeSys V2.3, is now only required to enable
write access from another block. In this case, you should note that when you declare the flag in
a global variable list, you must deactivate its “Declare” setting in the SFC settings dialog. If you
do not do this, then a local SFC flag is implicitly declared that CODESYS uses instead of the
global variable.

Explicit genera-
tion of SFC
flags

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2069

You have created an SFC block named sfc1, which contains the s1 step. You have defined
timeouts in the step properties. (See "Online view of SFC block sfc1" below.)

If for any reason the s1 step remains active longer than its time properties have permitted
(timeout), then CODESYS sets the SFCError flag to permit access by the application.

To permit access, you have to declare and activate the SFC flag in the SFC settings. If you
have only declared it, then the SFC flag is only displayed in the online view of sfc1 in the
declaration part, but it has no function.

Now the SFC flag can be referenced within the POU, for example in an action (2) or outside of
the block (1).

Online view of the SFC block sfc1

Example

Application
example for
SFCError

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2070

SFCError is TRUE as soon as a timeout occurs within sfc2.

Note that you can use the flags SFCErrorAnalyzation and
SFCErrorAnalyzationTable to determine the components of the expression that contrib-
utes to the value TRUE of the SFCError.

See also
● Ä Chapter 6.4.1.20.1.5.7 “Library "Analyzation"” on page 2072

Syntax for access:
You assign the flag directly within the POU: <variable name>:=<SFC flag>

checkerror:=SFCerror;Example

From another POU with POU name: <variable name>:=<POU name>.<SFC flag>

checkerror:=SFC_prog.SFCerror;Example:

If you need write access from another block, then you also have to declare the SFC flag
explicitly as a VAR_INPUT variable in the SFC block or globally in a GVL.

Access to the
flags

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2071

Local declaration:
PROGRAM SFC_prog
VAR_INPUT
 SFCinit:BOOL;
END_VAR

Global declaration in a global variable list:
VAR_GLOBAL
 SFCinit:BOOL;
END_VAR
PROGRAM PLC_PRG
VAR
 setinit: BOOL;
END_VAR
SFC_prog.SFCinit:=setinit; // write access to SFCinit in SFC_prog

Example

See also
● Ä Chapter 6.4.1.20.1.5.7 “Library "Analyzation"” on page 2072

Library "Analyzation"
This library contains POUs for the analysis of expressions. When a composite expres-
sion has the total value of FALSE, those of its components that contribute to this
result can be determined. In the SFC editor, the flags SFCErrorAnalyzation and
SFCErrorAnalyzationTable use these functions implicitly to examine the transition expres-
sions. Then the flags provide the identifiers of the variables that contributed to a timeout
error. They keep this information until they are reset explicitly by means of the SFC flag
SFCQuitError.

An analysis POU cannot be called by means of a pointer. This kind of call is ignored. Call the
POU as a single instance.
For a description of the library POUs and an example of how the SFC flags display the analysis
results in CODESYS, see the documentation for the library (online help or directly in the Library
Manager).

See also
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.20.1.5.6 “SFC Flags” on page 2067

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2072

Elements
6.4.1.20.1.5.8.1 SFC elements 'Step' and 'Transition'.................................... 2073
6.4.1.20.1.5.8.2 SFC Element 'Action'.. 2075
6.4.1.20.1.5.8.3 SFC element 'Branch'... 2078
6.4.1.20.1.5.8.4 SFC element 'Jump'... 2079
6.4.1.20.1.5.8.5 SFC element 'Macro'.. 2079
6.4.1.20.1.5.8.6 SFC element properties... 2080

SFC elements 'Step' and 'Transition'
Step symbol ; Transition symbol
As a rule, CODESYS inserts steps and transitions as combinations. Inserting a step without a
transition or a transition without a step causes an error when compiling. You can modify this by
double-clicking the name.

NOTICE!
Step names must be unique within the scope of the parent block. Consider this
especially when using actions that were also programmed in SFC.

Please note that you can convert a step into an initial step by clicking “Init step” or by setting the
respective property in the SFC properties.
All steps are defined by the step properties, which you can display and edit in the “Properties”
view, depending on the set options.
You have to add those actions to the step which are to be executed when the step is active.
A distinction is made between IEC actions and step actions. Details for this are found in the
chapter about the SFC element "Action".
A transition must include the condition for the subsequent step to be active as soon as the value
of the condition yields TRUE. Therefore, a transition condition must yield TRUE or FALSE. It can
be defined in one of two ways:
● (1) Inline condition (direct): You replace the default transition name with either the name of

a Boolean variable, a Boolean address, a Boolean constant, or a statement with a Boolean
result, for example (i<100) AND b. You cannot specify programs, function blocks, or
assignments here.

● (2) Multi-use condition (separate transition or property object): You replace the default tran-
sition name with the name of a transition or property object (,). You create these
objects by clicking “Project è Add Object”. This allows multiple use of transitions, for
example "condition_xy" in the figures below. Like an inline condition, the object can contain
a Boolean variable, Boolean address, Boolean constant, or an statement with a Boolean
result. In addition, it can also contain multiple statements with any code.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2073

NOTICE!
The user is responsible for assigning the required expression to a transition
variable if the transition includes multiple instructions.

Transitions that reference a transition or property object are marked with a small triangle in the
upper right corner of the transition box.

As opposed to CoDeSys V2.3, now CODESYS treats a transition condition like a method call.
The entry has the following syntax:
<transition name>:=<transition condition>

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2074

(for example trans1:= a=100)

or only
<transition condition>
(for example a=100)

You will find an example (condition_xy) in the figure above.
See also
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.21.3.12.6 “Command 'Insert Step-Transition'” on page 2677
● Ä Chapter 6.4.1.20.1.5.8.2 “SFC Element 'Action'” on page 2075
● Ä Chapter 6.4.1.21.3.12.1 “Command 'Init Step'” on page 2675
● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080
● Ä Chapter 6.4.1.9.22.5 “Calling methods” on page 1933

SFC Element 'Action'
Symbol:
An action includes one or more statements in one of the valid implementation languages. You
can assign an action to a step.
Actions that you use in SFC steps have to be created as POUs in the project.

Exception: In the case of IEC actions, which you add to a step as action association, you can
also specify a Boolean variable instead of an action object. The value of these variables is
switched between FALSE and TRUE each time the action is executed.

NOTICE!
You have to define unique step names within the scope of the parent block. An
action written in SFC must not contain a step with a name identical to the step
to which the action is assigned.

A distinction is made between IEC actions and step actions:

IEC actions comply with the IEC 61131-3 standard. They are executed according to their
qualifiers.
IEC actions are executed two times: first when the step is activated and second when the step
is deactivated. If you assign multiple actions to one step, then the action list is processed from
top to bottom.
Each action box includes the qualifier in the first column and the action name in the second
column. Both can be edited directly.

1. IEC actions

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2075

NOTICE!
When the same global Boolean variable is associated as an IEC action in
different SFC POUs, unwanted overwriting can result.

In contrast to step actions, you can use different qualifiers for IEC actions. Moreover, each IEC
action is provided with a control flag. This directs CODESYS to execute an action only one time
at any moment, even if the action is called by another step at the same time. This cannot be
guaranteed for step actions.
You assign IEC actions to steps by clicking “SFC è Insert Action Association”.
See also
● Ä Chapter 6.4.1.21.3.12.14 “Command 'Insert Action Association'” on page 2680
● Ä Chapter 6.4.1.20.1.5.4 “Qualifiers for Actions in SFC” on page 2065

These are actions that you can use to extend the IEC standard.
● Entry action:

CODESYS executes this action after the step is activated and before the main action is
executed.
You reference a new action, or an action created below the SFC object, from a step by
means of the “Entry action” element property (2). You can also add a new action to the step
by means of the “Add Entry Action” command. The entry action is marked with an E in the
lower left corner of the step box.

● Main action:
CODESYS executes this action when the step is active and any entry actions have already
been processed. However, in contrast to IEC actions (see above), these step actions are not
executed a second time when the step is deactivated. Moreover, you cannot use qualifiers
here.
You add an existing action to a step by means of the “Main action” element property (1). You
can create and add a new action by clicking the step element. A main action is marked with
a filled triangle in the upper right corner of the step box.

● Exit action:
CODESYS executes this action one time when the step is deactivated. However, note that
an exit action is not executed in the same cycle, but at the beginning of the next cycle.
You reference a new action, or an action created below the SFC object, from a step by
means of the “Exit action” element property (3). You can also add a new action to the step
by means of the “Insert Exit Action” command. The exit action is marked with an X in the
lower right corner of the step box.

2. Step actions

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2076

See also
● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080

The main difference between step actions and IEC actions with a qualifier N is that an IEC
action is always executed two times: when the step is activated and when the step is deacti-
vated. See the following example:

You have attached the Action_AS1 action to the AS1 step as a step action (left) and as an
IEC action with qualifier N (right). Because two transitions are activated in each case, the time
to reach the initial step again is two PLC cycles. This is true as long as the iCounter counter
variable was initialized at 0 and then incremented in the Action_AS1 action. After the Init
step is reactivated, iCounter returns a value of 1 in the example on the left. In the example
on the right, a value of 2 is returned because the IEC action is executed a second time due to
the deactivation of AS1.

Example

Another difference: Step actions can be pseudo-embedded. In this case, they can be called only
from the related step. If you copy this step, CODESYS creates new action objects automatically
and copies the respective implementation code. You define whether or not a step action is
embedded, either when the first action is inserted into the step, or later in the “Duplicate when
copying” element property. In general, this behavior can also be preset in the SFC options.
Moreover, for IEC actions, a Boolean variable can be specified instead of an action object. This
is not possible for step actions.

Difference
between IEC
actions and step
actions

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2077

SFC element 'Branch'
Symbol
Use branches to program parallel or alternative sequences in the sequential function chart.
For alternative branches, CODESYS processes just one of the branch lines at a time,
depending on the preceding transition condition. Parallel branches are processed at the same
time.
See also
● Ä Chapter 6.4.1.20.1.5.3 “Processing order in SFC” on page 2064
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.21.3.12.13 “Command 'Insert Branch Right'” on page 2679

For parallel branches, the branch lines must begin and end with steps. Parallel branch lines can
contain additional branches.
The horizontal lines before and after the branch are double lines.

Processing in online mode: If the preceding transition (t2 in the example) yields TRUE, then the
first steps in all parallel branch lines are active (Step11 and Step21). CODESYS processes the
individual branch lines at the same time and the subsequent transition is passed afterwards (t3).
The "Branch<n>" jump marker is added automatically to the horizontal line that indicates the
beginning of a branch. You can define this marker as the jump destination.
Please note that you can convert a parallel branch into an alternative branch by clicking
“Alternative”.
See also
● Ä Chapter 6.4.1.21.3.12.11 “Command 'Alternative'” on page 2679

The horizontal line before and after the branch is a single line.
In an alternative branch, the branch lines must begin and end with transitions. The branch lines
can contain additional branches.

Parallel branch

Alternative
branch

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2078

If the step before the branch is active, then CODESYS passes the first transition of each
alternative branch line from left to right. For the first transition that yields TRUE, the associated
branch line opens, thus activating the step following the transition.
Please note that you can convert an alternative branch into a parallel branch by clicking
“Parallel”.
See also
● Ä Chapter 6.4.1.21.3.12.10 “Command 'Parallel'” on page 2678

SFC element 'Jump'
Symbol
Use a jump to define which actions in a step should be executed next as soon as the transition
preceding the jump is TRUE. Jumps may become necessary, as execution paths cannot cross or
lead upwards.
Excluding the required jump at the end of a diagram, you can generally insert jumps only at the
end of a branch.
The destination of a jump is defined by the added text string, which you can edit directly. The
jump destination can be a step name or the marker for a parallel branch.

See also
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.21.3.12.16 “Command 'Insert Jump'” on page 2681

SFC element 'Macro'
Symbol

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2079

A macro includes part of the SFC diagram, but it is not displayed in detail in the main view of the
editor.
Using macros does not influence the processing flow. Macros are used for hiding specific parts
of the diagram, for example to increase overall clarity.
You open the macro editor by double-clicking the macro box or by clicking “SFC
è Zoom Into Macro”. You can program here just like in the main view of the SFC editor. To
close the macro editor, click “SFC è Zoom Out of Macro”.

① Main view in the SFC editor
② Macro editor view for Macro1
 Macros can also include other macros. The caption of the macro editor always shows the path
of the open macro within the diagram, for example:

See also
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.21.3.12.20 “Command 'Zoom Into Macro'” on page 2682
● Ä Chapter 6.4.1.21.3.12.21 “Command 'Zoom Out of Macro'” on page 2682

SFC element properties
You edit the properties of an SFC element in the “Properties” view. Click “View
è Element Properties” to open this view. The properties to be displayed depend on the cur-
rently selected element.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2080

The properties that are displayed in the SFC diagram next to the element
depend on the settings in the “View” tab of the SFC editor options.

Property Value description
“Name” Element name, by default "<element><consecutive number>", for example step

name "Step0", "Step1", branch name "Branch0”, etc.

“Comment” Element comment in text, for example “counter reset”. You can insert line breaks
by pressing [Ctrl]+[Enter].

“Symbol” For each SFC element, CODESYS declares an implicit variable with the same
name as the element.
The configuration determines whether this flag variable should be exported to
the symbol configuration and which access rights for the symbol should be
applied in the PLC.
● “No access”: The symbol is exported to the symbol configuration but cannot

be accessed from the PLC.
● “Read”: The symbol is exported to the symbol configuration and can be read

from the PLC.
● “Write”: The symbol is exported to the symbol configuration and can be

written from the PLC.
● “Read/Write”: Combination of read and write.
● Empty: A symbol is not exported to the symbol configuration.

Property Value description
“Init step” : This option is activated only for the defined initial step. By default, this is the

first step in an SFC diagram.
Note: If you activate this property for another step, then it must be deactivated in
the previous step to prevent compilation errors.

“Duplicate when copying” This option is available for steps that contain a step action (entry action, main
action, or exit action), and for transitions that are linked to a transition object.

: When copying the step or transition, a new object is created for each called
action or transition. It contains a copy of the implementation code of the copied
object.

: When copying a step or transition, the link to the called object is retained for
the respective action or transition. No new objects are generated. The source
and the copies of the step or transition call the same action or transition.

General

Specific

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2081

Property Value description
“Times”

● “Minimum active”
● “Maximum active”

Minimum time that the step is active, even when the subsequent transition is
TRUE.
Maximum time that the step can be active. If this time is exceeded, then
CODESYS sets the SFCError implicit variable to TRUE.

Times according to IEC syntax (for example t#8s) or the TIME variable; default:
t#0s.

“Actions”

● “Entry action”
● “Step action”
● “Exit action”

● “Entry action”: CODESYS executes these actions after activating the step.
● “Step action”: CODESYS executes this action when the step is active and

any entry actions have already been processed.
● “Exit action”: CODESYS executes this action in the subsequent cycle when

the step is deactivated.
Please note the processing sequence.

When using the respective implicit SFC variables and flags, you receive infor-
mation about the status of a step or an action or about timeouts.

See also
● Ä Chapter 6.4.1.21.4.14.23 “ Dialog 'Options' - 'SFC Editor'” on page 2795
● Ä Chapter 6.4.1.20.1.5.5 “Implicit variables” on page 2066
● Ä Chapter 6.4.1.20.1.5.8.2 “SFC Element 'Action'” on page 2075

Function Block Diagram / Ladder Diagram / Instruction List (FBD/LD/IL)
6.4.1.20.1.6.1 FBD/LD/IL Editor... 2082
6.4.1.20.1.6.2 FBD/LD/IL editor in online mode... 2086
6.4.1.20.1.6.3 Modifiers and operators in IL... 2087
6.4.1.20.1.6.4 Elements... 2091

FBD/LD/IL Editor
The FBD/LD/IL editor is a combined editor of the programming languages FBD, LD and IL.

If necessary, IL can be activated in the CODESYS options.

There is a common set of commands and elements and CODESYS automatically converts the 3
programming languages into one another internally.
The code in the implementation part is structured in all three languages with the aid of networks.
The “FBD/LD/IL” menu provides the commands for working in the editor.
In offline and online modes, you can switch editors at any time by using the menu command in
“View”.
The behavior of the FBD/LD/IL editor is defined by the settings in “Tools è Options” (category
“FBD, LD and IL”).

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2082

NOTICE!
There are some special elements that CODESYS cannot convert and thus it
displays only in the applicable language. There are also constructs that are
not clearly convertible between IL and FBD and are therefore 'normalized', i.e.
nullified, when converted back to FBD. This concerns: negation of expressions
and explicit/implicit assignment of function block inputs and outputs.
An error-free conversion between the languages requires syntactically correct
code. Otherwise parts of the implementation can be lost.

See also
● Ä Chapter 6.4.1.9.5.2 “FBD/LD/IL” on page 1860 (programming)
● Ä Chapter 6.4.1.21.3.14 “Menu 'FBD/LD/IL'” on page 2700 (commands)
● Ä Chapter 6.4.1.21.4.14.10 “Dialog 'Options' - 'FBD, LD, and IL'” on page 2787
● Ä Chapter 6.4.1.20.1.3 “Common functions in graphical editors” on page 2048

Inserting and arranging elements
You can drag elements with the mouse from the view “Tools” (toolbox) into the implementa-
tion part of the editor. Alternatively you can use the commands of the context menu or the
“FBD/LD/IL” menu.
Settings for the display and interface are defined in the CODESYS options, category “FBD/LD/
IL”.
If you drag an element with the mouse over a network in the editor, all possible insertion
positions are displayed with gray diamond-shaped, triangular or arrow-shaped position marks.
As soon as the mouse pointer is located over one of these marks, the mark turns green. If the
mouse button is now released, CODESYS inserts the element at this position.

Example

If you drag a function block or an operator from the toolbox or a network at the left-hand side of
the network onto one of the two arrows, then CODESYS automatically creates a new network
and inserts the element there.
In order to replace an element, drag a suitable other element onto its position with the mouse.
Elements that you can replace by the new element are marked by CODESYS in the editor with
text fields, for example “Replace”, “Attach input”.
You can use the usual commands in the menu “Edit” for cutting, copying, pasting and deleting
elements. Copying also works with drag-and-drop by holding down the [Ctrl] key.

NOTICE!
The operators with EN/ENO functionality can only be inserted in the FBD and IL
editors.

Selecting elements
A box or a connecting line in the editor is selected by clicking on it with the mouse so that it has
the focus. Multiple selection is possible by keeping the [Ctrl] key pressed. A selected element is
shaded red.
Tooltip

FBD and LD
editor

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2083

If the cursor points to certain elements, for example to a variable or to an input, a tooltip appears
showing information about this element.
In the case of elements underlined with a wavy red line, the tooltip shows the pre-compile error
message of the error that occurs with this element.
Navigating in the editor

Table 390: Navigating in the editor
With the help of the keys and commands described below, you can place the focus within the
editor on a different cursor position. The change between the positions is also network-span-
ning in function.

[¬]

[®]

Change to the neighboring cursor position, along the signal flow, i.e. from
left to right and vice versa.

[][¯]

[¯]

Change to the next cursor position above or below the current position, if
this neighboring position belongs to the same logical group. For example,
all connections of a box form a logical group.
If such a logical group does not exist: change to the first cursor position
in the next higher or lower neighboring element. In the case of parallel-con-
nected elements, navigation takes place along the first branch.

[Ctrl] + [Home] Change to the first network; this will be selected.

[Ctrl] + [End] Change to the last network; this will be selected.

[Page Up] Scroll upwards by one page; the highest network on this page is selected.

[Page Down] Scroll downwards by one page; the lowest network on this page is
selected.

Command “Go
to…”

Change to a certain network.

Opening function blocks
If a function block is inserted in the editor, then you can open its implementation by a double-
click or with the context menu command “Browse for symbol è Go to Definition”.
See also
● Ä “Function block diagram (FBD)” on page 1860
● Ä “Ladder diagram (LD)” on page 1860
● Ä Chapter 6.4.1.9.5.2.2 “Programming function block diagrams (FBD)” on page 1862
● Ä Chapter 6.4.1.9.5.2.3 “Programming ladder diagrams (LD)” on page 1864
● Ä Chapter 6.4.1.20.1.6.4 “Elements” on page 2091
● Ä Chapter 6.4.1.21.4.14.10 “Dialog 'Options' - 'FBD, LD, and IL'” on page 2787
● Ä Chapter 6.4.1.20.1.6.2 “FBD/LD/IL editor in online mode” on page 2086
● Ä Chapter 6.4.1.21.3.14.44 “Command 'Go to'” on page 2712

Inserting and arranging elements:
You can insert elements with the help of the commands of the menu “FBD/LD/IL” in the context
menu. You can also drag a new network from the tool box into the implementation part of the
editor by drag-and-drop.
You can use the usual commands in the menu “Edit” for cutting, copying, pasting and deleting
elements. Copying also works with drag-and-drop by holding down the [Ctrl] key.

NOTICE!
Please note that operators with EN/ENO functionality can only be inserted in the
FBD and IL editors.

IL editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2084

Each program line is entered in a table row.

Table 391: Structure of networks in the IL editor
1st line: Network title
Requirement: The option is activated in the CODESYS options.

2nd line: Network comment
Requirement: The option is activated in the CODESYS options.

3rd line and on:

Column Contents Description
1 Operator Contains the IL operator (LD, ST, CAL, AND, OR,

etc.) or a function name. If you call a function block,
you must additionally specify the corresponding
parameters here; in the preceding field you must
enter in this case := or =>.

2 Operand Contains precisely one operand or the name of a
jump label.
In the case of several operands you must enter
them in several rows and when doing so insert a
comma directly behind the individual operands. (See
example below)

3 Address Contains the address of the operand as defined in its
declaration.
non-editable
You can activate/deactivate the display via the option
“Display symbol address”. To do this, select the com-
mand “Tools è Options” and the “General” tab in the
category “FBD, LD and IL”.

4 Symbol comment Contains the comment that was specified for the
operand if necessary in the declaration.
non-editable
You can activate/deactivate the display via the option
“Display symbol comment” if you select the com-
mand “Tools è Options” and the “General” tab in the
category “FBD, LD and IL”.

5 Operand comment Comment for the current program line.
You can activate/deactivate the display via the option
“Operand comment” if you select the command
“Tools è Options” and the “General” tab in the cate-
gory “FBD, LD and IL”.

Example

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2085

Table 392: Navigating in the editor
Key(s)/
command

Cursor movement

[↑]

[↓]

Jumps to the field located above/below.

[Tab] Jumps one field to the right within the row.

[Shift]+ [Tab] Jumps to the left to the preceding field within the row

[Space] Opens the editing frame for the selected field. Alternatively you can click
with the mouse on the field. If applicable the button for the input assistant
dialog box is available.

[Ctrl] + [Enter] Inserts a new row below the current row.

[Del] Deletes the current row.

[Ctrl] + [Home] Sets the focus at the start of the document and marks the first network.

[Ctrl] + [End] Sets the focus at the end of the document and marks the last network.

[Page Down] Scrolls up by one page and marks the top rectangle.

[Page Up] Scrolls down by one page and marks the top rectangle.

See also
● Ä “Instruction list (IL)” on page 1861
● Ä Chapter 6.4.1.9.5.2.4 “Programming in instruction list (IL)” on page 1865
● Ä Chapter 6.4.1.20.1.6.3 “Modifiers and operators in IL” on page 2087
● Ä Chapter 6.4.1.21.4.14.10 “Dialog 'Options' - 'FBD, LD, and IL'” on page 2787
● Ä Chapter 6.4.1.20.1.6.2 “FBD/LD/IL editor in online mode” on page 2086

FBD/LD/IL editor in online mode
In online mode the current value of each variable is displayed behind the variable in the editor.
Writing/forcing and the setting of breakpoints is possible.

If the variable is presently forced, this is indicated directly in front of the forced value by . If a
value has been prepared for writing or forcing, this value is displayed directly behind the current
value in square brackets <value>.

Forced variable:

Prepared value

Example

In the online view of a ladder diagram (LD) the connecting lines are marked in color: connec-
tions with the value TRUE are displayed as a thick blue line, connections with the value FALSE
as a thick black line. Conversely, connections with an unknown or analog value are displayed
normally (thin black line).

NOTICE!
Note that values of the connections are calculated from the monitored variables.
This is not a genuine flow control.

Breakpoints

FBD/LD/IL editor
in online mode

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2086

Possible positions for breakpoints are in principle the positions at which values of variables can
change (instructions), at which the program branches or at which another box is called.
Possible breakpoint positions:
● On the entire network: causes the breakpoint to be set at the first possible position in the

network.
● On a box, if the box contains an assignment. Not possible with operator boxes, for example

ADD, DIV.
● On assignments.
● At the end of the box at the position of the return to the calling box. In online mode an empty

network automatically appears here; it is marked by 'RET' in place of a network number.

NOTICE!
At present you cannot directly set a breakpoint on the first box in the network.
However, if you set a breakpoint on the entire network, this breakpoint marking
is transferred automatically to the first box in online mode.

NOTICE!
Breakpoints in methods: CODESYS automatically sets a breakpoint in all
methods that can be called. Therefore, if a method managed by an interface
is called, breakpoints are set in all methods that occur in function blocks that
implement this interface as well as in all derived function blocks that use the
method. If a method is called by a pointer to a function block, CODESYS sets
the breakpoints in the method of the function block and in all derived function
blocks that use the method.

See also
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Modifiers and operators in IL
Table 393: Modifiers
Modifier Combined with oper-

ator
Description

C JMP, CAL, RET The command is only executed if the result of
the preceding expression is TRUE.

N JMPC, CALC, RETC The command is only executed if the result of
the preceding expression is FALSE.

N otherwise negation of the operand (not of the accumu-
lator).

Table 394: Operators with the possible modifiers
Operator N Meaning Example
LD N Loads the (negated) the value of the operand

into the accumulator.
LD ivar

ST N Stores the (negated) content of the accumu-
lator in the operand.

ST iErg

S Sets the operand (type BOOL) to TRUE if the
content of the accumulator is TRUE.

S bVar1

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2087

Operator N Meaning Example
R Sets the operand (type BOOL) to FALSE if the

content of the accumulator is TRUE.
R bVar1

AND N,(Bitwise AND of the accumulator value and
(negated) operand

AND bVar2

OR N,(Bitwise OR of the accumulator value and
(negated) operand

OR xVar

XOR N,(Bitwise exclusive OR of the accumulator value
and (negated) operand

XOR N,
(bVar1,bVa
r2)

NOT Bitwise negation of the accumulator value
ADD (Addition of the accumulator value and the

operand; result is written into the accumulator.
ADD ivar1

SUB (Subtraction of the operand from the accumu-
lator value; result is written into the accumu-
lator.

SUB iVar2

MUL (Multiplication of accumulator value and
operand; result is written into the accumulator.

MUL ivar2

DIV (Division of the accumulator value by the
operand; result is written into the accumulator.

DIV 44

GT (Checks whether the accumulator value is
greater than the operand value; result (BOOL)
is written into the accumulator; >

GT 23

GE (Checks whether the accumulator value is
greater than or equal to the operand value;
result (BOOL) is written into the accumulator.

GE iVar2

EQ (Checks whether the accumulator value is
equal to the operand value; result (BOOL) is
written into the accumulator.

EQ iVar2

NE (Checks whether the accumulator value is not
equal to the operand value; result (BOOL) is
written into the accumulator;

NE iVar1

LE (Checks whether the accumulator value is
smaller than or equal to the operand value;
result (BOOL) is written into the accumulator.

LE 5

LT (Checks whether the accumulator value is
smaller than the operand value; result (BOOL)
is written into the accumulator.

LT cVar1

JMP CN Unconditional (conditional) jump to the speci-
fied jump label

JMPN next

CAL CN (Conditional) call of a program or a function
block (if the accumulator value is TRUE)

CAL prog1

RET Exit the box and return to the calling box. RET
RET C If the accumulator value is TRUE: exit the box

and return to the calling box.
RETC

RET CN If the accumulator value is FALSE: exit the box
and return to the calling box.

RETCN

) Evaluation of the reset operation

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2088

Example

Application Description Examples
Several operands for 1 oper-
ator

Options
● You enter the operands

into consecutive rows,
separated by commas in
the 2nd column.

● You repeat the operator in
consecutive rows.

Variant 1 :

Variant 2 :

Complex operands For a complex operand, you
enter the opening parenthesis
(in the first column. You enter
the closing parenthesis in the
first column in a separate row
following the operand entries
of the following rows.

A string is rotated by a char-
acter each cycle:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2089

Application Description Examples
Function block call, program
call

Column 1: Operator CAL or
CALC
Column 2: Name of the func-
tion block instance or the pro-
gram and opening parenthesis
(. If no parameters follow,
the closing parenthesis) is
entered here.
rows following that:
Column 1: parameter name
followed by := for input
parameter or => for output
parameter
Column 2: parameter value
followed by a comma , if fur-
ther parameters follow. The
closing parenthesis) is input
after the last parameter.
As a limitation according to
the IEC standard, complex
expressions cannot be used
here. You must assign such
constructs to the function
block or the program before
the call.

Function Call Row 1: Column 1: LD
Column 2: input variable
Row 2: Column 1: Func-
tion name Column 2: further
input parameters separated
by commas.
CODESYS writes the return
value into the accumulator.
Row 3: Column 1: ST Column
2: variable into which the
return value is written

Action call Like function block call or pro-
gram call.
The action name is appended
to the name of the FB
instance or the program.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2090

Application Description Examples
Jump Column 1: operator JMP or

JMPC.

Column 2: Name of the jump
label of the destination net-
work.
In the case of an uncondi-
tional jump, the preceding
instruction sequence must
end with one of the following
commands: ST, STN, S, R,
CAL, RET, JMP
In the case of a conditional
jump the execution of the
jump depends on the loaded
value.

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä “Instruction list (IL)” on page 1861
● Ä Chapter 6.4.1.9.5.2.4 “Programming in instruction list (IL)” on page 1865

Elements
6.4.1.20.1.6.4.1 FBD/LD/IL element 'Network'... 2091
6.4.1.20.1.6.4.2 FBD/LD/IL element 'Box'.. 2092
6.4.1.20.1.6.4.3 FBD/LD/IL element 'Assignment'.. 2092
6.4.1.20.1.6.4.4 FBD/LD/IL element 'Box with EN/ENO'................................ 2092
6.4.1.20.1.6.4.5 FBD/LD/IL element 'Input'... 2093
6.4.1.20.1.6.4.6 FBD/LD/IL element 'Label'.. 2093
6.4.1.20.1.6.4.7 FBD/LD/IL element 'Jump'.. 2093
6.4.1.20.1.6.4.8 FBD/LD/IL element 'Return'.. 2093
6.4.1.20.1.6.4.9 FBD/LD/IL element 'Branch'... 2093
6.4.1.20.1.6.4.10 FBD/LD/IL element 'Execute'.. 2094
6.4.1.20.1.6.4.11 LD element 'Contact'... 2094
6.4.1.20.1.6.4.12 LD element 'Coil'... 2095
6.4.1.20.1.6.4.13 LD element 'Branch Start/End'... 2095
6.4.1.20.1.6.4.14 Closed branch.. 2096

FBD/LD/IL element 'Network'
Symbol
A network is the base unit of an FBD or LD program. In the FBD/LD/IL editor, the networks
are arranged in a list. Each network is provided with a sequential network number on the left
side and can include: logical and arithmetic expressions, program/function/function block calls,
jumps, or return statements.
An IL program consists of at least one network. This network can include all IL statements of the
program.
You can provide each network with a title, comment, or label. In the CODESYS options (cate-
gory “FBD, LD, and IL”, you can define whether network title, comment, and separator between
individual networks are displayed in the editor.
Click the first line of the network to enter a network title. Click the second line of the network to
enter a network comment.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2091

See also
● Ä Chapter 6.4.1.21.4.14.10 “Dialog 'Options' - 'FBD, LD, and IL'” on page 2787
● Ä Chapter 6.4.1.21.3.14.1 “Command 'Insert Network'” on page 2700

FBD/LD/IL element 'Box'
Symbol:
A box and its call can represent additional functions, for example IEC function blocks, IEC
functions, library function blocks, operators.
A box can have any number of inputs and outputs.
If the box also provides an image file, the box icon is displayed inside the box. The requirement
is that the option “Show box symbol” is activated in the CODESYS options, category “FBD, LD
and IL”.
If you have changed the box interfaces, you can update the box parameters with the command
“FBD/LD/IL è Update Parameters” without having to re-insert the box.
See also
● Ä Chapter 6.4.1.21.3.14.5 “Command 'Insert Box'” on page 2701
● Ä Chapter 6.4.1.21.4.14.10 “Dialog 'Options' - 'FBD, LD, and IL'” on page 2787
● Ä Chapter 6.4.1.21.3.14.38 “Command 'Update Parameters'” on page 2710

FBD/LD/IL element 'Assignment'
Symbol:
The FBD editor shows a newly inserted assignment as a line with 3 question marks after it. The
LD editor shows a newly inserted assignment as a coil with 3 question marks located above it.
After insertion you can replace the placeholder ??? by the name of the variable to which the
signal coming from the left is to be assigned. The input assistant is available to you for this.

In IL an assignment is programmed via the operators LD and ST.

● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.21.3.14.4 “Command 'Insert Assignment'” on page 2701

FBD/LD/IL element 'Box with EN/ENO'
Symbol:
The element is available only in the FBD and LD editors.
The box generally corresponds to the FBD/LD/IL element “Box”; however, this box additionally
contains an EN input and an ENO output. EN and ENO have the data type BOOL.

Function of the EN input and ENO output: if the input EN has the value FALSE at the time of the
calling the box, the operations defined in the box are not executed. Otherwise, i.e. if EN has the
value TRUE, these operations are executed. The ENO output has the same value as the EN
input.
See also
● Ä Chapter 6.4.1.21.3.14.6 “Command 'Insert Box with EN/ENO'” on page 2702
● Ä Chapter 6.4.1.20.1.6.4.2 “FBD/LD/IL element 'Box'” on page 2092

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2092

FBD/LD/IL element 'Input'
Symbol:
The maximum number of inputs depends on the type of box.
A newly added input is first marked with ???. You can replace the string ??? by a variable or a
constant.
See also
● Ä Chapter 6.4.1.21.3.14.13 “Command 'Insert Input'” on page 2703
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

FBD/LD/IL element 'Label'
The label is an optional identifier for a network in FBD and LD, which you can specify as a
destination for a jump.
If you insert a jump label in a network, it will be added as an editable field “Label:” in the
network.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.21.3.14.11 “Command 'Insert Label'” on page 2703

FBD/LD/IL element 'Jump'
Symbol
In FBD or LD a jump is inserted either directly before an input, directly after an output or at the
end of the network, depending on the current cursor position.
You enter a jump label as the jump destination directly behind the jump element.
In IL you program a jump with the instruction JMP.

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.21.3.14.10 “Command 'Insert Jump'” on page 2703
● Ä Chapter 6.4.1.20.1.6.4.6 “FBD/LD/IL element 'Label'” on page 2093

FBD/LD/IL element 'Return'
This element immediately interrupts the execution of the box if the input of the RETURN element
goes TRUE.

In an FBD or LD network you can place the Return instruction parallel to or after the preceding
elements.
In IL the RET instruction is available to you for this purpose.

See also
● Ä Chapter 6.4.1.21.3.14.12 “Command 'Insert Return'” on page 2703
● Ä Chapter 6.4.1.20.1.6.3 “Modifiers and operators in IL” on page 2087

FBD/LD/IL element 'Branch'
Symbol:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2093

The element is available in the LD and FBD editor and represents an open line branch. A line
branch splits the processing line from the current cursor position onwards into 2 subnetworks,
which are executed in succession from top to bottom. You can branch each subnetwork further,
as a result of which multiple branches are created within a network.
Each subnetwork is given a marker symbol (rectangle) at the branch point, which you can select
in order to execute further commands.

The commands “Copy”, “Cut” and “Paste” are not available for subnetworks.

In order to delete a subnetwork, you must first delete all elements of the network and then the
marker symbol of the subnetwork.
See also
● Ä Chapter 6.4.1.21.3.14.33 “Command 'Insert Branch'” on page 2709
● Ä Chapter 6.4.1.21.3.14.34 “Command 'Insert Branch Above'” on page 2709
● Ä Chapter 6.4.1.21.3.14.35 “Command 'Insert Branch Below'” on page 2709

FBD/LD/IL element 'Execute'
Symbol:
The element is a box that enables you to directly enter ST code in the FBD and LD editors.
You can drag the “Execute” element with the mouse from the “Tools” view into the implementa-
tion part of your POU. If you click on “Enter ST code here...”, an input field opens where you can
input multiple-line ST code.
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

LD element 'Contact'
Symbol: , in the editor
The element is available only in the LD editor.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2094

A contact passes on the signal TRUE (ON) or FALSE (OFF) from left to right until the signal
finally reaches a coil in the right-hand part of the network. For this purpose a boolean variable
containing the signal is assigned to the contact. To do this, replace the placeholder ??? above
the contact with the name of a boolean variable.
You can arrange several contacts both in series and in parallel. In the case of two parallel
contacts, only one needs to obtain the value TRUE in order for ON to be passed on to the right.
If contacts are connected in series, all of them must obtain the value TRUE in order for ON to
be passed on to the right by the last contact in the series. Hence, you can program electrical
parallel and series connections with LD.

A negated contact forwards the signal TRUE if the variable value is FALSE. You can negate
an inserted contact with the help of the command “FBD/LD/IL è Negation” or insert a negated
contact from the “Tools” view.
If you place the mouse pointer on a contact with the left mouse button pressed and with a
network selected, the button “Convert to coil” appears in the network. If you now move the
mouse pointer onto this button, still with the mouse button pressed, and then release the mouse
button over this button, CODESYS converts the contact into a coil.
See also
● Ä Chapter 6.4.1.21.3.14.17 “Command 'Insert Contact'” on page 2704
● Ä Chapter 6.4.1.21.3.14.22 “Command 'Insert Negated Contact'” on page 2706
● Ä Chapter 6.4.1.21.3.14.18 “Command 'Insert Contact (Right)'” on page 2705
● Ä Chapter 6.4.1.21.3.14.20 “Command 'Insert Contact in Parallel (Above)'” on page 2705
● Ä Chapter 6.4.1.21.3.14.19 “Command 'Insert Contact in Parallel (Below)'” on page 2705
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

LD element 'Coil'
Symbol: , in the editor
The element is available only in the LD editor.
A coil adopts the value supplied from the left and saves it in the boolean variable assigned to
the coil. Its input can have the value TRUE (ON) or FALSE (OFF).

Several coils in a network can only be arranged in parallel.

In a negated coil the negated value of the incoming signal is stored in the boolean variable
that is assigned to the coil.
Set coil, Reset coil
Symbol: , , in the editor: ,
Set coil: If the value TRUE arrives at a set coil, the coil retains the value TRUE. As long as the
application is running, the value can no longer be overwritten here.
Reset coil: If the value TRUE arrives at a reset coil, the coil retains the value FALSE. As long as
the application is running, the value can no longer be overwritten here.
You can define an inserted coil as a set or reset coil with the help of the command “FBD/LD/IL
è Set/Reset” or insert it as an element “Set Coil” and “Reset Coil” from the “Tools” view.
See also
● Ä Chapter 6.4.1.21.3.14.14 “Command 'Insert Coil'” on page 2704
● Ä Chapter 6.4.1.21.3.14.16 “Command 'Insert Reset Coil'” on page 2704
● Ä Chapter 6.4.1.21.3.14.29 “Command 'Negation'” on page 2708
● Ä Chapter 6.4.1.21.3.14.31 “Command 'Set/Reset'” on page 2708

LD element 'Branch Start/End'
Symbol:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2095

The element serves the closed line branch.
See also
● Ä Chapter 6.4.1.20.1.6.4.14 “Closed branch” on page 2096
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.21.3.14.36 “Command 'Set Branch Start Point'” on page 2709
● Ä Chapter 6.4.1.21.3.14.37 “Command 'Set Branch End Point'” on page 2710

Closed branch
A closed branch is available in LD only, and it contains a starting point and an end point. It is
used for implementing parallel analyses of logical elements.
Inserting a closed branch
● Command “FBD/LD/IL è Insert Contact Parallel (Below) ”
● Command “FBD/LD/IL è Insert Contact Parallel (Above) ”
● Command “FBD/LD/IL è Set Branch Start/End Point”

When you select one or more contacts and then execute the command “Insert Contact in
Parallel”, a parallel branch is added with a single vertical line. For this kind of branching, the
signal flow passes through both branches. This is an OR construct of both branches.

New: When you select a box and execute the command “Insert Contact in Parallel”, a parallel
branch is inserted with a double vertical line. This indicates that a short-circuit evaluation (SCE)
is implemented. SCE allows for the execution of a function block with a Boolean output to be
bypassed if a specific condition is TRUE. The condition can be displayed in the LD editor as a
branch connected parallel to the function block branch. The short circuit condition is defined by
one or more contacts in this branch that are interconnected parallel or sequentially.
Functional principle:
The branches that do not include the function block are processed first. If CODESYS detects
the value TRUE for one of these branches, then the function block is not called in the parallel
branch. In this case, the value at the input of the function block is sent directly to the output.
If CODESYS determines FALSE for the SCE condition, then the box will be called and the
Boolean result of its processing is passed on. If all branches contain function blocks, they are
analyzed from top to bottom and their outputs are logically ORed. If there are no branches with
function blocks, normal OR operations are performed.

Closed branch
at a contact

Closed branch
at a block, OR
evaluation, or
short-circuit
evaluation

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2096

The function block instance x1 (TON) has a Boolean input and a Boolean output. The execu-
tion of x1 is skipped if TRUE is determined for the condition in the parallel line branch. The
condition value results from the OR and AND operations that connect contacts cond1, cond2
and cond3.

x1 is executed if the condition value from the connection of the contacts cond1, cond2 and
cond3 is FALSE.

(1) Indicates from the double vertical connections that it is a construct subject to an SCE.
(2) Indicates from the single vertical connections that it is an OR construct.
The given LD example is shown below as ST code. P_IN and P_OUT are the Boolean values
at the input (split point) and output (reunification point) of the parallel line branch.
P_IN := b1 AND b2;

IF ((P_IN AND cond1) AND (cond2 OR cond3)) THEN
 P_OUT := P_IN;
ELSE
 x1(IN := P_IN, PT := {p 10}t#2s);
 tElapsed := x1.ET;
 P_OUT := x1.Q;
END_IF
bRes := P_OUT AND b3;

Example

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.21.3.14.36 “Command 'Set Branch Start Point'” on page 2709
● Ä Chapter 6.4.1.21.3.14.37 “Command 'Set Branch End Point'” on page 2710
● Ä Chapter 6.4.1.21.3.14.20 “Command 'Insert Contact in Parallel (Above)'” on page 2705
● Ä Chapter 6.4.1.21.3.14.19 “Command 'Insert Contact in Parallel (Below)'” on page 2705
● Ä Chapter 6.4.1.21.3.14.21 “Command 'Toggle Parallel Mode'” on page 2706

Continuous Function Chart (CFC) and Page-Oriented CFC
6.4.1.20.1.7.1 General.. 2098
6.4.1.20.1.7.2 CFC Editor... 2098
6.4.1.20.1.7.3 CFC editor, page-oriented... 2101
6.4.1.20.1.7.4 Keyboard Shortcuts in the CFC Editors.................................. 2102
6.4.1.20.1.7.5 CFC Editor in Online Mode... 2103
6.4.1.20.1.7.6 Elements... 2109

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2097

General
From an external point of view, a Function Block Diagrams consists of inputs and outputs, with
data being processed between them. From an internal point of view, a Function Block Diagrams
consists of POUs and their connections which represent data (signals) and act as assignment
operators in ST. The overall behavior is composed of the behavior of the inserted POUs which
call other POUs or library POUs.
Code in the “Continuous Function Chart (CFC)” implementation language mainly illustrates the
data flow through the system. Therefore, a continuous function chart is also referred to as a
"signal flow chart".
In the page-oriented CFC editor, you can wire POUs to each other and create well-structured
Function Block Diagrams distributed over multiple pages. The page-oriented editor behaves like
the CFC editor, but provides the following functionality:

The page-oriented editor behaves like the CFC editor, but provides additional functionality.
The editor supports you with the following functions:
● Creating pages
● Setting the page size
● Copying and inserting pages in the page navigator
● Copying the implementation of a POU in the CFC implementation language and inserting

into a page
● Well-structured and space-saving arranging of inputs, outputs, and connection marks in the

border areas
● Connection over pages with connection marks

CFC Editor
You can configure the appearance, behavior, and printing for the entire project in the CODESYS
options in the “CFC Editor” category. For example, on the “View” tab, you can configure the
color of the connecting lines depending on the data type.

Cursor symbol: Requirement: “Pointer” is selected in the “Toolbox” view.
The symbol indicates that you can edit in the editor. Select elements or connec-
tions to move them or to execute commands.

Cursor symbol: Requirement: An element is selected in the “Toolbox” view.
Clicking in the editor inserts the selected element. You can also drag an element
to the editor.

Dragging a function block
instance from the declaration
to the editor

Requirement: A line is selected in the declaration of the CFC.
The instance is inserted as a box with name, type, and all pins.

Dragging a variable from the
declaration to a box pin to the
editor

The variable is inserted as an input or output with a connection to the box pin in
focus.
Hint: The cursor indicates when your focused location is valid for a variable:

Configuring the
editor

Editing

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2098

Dragging a variable from the
declaration part to the editor

Requirement: The respective element is selected in the declaration.
● Function block instance: A POU with the corresponding data type is created.
● Declaration of VAR_INPUT or CONSTANT: An input element is inserted.
● Declaration of VAR_OUTPUT: An output element is inserted.
● Declaration of VAR, VAR_GLOBAL: A window opens at the insert location,

where you can select whether an input element or output element should be
inserted.

When a variable is dragged from the declaration part to an existing replaceable
element, the existing element is replaced.

Dragging a function block or
POU to the editor from the
“Devices” view, “POUs” view,
or from the Library Manager.

A box element with the corresponding type is inserted.
● When a box is dragged to an existing connecting line and both the input and

output of the box are compatible with the data type of the line, the box is
inserted in the line. Here its first matching input and output are connected to
the elements that were previously connected by the connecting line.

● When a box is dragged to an existing box, the existing box is replaced.

Resorting the order of inputs
and outputs within a function
block by means of drag&drop

Requirement: The text field of the input or output, which should be resorted to
another location, is selected.

[Ctrl] + click in the programing
area

Requirement: An element is selected in the “Toolbox” view.
As long as you hold down the [Ctrl] key, a selected element is created each time
you click in the programming area.

[Ctrl]+[Right Arrow] Requirement: In the CFC program, exactly one output pin is selected for an
element.
The selection is moved so that the input pin at the end of the connecting line is
selected. In the case of multiple pins, all are selected.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2099

[Ctrl]+[Left Arrow] Requirement: In the CFC program, exactly one input pin is selected for an
element.
The selection is moved so that the output pin at the beginning of the connecting
line is selected. In the case of multiple pins, all are selected.
Example:

See also
● Ä Chapter 6.4.1.20.1.3 “Common functions in graphical editors” on page 2048

You can insert connecting lines between element connections. Connecting lines are inserted
by means of auto-routing so that connecting lines are automatically optimal and as short as
possible. The connecting lines are checked for collisions.

Dragging a pin to another A connecting line is inserted between the two element pins.

Dragging a pin to a function
block

Dropping can be done on a pin or on the text field of a pin.
In the case of extendable operators (example: ADD), dropping can also be
done within the box. The following behavior applies for this: If there are still
unconnected input pins, then the top free pin is connected. If there are no more
unconnected input pins, then a new pin is automatically inserted below.

Command
“Connect Selected Pins”

Requirement: Multiple pins are selected. The pins are marked in red.

Move an inserted element so
that it touches the pin of
another element.

Requirement: The “Enable AutoConnect” option is selected.
The touching pins are connected automatically.

The connection icon is located in the upper right corner of the editor. A green
icon indicates collision-free connections. A red icon indicates collisions. Clicking
the icon opens a menu with commands for collision processing, for example the
“Show Next Collision” command.

Requirement: A connection is selected and the “Connection Mark” command is
executed.
Instead of a long connecting line, a connection is represented by connection
marks.

See also
● Ä Chapter 6.4.1.21.3.13.22 “Command 'Show Next Collision'” on page 2694

See also
● Ä Chapter 6.4.1.21.3.13 “Menu 'CFC'” on page 2685

Connecting

Commands
when editing

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2100

See also
● Ä Chapter 6.4.1.20.1.3 “Common functions in graphical editors” on page 2048
● Ä Chapter 6.4.1.9.5.3.3 “ Programming in the CFC editor” on page 1871
● Ä Chapter 6.4.1.21.3.13 “Menu 'CFC'” on page 2685
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761

CFC editor, page-oriented

POUs generated in the “Continuous Function Chart (CFC) - page-oriented”
cannot be converted into “Continuous Function Chart (CFC)” POUs or back.

● (1) Page navigator
● (2) Page header with name and description
● (3) Left border area reserved for inputs and sink connection marks
● (4) Program area
● (5) Right border area reserved for outputs and source connection marks

You can drag a “Page” element from the “ToolBox” view to the page navigation. Then an
additional page is inserted.
You can select existing pages in the page navigation and duplicated them by clicking “Edit
è Copy” and “Edit è Paste”.
The size of the page is changed by means of the “Edit Page Size” command.
Connections over multiple pages are established by means of the “Connection Mark - Source”
and “Connection Mark - Sink” elements. When you drag a connecting line from an input pin
or an output pin to the border area, a new connection mark is created automatically. The
advantage is that the "List components" input assistance provides all previously defined connec-
tion mark sources.
If you have selected an element in the editor, then you can use the arrow keys to move the
selection from one element to the next to navigate through the circuit. If you then select a
connection mark and press another arrow key, even the corresponding connection mark of the
next/previous page will be selected.

Editing

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2101

You can transfer networks from a CFC POU to the program area of a page-oriented CFC by
clicking “Edit è Copy” and “Edit è Paste” (from the clipboard). You can also use drag&drop.

The execution order is determined automatically according to the order of the pages as they are
sorted in the page navigator of the editor. Within a page, a page-oriented CFC object behaves
like a CFC object. Therefore, you can switch between “Auto Data Flow Mode” and “Explicit
Execution Order Mode”.

See also
● Ä Chapter 6.4.1.21.3.13.2 “Command 'Edit Page Size’” on page 2686
● Ä Chapter 6.4.1.21.3.13.1 “Command 'Edit Worksheet'” on page 2685

See also
● Ä Chapter 6.4.1.20.1.3 “Common functions in graphical editors” on page 2048
● Ä Chapter 6.4.1.9.5.3.3 “ Programming in the CFC editor” on page 1871
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.3.13 “Menu 'CFC'” on page 2685
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761

Keyboard Shortcuts in the CFC Editors

Keyboard shortcuts Command
[Ctrl]+[Shift]+[A] Select All

Insert elements:
[Ctrl]+[B] Insert Box

The “Input Assistant” dialog opens in order to select the box.

[Ctrl]+[Shift]+[B] Insert Empty Box

[Ctrl]+[Shift]+[E] Insert Box with EN/ENO
The “Input Assistant” dialog opens in order to select the box.

[Ctrl]+[Q] Insert Input
Inserts an input element

[Ctrl]+[A] Insert Output
Inserts an output element

[Ctrl]+[L] Insert Jump

Edit already inserted
elements:

[Ctrl]+[N] Negate

[Ctrl]+[M] Toggle between Set, Reset, REF, and None

[Ctrl]+[U] Reset Pins

After inserting an element, the inserted element is selected in the editor.
See also
● Ä Chapter 6.4.1.20.1.7.6.5 “CFC Element 'Box'” on page 2110
● Ä Chapter 6.4.1.20.1.7.6.3 “CFC Element 'Input'” on page 2109
● Ä Chapter 6.4.1.20.1.7.6.4 “CFC Element 'Output'” on page 2109
● Ä Chapter 6.4.1.20.1.7.6.6 “CFC element 'Jump'” on page 2110

Execution order

Additional com-
mands in “CFC
page-oriented”

Keyboard short-
cuts in the CFC
editor and page-
oriented CFC
editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2102

● Ä Chapter 6.4.1.21.3.13.3 “Command 'Negate'” on page 2686
● Ä Chapter 6.4.1.21.3.13.7 “Command 'S (Set)'” on page 2687
● Ä Chapter 6.4.1.21.3.13.6 “Command 'R (Reset)'” on page 2687
● Ä Chapter 6.4.1.21.3.13.8 “Command 'REF= (Reference Assignment)'” on page 2687
● Ä Chapter 6.4.1.21.3.13.5 “Command 'None'” on page 2687
● Ä Chapter 6.4.1.21.3.13.24 “Command 'Reset Pins'” on page 2694

CFC Editor in Online Mode
In online mode, you can monitor and change variable values of the controller. In addition,
debugging features are provided such as breakpoints and stepping.

As usual, you can monitor values in the declaration part as well as in the implementation part
(with inline monitoring).
Inline monitoring of a function block is possible only when an instance of the function block is
open. No values are displayed in the basic implementation view.

The connections between Boolean variables are displayed in color according to their actual
value: TRUE in blue and FALSE in black. The element pins are decorated with the actual value.

Monitoring

Monitoring a
Boolean vari-
able

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2103

An application contains a CFC POU. An internal Boolean variable is switched there. With each
cycle, the variable iToggle switches its state from TRUE to FALSE.

Example

In the case of scalar variables, the element pins are decorated with the actual values.Monitoring a
scalar variable

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2104

Example

In online mode in the declaration editor, you can prepare a value for forcing or writing a
monitored variable.
When you select the “Prepare values in implementation part” check box in the “CFC Editor”
category of the CODESYS options, you can also prepare values in the implementation part.
To do this, open the “Prepare Value” dialog by double-clicking an element or the monitoring box
next to an element. No dialog appears for Boolean variables. However, with each mouse click
on the value displayed next to the variable, the values TRUE and FALSE are toggled.

Prepared values are displayed in angle brackets. After executing a write or a force, a red "F" is
shown in the monitoring box.

You can write input parameters of function block instances of type VAR_INPUT CONSTANT
in online mode and modify the parameters in this way. After logging out, you save these
parameters by clicking “Save Prepared Parameters to Project”.

Forcing and
writing of varia-
bles

Changing of
constant input
parameters of
function block
instances

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2105

Requirement: A CFC editor is active. An instantiated function block has VAR_INPUT
CONSTANT variables in its declaration.

1. In the editor, open the POU by calling the function block instance.

ð
FUNCTION_BLOCK FB_DoIt
VAR_INPUT
 iAlfa : INT;
 iBravo: INT;
 sCharlie : STRING := 'Charlie';
 xItem : BOOL;
 iDelta : INT;
END_VAR
VAR_INPUT CONSTANT
 MAXIMUM : INT := 12;
END_VAR
VAR_OUTPUT
 iResult : INT;
 sResult : STRING;
 xResult : BOOL;
END_VAR
The declaration of FB_DOIt has been supplemented by the constant MAXIMUM.

The graphical representation of the function block instances contains the “Parameters”
button.

2. Login to the controller.
3. Click the “Parameters” button of the function block instance.

ð The “Edit Parameters” dialog opens.

4. Click the “Value” column in an inline monitoring field of a parameter.

ð The “Prepare Value” dialog opens.

5. Type 20 in the “Prepare a new value for the next write or force operation” field.

6. Click “OK” to confirm the entry.

ð The prepared value is shown in angle brackets next to the current value (for example,
<20>).

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2106

7. Click “Debug è Write Values”.

ð The prepared value is written. The parameter is changed and displayed in the project
in brackets after the value.

The difference between both values is shown by a red cross next to the parameter
field of the function block instance.

8. Click “Edit Parameters” to close the dialog. Logout.
9. Click “CFC è Save Prepared Parameters to Project”.

ð The change parameter values are saved to the project. The asterisk next to the
parameter field disappears.

Possible position of a breakpoint
● Element “Output”

Variables are described.
● Element “Box”

POUs are called.
● Element “RETURN”

The program flow is branched.
● Element “Selector”

Structure elements are described.
Click “Debug è Toggle Breakpoint” to set a new breakpoint or delete an existing breakpoint. A
red circle in the block diagram represents an active breakpoint.

Breakpoint loca-
tions

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2107

NOTICE!
A breakpoint is set automatically in all methods that can be called.
Therefore, if a method is called that is defined over an interface, then break-
points are set in all methods of function blocks that implement this interface.
This also applies to all inherited function blocks that define methods.

You can process a POU in steps in debug mode. A called POU is supplemented internally by
a RETURN at the beginning before the element with the number 0 and at the end after the last
element. When stepping, these are started automatically.

See also
● Ä Chapter 6.4.1.21.3.13.35 “Command 'Force Function Block Input'” on page 2697
● Ä Chapter 6.4.1.21.3.13.34 “Command 'Prepare Box for Forcing'” on page 2697
● Ä Chapter 6.4.1.21.3.13.18 “Command 'Edit Parameters'” on page 2692
● Ä Chapter 6.4.1.21.3.13.19 “Command 'Save Prepared Parameters to Project'”

on page 2693

See also
● Ä Chapter 6.4.1.13.2 “Monitoring of Values” on page 1995
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä “Forcing a function block input in CFC” on page 1989
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985

Stepping into a
POU

Commands in
online mode

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2108

Elements
6.4.1.20.1.7.6.1 CFC element 'Page'.. 2109
6.4.1.20.1.7.6.2 CFC element 'Control Point'... 2109
6.4.1.20.1.7.6.3 CFC Element 'Input'.. 2109
6.4.1.20.1.7.6.4 CFC Element 'Output'... 2109
6.4.1.20.1.7.6.5 CFC Element 'Box'.. 2110
6.4.1.20.1.7.6.6 CFC element 'Jump'... 2110
6.4.1.20.1.7.6.7 CFC element 'Label'.. 2111
6.4.1.20.1.7.6.8 CFC element 'Return'.. 2111
6.4.1.20.1.7.6.9 CFC element 'Composer'.. 2111
6.4.1.20.1.7.6.10 CFC element 'Selector'... 2111
6.4.1.20.1.7.6.11 CFC element 'Comment'... 2111
6.4.1.20.1.7.6.12 CFC element 'Connection Mark - Source/Sink'.................. 2112
6.4.1.20.1.7.6.13 CFC element 'Input Pin'.. 2112
6.4.1.20.1.7.6.14 CFC element 'Output Pin'... 2112

CFC element 'Page'
Symbol:
The element inserts a new page into the editor. It is available only in the page-oriented CFC
editor. The number of the page is automatically assigned in accordance with its position. You
can enter the name and the description of the page into the orange header. The page size is
adapted with the “Edit Page Size” command.
See also
● Ä Chapter 6.4.1.21.3.13.2 “Command 'Edit Page Size’” on page 2686

CFC element 'Control Point'
Symbol:
Use a control point in order to fix points of a connection before you adapt the line routing. To do
this, drag the element to the desired position on a connecting line. Connecting lines with control
points are no longer routed automatically.
See also
● Ä Chapter 6.4.1.9.5.3.3 “ Programming in the CFC editor” on page 1871
● Ä Chapter 6.4.1.21.3.13.30 “Command 'Create Control Point'” on page 2696
● Ä Chapter 6.4.1.21.3.13.29 “Command 'Remove Control Point'” on page 2695

CFC Element 'Input'
Symbol:
Keyboard shortcuts for inserting the element: [Ctrl]+[Q]

By default, CODESYS inserts an input element with the text "???". You can edit this input field
directly by clicking it and typing in a constant value or a variable name. Alternatively, you could
click to open the Input Assistant to select a variable.

CFC Element 'Output'
Symbol:
Keyboard shortcuts for inserting the element: [Ctrl]+[A]

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2109

By default, CODESYS inserts an output element with the text "???". You can edit this input field
directly by clicking it and typing in a constant value or a variable name. Alternatively, you could
click to open the Input Assistant to select a variable.

CFC Element 'Box'
Symbol:
Keyboard shortcuts for inserting the element
● [Ctrl]+[B]
● [Ctrl]+[Shift]+[B]: Empty box
● [Ctrl]+[Shift]+[E]: Box with EN/ENO

You use the element in order to insert an operator, a function, a function block, or a program.
By default, CODESYS inserts the element with the name “???”. You can edit this field directly
by clicking it and typing in a function block name. Alternatively, you could click to open the
Input Assistant and select a function block
In the case of a function block, CODESYS also displays an input field (“???”) above the function
block symbol. You have to replace this name with the name of the function block instance. If
you instantiate a function block with constant input parameters, then the function block element
displays the "Parameter..." field in the bottom left corner. You click on this field to edit the
parameters.
In order to replace an existing box, you replace only the currently inserted identifier with the new
desired name. When you do this, note that CODESYS adapts the number of input and output
pins according to the definition of the POU and that existing assignments may be deleted as a
result.

NOTICE!
Because feedback is allowed in CFC, implicit variables with the data type of the
input variable are created at the output of a box (in the example: temp_USINT).
If the result of the operation of a function block is a value which exceeds
the number range of the data type of the input variable, then the overflow is
written to the implicit variable. The actual output variable gets the value of the
implicit variable, thus the overflow and not the actual result of the operation (see
example).

Implicitly generated variables at the box output:

Implicitly generated code:
temp_USINT := USINT1 * temp_USINT;
UDINT1 := temp_USINT;

Example

See also
● Ä Chapter 6.4.1.21.3.13.18 “Command 'Edit Parameters'” on page 2692

CFC element 'Jump'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2110

You use the element in order to define a position at which program execution is to continue. You
must define this target position by a label. To do this, enter the name of the mark in the input
field “???”. If you have already inserted the corresponding label, you can also select it via the
input assistant ().
See also
● Ä Chapter 6.4.1.20.1.7.6.7 “CFC element 'Label'” on page 2111

CFC element 'Label'
Symbol:
A label defines a position to which program execution jumps with the help of a jump element.
In online mode CODESYS automatically inserts a RETURN flag at the end of a CFC function
block.
See also
● Ä Chapter 6.4.1.20.1.7.6.6 “CFC element 'Jump'” on page 2110

CFC element 'Return'
Symbol:
Use the element in order to exit the function block.
Please note that in online mode in the CFC editor a return element is automatically inserted
before the first line and after the last element. In single-step execution CODESYS automatically
jumps to the return element at the end before exiting the function block.

CFC element 'Composer'
Symbol:
The composer element is for handling structural components. The individual components of a
structure are made available to you as an input. For this purpose you must name the composer
element like the structure concerned (replace the “???”).
The composer element is the counterpart to the selector element.
See also
● Ä Chapter 6.4.1.20.1.7.6.10 “CFC element 'Selector'” on page 2111

CFC element 'Selector'
Symbol:
The selector element is for handling structural components. The individual components of a
structure are made available to you as an output. For this purpose you must name the selector
element like the structure concerned (replace the “???”)
The selector element is the counterpart to the composer element.
See also
● Ä Chapter 6.4.1.20.1.7.6.9 “CFC element 'Composer'” on page 2111

CFC element 'Comment'
Symbol:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2111

With this element you input a comment in the CFC editor. Replace the placeholder text in the
element by the comment text. A line break can be inserted with the aid of the shortcut [Ctrl] +
[Enter].

CFC element 'Connection Mark - Source/Sink'
Symbol: ,
You can use connection marks instead of a connecting line between elements. That helps you
to display complex diagrams more clearly.
For a valid connection you must connect an element “Connection Mark - Source” with the output
of an element and an element “Connection Mark - Sink” with the input of another element. Both
marks must bear the same name. The names are not case-sensitive.
Notes on naming
● The standard name for connection marks is C-<nr>. <nr> is a sequential number starting

with 1.
● You can rename the standard name. In doing so, you must make sure that the connection

mark - source and connection mark - sink have the same name.
● If you change the name of the connection mark - source, the destination name is automati-

cally renamed.
● If you change the name of the connection mark - sink, the source name is retained.

Observe the command “Connection Mark” for the automatic transformation of
an existing connection.

See also
● Ä Chapter 6.4.1.21.3.13.31 “Command 'Connection Mark'” on page 2696
● Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098

CFC element 'Input Pin'
Symbol:
Depending on the type of function block you can add further inputs to an inserted function block
element. To do this you must select the function block element and drag the function block input
element onto the body of the function block.
Please note: You can drag an input or output connection to another position on the function
block with the [Ctrl] key pressed.
See also
● Ä Chapter 6.4.1.20.1.7.6.14 “CFC element 'Output Pin'” on page 2112

CFC element 'Output Pin'
Symbol:
Depending on the type of function block you can add further outputs to an inserted function
block element. To do this you must select the function block element and drag the function block
output element onto the body of the function block.
Please note: You can drag an input or output connection to another position on the function
block with the [Ctrl] key pressed.
See also
● Ä Chapter 6.4.1.20.1.7.6.13 “CFC element 'Input Pin'” on page 2112

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2112

6.4.1.20.2 Variables
6.4.1.20.2.1 General... 2113
6.4.1.20.2.2 Local variables - VAR... 2113
6.4.1.20.2.3 Input variables - VAR_INPUT... 2113
6.4.1.20.2.4 Output variables - VAR_OUTPUT.. 2114
6.4.1.20.2.5 Input/Output Variable (VAR_IN_OUT).. 2114
6.4.1.20.2.6 Global variables - VAR_GLOBAL... 2118
6.4.1.20.2.7 Temporary variable - VAR_TEMP... 2119
6.4.1.20.2.8 Static variables - VAR_STAT.. 2119
6.4.1.20.2.9 External variables - VAR_EXTERNAL.. 2120
6.4.1.20.2.10 Instance variables - VAR_INST.. 2120
6.4.1.20.2.11 Configuration variables - VAR_CONFIG................................... 2121
6.4.1.20.2.12 Constant Variables - 'CONSTANT'... 2121
6.4.1.20.2.13 Persistent Variable - PERSISTENT.. 2122
6.4.1.20.2.14 Retain Variable - RETAIN... 2124
6.4.1.20.2.15 SUPER... 2125
6.4.1.20.2.16 THIS... 2126

General
The scope of a variable defines how and where you can use a variable. You define the scope in
the variable declaration.

Local variables - VAR
Local variables are declared between the keywords VAR and END_VAR in the declaration part of
programming objects.
You have read-only access to local variables by using the instance path.
You can extend local variables with an attribute keyword.

VAR
 iVar1 : INT;
END_VAR

Example

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920

Input variables - VAR_INPUT
Input variables are used at the inputs of function blocks.
VAR_INPUT variables are declared between the keywords VAR_INPUT and END_VAR in the
declaration part of programming objects.
You can extend input variables with an attribute keyword.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2113

VAR_INPUT
 iIn1 : INT; (* 1st input variable *)
END_VAR

Example

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920

Output variables - VAR_OUTPUT
Output variables are used at the outputs of function blocks.
VAR_OUTPUT variables are declared between the keywords VAR_OUTPUT and END_VAR in the
declaration part of programming objects. CODESYS returns the values of this variable to the
calling POU. There you can retrieve the values and continue using them.
You can extend output variables with an attribute keyword.

VAR_OUPUT
 iOut1 : INT; (*1st output variable *)
END_VAR

Example

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920

According to the IEC 61131-3 standard, functions and methods have additional outputs. You
have to assign these additional outputs when calling the function, as shown below.

fun(iIn1 := 1, iIn2 := 2, iOut1 => iLoc1, iOut2 => iLoc2);
Example

Input/Output Variable (VAR_IN_OUT)
A VAR_IN_OUT variable is an input/output variable, which is part of a POU interface and serves
as a formal pass-by-reference parameter.

<keyword> <POU name>
VAR_IN_OUT
 <variable name> : <data type> (:= <initialization value>)? ;
END_VAR
<keyword> : FUNCTION | FUNCTION_BLOCK | METHOD | PRG
You can declare an input/output variable in the VAR_IN_OUT declaration section in the POUs
PRG, FUNCTION_BLOCK, METHOD, or FUNCTION. As an option, a constant of the declared data
type can be assigned as an initialization value. The VAR_IN_OUT variable can be read and
written.

Output variables
in functions and
methods

Syntax declara-
tion

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2114

Usage
● Call: When a POU is called, the formal VAR_IN_OUT variable receives the actual variable

(pass-by-reference variable) as the argument. At runtime, no copies are generated when
parameters are passed. Instead, the formal variable receives a reference to the actual
variable passed remotely. The referential variables contain a memory address internally as
a value to the actual value (pass as pointer, call-by reference). It is not possible to specify a
constant (literal) or a bit variable directly as an argument.

● Read/write access within the POU: If the variable is written to within the POU, then this
affects the passed variable. When the POU is exited, any performed changes are retained.
This means that a POU uses its VAR_IN_OUT variables just like the calling POU uses its
variables. Read access is always permitted.

● Read/write access remotely: VAR_IN_OUT variables cannot be directly read or written
remotely via <function block instance name>.<variable name>. This works only
for VAR_INPUT and VAR_OUTPUT variables.

● Passing string variables: If a string variable is passed as an argument, then the actual var-
iable and the formal variable should have the same length. Otherwise the passed string can
be manipulated unintentionally. This problem does not occur in the case of VAR_OUTPUT
CONSTANT parameters.

● Passing bit variables: A bit variable cannot be passed directly to a VAR_IN_OUT variable
because it needs an intermediate variable.

● Passing properties: Not permitted.

If a string is passed as a variable or a constant to a formal VAR_IN_OUT
CONSTANT variable, then the string is automatically passed completely. You do
not have to check the string length.

See also
● Chapter Ä “Transfer variable VAR_IN_OUT CONSTANT” on page 2117

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2115

TYPE DUT_A :
STRUCT
 xA: BOOL;
 iB: INT;
END_STRUCT
END_TYPE

FUNCTION_BLOCK FB_SetArray
VAR_IN_OUT
 aData_A : ARRAY[0..1] OF DUT_A; // Formal variable
END_VAR
aData_A[0].xA := TRUE;
aData_A[0].iB := 100;

PROGRAM PLC_PRG
VAR
 fbSetA : FB_SetArray;
 aSpecialData : ARRAY[0..1] OF DUT_A; // Actual variable
END_VAR
fbSetA(aData_A := aSpecialData);

{attribute 'qualified_only'}
VAR_GLOBAL
 g_sDEV_STATUS : STRING(25) := 'Device_A';
END_VAR

FUNCTION_BLOCK FB_SetStatus
VAR_IN_OUT
 sDeviceStatus : STRING(25); // Formal parameter
END_VAR
sDeviceStatus := CONCAT(sDeviceStatus, ' Activ');

PROGRAM PLC_PRG
VAR
 fbDoB : FB_SetStatus;
END_VAR
fbDoB(sDeviceStatus := GVL.g_sDEV_STATUS); //Call with actual
parameter

The variable sDeviceStatus is part of the POU interface of FB_B. When calling fbDoB, first
a device name is assigned to the string and then the string is manipulated.

VAR_GLOBAL
 xBit0 AT %MX0.1 : BOOL;
 xTemp : BOOL;
END_VAR

FUNCTION_BLOCK FB_DoSomething
VAR_INPUT

Example
Passing arrays

Passing
strings

Passing bit
variables

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2116

 xIn : BOOL;
END_VAR
VAR_IN_OUT
 xInOut : BOOL;
END_VAR
IF xIn THEN
 xInOut := TRUE;
END_IF

PROGRAM PLC_PRG
VAR
 xIn : BOOL;
 DoSomething_1 : FB_DoSomething;
 DoSomething_2 : FB_DoSomething;
END_VAR

// The following line of code causes a compiler error:
// C0201: Typ 'BIT' is not equal to type 'BOOL' of VAR_IN_OUT
'xInOut'
DoSomething_1(xIn := xIn, xInOut := xBit0);

// Workaround
xTemp := xBit0;
DoSomething_2(xIn := xIn, xInOut := xTemp);
xBit0 := xTemp;

The program calls the function block instances DoSomething_1 and DoSomething_2. As
a result of the direct assignment of the bit variable xBit0 to the VAR_IN_OUT input, a
compiler error is generated when the DoSomething_1 instance is called. In contrast, calling
the DoSomething_2 instance with the assignment of an intermediate variable is correct code.

A VAR_IN_OUT CONSTANT variable serves as a constant pass-by-reference parameter, to
which a STRING or WSTRING type variable or constant (literal) can be passed. The parameter
can be read, but not written. Passing of properties is not permitted.

<keyword> <POU name>
VAR_IN_OUT CONSTANT
 <variable name> : <data type>; // formal parameter
END_VAR
<keyword> : FUNCTION | FUNCTION_BLOCK | METHOD | PRG
VAR_IN_OUT CONSTANT variables are declared without assigning an initialization value.

Usage
● When calling the POU, a STRING or WSTRING constant variable or literal can be passed.

Consequently, write access is not permitted.
● Passing parameters of a string constant: The string length of the constants can be any size,

and the string length does not depend on the string length of the VAR_IN_OUT CONSTANT
variables.

If the “Replace constants” option is selected in “Project è Project Settings” in
the “Compile Options” category, then passing the parameters of a constant with
basic data type or a constant variable with basic data type generates a compiler
error.

The variable is supported in compiler version >= 3.5.2.0.

Transfer vari-
able
VAR_IN_OUT
CONSTANT
Syntax declara-
tion

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2117

FUNCTION funManipulate : BOOL
VAR_IN_OUT
 sReadWrite : STRING(16); (* Can be read or written here in POU
*)
 dwVarReadWrite : DWORD; (* Can be read or written here in POU *)
END_VAR
VAR_IN_OUT CONSTANT
 c_sReadOnly : STRING(16); (* Constant string variable can only
be read here in POU *)
END_VAR

sReadWrite := 'String_from_POU';
dwVarReadWrite := STRING_TO_DWORD(c_sReadOnly);

PROGRAM PRG_A
VAR
 sVarFits : STRING(16);
 sValFits : STRING(16) := '1234567890123456';
 dwVar: DWORD;
END_VAR

// The following line of code causes the compiler error C0417:
// C0417: VAR_IN_OUT parameter 'sReadWrite' needs a variable with
write access as input.
funManipulate(sReadWrite:='1234567890123456',
c_sReadOnly:='1234567890123456', dwVarReadWrite := dwVar);

// Correct code
funManipulate(sReadWrite := sValFits, c_sReadOnly := '23',
dwVarReadWrite := dwVar);
funManipulate(sReadWrite := sVarFits, c_sReadOnly := sValFits,
dwVarReadWrite := dwVar);

In the code, strings are passed to the funManipulate function via different VAR_IN_OUT
variables. When passing a string literal, a compiler error is output to a VAR_IN_OUT variable.
When passing a constant variable to a VAR_IN_OUT CONSTANT variable, correct code is
generated even for passing string variables.

Example
Passing
parameters of
string con-
stants and
string varia-
bles

See also
● Ä Chapter 6.4.1.9.4 “Declaration of Variables ” on page 1847
● Ä Chapter 6.4.1.21.4.12.4 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 2769
● Ä Chapter 6.4.1.21.2.21.4 “Object 'Function'” on page 2482
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.21.2.21.5 “Object 'Interface'” on page 2484
● Ä Chapter 6.4.1.21.2.21.7 “Object 'Interface Method'” on page 2490
● Ä Chapter 6.4.1.20.2.12 “Constant Variables - 'CONSTANT'” on page 2121

Global variables - VAR_GLOBAL
Global variables are ordinary variables, constants, external or remanent variables that are
recognized within the entire project.
You declare global variables in global variable lists or in the declaration section of programming
objects between the keywords VAR_GLOBAL and END_VAR.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2118

The system recognizes a global variable when you prepend the variable name with a dot (for
example, .iGlobVar1).

NOTICE!
If a local variable that is declared in a block has the same name as a global
variable, then it has precedence within the block.

NOTICE!
For compiler version 3.2.0.0 and later, CODESYS always initializes global varia-
bles before the local POU variables.

VAR_GLOBAL
 iVarGlob1 : INT;
END_VAR

Example

See also
● Ä Chapter 6.4.1.21.2.12 “Object 'GVL' - Global Variable List” on page 2465
● Ä Chapter 6.4.1.20.3.70 “Operator - Global namespace” on page 2216

Temporary variable - VAR_TEMP
This function is an extension of the IEC 61131-3 standard.
You declare temporary variables locally between the keywords VAR_TEMP and END_VAR.

VAR_TEMP declarations are possible only in program blocks and function blocks.

CODESYS initializes temporary variables each time the block is called.
The application can access the temporary variables only in the implementation section of a
program block or a function block.

VAR_TEMP
 iVarTmp1 : INT; (*1st temporary variable *)
END_VAR

Example

Static variables - VAR_STAT
This function is an extension of the IEC 61131-3 standard.
You declare static variables locally between the keywords VAR_STAT and END_VAR. CODESYS
initializes static variables the first time each block is called.
You can access static variables only from within the namespace where the variables are
declared (like static variables in C). But static variables retain their values when the application
leaves the block. For example, you can use static variables as counters for function calls.
You can extend static variables with an attribute keyword.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2119

VAR_STAT
 iVarStat1 : INT;
END_VAR

Example

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920

External variables - VAR_EXTERNAL
External variables are global variables that are imported into a block.
You declare these variables between the keywords VAR_EXTERNAL and END_VAR. If the global
variable does not exist, then an error message is printed.

NOTICE!
CODESYS does not require you to declare a global variable as external in order
to use it in a POU. The keyword exists only for maintaining compliance with
IEC 61131-3.

<POU keyword> <POU name>
VAR_EXTERNAL
 <variable name> : <data type>;
END_VAR
Initialization is not permitted.

FUNCTION_BLOCK FB_DoSomething
VAR_EXTERNAL
 iVarExt1 : INT; (* 1st external variable *)
END_VAR

Example

See also
● Ä Chapter 6.4.1.21.2.12 “Object 'GVL' - Global Variable List” on page 2465

Instance variables - VAR_INST
CODESYS does not save a VAR_INST method variable in a method stack, but in the stack
of the function block instance. This means that the VAR_INST variable functions like other
Variables of the function block instance, and it is not reinitialized each time the method is called.
VAR_INST variables are permitted in methods only and you can access these variables only
within the method. The variable values of instance variables are monitored in the declaration
section of the method.
You can extend instance variable with an attribute keyword.

Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2120

METHOD meth_last : INT
VAR_INPUT
 iVar : INT;
END_VAR
VAR_INST
 iLast : INT := 0;
END_VAR
meth_last := iLast;
iLast := iVar;

Example

Configuration variables - VAR_CONFIG
Use configuration variables for assigning complete addresses to variables that are declared in
function blocks with incomplete addresses and will be mapped on device I/Os.
Declare the variables in a global variables list between VAR_CONFIG and END_VAR. The global
variables list is termed "variables configuration", where you type the configuration variables with
a complete instance path and the correct address.

Declaration of the variable xLocIn with incomplete address %I* in a function block:
FUNCTION_BLOCK locio

VAR
 xLocIn AT %I* : BOOL := TRUE;
END_VAR

The locio function block is used in the PLC_PRG program:
PROGRAM PLC_PRG

VAR
 locioVar1 : locio;
END_VAR

The correct variables configuration in the global variable list is as follows:
VAR_CONFIG

 PLC_PRG.locioVar1.xLocIn AT %IX1.0 : BOOL;

END_VAR

Example

See also
● Ä Chapter 6.4.1.9.12.2 “Variables configuration - VAR_CONFIG” on page 1901

Constant Variables - 'CONSTANT'
Constant variables are declared in global variable lists or in the declaration part of programming
objects. In implementations, constant variables can be accessed as read-only via the instance
path.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2121

<scope> CONSTANT
 <identifier> : <data type> := <initial value> ;
END_VAR

<scope> : VAR | VAR_INPUT | VAR_STAT | VAR_GLOBAL
<data type>: <elementary data type> | <user defined data type> |
<function block>
<initial value> : <literal value> | <identifier> | <expression>
Always assign an initialization value when declaring a constant variable. Then the constant
cannot be written any more.

VAR CONSTANT
 c_rTAXFACTOR : REAL := 1.19;
END_VAR
rPrice := rValue * c_rTAXFACTOR;

You have read-only access to constant variables in an implementation. Constant variables are
located to the right of the assignment operator.

Example
Declaration

Call

See also
● Ä Chapter 6.4.1.20.2.5 “Input/Output Variable (VAR_IN_OUT)” on page 2114
● Ä “Constants and literals” on page 2219

Persistent Variable - PERSISTENT
Persistent variables are declared in the declaration section VAR_GLOBAL RETAIN
PERSISTENT in the persistent global variable list. For variables that are marked with the
PERSISTENT keyword outside of the persistence editor, instance paths are added there.

As of CODESYS version 3.3.0.1, a variable declaration with PERSISTENT
RETAIN has the same effect as with RETAIN PERSISTENT or PERSISTENT.

VAR_GLOBAL PERSISTENT RETAIN
 <identifier> : <data type> (:= <initialization>)?;
 <instance path to POU variable>
END_VAR

<scope> PERSISTENT RETAIN
 <identifier> : <data type> (:= <initialization>)?; //
(...)? : Optional
END_VAR
<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT |
VAR_GLOBAL

An assignment of inputs, outputs, or memory addresses with the AT keyword is not permitted.

Never use the POINTER TO data type in persistent variable lists. If the applica-
tion is downloaded again, their addresses could change. The corresponding
compiler warnings are shown in the message window.

Syntax

Syntax of the
declaration in
the global per-
sistent variable
list
PersistentVar
s:
Syntax of the
declaration in
POUs

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2122

If you frequently change the names or data types of remanent variables, then it
is better to declare them as retain variables with the RETAIN keyword only.

NOTICE!
Avoid inserting instance paths because in this case twice as much memory is
used and a higher cycle time can occur. Instead, declare variables in the list of
persistent variables.

{attribute 'qualified_only'}
VAR_GLOBAL PERSISTENT RETAIN
 g_iCounter : INT;
 // Generated instance path of persistent variable
 PLC_PRG.fb_A.iPersistentCounter_A: INT;
END_VAR

FUNCTION_BLOCK FB_A
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR PERSISTENT
 iPersistentCounter_A : INT;
END_VAR

VAR
 fb_A1 : FB_A;
END_VAR

Example
Declaration in
the persistent
variable list
PersistentVa
rs:

Declaration in
the function
block FB_A:

Declaration in
the program
PLC_PRG:

Directly in the persistent global
variable list

The variable is persistent and lies in the protected memory area.

Locally in a program with an
instance path in the persistent
variable list
Locally in a function block with
an instance path in the persis-
tent variable list

The variable is persistent and located in the protected memory area and in the
memory (double allocation).

Only locally in a program
Only locally in a function block

This variable is not persistent. A warning is shown in the message window.
Hint: Click “Declarations è Add All Instance Paths” to import the variables into
the persistent variable list.

Locally in a function This declaration does not have any effect. The variable is not persistent.

Possible decla-
ration locations

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2123

In the persistence editor, click “Declarations è Add All Instance Paths” if local
variables are marked with PERSISTENT.

Whenever possible, avoid marking variables, which are declared in a function
block, with PERSISTENT. This is because the function block instance is stored
entirely in remanent memory and not just the marked variable.

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920
● Ä Chapter 6.4.1.21.3.18.4 “Command 'Add all instance paths'” on page 2720

Retain Variable - RETAIN
Retain variables are declared by the keyword RETAIN is added in programming objects in the
scope VAR, VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR_STAT, or VAR_GLOBAL.

<scope> RETAIN
 <identifier>: <data type> (:= <initialization>)? // (...)? :
Optional
END_VAR
<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT |
VAR_GLOBAL
An assignment of inputs, outputs, or memory addresses with the AT keyword is not permitted.

VAR RETAIN
 iVarRetain: INT;
END_VAR

VAR_GLOBAL RETAIN
 g_iVarRetain: INT;
END_VAR

Example
In a POU:

In a GVL:

Locally in a program Only the variable is located in the retain memory area.
Info: When using redundancy, the entire program with all of its data is located in
the retain memory area.

Globally in a global variable list Only the variable is located in the retain memory area.
Info: When using redundancy, the entire global variable list with all of its data is
located in the retain memory area.

Locally in a function block The entire instance of the function block with all of its data is located in the retain
memory area. Only the declared retain variable is protected.

Syntax for the
declaration

Possible decla-
ration locations

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2124

Locally in a function The variable is not located in the retain memory area. This declaration does not
have any effect.

Locally and persistently in a
function

The variable is not located in the retain memory area. This declaration does not
have any effect.

Whenever possible, avoid using RETAIN to mark the variables of a function
block.

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920
● Ä Chapter 6.4.1.21.3.18.4 “Command 'Add all instance paths'” on page 2720

SUPER
SUPER is a special variable and is used for object-oriented programming.

SUPER is the pointer of a function block to the basic function block instance from which the func-
tion block was generated. The SUPER pointer thus also permits access to the implementation of
the methods of the basic function block (basic class). A SUPER pointer is automatically available
for each function block.
You can use SUPER only in methods and in the associated function block implementations.

Dereferencing of the pointer: SUPER^
Use of the SUPER pointer: with the help of the keyword SUPER you call a method that is valid in
the instance of the basic class or parent class.

ST:
SUPER^.METH_DoIt();
FBD/CFC/LD

Examples

THIS is not yet implemented for the instruction list (IL).

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2125

Use of SUPER and THIS pointers
FUNCTION_BLOCK FB_Base
VAR_OUTPUT
 iCnt : INT;
END_VAR

METHOD METH_DoIt : BOOL
 iCnt := -1;

METHOD METH_DoAlso : BOOL
 METH_DoAlso := TRUE;

FUNCTION_BLOCK FB_1 EXTENDS FB_Base
VAR_OUTPUT
 iBase : INT;
END_VAR

THIS^.METH_DoIt(); //Call of the methods of FB_1
THIS^.METH_DoAlso();

SUPER^.METH_DoIt(); //Call of the methods of FB_Base
SUPER^.METH_DoAlso();
iBase := SUPER^.iCnt;

METHOD METH_DoIt : BOOL
 iCnt := 1111;
 METH_DoIt := TRUE;

PROGRAM PLC_PRG
VAR
 myBase : FB_Base;
 myFB_1 : FB_1;
 iTHIS : INT;
 iBase : INT;
END_VAR

myBase();
iBase := myBase.iCnt;
myFB_1();
iTHIS := myFB_1.iCnt;

Examples

See also
● Ä Chapter 6.4.1.20.5 “Data Types” on page 2234
● Ä Chapter 6.4.1.20.2.16 “THIS” on page 2126

THIS
THIS is a special variable and is used for object-oriented programming.

THIS is the pointer of a function block to its own function block instance. A THIS pointer is
automatically available for each function block.
You can use THIS only in methods and in function blocks. THIS is available for the implementa-
tion in the input assistant in the category “Keywords”.
Dereferencing of the pointer: THIS^

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2126

Use of the THIS pointer

● If a local variable obscures a function block variable in a method, you can set the function
block variable with the THIS pointer. See example below (1)

● If the pointer to the function block's own function block instance is referenced for use in a
function. (See example below (2))

ST:
THIS^.METH_DoIt();
FBD/CFC/LD:

Examples

THIS is not yet implemented for the instruction list (IL).

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2127

(1) The local variable iVarB obscures the function block variable iVarB.
FUNCTION_BLOCK fbA
VAR_INPUT
 iVarA: INT;
END_VAR
iVarA := 1;

FUNCTION_BLOCK fbB EXTENDS fbA
VAR_INPUT
 iVarB: INT := 0;
END_VAR
iVarA := 11;
iVarB := 2;

METHOD DoIt : BOOL
VAR_INPUT
END_VAR
VAR
 iVarB: INT;
END_VAR
iVarB := 22; // The local variable iVarB is set.
THIS^.iVarB := 222; // The function block variable iVarB is set
even though iVarB is obscured.

PROGRAM PLC_PRG
VAR
 MyfbB: fbB;
END_VAR

MyfbB(iVarA:=0, iVarB:= 0);
MyfbB.DoIt();

(2) A function call requires the reference to its own instance.
FUNCTION funA
VAR_INPUT
 pFB: fbA;
END_VAR
...;

FUNCTION_BLOCK fbA
VAR_INPUT
 iVarA: INT;
END_VAR
...;

FUNCTION_BLOCK fbB EXTENDS fbA
VAR_INPUT
 iVarB: INT := 0;
END_VAR
iVarA := 11;
iVarB := 2;

METHOD DoIt : BOOL
VAR_INPUT
END_VAR
VAR
 iVarB: INT;
END_VAR
iVarB := 22; //The local variable iVarB is set.
funA(pFB := THIS^); //funA is called via THIS^.
PROGRAM PLC_PRG

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2128

VAR
 MyfbB: fbB;
END_VAR
MyfbB(iVarA:=0 , iVarB:= 0);
MyfbB.DoIt();

See also
● Ä Chapter 6.4.1.20.5.13 “Pointers” on page 2243
● Ä Chapter 6.4.1.20.2.15 “SUPER” on page 2125

6.4.1.20.3 Operators
General

CODESYS V3 supports all IEC-61131-3 operators. These operators are recognized implicitly
throughout the project. In addition to these IEC operators, CODESYS also supports some
non-IEC 61131-3 operators.
Operators are used in blocks, such as functions.

For information about the processing order (binding strength) of the ST opera-
tors, please refer to the section on ST expressions.

CAUTION!
For operations with floating-point data types, the computational result depends
on the applied target system hardware.

CAUTION!
For operations with overflow or underflow in the data type, the computational
result depends on the applied target system hardware.

The CODESYS compiler generates code for the target device and computes temporary results
always with the native size that is defined by the target device. For example, computation is
performed at least with 32-bit temporary values on x86 and ARM systems and always with
64-bit temporary values on x64 systems. This provides considerable advantages in the compu-
tation speed and often also produces the desired result. But this also means that an overflow or
underflow in the data type is not truncated in some cases.

Overflow/under-
flow in the data
type

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2129

Example 1
The result of this addition is not truncated and the result in dwVar is 65536.
VAR
wVar : WORD;
dwVar: DWORD;
END_VAR

wVar := 65535;
dwVar := wVar + 1;

Example 2
The overflow and underflow in the data type is not truncated and the results (bVar1, bVar2)
of both comparisons are FALSE on 32-bit and 64-bit hardware.
VAR
wVar1 : WORD;
wVar2 : WORD;
bVar1 : BOOL;
bVar2 : BOOL;
END_VAR

wVar1 := 65535;
wVar2 := 0;
bVar1 := (wVar1 + 1) = wVar2;
bVar2 := (wVar2 - 1) = wVar1;

Example 3
By the assignment to wVar3, the value is truncated to the target data type WORD and the result
bvar1 is TRUE.
VAR
wVar1 : WORD;
wVar2 : WORD;
wVar3 : WORD;
bVar1 : BOOL;
END_VAR

wVar1 := 65535;
wVar2 := 0;
wVar3 := (wVar1 + 1);
bVar1 := wVar3 = wVar2;

Example 4
In order to force the compiler to truncate the temporary results, a conversion can be inserted.
The type conversion makes sure that both comparisons are 16-bit only and the results
(bVar1, bVar2) of both comparisons are each TRUE.
VAR
wVar1 : WORD;
wVar2 : WORD;
bVar1 : BOOL;
bVar2 : BOOL;
END_VAR

wVar1 := 65535;
wVar2 := 0;
bVar1 := TO_WORD(wVar1 + 1) = wVar2;
bVar2 := TO_WORD(wVar2 - 1) = wVar1;

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2130

Ä Chapter 6.4.1.20.3.2 “Operator 'ADD'” on page 2133

Ä Chapter 6.4.1.20.3.4 “Operator 'SUB'” on page 2135

Ä Chapter 6.4.1.20.3.3 “Operator 'MUL'” on page 2134

Ä Chapter 6.4.1.20.3.5 “Operator 'DIV'” on page 2136

Ä Chapter 6.4.1.20.3.6 “Operator 'MOD'” on page 2137

Ä Chapter 6.4.1.20.3.7 “Operator 'MOVE'” on page 2137

Ä Chapter 6.4.1.20.3.8 “Operator 'INDEXOF'” on page 2137

Ä Chapter 6.4.1.20.3.9 “Operator 'SIZEOF'” on page 2138

Ä Chapter 6.4.1.20.3.10 “Operator 'XSIZEOF'” on page 2138

Ä Chapter 6.4.1.20.3.12 “Operator 'AND'” on page 2139

Ä Chapter 6.4.1.20.3.13 “Operator 'OR' ” on page 2139

Ä Chapter 6.4.1.20.3.14 “Operator 'XOR'” on page 2140

Ä Chapter 6.4.1.20.3.11 “Operator 'NOT'” on page 2139

Ä Chapter 6.4.1.20.3.15 “Operator 'AND_THEN'” on page 2140

Ä Chapter 6.4.1.20.3.16 “Operator 'OR_ELSE'” on page 2140

Ä Chapter 6.4.1.20.3.17 “Operator 'SHL'” on page 2141

Ä Chapter 6.4.1.20.3.18 “Operator 'SHR'” on page 2142

Ä Chapter 6.4.1.20.3.19 “Operator 'ROL'” on page 2143

Ä Chapter 6.4.1.20.3.20 “Operator 'ROR'” on page 2144

Ä Chapter 6.4.1.20.3.21 “Operator 'SEL'” on page 2145

Ä Chapter 6.4.1.20.3.22 “Operator 'MAX'” on page 2146

Ä Chapter 6.4.1.20.3.23 “Operator 'MIN'” on page 2146

Ä Chapter 6.4.1.20.3.24 “Operator 'LIMIT'” on page 2147

Ä Chapter 6.4.1.20.3.25 “Operator 'MUX'” on page 2147

A comparison operator is a Boolean that compares two inputs (first and second operand).
Ä Chapter 6.4.1.20.3.26 “Operator 'GT'” on page 2148

Ä Chapter 6.4.1.20.3.27 “Operator 'LT'” on page 2148

Ä Chapter 6.4.1.20.3.28 “Operator 'LE'” on page 2148

Ä Chapter 6.4.1.20.3.29 “Operator 'GE'” on page 2149

Ä Chapter 6.4.1.20.3.30 “Operator 'EQ'” on page 2149

Ä Chapter 6.4.1.20.3.31 “Operator 'NE'” on page 2149

Ä Chapter 6.4.1.20.3.32 “Operator 'ADR'” on page 2150

Ä Chapter 6.4.1.20.3.33 “Operator 'Content Operator'” on page 2151

Ä Chapter 6.4.1.20.3.34 “Operator 'BITADR'” on page 2151

Ä Chapter 6.4.1.20.3.35 “Operator 'CAL'” on page 2152

Arithmetic oper-
ators

Bitstring opera-
tors

Bitshift opera-
tors

Selection opera-
tors

Comparison
operators

Address opera-
tors

Call operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2131

You can explicitly call type conversion operators. The type conversion operators described
below are available for typed conversions from one elementary type to another elementary type,
as well as for overloading. Conversions from a larger type to a smaller type are also implicitly
possible (for example, from INT to BYTE or from DINT to WORD).

Typed conversion: <elementary data type> _TO_ <another elementary data
type>
Overloaded conversion: TO_ <elementary data type>

<elementary data type> =
__UXINT | __XINT | __XWORD | BIT | BOOL | BYTE | DATE | DATE_AND_TIME
| DINT | DT | DWORD | INT | LDATE | LDATE_AND_TIME | LDT | LINT |
LREAL | LTIME | LTOD | LWORD | REAL | SINT | TIME | TOD | UDINT |
UINT | ULINT | USINT | WORD
The keywords T, TIME_OF_DAY and DATE_AND_TIME are alternative forms for the data types
TIME, TOD, and DT. T, TIME_OF_DAY and DATE_AND_TIME are not represented as a type
conversion command.

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

See also
● Ä Chapter 6.4.1.20.3.39 “ Floating-Point Number Conversion” on page 2171
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182
● Ä Chapter 6.4.1.20.3.42 “Date and Time Conversion” on page 2187
● Ä Chapter 6.4.1.20.3.40 “String Conversion” on page 2174
● Ä Chapter 6.4.1.20.3.43 “Operator 'TRUNC' ” on page 2193
● Ä Chapter 6.4.1.20.3.44 “Operator 'TRUNC_INT' ” on page 2193

Ä Chapter 6.4.1.20.3.45 “Operator 'ABS'” on page 2194

Ä Chapter 6.4.1.20.3.46 “Operator 'SQRT'” on page 2194

Ä Chapter 6.4.1.20.3.47 “Operator 'LN'” on page 2194

Ä Chapter 6.4.1.20.3.48 “Operator 'LOG'” on page 2195

Ä Chapter 6.4.1.20.3.49 “Operator 'EXP'” on page 2195

Ä Chapter 6.4.1.20.3.50 “Operator 'EXPT'” on page 2195

Ä Chapter 6.4.1.20.3.51 “Operator 'SIN'” on page 2196

Ä Chapter 6.4.1.20.3.54 “Operator 'ASIN'” on page 2197

Ä Chapter 6.4.1.20.3.52 “Operator 'COS'” on page 2196

Type conversion
operators

Elementary data
types:

Numeric Opera-
tors

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2132

Ä Chapter 6.4.1.20.3.53 “Operator 'TAN'” on page 2197

Ä Chapter 6.4.1.20.3.55 “Operator 'ACOS'” on page 2198

Ä Chapter 6.4.1.20.3.56 “Operator 'ATAN'” on page 2198

Namespace operators are extended from IEC 61131-3 operators. They make it possible for
you to provided unique access to variables and modules, even when you use the same name
multiple times for variables or modules in a project.
Ä Chapter 6.4.1.20.3.70 “Operator - Global namespace” on page 2216

Ä Chapter 6.4.1.20.3.71 “Operator - Namespace for global variables lists” on page 2216

Ä Chapter 6.4.1.20.3.73 “Operator - Enumeration namespace” on page 2217

Ä Chapter 6.4.1.20.3.72 “Operator - Library namespace” on page 2217

Ä Chapter 6.4.1.20.3.74 “Operator '__POOL'” on page 2217

Working with different tasks requires the synchronization of these tasks. This is especially true
when working on multicore platforms. Some special operators are provided in CODESYS to
support this synchronization.
These operators are extensions of IEC-61131-3. The operators TEST_AND_SET and
__COMPARE_AND_SWAP are used for similar tasks.

Ä Chapter 6.4.1.20.3.69 “Operator 'TEST_AND_SET'” on page 2215

Ä Chapter 6.4.1.20.3.65 “Operator '__COMPARE_AND_SWAP” on page 2212

Ä Chapter 6.4.1.20.3.66 “Operator '__XADD'” on page 2213

Ä Chapter 6.4.1.20.3.57 “Operator '__DELETE'” on page 2198

Ä Chapter 6.4.1.20.3.58 “Operator '__ISVALIDREF'” on page 2201

Ä Chapter 6.4.1.20.3.59 “Operator '__NEW'” on page 2201

Ä Chapter 6.4.1.20.3.60 “Operator '__QUERYINTERFACE'” on page 2204

Ä Chapter 6.4.1.20.3.61 “Operator '__QUERYPOINTER'” on page 2205

Ä Chapter 6.4.1.20.3.75 “Operator 'INI'” on page 2218

Ä Chapter 6.4.1.20.3.62 “Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'”
on page 2206

Ä Chapter 6.4.1.20.3.67 “Operator '__POSITION'” on page 2214

Ä Chapter 6.4.1.20.3.68 “Operator '__POUNAME'” on page 2214

Operator 'ADD'
The IEC operator adds variables.
Permitted data types: __UXINT | __XINT | __XWORD | BYTE | DATE |
DATE_AND_TIME | DINT | DT | DWORD | INT | LDATE | LDATE_AND_TIME |
LDT | LINT | LREAL | LTIME | LTOD | LWORD | REAL | SINT | TIME |
TIME_OF_DAY | TOD | UDINT | UINT | ULINT | USINT | WORD
Possible combinations for time data types:
● TIME + TIME = TIME
● TIME + LTIME = LTIME
● LTIME + LTIME = LTIME

Namespace
operators

Multicore opera-
tors

Other operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2133

Possible combinations for date and time data types:
● TOD + TIME = TOD
● DT + TIME = DT
● TOD + LTIME = LTOD
● DT + LTIME = LDT
● LTOD + TIME = LTOD
● LDT + LTIME = LDT
● LTOD +LTIME = LTOD
● LDT + LTIME = LDT
Feature in the FBD/LD editor: You can extend the ADD operator to function block inputs. The
number of additional function block inputs is limited.

ST:
var1 := 7+2+4+7;

FBD:

Examples

Operator 'MUL'
This IEC operator is used for multiplying variables.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL, LREAL, TIME
Feature in the FBD/LD editor: You can extend the MUL operator to additional function block
inputs. The number of additional function block inputs is limited.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2134

ST:
var1 := 7*2*4*7;

FBD:

Examples

Operator 'SUB'
The IEC operator subtracts variables.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL, LREAL, TIME, LTIME, TIME_OF_DAY (TOD), LTIME_OF_DAY (LTOD),
DATE, LDATE, DATE_AND_TIME (DT) LDATE_AND_TIME (DT)

Possible combinations for time data types:
● TIME - TIME = TIME
● LTIME - LTIME = LTIME
Possible combinations for date and time data types:
● DATE - DATE = TIME
● LDATE - LDATE = LTIME
● TOD - TIME = TOD
● LTOD - LTIME = LTOD
● TOD - TOD = TIME
● LTOD - LTOD = LTIME
● DT - TIME = DT
● LDT - LTIME = LDT
● DT - DT = TIME
● LDT - LDT = LTIME

Negative TIME/LTIME values are undefined.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2135

ST:
var1 := 7-2;

FBD:

Examples

Operator 'DIV'
This IEC operator is used for dividing variables.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT, REAL, LREAL, TIME

NOTICE!
Division by zero may have different results depending on the target system.

ST:
var1 := 8/2;

FBD:
1. Series of DIV blocks, 2. Single DIV block, 3. DIV blocks with EN/ENO parameters

Examples

Please note that it is possible to monitor division by zero at runtime by using the
implicit monitoring functions CheckDivInt, CheckDivLint, CheckDivReal,
and CheckDivLReal.

See also
● Ä Chapter 6.4.1.21.2.22.3 “POU 'CheckDivInt'” on page 2505
● Ä Chapter 6.4.1.21.2.22.4 “POU 'CheckDivLInt'” on page 2505
● Ä Chapter 6.4.1.21.2.22.5 “POU 'CheckDivReal'” on page 2506
● Ä Chapter 6.4.1.21.2.22.6 “POU 'CheckDivLReal'” on page 2507

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2136

Operator 'MOD'
This IEC operator is used for modulo division.
The result of the function is the integer remainder of division.
Permitted data types: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, UDINT,
LINT, ULINT

NOTICE!
Division by zero may have different results depending on the target system.

Result in Var1: 1
ST:
var1 := 9 MOD 2;

FBD:

Examples

Operator 'MOVE'
This IEC operator is used for assigning a variable to another variable of a corresponding type.
Because the MOVE block is available in the CFC, FBD, and LD editors, you can also use the
EN/ENO functionality for variable assignment.

CFC with EN/ENO function:
CODESYS assigns the value of var1 to var2 only if "en_i" yields TRUE.

ST:
ivar2 := MOVE(ivar1);
This corresponds to:
ivar2 := ivar1;

Operator 'INDEXOF'
This operator is an extension of the IEC 61131-3 standard.
Instead of the INDEXOF operator, the ADR operator is provided in CODESYS V3 for obtaining a
pointer at the index of a block.
See also
● Ä Chapter 6.4.1.20.3.32 “Operator 'ADR'” on page 2150

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2137

Operator 'SIZEOF'
The operator is an extension of the IEC 61131-3 standard.
The operator is used for defining the number of bytes that are required by the variable x. The
operator SIZEOF always yields an unsigned value. The type of return variable adapts to the
detected size of the variable x.

In compiler version 3.5.16.0 and higher, the operator XSIZEOF should be used
instead of this operator.

Return value of SIZEOF(x) Data type of the constant which CODESYS
uses implicitly for the detected size.

0 <= size of x < 256 USINT
256 <= size of x < 65536 UINT
65536 <= size of x < 4294967296 UDINT
4294967296 <= size of x ULINT

Result in var1: 10.

ST:
arr1 : ARRAY[0..4] OF INT;
var1 : INT;
var1 := SIZEOF(arr1); (* var1 := USINT#10; *)

Examples

See also
● Ä Chapter 6.4.1.20.3.10 “Operator 'XSIZEOF'” on page 2138

Operator 'XSIZEOF'
The operator is an extension of the IEC 61131-3 standard.
The operator is used for defining the number of bytes that are required by the variable x. The
data type of the return value is ULINT on 64-bit platforms and UDINT on all other platforms.

The operator XSIZEOF should be used instead of the operator SIZEOF.
Because the data type of the return value is fixed, problems do not occur for
XSIZEOF, which do occur in the case of the operator SIZEOF.

Variable udiVarX is
ST:
udiVarX : UDINT; (* Data type for 64-bit platforms: ULINT *)
udiVarX := XSIZEOF(<variable>);

The variable udiVarX contains the number of bytes that the variable <variable> requires.

Example

See also
● Ä Chapter 6.4.1.20.3.9 “Operator 'SIZEOF'” on page 2138

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2138

Operator 'NOT'
This IEC operator is used for the bitwise NOT of a bit operand.

When the respective input bit yields 0, the output bit also yields 1, and vice-versa.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

Result in var1: 2#0110_1100
ST:
var1 := NOT 2#1001_0011;

FBD:

Examples

Operator 'AND'
This IEC operator is used for the bitwise AND of bit operands.

When the input bits all yield 1, the output bit also yields 1; otherwise 0.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

Result in var1 ist 2#1000_0010
ST:
var1 := 2#1001_0011 AND 2#1000_1010;

FBD:

Examples

Operator 'OR'
This IEC operator is used for the bitwise OR of bit operands.

When at least one of the input bits yields 1, the output bit also yields 1; otherwise 0.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

Result in Var1 ist 2#1001_1011
ST:
Var1 := 2#1001_0011 OR 2#1000_1010;

FBD:

Examples

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2139

Operator 'XOR'
This IEC operator is used for the bitwise XOR of bit operands.

When only one of the two input bits yields 1, the output bit also yields 1. When both inputs yield
1 or 0, then the output yields 0.
Permitted data types: BOOL, BYTE, WORD, DWORD, LWORD

NOTICE!
Please note the following behavior of the XOR block in extended form (more
than two inputs): CODESYS compares the inputs in pairs and then the corre-
sponding results (according to the standard, but not necessarily according to
expectations).

Result in var1: 2#0001_1001
ST:
var1 := 2#1001_0011 XOR 2#1000_1010;

FBD:

Examples

Operator 'AND_THEN'
This operator is an extension of the IEC 61131-3 standard.
The AND_THEN operator is permitted only for programming in structured text with the AND
operation of BOOL and BIT operands with short-circuit evaluation. This means that:

When all operands yield TRUE, the result of the operands also yield TRUE; otherwise FALSE.

However, CODESYS also executes the expressions on other operands only if the first operand
of the AND_THEN operator is TRUE. This can prevent problems with null pointers, for example in
conditions such as IF (ptr <> 0 AND_THEN ptr^ = 99) THEN....

In contrast, CODESYS always evaluates all operands when using the AND IEC operator.

See also
● Ä Chapter 6.4.1.20.3.12 “Operator 'AND'” on page 2139

Operator 'OR_ELSE'
This operator is an extension of the IEC 61131-3 standard.
The OR_ELSE operator is permitted only for programming in structured text: OR operation of
BOOL and BIT operands; with short-circuit evaluation. This means:

When at least one of the operands yields TRUE, the result of the operation also yields TRUE;
otherwise FALSE.

In contrast to using the OR IEC operator, for OR_ELSE the expressions on all other operators are
not evaluated as soon as one of the operands is evaluated as TRUE.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2140

VAR
 bEver: BOOL;
 bX: BOOL;
 dw: DWORD := 16#000000FF;
END_VAR
bEver := FALSE;
bX := dw.8 OR_ELSE dw.1 OR_ELSE dw.1 OR_ELSE (bEver := TRUE);
dw.8 is FALSE and dw.1 is TRUE; therefore bX is the result of the operation TRUE. However,
the expression at the third input is not executed, and bEver remains FALSE. On the other
hand, if the standard OR operation was used, bEver would be set to TRUE.

Example

See also
● Ä Chapter 6.4.1.20.3.13 “Operator 'OR' ” on page 2139

Operator 'SHL'
This IEC operator is used for bitwise shift of an operand to the left.
erg := SHL (in, n)
in: Operand that is shifted to the left

n: Number of bits to shift in to the left

NOTICE!
If n overwrites the data type width, then it depends on the target system how
the BYTE, WORD, DWORD, and LWORD operands are padded. The target systems
cause padding with zeros or n MOD <tab width>.

NOTICE!
Please note the number of bits that CODESYS uses for this operation as
defined by the data type of the input variable in.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2141

The results for erg_byte and erg_word are different, although the values of the in_byte
and in_word input variables are the same and the data types of the input variables are
different.
ST:
PROGRAM shl_st
VAR
 in_byte : BYTE := 16#45; (* 2#01000101)
 in_word : WORD := 16#0045; (* 2#0000000001000101)
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE := 2;
END_VAR

erg_byte := SHL(in_byte,n); (* Result is 16#14, 2#00010100 *)
erg_word := SHL(in_word,n); (* Result is 16#0114,
2#0000000100010100 *)

FBD:

Examples

Operator 'SHR'
This IEC operator is used for bitwise shift of an operand to the right.
erg := SHR (in, n)
in: Operand that is shifted to the right

n: Number of bits for shifting in to the right

NOTICE!
If n overwrites the data type width, then it depends on the target system how
the BYTE, WORD, DWORD, and LWORD operands are padded. The target systems
cause padding with zeros or n MOD <tab width>.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2142

ST:
PROGRAM shr_st
VAR
 in_byte : BYTE:=16#45; (* 2#01000101)
 in_word : WORD:=16#0045; (* 2#0000000001000101)
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE :=2;
END_VAR

erg_byte := SHR(in_byte,n); (* Result is 16#11, 2#00010001 *)
erg_word := SHR(in_word,n); (* Result is 16#0011,
2#0000000000010001 *)

FBD:

Examples

Operator 'ROL'
This IEC operator is used for bitwise rotation of an operand to the left.
Permitted data types: BYTE, WORD, DWORD, LWORD
erg := ROL (in, n)
CODESYS moves in n-times one bit to the left and adds the bit to the leftmost position from
the right.

NOTICE!
Please note the number of bits that CODESYS uses for this operation as
defined by the data type of the input variable in. If this is a constant, then
CODESYS uses the smallest possible data type. The data type of the output
variables still does not influence this operation.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2143

The results for erg_byte and erg_word are different depending on the data type of the input
variables, although the values of the in_byte and in_word input variables are the same.

ST:
PROGRAM rol_st

VAR
 in_byte : BYTE := 16#45;
 in_word : WORD := 16#45;
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE := 2;
END_VAR

erg_byte := ROL(in_byte,n); (* Result: 16#15 *)

erg_word := ROL(in_word,n); (* Result: 16#0114 *)
FBD:

IL:

Examples

Operator 'ROR'
This IEC operator is used for bitwise rotation of an operand to the right.
Permitted data types: BYTE, WORD, DWORD, LWORD
erg := ROR(in,n)
CODESYS moves in n-times one bit to the right and adds the bit to the rightmost position from
the left.

Please note the number of bits that CODESYS uses for this operation as
defined by the data type of the input variable in. If this is a constant, then
CODESYS uses the smallest possible data type. The data type of the output
variables still does not influence this operation.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2144

The results for erg_byte and erg_word are different depending on the data type of the input
variables, although the values of the in_byte and in_word input variables are the same.

ST:
PROGRAM ror_st

VAR
 in_byte : BYTE := 16#45;
 in_word : WORD := 16#45;
 erg_byte : BYTE;
 erg_word : WORD;
 n: BYTE := 2;
END_VAR

erg_byte := ROR(in_byte,n); (* Result: 16#51 *)

erg_word := ROR(in_word,n); (* Result: 16#4011 *)
FBD:

Examples

Operator 'SEL'
The IEC operator is used for bitwise selection.
OUT := SEL(G, IN0, IN1) means:

OUT := IN0; if G = FALSE
OUT := IN1; if G = TRUE
Permitted data types:
IN0, ..., INn and OUT: Any identical data type. Make sure that variables of the identical type are
used at all three positions, especially when using user-defined data types. The compiler checks
for type identity and returns any compile errors. The assignment of function block instances to
interface variables is specifically not supported.
G: BOOL

NOTICE!
When G is TRUE, CODESYS does not compute an expression that precedes
IN0.When G is FALSE, CODESYS does not compute an expression that pre-
cedes IN1.

Caution: In the case of graphical programming languages, the expressions at
IN0 and IN1 are computed independently of the G input when a “Box”, “Jump”,
“Return”, “Line Branch”, or “Edge Detection” precedes.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2145

ST:
Var1 := SEL(TRUE,3,4); (* Result: 4 *)

FBD:

Examples

Operator 'MAX'
This IEC operator is used for the maximum function. It yields the largest value of two values.
OUT := MAX(IN0, IN1)
Permitted data types: all

ST:
Result: 90
Var1 := MAX(30,40);

Var1 := MAX(40,MAX(90,30));
FBD:
Result: 90

Examples

Operator 'MIN'
This IEC operator is used for the minimum function. It yields the smallest value of two values.
OUT := MIN(IN0,IN1)
Permitted data types: all

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2146

Result: 30
ST:
Var1:=MIN(90,30);

Var1 := MIN(MIN(90,30),40);
FBD:

Examples

Operator 'LIMIT'
This IEC selection operator is used for limiting.
OUT := LIMIT(Min, IN, Max)
Means: OUT := MIN (MAX (IN, Min), Max)
Max is the upper limit and Min is the lower limit for the result. If the IN value is above the Max
upper limit, then LIMIT yields Max. If the value of IN is below the Min lower limit, then the result
is Min.

Permitted data types for IN and OUT: all

Result in Var1 is 80
ST:
Var1 := LIMIT(30,90,80);

Examples

Operator 'MUX'
This IEC operator is used as a multiplexer.
OUT := MUX(K, IN0,...,INn)
Means: OUT = IN_K
Permitted data type for K: BYTE, WORD, DWORD, LWORD, SINT, USINT, INT, UINT, DINT, LINT,
ULINT, oUDINT.

IN0, ..., INn, and OUT: Any identical data type. Make sure that variables of the identical type
are used at all three positions, especially when using user-defined data types. The compiler
checks for type identity and returns any compile errors. The assignment of function block
instances to interface variables is specifically not supported.
MUX selects the K-th value from a set of values. The first value is K=0. If K is greater than the
number of other inputs (n), then CODESYS passes on the last value (INn).

NOTICE!
For runtime optimization, CODESYS computes only the expression that pre-
cedes IN_K. However, CODESYS computes all branches in simulation mode.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2147

Result in Var1 is 30.

ST:
Var1 := MUX(0,30,40,50,60,70,80);

Examples

Operator 'GT'
This IEC operator is used for the "greater than" function.
Permitted data types of the operands: any basic data type.
If the first operand is greater than the second operand, then the operator yields the result TRUE;
otherwise FALSE.

Result: FALSE
ST:
VAR1 := 20 > 30;

FBD:

Examples

Operator 'LT'
This IEC operator is used for the "less than" function.
Permitted data types of the operands: any basic data type.
If the first operand is less than the second operand, then the operator yields the result TRUE;
otherwise FALSE.

Result: TRUE
ST:
Var1 := 20 < 30;

Examples

Operator 'LE'
This IEC operator is used for the "less than or equal to" function.
Permitted data types of the operands: any basic data type.
If the first operand is less than or equal to the second operand, then the operator yields the
result TRUE; otherwise FALSE.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2148

Result in Var1: TRUE
ST:
Var1 := 20 <= 30;

Examples

Operator 'GE'
This IEC operator is used for the "greater than or equal to" function.
Permitted data types of the operands: any basic data type.
If the first operand is greater than or equal to the second operand, then the operator yields the
result TRUE; otherwise FALSE.

Result: TRUE
ST:
VAR1 := 60 >= 40;

FBD:

Examples

Operator 'EQ'
This IEC operator is used for the "equals" function.
Permitted data types of the operands: any basic data type, depending on target system and
compiler version: structure data type.
If the operands are equal, then then the operator yields the result TRUE, otherwise FALSE.

Result: TRUE
ST:
VAR1 := 40 = 40;

FBD:

Examples

Operator 'NE'
This IEC operator is used for the "does not equal" function.
Permitted data types of the operands: any basic data type, depending on target system and
compiler version: structure data type.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2149

If the operands are not equal, then then the operator yields the result TRUE; otherwise FALSE.

If the target system supports the data type, then as from compiler version >= 3.5.7.0 also
operands of type STRIUCT (structure) can be compared. Example: IF (stStruct1 :=
stStruct2) THEN....

Result in Var1 is FALSE
ST:
Var1 := 40 <> 40;

FBD:

Examples

Operator 'ADR'
The operator is an extension of the IEC 61131-3 standard.
ADR yields the 32-bit address (or the 64-bit address, if possible) of its argument. You can pass
this address to the manufacturer functions or assign them to a pointer in the project.

VAR
 <address name> : DWORD | LWORD | POINTER TO < basis data type>
END_VAR

<address name> := ADR(<variable name>);

FUNCTION_BLOCK FB_Address
VAR
 piAddress1: POINTER TO INT;
 iNumber1: INT := 5;
 lwAddress2
 iNumber2: INT := 10;
END_VAR

piAddress1 := ADR(iNumber1); // piNumber is assigned to address of
iNumber1
lwAddress2 := ADR(iNumber2); // 64 bit runtime system

Example

NOTICE!
In contrast to CoDeSys V2.3, you can use the ADR operator with function
names, program names, function block names, and method names. Therefore,
ADR replaces the INDEXOF operator.

When using function pointers, note that you can pass a function pointer to
external libraries, but it is not possible to call a function pointer from within
CODESYS. To enable a system call (runtime system), you must set the respec-
tive object property (“Build” tab) for the function object.

Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2150

CAUTION!
When you use an online change, the contents of addresses can shift. As a
result, POINTER TO variables could point to an invalid memory area. To avoid
problems, you should make sure that the value of pointers is updated in every
cycle.

CAUTION!
Do not return Pointer-TO variables of functions and methods to the caller or
assign them to global variables.

See also
● Ä Chapter 6.4.1.20.5.13 “Pointers” on page 2243

Operator 'Content Operator'
This operator is an extension of the IEC 61131-3 standard.
You can use this operator to dereference pointers by appending the operator as ^ to the pointer
identifier.

CAUTION!
When using pointers to addresses, please note that applying an online change
can shift address contents.

ST:
pt : POINTER TO INT;
var_int1 : INT;
var_int2 : INT;
pt := ADR(var_int1);
var_int2 := pt^;

Example

Operator 'BITADR'
The operator is an extension of the IEC 61131-3 standard.
BITADR yields the bit offset within a segment in a DWORD.

NOTICE!
The offset depends on whether the "Byte addressing" option is selected or
cleared in the target system settings.

The highest value nibble (4 bits) in this DWORD defines the memory range:

Marker M: 16#40000000
Input I: 16#80000000
Output Q: 16#C0000000

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2151

CAUTION!
When using pointers to addresses, note that applying an online change can
shift the contents of addresses.

ST implementation language:

VAR
 xVar AT %IX2.3 : BOOL;
 dwBitoffset : DWORD;
END_VAR

dwBitoffset := BITADR(xVar); (* If byte addressing = TRUE, result =
16#80000013; if byte addressing = FALSE, result = 16#80000023 *)

Example

Operator 'CAL'
This IEC operator is used for calling function blocks.
In IL, CAL calls the instance of a function block.
CAL <function block> (<input variable1> := <value>, <input
variableN> := <value>)

Call of the Inst instance of a function block with assignment of the input variables Par1 and
Par2 with 0 or TRUE.
CAL Inst(Par1 := 0, Par2 := TRUE);

Example

Overloading

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

NOTICE!
The rounding logic for borderline cases depends on the target system or the
FPU (Floating Point Unit) of the target system. For example, a value of -1.5
can be converted differently on different controllers.
Catch value ranges overflows across the application to program code-inde-
pendent from the target system.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2152

The IEC61131-3 specification does not provide for overloaded functions.

If you want to program strictly according to IEC61131-3, then you should use
the operators of the syntax <type> _TO_ <another type> as described in
the following sections.

The rules for typed conversions also apply here for overloading.

The operators convert values into other data types, explicitly specifying only a target data type
and no initial data type (data type of the operands) ("overloaded conversion"). Overloading is
not part of the IEC 61131-3 specification.

<variable name> := <TO operator> (<operand>);
<operand> = <variable name> | <literal>

TO___UXINT
TO___XINT
TO___XWORD
TO_BIT
TO_BYTE
TO_BOOL
TO_DATE
TO_DINT
TO_DT
TO_DWORD
TO_INT
TO_LDATE
TO_LDT
TO_LINT
TO_LREAL
TO_LTIME
TO_LTOD
TO_LWORD
TO_REAL
TO_SINT
TO_STRING
TO_TIME
TO_TOD
TO_UDINT
TO_UINT
TO_ULINT
TO_USINT
TO_WORD
TO_WSTRING

Call syntax

Operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2153

VAR
 iNumber_1 : INT;
 rNumber_2 : REAL := 123.456;
 iNumber_2 : INT;
 xIsTrue : BOOL;
 sOutputText : STRING;
 sText : STRING := 'Hello World!';
 wsText: WSTRING;
 dateEvent : DATE := D#2019-9-3;
 uiEvent : UINT;
 uxiData : __UXINT;
END_VAR

iNumber_1 := TO_INT(4.22); (* Result: 4 *)
iNumber_2 := TO_INT(rNumber_2); (* Result: 123 *)
xIsTrue := TO_BOOL(1); (* Result: TRUE *)
sOutputText := TO_STRING(342); (* Result: '342' *)
wsText := TO_WSTRING(sText); (* Result: "Hello World!" *)
uiEvent := TO_UINT(dateEvent); (* Result: 44288 *)
uxiData := TO___UXINT(iNumber_2); (* Result: 123 *)

ST implemen-
tation lan-
guage:

See also
● Ä “Type conversion operators” on page 2132
● Ä Chapter 6.4.1.20.3.37 “Boolean Conversion” on page 2154
● Ä Chapter 6.4.1.20.3.38 “Integer Conversion” on page 2159
● Ä Chapter 6.4.1.20.3.39 “ Floating-Point Number Conversion” on page 2171
● Ä Chapter 6.4.1.20.3.40 “String Conversion” on page 2174
● Ä Chapter 6.4.1.20.3.42 “Date and Time Conversion” on page 2187
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182

Boolean Conversion

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

The operators convert a Boolean value into the specified data types and return a type-converted
value.

<variable name> := <BOOL to operator> (<operand>);
<operand> = <variable name> | <literal>

Examples

Call syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2154

BOOL_TO___UXINT
BOOL_TO___XINT
BOOL_TO___XWORD
BOOL_TO_BIT
BOOL_TO_BYTE
BOOL_TO_DATE
BOOL_TO_DINT
BOOL_TO_DT
BOOL_TO_DWORD
BOOL_TO_INT
BOOL_TO_LDATE
BOOL_TO_LDT
BOOL_TO_LINT
BOOL_TO_LREAL
BOOL_TO_LTIME
BOOL_TO_LTOD
BOOL_TO_LWORD
BOOL_TO_REAL
BOOL_TO_SINT
BOOL_TO_STRING
BOOL_TO_TIME
BOOL_TO_TOD
BOOL_TO_UDINT
BOOL_TO_UINT
BOOL_TO_ULINT
BOOL_TO_USINT
BOOL_TO_WORD
BOOL_TO_WSTRING
When the operand value is TRUE, the following typed values are returned:

● BOOL_TO_DATE: D#1970-1-1 // The zeroth bit is set, but does not
effect the display.

● BOOL_TO_DT: DT#1970-01-01-0:0:1
● BOOL_TO_LTIME: LTIME#1NS
● BOOL_TO_REAL: '1'
● BOOL_TO_STRING: 'TRUE'
● BOOL_TO_TOD: TOD#0:0:0.001
● BOOL_TO_TIME: T#1MS
● BOOL_TO_WSTRING: "TRUE"
When the operand value is FALSE, the following typed values are returned:

● BOOL_TO_DATE: D#1970-1-1
● BOOL_TO_DT: DT#1970-01-01-00:00:00
● BOOL_TO_LTIME: LTIME#0NS
● BOOL_TO_REAL: '0.0'
● BOOL_TO_STRING: 'FALSE'
● BOOL_TO_TOD: TOD#0:0:0
● BOOL_TO_TIME: T#0MS
● BOOL_TO_WSTRING: "FALSE"

Operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2155

FUNCTION_BLOCK FB_ConvertFromBool
VAR
VAR
 uxiReturn_1: __UXINT;
 uxiReturn_10: __UXINT;
 iReturn_2: __XINT;
 iReturn_20: __XINT;
 xwReturn_3: __XWORD;
 xwReturn_30: __XWORD;
 bitReturn_4: BOOL;
 bitReturn_40: BOOL;
 bReturn_6: BYTE;
 bReturn_60: BYTE;
 dateReturn_7: DATE;
 dateReturn_70: DATE;
 dtReturn_8: DATE_AND_TIME;
 dtReturn_80: DATE_AND_TIME;
 diReturn_9: DINT;
 diReturn_90: DINT;
 dtReturn_10: DATE_AND_TIME;
 dtReturn_100: DATE_AND_TIME;
 dwReturn_11: DWORD;
 dwReturn_110: DWORD;
 iReturn_12: INT;
 iReturn_120: INT;
 liReturn_13: LINT;
 liReturn_130: LINT;
 lrReturn_14: LREAL;
 lrReturn_140: LREAL;
 lwReturn_15: LWORD;
 lwReturn_150: LWORD;
 rReturn_16: REAL;
 rReturn_160: REAL;
 siReturn_17: SINT;
 siReturn_170: SINT;
 sReturn_18: STRING;
 sReturn_180: STRING;
 todReturn_19: TIME_OF_DAY;
 todReturn_190: TIME_OF_DAY;
 timReturn_20: TIME;
 timReturn_200: TIME;
 todReturn_21: TIME_OF_DAY;
 todReturn_210: TIME_OF_DAY;
 udiReturn_22: UDINT;
 udiReturn_220: UDINT;
 uiReturn_23: UINT;
 uiReturn_230: UINT;
 uliReturn_24: ULINT;
 uliReturn_240: ULINT;
 usiReturn_25: USINT;
 usiReturn_250: USINT;
 wReturn_26: WORD;
 wReturn_260: WORD;
 wsReturn_27: WSTRING;
 wsReturn_270: WSTRING;
END_VAR

// Return value of operand = TRUE or FALSE
uxiReturn_1 := BOOL_TO___UXINT(TRUE);

ST implemen-
tation language

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2156

uxiReturn_10 := BOOL_TO___UXINT(FALSE);

iReturn_2 := BOOL_TO___XINT(TRUE);
iReturn_20 := BOOL_TO___XINT(FALSE);

xwReturn_3 := BOOL_TO___XWORD(TRUE);
xwReturn_30 := BOOL_TO___XWORD(FALSE);

bitReturn_4 := BOOL_TO_BIT(TRUE);
bitReturn_40 := BOOL_TO_BIT(FALSE);

bReturn_6 := BOOL_TO_BYTE(TRUE);
bReturn_60 := BOOL_TO_BYTE(FALSE);

dateReturn_7 := BOOL_TO_DATE(TRUE);
dateReturn_70 := BOOL_TO_DATE(FALSE);

dtReturn_8 := BOOL_TO_DT(TRUE);
dtReturn_80 := BOOL_TO_DT(FALSE);

diReturn_9 := BOOL_TO_DINT(TRUE);
diReturn_90 := BOOL_TO_DINT(FALSE);

dwReturn_11 := BOOL_TO_DWORD(TRUE);
dwReturn_110 := BOOL_TO_DWORD(FALSE);

iReturn_12 := BOOL_TO_INT(TRUE);
iReturn_120 := BOOL_TO_INT(FALSE);

liReturn_13 := BOOL_TO_LINT(TRUE);
liReturn_130 := BOOL_TO_LINT(FALSE);

lrReturn_14 := BOOL_TO_LREAL(TRUE);
lrReturn_140 := BOOL_TO_LREAL(FALSE);

lwReturn_15 := BOOL_TO_LWORD(TRUE);
lwReturn_150 := BOOL_TO_LWORD(FALSE);

rReturn_16 := BOOL_TO_REAL(TRUE);
rReturn_160 := BOOL_TO_REAL(FALSE);

siReturn_17 := BOOL_TO_SINT(TRUE);
siReturn_170 := BOOL_TO_SINT(FALSE);

sReturn_18 := BOOL_TO_STRING(TRUE);
sReturn_180 := BOOL_TO_STRING(FALSE);

timReturn_20 := BOOL_TO_TIME(TRUE);
timReturn_200 := BOOL_TO_TIME(FALSE);

todReturn_21 := BOOL_TO_TOD(TRUE);
todReturn_210 := BOOL_TO_TOD(FALSE);

udiReturn_22 := BOOL_TO_UDINT(TRUE);
udiReturn_220 := BOOL_TO_UDINT(FALSE);

uiReturn_23 := BOOL_TO_UINT(TRUE);
uiReturn_230 := BOOL_TO_UINT(FALSE);

uliReturn_24 := BOOL_TO_ULINT(TRUE);
uliReturn_240 := BOOL_TO_ULINT(FALSE);

usiReturn_25 := BOOL_TO_USINT(TRUE);
usiReturn_250 := BOOL_TO_USINT(FALSE);

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2157

wReturn_26 := BOOL_TO_WORD(TRUE);
wReturn_260 := BOOL_TO_WORD(FALSE);

wsReturn_27 := BOOL_TO_WSTRING(TRUE);
wsReturn_270 := BOOL_TO_WSTRING(FALSE);

FBD implemen-
tation language

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2158

See also
● Ä “Type conversion operators” on page 2132
● Ä Chapter 6.4.1.20.3.36 “Overloading” on page 2152
● Ä Chapter 6.4.1.20.3.38 “Integer Conversion” on page 2159
● Ä Chapter 6.4.1.20.3.39 “ Floating-Point Number Conversion” on page 2171
● Ä Chapter 6.4.1.20.3.40 “String Conversion” on page 2174
● Ä Chapter 6.4.1.20.3.42 “Date and Time Conversion” on page 2187
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182

Integer Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

The operators convert an integer value into the specified data types and return this type-con-
verted value. If the number to be converted exceeds the range limit, then the first bytes of the
number are ignored.

<variable name> := <integer conversion type operator> (<integer
operand>);

<integer conversion type operator> = <integer data type> _TO_ <data
type>
<integer operand> = <variable name> | <literal>

<integer data type> =
__UXINT | __XINT | __XWORD | BIT | BYTE | DINT | DWORD | INT | LINT |
LWORD | SINT | UDINT | UINT | ULINT | USINT | WORD

__UXINT_TO___XINT
__UXINT_TO___XWORD
__UXINT_TO_BIT
__UXINT_TO_BOOL
__UXINT_TO_BYTE
__UXINT_TO_DATE
__UXINT_TO_DINT
__UXINT_TO_DT
__UXINT_TO_DWORD
__UXINT_TO_INT
__UXINT_TO_LDATE
__UXINT_TO_LDT
__UXINT_TO_LINT
__UXINT_TO_LREAL
__UXINT_TO_LTIME
__UXINT_TO_LTOD
__UXINT_TO_LWORD
__UXINT_TO_REAL
__UXINT_TO_SINT
__UXINT_TO_STRING

Call syntax

Operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2159

__UXINT_TO_TIME
__UXINT_TO_TOD
__UXINT_TO_UDINT
__UXINT_TO_UINT
__UXINT_TO_ULINT
__UXINT_TO_USINT
__UXINT_TO_WORD
__UXINT_TO_WSTRING

__XINT_TO___UXINT
__XINT_TO___XWORD
__XINT_TO_BIT
__XINT_TO_BOOL
__XINT_TO_BYTE
__XINT_TO_DATE
__XINT_TO_DINT
__XINT_TO_DT
__XINT_TO_DWORD
__XINT_TO_INT
__XINT_TO_LDATE
__XINT_TO_LDT
__XINT_TO_LINT
__XINT_TO_LREAL
__XINT_TO_LTIME
__XINT_TO_LTOD
__XINT_TO_LWORD
__XINT_TO_REAL
__XINT_TO_SINT
__XINT_TO_STRING
__XINT_TO_TIME
__XINT_TO_TOD
__XINT_TO_UDINT
__XINT_TO_UINT
__XINT_TO_ULINT
__XINT_TO_USINT
__XINT_TO_WORD
__XINT_TO_WSTRING

__XWORD_TO_UXINT
__XWORD_TO_XINT
__XWORD_TO_BIT
__XWORD_TO_BOOL
__XWORD_TO_BYTE
__XWORD_TO_DATE
__XWORD_TO_DINT
__XWORD_TO_DT
__XWORD_TO_DWORD
__XWORD_TO_INT
__XWORD_TO_LDATE
__XWORD_TO_LDT
__XWORD_TO_LINT
__XWORD_TO_LREAL
__XWORD_TO_LTIME
__XWORD_TO_LTOD
__XWORD_TO_LWORD
__XWORD_TO_REAL
__XWORD_TO_SINT
__XWORD_TO_STRING
__XWORD_TO_TIME
__XWORD_TO_TOD
__XWORD_TO_UDINT
__XWORD_TO_UINT
__XWORD_TO_ULINT
__XWORD_TO_USINT
__XWORD_TO_WORD

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2160

__XWORD_TO_WSTRING

BIT_TO___UXINT
BIT_TO___XINT
BIT_TO___XWORD
BIT_TO_BOOL
BIT_TO_BYTE
BIT_TO_DATE
BIT_TO_DINT
BIT_TO_DT
BIT_TO_DWORD
BIT_TO_INT
BIT_TO_LDATE
BIT_TO_LDT
BIT_TO_LINT
BIT_TO_LREAL
BIT_TO_LTIME
BIT_TO_LTOD
BIT_TO_LWORD
BIT_TO_REAL
BIT_TO_SINT
BIT_TO_STRING
BIT_TO_TIME
BIT_TO_TOD
BIT_TO_UDINT
BIT_TO_UINT
BIT_TO_ULINT
BIT_TO_USINT
BIT_TO_WORD
BIT_TO_WSTRING

BYTE_TO___UXINT
BYTE_TO___XINT
BYTE_TO___XWORD
BYTE_TO_BOOL
BYTE_TO_BIT
BYTE_TO_DATE
BYTE_TO_DINT
BYTE_TO_DT
BYTE_TO_DWORD
BYTE_TO_INT
BYTE_TO_LDATE
BYTE_TO_LDT
BYTE_TO_LINT
BYTE_TO_LREAL
BYTE_TO_LTIME
BYTE_TO_LTOD
BYTE_TO_LWORD
BYTE_TO_REAL
BYTE_TO_SINT
BYTE_TO_STRING
BYTE_TO_TIME
BYTE_TO_TOD
BYTE_TO_UDINT
BYTE_TO_UINT
BYTE_TO_ULINT
BYTE_TO_USINT
BYTE_TO_WORD
BYTE_TO_WSTRING

DINT_TO___UXINT
DINT_TO___XINT
DINT_TO___XWORD
DINT_TO_BOOL
DINT_TO_BIT

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2161

DINT_TO_BYTE
DINT_TO_DATE
DINT_TO_DT
DINT_TO_DWORD
DINT_TO_INT
DINT_TO_LDATE
DINT_TO_LDT
DINT_TO_LINT
DINT_TO_LREAL
DINT_TO_LTIME
DINT_TO_LTOD
DINT_TO_LWORD
DINT_TO_REAL
DINT_TO_SINT
DINT_TO_STRING
DINT_TO_TIME
DINT_TO_TOD
DINT_TO_UDINT
DINT_TO_UINT
DINT_TO_ULINT
DINT_TO_USINT
DINT_TO_WORD
DINT_TO_WSTRING

DWORD_TO___UXINT
DWORD_TO___XINT
DWORD_TO___XWORD
DWORD_TO_BIT
DWORD_TO_BOOL
DWORD_TO_BYTE
DWORD_TO_DATE
DWORD_TO_DINT
DWORD_TO_DT
DWORD_TO_INT
DWORD_TO_LDATE
DWORD_TO_LDT
DWORD_TO_LINT
DWORD_TO_LREAL
DWORD_TO_LTIME
DWORD_TO_LTOD
DWORD_TO_LWORD
DWORD_TO_REAL
DWORD_TO_SINT
DWORD_TO_STRING
DWORD_TO_TIME
DWORD_TO_TOD
DWORD_TO_UDINT
DWORD_TO_UINT
DWORD_TO_ULINT
DWORD_TO_USINT
DWORD_TO_WORD
DWORD_TO_WSTRING

INT_TO___UXINT
INT_TO___XINT
INT_TO___XWORD
INT_TO_BIT
INT_TO_BOOL
INT_TO_BYTE
INT_TO_DATE
INT_TO_DINT
INT_TO_DT
INT_TO_DWORD
INT_TO_LDATE
INT_TO_LDT

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2162

INT_TO_LINT
INT_TO_LREAL
INT_TO_LTIME
INT_TO_LTOD
INT_TO_LWORD
INT_TO_REAL
INT_TO_SINT
INT_TO_STRING
INT_TO_TIME
INT_TO_TOD
INT_TO_UDINT
INT_TO_UINT
INT_TO_ULINT
INT_TO_USINT
INT_TO_WORD
INT_TO_WSTRING

LINT_TO___UXINT
LINT_TO___XINT
LINT_TO___XWORD
LINT_TO_BIT
LINT_TO_BOOL
LINT_TO_BYTE
LINT_TO_DATE
LINT_TO_DINT
LINT_TO_DT
LINT_TO_DWORD
LINT_TO_INT
LINT_TO_LDATE
LINT_TO_LDT
LINT_TO_LREAL
LINT_TO_LTIME
LINT_TO_LTOD
LINT_TO_LWORD
LINT_TO_REAL
LINT_TO_SINT
LINT_TO_STRING
LINT_TO_TIME
LINT_TO_TOD
LINT_TO_UDINT
LINT_TO_UINT
LINT_TO_ULINT
LINT_TO_USINT
LINT_TO_WORD
LINT_TO_WSTRING

LWORD_TO___UXINT
LWORD_TO___XINT
LWORD_TO___XWORD
LWORD_TO_BIT
LWORD_TO_BOOL
LWORD_TO_BYTE
LWORD_TO_DATE
LWORD_TO_DINT
LWORD_TO_DT
LWORD_TO_DWORD
LWORD_TO_INT
LWORD_TO_LDATE
LWORD_TO_LDT
LWORD_TO_LINT
LWORD_TO_LREAL
LWORD_TO_LTIME
LWORD_TO_LTOD
LWORD_TO_REAL
LWORD_TO_SINT

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2163

LWORD_TO_STRING
LWORD_TO_TIME
LWORD_TO_TOD
LWORD_TO_UDINT
LWORD_TO_UINT
LWORD_TO_ULINT
LWORD_TO_USINT
LWORD_TO_WORD
LWORD_TO_WSTRING

SINT_TO___UXINT
SINT_TO___XINT
SINT_TO___XWORD
SINT_TO_BIT
SINT_TO_BOOL
SINT_TO_BYTE
SINT_TO_DATE
SINT_TO_DINT
SINT_TO_DT
SINT_TO_DWORD
SINT_TO_INT
SINT_TO_LDATE
SINT_TO_LDT
SINT_TO_LINT
SINT_TO_LREAL
SINT_TO_LTIME
SINT_TO_LTOD
SINT_TO_LWORD
SINT_TO_REAL
SINT_TO_STRING
SINT_TO_TIME
SINT_TO_TOD
SINT_TO_UDINT
SINT_TO_UINT
SINT_TO_ULINT
SINT_TO_USINT
SINT_TO_WORD
SINT_TO_WSTRING

UDINT_TO___UXINT
UDINT_TO___XINT
UDINT_TO___XWORD
UDINT_TO_BIT
UDINT_TO_BOOL
UDINT_TO_BYTE
UDINT_TO_DATE
UDINT_TO_DINT
UDINT_TO_DT
UDINT_TO_DWORD
UDINT_TO_INT
UDINT_TO_LDATE
UDINT_TO_LDT
UDINT_TO_LINT
UDINT_TO_LREAL
UDINT_TO_LTIME
UDINT_TO_LTOD
UDINT_TO_LWORD
UDINT_TO_REAL
UDINT_TO_SINT
UDINT_TO_STRING
UDINT_TO_TIME
UDINT_TO_TOD
UDINT_TO_UINT
UDINT_TO_ULINT
UDINT_TO_USINT

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2164

UDINT_TO_WORD
UDINT_TO_WSTRING

UINT_TO___UXINT
UINT_TO___XINT
UINT_TO___XWORD
UINT_TO_BIT
UINT_TO_BOOL
UINT_TO_BYTE
UINT_TO_DATE
UINT_TO_DINT
UINT_TO_DT
UINT_TO_DWORD
UINT_TO_INT
UINT_TO_LDATE
UINT_TO_LDT
UINT_TO_LINT
UINT_TO_LREAL
UINT_TO_LTIME
UINT_TO_LTOD
UINT_TO_LWORD
UINT_TO_REAL
UINT_TO_SINT
UINT_TO_STRING
UINT_TO_TIME
UINT_TO_TOD
UINT_TO_UDINT
UINT_TO_ULINT
UINT_TO_USINT
UINT_TO_WORD
UINT_TO_WSTRING

ULINT_TO___UXINT
ULINT_TO___XINT
ULINT_TO___XWORD
ULINT_TO_BIT
ULINT_TO_BOOL
ULINT_TO_BYTE
ULINT_TO_DATE
ULINT_TO_DINT
ULINT_TO_DT
ULINT_TO_DWORD
ULINT_TO_INT
ULINT_TO_LDATE
ULINT_TO_LDT
ULINT_TO_LINT
ULINT_TO_LREAL
ULINT_TO_LTIME
ULINT_TO_LTOD
ULINT_TO_LWORD
ULINT_TO_REAL
ULINT_TO_SINT
ULINT_TO_STRING
ULINT_TO_TIME
ULINT_TO_TOD
ULINT_TO_UDINT
ULINT_TO_UINT
ULINT_TO_USINT
ULINT_TO_WORD
ULINT_TO_WSTRING

USINT_TO___XINT
USINT_TO___XINT
USINT_TO___XWORD
USINT_TO_BIT

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2165

USINT_TO_BOOL
USINT_TO_BYTE
USINT_TO_DATE
USINT_TO_DINT
USINT_TO_DT
USINT_TO_DWORD
USINT_TO_INT
USINT_TO_LDATE
USINT_TO_LDT
USINT_TO_LINT
USINT_TO_LREAL
USINT_TO_LTIME
USINT_TO_LTOD
USINT_TO_LWORD
USINT_TO_REAL
USINT_TO_SINT
USINT_TO_STRING
USINT_TO_TIME
USINT_TO_TOD
USINT_TO_UDINT
USINT_TO_UINT
USINT_TO_ULINT
USINT_TO_WORD
USINT_TO_WSTRING

WORD_TO___XINT
WORD_TO___XINT
WORD_TO___XWORD
WORD_TO_BIT
WORD_TO_BOOL
WORD_TO_BYTE
WORD_TO_DATE
WORD_TO_DINT
WORD_TO_DT
WORD_TO_DWORD
WORD_TO_INT
WORD_TO_LDATE
WORD_TO_LDT
WORD_TO_LINT
WORD_TO_LREAL
WORD_TO_LTIME
WORD_TO_LTOD
WORD_TO_LWORD
WORD_TO_REAL
WORD_TO_SINT
WORD_TO_STRING
WORD_TO_TIME
WORD_TO_TOD
WORD_TO_UDINT
WORD_TO_UINT
WORD_TO_ULINT
WORD_TO_USINT
WORD_TO_WSTRING

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2166

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

The operators that convert a value into a character string of type STRING or WSTRING require
an operand that matches the target data type.

Example

Converting to a
string

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2167

When a larger data type is converted to a smaller data type, the more high-order (front)
bytes are truncated. When a smaller data type is converted to a larger data type, the more
high-order bytes filled with zeros.
FUNCTION_BLOCK FB_ConvertIntegersFromInt
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 uxiReturn: __UXINT;
 xiReturn: __XINT;
 xwReturn: __XWORD;
 bitReturn: BIT;
 xReturn: BOOL;
 bReturn: BYTE;
 dateReturn: DATE;
 diReturn: DINT;
 dtReturn: DATE_AND_TIME;
 dwReturn: DWORD;
 liReturn: LINT;
 lrReturn: LREAL;
 lwReturn: LWORD;
 siReturn: SINT;
 sReturn: STRING;
 timReturn: TIME;
 todReturn: TIME_OF_DAY;
 udiReturn: UDINT;
 uiReturn: UINT;
 usiReturn: USINT;
 wReturn: WORD;
 wsReturn: WSTRING;
 uliReturn: ULINT;
END_VAR

uxiReturn := INT_TO___UXINT(127);
xiReturn := INT_TO___XINT(127);
xwReturn := INT_TO___XWORD(127);
bitReturn := INT_TO_BIT(127);
xReturn := INT_TO_BOOL(127);
bReturn := INT_TO_BYTE(127);
dateReturn := INT_TO_DATE(127);
diReturn := INT_TO_DINT(127);
dtReturn := INT_TO_DT(127);
dwReturn := INT_TO_DWORD(127);
liReturn := INT_TO_LINT(127);
lrReturn := INT_TO_LREAL(127);
lwReturn := INT_TO_LWORD(127);
siReturn := INT_TO_SINT(127);
sReturn := INT_TO_STRING(127);
timReturn := INT_TO_TIME(127);
todReturn := INT_TO_TOD(127);
udiReturn := INT_TO_UDINT(127);
uiReturn := INT_TO_UINT(127);
uliReturn := INT_TO_ULINT(127);
usiReturn := INT_TO_USINT(127);
wReturn := INT_TO_WORD(127);
wsReturn := INT_TO_WSTRING(127);

FUNCTION_BLOCK FB_ConvertIntegersToInt
VAR_INPUT
END_VAR
VAR_OUTPUT

ST implemen-
tation language

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2168

END_VAR
VAR
 iReturn_uxi: INT;
 iReturn_xi: INT;
 iReturn_xw: INT;
 iReturn_bit: INT;
 iReturn_bool: INT;
 iReturn_b: INT;
 iReturn_d: INT;
 iReturn_di: INT;
 iReturn_dt: INT;
 iReturn_dw: INT;
 iReturn_li: INT;
 iReturn_lr: INT;
 iReturn_lw: INT;
 iReturn_r: INT;
 iReturn_si: INT;
 iReturn_s: INT;
 iReturn_tim: INT;
 iReturn_tod: INT;
 iReturn_tod_0: INT;
 iReturn_udi: INT;
 iReturn_ui: INT;
 iReturn_uli: INT;
 iReturn_usi: INT;
 iReturn_w: INT;
 iReturn_ws: INT;
END_VAR

iReturn_uxi := __UXINT_TO_INT(18446744073709551615);
iReturn_xi := __XINT_TO_INT(9223372036854775807);
iReturn_xw := __XWORD_TO_INT(16#FFFF_FFFF_FFFF_FFFF);
iReturn_bit := BIT_TO_INT(1);
iReturn_bool := BOOL_TO_INT(TRUE);
iReturn_b := BYTE_TO_INT(2#1111_0000);
iReturn_d := DATE_TO_INT(DATE#2019-9-13);
iReturn_di := DINT_TO_INT(2147483647);
iReturn_dt := DT_TO_INT(DT#1979-1-1-00:00:00);
iReturn_dw := DWORD_TO_INT(16#FFFF_FFFF);
// iReturn_i := INT_TO_<>(iData_12);
iReturn_li := LINT_TO_INT(9223372036854775807);
iReturn_lr := LREAL_TO_INT(1.7976931348623157E+30);
iReturn_lw := LWORD_TO_INT(16#FFFF_FFFF_FFFF_FFFF);
iReturn_r := REAL_TO_INT(3.402823E+38);
iReturn_si := SINT_TO_INT(127);
iReturn_s := STRING_TO_INT('127');
iReturn_tim := TIME_TO_INT(T#49D17H2M47S295MS);
iReturn_tod := TOD_TO_INT(TOD#23:59:59.999);
iReturn_tod_0 := TOD_TO_INT(TOD#1:1:1.001);
iReturn_udi := UDINT_TO_INT(4294967295);
iReturn_ui := UINT_TO_INT(65535);
iReturn_uli := ULINT_TO_INT(18446744073709551615);
iReturn_usi := USINT_TO_INT(255);
iReturn_w := WORD_TO_INT(16#FFFF);
iReturn_ws := WSTRING_TO_INT("1234567890");

PROGRAM PLC_PRG
VAR
 fbConvertIntegersFromInt : FB_ConvertIntegersFromInt;
 fbConvertIntegersToInt : FB_ConvertIntegersToInt;
END_VAR

fbConvertIntegersFromInt();
fbConvertIntegersToInt();

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2169

FBD implemen-
tation language

See also
● Ä “Type conversion operators” on page 2132
● Ä Chapter 6.4.1.20.3.37 “Boolean Conversion” on page 2154
● Ä Chapter 6.4.1.20.3.36 “Overloading” on page 2152

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2170

● Ä Chapter 6.4.1.20.3.39 “ Floating-Point Number Conversion” on page 2171
● Ä Chapter 6.4.1.20.3.40 “String Conversion” on page 2174
● Ä Chapter 6.4.1.20.3.42 “Date and Time Conversion” on page 2187
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182

Floating-Point Number Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

NOTICE!
If the floating-point number is within the value range of the target data type, then
the conversion operates the same way on all systems.

NOTICE!
If the floating-point number to be converted exceeds the range limit, then the
first bytes of the number are ignored.

The operators convert a floating-point number into the specified data types and return a type-
converted value. If applicable, the conversion is rounded.

<variable name> := <floating-point conversion operator> (<floating-
point operand>);

<floating-point operand> = <variable name> | <literal>

<floating-point type> =
REAL |
LREAL

REAL_TO___UXINT
REAL_TO___XINT
REAL_TO___XWORD
REAL_TO_BIT
REAL_TO_BOOL
REAL_TO_BYTE
REAL_TO_DATE
REAL_TO_DINT
REAL_TO_DT
REAL_TO_DWORD
REAL_TO_INT
REAL_TO_LINT
REAL_TO_LREAL
REAL_TO_LTIME
REAL_TO_LWORD
REAL_TO_SINT

Call
Syntax

Operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2171

REAL_TO_STRING
REAL_TO_TIME
REAL_TO_TOD
REAL_TO_UDINT
REAL_TO_UINT
REAL_TO_ULINT
REAL_TO_USINT
REAL_TO_WORD
REAL_TO_WSTRING

LREAL_TO___UXINT
LREAL_TO___XINT
LREAL_TO___XWORD
LREAL_TO_BIT
LREAL_TO_BOOL
LREAL_TO_BYTE
LREAL_TO_DATE
LREAL_TO_DINT
LREAL_TO_DT
LREAL_TO_DWORD
LREAL_TO_INT
LREAL_TO_LINT
LREAL_TO_LTIME
LREAL_TO_LWORD
LREAL_TO_REAL
LREAL_TO_SINT
LREAL_TO_STRING
LREAL_TO_TIME
LREAL_TO_TOD
LREAL_TO_UDINT
LREAL_TO_UINT
LREAL_TO_ULINT
LREAL_TO_USINT
LREAL_TO_WORD
LREAL_TO_WSTRING

When converting to an integer, the operand is rounded up or down to an integer value. For 1
to 4 after the decimal point, the number is rounded down. For 5 to 9, the number is rounded
up. Then the rounded number is converted to the specified integer type. If the rounded value
is outside of the integer value range, then an undefined, target system-dependent value is
returned. An exception error is also possible then.

NOTICE!
The rounding logic for borderline cases depends on the target system or the
FPU (Floating Point Unit) of the target system. For example, a value of -1.5
can be converted differently on different controllers.
To program target system-independent code, you have to catch value range
overflows across the application.

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

Rounding

Converting to a
string

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2172

For a floating-point number conversion to a string, the number of decimal places of the mantissa
is limited to 6. If the number is < 1, then the mantissa is 1 <= m < 10. If the mantissa has
more digits after the comma, then it is rounded to the 6th digit and then converted.
The string variable may also be declared too short for the return value. In this case, the return
string is truncated on the right.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2173

ST implemen-
tation language

See also
● Ä “Type conversion operators” on page 2132
● Ä Chapter 6.4.1.20.3.37 “Boolean Conversion” on page 2154
● Ä Chapter 6.4.1.20.3.36 “Overloading” on page 2152
● Ä Chapter 6.4.1.20.3.38 “Integer Conversion” on page 2159
● Ä Chapter 6.4.1.20.3.40 “String Conversion” on page 2174
● Ä Chapter 6.4.1.20.3.42 “Date and Time Conversion” on page 2187
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182

String Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2174

The operators convert a character string (STRING or WSTRING) into the specified target data
type and return a type-converted value.
A conversion with a meaningful result is only possible when the operand matches the target
data type according to the IEC 61131-3 standard. This is the case if the value of the operand
corresponds to a valid constant (literal) of the target data type.
Convertible strings contain:
● Number with type prefix (example: '16#FFFFFFFF')
● Number with grouping characters (example: '2#1111_1111')

Note: The international weight and measure grouping character (thin space) is not accepted.
Only the underscore is accepted.

● Floating-point number, also in exponential notation (example: '9.876' or '1.2E-34')
Note: Floating-point numbers are not convertible. The comma is treated and truncated like a
following character.

● Time, time of day, and date specification with prefix and size (example: 'T#2h',
'DT#2019-9-9-12:30:30.9')

● Infinite values (example: '1.7E+400')
● Additional character after a number (example: '2m' or '3.14'). These are truncated.

Additional characters before a number are not permitted.
● Spaces before (example: ' 3.14')

<variable name> := <string to operator> (<operand>);

<operand> = <variable name> | <literal>

STRING_TO___UXINT
STRING_TO___XINT
STRING_TO___XWORD
STRING_TO_BIT
STRING_TO_BOOL
STRING_TO_BYTE
STRING_TO_DATE
STRING_TO_DINT
STRING_TO_DT
STRING_TO_DWORD
STRING_TO_INT
STRING_TO_LDATE
STRING_TO_LDT
STRING_TO_LINT
STRING_TO_LREAL
STRING_TO_LTIME
STRING_TO_LWORD
STRING_TO_LTIME
STRING_TO_LTOD
STRING_TO_REAL
STRING_TO_SINT
STRING_TO_TIME
STRING_TO_TOD
STRING_TO_UDINT
STRING_TO_UINT
STRING_TO_ULINT
STRING_TO_USINT
STRING_TO_WORD
STRING_TO_WSTRING

WSTRING_TO___UXINT
WSTRING_TO___XINT
WSTRING_TO___XWORD

Call syntax

Operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2175

WSTRING_TO_BIT
WSTRING_TO_BOOL
WSTRING_TO_BYTE
WSTRING_TO_DATE
WSTRING_TO_DINT
WSTRING_TO_DT
WSTRING_TO_DWORD
WSTRING_TO_INT
WSTRING_TO_LDATE
WSTRING_TO_LDT
WSTRING_TO_LINT
WSTRING_TO_LREAL
WSTRING_TO_LTIME
WSTRING_TO_LTOD
WSTRING_TO_LWORD
WSTRING_TO_LTIME
WSTRING_TO_REAL
WSTRING_TO_SINT
WSTRING_TO_STRING
WSTRING_TO_TIME
WSTRING_TO_TOD
WSTRING_TO_UDINT
WSTRING_TO_UINT
WSTRING_TO_ULINT
WSTRING_TO_USINT
WSTRING_TO_STRING
WSTRING_TO_WORD

Operator STRING_TO_BOOL: A value of TRUE is returned only if the operand value is 'TRUE'
or 'true'. On the other hand, FALSE is returned for 'True'.

Operator WSTRING_TO_BOOL: A value of TRUE is returned only if the operand value is "TRUE"
or "true". On the other hand, FALSE is returned for "True".

Converting to a
Boolean value

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2176

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2177

FUNCTION_BLOCK FB_ConvertStrings
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 xReturn_0: BOOL;
 xReturn_1: BOOL;
 dateReturn: DATE;
 dtReturn: DATE_AND_TIME;
 iReturn: INT;
 lrReturn: LREAL;
 lrReturn_0: LREAL;
 lwReturn: LWORD;
 lwReturn_0: LWORD;
 lwReturn_1: LWORD;
 ltReturn: LTIME;
 ltReturn_0: LTIME;
 ltReturn_1: LTIME;
 ltReturn_2: LTIME;
 rReturn: REAL;
 rReturn_0: REAL;
 timReturn: TIME;
 timReturn0: TIME;
 timReturn1: TIME;
 timReturn2: TIME;
 todReturn: TIME_OF_DAY;
 todReturn0: TIME_OF_DAY;
 todReturn1: TIME_OF_DAY;
 todReturn2: TIME_OF_DAY;
 uliReurn: ULINT;
 uliReurn_0: ULINT;
 uliReurn_1: ULINT;
 wReturn: WORD;
 wReturn_0: WORD;
 wReturn_1: WORD;
 wstrReturn: WSTRING;
 wstrReturn_0: WSTRING;
END_VAR
xReturn_0 := STRING_TO_BOOL('FALSE');
xReturn_1 := STRING_TO_BOOL('TRUE');
dateReturn := STRING_TO_DATE('DATE#2019-9-9');
dtReturn := STRING_TO_DT('DT#2019-9-9-1:1:1.1');
iReturn := STRING_TO_INT('123abc');
lrReturn := STRING_TO_LREAL('4.94E-323');
lrReturn_0 := STRING_TO_LREAL('1.7E+308');
lwReturn := STRING_TO_LWORD('16#FFFF_FFFF_FFFF_FFFF');
lwReturn_0 := STRING_TO_LWORD('16#0123456789ABCDEF');
lwReturn_1 := STRING_TO_LWORD('16#0123456789ABCDEF');
ltReturn :=
STRING_TO_LTIME('LTIME#213503d23h34m33s709ms551us615ns');
ltReturn_0 := STRING_TO_LTIME('LTIME#0ns');
ltReturn_1 := STRING_TO_LTIME('LTIME#1ms');
ltReturn_2 := STRING_TO_LTIME('LTIME#2s');
rReturn := STRING_TO_REAL('6.543e21');
rReturn_0 := STRING_TO_REAL('1.234');
timReturn := STRING_TO_TIME('T#5d4h3m2s');
timReturn0 := STRING_TO_TIME('TIME#1s');
timReturn1 := STRING_TO_TIME('1s');

ST implemen-
tation language

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2178

timReturn2 := STRING_TO_TIME('TIME#5s');
todReturn := STRING_TO_TOD('TOD#12:0:0.1');
todReturn0 := STRING_TO_TOD('TOD#0:0:0.0');
todReturn1 := STRING_TO_TOD('20:15');
todReturn2 := STRING_TO_TOD('TOD#20:15');
uliReurn := STRING_TO_ULINT('18446744073709551615');
uliReurn_0 := STRING_TO_ULINT('1');
uliReurn_1 := STRING_TO_ULINT('0');
wReturn := STRING_TO_WORD('16#FFFF_0000');
wReturn_0 := STRING_TO_WORD('34abc');
wReturn_1 := STRING_TO_WORD('16#34abc');
wstrReturn := STRING_TO_WSTRING('Hello World!');
wstrReturn_0 := STRING_TO_WSTRING('123456789');

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2179

FUNCTION_BLOCK FB_ConvertWstrings
VAR
 xReturn_0: BOOL;
 xReturn_1: BOOL;
 dateReturn: DATE;
 dtReturn: DATE_AND_TIME;
 iReturn: INT;
 lrReturn: LREAL;
 lrReturn_0: LREAL;
 lwReturn: LWORD;
 lwReturn_0: LWORD;
 lwReturn_1: LWORD;
 ltReturn: LTIME;
 ltReturn_0: LTIME;
 ltReturn_1: LTIME;
 ltReturn_2: LTIME;
 rReturn: REAL;
 rReturn_0: REAL;
 timReturn: TIME;
 timReturn0: TIME;
 timReturn1: TIME;
 timReturn2: TIME;
 todReturn: TIME_OF_DAY;
 todReturn0: TIME_OF_DAY;
 todReturn1: TIME_OF_DAY;
 todReturn2: TIME_OF_DAY;
 uliReurn: ULINT;
 uliReurn_0: ULINT;
 uliReurn_1: ULINT;
 wReturn: WORD;
 wReturn_0: WORD;
 wReturn_1: WORD;
 wstrReturn: WSTRING;
 wstrReturn_0: WSTRING;
END_VAR

xReturn_0 := WSTRING_TO_BOOL("FALSE");
xReturn_1 := WSTRING_TO_BOOL("TRUE");
dateReturn := WSTRING_TO_DATE("DATE#2019-9-9");
dtReturn := WSTRING_TO_DT("DT#2019-9-9-1:1:1.1");
iReturn := WSTRING_TO_INT("123abc");
lrReturn := WSTRING_TO_LREAL("4.94E-323");
lrReturn_0 := WSTRING_TO_LREAL("1.7E+308");
lwReturn := WSTRING_TO_LWORD("16#FFFF_FFFF_FFFF_FFFF");
lwReturn_0 := WSTRING_TO_LWORD("16#0123456789ABCDEF");
lwReturn_1 := WSTRING_TO_LWORD("16#0123456789ABCDEF");
ltReturn :=
WSTRING_TO_LTIME("LTIME#213503d23h34m33s709ms551us615ns");
ltReturn_0 := WSTRING_TO_LTIME("LTIME#0ns");
ltReturn_1 := WSTRING_TO_LTIME("LTIME#1ms");
ltReturn_2 := WSTRING_TO_LTIME("LTIME#2s");
rReturn := WSTRING_TO_REAL("6.543e21");
rReturn_0 := WSTRING_TO_REAL("1.234");
timReturn := WSTRING_TO_TIME("T#5d4h3m2s");
timReturn0 := WSTRING_TO_TIME("TIME#1s");
timReturn1 := WSTRING_TO_TIME("1s");
timReturn2 := WSTRING_TO_TIME("TIME#5s");
todReturn := WSTRING_TO_TOD("TOD#12:0:0.1");
todReturn0 := WSTRING_TO_TOD("TOD#0:0:0.0");
todReturn1 := WSTRING_TO_TOD("20:15");
todReturn2 := WSTRING_TO_TOD("TOD#20:15");

WSTRING con-
version in ST

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2180

uliReurn := WSTRING_TO_ULINT("18446744073709551615");
uliReurn_0 := WSTRING_TO_ULINT("1");
uliReurn_1 := WSTRING_TO_ULINT("0");
wReturn := WSTRING_TO_WORD("16#FFFF_0000");
wReturn_0 := WSTRING_TO_WORD("34abc");
wReturn_1 := WSTRING_TO_WORD("16#34abc");

FBD implemen-
tation language

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2181

See also
● Ä “Type conversion operators” on page 2132
● Ä Chapter 6.4.1.20.3.37 “Boolean Conversion” on page 2154
● Ä Chapter 6.4.1.20.3.36 “Overloading” on page 2152
● Ä Chapter 6.4.1.20.3.38 “Integer Conversion” on page 2159
● Ä Chapter 6.4.1.20.3.39 “ Floating-Point Number Conversion” on page 2171
● Ä Chapter 6.4.1.20.3.42 “Date and Time Conversion” on page 2187
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182

Time Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

The operators convert time values (TIME or LIME) into the specified data types and return this
type-converted value.

<variable name> := <time conversion operator> (<operand>);

<operand> = <variable name> | <literal>

TIME_TO___UXINT
TIME_TO___XINT
TIME_TO___XWORD
TIME_TO_BIT
TIME_TO_BOOL
TIME_TO_BYTE
TIME_TO_DATE
TIME_TO_DINT
TIME_TO_DT
TIME_TO_DWORD
TIME_TO_INT
TIME_TO_LDATE
TIME_TO_LDINT
TIME_TO_LINT
TIME_TO_LREAL
TIME_TO_LTIME
TIME_TO_LTOD
TIME_TO_LWORD
TIME_TO_REAL
TIME_TO_SINT
TIME_TO_STRING
TIME_TO_TOD
TIME_TO_UDINT
TIME_TO_UINT
TIME_TO_ULINT
TIME_TO_USINT
TIME_TO_WORD
TIME_TO_WSTRING

Call syntax

Operators

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2182

LTIME_TO___UXINT
LTIME_TO___XINT
LTIME_TO___XWORD
LTIME_TO_BIT
LTIME_TO_BOOL
LTIME_TO_BYTE
LTIME_TO_DATE
LTIME_TO_DINT
LTIME_TO_DT
LTIME_TO_DWORD
LTIME_TO_INT
LTIME_TO_LDATE
LTIME_TO_LDINT
LTIME_TO_LINT
LTIME_TO_LREAL
LTIME_TO_LTOD
LTIME_TO_LWORD
LTIME_TO_REAL
LTIME_TO_SINT
LTIME_TO_STRING
LTIME_TO_TIME
LTIME_TO_TOD
LTIME_TO_UDINT
LTIME_TO_UINT
LTIME_TO_ULINT
LTIME_TO_USINT
LTIME_TO_WORD
LTIME_TO_WSTRING

The operator returns FALSE if and only if the operand value can be interpreted as "0".

xTime := TIME_TO_BOOL(T#0MS); xTime = FALSE
xLongTime := TIME_TO_BOOL(T#0NS); xLongTime = FALSE
xTime := TIME_TO_BOOL(T#1MS); xDate = TRUE
xLongTime := TIME_TO_BOOL(T#1NS); xLongTime = TRUE

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

sTime := TIME_TO_STRING(T#0MS); sTime = 'T#0MS'
wsLongTime :=
LTIME_TO_WSTRING(T#0US);

wsLongTime = "T#0US"

Converting to
Boolean values

Converting to a
string

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2183

FUNCTION_BLOCK FB_ConvertTimeAndDate
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 ltReturn_1: LTIME;
 lwReturn_2: LWORD;
 rReturn_3: REAL;
 strReturn_4: STRING;
 timReturn_5: TIME;
 todReturn_6: TIME_OF_DAY;
 uliReurn_7: ULINT;
 wstrReturn_8: WSTRING;
 wstrReturn_80: WSTRING;
 uliReurn_70: ULINT;
 todReturn_60: TIME_OF_DAY;
 timReturn_50: TIME;
 strReturn_40: STRING;
 rReturn_30: REAL;
 lwReturn_20: LWORD;
 ltReturn_10: LTIME;
 ltReturn_11: LTIME;
 lwReturn_21: LWORD;
 rReturn_31: REAL;
 strReturn_41: STRING;
 timReturn_51: TIME;
 todRedurn_61: TIME_OF_DAY;
 uliReurn_71: ULINT;
 wstrReturn_81: WSTRING;
 ltReturn_12: LTIME;
 xReturn_9: BOOL;
 xReturn_90: BOOL;
 xReturn_91: BOOL;
 xReturn_92: BOOL;
 dateReturn_6: DATE;
 timReturn_60: TIME;
 wReturn_61: WORD;
 todReturn_61: TIME_OF_DAY;
END_VAR

ltReturn_1 := DT_TO_LTIME(DT#2019-9-9-23:59:59);
ltReturn_10 := DT_TO_LTIME(DT#1970-1-1-0:0:0);
ltReturn_11 := DT_TO_LTIME(DT#1970-1-2-0:0:1);
ltReturn_12 := DT_TO_LTIME(DT#1970-1-3-12:30:30);

lwReturn_2 := TIME_TO_LWORD(T#5D4H2M3S2MS);
lwReturn_20 := TIME_TO_LWORD(T#0D0H0M0S0MS);

rReturn_3 := TIME_TO_REAL(T#5D4H2M3S2MS);
rReturn_30 := TIME_TO_REAL(T#0D0H0M0S0MS);

strREturn_4 := TIME_TO_STRING(T#5D4H2M3S2MS);
strREturn_40 := TIME_TO_STRING(T#0D0H0M0S0MS);

timReturn_5 := TOD_TO_TIME(TOD#23:59:59.999);
timReturn_50 := TOD_TO_TIME(TOD#0:0:0.000);
timReturn_51 := TOD_TO_TIME(TOD#0:0:0.001);

ST implemen-
tation language

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2184

dateReturn_6 := TOD_TO_DATE(TOD#23:59:59.999);
timReturn_60 := TOD_TO_TIME(TOD#0:0:0.000);
wReturn_61 := TOD_TO_WORD(TOD#0:0:0.001);

uliReurn_7 := DATE_TO_ULINT(D#2019-9-9);
uliReurn_70 := DATE_TO_ULINT(D#1970-1-1);
uliReurn_71 := DATE_TO_ULINT(D#1970-1-2);

wstrReturn_8 := DATE_TO_WSTRING(D#2019-9-9);
wstrReturn_80 := DATE_TO_WSTRING(D#1970-1-1);
wstrReturn_81 := DATE_TO_WSTRING(D#1970-1-2);

xReturn_9 := DATE_TO_BOOL(D#2019-9-9);
xReturn_90 := DATE_TO_BOOL(D#1970-1-1);
xReturn_91 := DATE_TO_BOOL(D#1970-1-2);
xReturn_92 := DATE_TO_BOOL(D#1970-1-3);

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2185

FBD implemen-
tation language

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2186

See also
● Ä “Type conversion operators” on page 2132
● Ä Chapter 6.4.1.20.3.37 “Boolean Conversion” on page 2154
● Ä Chapter 6.4.1.20.3.36 “Overloading” on page 2152
● Ä Chapter 6.4.1.20.3.38 “Integer Conversion” on page 2159
● Ä Chapter 6.4.1.20.3.39 “ Floating-Point Number Conversion” on page 2171
● Ä Chapter 6.4.1.20.3.40 “String Conversion” on page 2174
● Ä Chapter 6.4.1.20.3.42 “Date and Time Conversion” on page 2187

Date and Time Conversion

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

The operators convert a date and time value into the specified data type and return a type-con-
verted value.

<variable name> := <date and time conversion operator> (<operand>);

<operand> = <variable name> | <literal>
The data types DATE and DT use the same memory format internally and are stored as DWORD.
The resolution for DATE is 1 day. The resolution for DT is 1 second. Both begin at January 1,
1970.TOD is stored as DWORD with a resolution of 1 millisecond.

DATE_TO___UXINT
DATE_TO___XINT
DATE_TO___XWORD
DATE_TO_BIT
DATE_TO_BOOL
DATE_TO_BYTE
DATE_TO_DINT
DATE_TO_DT
DATE_TO_DWORD
DATE_TO_INT
DATE_TO_LINT
DATE_TO_LREAL
DATE_TO_LTIME
DATE_TO_LWORD
DATE_TO_REAL
DATE_TO_SINT
DATE_TO_STRING
DATE_TO_TIME
DATE_TO_TOD
DATE_TO_UDINT
DATE_TO_UINT
DATE_TO_ULINT
DATE_TO_USINT
DATE_TO_WORD

Call syntax

Operators

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2187

DATE_TO_WSTRING

DT_TO___UXINT
DT_TO___XINT
DT_TO___XWORD
DT_TO_BIT
DT_TO_BOOL
DT_TO_BYTE
DT_TO_DATE
DT_TO_DINT
DT_TO_DWORD
DT_TO_INT
DT_TO_LINT
DT_TO_LREAL
DT_TO_LTIME
DT_TO_LWORD
DT_TO_REAL
DT_TO_SINT
DT_TO_STRING
DT_TO_TIME
DT_TO_TOD
DT_TO_UDINT
DT_TO_UINT
DT_TO_ULINT
DT_TO_USINT
DT_TO_WORD
DT_TO_WSTRING

TOD_TO___UXINT
TOD_TO___XINT
TOD_TO___XWORD
TOD_TO_BOOL
TOD_TO_BIT
TOD_TO_BYTE
TOD_TO_DATE
TOD_TO_DINT
TOD_TO_DT
TOD_TO_DWORD
TOD_TO_INT
TOD_TO_LINT
TOD_TO_LREAL
TOD_TO_LTIME
TOD_TO_LWORD
TOD_TO_REAL
TOD_TO_SINT
TOD_TO_STRING
TOD_TO_TIME
TOD_TO_UDINT
TOD_TO_UINT
TOD_TO_ULINT
TOD_TO_USINT
TOD_TO_WORD
TOD_TO_WSTRING

LDATE_TO___UXINT
LDATE_TO___XINT
LDATE_TO___XWORD
LDATE_TO_BIT
LDATE_TO_BOOL
LDATE_TO_BYTE
LDATE_TO_DATE
LDATE_TO_DINT
LDATE_TO_DT
LDATE_TO_DWORD

Long operators

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2188

LDATE_TO_INT
LDATE_TO_LDT
LDATE_TO_LINT
LDATE_TO_LREAL
LDATE_TO_LTIME
LDATE_TO_LTOD
LDATE_TO_LWORD
LDATE_TO_REAL
LDATE_TO_SINT
LDATE_TO_STRING
LDATE_TO_TIME
LDATE_TO_TOD
LDATE_TO_UDINT
LDATE_TO_UINT
LDATE_TO_ULINT
LDATE_TO_USINT
LDATE_TO_WORD
LDATE_TO_WSTRING

LDT_TO___UXINT
LDT_TO___XINT
LDT_TO___XWORD
LDT_TO_BIT
LDT_TO_BOOL
LDT_TO_BYTE
LDT_TO_DATE
LDT_TO_DINT
LDT_TO_DWORD
LDT_TO_INT
LDT_TO_LDATE
LDT_TO_LINT
LDT_TO_LREAL
LDT_TO_LTIME
LDT_TO_LTOD
LDT_TO_LWORD
LDT_TO_REAL
LDT_TO_SINT
LDT_TO_STRING
LDT_TO_TIME
LDT_TO_TOD
LDT_TO_UDINT
LDT_TO_UINT
LDT_TO_ULINT
LDT_TO_USINT
LDT_TO_WORD
LDT_TO_WSTRING

LTOD_TO___UXINT
LTOD_TO___XINT
LTOD_TO___XWORD
LTOD_TO_BOOL
LTOD_TO_BIT
LTOD_TO_BYTE
LTOD_TO_DATE
LTOD_TO_DINT
LTOD_TO_DT
LTOD_TO_DWORD
LTOD_TO_INT
LTOD_TO_LDATE
LTOD_TO_LDT
LTOD_TO_LINT
LTOD_TO_LREAL
LTOD_TO_LTIME
LTOD_TO_LWORD
LTOD_TO_REAL

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2189

LTOD_TO_SINT
LTOD_TO_STRING
LTOD_TO_TIME
LTOD_TO_UDINT
LTOD_TO_UINT
LTOD_TO_ULINT
LTOD_TO_USINT
LTOD_TO_WORD
LTOD_TO_WSTRING

The operator returns FALSE if and only if the operand value can be interpreted as "0".

xDate := DATE_TO_BOOL(D#1970-1-1); xDate = FALSE
xDateAndTime :=
DT_TO_BOOL(DT#1970-1-1-0:0:0);

xDateAndTime = FALSE

xTimeOfDay :=
TOD_TO_BOOL(TOD#0:0:0);

xTimeOfDay = FALSE

xDate := DATE_TO_BOOL(D#2019-9-1); xDate = TRUE
xDateAndTime :=
DT_TO_BOOL(DT#2019-9-1-12:0:0);

xDateAndTime = TRUE

xTimeOfDay :=
TOD_TO_BOOL(TOD#12:0:0);

xTimeOfDay = TRUE

The data types DATE and DT use the same memory format internally, namely a DWORD. The
resolution for DATE is 1 day. The resolution for DT is 1 second. Both begin at January 1, 1970.

TOD is stored as DWORD with a resolution of 1 millisecond.

diReturn_0 :=
DT_TO_DINT(DT#1970-1-1-0:0:0);

diReturn_0 = 0

diReturn_1 :=
DATE_TO_DINT(D#1970-1-1);

diReturn_1 = 0

diReturn_2 :=
TOD_TO_DINT(TOD#0:0:0);

diReturn_2 = 0

diReturn_1 :=
DT_TO_DINT(DT#1970-1-1-0:0:1);

diReturn_3 = 1

diReturn_3 :=
DATE_TO_DINT(D#1970-1-2);

diReturn_4 = 86400

diReturn_5 :=
DT_TO_DINT(DT#2019-9-1-12:0:0.0);

diReturn_5 = 1567339200

diReturn_6 :=
DATE_TO_DINT(D#2019-9-1);

diReturn_6 = 1567339200

diReturn_7 :=
TOD_TO_DINT(TOD#12:0:0);

diReturn_7 = 43200000

Converting to a
Boolean value

Converting to
an integer

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2190

NOTICE!
String manipulation when converting to STRING or WSTRING
When converting the type to STRING or WSTRING, the typed value is left-
aligned as a character string and truncated if it is too long. Therefore, declare
the return variable for the type conversion operators <>_TO_STRING and
<>_TO_WSTRING long enough that the character string has enough space
without any manipulation.

The operands of type DATE, DATE_AND_TIME, TIME_OF_DAY, DT, or TOD, which are passed
to an operator for a data and time conversion, are converted to their constant syntax (literal
syntax). The generated string contains the keyword D#, DT# or TOD# and then the size with its
data and time unit, as indicated in the IEC 61131-3 specification.

Examples

Converting to a
string

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2191

The controller is in online mode in order to monitor the variables.FBD implemen-
tation language

See also
● Ä “Type conversion operators” on page 2132
● Ä Chapter 6.4.1.20.3.37 “Boolean Conversion” on page 2154
● Ä Chapter 6.4.1.20.3.36 “Overloading” on page 2152
● Ä Chapter 6.4.1.20.3.38 “Integer Conversion” on page 2159
● Ä Chapter 6.4.1.20.3.39 “ Floating-Point Number Conversion” on page 2171
● Ä Chapter 6.4.1.20.3.40 “String Conversion” on page 2174
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2192

Operator 'TRUNC'
The IEC operator is used for converting the REAL data type into the DINT data type. CODESYS
takes only the integer part of the number.

In CoDeSys V2.3, the TRUNC operator converts REAL into INT. If you import a
V2.3 project, then CODESYS automatically replaces TRUNC with TRUNC_INT.

If CODESYS cannot represent the input value by a DINT or INT, then the result of this function
is undefined. The behavior of such input values is platform-dependent.

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

Result in diVar: 1
ST
diVar := TRUNC(1.9); (* Result: 1 *)

diVar := TRUNC(-1.4); (* Result: -1 *)

Examples

See also
● Ä “Type conversion operators” on page 2132

Operator 'TRUNC_INT'
The IEC operator is used for converting the REAL data type into the INT data type. CODESYS
takes only the integer part of the number.

TRUNC_INT corresponds to the TRUNC operator in CoDeSys V2.3, and it is
used automatically at this point when importing V2.3 projects. Note the change
function of TRUNC.

If CODESYS cannot represent the input value by a DINT or INT, then the result of this function
is undefined. The behavior of such input values is platform-dependent.

NOTICE!
If the operand value for a type conversion operator is outside of the value range
of the target data type, then the result output depends on the processor type
and is therefore undefined. This is the case, for example, when a negative
operand value is converted from LREAL to the target data type UINT.

Information can be lost when converting from larger data types to smaller data
types.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2193

Result in iVAR: 1
ST:
iVar := TRUNC_INT(1.9); (* Result: 1 *)

iVar := TRUNC_INT(-1.4); (* Result: -1 *)

Examples

See also
● Ä “Type conversion operators” on page 2132

Operator 'ABS'
This IEC operator yields the absolute value of a number.
Permitted data types for input and output variables and numeric constants: any numeric basic
data type

Result in i: 2
ST:
i := ABS(-2);

FBD:

Examples

Operator 'SQRT'
This IEC of course yields the square root of a number.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL or LREAL

Result in q: 4
ST:
q := SQRT(16);

FBD:

Examples

Operator 'LN'
This IEC operator yields the natural logarithm of a number.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL and LREAL

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2194

Result: 3.80666
ST:
q := LN(45);

FBD:

Examples

Operator 'LOG'
This IEC operator yields the base-10 logarithm of a number.
The input variable can be any numeric basic data type, but the output variable must be the data
type REAL or LREAL.

Result in q: 2.49762
ST:
q := LOG(314.5);

FBD:

Examples

Operator 'EXP'
This IEC operator yields the exponential function.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL and LREAL

Result in q: 7.389056099
ST:
q := EXP(2);

FBD:

Examples

Operator 'EXPT'
This IEC operator raises a number to a higher power and returns the power of the base raised
to the exponent: power = baseexponent. The input values (parameters) are the base and the
exponent. The power function is undefined if the base is zero and the exponent is negative.
However, the behavior depends on the platform in this case.
Syntax:
EXPT(<base>,<exponent>)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2195

Permitted data types for the input values: Numeric base data types (SINT, USINT, INT, UINT,
DINT, UDINT, LINT, ULINT, REAL, LREAL, BYTE, WORD, DWORD, and LWORD)

Permitted data types for the return value: Floating-point number types (REAL and LREAL)

Var1 := EXPT(7,2);
FBD:

Return value: Var1 = 49

Example
Power function
with literals

PROGRAM PLC_PRG
VAR
 lrPow : LREAL;
 iBase : INT := 2;
 iExponent : INT := 7;
END_VAR

lrPow := EXPT(iBase, iExponent);
Return value: lrPow = 128

Example
Power function
with variables

Operator 'SIN'
The IEC operator yields the sine value of a number.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variable: REAL and LREAL

The permitted range for the input value is -263 to +263. On x86 and x64 systems:
If the input value is outside of the permitted range, the function returns the input
value

Result in q: 0.479426
ST:
q := SIN (0.5);

FBD:

Examples

Operator 'COS'
The IEC operator yields the cosine value of a number.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2196

Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

The permitted range for the input value is -263 to +263. On x86 and x64 systems:
If the input value is outside of the permitted range, the function returns the input
value

Result in q: 0.877583
ST:
q := COS(0.5);

FBD:

Examples

Operator 'TAN'
This IEC operator yields the tangent value of a number.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

Result in q: 0.546302
ST:
q := TAN(0.5);

FBD:

Examples

Operator 'ASIN'
This IEC operator yields the arcsine value of a number.
Permitted data types for input variables: any numeric basic data type
Permitted data types for output variables: REAL and LREAL

Result in q: 0.523599
ST:
q := ASIN(0,5);

FBD:

Examples

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2197

Operator 'ACOS'
This IEC operator yields the arccosine value of a number. The value is computed in radians.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

Result in q: 1.0472
ST:
q := ACOS(0.5);

FBD:

Examples

Operator 'ATAN'
This IEC operator yields the arctangent value of a number. The value is computed in radians.
Permitted data types for input variables that measure the angle in radians: any numeric basic
data type
Permitted data types for output variables: REAL and LREAL

Result in q: 0.463648
ST:
q := ATAN(0.5);

FBD:

Examples

Operator '__DELETE'
This operator is an extension of the IEC 61131-3 standard.

NOTICE!
For compatibility, the compiler version must be >= 3.3.2.0.

The operator releases the memory of instances that the "__NEW" operator generated dynami-
cally. The __DELETE operator does not have a return value and the operand is set to zero after
this operation.
Requirement: In the properties dialog of the application, the “Use dynamic memory allocation”
check box is selected in the “Application Build Options” tab.
__DELETE (<pointer>)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2198

NOTICE!
Two tasks should not call __DELETE simultaneously. Either you use a sema-
phore (SysSemEnter) or comparable method to prevent any concurrent calling
of __DELETE , or you use __DELETE in one tasks only (recommended).

You can use a semaphore (SysSemEnter) to prevent two tasks from allocating memory at the
same time. As a consequence, the extensive use of __DELETE causes higher jitter.

If Pointer references a function block, then CODESYS calls the associated FB_EXIT method
before the pointer is set to zero.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2199

FUNCTION_BLOCK FBDynamic

VAR_INPUT
 in1, in2 : INT;
END_VAR

VAR_OUTPUT
 out : INT;
END_VAR

VAR
 test1 : INT := 1234;
 _inc : INT := 0;
 _dut : POINTER TO DUT;
 neu : BOOL;
END_VAR

out := in1 + in2;

METHOD FB_Exit : BOOL

VAR_INPUT
 bInCopyCode : BOOL;
END_VAR

__Delete(_dut);

METHOD FB_Init : BOOL

VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
END_VAR

_dut := __NEW(DUT);

METHOD INC : INT

VAR_INPUT
END_VAR

_inc := _inc + 1;
INC := _inc;

PLC_PRG(PRG)

VAR
 pFB : POINTER TO FBDynamic;
 bInit: BOOL := TRUE;
 bDelete: BOOL;
 loc : INT;
END_VAR

IF (bInit) THEN
 pFB := __NEW(FBDynamic);
 bInit := FALSE;
END_IF

Examples

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2200

IF (pFB <> 0) THEN
 pFB^(in1 := 1, in2 := loc, out => loc);
 pFB^.INC();
END_IF

IF (bDelete) THEN
 __DELETE(pFB);
END_IF

Operator '__ISVALIDREF'
This operator is an extension of the IEC 61131-3 standard.
The operator is used for checking whether a reference refers to a valid value. For a description
of use and an example, refer to the description for the REFERENCE data type.

See also
● Ä Chapter 6.4.1.20.5.14 “Reference” on page 2245

Operator '__NEW'
The operator is an extension of the IEC 61131-3 standard.
The __NEW operator reserves dynamic memory to instantiate function blocks, user-defined data
types, or arrays of standard types. The operator returns a matching typed pointer.
Requirement: In the properties dialog of the parent application, on the “Application Build
Options” tab, the “Use dynamic memory allocation” option is selected.

<pointer name> := __NEW(<type> (, <size>)?);
__DELETE(<pointer name>);

<type> : <function block> | <data unit type> | <standard data type>
The operator generates an instance of the type <type> and returns a pointer to this instance.
Then the initialization of the instance is called. If <type> is a scalar standard data type, then
the optional operand <size> is also evaluated. Then the operator generates an array of type
<standard data type> and size <size>. If the attempt to allocate memory fails, then
__NEW returns the value 0.

Use the operator within the assignment ":=". Otherwise an error message is displayed.

A function block or a user-defined data type whose instance is created dynamically with __NEW
uses a fixed memory area. Here it is required that you mark the objects with the pragma
{attribute 'enable_dynamic_creation'}. It is not required for function blocks that are
part of a library.

If you change the data layout of the function block in online mode, then you
cannot execute a login with an online change afterwards. This is because the
memory area of the function block instance has been invalidated. You change
the data layout when you add new variables to the function block, delete
existing variables, or change the data types of variables.

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2201

PROGRAM PLC_PRG
VAR
 pdwScalar : POINTER TO DWORD; //Typed pointer
 xInit : BOOL := TRUE;
 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pdwScalar := __NEW(DWORD, 16); // Allocates memory (16 dwords)
and assigns them to pointer pdwScalar
END_IF
IF (xDelete) THEN
 __DELETE(pdwScalar); // Frees memory of pointer
END_IF

{attribute 'enable_dynamic_creation'}
FUNCTION_BLOCK FBComputeGamma
VAR_INPUT
 iAlpha : INT;
 iBeta : INT;
END_VAR
VAR_OUTPUT
 iGamma : INT;
END_VAR
VAR
END_VAR

iGamma := iAlpha + iBeta;

PROGRAM PLC_PRG
VAR
 pComputeGamma : POINTER TO FBComputeGamma; // Typed pointer
 xInit : BOOL := TRUE;
 xDelete : BOOL;
 iResult : INT;
END_VAR

IF (xInit) THEN
 pComputeGamma := __NEW(FBComputeGamma); // Allocates memory
 xInit := FALSE;
END_IF
pComputeGamma^.iAlpha := (pComputeGamma^.iAlpha + 1)MOD 100; //
Sets first input of pComputeGamma
pComputeGamma^.iBeta := 10; // Sets second input of pComputeGamma
pComputeGamma^(); // Calls the FB pComputeGamma is pointing to
iResult := pComputeGamma^.iGamma; // Reads output of pComputeGamma
IF (xDelete) THEN
 __DELETE(pComputeGamma); // Frees memory
END_IF

{attribute 'enable_dynamic_creation'}
TYPE ABCDATA :
STRUCT
 iA, iB, iC, iD : INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 pABCData : POINTER TO ABCDATA; // Typed pointer
 xInit : BOOL := TRUE;

Example
Array (DWORD):

Function
block:

User-defined
data type
(DUT):

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2202

 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pABCData := __NEW(ABCDATA); // Allocates memory
 xInit := FALSE;
END_IF
IF (xDelete) THEN
 __DELETE(pABCData); // Frees memory
END_IF

PROGRAM PLC_PRG
VAR
 pbDataAlpha : POINTER TO BYTE;
 pbDataBeta : POINTER TO BYTE;
 xInit : BOOL := TRUE;
 xDelete : BOOL;
 usiCnt : USINT;
 bTestC: BYTE;
END_VAR

IF (xInit) THEN
 pbDataAlpha := __NEW(BYTE, 16); // Allocates 16 bytes for
pbDataAlpha
 pbDataBeta := __NEW(BYTE); // Allocates memory for pbDataBeta
 xInit := FALSE;

 FOR usiCnt := 0 TO 15 DO
 pbDataAlpha[usiCnt] := usiCnt; // Writes to new array
 END_FOR
 pbDataBeta^:= 16#FF; // Writes to new data
END_IF

bTestC := pbDataAlpha[12]; // Reads new array by index access

IF (xDelete) THEN // Frees memory
 __DELETE(pbDataAlpha);
 __DELETE(pbDataBeta);
END_IF

Array (BYTE):

NOTICE!
We do not recommend the simultaneous execution of two tasks that both call
the __NEW operator. You use either a semaphore (SysSemEnter) or a compa-
rable technique to prevent a concurrent call of __NEW. However, this results in a
higher jitter when __NEW is applied extensively.

We recommend that you call __NEW operators in one task only.

See also
● Ä Chapter 6.4.1.21.4.11.10 “Dialog 'Properties - Application Build Options'” on page 2759
● Ä Chapter 6.4.1.21.2.9 “Object 'DUT'” on page 2461
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479
● Ä Chapter 6.4.1.20.6.3.13 “Attribute 'enable_dynamic_creation'” on page 2281
● Ä Chapter 6.4.1.20.11.159 “Compiler error C0509” on page 2403

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2203

Operator '__QUERYINTERFACE'
This operator is an extension of the IEC 61131-3 standard.
At runtime, the operator executes a type conversion of an interface reference into another type.
The operator returns a BOOL result. TRUE means that CODESYS has performed the conversion
successfully.
__QUERYINTERFACE(<ITF_Source>,<ITF_Dest>);
1.Operand: Interface reference or FB interface
2.Operand: Interface reference with required target type
The requirement for the explicit conversion is that both the ITF_Source and ITF_Dest are
derived from Interface __System.IQueryInterface. This interface is implicitly available
does not require a library.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2204

INTERFACE ItfBase EXTENDS __System.IQueryInterface
METHOD mbase : BOOL
END_METHOD

INTERFACE ItfDerived1 EXTENDS ItfBase
METHOD mderived1 : BOOL
END_METHOD

INTERFACE ItfDerived2 EXTENDS ItfBase
METHOD mderived2 : BOOL
END_METHOD

FUNCTION_BLOCK FB1 IMPLEMENTS ItfDerived1
METHOD mbase : BOOL
 mbase := TRUE;
END_METHOD
METHOD mderived1 : BOOL
 mderived1 := TRUE;
END_METHOD
END_FUNCTION_BLOCK

FUNCTION_BLOCK FB2 IMPLEMENTS ItfDerived2
METHOD mbase : BOOL
 mbase := FALSE;
END_METHOD
METHOD mderived2 : BOOL
 mderived2 := TRUE;
END_METHOD
END_FUNCTION_BLOCK

PROGRAMM POU
VAR
 inst1 : FB1;
 inst2 : FB2;
 itfbase1 : ItfBase := inst1;
 itfbase2 : ItfBase := inst2;
 itfderived1 : ItfDerived1 := 0;
 itfderived2 : ItfDerived2 := 0;
 xResult1, xResult2, xResult3, xResult4: BOOL;
END_VAR

xResult1 := __QUERYINTERFACE(itfbase1, itfderived1); // xResult =
TRUE, itfderivedi1 <>0
 // references
the instance inst1
xResult2 := __QUERYINTERFACE(itfbase1, itfderived2); // xResult =
FALSE, itfderived2 = 0
xResult3 := __QUERYINTERFACE(itfbase2, itfderived1); // xResult =
FALSE, itfderived1 = 0
xResult4 := __QUERYINTERFACE(itfbase2, itfderived2); // xResult =
TRUE, itfderived2 <> 0
 // references
the instance inst2

Example

Operator '__QUERYPOINTER'
This operator is an extension of the IEC 61131-3 standard.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2205

At runtime, the operator makes it possible to convert the type of an interface reference of a
function block to a pointer. The operator returns a BOOL result. TRUE means that CODESYS has
performed the conversion successfully.

NOTICE!
For compatibility, the definition of the pointer to be converted must be an exten-
sion of the base interface "__SYSTEM.IQueryInterface".

__QUERYPOINTER (<ITF_Source>, <Pointer_Dest>)
The operator receives an interface reference or a FB instance with the required target types
as the first operand and a pointer as the second operand. After processing __QUERYPOINTER,
Pointer_Dest receives the pointer to the reference or instance of a function block that the
ITF_Source interface reference currently refers to. Pointer_Dest is not typed and can be cast to
any type. You have to make sure of the type. For example, the interface could offer a method
that returns a type code.

Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'
These operators are extended from the IEC 61131-3 standard and they are used for specific
exception handling in IEC code.

__TRY
 <statements_try>
__CATCH(exec)
 <statements_catch>
__FINALLY
 <statements_finally>
__ENDTRY
 <statements_next>
When a statement in the __Try operator throws an exception, the application does not stop.
Instead, the application executes the statements in __Catch, starts the exception handling, and
then executes the statements in __FINALLY. The exception handling ends with __ENDTRY, and
the application executes the subsequent statements.
An IEC variable for an exception has the data type __System.ExceptionCode.

Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2206

If the statement in __TRY throws an exception, then program execution is not stopped.
Instead, the statement in __CATCH is executed. Therefore, in this example, the application
executes the exc function, then the statement in __FINALLY, and finally the statement in
__ENDTRY.

FUNCTION Tester : UDINT
VAR_INPUT
 count : UDINT;
END_VAR
VAR_OUTPUT
 strExceptionText : STRING;
END_VAR
VAR
 exc : __SYSTEM.ExceptionCode;
END_VAR

__TRY
Tester := tryFun(count := count, testcase := g_testcase); // This
statement is tested. If it throws an exception, then the statement
in __CATCH is executed first, and then the statement in __FINALLY.
__CATCH(exc)
HandleException(exc, strExceptionText => strExceptionText);
__FINALLY
GVL.g_count := GVL.g_count + 2;
__ENDTRY

Example

See also
● Ä Chapter 6.4.1.21.3.7.19 “Command 'Stop Execution on Handled Exceptions'”

on page 2639

TYPE ExceptionCode :
(
RTSEXCPT_UNKNOWN := 16#FFFFFFFF,
RTSEXCPT_NOEXCEPTION := 16#00000000,
RTSEXCPT_WATCHDOG := 16#00000010,
RTSEXCPT_HARDWAREWATCHDOG := 16#00000011,
RTSEXCPT_IO_CONFIG_ERROR := 16#00000012,
RTSEXCPT_PROGRAMCHECKSUM := 16#00000013,
RTSEXCPT_FIELDBUS_ERROR := 16#00000014,
RTSEXCPT_IOUPDATE_ERROR := 16#00000015,
RTSEXCPT_CYCLE_TIME_EXCEED := 16#00000016,
RTSEXCPT_ONLCHANGE_PROGRAM_EXCEEDED := 16#00000017,
RTSEXCPT_UNRESOLVED_EXTREFS := 16#00000018,
RTSEXCPT_DOWNLOAD_REJECTED := 16#00000019,
RTSEXCPT_BOOTPROJECT_REJECTED_DUE_RETAIN_ERROR := 16#0000001A,
RTSEXCPT_LOADBOOTPROJECT_FAILED := 16#0000001B,
RTSEXCPT_OUT_OF_MEMORY := 16#0000001C,
RTSEXCPT_RETAIN_MEMORY_ERROR := 16#0000001D,
RTSEXCPT_BOOTPROJECT_CRASH := 16#0000001E,
RTSEXCPT_BOOTPROJECTTARGETMISMATCH := 16#00000021,
RTSEXCPT_SCHEDULEERROR := 16#00000022,
RTSEXCPT_FILE_CHECKSUM_ERR := 16#00000023,
RTSEXCPT_RETAIN_IDENTITY_MISMATCH := 16#00000024,
RTSEXCPT_IEC_TASK_CONFIG_ERROR := 16#00000025,
RTSEXCPT_APP_TARGET_MISMATCH := 16#00000026,
RTSEXCPT_ILLEGAL_INSTRUCTION := 16#00000050,
RTSEXCPT_ACCESS_VIOLATION := 16#00000051,

Data Type
'__System.Exce
ptionCode'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2207

RTSEXCPT_PRIV_INSTRUCTION := 16#00000052,
RTSEXCPT_IN_PAGE_ERROR := 16#00000053,
RTSEXCPT_STACK_OVERFLOW := 16#00000054,
RTSEXCPT_INVALID_DISPOSITION := 16#00000055,
RTSEXCPT_INVALID_HANDLE := 16#00000056,
RTSEXCPT_GUARD_PAGE := 16#00000057,
RTSEXCPT_DOUBLE_FAULT := 16#00000058,
RTSEXCPT_INVALID_OPCODE := 16#00000059,
RTSEXCPT_MISALIGNMENT := 16#00000100,
RTSEXCPT_ARRAYBOUNDS := 16#00000101,
RTSEXCPT_DIVIDEBYZERO := 16#00000102,
RTSEXCPT_OVERFLOW := 16#00000103,
RTSEXCPT_NONCONTINUABLE := 16#00000104,
RTSEXCPT_PROCESSORLOAD_WATCHDOG := 16#00000105,
RTSEXCPT_FPU_ERROR := 16#00000150,
RTSEXCPT_FPU_DENORMAL_OPERAND := 16#00000151,
RTSEXCPT_FPU_DIVIDEBYZERO := 16#00000152,
RTSEXCPT_FPU_INEXACT_RESULT := 16#00000153,
RTSEXCPT_FPU_INVALID_OPERATION := 16#00000154,
RTSEXCPT_FPU_OVERFLOW := 16#00000155,
RTSEXCPT_FPU_STACK_CHECK := 16#00000156,
RTSEXCPT_FPU_UNDERFLOW := 16#00000157,
RTSEXCPT_VENDOR_EXCEPTION_BASE := 16#00002000
RTSEXCPT_USER_EXCEPTION_BASE := 16#00010000
) UDINT ;
END_TYPE

Operator '__VARINFO'
This operator is an extension of the IEC 61131-3 standard.
The operator yields information about a variable. You can save the information as data structure
in a variable of data type __SYSTEM.VAR_INFO.

<name of the info variable> : __SYSTEM.VAR_INFO; // Data structure
for info variable

<name of the info variable> := __VARINFO(<variable name>); // Call
of the operator

Syntax in the
declaration:

Syntax for the
call:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2208

FUNCTION_BLOCK FB_Velocity
VAR_INPUT
 rVelocity: REAL := 1.2;
END_VAR
VAR_OUTPUT
END_VAR
VAR
 infoVelocity: __SYSTEM.VAR_INFO; //Info of Velocity
END_VAR

infoVelocity := __VARINFO(rVelocity); // Gets the info of Velocity
locally

PROGRAM PLC_PRG
VAR
 iCounter : INT := 0; // Counts the calls
 infoCounter : __SYSTEM.VAR_INFO; //Info of Counter
 arrA : ARRAY [1..2, 1..2, 1..2] OF INT := [0, 1, 2, 3, 4, 5, 6,
7]; // Stores the A data
 infoA : __SYSTEM.VAR_INFO; //Info of A
 fbVel : FB_Velocity;
END_VAR

iCounter := iCounter + 1;
infoCounter := __VARINFO(iCounter);
infoA := __VARINFO(arrA);
fbVel();

The iCounter and arrA variables are recognized in the application code. The variable
information is saved in the infoCounter and infoA variables. Moreover, the FB_Velocity
function block is instantiated.

Example

Name Data type Initialization Description
ByteAddres
s

DWORD 0 Address of the variable
Example: 16#072E35EC
Note: For bit access of a variable <variable
name>.<bit index>, the address of the
variable that contains the bit is given.

ByteOffset DWORD 0 Offset of the variable address (in bytes).
Example: 13936 bytes.

Note: If the variable is global, then the offset
is relative to the beginning of the area. If
the variable is a local variable in a function
or method, then the offset is relative to the
current stack frame. If the variable is a local
variable in a function block, then the offset is
relative to the function block instance.

Data type
__SYSTEM.VAR_
INFO

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2209

Name Data type Initialization Description
Area DINT 0 Memory area number Area in the runtime

system.
Example: -1: Means that the variable is
not global in the memory, but relative to an
instance or on the stack.
Note: The memory areas are device-
dependent.

BitNr INT 0 Number of bits (in bytes)
Example: 16#00FF bytes

Note: If the variable is not an integer data
type, then: BitNr = -1 = 16#FFFF.

BitSize INT 0 Memory size of the variable (in bits)
Example: 16 bits

BitAddress UDINT 0 Bit address of the variable
Requirement: The variable is located in the
input memory area I, output memory area
Q, or marker memory area M. Otherwise the
value is undefined.

TypeClass TYPE_CLASS TYPE_BOOL Data type class of the variable
Example: TYPE_INT, TYPE_ARRAY
Note: For user-defined data types or function
block instances, TYPE_USERDEF is output as
the data type class.

TypeName STRING(79) '' Date type name of the variable as
STRING(79)
Note: For user-defined data types, the func-
tion block name or the DUT name is output.
Example: 'INT', 'ARRAY'

NumElement
s

UDINT 0 Number of array elements
Requirement: The variable has the data type
ARRAY.

Example: 8
BaseTypeCl
ass

TYPE_CLASS TYPE_BOOL Elementary basic data type of the array ele-
ments.
Requirement: The variable has the data type
ARRAY.

Example: TYPE_INT for arrA : ARRAY
[1..2,1..2,1..2] OF INT;

ElemBitSiz
e

UDINT 0 Memory size of the array element (in bits)
Requirement: The variable has the data type
ARRAY.

Example: 16 bits for arrA : ARRAY
[1..2,1..2,1..2] OF INT;

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2210

Name Data type Initialization Description
MemoryArea MEMORY_ARE

A
MEM_MEMORY Information about the memory area

● MEM_GLOBAL: Global memory area
For example in Area 0

● MEM_LOCAL: Local memory area
in Area -1

● MEM_MEMORY: Marker memory area %M
For example in 16#10 in Area 1

● MEM_INPUT: Input memory area %I
For example in 16#04 in Area 2

● MEM_OUTPUT: Output memory area %Q
For example in 16#08 in Area 3

● MEM_RETAIN: Retain memory area
For example in 16#20 in Area 0

Example: MEM_GLOBAL
Note: The memory area configuration is
device-dependent.

Symbol STRING(39) '' Variable name as STRING(39)
Example: 'iCounter', 'arrA'

Comment STRING(79) '' Comment of the variable declaration
Example: 'Counts the calls' or
'Stores the A data'

Operator '__CURRENTTASK'
This operator is an extension of the IEC 61131-3 standard.
In runtime mode, the operator provides information about the IEC task that is currently running.

The operator is supported only on target systems in which the target system
setting memory-layout\max-stack-size is set to a value > 0.

The operator allows for access to a structure with two variables:
● TaskIndex: Zero-based index that identifies the task
● pTaskInfo: Detailed information about the currently running task. It can be assigned to a

POINTER TO Task_Info2 from the library CmpIecTask.

The operator cannot be used in the declaration of a POU. This would result in an error mes-
sage. If the current task cannot be determined, then the TaskIndex -1 and the pTaskInfo
are zero.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2211

//Declaration
VAR
 idx : INT;
 pInfo : POINTER TO Task_Info2;
END_VAR

//Program code

idx := __CURRENTTASK.TaskIndex;
pInfo := __CURRENTTASK.pTaskInfo;

Example

Operator '__COMPARE_AND_SWAP
The multicore operator is an extension of the IEC 61131-3 standard.
The operator can be used for implementing a semaphore, for example to guarantee exclusive
access to a variable written to by different tasks.

__COMPARE_AND_SWAP gets a pointer to a data type __XWORD variable, an old value, and
a new value as its input (example: bMutex := __COMPARE_AND_SWAP(ADR(dwSynch),
dwOld, dwNew);). The old and new values can also be data type __XWORD variables. The
referenced __XWORD variable is compared with the old value and if both are equal, then the new
value is written. The result of the function is TRUE when the new value could be written.

The compiler automatically replaces the data type __XWORD with DWORD on
32-bit systems and LWORD on 64-bit systems.

This operation is atomic, so it cannot be interrupted by another task, even on multicore plat-
forms.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2212

The following example shows a typical usage. Exclusive access to a type STRING variable,
which is addressed via the pstrOutput pointer, should be implemented.

The access to a string is not atomic. If multiple tasks write to the same string at the same time,
then the contents may be inconsistent.
With this function, it is now possible to write the same STRING variable in different tasks.
FUNCTION ExclusiveStringWrite : BOOL
VAR_INPUT
 strToWrite : STRING;
 pstrOutput : POINTER TO STRING;
END_VAR
VAR_STAT
 dwSynch : __XWORD;
END_VAR
VAR
 bMutex: BOOL;
END_VAR

bMutex:= __COMPARE_AND_SWAP(ADR(dwSynch), 0, 1);
(* compare with 0 and write 1 as atomic operation *)
IF bMutex THEN // bMutex is TRUE if write
could be done
 pstrOutput^ := strToWrite; // Now you can write safely
on the string
 dwSynch := 0; // The __XWORD variable must
be reset.
 ExclusiveStringWrite := TRUE; // Writing was successful
ELSE
 ExclusiveStringWrite := FALSE; // Writing was not successful
END_IF

Example

See also
● Ä “Multicore operators” on page 2133
● Ä Chapter 6.4.1.20.3.69 “Operator 'TEST_AND_SET'” on page 2215

Operator '__XADD'
The multicore operator is an extension of the IEC 61131-3 standard.
The operator can be used for implementing an atomic counter. If an integer variable is incre-
mented by means of ordinary addition, for example iTest := iTest + 1;, then this opera-
tion is not executed atomically. Another access to the variable could take place between reading
and writing the variable.
If the counter is incremented in multiple tasks, then the counter result can be less than the
number of counting cycles. So if two tasks execute the above code one time and the variable
previously had the value 0, then the variable can then have the value 1. This is especially
problematic if arrays are being processed in multiple tasks and a unique index is required for the
array in each processing cycle.
When the __XADD operator is called, it gets a pointer to a type DINT variable as the first
summand and a type DINT value as the second summand. __XADD returns the old value of the
first summand and in the same step adds the second summand to the first summand.
For example, the function call can look like this: diOld := __XADD(ADR(diVar), deAdd);

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2213

The following example shows a typical usage. An array should be populated from two tasks. In
the process, all positions in the array should be used and no position should be overwritten.
With this function, multiple tasks can populate a Boolean array.
FUNCTION WriteToNextArrayPosition : BOOL
VAR_EXTERNAL
 g_diIndex : DINT; // Index and array are globally defined and
used by multiple tasks
 g_boolArray : ARRAY [0..1000] OF BOOL;
END_VAR
VAR_INPUT
 bToWrite : BOOL;
END_VAR
VAR
 diIndex : DWORD;
END_VAR

diIndex := __XADD(ADR(g_diIndex), 1); // Returns a unique
index
WriteToNextArrayPosition := FALSE;
IF (diIndex >= 0 AND diIndex <= 1000) THEN
 g_boolArray[diIndex] := bToWrite; //Writes to unique
index
 WriteToNextArrayPosition := TRUE; // TRUE: Array was
not full yet
END_IF

Example

See also
● Ä “Multicore operators” on page 2133

Operator '__POSITION'
The operator is an extension of the IEC 61131-1 standard.
At runtime, the operator yields the position of a variable in the declaration part or in the imple-
mentation part of a POU. The operator has to be assigned the variables of type STRING in the
declaration part or in the implementation part.
Result of __POSITION
● Declaration part: 'Line <line number> (Decl)'
● Implementation part: 'Line <line number>, Column <column number> (Impl)'

PROGRAM PROG1
VAR
 strPOS : STRING := __POSITION(); //Yields the line number of
this declaration
 strlocalPOS : STRING;
END_VAR

 strlocalPOS := __POSITION(); //Yields the line and column
number of this assignment

Example

Operator '__POUNAME'
The operator is an extension of the IEC 61131-1 standard.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2214

At runtime, the operator yields the name of the POU that contains the operator __POUNAME.
The result is of type STRING.

The result of __POUNAME depends where it is used:

● In a program: program name
● In a function name: function name
● In a function block: function block name
● In a method: the method name qualified with the FB name
● In a Get/Set accessor of a property: the property name + Get/Set qualified with the FB name
● In a GVL: GVL name
● In a structure: structure name
● In a data structure UNION: union name

PROGRAM PROG1
VAR
 strPOU : STRING := __POUNAME(); //Yields 'PROG1'
 strlocalPOU : STRING;
END_VAR

 strlocalPOU := __POUNAME(); //Yields 'PROG1'

Example

Operator 'TEST_AND_SET'
The multicore operator is an extension of the IEC 61131-3 standard.
The operator can be used for implementing a semaphore, for example to guarantee exclusive
access to a variable written to by different tasks.
TEST_AND_SET gets a type DWORD variable as its input. Write access to this variable must be
possible. The variable is set to 1 and the previous value is returned as the result.

The operation is atomic, which means that it cannot be interrupted by another task. This also
applies to multicore platforms.
For example, the call in the program is dwOldValue := TEST_AND_SET(dw);, in which the
variables dwOldValue and dw must be of data type DWORD.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2215

The following example shows a typical usage. Exclusive access to a type STRING variable,
which is addressed via the pstrOutput pointer, should be implemented. The access to a
string is not atomic. If multiple tasks write to the same string at the same time, then the
contents may be inconsistent. With the TEST_AND_SET function, it is now possible to write the
same STRING variable in different tasks.
FUNCTION ExclusiveStringWrite : BOOL
VAR_INPUT
 strToWrite : STRING;
 pstrOutput : POINTER TO STRING;
END_VAR
VAR_STAT
 dwSynch : DWORD;
END_VAR
VAR
 dwOldValue: DWORD;
END_VAR

dwOldValue := TEST_AND_SET(dwSynch); // Write the 1 and read the
old value at the same time
IF dwOldValue = 0 THEN // 0 means: no other task is
currently writing
 pstrOutput^ := strToWrite; // Now you can write safely
on the string
 dwSynch := 0; // The DWORD must be reset
 ExclusiveStringWrite := TRUE; // Writing was successful
ELSE
 ExclusiveStringWrite := FALSE; // Writing was not successful

Example

See also
● Ä Chapter 6.4.1.20.3.65 “Operator '__COMPARE_AND_SWAP” on page 2212
● Ä “Multicore operators” on page 2133

Operator - Global namespace
This operator is an extension of the IEC 61131-3 standard.
An instance path that begins with a dot (.) always opens a global namespace. If there is a local
variable that has the same name <varname> as a global variable, then you refer to the global
variable as .<varname>.

Operator - Namespace for global variables lists
This operator is an extension of the IEC 61131-3 standard.
You can use the name of a global variables list (GVL) as a namespace identifier for the
variables that are defined in the list. This makes is possible to use variables with the same
name in different global variables lists and still access specific variables uniquely. You use a dot
(.) to prepend the name of the global variables list to the variable name.
<global variable list name>.<variable>

globlist1.varx := globlist2.varx;
The globlist1 and globlist2 global variables lists each contain a varx variable.
CODESYS copies the varx global variable from the globlist2 list to varx in the
globlist1 list.

Example

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2216

If you reference a variable that is declared in several global variables lists without referencing
the prepended list name, then an error message is printed.

Operator - Library namespace
This operator is an extension of the IEC 61131-3 standard.
Syntax: <library namespace>.<library identifier>
Example: LIB_A.FB_A
A library module identifier is appended with the library namespace (as a prefix separated by a
dot) for unique and qualified access to the library module. The namespace usually coincides
with the library name.

A library is included in a project and contains the module FB_A. However, the function block
with the same name is already available locally in the project. Identify the library module as
LIB_A.FB_A in order to access the library module, not the local function block.

var1 := FB_A(in := 12); // Call of the project function FB_A
var2 := LIB_A.FB_A(in := 22); // Call of the library function FB_A

Example

You can define another identifier for the namespace. To do this, specify a namespace in the
project information (library developers: when creating a library project). As an alternative, you
can specify a specific namespace for a library in the library manager in the “Properties” dialog
box (application developers: when creating an application).
See also
● Ä Chapter 6.4.1.17 “Using Libraries” on page 2034
● Ä Chapter 6.4.1.21.3.15.4 “Command 'Placeholders'” on page 2716
● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469

Operator - Enumeration namespace
This operator is an extension of the IEC 61131-3 standard.
You can use the TYPE name of an enumeration for unique access to an enumeration constant.
In this way, you can use the same constant names in different enumerations.
The enumeration name is prepended to the constant name with a dot (.).
<enumeration name>.<constant name>

The constant Blue is a component of both the enumeration Colors and the enumeration
Feelings.
color := Colors.Blue; // Access to component blue in enumeration
Colors

feeling := Feelings.Blue; // Access to component blue in
enumeration Feelings

Example

Operator '__POOL'
The operator is an extension of the IEC 61131-3 standard.
The operator is used to reference objects which are managed in the global POU pool (in the
“POUs” view). The operator directly accesses objects in the “POUs” view.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2217

PROGRAM PLC_PRG
VAR
 svar_pou : STRING;
END_VAR

svar_pou := __POOL.POU();

Example

See also
● Ä Chapter 6.4.1.20.8 “Shadowing Rules” on page 2333

Operator 'INI'

The INI operator is a CoDeSys V2.3 operator. In CODESYS V3, the FB_init
method replaces the INI operator. You can still use this operator in projects
that are imported from CoDeSys V2.3.

The INI operator is used for initializing retain variables of a function block instance used in a
POU.
Assign the operator to a Boolean variable.
<Boolean variable name> := INI <FB instance name> , <Boolean value>);
<Boolean value> : TRUE | FALSE
If the second parameter of the operator yields TRUE, then CODESYS initializes all retain varia-
bles that are defined in the function block <FB instance name>.

fbinst is the instance of the function block fb1, where the retain variable retvar is defined.

ST:

Declaration in the block:

VAR
 fbinst : fb1;
 b : BOOL;
END_VAR

Program part:

b := INI(fbinst, TRUE);
ivar := fbinst.retvar; (* => retvar is initialized *)

FBD

Examples

See also
● Ä Chapter 6.4.1.20.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 2336
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920

Syntax:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2218

6.4.1.20.4 Operands
General

Constants are identifiers for unchangeable values. You can declare constants locally within a
POU or globally within a global variable list. The declaration segment is extended with the
keyword CONSTANT.

Constants are also character strings that represent the value of a base type, such as integers
or floating-point numbers (for example, 16#FFFF_FFFF, T#5s, or -1.234 E-5). To distinguish
between them, these constants are also called literals, literal constants, or unnamed constants.
There are logical (TRUE, FALSE) or numeric literals (3.1415, T#5s), but also character string
literals ('Hello world!', "black").

<scope> CONSTANT
 <identifier> : <data type> := <initial value> ;
END_VAR

<scope> : VAR | VAR_INPUT | VAR_STAT | VAR_GLOBAL
<data type>: <elementary data type | user defined data type |
function block >
<initial value> : literal value | identifier | expression
Allowed initial values:
● Literal (example: TRUE, FALSE, 16#FFFF_FFFF)
● Named constant that was declared at another location
● Simple expression composed of literals, also combined with simple operators, such as + - *
Inputs or function calls cannot be specified as an initial value.

VAR_GLOBAL CONSTANT
 g_ciMAX_A : INT := 100;
 g_ciSPECIAL : INT := g_ciMAX_A - 10;
END_VAR

Example

Constants are defined only for the declaration. The assignment of an initial value is required.
Within an implementation, constants are only read and therefore always appear on the right of
the assignment operator in a statement.
The constants are replaced with the initial value when the code is compiled. It also has to be
possible to calculate the initial value at compile time.
Constants of structured or user-defined types are calculated not until runtime. Structured con-
stants in programs or GVLs are calculated one time at program start. Structured constants in
functions or methods are calculated every time the function or method is called. Therefore, the
initialization of structured constants can depend on inputs or execute function calls.
See also
● Ä Chapter 6.4.1.20.4.2 “BOOL constants” on page 2220
● Ä Chapter 6.4.1.20.4.3 “Numeric constants” on page 2220
● Ä Chapter 6.4.1.20.4.4 “REAL/LREAL constants” on page 2221
● Ä Chapter 6.4.1.20.4.5 “String Constants” on page 2221
● Ä Chapter 6.4.1.20.4.8 “Date and Time Constants” on page 2225
● Ä Chapter 6.4.1.20.4.7 “TIME/LTIME Constant” on page 2223
● Ä Chapter 6.4.1.20.4.9 “Typed literals” on page 2228

You can declare variables as either local in the declaration part of a POU or in a global variable
list. The allowed location of a variable depends on its data type.

Constants and
literals

Syntax declara-
tion

Variables

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2219

See also
● Ä Chapter 6.4.1.20.4.10 “Access to Variables in Arrays, Structures, and Blocks”

on page 2228
● Ä Chapter 6.4.1.20.4.11 “Bit Access in Variables” on page 2229

● Ä Chapter 6.4.1.20.4.12 “Addresses” on page 2231
● Ä Chapter 6.4.1.20.4.13 “Functions” on page 2233

Ä Chapter 6.4.1.9.4 “Declaration of Variables ” on page 1847

Ä Chapter 6.4.1.9.7 “Using input assistance” on page 1885

Ä Chapter 6.4.1.20.2.12 “Constant Variables - 'CONSTANT'” on page 2121

Ä Chapter 6.4.1.20.1.4.3 “ST expressions” on page 2050

BOOL constants
BOOL constants are the truth values TRUE (1) and FALSE (0).

See also
● Ä Chapter 6.4.1.20.5.2 “Data type 'BOOL'” on page 2235

Numeric constants
Numeric values can be binary, octal, decimal, and hexadecimal numbers. If an integer value is
not a decimal number, then you must write its base followed by the number sign (#) before the
integer constant. You enter the hexadecimal digit values for the numbers 10 to 15 as usual with
the letters A-F.
You can use an underscore within a numeric value.

14 decimal number
2#1001_0011 binary number
8#67 octal number
16#A hexadecimal number
DINT#16#A1 typed data type DINT# and base 16# combined

Examples:

This type of numeric value can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, or LREAL.

Implicit conversions from "larger" to "smaller" types are not permitted. You
cannot simply use a DINT variable as an INT variable. For this, you have to
use a type conversion function.

See also
● Ä Chapter 6.4.1.20.3 “Operators” on page 2129
● Ä Chapter 6.4.1.20.4.9 “Typed literals” on page 2228

Other

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2220

As number constants basically are treated as integers, in divisions you must
enter a constant in the format of a floating-point number in order not to loose the
remainder. For example: Division 1/10 results in 0, division 1.0/10 results in
0.1.

REAL/LREAL constants
You can specify floating-point numbers as REAL and LREAL constants either in decimal notation
or exponential notation with mantissa and exponent The decimal point serves as the decimal
separator according to the International System of Units (English).

<significand> e | E <exponent>

exponent : -44..38 // REAL
exponent : -324..308 // LREAL

Table 395: REAL literal
7.4 Decimal number. 7,4 with a comma returns a compiler

error

1/3.0 Decimal fraction for 0.333333343
Note: In the case of division of integer types, the result
remains an integer type. In this case, the value is
rounded. For example, 1/3 yields 0 as the result.

1.64e+009 Exponential notation

-3.402823e+38 Smallest number

-1E-44 Largest negative number

1.0E-44 Smallest positive number

3.402823e+38 Largest number

Table 396: LREAL literal
-1.7976931348623157E+308 Smallest number

-4.94065645841247E-324 Largest negative number

4.94065645841247E-324 Smallest positive number

1.7976931348623157E+308 Largest number

Example

See also
● Ä Chapter 6.4.1.20.5.4 “Data type 'REAL' / 'LREAL'” on page 2236

String Constants
A string constant is a character string enclosed in single straight quotation marks. The charac-
ters are coded according to the character set specified in ISO/IEC 8859-1. Therefore, a string
constant can include spaces and accented characters, as these belong to this character set.
This is also referred to as a string literal, or simply a string.

Syntax of expo-
nential notation

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2221

Example: 'Hello world!'
When a dollar sign ($) is in a string constant, the following two characters are interpreted as
a hexadecimal code according to the coding in ISO/IEC 8859-1. The code also corresponds to
ASCII code. In addition, please note the special cases.

Table 397: Hexadecimal code
String with $ code Interpretation
'$<8-bit code>' 8-bit code: Two-digit hexadecimal number that is interpreted according to

ISO/IEC 8859-1.
'$41' A
'$A9' ©
'$40' @
'$0D' Control character: Line break (corresponds to '$R')
'$0A' Control character: New line (corresponds to '$L' and '$N')

Table 398: Special cases
String with $ code Interpretation
'$L', ' $l' Control character: Line feed (corresponds to '$0A')

'$N', '$n' Control character: New line (corresponds to '$0A')

'$P', '$p' Control character: Form feed

'$R', '$r' Control character: Line break (corresponds to '$0D')

'$T', '$t' Control character: Tab

'$$' Dollar sign: §
'$'' Single straight quotation mark: '

Constant declaration

VAR CONSTANT
 constA : STRING := 'Hello world';
 constB : STRING := 'Hello world $21'; // Hello world!
END_VAR

Example

Constant: UTF8# String
With compiler version >= 3.5.18.0, UTF-8 encoded string literals are possible as a single-byte
string with base “STRING”.
Syntax:
UTF8#' <string literal> '
Constant declaration

VAR CONSTANT
 constA : STRING := UTF8#'aäoöuü';
 constB : STRING := UTF8#'Hello Allgäu $21'; // Hello Allgäu!
END_VAR

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2222

To ensure correct monitoring, the 'monitoring_encoding' := 'UTF-8' attribute can
be added.

NOTICE!
UTF-8 encoding only for project-wide configuration
A UTF-8 encoding is used if the project-wide compile option UTF8 encoding
for STRING is enabled. Library functions and add-ons are then also oriented
according to this setting.
If you use single UTF-8 encoded strings, then you have to make sure that
they are interpreted correctly wherever they are used. For example, a string
variable in the OPC server will be converted to UTF-8 before being transferred
to a client if the setting is not selected. Values such as UTF8#'äöü' would then
be misinterpreted. Similar problems can arise when outputting strings in the
visualization.

TIME/LTIME Constant
You can use TIME constants to operate the standard timer modules. The constant has a size of
32 bits and a resolution in milliseconds.
In addition, the time constant LTIME is available as a time basis for high-resolution timers. The
LTIME constant has a dimension of 64 bits and a resolution in nanoseconds.

<time keyword> # <length of time>

<time keyword> : TIME | time | T | t
<length of time> : (<number of days>d)? (<number of hours>h)?
(<number of minutes>m)? (<number of seconds>s)? (<number of
milliseconds>ms)? // (...)? Optional
The order of time units must not be changed. However, it is not required to specify all units. It is
permitted to specify the units in uppercase.
Time units
● D | d: Days
● H | h: Hours
● M | m: Minutes
● s | s: Seconds
● MS | ms: Milliseconds

TIME constant
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2223

VAR
 timLength : TIME := T#14ms;
 timLength1 : TIME := T#100s12ms; // Overflow in the highest
unit is allowed.
 timLength2 : TIME := T#12h34m15s;
 timCompare : TIME;
 xIsOK: BOOL;

 timLongest := T#49D17H2M47S295MS; // 4294967295
END_VAR

IF timLength < T#15MS THEN
 IF timCompare < timLength1 THEN
 xIsOK := TRUE;
 END_IF;
END_IF

Table 399: Incorrect usage:
timIncorrect := t#5m68s; Overflow at a lower position
timIncorrect1 := 15ms; Time marker T# missing

timIncorrect2 := t#4ms13d; Incorrect order of time units

Examples
Correct time
constants of
an ST assign-
ment

<long time keyword> # <length of high resolution time>

<long time keyword> : LTIME | ltime
<length of high resolution time> : <length of time> (<number of
microseconds>us)? (<number of nanoseconds>ns)? // (...)? Optional
You can use the same units for LTIME constants as for TIME constants. You can also specify
microseconds and nanoseconds because the specified time is calculated in higher time resolu-
tion. LTIME literals are treated internally as data type LWORD and therefore the value resolved in
nanoseconds.
Additional time units
● US | us: Microseconds
● NS | ns: Nanoseconds

PROGRAM PLC_PRG
VAR
 ltimLength := LTIME#1000d15h23m12s34ms2us44ns;
 ltimLength1 := LTIME#3445343m3424732874823ns;
END_VAR

Examples of
correct usage
of an ST
assignment:

LTIME constant
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2224

See also
● Ä Chapter 6.4.1.20.5.6 “Data Type 'TIME'” on page 2237
● Ä Chapter 6.4.1.20.4.8 “Date and Time Constants” on page 2225

Date and Time Constants
Use the keyword DATE (D) to specify a date.

<date keyword>#<year>-<month>-<day>

<date keyword> : DATE | date | D | d
<year> : 1970-2106
<month> : 1-12
<day> : 1-31

DATE literals are treated internally as data type DWORD, which corresponds to an upper limit of
DATE#2106-2-7.

PROGRAM PRG_Date
VAR
 dateStart : DATE := DATE#2018-8-8;
 dateEnd : DATE := D#2018-8-31;
 dateCompare: DATE := date#1996-05-06;
 xIsDuringTheTime: BOOL;

 dateEarliest : DATE := d#1970-1-1; // = 0
 dateLatest : DATE := DATE#2106-2-7; // = 4294967295
END_VAR

IF dateStart < dateCompare THEN
 IF dateCompare < dateEnd THEN
 xIsDuringTheTime := TRUE;
 END_IF;
END_IF

Example

Use the keyword LDATE (LD) to specify a date.

<date keyword>#<year>-<month>-<day>

<date keyword> : LDATE | ldate | LD | ld
<year> : 1970-2262
<month> : 1-12
<day> : 1-31

LDATE literals are treated internally as data type LWORD, which corresponds to an upper limit of
DATE#2554-7-21.

32-bit date spec-
ifications 'DATE'
Syntax

64-bit date spec-
ifications
'LDATE'
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2225

PROGRAM PRG_Ldate
VAR
 ldateStart : LDATE := LDATE#2018-8-8;
 ldateEnd : LDATE := ldate#2018-8-31;
 ldateCompare: LDATE := LD#1996-05-06;
 xIsDuringTheTime: BOOL;

 ldateEarliest : LDATE := ld#1970-1-1; // = 0
 ldateLatest : LDATE := LDATE#2262-4-10; // = 16#7FFF63888C620000

 lwValue: LWORD;
END_VAR

IF ldateStart < ldateCompare THEN
 IF ldateCompare < ldateEnd THEN
 xIsDuringTheTime := TRUE;
 END_IF;
END_IF
lwValue := LDATE_TO_LWORD(ldateCompare);

Example

Use the keyword DATE_AND_TIME (DT) to specify a date and time.

<date and time keyword>#<date and time value>

<date and time keyword> : DATE_AND_TIME | date_and_time | DT | dt
<date and time value> : <year>-<month>-<day>-<hour>:<minute>:<second>
<year> : 1970-2106
<month> : 1-12
<day> : 1-31
<hour> : 0-24
<minute> : 0-59
<second> : 0-59
DATE_AND_TIME literals are treated internally as data type DWORD. The time is processed in
seconds and as a result can take on values from January 1, 1970 00:00 to February 7, 2106
06:28:15.

PROGRAM PLC_PRG
VAR
 dtDate : DATE_AND_TIME := DATE_AND_TIME#1996-05-06-15:36:30;
 dtDate1: DATE_AND_TIME := DT#1972-03-29-00:00:00;
 dtDate2: DATE_AND_TIME := DT#2018-08-08-13:33:20.5;

 dtEarliest : DATE_AND_TIME :=
DATE_AND_TIME#1979-1-1-00:00:00; // 0
 dtLatest : DATE_AND_TIME := DATE_AND_TIME#2106-2-7-6:28:15; //
4294967295
END_VAR

Example

32-bit date and
time specifica-
tions
'DATE_AND_TIM
E'
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2226

Use the keyword LDATE_AND_TIME (LDT) to specify a date and time.

<date and time keyword>#<long date and time value>

<date and time keyword> : LDATE_AND_TIME | ldate_and_time | LDT | ldt
<date and time value> : <year>-<month>-<day>-<hour>:<minute>:<second>
<year> : 1970-2106
<month> : 1-12
<day> : 1-31
<hour> : 0-24
<minute> : 0-59
<second> : 0-59 LDATE_AND_TIME#2262-4-10-23:59:59.99999999

DATE_AND_TIME literals are treated internally as data type LWORD. The time is processed in
seconds and as a result can take on values from January 1, 1970 00:00 to July 21, 2554
23:59:59.999999999.

PROGRAM PLC_PRG
VAR
 ldtDate : LDATE_AND_TIME := LDATE_AND_TIME#1996-05-06-15:36:30;
 ldtDate1: LDATE_AND_TIME := LDT#1972-03-29-00:00:00;
 ldtDate2: LDATE_AND_TIME := LDT#2018-08-08-13:33:20.5;

 dtEarliest : LDT := LDT#1979-1-1-00:00:00; // 0
 dtLatest : LDT := LDT#2266-4-10-23:59:59; // =
16#7FFF63888C620000
END_VAR

Example

Use the keyword TIME_OF_DAY (TOD) to specify a time.

<time keyword>#<time value>

<time keyword> : TIME_OF_DAY | time_of_day | TOD | tod
<time value> : <hour>:<minute>:<second>
<hour> : 0-23
<minute> : 0-59
<second> : 0.000-59.999
You can also specify fractions of a second. TIME_OF_DAY literals are treated internally as
DWORD and the value is resolved in milliseconds.

PROGRAM POU
VAR
 todClockTime : TIME_OF_DAY := TIME_OF_DAY#15:36:30.123;
 todEarliest : TIME_OF_DAY := TIME_OF_DAY#0:0:0.000;
 todLatest : TOD := TOD#23:59:59.999;
END_VAR

Examples

64-bit date and
time specifica-
tions
'LDATE_AND_TI
ME'
Syntax

32-bit time spec-
ifications
'TIME_OF_DAY'
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2227

Use the keyword LTIME_OF_DAY (LTOD) to specify a time.

<time keyword>#<time value>

<time keyword> : LTIME_OF_DAY | ltime_of_day | LTOD | ltod
<time value> : <hour>:<minute>:<second>
<hour> : 0-23
<minute> : 0-59
<second> : 0.000-59.999999999
You can also specify fractions of a second. LTIME_OF_DAY literals are treated internally as
LWORD and the value is resolved in nanoseconds.

PROGRAM POU
VAR
 ltodClockTime : LTIME_OF_DAY := TIME_OF_DAY#15:36:30.123456789;
 todEarliest : TIME_OF_DAY := TIME_OF_DAY#0:0:0;
 todLatest : TOD := TOD#23:59:59.999999999;
END_VAR

Examples

See also
● Ä Chapter 6.4.1.20.5.8 “Date and Time Data Types” on page 2238

Typed literals
With the exception of REAL/LREAL constants (LREAL is always used here), CODESYS uses
the smallest possible data type when calculating with IEC constants. If you want to use another
data type, then you can use typed literals without having to declare the constants explicitly.
When doing this, provide the constants with a prefix that indicates the type.
Syntax:
<type>#<literal>
<type> defines the desired data type; possible values: BOOL, SINT, USINT, BYTE, INT, UINT,
WORD, DINT, UDINT, DWORD, REAL, LREAL. You must capitalize the entire type name.

<literal> defines the constants. The entry must match the data type defined in <Type>.

var1 := DINT#34;Example:

If CODESYS cannot convert the constant into the target type without data loss, then an error
message is issued.
You can use typed constants wherever you can use normal constants.

Access to Variables in Arrays, Structures, and Blocks
Syntax for access to
● Two-dimensional array component: <array name> [<1st dimension> , <2nd

dimension>]
● Structural variable: <structure name> . <component name>
● Function block and program variable: <function block name> | <program name> .

<variable name>

64-bit time spec-
ifications
'LTIME_OF_DAY'
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2228

See also
● Ä Chapter 6.4.1.20.5.15 “Data Type 'ARRAY'” on page 2247
● Ä Chapter 6.4.1.20.5.17 “Structure” on page 2261
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479
● Ä Chapter 6.4.1.21.2.21.2 “Object 'Program'” on page 2478

Bit Access in Variables

NOTICE!
Implement concurrent bit access by two tasks only if the processor can execute
bit access directly on the memory. All x86 and x64 systems have commands
for bit access in memory. Systems such as ARM and PPC cannot access bits
directly in the memory.
If two tasks execute bit access simultaneously, even though the processor
cannot perform bit access directly in the memory, then proceed as follows. Use
a semaphore (SysSemEnter) or a similar technique to prevent competing bit
access. However, it is best to execute the bit access within a task.

With index access, individual bits can be addressed in integer variables. Using a structure
variable or a function block instance, individual bits can be addressed symbolically.

You can address individual bits in integer variables. To do this, append the variable with a dot
and the index of the addressed bit. The bit-index can be given by any constant. Indexing is
0-based.
<integer variable name> . <index>
<integer data type> = BYTE | WORD | DWORD | LWORD | SINT | USINT |
INT | UINT | DINT | UDINT | LINT | ULINT

In the program, the third bit of the variable wA is set to the value of variable xB. The constant
c_usiENABLE acts as an index to access the third bit of the variable iX.

PROGRAM PLC_PRG
VAR
 wA : WORD := 16#FFFF;
 xB : BOOL := 0;
END_VAR

// Index access in an integer variable
wA.2 := xB;

Result: wA = 2#1111_1111_1111_1011 = 16#FFFB

// GVL declaration
VAR_GLOBAL CONSTANT
 gc_usiENABLE : USINT := 2;
END_VAR

PROGRAM PLC_PRG
VAR
 iX : INT := 0;
END_VAR

// Constant as index
iX.gc_usiENABLE := TRUE; // Third bit in iX is set TRUE

Result: iX = 4

Example

Index access

Constant as
index

Index access to
bits integer vari-
ables
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2229

With the BIT data type, you can combine individual bits into a structure and then access them
individually. Then the bit is addressed with the component name.

TYPE S_CONTROLLER :
STRUCT
 bitOperationEnabled : BIT;
 bitSwitchOnActive : BIT;
 bitEnableOperation : BIT;
 bitError : BIT;
 bitVoltageEnabled : BIT;
 bitQuickStop : BIT;
 bitSwitchOnLocked : BIT;
 bitWarning : BIT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 ControlDriveA : S_CONTROLLER;
END_VAR

// Symbolic bit access to bitEnableOperation
ControlDriveA.bitEnableOperation := TRUE;

Example
Type declara-
tion of the
structure:

Declaration
and write
access to a bit:

In function blocks, you can declare variables for individual bits.

FUNCTION_BLOCK FB_Controller
VAR_INPUT
 bitSwitchOnActive : BIT;
 bitEnableOperation : BIT;
 bitVoltageEnabled : BIT;
 bitQuickStop : BIT;
 bitSwitchOnLocked : BIT;
END_VAR
VAR_OUTPUT
 bitOperationEnabled : BIT;
 bitError : BIT;
 bitWarning : BIT;
END_VAR
VAR
END_VAR
;

PROGRAM PLC_PRG
VAR
 fbController : FB_Controller;
END_VAR
// Symbolic bit access to bitSwitchOnActive
fbController(bitSwitchOnActive := TRUE);

Example

Symbolic bit
access in struc-
ture variables

Symbolic bit
access in func-
tion block
instances

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2230

See also
● Ä Chapter 6.4.1.20.5.3 “Integer data types” on page 2235
● Ä “Symbolic bit access in structure variables” on page 2262
● Ä Chapter 6.4.1.20.5.11 “Data Type 'BIT'” on page 2243

Addresses

CAUTION!
If you use pointers to addresses, then the contents of addresses can be moved
during an online change. If you use absolute addresses, then the contents of
addresses does not change during an online change.

%<memory area prefix> (<size prefix>)? <memory position>

<memory area prefix> : I | Q | M
<size prefix> : X | B | W | D
<memory position> : <number> (.<number>)* // Depends on the target
system
When defining an address, you use specific character strings to express memory position and
size. An address is marked with the percent sign (%), followed by the memory range prefix, the
optional size prefix, and the memory range position. The numbering that you use for addressing
the memory position depends on the target system.

Memory
Range
Prefix

I Input memory range for "Inputs"
For physical inputs via input drivers, "Sensors"

Q Output memory range for "Outputs"
For physical outputs via output drivers, "Actuators"

M Flag memory range

Size Prefix Data Type Data Width
No size prefix Single bit
X Single bit
B BYTE 8 bits
W WORD 16 bits
D DWORD 32 bits

Syntax:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2231

%QX7.5
%Q7.5

Single bit address of the output bit 7.5

%IW215 Word address of the input word 215
%QB7 Byte address of the output byte 7
%MD48 Address of a double word at memory position 48 in

flag memory
%IW2.5.7.1 Word address of an input word; interpretation

dependent on the current controller configuration
VAR wVar AT %IW0 : WORD; END_VAR Variable declaration with address information of an

input word
VAR xActuator AT %QW0 : BOOL; END_VAR Boolean variable declaration

Note: For Boolean variables, one byte is allocated
internally if a single bit address is not specified. A
change in the value of xActuator affects the range
from QX0.0 to QX0.7.

VAR xSensor AT IX7.5 : BOOL; END_VAR Boolean variable declaration with explicit specification
of a single bit address. On access, only the input bit
7.5 is read.

Examples

Make sure that the address is valid as follows:
To map a valid address in an application, you must know the required position (applicable
memory range) in the process image: input memory range (I), output memory range (Q), and
flag memory range (M) — see above. Furthermore, you have to specify the required size prefix:
bit, BYTE, WORD, DWord (see above: X, B, W, D)

The current device configuration and device settings (hardware structure, device description,
I/O settings) play a decisive part. Note specifically the differences in the interpretation of
bit addresses for devices with "byte addressing mode" and devices with "word-oriented IEC
addressing mode". For example, in a byte addressing device, the number before the point
of bit address %IX5.5 addresses byte 5. On the other hand, in a word-addressed device, it
addresses word 5. In contrast, addressing with a word or byte address is independent of the
device type: with %IW5 always word 5 is addressed and with byte address %IB5 always byte 5.
Regardless of size and addressing mode, you can address different memory cells therefore with
the same address information.
The following table shows the comparison of byte addressing and word-oriented IEC addressing
for bits, bytes, words, and double words. It also shows the overlapping memory ranges that are
present in the case of byte addressing (see also the example below the table).
Regarding syntax, note that the IEC addressing mode is always word-oriented. In this case, the
word number is located before the point and the bit number ofter the point.

Memory posi-
tion

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2232

n = byte number

D0 contains B0 - B3, W0 contains B0 and B1, W1 contains B1 and B2, and W2 contains B2
and B3. Consequently, in order to avoid overlap, you must not use W1 (also D1, D2, and D3)
for addressing.

Example of
memory range
overlapping in
the case of the
byte
addressing
mode

See also
● Ä Chapter 6.4.1.9.12.3 “AT declaration” on page 1902

Functions
In ST, you can use a function call as an operand.

Result := Fct(7) + 3;Example:

This function yields the time (in milliseconds) that has elapsed since system boot.
The data type is TIME.

systime := TIME();

Example in ST:

See also
● Ä Chapter 6.4.1.21.2.21.4 “Object 'Function'” on page 2482

TIME() function

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2233

6.4.1.20.5 Data Types
General

In the programming, a variable is identified by its name and has an address in the memory of
the target system. Accordingly, variable names are identifiers under which the allocated memory
is addressed. The size of the variable is determined by its data type. This determines how much
memory is reserved for the variable and how the values in memory are to be interpreted. The
data type also determines which operators are allowed.
In CODESYS, there is also the capability of instantiating function blocks. Function block
instances then use memory like variables do. The memory requirement is determined by the
function block.
The following groups of data types are available.

A standard data type (or standard data type) is an elementary data type or a string data type.
<standard data type> : __UXINT | __XINT | __XWORD | BIT | BOOL |
BYTE | DATE | DATE_AND_TIME | DINT | DT | DWORD | INT | LDATE |
LDATE_AND_TIME | LDT | LINT | LREAL | LTIME | LTOD | LWORD | REAL |
SINT |STRING | TIME | TOD | TIME_OF_DAY | UDINT | UINT | ULINT | USINT
| WORD | WSTRING
See also
● Ä Chapter 6.4.1.20.5.11 “Data Type 'BIT'” on page 2243
● Ä Chapter 6.4.1.20.5.2 “Data type 'BOOL'” on page 2235
● Ä Chapter 6.4.1.20.5.3 “Integer data types” on page 2235
● Ä Chapter 6.4.1.20.5.12 “Special Data Types '__UXINT', __XINT, and '__XWORD'”

on page 2243
● Ä Chapter 6.4.1.20.5.4 “Data type 'REAL' / 'LREAL'” on page 2236
● Ä Chapter 6.4.1.20.5.5 “Data Type 'STRING'” on page 2237
● Ä Chapter 6.4.1.20.5.10 “Data type 'WSTRING'” on page 2242
● Ä Chapter 6.4.1.20.5.6 “Data Type 'TIME'” on page 2237
● Ä Chapter 6.4.1.20.5.7 “Data Type 'LTIME'” on page 2237
● Ä Chapter 6.4.1.20.5.8 “Date and Time Data Types” on page 2238

See also
● Ä Chapter 6.4.1.20.5.11 “Data Type 'BIT'” on page 2243
● Ä Chapter 6.4.1.20.5.13 “Pointers” on page 2243
● Ä Chapter 6.4.1.20.5.20 “Data type 'UNION'” on page 2268
● Ä Chapter 6.4.1.20.5.16 “Data Type '__VECTOR'” on page 2253

You can declare your own data types which are based on the default predefined data types or
existing data types.
These kinds of data types are called user-defined or user-specific. The data types are either
organized as its own DUT object or declared within the declaration part of a programming
object. Moreover, they are differentiated according to their purpose and syntax.

User-Defined
Data Type

Declaration See also

Alias DUT object Ä Chapter 6.4.1.20.5.19 “Alias” on page 2267

Arrays Programming
object

Ä Chapter 6.4.1.20.5.15 “Data Type 'ARRAY'”
on page 2247

Enumeration DUT object, pro-
gramming object

Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Standard data
types

Extensions of
the IEC 61131-3
standard

User-defined
data types

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2234

User-Defined
Data Type

Declaration See also

Reference Programming
object

Ä Chapter 6.4.1.20.5.14 “Reference” on page 2245

Pointer Programming
object

Ä Chapter 6.4.1.20.5.13 “Pointers” on page 2243

Structure DUT object Ä Chapter 6.4.1.20.5.17 “Structure” on page 2261

Subrange type Programming
object

Ä Chapter 6.4.1.20.5.21 “Subrange types”
on page 2268

Union DUT object Ä Chapter 6.4.1.20.5.20 “Data type 'UNION'”
on page 2268

Vector DUT object Ä Chapter 6.4.1.20.5.16 “Data Type '__VECTOR'”
on page 2253

NOTICE!
Note the recommendations for naming an identifier.

See also
● Ä Chapter 6.4.1.20.7 “Identifiers” on page 2327

Data type 'BOOL'

Data Type Values Memory
BOOL TRUE (1), FALSE (0) 8 bit

See also
● Ä Chapter 6.4.1.20.4.2 “BOOL constants” on page 2220

Integer data types
CODESYS provides the following integer data types.

Data Type Lower Limit Upper Limit Memory
BYTE 0 255 8 bit

WORD 0 65535 16 bit

DWORD 0 4294967295 32 bit

LWORD 0 264-1 64 bit

SINT -128 127 8 bit

USINT 0 255 8 bit

INT -32768 32767 16 bit

UINT 0 65535 16 bit

DINT -2147483648 2147483647 32 bit

UDINT 0 4294967295 32 bit

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2235

Data Type Lower Limit Upper Limit Memory
LINT -263 263-1 64 bit

ULINT 0 264-1 64 bit

NOTICE!
Information can be lost when converting from larger to smaller types.

See also
● Ä Chapter 6.4.1.20.4.3 “Numeric constants” on page 2220

Data type 'REAL' / 'LREAL'
The data types REAL and LREAL are floating-point types according to IEEE 754. They are
necessary when using decimal numbers and floating-point numbers in decimal notation or
exponential notation.

PROGRAM PLC_PRG
VAR
 rMax: REAL := 3.402823E+38; // Largest number
 rPosMin : REAL := 1.0E-44; // Smallest positive number
 rNegMax: REAL := -1.0E-44; // Largest negative number
 rMin: REAL := -3.402823E+38; // Smallest number

 lrMax: LREAL := 1.7976931348623157E+308; // Largest number
 lrPosMin : LREAL := 4.94065645841247E-324; // Smallest positve
number
 lNegMax: LREAL := -4.94065645841247E-324; // Largest negative
number
 lrMin: LREAL := -1.7976931348623157E+308; // Smallest number
END_VAR

Example

NOTICE!
Support for the LREAL data type depends on the target device in use. Refer
to the respective documentation as to whether or not the 64-bit type LREAL
is converted to REAL or remains as LREAL when compiling the application.
Conversion may result in the loss of information.

NOTICE!
If the value of the REAL/LREAL number is outside of the value range of the
integer, then an undefined result is yielded from a data type conversion from
REAL or LREAL to SINT, USINT, INT, UINT, DINT, UDINT, LINT, or ULINT.
The result depends on the target system. An exception error is also possible.
To get code that is independent of the target system, the application must catch
value range violations.
If the REAL/LREAL number is within the value range of the integer data type,
then the conversion operates the same way on all systems.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2236

See also
● Ä Chapter 6.4.1.20.4.4 “REAL/LREAL constants” on page 2221

Data Type 'STRING'
A variable of data type STRING can have contain any character string. The amount of memory
that is reserved during a declaration refers to characters and is shown in parentheses or
brackets. If a size is not defined, then CODESYS allocates 80 characters by default.
As a rule, CODESYS does not limit the string length. However, the string function processes
lengths of 1–255 only. If a variable is initialized with a string that is too long for the data type,
then CODESYS truncates the string accordingly from the right.

NOTICE!
The memory required for a STRING variable is always one byte per character
plus one additional byte (for example, 81 bytes for a "STRING(80)" declaration).

str : STRING(35):= 'This is a String';Example of a
string declara-
tion with 35
characters:

See also
● Ä Chapter 6.4.1.20.4.5 “String Constants” on page 2221
● Ä Chapter 6.4.1.20.5.10 “Data type 'WSTRING'” on page 2242

Data Type 'TIME'
The data type is treated internally as DWORD. TIME is resolved in milliseconds.

Data type Lower limit Upper limit Storage space Resolution
TIME T#0d0h0m0s0ms T#49d17h2m47s29

5ms
32 bit Milliseconds

See also
● Ä Chapter 6.4.1.20.5.7 “Data Type 'LTIME'” on page 2237
● Ä Chapter 6.4.1.20.4.7 “TIME/LTIME Constant” on page 2223
● Ä Chapter 6.4.1.20.4.8 “Date and Time Constants” on page 2225

Data Type 'LTIME'
You can use the data type LTIME as a time base for high-resolution timer. A high-resolution
timer has a resolution in nanoseconds.

Data Type Lower Limit Upper Limit Memory
LTIME LTIME#0NS LTIME#213503D23H34M3

3S709MS551US615NS
64 bits

Syntax:

Data Type
'LTIME'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2237

LTIME#<long time declaration>
The time declaration can include units of time that apply for the TIME constant as well as:
● "US": microseconds
● "NS": nanoseconds

LTIME1 := LTIME#1000D15H23M12S34MS2US44NSExample:

See also
● Ä Chapter 6.4.1.20.5.6 “Data Type 'TIME'” on page 2237
● Ä Chapter 6.4.1.20.3.41 “Time Conversion” on page 2182

Date and Time Data Types
The data types DATE, DATE_AND_TIME (DT), and TIME_OF_DAY (TOD) are handled internally
like a DWORD (32-bit value).

The data types LDATE, LDATE_AND_TIME (LDT), and LTIME_OF_DAY (LTOD) are treated inter-
nally like an LWORD (64-bit value).

The values of these data types are measured in seconds, milliseconds, and
nanoseconds since 01/01/1970.

Data Type Lower Limit Upper Limit Memory Resolution
DATE DATE#1970-01-01

D#1970-01-01
DATE#2106-02-07
D#2106-02-07

32-bit Seconds
(although
only the day
is displayed)

DATE_AND_TIME
DT

DATE_AND_TIME#1970-1
-1-0:0:0
DT#1970-1-1-0:0:0

DATE_AND_TIME#2106-0
2-07-06:28:15
DT#2106-02-07-06:28:
15

32-bit Seconds

TIME_OF_DAY
TOD

TIME_OF_DAY#0:0:0
TOD#0:0:0

TIME_OF_DAY#23:59:59
.999
TOD#23:59:59.999

32-bit Milliseconds

LDATE LDATE#1970-1-1

LD#1970-1-1
LDATE#2554-7-21
LD#2554-7-21

64-bit Nanosec-
onds
(although
only the day
is displayed)

LDATE_AND_TIME
LDT

LDATE_AND_TIME#1970-
1-1-0:0:0
LDT#1970-1-1-0:0:0

LDATE_AND_TIME#2554-
7-21:23:59:59.999999
99
LDT#2554-7-21-23:59:
59.99999999

64-bit Nanosec-
onds

LTIME_OF_DAY
LTOD

LTIME_OF_DAY#0:0:0
LTOD#0:0:0

LTIME_OF_DAY#23:59:5
9.999999999
LTOD#23:59:59.999999
999

64-bit Nanosec-
onds

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2238

VAR
 //Date
 dateBottom : DATE := DATE#1970-1-1;
 dateTop : DATE := DATE#2106-2-7;
 dateAppointment : DATE := D#2020-2-7; // D prohibited

 //Date and time
 dtBottom : DATE_AND_TIME := DATE_AND_TIME#1970-1-1-0:0:0;
 dtTop : DT := DATE_AND_TIME#2106-02-07-06:28:15;
 dtAppointment : DT := DT#2020-2-7-12:55:1.234;

 //Time of day
 todBottom : TIME_OF_DAY := TIME_OF_DAY#0:0:0;
 todTop : TOD := TIME_OF_DAY#23:59:59.999;
 todAppointment : TOD := TOD#12:3:4.567;

 // Long date
 ldateBottom : LDATE := LDATE#1970-1-1;
 ldateTop : LDATE := LDATE#2106-2-7;
 ldateAppointment : LDATE := LD#2020-2-7; // LD prohibited

 // Long date and time
 ldtBottom : LDATE_AND_TIME := LDATE_AND_TIME#1970-1-1-0:0:0;
 ldtTop : LDT := LDATE_AND_TIME#2262-4-10-23:59:59.99999999;
 ldtAppointment : LDT := LDT#2020-2-7-12:55:1.234567891;

 //Long time of day
 ltodBottom : LTIME_OF_DAY := LTIME_OF_DAY#0:0:0;
 ltodTop : LTOD := LTIME_OF_DAY#23:59:59.999999999 ;
 ltodAppointment : LTOD := LTOD#12:3:4.567890123;

END_VAR

See also
● Ä Chapter 6.4.1.20.4.8 “Date and Time Constants” on page 2225

Data Type 'ANY' and 'ANY_<type>'
The data types ANY or ANY_<type> are used in interfaces of functions, function blocks, or
methods in order to type input parameters whose type is unknown or unspecified: The input
variables (VAR_INPUT) have a generic data type.

The compiler replaces the type of input variable internally with the data structure described
below, whereby the value is not passed directly. Instead, a pointer is passed to the actual value
so only a variable can be passed. Therefore, the data type is only specified when it is called.
As a result, calls of such POUs can be made using arguments which each have different data
types.

Literals, replaced constants, and results of function calls or expressions cannot
be passed to input variables (VAR_IN_OUT).

When code is compiled, the input variables are typed internally with ANY data type by the
following structure. When the POU is called (at runtime), the argument is passed to a reference
parameter.

Example

Internal data
structure for
'ANY' and
'ANY_<type>'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2239

TYPE AnyType :
STRUCT
 // the type of the actual parameter
 typeclass : __SYSTEM.TYPE_CLASS ;
 // the pointer to the actual parameter
 pvalue : POINTER TO BYTE;
 // the size of the data, to which the pointer points
 diSize : DINT;
END_STRUCT
END_TYPE

You can access the input variable within the POU via this structure by means of
this structure, and for example query the passed value.

This compares whether or not two input variables have the same type and the same value.

FUNCTION funGenericCompare : BOOL
VAR_INPUT
 any1 : ANY;
 any2 : ANY;
END_VAR
VAR
 pTest : POINTER TO ARRAY [0..100] OF POINTER TO DWORD;
 diCount: DINT;
END_VAR

pTest := ADR(any1);
Generic_Compare := FALSE;
IF any1.typeclass <> any2.typeclass THEN
 RETURN;
END_IF
IF any1.diSize <> any2.diSize THEN
 RETURN;
END_IF
// Byte comparison
FOR iCount := 0 TO any1.diSize-1 DO
 IF any1.pvalue[iCount] <> any2.pvalue[iCount] THEN
 RETURN;
 END_IF
END_FOR
Generic_Compare := TRUE;
RETURN;
// END_FUNCTION

Example

The syntax descriptions refer to a POU with exactly one parameter (an input variable).

FUNCTION | FUNCTION_BLOCK | METHOD <POU name> (: <return data
type>)?
VAR_INPUT
 <input variable name> : <generic data type>;
END_VAR

<generic data type> = ANY | ANY_BIT | ANY_DATE | ANY_NUM | ANY_REAL |
ANY_INT | ANY_STRING

Declaration
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2240

FUNCTION funComputeAny : BOOL
VAR_INPUT
 anyInput1 : ANY; // valid data type see table
END_VAR
// END_FUNCTION

FUNCTION_BLOCK FB_ComputeAny
VAR_INPUT
 anyInput1 : ANY;
END_VAR
// END_FUNCTION_BLOCK

FUNCTION_BLOCK FB_ComputeMethod
METHOD methComputeAnny : BOOL
VAR_INPUT
 anyInput1 : ANY_INT; // valid data types are SINT, INT, DINT,
LINT, USINT, UINT, UDINT, ULINT
END_VAR
//END_METHOD

Example

With compiler versions > 3.5.1.0, the generic IEC data types in the table are
supported.

The table represents the hierarchy of the generic data types and provides information as to
which generic data type of the formal parameter (declaration) allows which elementary data
types of the argument (call).

Generic data type in the case of a
formal parameter

Permitted elementary data type in the case of
an actual parameter (argument)

ANY ANY_BIT ● BYTE
● WORD
● DWORD
● LWORD

ANY_DATE ● DATE
● DATE_AND_TIME, DT
● TIME_OF_DAY, TOD
● LDATE
● LDATE_AND_TIME, LDT
● LTIME_OF_DAY, LTOD

ANY_NUM ANY_REAL REAL, LREAL
ANY_INT USINT, UINT, UDINT, ULINT

SINT, INT, DINT, LINT
ANY_STRING STRING, WSTRING

The syntax descriptions refer to a POU with exactly one parameter, to which an argument is
passed. As a result, the data type of the argument specifies the generic data type of the input
variable. For example, arguments of the type BYTE, WORD, DWORD, LWORD can be passed to
a type ANY_BIT input variable.

Call

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2241

<variable name> := <function name> (<argument name>);
<argument name> : variable with valid data type

<function block name> (<input variable name> := <argument name>);

<function block name> . <method name> (<input variable name> :=
<argument name>);

PROGRAM PLC_PRG
VAR
 byValue : BYTE := 16#AB;
 iValue : INT := -1234;
 xResultByte : BOOL;
 xResultInt : BOOL;

 fbComputeAnyByte : FB_ComputeAny;
 fbComputeAnyInt : FB_ComputeAny;

 fbComputeM1 : FB_ComputeMethod;
 fbComputeM2 : FB_ComputeMethod;

 byN : BYTE := 1;
 wBitField1 : WORD := 16#FFFF;
 wBitField2 : WORD := 16#0001;
 xInit : BOOL;
 xResult : BOOL;
END_VAR

xResultByte := funComputeAny(byValue);
xResultInt := funComputeAny(iValue);

xResult := funGenericCompare(wBitField1, wBitField2);

fbComputeAnyByte(anyInput1 := byValue);
fbComputeAnyInt(anyInput1 := iValue);

fbComputeM1.methComputeAnny(anyInput1 := byValue);
fbComputeM2.methComputeAnny(anyInput1 := iValue);
// END_PRG

Example

Data type 'WSTRING'
The data type WSTRING is interpreted in Unicode format as opposed to the data type STRING
(ASCII). As a result of this coding, the number of displayed characters for WSTRING depends
on the characters. A length of 10 for WSTRING means that the length of the WSTRING can
take a maximum of 10 WORDs. However, for some characters in Unicode, multiple WORDS are
required for coding a character so that the number of characters do not have to correspond to
the length of the WSTRING (10 in this case). The data type requires 1 WORD of memory per
character plus 1 WORD of extra memory. Each STRING requires only 1 byte. The data type
WSTRING is terminated with a 0.

wstr : WSTRING := "This is a WString";Example:

See also
● Ä Chapter 6.4.1.20.5.5 “Data Type 'STRING'” on page 2237
● Ä Chapter 6.4.1.20.4.5 “String Constants” on page 2221

Syntax of func-
tion call

Syntax of func-
tion block call
Syntax of
method call

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2242

Data Type 'BIT'
The data type BIT is valid only in structures for the declaration of structure members or in a
function block for the declaration of variables. A BIT variable can have the values TRUE (1) and
FALSE (0). In this case, the variable requires exactly one bit of memory.

As a result, you can symbolically address individual bits by a name. BIT variables that are
declared in succession are bundled in bytes. In this way, you can optimize memory use as
opposed to BOOL types, which reserve 8 bits each. On the other hand, bit access is significantly
more time-consuming. Therefore, you should use the BIT data type only when you need to
define data in a predefined format.
See also
● Ä Chapter 6.4.1.20.4.11 “Bit Access in Variables” on page 2229
● Ä Chapter 6.4.1.20.5.17 “Structure” on page 2261

Special Data Types '__UXINT', __XINT, and '__XWORD'
Variables with these data types are converted to a platform-compliant data type, depending on
the target system.
CODESYS supports systems with address registers of 32-bit and 64-bit widths. For making the
IEC code as independent from the target system as possible, you use the pseudo data types
__UXINT, __XINT, and __XWORD. The compiler checks which target system types are current
and then converts these data types into the appropriate standard data types.
Moreover, type conversion operators are provided for variables of these data types.

 Type conversion on 64-bit
platforms

Type conversion on 32-bit
platforms

__UXINT ULINT UDINT
__XINT LINT DINT
__XWORD LWORD DWORD

See also
● Ä Chapter 6.4.1.20.3.38 “Integer Conversion” on page 2159
● Ä Chapter 6.4.1.20.3.36 “Overloading” on page 2152

Pointers
A pointer stores the memory address of objects, such as variables or function block instances,
at runtime.
Syntax of the pointer declaration:
<pointer name>: POINTER TO <data type | data unit type | function
block>;

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2243

FUNCTION_BLOCK FB_Point
VAR
 piNumber: POINTER TO INT;
 iNumber1: INT := 5;
 iNumber2: INT;
END_VAR

piNumber := ADR(iNumber1); // piNumber is assigned to address of
iNumber1
iNumber2 := piNumber^; // value 5 of iNumber1 is assigned to
variable iNumber2 by dereferencing of pointer piNumber

Example

Dereferencing a pointer means obtaining the value to which the pointer points. A pointer
is dereferenced by appending the content operator ^ to the pointer identifier (for example,
piNumber^ in the example above). To assign the address of an object to a pointer, the address
operator ADR is applied to the object: ADR(iNumber1).

In online mode, you can click “Edit è Browse è Go to Reference” to jump from a pointer to the
declaration location of the referenced variable.

NOTICE!
When a pointer points to an I/O input, write access applies. This leads to the
compiler warning “'<pointer name >' is not a valid assignment target” when the
code is generated. Example: pwInput := ADR(wInput);
If you require a construct of this kind, you have to first copy the input value
(wInput) to a variable with write access.

CODESYS permits the index access [] to variables of type POINTER TO, as well as to the
data types STRING or WSTRING.

The data, which the pointer points to, can also be accessed by appending the bracket operator
[] to the pointer identifier(for example, piData[i]). The base data type of the pointer deter-
mines the data type and the size of the indexed component. In this case, the index access to
the pointer is done arithmetically by adding the index dependent offset i * SIZEOF(<base
type>) to the address of the pointer. The pointer is dereferenced implicitly at the same time.

Calculation: piData[i] := (piData + i * SIZEOF(INT))^;

This is not: piData[i] != (piData + i)^.

Index access STRING
When you use the index access with a variable of the type STRING, you get the character at the
offset of the index expression. The result is of type BYTE. For example, sData[i] returns the
i-th character of the character string sData as SINT (ASCII).

Index access WSTRING
When you use the index access with a variable of the type WSTRING, you get the character at
the offset of the index expression. The result is of type WORD. For example, wsData[i] returns
the i-th character of the character string as INT (Unicode).

The result of the difference between two pointers is a value of type DWORD, even on 64-bit
platforms when the pointers are 64-bit pointers.

Index access to
pointers

Subtracting
pointers

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2244

Using references provides the advantage of guaranteeing type safety. That is
not the case with pointers.

The memory access of pointers can be checked at runtime by the implicit
monitoring function CheckPointer.

See also
● Ä Chapter 6.4.1.21.3.3.38 “Command 'Go To Reference'” on page 2576
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755
● Ä Chapter 6.4.1.20.3.33 “Operator 'Content Operator'” on page 2151
● Ä Chapter 6.4.1.20.3.32 “Operator 'ADR'” on page 2150
● Ä Chapter 6.4.1.21.2.22.11 “POU 'CheckPointer'” on page 2513

Reference
A reference implicitly refers to another object. When accessed, the reference is implicitly dere-
ferenced, and therefore does not need a special content operator ^ such as a pointer.
<identifier> : REFERENCE TO <data type> ;
<data type>: base type of the reference

PROGRAM PLC_PRG
VAR
 rspeA : REFERENCE TO DUT_SPECIAL;
 pspeA : POINTER TO DUT_SPECIAL;
 speB : DUT_SPECIAL;
END_VAR

rspeA REF= speB; // Reference rspeA is alias for speB. The code
corresponds to pspeA := ADR(speB);
rspeA := speD; // The code corresponds to pspeA^ := speB;

Example

The readability of a program is made difficult when the same memory cell is
accessed simultaneously by means of an identifier and its alias (for example,
speB and rspeA).

NOTICE!
With compiler version >= V3.3.0.0, references are initialized (at 0).

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2245

NOTICE!
If a reference refers to a device input, then the access (for example, rInput
REF= Input;) is applies as write access. This leads to a compiler warning
when the code is generated: "...invalid assignment target".

If you require a construct of this kind, you have to first copy the input value
(rInput) to a variable with write access.

ariTest : ARRAY[0..9] OF REFERENCE TO INT;
priTest : POINTER TO REFERENCE TO INT;
rriTest : REFERENCE TO REFERENCE TO INT;
rbitTest : REFERENCE TO BIT;
A reference type must not be used as the base type of an array, pointer, or reference. Further-
more, a reference must not refer to a bit variable. These kinds of constructs generate compiler
errors.

A reference has the following advantages over a pointer:
● Easier to use:

A reference can access the contents of the referenced object directly and without derefer-
encing.

● Finer and simpler syntax when passing values:
Call of a function block which passes a reference without an address operator instead of a
pointer
Example: fbDoIt(riInput:=iValue);
Instead of: fbDoIt_1(piInput:=ADR(iValue));

● Type safety:
When assigning two references, the compiler checks whether their base types match. This
is not checked in the case of pointers.

You can use the operator __ISVALIDREF to check whether or not a reference points to a valid
value (meaning a value not equal to 0).

<Boolean variable name> := __ISVALIDREF(<reference name>);
<reference name>: Identifier declared with REFERENCE TO
The Boolean variable is TRUE when the reference points to a valid value. Otherwise it is FALSE.

Invalid declara-
tions

Comparison of
reference and
pointer

Testing the val-
idity of a refer-
ence
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2246

PROGRAM PLC_PRG
VAR
iAlfa : INT;
riBravo : REFERENCE TO INT;
riCharlie : REFERENCE TO INT;
bIsRef_Bravo : BOOL := FALSE;
bIsRef_Charlie : BOOL := FALSE;
END_VAR

iAlfa := iAlfa + 1;
riBravo REF= iAlfa;
riCharlie REF= 0;
bIsRef_Bravo := __ISVALIDREF(riBravo); (* becomes TRUE,
because riBravo references to iAlfa, which is non-zero
*)
bIsRef_Charlie := __ISVALIDREF(riCharlie); (* becomes FALSE,
because riCharlie is set to 0 *)

Example

In compiler version 3.5.7.40 and later, the implicit monitoring function
“CheckPointer” acts on variables of type REFERENCE TO in the same way as
for pointer variables.

See also
● Ä Chapter 6.4.1.20.1.4.4.6 “Assignment Operator 'REF='” on page 2054
● Ä Chapter 6.4.1.21.2.22.11 “POU 'CheckPointer'” on page 2513

Data Type 'ARRAY'
An array is a collection of data elements of the same data type. CODESYS supports one- and
multi-dimensional arrays of fixed or variable length.

As of Automation Builder 2.6.0 array initializations within type definitions are no
longer allowed.

You can define arrays in the declaration part of a POU or in global variable lists.

<variable name> : ARRAY[<dimension>] OF <data type> (:=
<initialization>)? ;

<dimension> : <lower index bound>..<upper index bound>
<data type> : elementary data types | user defined data types |
function block types
// (...)? : Optional

<variable name> : ARRAY[<1st dimension> (, <next dimension>)+]
OF <data type> (:= <initialization>)? ;

<1st dimension> : <1st lower index bound>..<1st upper index bound>

Array of fixed
length
Syntax of the
declaration of a
one-dimen-
sional array

Syntax of the
declaration of a
multi-dimen-
sional array

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2247

<next dimension> : <next lower index bound>..<next upper index bound>
<data type> : elementary data types | user defined data types |
function block types
// (...)+ : One or more further dimensions
// (...)? : Optional
The index limits are integers; maximum of the data type DINT.

<variable name>[<index of 1st dimension> (, <index of next
dimension>)*]
// (...)* : 0, one or more further dimensions

Note the capability of using the implicit monitoring function CheckBounds() to
monitor the maintenance of the index limits at runtime.

VAR
 aiCounter : ARRAY[0..9] OF INT;
END_VAR

Lower index limit: 0
Upper index limit: 9

aiCounter : ARRAY[0..9] OF INT := [0, 10, 20, 30, 40, 50, 60, 70,
80, 90];

iLocalVariable := aiCounter[2];
The value 20 is assigned to the local variable.

Example
One-dimen-
sional array of
10 integer ele-
ments

Initialization

Data access

VAR
 aiCardGame : ARRAY[1..2, 3..4] OF INT;
END_VAR

1st dimension: 1 to 2
2nd dimension: 3 to 4

aiCardGame : ARRAY[1..2, 3..4] OF INT := [2(10),2(20)]; // Short
notation for [10, 10, 20, 20]

iLocal_1 := aiCardGame[1, 3]; // Assignment of 10
iLocal_2 := aiCardGame[2, 4]; // Assignment of 20

Example
2-dimensional
array

Initialization

Data access

Syntax for data
access

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2248

VAR
 aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT;
END_VAR

1st dimension: 1 to 2
2nd dimension: 3 to 4
3rd dimension: 5 to 6
2 * 2 * 2 = 8 array elements

aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT := [10, 20, 30, 40, 50,
60, 70, 80];

iLocal_1 := aiCardGame[1, 3, 5]; // Assignment of 10
iLocal_2 := aiCardGame[2, 3, 5]; // Assignment of 20
iLocal_3 := aiCardGame[1, 4, 5]; // Assignment of 30
iLocal_4 := aiCardGame[2, 4, 5]; // Assignment of 40
iLocal_5 := aiCardGame[1, 3, 6]; // Assignment of 50
iLocal_6 := aiCardGame[2, 3, 6]; // Assignment of 60
iLocal_7 := aiCardGame[1, 4, 6]; // Assignment of 70
iLocal_8 := aiCardGame[2, 4, 6]; // Assignment of 80

aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT := [2(10), 2(20),
2(30), 2(40)]; // Short notation for [10, 10, 20, 20, 30, 30, 40,
40]

iLocal_1 := aiCardGame[1, 3, 5]; // Assignment of 10
iLocal_2 := aiCardGame[2, 3, 5]; // Assignment of 10
iLocal_3 := aiCardGame[1, 4, 5]; // Assignment of 20
iLocal_4 := aiCardGame[2, 4, 5]; // Assignment of 20
iLocal_5 := aiCardGame[1, 3, 6]; // Assignment of 30
iLocal_6 := aiCardGame[2, 3, 6]; // Assignment of 30
iLocal_7 := aiCardGame[1, 4, 6]; // Assignment of 40
iLocal_8 := aiCardGame[2, 4, 6]; // Assignment of 40

Example
3-dimensional
array

Initialization

Data access

Initialization

Data access

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2249

TYPE DATA_A
STRUCT
 iA_1 : INT;
 iA_2 : INT;
 dwA_3 : DWORD;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A;
END_VAR

The array aData_A consists of a total of 3 * 3 * 10 = 90 array elements of data type DATA_A.

aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A := [(iA_1 := 1,
iA_2 := 10, dwA_3 := 16#00FF),(iA_1 := 2, iA_2 := 20, dwA_3 :=
16#FF00),(iA_1 := 3, iA_2 := 30, dwA_3 := 16#FFFF)];

In the example, only the first 3 elements are initialized explicitly. Elements to which no initiali-
zation value is assigned explicitly are initialized internally with the default value of the basic
data type. This initializes the structure components at 0 starting with the element aData_A[2,
1, 1].

iLocal_1 := aData_A[1,1,1].iA_1; // Assignment of 1
dwLocal_2 := aData_A[3,1,1].dwA_3; // Assignment of 16#FFFF

Example
3-dimensional
arrays of a
user-defined
structure

Initialize parti-
ally

Data access

FUNCTION BLOCK FBObject_A
VAR
 iCounter : INT;
END_VAR
...

PROGRAM PLC_PRG
VAR
 aObject_A : ARRAY[1..4] OF FBObject_A;
END_VAR

The array aObject_A consists of 4 elements. Each element instantiates a FBObject_A
function block.

aObject_A[2]();

Example
Array of a
function block

Function call

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2250

FUNCTION_BLOCK FB_Something
VAR
 _nId : INT;
 _lrIn : LREAL;
END_VAR
...

METHOD FB_Init : BOOL
VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
 nId : INT;
 lrIn : LREAL;
END_VAR

_nId := nId;
_lrIn := lrIN;

The function block FB_Something has a method FB_Init that requires 2 parameters.

PROGRAM PLC_PRG
VAR
 fb_Something_1 : FB_Something(nId := 11, lrIn := 33.44);
 a_Something : ARRAY[0..1, 0..1] OF FB_Something[(nId := 12,
lrIn := 11.22), (nId := 13, lrIn := 22.33), (nId := 14, lrIn :=
33.55),(nId := 15, lrIn := 11.22)];
END_VAR

Example
Implementa-
tion of
FB_Something
with method
FB_Init

Instantiation of
the array with
initialization

The declaration of an "array of arrays" is an alternative syntax for multidimensional arrays. A
collection of elements is nested instead of dimensioning the elements. The nesting depth is
unlimited.

<variable name> : ARRAY[<first>] (OF ARRAY[<next>])+ OF <data
type> (:= <initialization>)? ;

<first> : <first lower index bound>..<first upper index bound>
<next> : <lower index bound>..<upper index bound> // one or more
arrays
<data type> : elementary data types | user defined data types |
function block types
// (...)+ : One or more further arrays
// (...)? : Optional

<variable name>[<index of first array>] ([<index of next array>])+ ;
// (...)* : 0, one or more further arrays

Array of arrays

Syntax for dec-
laration

Syntax for data
access

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2251

PROGRAM PLC_PRG
VAR
 aiPoints : ARRAY[1..2,1..3] OF INT := [1,2,3,4,5,6];
 ai2Boxes : ARRAY[1..2] OF ARRAY[1..3] OF INT := [[1, 2, 3],
[4, 5, 6]];
 ai3Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF INT :=
[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]], [[13, 14, 15,
16], [17, 18, 19, 20], [21, 22, 23, 24]]];
 ai4Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF
ARRAY[1..5] OF INT;
END_VAR

aiPoints[1, 2] := 1200;
ai2Boxes[1][2] := 1200;

The variables aiPoints and ai2Boxes collect the same data elements, however the syntax
for the declaration differs from that of the data access.

Example

In function blocks, functions, or methods, you can declare arrays of variable length in the
VAR_IN_OUT declaration section.

The LOWER_BOUND and UPPER_BOUND operators are provided for determining the index limits
of the actual used array at runtime.

Only statically declared arrays (not arrays generated by means of the operator
__NEW) may be passed to an array with variable length.

Array of variable
length

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2252

<variable name> : ARRAY[*] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types |
function block types
// (...)? : Optional

<variable name> : ARRAY[* (, *)+] OF <data type> (:=
<initialization>)? ;

<data type> : elementary data types | user defined data types |
function block types
// (...)+ : One or more further dimensions
// (...)? : Optional

LOWER_BOUND(<variable name> , <dimension number>)
UPPER_BOUND(<variable name> , <dimension number>)

The SUM function adds the integer values of the array elements and returns the calculated sum
as a result. The sum is calculated across all array elements available at runtime. As the actual
number of array elements will only be known at runtime, the local variable is declared as a
one-dimensional array of variable length.

FUNCTION SUM: INT;
VAR_IN_OUT
 aiData : ARRAY[*] OF INT;
END_VAR
VAR
 diCounter : DINT;
 iResult : INT;
END_VAR
 iResult := 0;
 FOR diCounter := LOWER_BOUND(aiData, 1) TO
 UPPER_BOUND(aiData, 1) DO // Calculates the
 length of the current array
 iResult := iResult + aiData[diCounter];
END_FOR;
SUM := iResult;

Example

See also
● Ä Chapter 6.4.1.9.4.4 “Declaring arrays” on page 1853
● Ä Chapter 6.4.1.21.2.22.2 “POU 'CheckBounds'” on page 2502

Data Type '__VECTOR'

Vector operations are supported natively only on 64-bit processors and offer
a performance advantage only on these processors. The data sheet of the
controller provides information about the processor used on the controller.

Currently, vector operations on the x86/64-bit platforms with SSE2 and ARM64 with NEON are
supported natively. On all other platforms, vector operations are translated into individual state-
ments. For example, vector addition is then executed with multiple single addition operations.

Syntax of the
declaration of a
one-dimen-
sional array of
variable length

Syntax of the
declaration of a
multi-dimen-
sional array of
variable length

Syntax of the
operators for
calculating the
limit index

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2253

The command set extensions of the processors are SIMD extensions. SIMD (Single Instruction,
Multiple Data) describes a computer architecture in which multiple data sets of the same type
are processed simultaneously in parallel and therefore faster with one command call. In vector
operations, for example, 4 pairs of numbers can then be added at the same time.

<variable name> : __VECTOR[<vector size>] OF <element type> (:=
<initialization>)? ;

<vector size> : 1 |2 | 3 | 4 | 5| 6 | 7| 8
<element type> : REAL | LREAL
// (...)? : Optional
A vector data type is an array of floating-point numbers with a maximum of 8 elements. The
operators __vc<operator name> are available for this data type. You can use these to
implement vector operations without additional function calls.

<variable name>[<index>]
<index> : 0 | 1 | 2| 3 | 4 | 5| 6 | 7
When indexing a vector variable, you can access a single element of the vector. The index
starts at 0 and goes until <vector size> - 1.

PROGRAM PLC_PRG
VAR
 vcA : __VECTOR[3] OF REAL;
END_VAR

vcA[0] := 1.1;
vcA[1] := 2.2;
vcA[2] := 3.3;

Example

Use the optimal vector size depending on your target system as the vector size
in order to program the most efficient code possible.

For target systems whose computer architecture is generally suitable for vector processing, we
do not recommend using vectors of arbitrary size. There is an optimal vector size depending on
the type of data processing of the processor. Vectors that are declared with this array size are
processed as quickly as possible. Vectors that are declared as a larger array do not have an
advantage in speed. Vectors that are declared as smaller arrays do not take full advantage of
the processor's capabilities.
You can query the optimal size at runtime. You can find the information in
the constants Constants.vcOptimalREAL (for vectors with REAL elements) and
Constants.vcOptimalLREAL (for vectors with LREAL elements). The constants have the
LREAL data type. If a constant returns the value 1 as the optimal value, then this means that
accelerated vector processing is not available for the target system.

Syntax

Syntax for index
access

Determining the
optimal vector
size

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2254

PROGRAM PLC_PRG
VAR
 iOVS_REAL : INT; // Optimal vector size for REAL elements
 iOVS_LREAL : INT; // Optimal vector size for LREAL elements
END_VAR

iOVS_REAL := Constants.vcOptimalREAL;
iOVS_LREAL := Constants.vcOptimalLREAL;

An application that is loaded on the CODESYS Control Win V3 x64 target system returns the
following values at runtime:

Example

The operator calculates the sum of two vectors.

<vector variable> := <1st vector operand> __VCADD <2nd vector
operand>;

FUNCTION_BLOCK FB_ADD
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
 vcResult : __VECTOR[3] OF REAL;
END_VAR

vcResult := vcA __VCADD vcB;

Example of
addition

The operator calculates the difference between two vectors.

<vector variable> := <vector minuend> __VCSUB <vector subtrahend>;

Operator
__VCADD
Syntax

Operator
__VCSUB
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2255

FUNCTION_BLOCK FB_SUB
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
 vcResult0 : __VECTOR[3] OF REAL;
 vcResult1 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := vcA __VCSUB vcB;
vcResult1 := vcB __VCSUB vcA;

Example of
subtraction

The operator calculates the product of two vectors or a scalar (floating-point number) and a
vector.

<vector variable> := <1st vector operand> __VCMUL <2nd vector
operand> | <scalar operand> __VCMUL <vector operand> | <vector
operand> __VCMUL <scalar operand> ;

FUNCTION_BLOCK FB_MUL
VAR
 rScalar : REAL := 1.1;
 vcA : __VECTOR[3] OF REAL;
 vcB : __VECTOR[3] OF REAL;
 vcResult0 : __VECTOR[3] OF REAL;
 vcResult1 : __VECTOR[3] OF REAL;
 vcResult2 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := vcA __VCMUL vcB;
vcResult1 := rScalar __VCMUL vcB;
vcResult2 := vcA __VCMUL 3.3;

Example of
multiplication

The operator calculates the quotient of two vectors or a vector and a scalar.

<vector variable> := <vector dividend> __VCDIV <vector divisor> | <
vector dividend> __VCMUL <scalar divisor> ;

Operator
__VCMUL
Syntax

Operator
__VCDIV
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2256

FUNCTION_BLOCK FB_DIV
VAR
 iScalar : INT := 3;
 rScalar : REAL := 1.5;
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
 vcResult0 : __VECTOR[3] OF REAL;
 vcResult1 : __VECTOR[3] OF REAL;
 vcResult2 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := vcA __VCDIV vcB;
// ERROR CODE vcResult1 := rScalar __VCDIV vcB;
// ERROR CODE vcResult1 := iScalar __VCDIV vcB;
// ERROR CODE vcResult1 := 3.3 __VCDIV vcB;
vcResult2 := vcA __VCDIV 1.5;
vcResult2 := vcA __VCDIV iScalar;
vcResult2 := vcA __VCDIV rScalar;

Example of
division

The operator calculates the dot product (scalar product) of two vectors.

<scalar variable> := <1st vector operand> __VCDOT <2nd vector
operand> ;

FUNCTION_BLOCK FB_DOT
VAR
 rResult : REAL;
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
END_VAR

rResult := vcA __VCDOT vcB; // = 18

Example of a
dot product

The operator calculates the square root of each element in the vector.

<vector variable> := __VCSQRT(<vector operand>);

FUNCTION_BLOCK FB_SQRT
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(4, 9, 16);
 vcResult0 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := __VCSQRT(vcA);

Example of a
square root

Operator
__VCDOT
Syntax

Operator
__VCSQRT
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2257

The operator calculates the maximum vector of two vectors. The maximum is determined
element by element.

<vector variable> := __VCMAX(<1st vector operand>, <2nd vector
operand>);

FUNCTION_BLOCK FB_MAX
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 6);
 vcResult0 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := __VCMAX(vcA, vcB);

Example of a
maximum
vector

The operator calculates the minimum vector of two vectors. The minimum is determined ele-
ment by element.

<vector variable> := __VCMIN(<1st vector operand>, <2nd vector
operand>);

FUNCTION_BLOCK FB_MIN
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 6);
 vcResult0 : __VECTOR[3] OF REAL;
END_VAR

vcResult0 := __VCMIN(vcA, vcB);

Example of a
minimum
vector

The operator sets all elements of a vector in a statement. The elements have the REAL data
type.

<vector variable> := __VCSET_REAL(<first literal>, (< next
literal>)+) ;
(...)+ // number of elements have to match

FUNCTION_BLOCK FB_SET
VAR
 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
 vcB : __VECTOR[3] OF REAL := __VCSET_REAL(1, 2, 3);
END_VAR

vcA := __VCSET_REAL(4, 4, 4);
vcB := __VCSET_REAL(1.1, 2.2, 3.3);

Example

Operator
__VCMAX
Syntax

Operator
__VCMIN
Syntax

Operator
__VCSET_REAL
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2258

The operator sets all elements of a vector at once in a statement. The elements have the LREAL
data type.
They can be used wherever variables are valid, such as in assignments in implementations or
as parameters in function calls.

<vector variable> := __VCSET_LREAL(<first literal>, (< next
literal>)+) ;
(...)+ // number of elements have to match

FUNCTION_BLOCK FB_SET
VAR
 vclA : __VECTOR[3] OF LREAL := __VCSET_LREAL(3, 3, 3);
 vclB : __VECTOR[3] OF LREAL := __VCSET_LREAL(1, 2, 3);
END_VAR

vclA := __VCSET_LREAL(-1.7976931348623158E+308, 0.0,
1.7976931348623158E+308);
vclB := __VCSET_LREAL(-1.7976931348623158E+308, 0.0,
1.7976931348623158E+308);

Example

The operator interprets any arbitrary memory area as a vector. This is helpful for connecting
vector variables to existing code. The operator requires 2 parameters. The first parameter
indicates the number of vector elements. The second parameter is a pointer to the REAL data.

<vector variable> := __VCLOAD_REAL(<vector size>, <pointer to data
of type REAL>) ;
<vector size> : 2 | 3 | 4 | 5| 6 | 7| 8

FUNCTION_BLOCK FB_LOAD
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 rData0 : REAL := 1.234;
 rData1: REAL := 5.678;
 rData2 : REAL := 9.123;
 pData: POINTER TO REAL := ADR(rData0);

 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(3, 3, 3);
END_VAR

vcA := __VCLOAD_REAL(3, pData);

Example of
vectorization

The operator interprets any arbitrary memory area as a vector. This is helpful for connecting
vector variables to existing code. The operator requires 2 parameters. The first parameter
indicates the number of vector elements. The second parameter is a pointer to the LREAL data.

<vector variable> := __VCLOAD_REAL(<vector size>, <pointer to data
of type LREAL>);
<number of vector elements> : 1 | 2 | 3 | 4 | 5| 6 | 7| 8

Operator
__VCSET_LREA
L

Syntax

Operator
__VCLOAD_RE
AL
Syntax

Operator
__VCLOAD_LRE
AL
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2259

FUNCTION_BLOCK FB_LOAD
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 lrData0 : LREAL := -1.7976931348623158E+308;
 lrData1: LREAL := 1.6E+308;
 lrData2 : LREAL := 1.7E+308;
 lrData3 : LREAL := -1.6E+308;
 plData: POINTER TO LREAL := ADR(lrData0);

 vclA : __VECTOR[4] OF LREAL := __VCSET_LREAL(4, 4, 4, 4);
END_VAR
vclA := __VCLOAD_LREAL(4, plData);

Example of
vectorization

The operator saves/copies the contents of the vector to the specified memory address. The
number and the types of elements are automatically applied from the vector variables.

__VCSTORE(<pointer to data>, <vector variable>);

FUNCTION_BLOCK FB_STORE
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 rData0 : REAL := 3;
 rData1: REAL := 3;
 rData2 : REAL := 3;
 pData: POINTER TO REAL := ADR(rData0);

 lrData0 : LREAL := 4;
 lrData1: LREAL := 4;
 lrData2 : LREAL := 4;
 lrData3 : LREAL := 4;
 plData: POINTER TO LREAL := ADR(lrData0);

 vcA : __VECTOR[3] OF REAL := __VCSET_REAL(1.234, 5.678, 9.123);
 vclA : __VECTOR[4] OF LREAL :=
__VCSET_LREAL(-1.7976931348623158E+308, 1.6E+308, 1.7E+308,
-1.6E+308);
END_VAR

__VCSTORE(pData, vcA);
__VCSTORE(plData, vclA);

Example of
storage

See also
● Ä Chapter 6.4.1.9.4.4 “Declaring arrays” on page 1853
● Ä Chapter 6.4.1.21.2.22.2 “POU 'CheckBounds'” on page 2502

Operator
__VCSTORE
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2260

Structure
A structure is a user-defined data type, which combines multiple variables of any data type into
a logical unit. The variables declared within a structure are called members.
You make the type declaration of a structure in a “DUT” object which you create in the “Project
è Add Object è DUT” menu or in the context menu of an application.

TYPE <structure name> :
STRUCT
 (<variable declaration optional with initialization>)+
END_STRUCT
END_TYPE
<structure name> is an identifier which is valid in the entire project so that you can use it like
a standard data type. Moreover, you can declare any number of variables (at least one) which
are supplemented optionally by an initialization.
Structures can also be nested. This means that you declare a structure member with an existing
structure type. Then the only restriction is that you must not assign any address to the variable
(structure member). (The AT declaration is not permitted here.)

TYPE S_POLYGONLINE :
STRUCT
 aiStart : ARRAY[1..2] OF INT := [-99, -99];
 aiPoint1 : ARRAY[1..2] OF INT;
 aiPoint2 : ARRAY[1..2] OF INT;
 aiPoint3 : ARRAY[1..2] OF INT;
 aiPoint4 : ARRAY[1..2] OF INT;
 aiEnd : ARRAY[1..2] OF INT := [99, 99];
END_STRUCT
END_TYPE

Example
Type declara-
tion

An additional structure is declared from an existing structure. In addition to its own members,
the extended structure also has the same structure members as the base structure.

TYPE <structure name> EXTENDS <basis structure> :
STRUCT
 (<variable declaration optional with initialization>)+
END_STRUCT
END_TYPE

TYPE S_PENTAGON EXTENDS S_POLYGONLINE :
STRUCT
 aiPoint5 : ARRAY[1..2] OF INT;
END_STRUCT
END_TYPE

Example
Type declara-
tion

Syntax

Extension of a
type declaration
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2261

PROGRAM progLine
VAR
 sPolygon : S_POLYGONLINE := (aiStart:=[1,1], aiPoint1:=[5,2],
aiPoint2:=[7,3], aiPoint3:=[8,5], aiPoint4:=[5,7], aiEnd:=[1,1]);
 sPentagon : S_PENTAGON := (aiStart:=[0,0], aiPoint1:=[1,1],
aiPoint2:=[2,2], aiPoint3:=[3,3], aiPoint4:=[4,4], aiPoint5:=[5,5],
aiEnd:=[0,0]);
END_VAR

Example

You must not permitted to use initializations with variables. For an example of initializing an
array of a structure, see the help page for the data type ARRAY.

You access structure members with the following syntax:
<variable name> . <component name>

PROGRAM prog_Polygon
VAR
 sPolygon : S_POLYGONLINE := (aiStart:=[1,1], aiPoint1:=[5,2],
aiPoint2:=[7,3], aiPoint3:=[8,5], aiPoint4:=[5,7], aiEnd:=[1,1]);
 iPoint: INT;
END_VAR

// Assigns 5 to aiPoint
iPoint := sPolygon.aiPoint1[1];

Result: iPoint = 5

Example

You can declare a structure with variables of data type BIT to combine individual bits into a
logical unit. Then you can symbolically address individual bits by a name (instead of by a bit
index).

TYPE <structure name> :
STRUCT
 (<bit name> : BIT;)+
END_STRUCT
END_TYPE
<structure name> . <bit name>

Declaration and
initialization of
structure varia-
bles

Access to a
structure
member

Symbolic bit
access in struc-
ture variables
Syntax declara-
tion

Syntax of bit
access

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2262

TYPE S_CONTROL :
STRUCT
 bitOperationEnabled : BIT;
 bitSwitchOnActive : BIT;
 bitEnableOperation : BIT;
 bitError : BIT;
 bitVoltageEnabled : BIT;
 bitQuickStop : BIT;
 bitSwitchOnLocked : BIT;
 bitWarning : BIT;
END_STRUCT
END_TYPE

FUNCTION_BLOCK FB_Controller
VAR_INPUT
 xStart : BOOL;
END_VAR
VAR_OUTPUT
END_VAR
VAR
 ControlDriveA : S_CONTROL;
END_VAR

IF xStart = TRUE THEN
 // Symbolic bit access
 ControlDriveA.bitEnableOperation := TRUE;
END_IF

PROGRAM PLC_PRG
VAR
 fbController : FB_Controller;
END_VAR

fbController();
fbController.xStart := TRUE;

Example
Type declara-
tion

Bit access

References and pointers to BIT variables are invalid declarations, as well as
array elements with base type BIT.

See also
● Ä Chapter 6.4.1.20.4.11 “Bit Access in Variables” on page 2229

See also
● Ä Chapter 6.4.1.20.5.15 “Data Type 'ARRAY'” on page 2247
● Ä Chapter 6.4.1.20.5.11 “Data Type 'BIT'” on page 2243
● Ä Chapter 6.4.1.21.2.9 “Object 'DUT'” on page 2461

Enumerations
An enumeration is a user-defined data type composed of a series of comma-sepa-
rated components (enumeration values) for declaring user-defined variables. Moreover,
you can use the enumeration components like constants whose identifier <enumeration
name>.<component name> is recognized globally in the project.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2263

You declare an enumeration in a DUT object, which you have already created in the project by
clicking “Add Object”.

({attribute 'strict'})? // Pragma optional but recommended
TYPE <enumeration name> :
(
 <first component declaration>,
 (<component declaration> ,)+
 <last component declaration>
)(<basic data type>)? (:= <default variable initialization>)? ;
END_TYPE

(...)? : Optional
<component declaration> : <component name> (:= <component
initialization>)?
<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT |
ULINT | BYTE | WORD | DWORD | LWORD
<variable initialization> : <one of the component names>
In an enumeration declaration, at least 2 components are usually declared. However, you can
declare as many as you want. Every single component can be assigned its own initialization.
Enumerations automatically have the basic data type INT, but you can specify another basic
data type. Moreover, you can specify a component in the declaration with which an enumeration
variable is then initialized.
The pragma {attribute 'strict'} causes a strict type test to be performed as described
below.

{attribute 'qualified_only'}
{attribute 'strict'}
TYPE COLOR_BASIC :
(
 yellow,
 green,
 blue,
 black
)
; // Basic data type is INT, default initialization for all
COLOR_BASIC variables is yellow
END_TYPE

Example

Extensions to the IEC 61131-3 standard
The basic data type for an enumeration declaration is INT by default. However, you can also
declare enumerations that are based explicitly on another integer data type.
<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT |
ULINT | BYTE | WORD | DWORD | LWORD

Declaration
Syntax

Enumeration
with explicit
basic data type

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2264

TYPE COLOR :
(
 white := 16#FFFFFF00,
 yellow := 16#FFFFFF00,
 green := 16#FF00FF00,
 blue := 16#FF0000FF,
 black := 16#88000000
) DWORD := black; // Basic data type is DWORD, default
initialization for all COLOR variables is black
END_TYPE

Example
Enumeration
with basic data
type DWORD

NOTICE!
In CODESYS V3.5 SP7 and later, the pragma {attribute 'strict'} is
added automatically in the first line when declaring an enumeration.

The strict programming rules are activated when adding the pragma {attribute
'strict'}.

The following code is considered a compiler error:
● Arithmetic operations with enumeration components

For example, an enumeration variable cannot be used as a counter variable in a FOR loop.
● Assignment of a constant value, which does not correspond to an enumeration value, to an

enumeration component
● Assignment of a non-constant variable, which has another data type as the enumeration, to

an enumeration component
Arithmetic operations can lead to undeclared values being assigned to enumeration compo-
nents. A better programming style is to use SWITCH/CASE statements for processing component
values.

<variable name> : <enumeration name> (:= <initialization>)? ;
For a declaration of an enumeration variable with user-defined data type <enumeration
name>, this can be initialized with an enumeration component.

PROGRAM PLC_PRG
VAR
 colorCar: COLOR;
 colorTaxi : COLOR := COLOR.yellow;
END_VAR

The variable colorCar is initialized with COLOR.black. That is the default initialization for all
enumeration variables of type COLOR and defined this way in the type declaration. The variable
colorTaxi has its own initialization.

Example

If no initializations are specified, then the initialization value is 0.

Strict program-
ming rules

Declaration and
initialization of
enumeration
variables
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2265

PROGRAM PLC_PRG
VAR
 cbFlower : COLOR_BASIC;
 cbTree: COLOR_BASIC := COLOR_BASIC.green;
END_VAR

The variable cbFlower is initialized with COLOR_BASIC.yellow. That is the default initializa-
tion for all enumeration variables of type COLOR_BASIC. Because the enumeration declaration
does not specify a component for initialization, the system automatically initializes with the
component that has the value 0. This is usually the first of the enumeration components. How-
ever, it can also be another component that is not in the first position but explicitly initialized
with 0.
The variable cbTree has an explicit initialization.

Example

If no value is specified for both the type and the variable, then the following rule applies: If an
enumeration contains a value for 0, then this value is the default initialization, and if not, then
the first component in the list.

TYPE ENUM :
(
 e1 := 2,
 e2 := 0,
 e3
)
;
END_TYPE

PROGRAM PLC_PRG
VAR
 e : ENUM;
END_VAR

The variable e is initialized with ENUM.e2.

TYPE ENUM2 :
(
 e1 := 3,
 e2 := 1,
 e3
)
;
END_TYPE

PROGRAM PLC_PRG
VAR
 e2 : ENUM2;
END_VAR

The variable e2 is initialized with ENUM.e1.

Example
Initialization
with the 0 com-
ponent

Initialization
with the first
component

Extensions to the IEC 61131-3 standard
The enumeration components can also be used as constant variables with the identifier
<enumeration name>.<component name>. Enumeration components are recognized glob-
ally in the project and access to them is unique. Therefore, a component name can be used in
different enumerations.

Unique access
to enumeration
components

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2266

PROGRAM PLC_PRG
VAR
 cbFlower : COLOR_BASIC;
 colorCar : COLOR;
END_VAR

(* unambiguous identifiers although the component names are
identical *)
cbFlower := COLOR_BASIC.blue;
colorCar := COLOR.blue;

(* invalid code *)
cbFlower := blue;
colorCar := blue;

Example
Component
blue

See also
● Ä Chapter 6.4.1.20.3.73 “Operator - Enumeration namespace” on page 2217

Alias
An alias is a user-defined data type with which an alternative name for a basic type, data type,
or function block is generated.
You make the type declaration of an alias in a “DUT” object which you create in the “Project
è Add Object è DUT” menu or in the context menu of an application.
TYPE <DUT name> : <basic type> | <data type> | <function block
name> ;
END_TYPE

FUNCTION_BLOCK FB_Machine
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iCounter : INT;
END_VAR
iCounter := iCounter + 1;

// Alias for FB_Machine
TYPE A_ROBOT : FB_Machine;
END_TYPE

PROGRAM prog_Robot
VAR
 fbRobot : A_ROBOT;
END_VAR
fbRobot();

Example

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2267

Data type 'UNION'
A UNION is a data structure that usually contains different data types.
In a union, all components have the same offset and therefore the same amount of memory. In
the following declaration example of a union, an assignment to name.a will also affect name.b.

TYPE name:
UNION
 a : LREAL;
 b : LINT;
END_UNION
END_TYPE

Example

Subrange types
A subrange type is a data type whose value range is a subset of a base type.
Syntax for the declaration:

<name> : <int type> (<lower limit>..<upper limit>);

<name> valid IEC identifier
<int
type>

data type of the subrange
(SINT, USINT, INT, UINT, DINT, UDINT, BYTE, WORD, DWORD, LINT, ULINT,
LWORD).

<lower
limit>

Lower limit of the range: constants that have to be compatible with the basic data
type. The lower limit is also included in this range.

<upper
limit>

Upper limit of the range: constants that have to be compatible with the base data
type. The upper limit is also included in this range.

VAR
 i : INT (-4095..4095);
 ui : UINT (0..10000);
END_VAR

Examples:

If you assign a value to a subrange type in the declaration or implementation section that is not
within this range (example: i:=5000), then CODESYS issues an error message.

Please note: In runtime mode, it is possible to monitor the range limits of a
subrange type by using the implicit monitoring functions CheckRangeSigned
and CheckRangeUnsigned.

See also
● Ä Chapter 6.4.1.21.2.22.8 “POU 'CheckLRangeSigned'” on page 2510
● Ä Chapter 6.4.1.21.2.22.10 “POU 'CheckLRangeUnsigned'” on page 2512

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2268

6.4.1.20.6 Pragmas
6.4.1.20.6.1 General... 2269
6.4.1.20.6.2 Message Pragmas... 2269
6.4.1.20.6.3 Attribute Pragmas... 2271
6.4.1.20.6.4 Conditional Pragmas.. 2318
6.4.1.20.6.5 Region Pragma.. 2327

General
Pragma instructions affect the properties of one or more variables with regard to the compilation
or pre-compilation process. Various categories of pragmas are available to you for this.

Pragmas are special statements that influence the behavior of an AC500 V3 project during
compilation (build) and precompilation. The basic functionalities and use cases for AC500 V3
PLCs are described in the application note AC500 V3 Using Pragmas.

Message Pragmas
Message pragmas serve to force the display of messages in the Message window during the
compilation process.
Insertion position: separate or already existing line in the text editor of a POU.

Table 400: 4 types of message pragmas
Pragma Message type
{text
<'textstring'
>}

“Text”: display of <textstring>.

{info
<'textstring'
>}

“Information ”: display of <textstring>.

{warning
<'textstring'
>}

“Warning”: display of <textstring>.
Unlike the attribute pragma 'obsolete', you define the warning locally
for the current position.

{error
<'textstring'
>}

“Error ”: display of <textstring>.

In the CODESYS Message window you can jump with the help of the com-
mands “Next Message” and “Previous Message” from a message of the cate-
gory “Information”, “Warning” and “Error” to the source position of the message.
This means you jump to the position where the pragma is added in the source
code.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2269

https://search-ext.abb.com/library/Download.aspx?DocumentID=3ADR010570&LanguageCode=en&DocumentPartId=&Action=Launch

VAR
 var : INT; {info 'TODO: should get another name'}
 bvar : BOOL;
 arrTest : ARRAY [0..10] OF INT;
 i:INT;

END_VAR
 arrTest[i] := arrTest[i]+1;
 ivar:=ivar+1;

 {warning 'This is a warning'}
 {text 'Part xy has been compiled completely'}

Display in the Message window:

Example

See also
● Ä Chapter 6.4.1.20.6.4 “Conditional Pragmas” on page 2318

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2270

Attribute Pragmas
6.4.1.20.6.3.1 General.. 2271
6.4.1.20.6.3.2 User-defined attributes.. 2272
6.4.1.20.6.3.3 Attribute 'call_after_global_init_slot'.. 2273
6.4.1.20.6.3.4 Attribute 'call_after_init'.. 2273
6.4.1.20.6.3.5 Attribute 'call_after_online_change_slot'................................. 2274
6.4.1.20.6.3.6 Attribute 'call_before_global_exit_slot'.................................... 2275
6.4.1.20.6.3.7 Attribute 'call_on_type_change'... 2275
6.4.1.20.6.3.8 Attribute 'conditionalshow'... 2276
6.4.1.20.6.3.9 Attribute 'conditionalshow_all_locals'...................................... 2277
6.4.1.20.6.3.10 Attribute 'const_replaced', Attribute 'const_non_replaced'.... 2278
6.4.1.20.6.3.11 Attribute 'dataflow'.. 2279
6.4.1.20.6.3.12 Attribute 'displaymode'... 2280
6.4.1.20.6.3.13 Attribute 'enable_dynamic_creation'...................................... 2281
6.4.1.20.6.3.14 Attribute 'estimated-stack-usage'... 2281
6.4.1.20.6.3.15 Attribute 'ExpandFully'... 2284
6.4.1.20.6.3.16 Attribute 'global_init_slot'... 2285
6.4.1.20.6.3.17 Attribute 'hide'.. 2286
6.4.1.20.6.3.18 Attribute 'hide_all_locals'... 2289
6.4.1.20.6.3.19 Attribute 'initialize_on_call'... 2290
6.4.1.20.6.3.20 Attribute 'init_namespace'.. 2291
6.4.1.20.6.3.21 Attribute 'init_on_onlchange'.. 2291
6.4.1.20.6.3.22 Attribute 'instance-path'... 2292
6.4.1.20.6.3.23 Attribute 'io_function_block', 'io_function_block_mapping'.... 2293
6.4.1.20.6.3.24 Attribute 'is_connected'.. 2293
6.4.1.20.6.3.25 Attribute 'linkalways'.. 2294
6.4.1.20.6.3.26 Attribute 'monitoring'.. 2295
6.4.1.20.6.3.27 Attribute 'monitoring_encoding'... 2297
6.4.1.20.6.3.28 Attribute 'no_assign', Attribute 'no_assign_warning'.............. 2298
6.4.1.20.6.3.29 Attribute 'no_check'... 2298
6.4.1.20.6.3.30 Attribute 'no_copy'... 2299
6.4.1.20.6.3.31 Attribute 'no-exit'.. 2299
6.4.1.20.6.3.32 Attribute 'noinit'.. 2299
6.4.1.20.6.3.33 Attribute 'no_instance_in_retain'.. 2300
6.4.1.20.6.3.34 Attribute 'no_virtual_actions'.. 2300
6.4.1.20.6.3.35 Attribute 'pingroup'... 2302
6.4.1.20.6.3.36 Attribute 'pin_presentation_order_inputs/outputs'................. 2303
6.4.1.20.6.3.37 Attribute 'obsolete'... 2304
6.4.1.20.6.3.38 Attribute 'pack_mode'.. 2305
6.4.1.20.6.3.39 Attribute 'ProcessValue'... 2312
6.4.1.20.6.3.40 Attribute 'qualified_only'... 2312
6.4.1.20.6.3.41 Attribute 'reflection'.. 2313
6.4.1.20.6.3.42 Attribute 'subsequent'.. 2313
6.4.1.20.6.3.43 Attribute 'symbol'... 2314
6.4.1.20.6.3.44 Attribute 'to_string'... 2314
6.4.1.20.6.3.45 Attribute 'warning disable', attribute 'warning restore'............ 2315
6.4.1.20.6.3.46 Effects of Pragmas on Symbols ... 2315

General
Attribute pragmas affect the compilation and the pre-compilation.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2271

CODESYS supports a series of pre-defined attribute pragmas. In addition you can use user-
defined pragmas, which you can query with the help of conditional pragmas before the compila-
tion of the project.
Attributes are defined within the declaration part. Exception: For the objects Action and Transi-
tion, which have no own declaration part, you can define the attributes at the beginning of the
implementation part

When you define own attributes, please make them unambiguous. Uniqueness
can be reached for example by adding a prefix to the attribute name. OEMs can
use the vendor prefix for this purpose.

User-defined attributes
User-defined attributes are any application-defined or user-defined attributes that you can apply
to POUs, actions, data type definitions and variables. You can query a user-defined attribute
with the help of conditional pragmas before the compilation of the application.

You can query user-defined attributes with conditional pragmas with the oper-
ator hasattribute.

More detailed information and examples can be found in the chapter 'Condi-
tional pragmas'.

Syntax:
{attribute 'attribute'}

{attribute 'vision'}
FUNCTION fun1 : INT
VAR_INPUT
 i : INT;
END_VAR

Attribute
'vision' for
function “fun1”

PROGRAM PLC_PRG
VAR
 {attribute 'DoCount'};
 ivar:INT;
 bvar:BOOL;
END_VAR

Attribute
'DoCount' for
variable ivar :

Example for
POUs and
actions

Example for var-
iables

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2272

{attribute 'aType'}
TYPE DUT_1 :
STRUCT
 a:INT;
 b:BOOL;
END_STRUCT
END_TYPE

Attribute
'aType' for
data type
DUT_1:

See also
● Ä Chapter 6.4.1.20.6.4 “Conditional Pragmas” on page 2318

Attribute 'call_after_global_init_slot'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that all functions and programs containing this attribute are called
after the global initialization. You define the order of calling by means of the attribute value.
Syntax:
{attribute 'call_after_global_init_slot' := '<slot>'}
<slot>: Integer value that defines the ranking in the order of the calls; the lower the value, the
earlier the call takes place. If several function blocks have the same ranking for the attribute,
then the order of their calls remains indefinite.
Insert location: First line above the declaration part of functions and programs
If a method possesses the attribute, CODESYS determines all instances of the corresponding
function block and calls all instances in the specified slot. In this case you have no influence on
the order of the instances among themselves.
See also
● Ä Chapter 6.4.1.20.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 2336

Attribute 'call_after_init'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that a method is called implicitly after the initialization of a function
block instance. For reasons of performance you must add the attribute both to the function block
and to the method in its own first line above the declaration part.

Example for
data types

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2273

Syntax:
{attribute 'call_after_init'}
Call: First line above the declaration part of the method and the function block.
CODESYS calls the method after the method FB_init and after the variable values of an initiali-
zation expression in the instance declaration have become valid.
This functionality is supported from compiler version 3.4.1.0.

Definition:
{attribute 'call_after_init'}
FUNCTION_BLOCK FB
... <function block definition>

{attribute 'call_after_init'}
METHOD FB_AfterInit
... <method definition>

The definition implements, for example, the following declaration in the subsequent code
processing:
inst : FB := (in1 := 99);

Code processing:
inst.FB_Init();
inst.in1 := 99;
inst.FB_AfterInit();

This allows a reaction to the user-defined initialization in FB_AfterInit.

Example

See also
● Ä Chapter 6.4.1.20.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 2336

Attribute 'call_after_online_change_slot'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that all functions and programs containing this attribute are called
after an online change. You define the order of calling by means of the attribute <slot>.

Syntax:
{attribute 'call_after_online_change_slot' := '<slot>'}
<slot>: Integer value that defines the ranking in the order of the calls; the lower the value, the
earlier the call takes place. If several function blocks have the same ranking for the attribute,
then the order of their calls remains indefinite.
Call: First line above the declaration part of functions and programs.
If a method possesses the attribute, then CODESYS determines all instances of the function
block concerned. CODESYS calls all instances in the specified slot. In this case you have no
influence on the order of the instances among themselves.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2274

NOTICE!
Since the application cannot run during the online change, each code executed
in this situation can lead to a jitter. Therefore, keep the extent of the executive
code as small as possible.

See also
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629

Attribute 'call_before_global_exit_slot'

NOTICE!
VAR_INPUT declarations in functions or methods that use the attribute lead to
compile errors. Reason: Input variables are unknown in this case at the time of
the call, which occurs implicitly during the online change.

The effect of this pragma is that all functions and programs containing this attribute in a dedi-
cated first line of their declaration are called before the GlobalExit. The GlobalExit takes place
before a new download or a reset. Function blocks provided with an FB_Exit method are
affected. The order of calling is defined by means of the attribute value.
Syntax:
{attribute 'call_before_global_exit_slot' := '<slot>'}
Insert location: First line above the declaration part of functions and programs.
<slot>: Integer value that defines the ranking in the order of the calls; the lower the value, the
earlier the call takes place. If several function blocks have the same ranking for the attribute,
then the order of their calls remains indefinite.
If a method possesses the attribute, then the method is called for all instances of the function
block concerned. CODESYS calls all instances in the specified slot. In this case you have no
influence on the order of the instances among themselves.
See also
● Ä Chapter 6.4.1.20.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 2336

Attribute 'call_on_type_change'
With this pragma, you can mark a method of a function block A that should be called when
the data type changes for one or more function blocks B, C, etc. that are referenced by A. The
referencing can be defined by a pointer variable or a REFERENCE variable.

Syntax:
{attribute 'call_on_type_change':= '<name of the first referenced
function block>|<name of the second referenced function block>|<name
of the ... referenced function block>'}
Insert location: Line above the first line in the method declaration.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2275

FUNCTION_BLOCK FB_A
...
VAR
 var_pt: POINTER TO FB_B;
 var_ref: REFERENCE TO FB_C;
END_VAR
...

{attribute 'call_on_type_change' := 'FB_B, FB_C'}
METHOD METH_react_on_type_change : INT
VAR_INPUT
...

Example
Function
blocks with ref-
erences

Method for
reaction to a
type change in
the references
FB_B and
FB_C

Attribute 'conditionalshow'
The pragma has the effect that the identifiers of an integrated compiled library <library
name> .compiled-library, which are decorated with the pragma, are hidden before pro-
gramming an application. The POUs can be called but the variables are invisible in the
CODESYS user interface.
Affected features
● Library management
● Debugging
● Input Assistant
● Function "List components"
● Monitoring
● Symbol configuration
This is useful when you develop libraries. As the library developer, you decorate function blocks
or variables with the pragma. As a result, you determine which identifiers are hidden in an
application after integration. If you want to show the hidden identifiers later, for example for
debugging or further development of the library, you can reactivate its visibility.
Syntax
{attribute 'conditionalshow' (:= ' <some text> ')? }
<some text>: Optional string literal to control the visibility of the identifiers decorated with this
kind of pragma by means of a command-line command and this literal. When the pragma is
specified without a literal, the variables in the CODESYS development environment are always
hidden, regardless of how CODESYS was started. For more help about this, see the document
"Library Development Summary".
Insert location: Top line in the declaration part of a function block, above a variable

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2276

For more examples, see the document "Library Development Summary".
FUNCTION_BLOCK FB_DataManager
VAR
 {attribute 'conditionalshow' := 'Library_Developer'}
 iLocal : INT;
 iCounter : INT;
END_VAR

The variable iLocal is invisible.
{attribute 'conditionalshow' := 'Library_Developer'}
FUNCTION_BLOCK FB_DataManager
VAR
 iLocal : INT;
 iCounter : INT;
END_VAR

The identifiers FB_DataManager, iLocal, and iCounter are invisible.

Example
Hiding a vari-
able

Hiding a func-
tion block

When the source code file <library name> .library from an integrated library also exists
at the same memory location (repository), the identifiers are visible despite the pragmas. That is
regardless of whether or not an attribute value has been specified in the declaration.

You can also enable the visibility of the hidden variable without a source code file by starting
CODESYS with the command-line option conditionalshowsymbols. To enable the visibility,
specify the attribute values of the pragma which are separated by commas.
codesys.exe --conditionalshowsymbols=" <some text> (,<next text>)*
"

codesys.exe --conditionalshowsymbols="Library_Developer"
codesys.exe --conditionalshowsymbols="Group_A,Group_B"

Example

See also
● Ä Chapter 6.4.1.16 “Using the Command-Line Interface” on page 2028
● Ä Chapter 6.4.1.20.6.3.17 “Attribute 'hide'” on page 2286
● Ä Chapter 6.4.1.20.6.3.9 “Attribute 'conditionalshow_all_locals'” on page 2277
● "Library Development Summary", "Visibility Control" Chapter

Attribute 'conditionalshow_all_locals'
The pragma has the effect that all local variables of a library POU decorated with the
pragma are hidden from application programmers. The POUs of an integrated compiled library
<library name> .compiled-library can be called, but the variables are invisible in the
CODESYS user interface.
Affects features:
● Library management
● Debugging
● Input Assistant
● Function "List components"
● Monitoring
● Symbol configuration

Visibility in case
of existing
source code file

Command-line
call to activate
visibility
Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2277

This is useful when you develop libraries. As the library developer, you decorate function blocks
with the pragma. As a result, you determine that their identifiers are hidden in an application
after integration. If you want to show these identifiers later, for example for debugging or further
development of the library, you can reactivate its visibility.
Syntax
{attribute 'conditionalshow_all_locals' (:= ' <some text> ')? }
<some text>: Optional string literal to control the visibility of the identifiers decorated with this
kind of pragma by means of a command-line command and this literal. When the pragma is
specified without a literal, the variables in the CODESYS development environment are always
hidden, regardless of how CODESYS was started. For more help about this, see the document
"Library Development Summary".
Insert location: Top line in the declaration part of the function block.

{attribute 'conditionalshow_all_locals' := 'Library_Developer'}
FUNCTION_BLOCK FB_DataManager
VAR
 iLocal : INT;
 iCounter : INT;
END_VAR

For more examples, see the document "Library Development Summary".

Example
Hiding all local
variables

When the source code file <library name> .library from an integrated library also exists
at the same memory location (repository), the library POU variables are visible despite the
pragmas. That is regardless of whether or not an attribute value has been specified in the
declaration.

You can also enable the visibility of the hidden variable without a source code file by starting
CODESYS with the command-line option conditionalshowsymbols. To enable the visibility,
specify the attribute values of the pragma which are separated by commas.
codesys.exe --conditionalshowsymbols=" <some text> (,<next text>)*
"

codesys.exe --conditionalshowsymbols="Library_Developer"
codesys.exe --conditionalshowsymbols="Group_A,Group_B"

Example

See also
● Ä Chapter 6.4.1.20.6.3.18 “Attribute 'hide_all_locals'” on page 2289
● Ä Chapter 6.4.1.20.6.3.8 “Attribute 'conditionalshow'” on page 2276
● "Library Development Summary", chapter "Visibility Control"

Attribute 'const_replaced', Attribute 'const_non_replaced'
The attribute 'const_replaced' has the effect that the constant is replaced in the code,
independently of the setting of the “Replace constants” compiler option. The attribute has an
effect for variables of scalar types only, but not for compound types like arrays and structures.
You insert the pragma {attribute 'const_non_replaced'} accordingly in order to explic-
itly deactivate the “Replace constants” compiler option. This has the effect, for example in the
symbol configuration, that the constant is available and can be exported despite the compiler
option.

Visibility in case
of existing
source code file

Command-line
call to activate
visibility
Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2278

The “Replace constants” option in the “Compile Options” category of the “Project Settings”
dialog is preset for the entire project, because replacing constants generally leads to faster code
and less memory usage.
Syntax:
{attribute 'const_replaced'}
{attribute 'const_non_replaced'}
Insert location: Line above the declaration line of the global variables.

The constants iTestCon and xTestCon are available in the symbol configuration because
the “Replace constants” option deactivated.
{attribute 'qualified_only'}
VAR_GLOBAL CONSTANT
 {attribute 'const_non_replaced'}
 iTestCon : INT := 12;
 {attribute 'const_non_replaced'}
 xTestCon : BOOL := TRUE;
 rTestCon : REAL := 1.5;
END_VAR

VAR_GLOBAL
 iTestVar : INT := 12;
 xTestVar : BOOL := TRUE;
END_VAR

Example

See also
● Ä Chapter 6.4.1.21.4.12.4 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 2769
● Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941

Attribute 'dataflow'
With this pragma you control the data flow in the processing of function blocks in the FBD/LD/IL
editor. The attribute defines the input or output of a function block to which the continuing
connection to the next or previous function block is connected.
You may provide only 1 input and 1 output with the attribute in the declaration of a function
block.
Syntax:
{attribute 'dataflow'}
Insertion position: line above the line with the declaration of the corresponding variables.
In the case of function blocks without the attribute 'dataflow', CODESYS determines the
data flow as follows: first of all the connection is placed between an output and an input of same
data type. The highest input or output variable of the function blocks is always taken. If there
are no variables of a corresponding data type, CODESYS connects the highest output with the
highest input of the neighboring function blocks.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2279

The connection between FB and the preceding function block is established via the input
variable i1. The connection between FB and the following function block is established via the
output variable outRes1.
FUNCTION_BLOCK FB
VAR_INPUT
 r1 : REAL;
 {attribute 'dataflow'}
 i1 : INT;
 i2 : INT;
 r2 : REAL;
END_VAR

VAR_OUTPUT
{attribute 'dataflow'}
 outRes1 : REAL;
 out1 : INT;
 g1 : INT;
 g2 : REAL;
END_VAR

Example

See also
● Ä Chapter 6.4.1.9.5.2.2 “Programming function block diagrams (FBD)” on page 1862

Attribute 'displaymode'
With this pragma you define the display mode of an individual variable. This definition overwrites
the global setting for the display of the monitoring variable, which takes place via the commands
in the menu “Debug è Display Mode”.
Syntax:
{attribute 'displaymode':=<displaymode>}
The following definitions are possible
● Binary format

– {attribute 'displaymode':='bin'}
– {attribute 'displaymode':='binary'}

● Decimal format
– attribute 'displaymode':='dec'}
– {attribute 'displaymode':='decimal'}

● Hexadecimal format
– {attribute 'displaymode':='hex'}
– attribute 'displaymode':='hexadecimal'}

Insertion position: line above the line with the declaration of the corresponding variables.

VAR
 {attribute 'displaymode':='hex'}
 dwVar1: DWORD;
END_VAR

Example

See also
● Ä Chapter 6.4.1.21.3.8.24 “Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'”

on page 2654

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2280

Attribute 'enable_dynamic_creation'
The pragma enable_dynamic_creation is needed for using the __NEW operator for function
blocks.
Syntax:
{attribute 'enable_dynamic_creation'}
Insert location: First line in the declaration of the function block.
See also
● Ä Chapter 6.4.1.20.3.59 “Operator '__NEW'” on page 2201

Attribute 'estimated-stack-usage'
The pragma provides an estimated value for the stack size requirement.
Methods with recursive calls cannot pass a stack check because stack usage cannot be deter-
mined. As a result, a warning is issued. To prevent this warning, you can give the method an
estimated value (in bytes) for the stack size requirement. Then the method passes the stack
check successfully.
 {attribute 'estimated-stack-usage' := '<estimated stack size in
bytes>'}

{attribute 'estimated-stack-usage' := '127'} // 127 bytes
METHOD PUBLIC DoIt : BOOL
VAR_INPUT
END_VAR

Example

Insert location: First line above the declaration part of the method.
The section "Method call" includes an example that uses this pragma.

Within its implementation, a method can call itself, either directly by means of the THIS pointer,
or by means of a local variable for the assigned function block.

Use recursions mainly for processing recursive data types such as linked lists.
In general, we recommend to be careful when using recursion, as unexpectedly
deep recursions can cause stack overflow and machine downtime.

Syntax

Recursive
method call

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2281

The following program PLC_PRG calculates the factorial of a number in the FB_Factorial
function block in a different way, each in its own method.
● Method m_Iterative: Iterative
● Method m_Pragmaed: Recursive with warning suppression
● Method m_Recursive: Recursive
● Method m_Temp: Temporary with warning suppression

A warning is issued for the m_Recursive method only.

// Contains the data of the factorial calculation of uiNumber
TYPE FACTORIAL_RESULT :
STRUCT
 uiNumber : UINT;
 udiIterative : UDINT;
 udiRecursive : UDINT;
 udiPragmaed : UDINT;
 udiTemp : UDINT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 fb_Factorial_A : FB_Factorial;
 factorial_A : FACTORIAL_RESULT := (uiNumber := 9,
udiIterative := 0, udiRecursive := 0, udiPragmaed := 0);
END_VAR
fb_Factorial_A.p_Number := factorial_A.uiNumber;
factorial_A.udiIterative := fb_Factorial_A.m_Iterative();
factorial_A.udiRecursive := fb_Factorial_A.m_Recursive(uiN :=
factorial_A.uiNumber);
factorial_A.udiPragmaed := fb_Factorial_A.m_Pragmaed(uiN :=
factorial_A.uiNumber);
factorial_A.udiTemp := fb_Factorial_A.m_Temp(uiN :=
factorial_A.uiNumber);

Calculation of
the factorial

Example

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2282

//Factorial calculation in different ways
FUNCTION_BLOCK FB_Factorial
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 uiN : UINT;
 udiIterative : UDINT;
 udiPragmaed : UDINT;
 udiRecursive : UDINT;
END_VAR

// Iterative calculation
METHOD PUBLIC m_Iterative : UDINT
VAR
 uiCnt : UINT;
END_VAR
m_Iterative := 1;
IF uiN > 1 THEN
 FOR uiCnt := 1 TO uiN DO
 m_Iterative := m_Iterative * uiCnt;
 END_FOR;
 RETURN;
ELSE
 RETURN;
END_IF;

//Recursive calculation with suppressed warning
{attribute 'estimated-stack-usage' := '99'}
METHOD PUBLIC m_Pragmaed : UDINT
VAR_INPUT
 uiN : UINT;
END_VAR
VAR
END_VAR
m_Pragmaed := 1;
IF uiN > 1 THEN
 m_Pragmaed := uiN * THIS^.m_Pragmaed(uiN := (uiN - 1));
 RETURN;
ELSE
 RETURN;
END_IF;

//Recursive calculation
METHOD PUBLIC m_Recursive : UDINT
VAR_INPUT
 uiN : UINT;
END_VAR
VAR
END_VAR
m_Recursive := 1;
IF uiN > 1 THEN
 m_Recursive := uiN * THIS^.m_Recursive(uiN := (uiN - 1));
 RETURN;
ELSE
 RETURN;
END_IF;

// Called by temporary FB instance
{attribute 'estimated-stack-usage' := '99'}
METHOD PUBLIC m_Temp : UDINT
VAR_INPUT
 uiN : UINT;
END_VAR

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2283

VAR
 fb_Temp : FB_Factorial;
END_VAR
m_Temp := 1;
IF uiN > 1 THEN
 m_Temp := uiN * fb_Temp.m_Temp(uiN := (uiN - 1));
 RETURN;
ELSE
 RETURN;
END_IF;

PROPERTY p_Number : UINT
uiN := p_Number; //Setter method
Only the m_Recursive issues a warning when the program is executed.

See also
● Ä Chapter 6.4.1.9.22.5 “Calling methods” on page 1933
● Ä Chapter 6.4.1.9.22 “Object-Oriented Programming” on page 1929
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493

Attribute 'ExpandFully'
The effect of this pragma is that the components of an array used as an input variable for
referenced visualizations are made visible in the Properties dialog box of the visualization.
Syntax:
{attribute 'ExpandFully'}
Insertion position: the line above the line with the declaration of the array.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2284

The visualization “visu” is to be inserted into a frame inside the visualization “visu_main”. arr
is defined as an input variable in the interface editor of “visu” and will thus be available later for
assignments in the Properties dialog box of the frames in “visu_main”. In order to also make
the individual components of arr available in this Properties dialog box, you must insert the
attribute 'ExpandFully' directly before arr in the interface editor of visu. Declaration in the
interface editor of “visu”:
VAR_INPUT
 {attribute 'ExpandFully'}
 arr : ARRAY[0..5] OF INT;
END_VAR

Example

Attribute 'global_init_slot'
The pragma defines the initialization order of programming blocks and global variable lists.
Variables in a list (GVL or POU) are initialized from top to bottom.
If there are several global variable lists, then the initialization order is not defined.
The initialization does not apply for the initialization of literal values, for example 1, 'hello',
3.6, or constants of base data types. However, you must define the initialization order yourself
if there are dependencies between the lists. You can assign a defined initialization slot to a GVL
or POU with the 'global_init_slot' attribute.

Constants are initialized before the variables and in the same order as the variables. During
initialization, the POUs are sorted according to the value for <slot>. Then the code for initializing
the constants is generated and afterwards the code for initializing the variables.
Syntax:
{attribute 'global_init_slot' := '<slot>'}
<slot>: Integer value that defines the position in the call order. The default value for a POU
(program, function block) is 50000. The default value for a GVL is 49990. A lower value means
an earlier initialization. Caution: If several blocks or GVLs receive the same value for the
'global_init_slot' attribute, then the initialization order remains undefined.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2285

Insert location: The pragma always affects the entire GVL or POU and therefore it must be
located above the VAR_GLOBAL or POU declaration.

If several programming blocks have got assigned the same value for the
attribute 'global_init_slot', the order of their initialization remains unde-
fined.

The program includes two global variable lists GVL_1 and GVL_2, as well as a PLC_PRG
program that uses variables from both lists. GVL_1 uses the variable B for initializing a variable
A, which is initialized in GVL_2 with a value of 1000.
VAR_GLOBAL //49990
 A : INT := GVL_2.B*100;
END_VAR
VAR_GLOBAL //49990
 B : INT := 1000;
 C : INT := 10;
END_VAR
PROGRAM PLC_PRG //50000
VAR
 ivar: INT := GVL_1.A;
 ivar2: INT;
END_VAR

ivar:=ivar+1;
ivar2:=GVL_2.C;

In this case, the compiler prints an error because GVL_2.B is used for initializing GVL_1.A
before GVL_2 has been initialized. You can prevent this by using the global_init_slot
attribute to position GVL_2 before GVL_1 in the initialization sequence.

In this example, GVL_1 must have at least one slot value of 49989 in order to achieve the
earliest initialization within the program. Every lower value has the same effect:
{attribute 'global_init_slot' := '100'}
VAR_GLOBAL
 B : INT := 1000;
END_VAR

Using GVL_2.C in the implementation part of PLC_PRG is also not critical even without using a
pragma because both GVLs are initialized before the program in either case.

Example

GVL_1

GVL_2

PLC_PRG

GVL_2

Attribute 'hide'

Using the pragma {attribute 'hide'} to hide variables and POUs does
not have the desired effect in most cases. Instead, you should use the pragma
{attribute 'conditionalshow'}.

The pragma prevents the variables and POUs defined with it from being shown in the
CODESYS user interface. As a result, you can intentionally hide these identifiers without
restricting the access. This can be useful when you develop libraries.
Affected features:
● Library management
● Debugging
● Input Assistant
● Function "List components"

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2286

● Monitoring
● Symbol configuration
The variables or POUs defined with the pragma are neither visible in the Library Manager nor
are they suggested in the Input Assistant or in the "List components" function. The pragma
prevents those marked variables from being displayed in the symbol configuration. As a result,
you cannot export these kinds of variables as symbols. The variables are also invisible in
online mode, and therefore their values cannot be monitored. Moreover, you cannot use any
debugging functionalities and you do not have any support when checking for bugs.
Syntax:
{attribute 'hide'}
Insert location: For variables, above the line with the declaration of the variables. For POUs, in
the first line.
If you, the application developer, know the exact instance path of the hidden POUs and varia-
bles, then you can access them in the code.

The function block FB_MyA contains the attribute pragma {attribute 'hide'} to hide the
local variable xInvisibleIn.
FUNCTION_BLOCK FB_MyA
VAR_INPUT
 iInA : INT;
 {attribute 'hide'}
 xInvisibleIn : BOOL;
 xInit: BOOL;
END_VAR
VAR_OUTPUT
 iOutA : INT;
END_VAR
VAR
 iCounter : INT;
END_VAR

Two instances of the function block FB_MyA are defined in the main program.
PROGRAM PLC_PRG
VAR
 fbMyA1, fbMyA2 : FB_MyA;
 xVar2 : BOOL;
 iVar1 : INT;
 iVar2 : INT;
END_VAR
fbMyA1(iInA := 1, xInit := TRUE, xInvisibleIn := TRUE, iOutA =>
iVar1);
fbMyA2(iInA := 1, xInit := TRUE, iOutA => iVar2);

When the input value for fbMyA1 is implemented, the "List components" function, which opens
when you type fbMyA1. (in the implementation part of PLC_PRG), displays the variables
iInA, xInit, and iOutA, but not the hidden variable xInvisibleIn.

Example of
hidden variable

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2287

FB_A is a function block of the library HiddenFunctionality with the default namespace
HIDDEN. To hide the identifier and the POU code from application developers, begin the
declaration of the POU with the attribute pragma {attribute 'hide'}. To hide the subordi-
nate POUs (actions, methods, properties, and transitions) in the same way, also begin their
declarations with {attribute 'hide'}.
{attribute 'hide'}
FUNCTION_BLOCK FB_A
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
 iCount : INT;
 iInvisible : INT;
END_VAR

{attribute 'hide'}
METHOD METH_Count : INT
VAR_INPUT
END_VAR
iCount := iCount + 1;

{attribute 'hide'}
METHOD METH_Invisible : BOOL
VAR_INPUT
END_VAR
iInvisible := iInvisible + 1;

{attribute 'hide'}
PROPERTY PUBLIC prop_iA : INT

For you as the application developer, all POUs are invisible. You can use them only if you
know the instance path.
PROGRAM PLC_PRG
VAR
 fbHidden : HIDDEN.FB_A; // Hidden function block from library
HiddenFunctionality
 iCounter : INT;
END_VAR
fbHidden.METH_Invisible();
iCounter := fbHidden.iInvisible;

In online mode, no monitoring is performed.

Example of
hidden library
POU

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2288

With the pragma hide_all_locals you can hide all local variables of a POU.

See also
● Ä Chapter 6.4.1.20.6.3.18 “Attribute 'hide_all_locals'” on page 2289
● Ä Chapter 6.4.1.20.6.3.8 “Attribute 'conditionalshow'” on page 2276
● Ä Chapter 6.4.1.20.6.3.9 “Attribute 'conditionalshow_all_locals'” on page 2277

Attribute 'hide_all_locals'
The pragma prevents all local variables of a signature from being visible in the display of the
'List components' function, in the Input Assistant or in the declaration part in online mode.
Moreover, these variables are hidden in the symbol configuration and therefore cannot be
exported as symbols. The pragma is especially useful in library POUs to hide POU variables
from users.
Affected features
● Library management
● Debugging
● Input Assistant
● Function "List components"
● Monitoring
● Symbol configuration
Syntax:
{attribute 'hide_all_locals'}
Insert location: First line above the declaration part of the POU

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2289

The function block FB_MyB uses the attribute:
{attribute 'hide_all_locals'}
FUNCTION_BLOCK FB_MyB
VAR_INPUT
 iInB : INT;
 {attribute 'hide'}
 xInvisibleIn : BOOL;
 xInit: BOOL;
END_VAR
VAR_OUTPUT
 iOutB : INT;
END_VAR
VAR
 iCounter : INT;
 xVar : BOOL;
END_VAR

Two instances of the function block FB_MyB are defined in the main program.
PROGRAM PLC_PRG
VAR
 fbMyB1, fbMyB2: FB_MyB;
 iVar3: INT;
 iVar4: INT;
END_VAR

fbMyB1(iInB := 2, xInvisibleIn := TRUE, iOutB => iVar3);
fbMyB2(iInB := 2, iOutB => iVar4);
IF fbMyB2.iCounter > 100 THEN
 fbMyB2.xInit := TRUE;
END_IF

Now when you download the program to the controller, start it, and switch to online mode, the
variables iInB, xInit, iOutB, and xReset are displayed in the declaration editor. However,
the hidden local variables iCounter and xVar are not displayed.

Example

See also
● Ä Chapter 6.4.1.20.6.3.17 “Attribute 'hide'” on page 2286

Attribute 'initialize_on_call'
The pragma causes input variables of a function block to be initialized on each call of the
function block. If an input variable is affected which expects a pointer and this pointer has been
removed during an online change, then the variable is initialized to zero.

Syntax:
{attribute 'initialize_on_call'}
Insert location: Always in the first line of the declaration part for the entire function block, and
also in a line above the declaration of the individual input variable.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2290

{attribute 'initialize_on_call'}
FUNCTION_BLOCK fb
VAR_INPUT
 {attribute 'initialize_on_call'}
 pInt : POINTER TO INT := 0;
 {attribute 'initialize_on_call'}
 iVal : INT := 0;
END_VAR

Example

Attribute 'init_namespace'
The effect of this pragma is that a variable of the type STRING or WSTRING, which is declared in
a library function block with this pragma, is initialized when used in the project with the current
namespace of the library.
Syntax
{attribute 'init_namespace'}
Insertion position: the line above the line with the declaration of the variables in a library function
block.

The function block “POU” is provided with the necessary attributes:
FUNCTION_BLOCK POU
VAR_OUTPUT
 {attribute 'init_namespace'}
 myStr: STRING;
END_VAR

An instance fb of the function block POU is defined within the main program PLC_PRG:
PROGRAM PLC_PRG
VAR
 fb:POU;
 newString: STRING;
END_VAR
 newString := fb.myStr;

The variable myStr is initialized with the current namespace, for example MyLib. This value is
assigned to newString in the main program.

Example

See also
● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469

Attribute 'init_on_onlchange'
The effect of this pragma is that the variable to which the pragma is applied is initialized with
each online change.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2291

NOTICE!
For compiler version 3.5.0.0 and later, a fast online change is performed for
minor changes. In this case, only the modified blocks are compiled and down-
loaded. In particular, no initialization code is generated. This means that also no
code is generated when variables with the init_on_onlchange attribute are
initialized. As a rule, this has no effect because the attribute is used primarily for
initializing variables with addresses. However, it cannot happen that a variable
changes its address during an online change.
To secure the effect of the init_on_onlchange attribute in the entire appli-
cation code, you must deactivate the fast online change in general for the
application by using the compiler definition no_fast_online_change. To do
this, insert the definition in the application “Properties” (“Build” tab).

Syntax:
{attribute 'init_on_onlchange' }
Insert location: The line above the line with the declaration of the variables.
See also
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755

Attribute 'instance-path'
This pragma can be applied to a local STRING variable and causes this local STRING variable
to be initialized in sequence with the device tree path of the POU to which it belongs. This
can be useful for error messages. The application of the pragma requires the application of the
attribute 'reflection' to the associated POU, as well as the application of the additional
attribute 'noinit' to the STRING variable.

Syntax:
{attribute 'instance-path'}
Insertion position: the line above the line with the declaration of the STRING variable.

The following function block contains the attributes 'reflection', 'instance-path' and
'noinit'.
{attribute 'reflection'}
FUNCTION_BLOCK POU
VAR
 {attribute 'instance-path'}
 {attribute 'noinit'}
 str: STRING;
END_VAR

An instance “myPOU” of the function block “POU” is defined within the main program
“PLC_PRG”:
PROGRAM PLC_PRG
VAR
 myPOU:POU;
 myString: STRING;
END_VAR
myPOU();
myString:=myPOU.str;

Following the initialization of the instance myPOU, the path of the instance myPOU is assigned
to the string variable str, in the example PLCWinNT.Application.PLC_PRG.myPOU. This
path is assigned in the main program to the variable myString.

Example

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2292

NOTICE!
You can define the length of a string to be whatever you like (even >255), but
you must consider that the string will be truncated at the end if it is assigned to
a variable whose data type is too small for it.

See also
● Ä Chapter 6.4.1.20.6.3.41 “Attribute 'reflection'” on page 2313
● Ä Chapter 6.4.1.20.6.3.32 “Attribute 'noinit'” on page 2299

Attribute 'io_function_block', 'io_function_block_mapping'
With the 'io_function_block' attribute, you mark a function block in order to prepare it for
the assignment to a channel in the I/O mapping of the device configuration. Then it is shown in
the “Select function block” dialog.
With the 'io_function_block_mapping' attribute, you mark a parameter that should be
used when mapping the FB to a device channel in this kind of function block. You can provide
the attribute to multiple parameters of the function block. For I/O mapping, the first one is used
automatically whose type matches the channel (input, output, data type).
Syntax:
{attribute 'io_function_block'}
{attribute 'io_function_block_mapping'}
Insert location: The line above the first line in the declaration of the function block, or the line
above the parameter declaration.

{attribute 'io_function_block'}
FUNCTION_BLOCK Scale_Output_Int
VAR_INPUT
 iInput : INT;
 iNumerator : INT;
 iDenominator : INT :=1;
 iOffset : INT := 0;
END_VAR
VAR_OUTPUT
 {attribute 'io_function_block_mapping'}
 iOutput : INT;
END_VAR
VAR

Example

See also
● Ä Chapter 6.4.1.21.4.4 “Dialog 'Select Function Block'” on page 2746
● Ä “Linking a device with a function block instance” on page 1840

Attribute 'is_connected'
You use the pragma 'is_connected' to mark a Boolean function block variable which, when
a function module instance is called, provides information about whether the associated input of
the POU has an assignment.
The use of the pragma requires the use of the attribute 'reflection' on the affected function
block.
Syntax:
{attribute 'is_connected' := '<input variable>'}

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2293

In the function block FB, a local variable is declared for each input variable (in1 and in2)
and the attribute 'is connected' is prepended to it each time with the name of the input
variable. The func itself gets the pragma attribute 'reflection'.

When an instance of the function block is called, the local variable is TRUE in the case that the
input assigned to it has received an assignment.
{attribute 'reflection'}
FUNCTION_BLOCK FB
VAR_INPUT
 in1: INT;
 in2: INT;
END_VAR
VAR
 {attribute 'is_connected' := 'in1'}
 in1_connection_info: BOOL;
 {attribute 'is_connected' := 'in2'}
 in2_connection_info: BOOL;
END_VAR

Assumption: When the function block instance is called, in1 receives an external assignment
and in 2 does not receive an assignment. This results in the following code:
in1_connection_info := TRUE;
in2_connection_info := FALSE;

Example

See also
● Ä Chapter 6.4.1.20.6.3.41 “Attribute 'reflection'” on page 2313
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479

Attribute 'linkalways'
The pragma {attribute 'linkalways'} instructs the compiler to always include a POU or
a library POU in the compile information. During the build, the POU is compiled and is part of
the application code. During the download, the POU is downloaded to the PLC.
Syntax:
{attribute 'linkalways'}
Insertion location: The first line in the declaration part of the POU or library POU
The POU may be valid throughout the project (saved in the “POUs” view) or throughout the
application (saved in the “Devices” view).

You can also select the “Link always” option in the “Build” tab of a POU's object
properties.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2294

The “MoreSymbols” GVL contains the pragma {attribute 'linkalways'}. The variables
declared there are also part of the application code, regardless of any access.

{attribute 'linkalways'}
VAR_GLOBAL
 g_iAlpha: INT;
 g_iBravo: INT;
 g_iCharlie: INT;
END_VAR

The symbol configuration also accesses the compile information. As a result, the variables of
the MoreSymbols GVL are always provided for selection in the “Symbol Configuration” editor.

Example

GVL
MoreSymbols

See also
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755
● Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941

Attribute 'monitoring'
The effect of this pragma is that you can monitor values of properties or function calls in the
online view of the IEC editor or in a watch list. There are two possible attribute values for this:
'variable' and 'call'

{attribute 'monitoring' := 'variable'}
{attribute 'monitoring' := 'call'}

In the online view of a function block or program, you can monitor the subordinate properties
in addition to the local variables. This allows you to monitor the values of the Get and Set
methods.
Insert either the pragma {attribute 'monitoring' := 'variable'} or {attribute
'monitoring' := 'call'} in the declaration of the property block. The current values of
the property are then displayed automatically in the IEC editor or in a watch list.

Syntax

Monitoring of
programming
objects and
their properties

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2295

In online mode, the PLC_PRG object shows the value of the Minutes property at the call
location inline in the ST editor. This is because the pragma {attribute 'monitoring' :=
'variable'} is located in the declaration of the Minutes property.

Example

Check carefully for each application which attribute pragma is suitable for displaying the desired
value. This depends on whether further operations with the variables are implemented within the
property.
1. Pragma {attribute 'monitoring':='variable'}:

An implicit variable is created for the property, which is then always given the current property
value when the application calls the Set or Get method. The value stored last in this variable is
displayed in the monitoring.
2. Pragma {attribute 'monitoring':='call'}:

You can use this attribute only for properties that return simple data types or pointers, but not
for structured types. The value to be monitored is read or written by calling the property directly.
This means that the monitoring service of the runtime executes the Get or Set method of the
property.

NOTICE!
When you insert the pragma {attribute 'monitoring':='call'} for
monitoring, you have to pay attention to possible side effects. These kinds of
side effects can occur if additional operations are implemented in the property.

NOTICE!
The pragma {attribute 'monitoring'} is also evaluated for the symbol
configuration. Only read access is possible for the value 'variable'.

With the context menu command “Add Watch”, a variable on which the cursor is
currently positioned is applied directly into the monitoring list in online mode.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2296

The forcing or writing of functions is not supported. However, you can implicitly
implement forcing by adding an additional input parameter for the respective
function, which serves as an internal force flag.

Function monitoring is not possible in the compact runtime.

See also
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493

Attribute 'monitoring_encoding'
The attribute pragma is allowed for string variables and aliases. The attribute has the effect that
the values of the variables are marked with it to be decoded in UTF-8 format during monitoring.

{attribute 'monitoring_encoding' := 'UTF8'}

PROGRAM PLC_PRG
VAR
 {attribute 'monitoring.encoding' := 'UTF8'}
 strDat : STRING := 'abc';
 attribute 'monitoring_encoding' := 'UTF-8'}
 strVarUtf8: STRING := UTF8#'你好,世界!ÜüÄäÖö';
 {attribute 'monitoring_encoding' := 'UTF-8'}
 str1: STRING := UTF8#'AÄyyy';
 {attribute 'monitoring_encoding' := 'UTF-8'}
 str2: STRING := UTF8#'AÄxxxÜÜÜ';

 strVarUtf8_1: STRING := '你好,世界!ÜüÄäÖö';
 str1_1: STRING := 'AÄyyy';
 str2_1: STRING := 'AÄxxxÜÜÜ';
END_VAR

Example

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2297

Attribute 'no_assign', Attribute 'no_assign_warning'
The pragma 'no_assign' results in compiler errors being displayed if an instance of the
function block is assigned to another instance of the same function block. Such assignments
are often to be avoided if the function block contains pointers and pointers lead to problems,
because they are copied as well during the value assignment.
The pragma 'no_assign_warning' results in the same as for the pragma 'no_assign'
with compiler warnings instead of compiler errors.
Syntax:
{attribute 'no_assign'}
Insert location: First line in the declaration part of a function block.

Assignment of function block instances containing pointers.
In this example the value assignment of the function block instances will lead to problems
during the execution of fb_exit:
VAR_GLOBAL
inst1 : TestFB;
 awsBufferLogFile : ARRAY [0..9] OF WSTRING(66);(* Area: 0,
Offset: 0x1304 (4868)*)
 LogFile : SEDL.LogRecord := (sFileName := 'LogFile.log',
pBuffer := ADR(awsBufferLogFile), udiMaxEntriesFile := UDINT#10000,
udiMaxBuffered := UDINT#10, uiLineSize := UINT#64, wsSep := " ",
xCircular := TRUE, siDateFormat := SINT#0, siTimeFormat := SINT#0);
END_VAR

 PROGRAM PLC_PRG
VAR
 inst2 : TestFB := inst1;
 LogFileNew
END_VAR

In this case LogRecord manages a list of pointers, for which various actions are executed in
the case of fb_exit. Problems result due to the assignment, because fb_exit will be exe-
cuted twice. You should prevent this by adding the attribute 'no_assign' in the declaration
of the function block “TestFB”:
{attribute 'no_assign'}
FUNCTION_BLOCK TestFB
VAR_INPUT
...

The following compiler errors are then displayed:
C0328: Assignment not allowed for type TestFB
C0328: Assignment not allowed for type LogRecord

If the pragma no_assign_warning is used instead of the pragma no_assign for the func-
tion block “TestFB ”, then the C0328 message is issued as compiler warning, not as a compiler
error.

Example

Attribute 'no_check'
This pragma prevents the check function being called for the POU (POUs for implicit checks).
Since the check functions can affect the processing speed of the program, it can be useful to
apply the attribute to function blocks that have already been checked or are frequently called.
You add the pragma to the declaration of a POU.
Syntax:
{attribute 'no_check'}
Insertion position: first line in the declaration part of the POU.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2298

NOTICE!
The attribute also automatically affects the child objects of a POU!
Example: If the attribute is entered in a program, check functions will also not be
carried out for actions that are assigned to this program.

Attribute 'no_copy'
In general an online change requires a re-allocation of instances, for example of a POU. In the
process, the value of the variable contained in the instance is copied.
The pragma prevents the value of the variable contained in the instance from being copied in
the course of an online change; instead, the variable is re-initialized in the course of an online
change. This can be useful for a local pointer variable that points to a variable that has just been
shifted by the online change and thus has a changed address.
You insert the attribute in the declaration part above the line of the declaration of the variables
concerned.
Syntax:
{attribute 'no_copy'}

Attribute 'no-exit'
This attribute suppresses the call of the FB_exit method of a function block for a certain one of
its instances. To do this you insert the attribute in the line before the declaration of the function
block instance.
Syntax:
{attribute 'no-exit'}

The method “FB_exit” is added to the function block “POU_ex”. Two instances of the function
block “POU_ex” are created in the main program “PLC_PRG”.
PROGRAM PLC_PRG
VAR
 POU1 : POU_ex;
 {attribute 'no-exit'}
 POU2 : POU_ex;
END_VAR

POU1 is called, POU2 is not called.

Example

See also
● Ä Chapter 6.4.1.20.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 2336

Attribute 'noinit'
This pragma is applied to variables that should not be implicitly initialized.
Syntax:
{attribute 'no_init'}
{attribute 'no-init'}
{attribute 'noinit'}
Insertion position: line above the declaration line of the variables concerned in the declaration
part.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2299

PROGRAM PLC_PRG
VAR
 A : INT;

 {attribute 'no_init'}
 B : INT;
END_VAR

When the associated application is reset, the integer variable A is implicitly re-initialized with 0,
whereas the variable B retains its current value.

Example

Attribute 'no_instance_in_retain'
You can use this pragma to prevent the instance of a function block from being stored in the
retain memory.
Syntax:
{attribute 'no_instance_in_retain'}
Insert location:
Lines above the FUNCTION_BLOCK declaration in the declaration part of the function block.

Now when you declare an instance declaration of the function block as a RETAIN variable, an
error message is issued.

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920

Attribute 'no_virtual_actions'
The pragma is used for function blocks that are derived from a function block implemented
in SFC and use the fundamental SFC sequence of this base class. The actions called from
it exhibit the same virtual behavior as methods. This means that the implementations of the
actions in the base class can be replaced by the derived class with its own specific implementa-
tions.
If you apply the pragma to the base class, then its actions are protected against overloading.
Syntax:
{attribute 'no_virtual_actions'}
Insert location: Top line in the declaration part of the function block

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2300

The function block POU_SFC is the base class for the derived function block POU_child. The
derived class POU_child calls the sequence of the base class written in SFC with the special
variable SUPER.

The exemplary implementation of this sequence is limited to the initial step, followed by a
single step with a linked step action ActiveAction. This step with a linked step action takes
care of the configuration of the output variables.
an_int:=an_int+1; // Counting the action calls
test_act:='father_action';
METH(); // Call of the method METH in order to set the
string variable test_meth

In the case of the derived class POU_child the step action is replaced by a special implemen-
tation of ActiveAction. Active Action differs from the original only by the assignment of
the string 'child_action' in place of 'father_action' at the variable test_act.

Likewise, the method METH, which assigns the string 'father_method' to the variable
test_meth in the base class, is overwritten so that test_meth now gets the value
'child_method'. The main program PLC_PRG calls an instance of the function block
POU_child, named Child. As expected, the value of the strings reflects the call of the action
and method of the derived class:

Example

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2301

Now, however, you place the pragma {attribute 'no_virtual_actions'} in front of
the base class:
{attribute 'no_virtual_actions'}

FUNCTION_BLOCK POU_SFC...
This changes the behavior: While the implementation of the derived class is still used for the
method METH, the call of the step action now results in a call of the action ActiveAction of
the base class. Therefore test_act is now given the value 'father_action':

Attribute 'pingroup'
The effect of this pragma is that the input pins or output pins (parameters) are grouped in the
declaration of a function block. In the FBD/LD editor a pin group defined in this way can be
displayed as an enlarged or reduced unit on the inserted function block. Several groups are
possible and are distinguished by their names. CODESYS saves the respective state (reduced)
per function block box with the project options.
Syntax:
{attribute 'pingroup' := '<group name>'}
Insertion position: line above the declaration of the input or output variables concerned in the
declaration part of a function block.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2302

Two groups are defined: general (i1, out1) and group1 (i2, g1). r1, r2, outRes1
and g2 are always displayed
FUNCTION_BLOCK FB
VAR_INPUT
 r1 : REAL;
 {attribute 'pingroup' := 'general'}
 i1 : INT;
 {attribute 'pingroup' := 'group1'}
 i2 : INT;
 r2 : REAL;
END_VAR

VAR_OUTPUT
 outRes1 : REAL;
 {attribute 'pingroup' := 'general'}
 out1 : INT;
 {attribute 'pingroup' := 'group1'}
 g1 : INT;
 g2 : REAL;
END_VAR

Example

Attribute 'pin_presentation_order_inputs/outputs'
The pragmas are evaluated in the CFC, FBD, and LD graphical editors, causing the order of
inputs/outputs of the affected function block to be displayed as specified. You program the order
by assigning the names of the inputs/outputs to the attribute in the desired order.

{attribute 'pin_presentation_order_inputs' := '<First_Input_Name>,
(<Next_Input_Name>,)* (*,)? (<Next_Input_Name>,)*
<Last_Input_Name>'}
{attribute 'pin_presentation_order_outputs' := '<First_Output_Name>,
(<Next_Output_Name>,)* (*,)? (<Next_Output_Name>,)*
<Last_Output_Name>'}
● *

The terminal character serves as a wildcard for all inputs/outputs that are not specified in
the display order. If the terminal character is missing, then the missing inputs/outputs are
appended at the end.

● (...)?
The contents of the parentheses are optional.

● (...)*
The contents of the parentheses are optional again and can therefore occur not at all, one
time, or several times.

● Insert location: First line in the declaration part of a function block.

NOTICE!
This pragma is not evaluated when pragma {attribute 'pingroup' :=
'<Group_Name>'} is used.

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2303

{attribute 'pin_presentation_order_inputs' := 'input_2,*,input_1'}
{attribute 'pin_presentation_order_outputs' := 'output_2, output_1'}
FUNCTION_BLOCK POU_BASE
VAR_INPUT
 input_1 : BOOL;
 input_2 : INT;
 input_3 : INT;
 input_4 : INT;
END_VAR

VAR_OUTPUT
 output_1 : BOOL;
 output_2 : INT;
 output_3 : INT;
 output_4 : BOOL;
END_VAR

FUNCTION_BLOCK PLC_PRG
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 pouBase_A: POU_BASE;
END_VAR

In the representation of function module instance pouBase_A, the pragmas result in the
following arrangement of input and output pins:

Example

See also
● Ä Chapter 6.4.1.20.6.3.35 “Attribute 'pingroup'” on page 2302

Attribute 'obsolete'
The effect of this pragma is that a defined warning is displayed for a data type definition during
compilation if the data type (structure, function block, etc.) is used in the project. This enables
you, for example, to draw attention to the fact that a data type is no longer valid because, for
example, an interface has changed and this should also be implemented in the project.
In contrast to a message pragma this warning is defined centrally for all instances of a data
type.
Syntax:
{attribute 'obsolete' := 'user defined text'}
Insertion position: line of the data type definition or in a line above it.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2304

The pragma is inserted in the definition function block fb1:
{attribute 'obsolete' := 'datatype fb1 not valid!'}
FUNCTION_BLOCK fb1
VAR_INPUT
 i:INT;
END_VAR

If you use fb1 as a data type, for example in fbinst:fb1, the following warning will be
displayed when compiling the project: "datatype fb1 not valid".

Example

See also
● Ä Chapter 6.4.1.20.6.2 “Message Pragmas” on page 2269

Attribute 'pack_mode'
The pragma defines how a data structure is packed during the allocation. The attribute has to
be inserted above the data structure and affects the packing of the entire structure.
Syntax:
{attribute 'pack_mode' := ' <pack mode value>' }
Insert location: above the declaration of the data structure

Table 401: Possible values for <value>:
<pack mode

value>
Associated
packing
method

Description

0 Aligned All variables are allocated to byte addresses. There are no memory gaps.

1 1-byte-aligned

2 2-byte-aligned There are
● 1-byte variables at byte addresses
● 2-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 4-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 8-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● Strings always at byte addresses. No gaps result.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2305

<pack mode
value>

Associated
packing
method

Description

4 4-byte-aligned There are
● 1-byte variables at byte addresses
● 2-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 4 byte variables at addresses divisible by 4. A maximum gap of 3 byte

results.
● 8-byte variables at addresses divisible by 4. A maximum gap of 3 byte

results.
● Strings always at byte addresses. No gaps result.

8 8-byte-aligned There are
● 1-byte variables at byte addresses
● 2-byte variables at addresses divisible by 2. A maximum gap of 1 byte

results.
● 4 byte variables at addresses divisible by 4. A maximum gap of 3 byte

results.
● 8 byte variables at addresses divisible by 8. A maximum gap of 7 byte

results.
● Strings always at byte addresses. No gaps result.

Depending on the structure, there may be no difference in the memory mapping
of the individual modes. Therefore, the memory allocation of a structure with
<pack mode value> = 4 can correspond to that of <pack mode value>
= 8.

Arrays of structures: If the structures are combined in arrays, then bytes are
added at the end of the structure so that the next structure is aligned.

NOTICE!
If the “Compatibility layout” option is selected in the symbol configuration and at
the same time the attribute 'pack_mode' is used in the code, then problems can
occur due to unintentional memory misalignment.

See also
● Ä Chapter 6.4.1.21.2.27 “Object 'Symbol Configuration'” on page 2523

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2306

{attribute 'pack_mode' := '1'}

TYPE myStruct:
STRUCT
 Enable: BOOL;
 Counter: INT;
 MaxSize: BOOL;
 MaxSizeReached: BOOL;
 END_STRUCT
END_TYPE

The memory range for a variable of the data type myStruct is allocated 'aligned'. If
the storage address of its component Enable is 0x0100, for example, then the com-
ponent Counter follows at the address 0x0101, MaxSize at address 0x0103 and
MaxSizeReached at address 0x0104. In the case of 'pack_mode':=2, Counter would
be at 0x0102, MaxSize at 0x0104 and MaxSizeReached at 0x0106.

Example

Example 1

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2307

STRUCT
 Var1 : BOOL := 16#01;
 Var2 : BYTE := 16#11;
 Var3 : WORD := 16#22;
 Var4 : BYTE := 16#44;
 Var5 : DWORD := 16#88776655;
 Var6 : BYTE := 16#99;
 Var7 : BYTE := 16#AA;
 Var8 : DWORD := 16#AA;
END_TYPE

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value
0 Var1 01 Var1 01 Var1 01 Var1 01 Var1 01

1 Var2 11 Var2 11 Var2 11 Var2 11 Var2 11

2 Var3 22 Var3 22 Var3 22 Var3 22 Var3 22

3 ... 00 ... 00 ... 00 ... 00 ... 00

4 Var4 44 Var4 44 Var4 44 Var4 44 Var4 44

5 Var5 55 Var5 55

6 ... 66 ... 66 Var5 55

7 ... 77 ... 77 ... 66

8 ... 88 ... 88 ... 77 Var5 55 Var5 55

9 Var6 99 Var6 99 ... 88 ... 66 ... 66

10 Var7 AA Var7 AA Var6 99 ... 77 ... 77

11 Var8 AA Var8 AA Var7 AA ... 88 ... 88

12 ... 00 ... 00 Var8 AA Var6 99 Var6 99

13 ... 00 ... 00 ... 00 Var7 AA Var7 AA

14 ... 00 ... 00 ... 00

15 ... 00

16 Var8 AA Var8 AA

17 ... 00 ... 00

18 ... 00 ... 00

19 ... 00 ... 00

20

21

22

23

24

25

26

27

Example

Example 2

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2308

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value

28

29

30

31

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2309

STRUCT
 Var1 : BYTE := 16#01;
 Var2 : LWORD := 16#11;
 Var3 : BYTE := 16#22;
 Var4 : BYTE := 16#44;
 Var5 : DWORD := 16#88776655;
 Var6 : BYTE := 16#99;
 Var7 : BYTE := 16#AA;
 Var8 : WORD := 16#AA;
END_TYPE

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value
0 Var1 01 Var1 01 Var1 01 Var1 01 Var1 01

1 Var2 11 Var2 11

2 ... 00 ... 00 Var2 11

3 ... 00 ... 00 ... 00

4 ... 00 ... 00 ... 00 Var2 11

5 ... 00 ... 00 ... 00 ... 00

6 ... 00 ... 00 ... 00 ... 00

7 ... 00 ... 00 ... 00 ... 00

8 ... 00 ... 00 ... 00 ... 00 Var2 11

9 Var3 22 Var3 22 ... 00 ... 00 ... 00

10 Var4 44 Var4 44 Var3 22 ... 00 ... 00

11 Var5 55 Var5 55 Var4 44 ... 00 ... 00

12 ... 66 ... 66 Var5 55 Var3 22 ... 00

13 ... 77 ... 77 ... 66 Var4 44 ... 00

14 ... 88 ... 88 ... 77 ... 00

15 Var6 99 Var6 99 ... 88 ... 00

16 Var7 AA Var7 AA Var6 99 Var5 55 Var3 22

17 Var8 AA Var8 AA Var7 AA ... 66 Var4 44

18 ... 00 ... 00 Var8 AA ... 77

19 ... 00 ... 88

20 Var6 99 Var5 55

21 Var7 AA ... 66

22 Var8 AA ... 77

23 ... 00 ... 88

24 Var6 99

25 Var7 AA

26 Var8 AA

27 ... 00

Example

Example 3

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2310

 pack_mode = 0 pack_mode = 1 pack_mode = 2 pack_mode = 4 pack_mode = 8
 Variable Value Variable Value Variable Value Variable Value Variable Value

28

29

30

31

If pack mode is not used, then the compiler typically uses pack mode 4 or 8, depending on the
device description. In each case, a pack mode which is particularly beneficial for the processor
is used so that memory access can be performed. This is also called natural alignment or a
natural alignment of data.

Unaligned memory access can be the result of using the attribute 'pack_mode'. This means,
for example, that a data type with a size of 4 bytes is then located at an address which is not
divisible by 4. Normally, on a 32-bit system a 32-bit data type can be read and written with
a single memory access. On some platforms, for example on ARM platforms, this is possible
only when this value is aligned in the memory. On other platforms, it can be that the access is
possible but it is performed much more slowly.

{attribute 'pack_mode':=1}

TYPE DUT
STRUCT
by1 : BYTE;
dw1 : DWORD;
END_STRUCT
END_TYPE

On an ARM platform, the value dw1 cannot be read with a single access. When an attempt is
made to access this element directly, the ARM processor will throw an exception.
Assumption: The following read access is performed: dwTest := dut1.dw1;
For this access to the DWORD dw1, four memory accesses are required because each byte is
read, shifted, and disjuncted individually. The flow is somewhat the same as in the following
example in which a DWORD is generated from an array of four bytes:
dwHelp := bytes[0];
dwResult := dwHelp;
dwHelp := bytes[1];
dwHelp := SHL(dwHelp, 8);
dwResult := dwResult OR dwHelp;
dwHelp := bytes[2];
dwHelp := SHL(dwHelp, 16);
dwResult := dwResult OR dwHelp;
dwHelp := bytes[3];
dwHelp := SHL(dwHelp, 24);
dwResult := dwResult OR dwHelp;

Obviously, this kind of access is much slower than access to a DWORD, which is aligned
appropriately in the memory.
pdw := ADR(dut1.dw1);
dwTest := pdw^;

Example

Behavior
without pack
mode

Negative effects
when using
pack mode

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2311

However, the compiler will not generate the access of the example when this kind of member is
accessed by means of a pointer. This means that the following code results in an exception on
an ARM platform.
pdw := ADR(dut1.dw1);
dwTest := pdw^;
For performance reasons, you should therefore avoid working with structures which are not
naturally aligned.
A packed structure must not contain an unpacked structure.

Attribute 'ProcessValue'
With the 'ProcessValue' attribute, you mark a component of a structure. In the CFC editor,
you can then use the command “Use attributed member as input” in order to connect this
structure to an input of scalar type.
Syntax:
{attribute 'ProcessValue'}
Insert location: Line above the affected structure variable.

TYPE QINT :
STRUCT
 Status : STRING;
 {attribute 'ProcessValue'}
 Value1 : INT;
 Value2 : INT;
END_STRUCT
END_TYPE

Example

See also
● Ä Chapter 6.4.1.21.3.13.36 “Command 'Use Attributed Member as Input'” on page 2698

Attribute 'qualified_only'
The effect of this pragma is that variables of a global variable list are only addressed by
specifying the global variable name, for example gvl.g_var. This also applies to variables of
the type Enumeration and can be helpful in avoiding being mistaken for local variables.
Syntax:
{attribute 'qualified_only'}
Insertion position: line above VAR_GLOBAL in a GVL

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2312

Global Variable List “GVL”:
{attribute 'qualified_only'}
VAR_GLOBAL
 iVar:INT;
END_VAR

Within a POU, for example “PLC_PRG”, the global variable iVar can only be addressed using
the prefix GVL:
GVL.iVar:=5;

Conversely, the following incomplete call of the variable will create an error:
iVar:=5;

Example

Attribute 'reflection'
The pragma is used to identify POUs in which some variables require special treatment and
are tagged with a specific attribute for this purpose. Currently, this applies to the attributes
'instance-path' and 'is-connected' for function block variables. The compiler searches
only blocks marked with 'reflection' for variables with these attributes and therefore needs
less time.
Syntax:
{attribute 'reflection'}
For examples, see the description of the attributes 'instance-path' and 'is-connected'.
See also
● Ä Chapter 6.4.1.20.6.3.22 “Attribute 'instance-path'” on page 2292
● Ä Chapter 6.4.1.20.6.3.24 “Attribute 'is_connected'” on page 2293

Attribute 'subsequent'
The pragma is used to allocate consecutive variables in memory. When the list changes, the
entire variable list is allocated to a new memory area. This pragma is used in programs and
global variable lists.
Syntax:
{attribute 'subsequent'}

NOTICE!
VAR_TEMP in a program with attribute 'subsequent' leads to a compiler error.

When a variable in the list is qualified with RETAIN, all variables of the declara-
tion part are stored in the memory area for RETAIN.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2313

Attribute 'symbol'
The pragma {attribute 'symbol'} defines which variables of a program or a global vari-
able list are to be adopted into the symbol configuration. This means that the variables are
exported as symbols to a symbol list. This symbol list is then available for external access
both as an XML file in the project directory and as a file that is invisible to the user on the
target system. For example, the symbol list is then available for access by an OPC server. The
variables thus equipped with a symbol are loaded by CODESYS to the controller, even if they
are not explicitly configured or visible in the editor of the symbol configuration.
In any case, however, an object “Symbol configuration” must be created below the application
concerned in the device tree.
Syntax:
{attribute 'symbol' := '<access possibilities>'}
<access possibilities>: none, read, write, readwrite. The default value
readwrite applies if no parameter is specified.

Insertion position:
● in order to affect only an individual variable, you must place the pragma in the line before

the variable declaration.
● In order to be effective for all variables in the declaration part of a program, you must

place the pragma in the first line of the declaration editor. In this case, too, you can still set
instructions for individual variables explicitly in the respective line.

With the following configuration the variables A and B are exported with read and write permis-
sion. Variable D is exported with read permission.
{attribute 'symbol' := 'readwrite'}
PROGRAM PLC_PRG
VAR
 A : INT;
 B : INT;
{attribute 'symbol' := 'none'}
 C : INT;
{attribute 'symbol' := 'read'}
 D : INT;
END_VAR

Example

See also
● Ä Chapter 6.4.1.9.8 “Using Pragmas” on page 1888
● Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941

Attribute 'to_string'
The pragma affects how the result of converting an enumeration component with the
TO_STRING operator is output. If the enumeration declaration has the pragma, then the name
of the enumeration component appears as a string instead of the numeric value.
Syntax:
{attribute 'to_string'}
Insert location: First line above the declaration part of the enumeration.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2314

Declaration of the enumeration color:
{attribute 'to_string'}
TYPE color :
(
 red := 0,
 blue := 1,
 green := 2
);
END_TYPE

Conversion with TO_STRING:
PROGRAM PLC_PRG
VAR
 i_color: Color;
 s_show_color: STRING;
END_VAR
i_color := 1;
s_show_color := TO_STRING(i_color);

In this case, str_show_color gets the value 'blue' instead of '1' as the conversion
result.

Example

See also
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Attribute 'warning disable', attribute 'warning restore'
This pragma causes certain warnings to be suppressed. The warning restore pragma
causes a suppressed message to be reactivated.
Syntax:
{warning disable <compiler ID>}
{warning restore <compiler ID>}
<compiler ID>: ID located at the beginning of an error or a warning message.

Compiler message:
typify code ...
C0196: Implicit conversion from unsigned Type 'UINT' to signed Type
'INT' : possible change of sign
Compile complete -- 0 errors

Applying the pragma to a variable declaration:
VAR
 {warning disable C0195}
 test1 : UINT := -1;
 {warning restore C0195}
 test2 : UINT := -1;
END_VAR
test1 does not generate an error message, test2 generates an error message.

Example

Effects of Pragmas on Symbols
POUs and variables can change their behavior with respect to the symbol configuration as a
result of pragmas. A detailed description can be found on the help page of each pragma.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2315

Pragma with attribute Effect See also
{attribute
'call_after_global_init_slot'
:= ' <slot> '}

None

{attribute 'call_after_init'} None
{attribute
'call_after_online_change_slot
' := ' <slot> '}

None

{attribute
'call_before_global_exit_slot'
:= ' <slot> '

None

{attribute
'call_on_type_change':= '
comma separated list of
referenced function blocks> '}

None

{attribute
'conditionalshow' := ' <some
text> '}
{attribute 'conditionalshow'}
{attribute
'conditionalshow_all_locals' :
= ' <some text> '}
{attribute
'conditionalshow_all_locals'}

The marked variables are hidden and
therefore cannot be exported.
However, if the source code file
from the compiled library is avail-
able, or if CODESYS has been
started with the command-line option
conditionalshowsymbols, then the
marked variables are visible despite the
pragma.

Ä Chapt
er
6.4.1.20.6.3.8
“Attribute
'conditio-
nal-
show'”
on page 2276

Ä Chapt
er
6.4.1.20.6.3.9
“Attribute
'conditio-
nal-
show_all
_locals'”
on page 2277

{attribute 'const_replaced'}
{attribute
'const_non_replaced'}

Replaced constants are not available
in the symbol configuration editor and
therefore cannot be exported.
A constant being replaced depends on
whether or not the “Replace constants”
compiler option has been selected for all
constants and whether or not pragmas
overwrite the compiler option for indi-
vidual constants.

Ä Chapt
er
6.4.1.20.6.3.10
“Attribute
'const_re
placed',
Attribute
'const_n
on_repla
ced'”
on page 2278

{attribute 'dataflow'} None
{attribute 'displaymode':=
<displaymode> }

None

{attribute
'enable_dynamic_creation'}

None

{attribute 'estimated-stack-
usage' := ' <estimated stack
size in bytes> '}

None

{attribute 'ExpandFully'} None
{attribute
'global_init_slot' :=
'<slot>'}

None

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2316

Pragma with attribute Effect See also
{attribute 'hide'} Variables are hidden and therefore

cannot be exported.
Ä Chapt
er
6.4.1.20.6.3.17
“Attribute
'hide'”
on page 2286

{attribute 'hide_all_locals'} Variables are hidden and therefore
cannot be exported.

Ä Chapt
er
6.4.1.20.6.3.18
“Attribute
'hide_all
_locals'”
on page 2289

{attribute
'initialize_on_call'}

None

{attribute 'init_namespace'} None
{attribute
'init_on_onlchange' }

None

{attribute 'instance-path'} None
{attribute
'io_function_block'}
{attribute
'io_function_block_mapping'}

None

{attribute 'is_connected' := '
<input variable> '}

None

{attribute 'linkalways'} POUs and library POUs are integrated in
the compile list and therefore cannot be
exported.

Ä Chapt
er
6.4.1.20.6.3.25
“Attribute
'linkal-
ways'”
on page 2294

{attribute 'monitoring' :=
'variable'}
{attribute 'monitoring' :=
'call'}

Properties PROPERTY or functions
(FUNCTION) are provided as symbols.

Ä Chapt
er
6.4.1.20.6.3.26
“Attribute
'monitor-
ing'”
on page 2295

{'no_assign' }
{'no_assign_warning' }

None

{attribute 'no_check'} None
{attribute 'no_copy'} None
{attribute 'no-exit'} None
{attribute 'no_init'}
{attribute 'no-init'}
{attribute 'noinit'}

None

{attribute
'no_instance_in_retain'}

None

{attribute
'no_virtual_actions'}

None

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2317

Pragma with attribute Effect See also
{attribute 'pingroup' := '
<group name> '}

None

{attribute
'pin_presentation_order_inputs
' := '< input name > '(,
<next input name>)* }
{attribute
'pin_presentation_order_output
s' := '< output name > '(,
<next output name>)* }

None

{attribute 'obsolete' := 'user
defined text'}

None

{attribute 'pack_mode' := '
<pack mode value> '}

Can lead to intentional memory misalign-
ment

Ä Chapt
er
6.4.1.21.2.27
“Object
'Symbol
Configu-
ration'”
on page 2523

{attribute 'ProcessValue'} None
{attribute 'qualified_only'} None

{attribute 'reflection'} None
{attribute 'subsequent'} None
{attribute 'symbol' :=
'<access possibilities>'}

Variable is exported as symbol. The
variable is displayed in the symbol list
only when the “View”, “Symbols Exported
via Attribute” option is selected in the
symbol configuration editor. The access
rights, which have been defined with the
pragma, are displayed In the “Attribute”
column.

Ä Chapt
er
6.4.1.20.6.3.43
“Attribute
'symbol'”
on page 2314

{attribute 'to_string'} None
{warning disable <compiler
ID> }
{warning restore <compiler
ID> }

None

See also
● Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941
● Ä Chapter 6.4.1.21.2.27 “Object 'Symbol Configuration'” on page 2523

Conditional Pragmas
The purpose of conditional pragmas is to influence the generation of code in the pre-compilation
process or the compilation process. The ST implementation language supports these pragmas.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2318

NOTICE!
They use conditional pragmas in the implementations of POUs. CODESYS
does not evaluate these conditional pragmas if you use them in the declaration
part.

With conditional pragmas you affect whether implementation code is taken into account for
the compilation. For example, you can make this dependent on whether a certain variable is
declared, whether a certain function block exists, etc.

Pragma Description
{define <identifier> <string>}The value can be queried and compared later with hasvalue.

{undefine <identifier>}The {define} statement of the identifier <identifier> is can-
celed, and the identifier is 'undefined' again from now on. The pragma
is ignored if the specified identifier is not defined at all.

{IF <expr>}...
{ELSIF
<expr>}...
{ELSE}...
END_IF}

These are pragmas for the conditional compilation.
The specified expressions <expr> must be constant at the time of
compilation; they are evaluated in the order in which they appear here
until one of the expressions indicates a non-zero value. The text linked
to the instruction is compiled; the other lines are ignored. The order of
the sections is fixed. The ELSIF and ELSE sections are optional. The
ELSIF-segments may occur any number of times. You can use sev-
eral conditional compilation operators within the constants <expr>.

<expr> You can use one or more operators within the constant expression
<expr> within the conditional compilation pragma {IF} or {ELSIF} .

You can enter expressions and define definitions as “compiler definitions” in
the “Build” tab in the Properties dialog of POUs. If you enter define definitions
in the properties dialog, you must omit the term {define}, contrary to the defi-
nition in the implementation code. In addition, you can specify several define
definitions in the properties dialog, separated by commas.

This operator causes the expression to be given the value TRUE. The requirement is that
the identifier <identifier> was defined with the help of a {define} instruction and not
undefined again afterwards with an {undefine} instruction; otherwise FALSE is returned.

Requirement: The applications App1 and App2 exist. The variable pdef1 is defined by a
{define} statement in App1, but not in App2.

{IF defined (pdef1)}
(* This code is processed in App1 *)
{info 'pdef1 defined'}
 hugo := hugo + SINT#1;
{ELSE}
(* the following code is only processed in App2 *)
{info 'pdef1 not defined'}
 hugo := hugo - SINT#1;
{END_IF}

This also contains an example of a message pragma: Only the message pdef1 defined is
displayed in the message view when the application is compiled, because pdef1 is actually
defined. The message pdef1 not defined is displayed if pdef1 is not defined.

Example

Operator
defined
(<identifier>
)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2319

This operator causes the expression to be given the value TRUE if the variable
<variable_name> is declared within the current scope; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The variable g_bTest is declared in
App1, but not in App2.

{IF defined (variable: g_bTest)}
(* the following code is only processed in App2*)
 g_bTest := x > 300;
{END_IF}

Example

The operator causes the expression to be given the value TRUE if a data type is declared with
the identifier <identifier>; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The data type DUT is declared in
App1, but not in App2.

{IF defined (type: DUT)}
(* the following code is only processed in App1*)
 bDutDefined := TRUE;
{END_IF}

Example

The operator causes the expression to be given the value TRUE if a function block or an action
with name <pou-name> exists; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The function block CheckBounds
exists in App1, but not in App2.

{IF defined (pou: CheckBounds)}
(* the following code is only processed in App1 *)
 arrTest[CheckBounds(0,i,10)] := arrTest[CheckBounds(0,i,10)] +
1;
{ELSE}
(* the following code is only processed in App2 *)
 arrTest[i] := arrTest[i]+1;
{END_IF}

Example

Not yet implemented!
The operator causes the expression to be given the value TRUE if a task is defined with the
name <task_name>; otherwise FALSE is returned.

{ IF | ELSIF defined (task: <task name> }

{IF defined (task: Task_D)}Example

Operator
defined
(variable:
<variable_nam
e>)

Operator
defined
(type:
<identifier>)

Operator
defined (pou:
<pou name>)

Operator
defined
(task:
<task_name>)

Syntax

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2320

Requirement: The two applications App1 and App2 exist. The task PLC_PRG_Task is defined
in App1, but not in App2.
{END_IF}
{IF defined (task: PLC_PRG_Task)}
(* the following code is only processed in App1 *)
 erg := plc_prg.x;
{ELSE}
(* the following code is only processed in App2 *)
 erg := prog.x;
{END_IF}

Example

Not yet implemented!
The operator causes the expression to be given the value TRUE if a resource object with the
name <identifier> exists for the application; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. A resource object glob_var1 of the
global variable list exists for App1, but not for App2.

{IF defined (resource:glob_var1)}
(* the following code is only processed in App1 *)
 gvar_x := gvar_x + ivar;
{ELSE}
(* the following code is only processed in App2 *)
 x := x + ivar;
{END_IF}

Example

The operator causes the expression to be given the value TRUE if the application runs on a
simulated device, i.e. in simulation mode.
See also
● Ä Chapter 6.4.1.12.2 “Testing in simulation mode” on page 1980

The operator causes the expression to be given the value FALSE, if the CPU memory is
organized in Big Endian (Motorola byte order).

If the expression returns the value TRUE, then the code generator produces an FPU code
(for the floating-point unit processor) when calculating with REAL values. Otherwise CODESYS
emulates FPU operations, which is much slower.

This operator causes the expression to be given the value TRUE if the attribute <attribute>
is specified in the first line of the declaration part of the function block <pou name>; otherwise
FALSE is returned.

Operator
defined
(resource:
<identifier>)

Operator
defined
(IsSimulation
Mode)

Operator
defined
(IsLittleEndi
an)
Operator
defined
(IsFPUSupport
ed)

Operator
hasattribute
(pou: <pou
name>,
'<attribute>'
)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2321

Requirement: The two applications App1 and App2 exist. The function fun1 is declared
in App1 and App2. However, in App1 it is also provided with the pragma {attribute
'vision'}.

{attribute 'vision'}
FUNCTION fun1 : INT
VAR_INPUT
 i : INT;
END_VAR
VAR
END_VAR

FUNCTION fun1 : INT
VAR_INPUT
 i : INT;
END_VAR
VAR
END_VAR

{IF hasattribute (pou: fun1, 'vision')}
(* the following code is only processed in App1 *)
 ergvar := fun1(ivar);
{END_IF}

Example

In App1:

In App2:

Pragma
instruction:

See also
● Ä Chapter 6.4.1.20.6.3.2 “User-defined attributes” on page 2272

This operator causes the expression to be given the value TRUE if the pragma {attribute
'<attribute>'} is assigned to the variable in the line before the variable declaration; other-
wise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The variable g_globalInt is used
in App1 and App2, but in App1 the attribute 'DoCount' is assigned to it in addition.

VAR_GLOBAL
 {attribute 'DoCount'}
 g_globalInt : INT;
 g_multiType : STRING;
END_VAR

VAR_GLOBAL
 g_globalInt : INT;
 g_multiType : STRING;
END_VAR

{IF hasattribute (variable: g_globalInt, 'DoCount')}
 (* the following code is only processed in App1 *)
 g_globalInt := g_globalInt + 1;
{END_IF}

Example

Declaration of
g_GlobalInt
in App1

Declaration
g_GlobalInt
in App2:

Pragma
instruction:

Operator
hasattribute
(variable:
<variable>,
'<attribute>'
)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2322

See also
● Ä Chapter 6.4.1.20.6.3.2 “User-defined attributes” on page 2272

The operator checks whether or not the constant, which is identified with <constant name>, has
been replaced. The second parameter (Boolean value) controls what is checked:
● TRUE: Checks if the constant has been replaced
● FALSE: Checks if the constant has not been replaced When the respective case occurs, the

operator returns TRUE.

{ IF hasconstanttype(<constant namne> , <boolean literal>) }
{ ELSIF hasconstanttype(<constant namne> , <boolean literal>) }

Syntax

{IF hasconstanttype(PLC_PRG.aConst, TRUE)}
Example

The automatic replacement of constants in principle depends on the following:
● Compile option
● Replace constants
● Constant type (For example, STRING types are never replaced.)
● Usage of the attribute {attribute 'const_non_replaced'}
● Usage of the attribute {attribute 'const_replaced'}

VAR
 iCntMAXIsReplaced: INT;
 xErrorOccured : BOOL;
END_VAR
VAR CONSTANT
 c_iMAX: INT := 99;
END_VAR

{IF hasconstanttype(c_iMAX, TRUE)}
 iCntMAXIsReplaced := iCntMAXIsReplaced + 1;
{ELSE}
 xErrorOccured := FALSE;
{END_IF}

Example

The operator compares the value of the constant, which is identified with <constant name>, with
the value of the second parameter. The second parameter can be specified either as a literal
<literal> or as a variable <variable name>.
Comparison operators <comparison operator>:
● Greater than (>)
● Greater than or equal to (>=)
● Equal to (=)
● Not equal to (<>)
● Less than or equal to (<=)
● Less than (<)

Operator
hasconstantty
pe (constant
name, boolean
literal)

Operator
hasconstantva
lue (constant
name,
variable
name,
comparison
operator)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2323

{ IF hasconstantvalue(<constant name> , <variable name> ,
<comparison operator>)
{ IF hasconstantvalue(<constant name> , <literal> , <comparison
operator>)
{ ELSIF hasconstantvalue(<constant name> , <variable name> ,
<comparison operator>)
{ ELSIF hasconstantvalue(<constant name> , <literal> , <comparison
operator>)

Syntax

{IF hasconstantvalue(PLC_PRG.aConst, 99, >)}

{ELSIF hasconstantvalue(PLC_PRG.aConst, GVL.intconst99, =)}

Example

PROGRAM PRG_ConditionConstantValue
VAR
 iCntMAX: INT;
 iCntGlobalMAX : INT;
 iCntABC: INT;
 iCntGlobalABC : INT;
 xErrorOccured : BOOL;
END_VAR
VAR CONSTANT
 c_iMAX: INT := 999;
 c_sABC: STRING := 'ABC';
 {attribute 'const_non_replaced'}
 c_iNonReplaceable: INT := 888;
END_VAR

{IF hasconstantvalue(c_iMAX, 999, =)}
 iCntMAX := iCntMAX + 1;
{ELSE}
 xErrorOccured := FALSE;
{END_IF}

{IF hasconstantvalue(c_iMAX, GVL.gc_iMAX, =)}
 iCntGlobalMAX := iCntGlobalMAX + 1;
{ELSE}
 xErrorOccured := FALSE;
{END_IF}

{IF hasconstantvalue(c_sABC, 'ABC', =)}
 iCntABC := iCntMAX + 1;
{ELSE}
 xErrorOccured := FALSE;
{END_IF}
{IF hasconstantvalue(c_sABC, GVL.gc_sABC, =)}
 iCntGlobalABC := iCntMAX + 1;
{ELSE}
 xErrorOccured := FALSE;
{END_IF}

Example

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2324

This operator causes the expression to be given the value TRUE if the variable <variable> is
of the data type <type-spec>; otherwise FALSE is returned.

Possible data types for <type-spec>:

● BOOL
● BYTE
● DATE
● DATE_AND_TIME (DT)
● DINT
● DWORD
● INT
● LDATE
● LDATE_AND_TIME (LDT)
● LINT
● LREAL
● LTIME
● LTIME_OF_DAY (LTOD)
● LWORD
● REAL
● SINT
● STRING
● TIME
● TIME_OF_DAY (TOD)
● ULINT
● UDINT
● UINT
● USINT
● WORD
● WSTRING

Requirement: The two applications App1 and App2 exist. The variable g_multitype is
declared in App1 with data type LREAL, in App2 with data type STRING.

{IF (hastype (variable: g_multitype, LREAL))}
(* the following code is only processed in App1 *)
 g_multitype := (0.9 + g_multitype) * 1.1;
{ELSIF (hastype (variable: g_multitype, STRING))}
(* the following code is only processed in App2 *)
 g_multitype := 'this is a multitalent';
{END_IF}

Example

The checked pack mode depends on the device description, not on the pragma that can be
specified for individual DUTs.

<register size>: Size of a CPU register (in bits) The operator causes the expression to return the
value TRUE when the size of a CPU register is equal to <register size>.
Possible values for <register size>
● 16 for C16x
● 64 for X86-64 bit
● 32 for X86-32 bit

Operator
hastype
(variable:
<variable>,
<type-spec>)

Operator
hasvalue
(PackMode,
'<pack mode
value>')
Operator
hasvalue
(RegisterSize
, '<register
size>')

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2325

This operator causes the expression to be given the value TRUE if a variable is defined with the
identifier <define-ident> and has the value <char-string>; otherwise FALSE is returned.

Requirement: The two applications App1 and App2 exist. The variable test is used in the
applications App1 and App2; in App1 it is given the value 1, in App2 the value 2.

{IF hasvalue(test,'1')}
(* the following code is only processed in App1 *)
x := x + 1;
{ELSIF hasvalue(test,'2')}
(* the following code is only processed in App2 *)
 x := x + 2;
{END_IF}

Example

The expression is given the value TRUE if the reverse value of <operator> returns the value
TRUE. <operator> can be one of the operators described in this chapter.

Requirement: The two applications App1 and App2 exist.PLC_PRG1 exists in App1 and App2,
and the POU CheckBounds exists only in App1.

{IF defined (pou: PLC_PRG1) AND NOT (defined (pou: CheckBounds))}
(* the following code is only processed in App2 *)
 bANDNotTest := TRUE;
{END_IF}

Example

The expression is given the value TRUE if the two specified operators return TRUE.
<operator> can be one of the operators described in this chapter.

Requirement: The applications App1 and App2 exist.PLC_PRG1 exists in App1 and App2, the
POU CheckBounds only in App1.

{IF defined (pou: PLC_PRG1) AND (defined (pou: CheckBounds))}
 (* the following code is only processed in App1 *)
 bANDTest := TRUE;
{END_IF}

Example

The expression returns TRUE if one of the two specified operators returns TRUE. <operator>
can be one of the operators described in this chapter.

Requirement: The two applications App1 and App2 exist. The POU PLC_PRG1 exists in App1
and App2, and the POU CheckBounds exists only in App1.

{IF defined (pou: PLC_PRG1) OR (defined (pou: CheckBounds))}
(* the following code is only processed in App1 and in App2 *)
 bORTest := TRUE;
{END_IF}

Example

Operator
hasvalue
(<define-
ident>,
'<char-
string>')

Operator NOT
<operator>

Operator
<operator>
AND
<operator>

Operator
<operator> OR
<operator>

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2326

() parenthesizes the operators.

See also
● Ä Chapter 6.4.1.20.6.3.2 “User-defined attributes” on page 2272

Region Pragma
This pragma is used for grouping several lines into one block in a text editor. The block can be
named. Region pragmas can also be nested.
Code with region pragma: Expanded and collapsed views

The pragma can be used in the ST editor and all declaration editors. Syntax highlighting can be
customized in the options.
See also
● Ä Chapter 6.4.1.21.3.3.18 “Command 'Collapse All Folds'” on page 2568
● Ä Chapter 6.4.1.21.3.3.17 “Command 'Expand All Folds'” on page 2568

6.4.1.20.7 Identifiers
Rules for identifiers of variables
● An identifier must not contain spaces or special characters.
● Capitalization is ignored. For example, VAR1 and var1 refer to the same variable.
● The underscore is recognized. For example, A_BCD and AB_CD are treated as two different

identifiers. Multiple consecutive underscores are not permitted.
● The length of an identifier is unrestricted.
Rules for multiple use of identifiers (namespaces)
● An identifier must not be declared two times locally.
● An identifier can be used more than one time globally. If a local variable has the same name

as a global variable, then the local variable has priority within the POU.
● An identifier must not be identical to a keyword, such as the scope VAR_Global.

Operator
(<operator>)

Rules for identi-
fier designation

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2327

● A variable that is declared in a global variable list can have the same name as a variable
defined in another GVL. CODESYS provides features that extend the standard for the
namespace or scope of variables:
– Global namespace operator:

An instance path that begins with a dot always opens a global namespace. If there is
a local variable (for example, ivar) that has the same name as a global variable, then
you refer to the global variable as .ivar.

– The name of a global variable list can define the namespace uniquely for the include
variables. Therefore, you can declare variables with the same name in different global
variables list and still uniquely reference by prepending the list name.
For example, globlist1.ivar := globlist2.ivar; (* ivar from GVL
globlist2 is copied to ivar in GVL globlist1 *).

– Variables that are defined in the global variable list of a library included in the project can
be addressed uniquely according to the following syntax:
<name scope library>.< GVL name>.<variable name>
For example, globlist1.ivar := lib1.globlist1.ivar (* ivar from GVL
globlist1 in library lib1 is copied to ivar in GVL globlist1 *).

● When inserting a library, you also use the Library Manager to define a namespace. In this
way, you can make unique references to a library block or library variable by <namespace
library>.<block name|variable name>. Note that when libraries are nested, you
have to reference the namespaces of all libraries are in succession
Example: If Lib1 is referenced by Lib0, then the POU func in Lib1 is addressed by
Lib0.Lib1.fun: ivar := Lib0.Lib1.fun(4, 5); (* return value from func
is copied to variable ivar in the project *)

We recommend that you apply the following rules in addition to the items that you have to
consider specifically for variables declaration. By doing this, you get the best possible harmoni-
zation when assigning names.

Whenever possible, you should name variables in Hungarian notation in applications and libra-
ries. Find a meaningful, short, English name for each variable as a base name, which can
consist of several words. Write the first letter of each word in uppercase, the remaining letters in
lowercase. In front of the base name, append a prefix in lowercase to indicate the data type of
the variable.
Example: iFileSize : INT;

Data Type Prefix Description
BOOL x We expressly recommend x as the prefix for Boolean

variables in order to distinguish them from identifiers of
the data type BYTE. The prefix indicates the view of an
IEC programmer.

 b Reserved
BYTE by Bit string; not for arithmetic operations
WORD w Bit string; not for arithmetic operations
DWORD dw Bit string; not for arithmetic operations
LWORD lw Bit string; not for arithmetic operations

SINT si Arithmetic integer data type, 8-bit
USINT usi Arithmetic integer data type, 8-bit
INT i Arithmetic integer data type, 16-bit
UINT ui Arithmetic integer data type, 16-bit
DINT di Arithmetic integer data type, 32-bit

Recommenda-
tions for vari-
able names

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2328

Data Type Prefix Description
UDINT udi Arithmetic integer data type, 32-bit
LINT li Arithmetic integer data type, 64-bit
ULINT uli Arithmetic integer data type, 64-bit

REAL r Arithmetic floating-point data type, 32-bit
LREAL lr Arithmetic floating-point data type, 64-bit

STRING s Single-byte character string of variable length (default

setting: 80 characters)
WSTRING ws Double-byte character string of variable length (default

setting: 80 characters)

TIME tim Time duration, 32-bit
LTIME ltim Time duration, 64-bit

● TIME_OF_DAY
● TOD

tod Time of day, 32-bit

● LTIME_OF_DAY
● LTOD

ltod Time of day, 64-bit

● DATE_AND_TIME
● DT

dt Date and time

● LDATE_AND_TIME
● LDT

ldt

DATE ● dat
● d

Calender date

LDATE ● ldat
● ld

Calender date

POINTER p
ARRAY a

Enumeration e

VAR
 bySubIndix: BYTE;
 xFlag: BOOL;
 udiCounter: UDINT;
END_VAR

Example

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2329

Identifier Description Example
Nested declaration Prefixes are attached suc-

cessively in the order of
declaration.

pabyTelegramData: POINTER TO ARRAY [0..7]
OF BYTE;

Function block instance
Variable of user-defined
data type

Prefix: Abbreviation for the
name of the function block
or data type

cansdoReceivedTelegram: CAN_SDOTelegram;
TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT
ﾠwIndex: WORD;
ﾠbySubIndex:BYTE;
ﾠbyLen:BYTE;
ﾠaby: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Local constant
Local constant variable

Prefix: c_, followed by the
type prefix and the variable
name

VAR CONSTANT
ﾠc_uiSyncID: UINT := 16#80;
END_VAR

Global variable An additional prefix is
appended to the library
prefix.
g_

VAR_GLOBAL
ﾠCAN_g_iTest: INT;
END_VAR

Global constants
Global constant variable

An additional prefix is
appended to the library
prefix.
gc_

VAR_GLOBAL CONSTANT
ﾠCAN_gc_dwExample: DWORD;
END_VAR

Identifier Description Example
Variable Corresponds to the

description for variable
names, with the exception
that global variables and
constants do not require
library prefixes because
the namespace replaces
the function.

g_iTest: INT; // Declaration
CAN.g_iTest; // Implementation; call in
the program

Recommenda-
tions for vari-
able names
CODESYS V3.x
libraries

Recommenda-
tions for identi-
fiers for user-
defined data
types (DUT)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2330

Identifier for Description Example
Structures Library prefix followed by

an underscore and a short,
informative description of
the structure. The asso-
ciated prefix for created
variables of this structure
should follow the colon as
a comment.

TYPE CAN_SDOTelegram : (* prefix: sdo *)
STRUCT
ﾠwIndex : WORD;
ﾠbySubIndex : BYTE;
ﾠbyLen : BYTE;
ﾠabyData: ARRAY [0..3] OF BYTE;
END_STRUCT
END_TYPE

Enumerations Library prefix followed by
an underscore and the
identifier in uppercase.
Note: In past CODESYS
versions, enumeration
values > 16#7FFF caused
errors because they
were not automatically
converted to INT. For
this reason, enumerations
should always be declared
with correct INT values.

TYPE CAL_Day :
(
ﾠCAL_MONDAY,
ﾠCAL_TUESDAY,
ﾠCAL_WEDNESDAY,
ﾠCAL_THURSDAY,
ﾠCAL_FRIDAY,
ﾠCAL_SATURDAY,
ﾠCAL_SUNDAY
);
Declaration:
eToday: CAL_Day;

Recommenda-
tions for identi-
fiers for user-
defined data
types (DUT) in
CODESYS V3
libraries

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2331

Identifier for Description Example
DUT names in CODESYS
V3 libraries

The namespace replaces
the need for the library
prefix. Therefore, it
is omitted. Enumeration
values are also defined
without a library prefix.

Library with namespace CAL
TYPE DAY :
(
ﾠMONDAY
ﾠTUESDAY,
ﾠWEDNESDAY,
ﾠTHURSDAY,
ﾠFRIDAY,
ﾠSATURDAY,
ﾠSUNDAY
);
Declaration:
eToday: CAL.Day;
Usage in the application
IF eToday = CAL.Day.MONDAY THEN

Identifier for Description Example
POUs: Func-
tions, function
blocks, pro-
grams

Library prefix followed by an underscore and
a short, informative POU name. Like for varia-
bles, the first letter of each word is uppercase
and all other letters are lowercase. We recom-
mend that you compose the POU name from a
verb and a noun.
For function blocks, the associated prefix for
created instances should follow the name as a
comment.

FUNCTION_BLOCK CAN_SendTelegram (*
prefix: canst *)

Actions Only actions that the block itself calls, beginning
with prv_. Otherwise, actions do not have a
prefix.

Recommenda-
tions for identi-
fiers for POUs,
functions, func-
tion blocks, pro-
grams

Recommenda-
tions for identi-
fiers for POUs in
CODESYS V3
libraries

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2332

Identifier for Description Example
POU The library prefix is omitted because the name-

space replaces the function of the library prefix.
FUNCTION_BLOCK SendTelegram (*
prefix: canst *)

Method Only methods that the block itself calls, begin-
ning with prv_.

Otherwise, methods do not have a prefix.

Interface
Interface

I ICANDevice

NOTICE!
Note that a visualization is not named the same as another block in the project
because this may cause problems when changing visualizations.

See also
● Ä Chapter 6.4.1.9.4 “Declaration of Variables ” on page 1847
● Ä Chapter 6.4.1.20.5 “Data Types” on page 2234
● Ä Chapter 6.4.1.20.2 “Variables” on page 2113

6.4.1.20.8 Shadowing Rules
In CODESYS, you are generally allowed to use the same identifier for different elements. For
example, a POU and a variable can be named the same. However, you should avoid this
practice in order to prevent confusion.
Negative example: In the following code snippet, a local function block instance has the same
name as a function:

FUNCTION YYY : INT
;
END_FUNCTION

FUNCTION_BLOCK XXX
;
END_FUNCTION_BLOCK

PROGRAM PLC_PRG
VAR
 YYY : XXX;
END_VAR
YYY();
END_PROGRAM

In such a case as this, it is unclear whether the instance or the function is called in the
program.

Example

To make sure that names are always unique, you should follow naming conventions, such as
certain prefixes for variables. Rules for assigning identifiers can be found in the "Identifiers"
chapter of the help.
Naming conventions can be checked automatically using the static code analysis of CODESYS.
Static code analysis could also detect the duplicate use of the name YYY and report it as an
error.

Recommenda-
tions for identi-
fiers for visuali-
zations

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2333

The consistent use of the attribute qualified_only for enumerations and global variable lists
and the use of qualified libraries can also prevent ambiguous situations.
To make sure that a POU of the same name in the “Devices” view is not called when a
POU in the “POUs” view is called, the operator __POOL should be prepended (for example,
svar_pou := __POOL.POU();) when the name of the POU is called.

Shadowing: The compiler does not report any errors or warnings if the same identifier is
used for different elements. Instead, the compiler searches the code in a specific order for the
declaration of the identifier. If a declaration is found, then the compiler does not search for any
other declarations elsewhere. If other declarations do exist, then they are "shadowed" for the
compiler. The following section describes the shadowing rules (that is, the search order that
the compiler uses when searching for the declaration for identifiers). The section "Ambiguous
access and qualified access" provides ways to prevent ambiguous access and bypass shad-
owing rules.

When the compiler encounters a single identifier in the code of an application, it searches for
the corresponding declaration in the following order:
1. Local variables of a method
2. Local variables in the function block, program, or function, and in any base function blocks
3. Local methods of the POU
4. Global variables in the application, if the qualified_only attribute is not set in the variable
list where the global variables are declared
5. Global variables in a parent application, if the qualified_only attribute is not set in the
variable list where the global variables are declared
6. Global variables in referred libraries when neither the library nor the variable list requires
qualified access
7. POU or type names from the application (that is, names of global variable lists, function
blocks, and so on)
8. POU or type names from a parent application
9. POU or type names from a library
10. Namespaces of locally referred libraries and libraries that are published by libraries
11. Global variables in the “POUs” view, unless the qualified_only attribute is set in the
variable list where they are declared
12. POU or type names from the “POUs” view (that is, names of global variable lists, function
blocks, and so on)

Libraries that are inserted in the Library Manager of the “POUs” view are
mirrored in the Library Manager in all applications in the project with the appro-
priate placeholder resolution. These libraries then form a common namespace
with the libraries in the application. Therefore, there is no shadowing of libraries
in the pool by libraries in the application.

When the compiler encounters a single identifier in the code of a library, it searches for the
corresponding declaration in the following order:
1. Local variables of a method
2. Local variables in the function block, program, or function, and in any base function blocks
3. Local methods of the POU
4. Global variables in the local library, if the qualified_only attribute is not set in the variable
list where the global variables are declared
5. Global variables in referred libraries when neither the library nor the variable list requires
qualified access

Search order in
the application

Search order in
the library

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2334

6. POU or type names from the local library (that is, names of global variable lists, function
blocks, and so on)
7. POU or type names from a referred library
8. Namespaces of locally referred libraries and libraries that are published by locally refereed
libraries

Despite these search orders, ambiguous access can still occur. For example, this is the case
when a variable with the same name exists in two global variable lists that do not require
qualified access. Such a case is reported by the compiler as an error (for example: ambiguous
use of the name XXX).

This kind of ambiguous usage can be made unique by means of qualified access, for example
by accessing via the name of the global variable list (example: GVL.XXX).

Qualified access can also always be used to avoid shadowing rules.
● The name of the global variable list can be used to uniquely access a variable in the list.
● The name of a library can be used to uniquely access elements in the library.
● The THIS pointer be used to uniquely access variables in a function block, even if a local

variable with the same name exists in a method of the function block.
To find the declaration location of an identifier at any time, use the command “Edit è Browse
è Go to Definition”. This can be especially helpful if the compiler produces an apparently
obscure error message.

The search orders described above do not apply to identifiers that exist as components in an
instance path or to identifiers that are used as inputs in calls.
For access of the following type yy.component, it depends on the entity described by yy
where the declaration of component is searched for.

If yy denotes a variable with a structured data type (that is, type STRUCT or UNION), then
component is searched for in the following order:

● Local variables of the function block
● Local variables of the base function block
● Methods of the function block
● Methods of the base function block
If yy denotes a global variable list or a program, then component is searched for in this list
only.
If yy denotes a namespace of a library, then component is searched for in this library exactly
as described in the section above "Search order in the library".
Only in the second instance does the compiler decide whether access to the found element is
granted (that is, whether the variable is only locally accessible, or whether a method is private).
If access is not allowed, an error is issued.

See also
● Ä Chapter 6.4.1.20.7 “Identifiers” on page 2327
● Ä Chapter 6.4.1.20.6.3.40 “Attribute 'qualified_only'” on page 2312
● Ä Chapter 6.4.1.20.2.16 “THIS” on page 2126
● Ä Chapter 6.4.1.20.3.74 “Operator '__POOL'” on page 2217

6.4.1.20.9 Keywords
In all editors, you must capitalize keywords that for example denote scopes, data types, or
operators.
Keywords cannot be used as variable names.

Ambiguous
access and
qualified access

Searching in
instance paths

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2335

VAR
END_VAR
BOOL_TO_INT
IF
THEN
ELSE
LTIME
MUL
XOR
PERSISTENT
PROGRAM

Examples

CODESYS checks the correct use of keywords automatically and highlights errors immediately
during input with a wavy underline.

When CODESYS creates implicit code, variables and functions are generally
given a name that is prepended with two underscores (__). The use of double
underscores in the implementation code is prevented automatically. This elimi-
nates conflicts between internal system identifiers and identifiers assigned by
the programmer.

The following keywords are used in the CODESYS export format. Therefore, you may not use
them as identifiers:
● ACTION
● END_ACTION
● END_FUNCTION
● END_FUNCTION_BLOCK
● END_PROGRAM
Other valid keywords:
● VAR_ACCESS
● READ_ONLY
● READ_WRITE
● PARAMS

6.4.1.20.10 Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'
You can declare the methods explicitly in order to influence the initialization of function block
variables, as well as the behavior when exiting function blocks.

The type of the return value for the implicit methods is BOOL. The value is not
evaluated by the system, but the type should not be changed.

FB_Init is always available implicitly and it is used primarily for initialization. For a specific
influence, you can also declare the methods explicitly and provide additional code there with the
standard initialization code.
FB_Reinit must be implemented explicitly. If this method exists, then it is called after the
instance of the affected function block is copied. That happens during an online change after
changes to the function block declaration (signature change) in order to reinitialize the new
instance module. To reinitialize the basic implementation of the function block, you must call
FB_Reinit explicitly.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2336

FB_Exit must be implemented explicitly. If there is an implementation, then the method is
called before the controller removes the code of the function block instance (implicit call).
The following shows some use cases of these methods for different operating conditions.

When downloading an application to a PLC with factory settings, the memory of all variables
must be offset to the required initial state. In this way, the data areas of function block instances
are assigned the required values. By the explicit implementation of FB_Init for function blocks,
you can react specifically to this situation in the application code. By evaluating the method
parameters bInCopyCode (FALSE) and bInitRetains (TRUE), you can detect this operating
condition clearly. (See "Operating condition "Online Change"" and "Operating condition "Re-
download"".)

Within the scope of the online change, you can influence the initialization of function block
instances by means of the methods FB_Exit, FB_Init, and FB_Reinit. During the online
change, the changes to the application that were made in offline mode are applied in the run-
ning PLC. This is the reason that the old instances of the function blocks are replaced by new
instances as much as possible without incident. If no changes were made to the declaration part
of a function block in the application before login, but in the implementation only, then the data
areas are not replaced. Only code blocks are replaced. Then the methods FB_Exit , FB_Init,
and FB_Reinit are not called.

If you have made changes to the declaration of a function block that lead to
the copying operation described above, then you receive a message during
the online change about possible unintended effects. In the “Details” of the
message view, you see a list of all instances to be copied.

In the code of the FB_Init method, the parameter bInCopyCode (TRUE) can be evaluated to
detect whether or not an online change is being executed.
The following calls occur in succession during an online change:
1. FB_Exit

old_inst.FB_Exit(bInCopyCode := TRUE);
You can call FB_Exit when exiting the old instance in order to trigger specific cleanup
tasks before the copy operation. In this way, you can prepare the data for the following
copy operation and influence the state of the new instance. You can notify other parts of
the application about the pending change in location in the memory. Pay special attention
to the variables of type POINTER and REFERENCE. These may no longer refer to the
required memory locations after the online change. Interface variables (INTERFACE) are
handled separately by the compiler and they are adapted accordingly during the online
change. External resources such as sockets, files, or other handles can be applied by the
new instance, in some case unchanged. Often they do not have to be treated specially
during an online change. (See "Operating condition "Re-download"")

2. FB_Init
new_inst.FB_Init(bInitRetains := FALSE, bInCopyCode := TRUE);
FB_Init is called before the copy operation and can be used in order to execute specific
operations for the online change. For example, you can initialize variables accordingly at
the new location in the memory, or notify other parts of the application about the new
location of specific variables in the memory.

3. Copy operation: copy
copy(&old_inst, &new_inst);
Existing values remain unchanged. For this purpose, they are copied from the old instance
into the new instance.

Operating con-
dition "First
download"

Operating con-
dition "Online
Change"

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2337

4. FB_Reinit
new_inst.FB_Reinit();
This method is called after the copy operation and should set defined values for the
variables of the instance. For example, you can initialize variables accordingly at the new
location in the memory, or notify other parts of the application about the new location of
specific variables in the memory. Design the implementation independent of the online
change. The method can also be called from the application at any time in order to reset a
function block instance to its original state.

With the {attribute 'no_copy'} attribute, you can prevent that this is
copied during the online change for a single variable of the function block. It
always retains the initial value.

See also
● Ä Chapter 6.4.1.21.3.4.19 “Command 'Settings of Memory Reserve for Online Change' ”

on page 2595

When downloading an application, an existing application may be replaced on the PLC. There-
fore, the provision of memory for the present function blocks must be regulated. You can use
the FB_Exit method for implementing the required steps for this. For example, you can offset
external resources (with socket and file handles) in a defined state.
You can detect this operating condition by checking whether or not the parameter
bInCopyCode = FALSE for the FB_Exit method.

The initial assignments are processed before the first cycle of the application tasks.

T1 : TON := (PT:=t#500ms);Example

These kinds of assignments are executed only after calling FB_Init. In order to control the
effects of these assignments, you can provide a function block or a method of a function
block with the {attribute ‘call_after_init‘} attribute. You must add the attribute
above the declaration part of the function block body and above the declaration part of
the corresponding method. A POU that extends another POU which uses the {attribute
'call_after_init'} attribute must also have the attribute. For the benefit of clarity, we
recommend that the corresponding methods are overwritten with the same name, the same
signature, and the same attribute. This requires calling SUPER^.MyInit. The name of the
method can be chosen without restriction. (Exceptions: FB_Init, FB_Reinit, and FB_Exit).
The method is called after processing the initial assignments and before starting the application
tasks. Therefore, the method can react to user input.
When using FB_Init or {attribute 'call_after_init'}, remember that detecting
errors in the FB_Init method or in methods decorated with the {attribute
'call_after_init'} attribute is tedious, because the setting of breakpoints may not have
the expected effect.

NOTICE!
If the explicitly defined initialization code is reached during execution, then the
function block instance is already completely initialized via the implicit initializa-
tion code. Therefore, there must not be a SUPER^.FB_Init call.

Operating con-
dition "New
download"

Operating con-
dition "Start of
application"

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2338

NOTICE!
FB_Init replaces the INI operator used in CoDeSys V2.3. The methods
cannot be compared to the design of a constructor, such as in C#, C++, or Java.
This has consequences for function blocks that extend other function blocks.
(See below: "Derived function blocks")

METHOD FB_Init : BOOL
VAR_INPUT
 bInitRetains : BOOL; // TRUE: the retain variables are initialized
(reset warm / reset cold)
 bInCopyCode : BOOL; // TRUE: the instance will be copied to the
copy code afterward (online change)
END_VAR
You can declare additional function block inputs in an FB_init method. Then you have to set
these inputs in the declaration of the function block instance.

Method FB_Init for the serialdevice function block

METHOD PUBLIC FB_Init : BOOL
VAR_INPUT
 bInitRetains : BOOL; // initializing of retain variable
 bInCopyCode : BOOL; // instance is copied to copy code
 iCOMnum : INT; // additional input: number of the COM
interface, that is to be observed
END_VAR

Instantiation of the serialdevice function block:

com1: serialdevice(iCOMnum:=1);
com0: serialdevice(iCOMnum:=0);

Example

METHOD FB_Reinit : BOOL

There is the mandatory parameter bInCopyCode.

METHOD FB_Exit : BOOL
VAR_INPUT
 bInCopyCode : BOOL; // TRUE: the exit method is called in order to
leave the instance which will be copied afterwards (online change).
END_VAR

Interface of
method
FB_Init

Interface of
method
FB_Reinit

Interface of
method
FB_Exit

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2339

If a function block is derived from another function block, then the FB_Init method of the
derived function block must define the same parameters as the FB_Init method of the basic
function block. However, you can add further parameters in order to set up a special initialization
for the instance.

The function blocks MainFB, SubFB, and SubSubFB are derived from each other. Therefore,
SubFB EXTENDS MainFB and SubSubFB EXTENDS SubFB apply.

1. fbSubSubFb.FB_Exit(...);
2. fbSubFb.FB_Exit(...);
3. fbMainFb.FB_Exit(...);
4. fbMainFb.FB_Init(...);

5. fbSubFb.FB_Init(...);
6. fbSubSubFb.FB_Init(...);

Example

Calling order
of methods
FB_Exit and
FB_Init:

See also
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.20.6.3.4 “Attribute 'call_after_init'” on page 2273
● Ä Chapter 6.4.1.20.6.3.30 “Attribute 'no_copy'” on page 2299
● Ä Chapter 6.4.1.20.2.15 “SUPER” on page 2125

Behavior for
derived function
blocks

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2340

6.4.1.20.11 Error Messages and Warnings
6.4.1.20.11.1 Compiler error C0001... 2344
6.4.1.20.11.2 Compiler error C0002... 2344
6.4.1.20.11.3 Compiler error C0003... 2344
6.4.1.20.11.4 Compiler Error C0004... 2345
6.4.1.20.11.5 Compiler error C0005... 2345
6.4.1.20.11.6 Compiler error C0006... 2346
6.4.1.20.11.7 Compiler error C0007... 2346
6.4.1.20.11.8 Compiler error C0008... 2346
6.4.1.20.11.9 Compiler error C0009... 2347
6.4.1.20.11.10 Compiler error C0010... 2347
6.4.1.20.11.11 Compiler error C0011.. 2347
6.4.1.20.11.12 Compiler error C0013... 2348
6.4.1.20.11.13 Compiler error C0016... 2348
6.4.1.20.11.14 Compiler error C0018... 2348
6.4.1.20.11.15 Compiler error C0020... 2349
6.4.1.20.11.16 Compiler error C0022... 2349
6.4.1.20.11.17 Compiler error C0023... 2349
6.4.1.20.11.18 Compiler error C0026... 2350
6.4.1.20.11.19 Compiler error C0027... 2350
6.4.1.20.11.20 Compiler error C0030... 2350
6.4.1.20.11.21 Compiler error C0031... 2351
6.4.1.20.11.22 Compiler error C0032... 2351
6.4.1.20.11.23 Compiler Error C0033... 2351
6.4.1.20.11.24 Compiler error C0035... 2352
6.4.1.20.11.25 Compiler Error C0036... 2352
6.4.1.20.11.26 Compiler error C0037... 2352
6.4.1.20.11.27 Compiler error C0038... 2353
6.4.1.20.11.28 Compiler error C0039... 2353
6.4.1.20.11.29 Compiler error C0040... 2354
6.4.1.20.11.30 Compiler error C0041... 2354
6.4.1.20.11.31 Compiler Error C0042 (Compiler Version <= 3.4.10).............. 2355
6.4.1.20.11.32 Compiler error C0043... 2355
6.4.1.20.11.33 Compiler error C0044... 2356
6.4.1.20.11.34 Compiler error C0045... 2356
6.4.1.20.11.35 Compiler error C0046... 2356
6.4.1.20.11.36 Compiler error C0047... 2357
6.4.1.20.11.37 Compiler error C0048... 2357
6.4.1.20.11.38 Compiler error C0049... 2358
6.4.1.20.11.39 Compiler error C0050... 2358
6.4.1.20.11.40 Compiler Error C0051... 2358
6.4.1.20.11.41 Compiler Error C0053... 2359
6.4.1.20.11.42 Compiler error C0061... 2359
6.4.1.20.11.43 Compiler error C0062... 2359
6.4.1.20.11.44 Compiler error C0064... 2360
6.4.1.20.11.45 Compiler Error C0065... 2360
6.4.1.20.11.46 Compiler error C0066... 2360
6.4.1.20.11.47 Compiler error C0068... 2361
6.4.1.20.11.48 Compiler error C0069... 2361
6.4.1.20.11.49 Compiler error C0070... 2362
6.4.1.20.11.50 Compiler error C0072... 2362

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2341

6.4.1.20.11.51 Compiler error C0074... 2362
6.4.1.20.11.52 Compiler error C0075... 2363
6.4.1.20.11.53 Compiler error C0076... 2363
6.4.1.20.11.54 Compiler error C0077... 2363
6.4.1.20.11.55 Compiler Error C0078... 2364
6.4.1.20.11.56 Compiler error C0080... 2364
6.4.1.20.11.57 Compiler error C0081... 2365
6.4.1.20.11.58 Compiler error C0082... 2365
6.4.1.20.11.59 Compiler error C0084... 2365
6.4.1.20.11.60 Compiler Error C0085... 2366
6.4.1.20.11.61 Compiler error C0086... 2366
6.4.1.20.11.62 Compiler error C0087... 2367
6.4.1.20.11.63 Compiler error C0089... 2367
6.4.1.20.11.64 Compiler error C0090... 2368
6.4.1.20.11.65 Compiler error C0091... 2368
6.4.1.20.11.66 Compiler error C0094... 2368
6.4.1.20.11.67 Compiler error C0096... 2369
6.4.1.20.11.68 Compiler error C0097... 2369
6.4.1.20.11.69 Compiler error C0098... 2370
6.4.1.20.11.70 Compiler Error C0099 (Compiler Version < 3.5.7.0)............... 2370
6.4.1.20.11.71 Compiler error C0101... 2371
6.4.1.20.11.72 Compiler error C0102... 2371
6.4.1.20.11.73 Compiler error C0104... 2371
6.4.1.20.11.74 Compiler error C0114... 2371
6.4.1.20.11.75 Compiler Error C0115... 2372
6.4.1.20.11.76 Compiler error C0116... 2372
6.4.1.20.11.77 Compiler error C0117... 2372
6.4.1.20.11.78 Compiler error C0118... 2372
6.4.1.20.11.79 Compiler error C0119... 2373
6.4.1.20.11.80 Compiler error C0120... 2373
6.4.1.20.11.81 Compiler error C0122... 2374
6.4.1.20.11.82 Compiler error C0124... 2374
6.4.1.20.11.83 Compiler error C0125... 2374
6.4.1.20.11.84 Compiler error C0126... 2375
6.4.1.20.11.85 Compiler error C0130... 2375
6.4.1.20.11.86 Compiler error C0131... 2376
6.4.1.20.11.87 Compiler error C0132... 2376
6.4.1.20.11.88 Compiler error C0136... 2376
6.4.1.20.11.89 Compiler Error C0138... 2377
6.4.1.20.11.90 Compiler error C0139... 2377
6.4.1.20.11.91 Compiler error C0140... 2377
6.4.1.20.11.92 Compiler error C0141... 2378
6.4.1.20.11.93 Compiler error C0142... 2378
6.4.1.20.11.94 Compiler error C0143... 2378
6.4.1.20.11.95 Compiler error C0144... 2379
6.4.1.20.11.96 Compiler error C0145... 2379
6.4.1.20.11.97 Compiler error C0149... 2380
6.4.1.20.11.98 Compiler error C0161... 2380
6.4.1.20.11.99 Compiler error C0162... 2380
6.4.1.20.11.100 Compiler Error C0164... 2381
6.4.1.20.11.101 Compiler Error C0165... 2381

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2342

6.4.1.20.11.102 Compiler error C0168... 2382
6.4.1.20.11.103 Compiler error C0169... 2382
6.4.1.20.11.104 Compiler Error C0173... 2383
6.4.1.20.11.105 Compiler error C0174... 2383
6.4.1.20.11.106 Compiler error C0175... 2383
6.4.1.20.11.107 Compiler error C0177... 2384
6.4.1.20.11.108 Compiler error C0178... 2384
6.4.1.20.11.109 Compiler Error C0179... 2385
6.4.1.20.11.110 Compiler Error C0180... 2385
6.4.1.20.11.111 Compiler error C0182.. 2385
6.4.1.20.11.112 Compiler Error C0183... 2386
6.4.1.20.11.113 Compiler error C0185... 2386
6.4.1.20.11.114 Compiler Error C0186... 2386
6.4.1.20.11.115 Compiler Error C0188... 2387
6.4.1.20.11.116 Compiler error C0189... 2387
6.4.1.20.11.117 Compiler error C0190... 2388
6.4.1.20.11.118 Compiler error C0191... 2388
6.4.1.20.11.119 Compiler error C0195... 2388
6.4.1.20.11.120 Compiler error C0196... 2388
6.4.1.20.11.121 Compiler error C0197... 2389
6.4.1.20.11.122 Compiler error C0198... 2389
6.4.1.20.11.123 Compiler error C0199... 2389
6.4.1.20.11.124 Compiler error C0201... 2390
6.4.1.20.11.125 Compiler error C0203... 2390
6.4.1.20.11.126 Compiler error C0204... 2391
6.4.1.20.11.127 Compiler error C0205... 2391
6.4.1.20.11.128 Compiler error C0206... 2391
6.4.1.20.11.129 Compiler Error C0207... 2391
6.4.1.20.11.130 Compiler error C0208... 2392
6.4.1.20.11.131 Compiler Error C0209... 2392
6.4.1.20.11.132 Compiler error C0211... 2392
6.4.1.20.11.133 Compiler error C0212... 2393
6.4.1.20.11.134 Compiler Error C0215... 2393
6.4.1.20.11.135 Compiler error C0216... 2393
6.4.1.20.11.136 Compiler error C0217... 2393
6.4.1.20.11.137 Compiler error C0218... 2394
6.4.1.20.11.138 Compiler error C0219... 2394
6.4.1.20.11.139 Compiler error C0221... 2395
6.4.1.20.11.140 Compiler error C0222... 2395
6.4.1.20.11.141 Compiler error C0224... 2395
6.4.1.20.11.142 Compiler Error C0225... 2396
6.4.1.20.11.143 Compiler error C0227... 2396
6.4.1.20.11.144 Compiler error C0228... 2397
6.4.1.20.11.145 Compiler Error C0230... 2397
6.4.1.20.11.146 Compiler Error C0232... 2397
6.4.1.20.11.147 Compiler Error C0233... 2398
6.4.1.20.11.148 Compiler error C0234... 2398
6.4.1.20.11.149 Compiler error C0235... 2399
6.4.1.20.11.150 Compiler error C0236... 2399
6.4.1.20.11.151 Compiler error C0237... 2399
6.4.1.20.11.152 Compiler error C0238... 2400

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2343

6.4.1.20.11.153 Compiler error C0239... 2400
6.4.1.20.11.154 Compiler error C0240... 2401
6.4.1.20.11.155 Compiler error C0241... 2401
6.4.1.20.11.156 Compiler error C0242... 2401
6.4.1.20.11.157 Compiler error C0243... 2402
6.4.1.20.11.158 Compiler Error C0380... 2402
6.4.1.20.11.159 Compiler error C0509... 2403
6.4.1.20.11.160 Compiler error C0511... 2404
6.4.1.20.11.161 Compiler Error C0542... 2404
6.4.1.20.11.162 Compiler Error C0543... 2405
6.4.1.20.11.163 Compiler Error C0549... 2405
6.4.1.20.11.164 Compiler Error C0550... 2406
6.4.1.20.11.165 Compiler Error C0554... 2406
6.4.1.20.11.166 Compiler Error C0555... 2407

Compiler error C0001
Message: Constant '<constant value>' too large for type '<data type>'
Possible error cause: A typed constant is too large for the given data type or a constant is too
large for each possible data type.
Error correction: Use smaller constants or an appropriate data type for a typed constant.

PROGRAM PLC_PRG
VAR
 test1: INT;
 test2: INT;
 test3: LREAL;
END_VAR

test1 := 12345678912345566991923939292939911;
test2 := INT#123456;
test3 := 10E500;

--> C0001: Constant '12345678912345566991923939292939911' too large
for type 'ANY_INT'
--> C0001: Constant 'INT#123456' too large for type 'INT'
--> C0001: Constant '10E500' too large for type 'ANY_REAL'

Compiler error C0002
Message: '<operator 1>' or '<operator 2>' expected instead of '<tag>'
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
Fun(1;

--> C0002: ',' or ')' expected instead of ';'

Compiler error C0003
Message: '<value>' is not a valid bit number for '<variable>'

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2344

Possible error cause: Attempted access to a bit that is outside of the range for a data type.
Error correction: Use a bit value for the bit access that is lower than the number of bits in the
data type of the variable.

PROGRAM PLC_PRG
VAR
 test1: WORD;
 test2: BOOL;
END_VAR

test1 := test2.17;

--> C0003: '17' is not a valid bit number for 'w'

Compiler Error C0004
Message: '<variable>' is not a component of '<structure>'
Possible error cause: Component access with "." to a variable that is not a structured value or
does not exist as a component of the structure.
Error correction: Access a defined component, or change the definition of the component in
the data type. The input assistance "List components" provides all valid access to this position.

TYPE DUT:
STRUCT
 x, y : INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 test1 : DUT;
 test2 : INT;
END_VAR

test2 := test1.z;

--> C0032: Type 'Unknown type: 'test1.z'' cannot be converted to
type 'INT'
--> C0004: 'z' is to a component of 'DUT'

Compiler error C0005
Message: Constant overflow in address '<address>'
Possible error cause: At least one component in the address does not fit into a 32-bit integer
value.
Error correction: Use a valid address expression.

PROGRAM PLC_PRG
VAR
 X: BYTE;
END_VAR

X := %QB5555555555;

--> C0005: Constant overflow in address '%??'

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2345

Compiler error C0006
Message: '<operator>' expected instead of '<token>'
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 x: INT;
 bTest : BOOL;
END_VAR

IF bTest
 x := 9;
END_IF

--> C0006: 'THEN' expected instead of 'x'

Compiler error C0007
Message: Expression expected instead of '<token>'
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 x: INT;
 bTest : BOOL;
END_VAR

IF THEN
 x := 9;
END_IF

--> C0007: Expression expected instead of 'THEN'

Compiler error C0008
Message: Unexpected end-of-file found: '<operator 1>', '<operator 2>', or '<operator 3>'
expected
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 x: INT;
 bTest : BOOL;
END_VAR

IF bTest THEN
 x := 9;

--> C0008: Unexpected end-of-file found: 'ELSIF', 'ELSE' or 'END_IF'
expected

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2346

Compiler error C0009
Message: Unexpected token '<token>' found
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
END_VAR

END_FOR;

--> C0009: Unexpected token 'END_FOR' found

Compiler error C0010
Message: Unexpected end-of-file found: '<token>' expected
Possible error cause: Syntax error
Error correction: Use the correct syntax.

PROGRAM PLC_PRG
VAR
 i: INT;
END_VAR

FOR i := 0 TO 2 DO
;

--> C0010: Unexpected end-of-file 'END_FOR' found

Compiler error C0011
Message: No 'CASE' label found
Possible error cause: Syntax error in a CASE statement. A statement in a CASE statement is
not assigned to a CASE label.
Error correction: Add a CASE label.

PROGRAM PLC_PRG
VAR
 i: INT;
 x: INT;
END_VAR

CASE i OF
 x := 9;
END_CASE

--> C0011: No 'CASE' label found
CASE i OF
0:
 x := 9;
END_CASE

Example of the
error:

Example of the
error:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2347

Compiler error C0013
Message: At least one statement is expected.
Possible error cause: At least one statement is expected at some positions in the code. For
example, in the THEN and ELSE part of an IF statement, or in the body of a FOR loop.
Error correction: Add at least one statement at the selected position. It is enough to write a
blank statement ";".

PROGRAM PLC_PRG
VAR
 bTest: BOOL;
END_VAR

IF bTest THEN
END_IF

--> C0013: At least one statement is expected

Compiler error C0016
Message: Counter initialization expected
Possible error cause: Syntax error in a FOR loop. The counter variable is not initialized
correctly.
Error correction: Pay attention to the correct syntax of the FOR loop.
FOR i := 0 TO 10 DO
 ;
END_FOR

PROGRAM PLC_PRG
VAR
 i: INT;
END_VAR

FOR i TO 10 DO
 ;
END_FOR

--> C0015: Counter initialization expected
FOR i := 0 TO 10 DO
 ;
END_FOR

Compiler error C0018
Message: <expression> is not a valid assignment target
Possible error cause: An expression with no write permission is on the left side of an assign-
ment. Example: a constant.
Error correction: Assign only to variables that have write access.

PROGRAM PLC_PRG
VAR
 i: INT;
END_VAR
VAR CONSTANT

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2348

 j: INT := 0;
END_VAR

j := i;

--> C0018: 'j' is not a valid assignment target

Compiler error C0020
Message: '<statement>' is no valid statement
Possible error cause: Syntax error (for example, too few or too many characters)
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 x : INT;
END_VAR

x = 2;

--> C0020: '(x = 2); ' is no valid statement
Example:
x := 2;

Compiler error C0022
Message: '<operator>' needs exactly '<number of operands>' operands
Possible error cause: Too many or too few operands are assigned to an operator.
Error correction: Assign the required number of operands to the operator.

PROGRAM PLC_PRG
VAR
 i : INT;
 pt: POINTER TO INT;
END_VAR

pt := ADR(i,1);

--> C0022: 'ADR' needs exactly '1' operands
Example:
pt := ADR(i);

Compiler error C0023
Message: '<operator>' needs at least '<number of operands>' operands
Possible error cause: Too few operands are assigned to an operator.
Error correction: Assign the required number of operands to the operator.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2349

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

i := MUX(30,40);

--> C0023: 'MUX' needs at least '3' operands
Example:
i := MUX(30,40,50);

Compiler error C0026
Message: Identifier expected instead of '<invalid identifier>'
Possible error cause: An invalid identifier is passed to a method.
Error correction: Use valid identifiers.

METHOD 123
VAR_INPUT
END_VAR

--> C0243: The name used in the signature is not identical to the
object name
--> C0026: Identifier expected instead of '123'
Example:
METHOD METH123

Compiler error C0027
Message: size of string expected after '('
Possible error cause: The length of the string is not specified.
Error correction: Specify a string length between the parentheses.

PROGRAM PLC_PRG
VAR
 str : STRING();
END_VAR

--> C0027: size of string expected after '('
--> C0006: ';, :=, REF=, (or [' expected instead of ')'
Example:
str : STRING(100);

Compiler error C0030
Message: Direct Address expected after 'AT' instead of '<identifier>'
Possible error cause: Either an invalid address or no address is assigned after 'AT'.
Error correction: Specify a valid address.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2350

PROGRAM PLC_PRG
VAR
 i AT ABC : INT;
END_VAR

--> C0030: Direct Address expected after 'AT' instead of 'ABC'
Example:
i AT %IW0 : INT;

Compiler error C0031
Message: Type definition expected instead of '<no data type>'
Possible error cause: An invalid type definition is assigned to the identifier.
Error correction: Specify a valid type definition.

PROGRAM PLC_PRG
VAR
 i : 0;
END_VAR

--> C0031: Type definition expected instead of '0'
Example:
i : INT;

Compiler error C0032
Message: Type '<type 1>' can not be converted to type '<type 2>'
Possible error cause: A variable is assigned to another variable with an incompatible type.
Error correction: Use a type conversion.

PROGRAM PLC_PRG
VAR
 test1: INT;
 test2: STRING;
END_VAR

test1 := test2;

-->C0032: Type 'STRING' cannot be converted to type 'INT'
Example:
test1 := TO_INT(test2);

Compiler Error C0033
Message: Type '<pointer type>' possibly not convertible to type '<data type>' .
Possible error cause: This error occurs only when checking pool objects. An attempt was
made to convert a pointer to an integer. Because the size of pointers in a library is unknown,
errors may occur when using the library.
Error correction: Use the type __UXINT or __XWORD for platform-independent calculations
with pointers.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2351

PROGRAM PLC_PRG
VAR
 ptr : POINTER TO INT;
 dw : DWORD;
END_VAR
 dw := ptr;

--> C0033: Type 'POINTER TO INT‘ possibly not convertible to type
'DWORD‘.

Compiler error C0035
Message: Program name, function or function block instance expected instead of '<invalid
function>'
Possible error cause: A function is called that does not exist.
Error correction: Make sure that only program names, functions, and function Block Instances
that exist are called.

PROGRAM PLC_PRG
VAR
END_VAR

PLC_PRG.METH1();

METHOD METH
VAR_INPUT
END_VAR

--> C0004: 'METH1' is no component of 'PLC_PRG'
--> C0035: Program name, function or function block instance expected
instead of 'PLC_PRG.METH1'
Example:
PLC_PRG.METH();

Compiler Error C0036
Message: Cannot call object of type <type>
Possible error cause: An attempt has been made to call an object that does not support any
calls.
Error correction: Only functions, function blocks, programs, methods, and actions can be
called.

VAR_GLOBAL GVL
 value : INT;
END_VAR
PROGRAM PLC_PRG
GVL();

--> C0036: Cannot call object of type 'VAR_GLOBAL‘.

Compiler error C0037
Message: '<invalid input>' is no input of '<function name>'

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2352

Possible error cause: A local variable is defined in a function call.
Error correction: Declare the variable as an input parameter.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := TEST(iVar := 1);

FUNCTION TEST : INT
VAR
 iVar : INT;
END_VAR

--> C0037: 'iVar' is no input of 'TEST'
Example:
VAR_INPUT
 iVar : INT;
END_VAR

Compiler error C0038
Message: '<invalid output>' is no output of '<function name>'
Possible error cause: A local variable is handled as an output in a function call.
Error correction: Declare the variable as an output parameter.

PROGRAM PLC_PRG
VAR
 i : INT;
 x : INT;
END_VAR
i := TEST(iVar => x);

FUNCTION TEST : INT
VAR
 iVar : INT;
END_VAR

--> C0038: 'iVar' is no output of 'TEST'
Example:
VAR_OUTPUT
 iVar : INT;
END_VAR

Compiler error C0039
Message: VAR_IN_OUT '<invalid variable>' must be assigned in call of '<function block name>'
Possible error cause: An IN_OUT variable is not passed to a function block that requires an
IN_OUT variable.
Error correction: Assign the IN_OUT variable.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2353

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR
inst();

FUNCTION_BLOCK FB
VAR_IN_OUT
 inout : INT;
END_VAR

--> C0039: VAR_IN_OUT 'inout' must be assigned in call of 'FB'
Example:
inst(inout := i);

Compiler error C0040
Message: Function '<function name>' requires exactly '<number of inputs>' input
Possible error cause: Too many or too few parameters are passed to the called function.
Error correction: Pass exactly as many parameters to the function as are expected.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := TEST(1,2);

FUNCTION TEST : INT
VAR_INPUT
 IN: INT;
END_VAR

--> C0040: Function 'TEST' requires exactly '1' inputs
Example:
i := Test(1);

Compiler error C0041
Message: VAR_IN_OUT parameter '<parameter name>' of '<function name>' needs variable
with write access as input
Possible error cause: The passed parameter is not a variable with write access (but a constant
for example).
Error correction: Pass a VAR_IN_OUT parameter with write access to the function.

PROGRAM PLC_PRG
VAR
 i : INT;
 x : INT;
END_VAR
i := Test(31415);

FUNCTION TEST : INT

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2354

VAR_IN_OUT
 in_out: INT;
END_VAR

--> C0041: VAR_IN_OUT' parameter 'in_out' of 'TEST' needs variable
with write access as input
Example:
i := Test(x);

Compiler Error C0042 (Compiler Version <= 3.4.10)
Message: Either all or none formal parameter have to be denoted in function call
Possible error cause: The parameters are explicitly assigned to the function in the wrong
order.
Error correction: Use uniform formal parameters or implicit parameters.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
 i := Test(iPar1:=2, 5);

FUNCTION Test : INT
VAR_INPUT
 iPar1 : INT;
 iPar2 : INT;
END_VAR

--> Either all or none formal parameter have to be denoted in
function call

Compiler error C0043
Message: Wrong formal parameter: '<parameter name>' expected in this place
Possible error cause: The parameters are assigned to the function explicitly in the wrong
order.
Error correction: Specify the parameters in the correct order.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := Test(iPar2 := 2, 5);

FUNCTION Test : INT
VAR_INPUT
 iPar1 : INT;
 iPar2 : INT;
END_VAR

--> C0043: Wrong formal parameter: 'iPar1' expected in this place
--> C0412: Multiple input assignments for parameter ''

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2355

Example:
i := Test(5, iPar2 := 2);

Compiler error C0044
Message: Assignment to input missing for parameter '<input variable name>' in call of '<func-
tion block name>'
Possible error cause: A parameter is passed although an input variable is not declared.
Error correction: Declare an input variable.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR
inst(1);

FUNCTION_BLOCK FB
VAR_INPUT

END_VAR

--> C0044: Assignment to input missing for parameter '1' in call of
'FB'
Example:
VAR_INPUT
 in : INT;
END_VAR

Compiler error C0045
Message: Use of 'THIS' is not allowed in this context
Possible error cause: In order to be assigned to the current instance, THIS can be used only
in a method, action, transition, or in the body of a function block. This error message appears for
all other positions.
Error correction: Use THIS in an allowed context only.

PROGRAM PLC_PRG
VAR
 test1: INT;
END_VAR

THIS^.test1 := 19;

--> C0018: 'THIS^.test1' is not a valid assignment target
--> C0062: 'THIS^' is not a structure variable
--> C0045: Use of 'THIS' is not allowed in this context

Compiler error C0046
Message: Identifier '<identifier name>' not defined
Possible error cause: An identifier is used that is not declared.

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2356

Error correction: Declare the variables that you want to use.

PROGRAM PLC_PRG
VAR

END_VAR

i := 1;

--> C0018: 'i' is no valid assignment target
--> C0046: Identifier 'i' not defined
Example:
VAR
 i : INT;
END_VAR

Compiler error C0047
Message: Cannot apply indexing with '[]' to an expression of type '<data type>'
Possible error cause: A data type that is not an array is indexed with '[]'.
Error correction: Index data types with '[]' only if they are declared as arrays.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i[1];

--> C0047: Cannot apply indexing with '[]' to an expression of type
'INT'

Compiler error C0048
Message: Array requires exactly '<number>' indexes
Possible error cause: Too many or too few indexes are specified when using an array.
Error correction: Specify as many indexes as there are dimensions assigned to the array.

PROGRAM PLC_PRG
VAR
 arr1 : ARRAY[1..2,1..3] OF INT;
END_VAR
arr1[1] := 5;

--> C0048: Array requires exactly 2 indexes
Example:
arr1[1,2] := 5;

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2357

Compiler error C0049
Message: The constant index '<index value>' is not within the range from '<start index>' to
'<end index>'
Possible error cause: An index is specified that is outside the size of the array.
Error correction: Use only indexes that are within the size of he array.

PROGRAM PLC_PRG
VAR
 arr1 : ARRAY[1..2] OF INT;
END_VAR
arr1[3] := 1;

--> C0049: The constant index '3' is not within the range from '1' to
'2'
Example:
arr1[2] := 1;

Compiler error C0050
Message: Bitaccess requires literal or symbolic integer constant
Possible error cause: No literal or an integer constant is specified in a bit access.
Error correction: Use a literal or an integer constant.

PROGRAM PLC_PRG
VAR
 i : INT;
 x : INT;
END_VAR

i.x := FALSE;

--> C0018: 'i.x' is no valid assignment target
--> C0050: Bitaccess requires literal or symbolic integer constant
Example:
i := Test(x);

Compiler Error C0051
Message: Single byte string expected for an attribute value instead of '<value>‘.
Possible error cause: A character string does not appear at the displayed location as
expected.
Error correction: Replace the current value with a string.

PROGRAM PLC_PRG
{IF hasattribute(pou: MyPOU, MyAttribute)}
{END_IF}

--> C0051: Single byte string expected for an attribute value instead
of 'MyAttribute'.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2358

PROGRAM PLC_PRG
{IF hasattribute(pou: MyPOU, 'MyAttribute')}
{END_IF}

Compiler Error C0053
Message: Compiler version <version> has been withdrawn. Please use a higher compiler
version instead.
Possible error cause: The current compiler version cannot ne used.
Error correction: Adapt the current compiler version in the project (Project Environment,
Project Settings).

Compiler error C0061
Message: Bitaccess on function call is not allowed
Possible error cause: Bit access is performed on a function.
Error correction: Use bit access only for supported data types.

PROGRAM PLC_PRG
VAR
END_VAR

Test().2;

FUNCTION Test : INT
VAR_INPUT

END_VAR

--> C0061: Bitaccess on function call is not allowed

Compiler error C0062
Message: '<variable name>' is no structured variable
Possible error cause: A variable that is not a structure variable is treated like a structure
variable.
Error correction: Make sure that the variable is a structure variable.

PROGRAM PLC_PRG
VAR
 pt : PUNKT;
 i : INT;
END_VAR

i.x := 1024;

TYPE Punkt :
STRUCT
 x : REAL;
 y : REAL;
END_STRUCT

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2359

END_TYPE

--> C0018: 'i.x' is no valid assignment target
--> C0062: 'Variable' is no structured variable
Example:
pt.x := 1024;

Compiler error C0064
Message: Dereferencing requires a pointer
Possible error cause: A variable that is not a pointer variable is dereferenced.
Error correction: Dereference only variables that are pointer variables.

PROGRAM PLC_PRG
VAR
 i : INT;
 pi : POINTER TO INT;
END_VAR
i^:=1;

--> C0018: 'i^' not a valid assignment target
--> C0064: Dereferencing requires a pointer
Example:
pi := ADR(i);
pi^ := 1;

Compiler Error C0065
Message: There is no global definition for '<name>'.
Possible error cause: The value searched for is not a global variable, global POU, or other
value that can be accessed globally.
Error correction: Declare '<name>' as a global variable.

PROGRAM PLC_PRG
.someValue := 5;

--> C0065: There is no global definition for 'someValue‘
Example:
VAR_GLOBAL
 someValue : INT;
END_VAR

Compiler error C0066
Message: Cannot compare type '<data type>' with type '<data type>'
Possible error cause: Two data types are compared which cannot be compared with each
other.
Error correction: Compare only data types that can be compared with each other.

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2360

PROGRAM PLC_PRG
VAR
 i : INT;
 re : REAL;
 str: STRING;
 b : BOOL;
END_VAR

b := i > str;

--> C0066: Cannot compare type 'INT' with type 'STRING'
Example:
b := i > re;

Compiler error C0068
Message: Compare not possible on objects of type '<data type>'
Possible error cause: Objects are being compared in which a comparison is not possible.
Error correction: Compare only data types in which a comparison is possible (INT, REAL, etc.).

PROGRAM PLC_PRG
VAR
 b : BOOL;
 arr1 : ARRAY [1..2] OF INT;
 arr2 : ARRAY [1..2] OF INT;
END_VAR

b := arr1 > arr2;

--> C0068: Compare not possible on objects of type 'ARRAY [1..2]'

Compiler error C0069
Message: Compare not possible on objects of type '<data type>' or '<data type>'
Possible error cause: Two different objects are being compared in which a comparison is not
possible.
Error correction: Compare only data types in which a comparison is possible (INT, REAL, etc.).

PROGRAM PLC_PRG
VAR
 b : BOOL;
 arr1 : ARRAY [1..2] OF INT;
 arr2 : ARRAY [1..3] OF INT;
END_VAR

b := arr1 > arr2;

--> C0069: Compare not possible on objects of type 'ARRAY [1..2]' or
'ARRAY [1..3]'

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2361

Compiler error C0070
Message: 'INI' operator needs function block instance or data unit type instance
Possible error cause: Neither a function block instance nor a DUT instance is applied to the
INI operator.
Error correction: Pass only function block instances or DUT instances to the INI operator.

PROGRAM PLC_PRG
VAR
 b : BOOL;
 inst : FB;
END_VAR

b := INI(b, TRUE);

FUNCTION_BLOCK FB
VAR
END_VAR

--> C0070: 'INI' operator needs function block instance or data unit
type instance
Example:
b := INI(inst, TRUE);

Compiler error C0072
Message: Operator <operator name>' is not possible on type '<data type>'
Possible error cause: An operator is applied to an incompatible type.
Error correction: Apply operators only on compatible types.

PROGRAM PLC_PRG
VAR
 i : INT;
 str : STRING;
END_VAR

str := ABS(str);

--> C0072: Operator 'Abs' is not possible on type 'STRING'
Example:
i := ABS(i);

Compiler error C0074
Message: Unexpected array initialisation
Possible error cause: Syntax error in the array initialization
Error correction: Correct the syntax

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2362

PROGRAM PLC_PRG
VAR
 arr1 : INT := [1,2,3,4,5,6];
END_VAR

--> C0074: Unexpected array initialisation
--> C0032: Cannot convert type 'Unknown type: [1,2,3,4,5,6]' to type
'INT'
Example:
arr1 : ARRAY [1..6] OF INT := [1,2,3,4,5,6];

Compiler error C0075
Message: Too many initializers for array
Possible error cause: Too many values are specified for the size of the array.
Error correction: The number of assigned values must correspond to the size of the array.

PROGRAM PLC_PRG
VAR
 arr1 : ARRAY [1..5] OF INT := [1,2,3,4,5,6];
END_VAR

--> C0075: Unexpected array initialisation
Example:
arr1 : ARRAY [1..6] OF INT := [1,2,3,4,5,6];

Compiler error C0076
Message:Unexpected structure initialisation
Possible error cause: Syntax error in the structure initialization
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 st1 : INT := (p1 := 1);
END_VAR

--> C0076: Unexpected structure initialisation
--> C0032: Cannot convert type 'STRUCT(p1:=1)' to type 'INT'
--> C0046: Identifier 'p1' not defined
--> C0018: 'p1' is no valid assignment target
Example:
st1 : STRUCT1 := (p1:=1,p2:=10);

Compiler error C0077
Message: Unknown type: '<data type>'
Possible error cause: Invalid data type in the declaration (maybe a syntax error)
Error correction: Specify valid data types only.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2363

PROGRAM PLC_PRG
VAR
 i : INTEGER;
END_VAR

--> C0077: Unknown type: 'INTEGER'
Example:
arr1 : ARRAY[1..2] OF STRUCT1 := (p1:=1,p2:=10);

Compiler Error C0078
Message: Unsupported type: '<data type>'
Possible error cause: The used type is not supported by the current device and therefore
cannot be used.
Error correction: If possible, use a different type. For example, REAL instead of LREAL.

PROGRAM PLC_PRG
VAR
 value : LREAL;
END_VAR

--> C0078: Unsupported type: 'LREAL‘
Example:
PROGRAM PLC_PRG
VAR
 value : REAL;
END_VAR

Compiler error C0080
Message: Functionblock '<function block name>' must be instantiated to be accessed
Possible error cause: Missing function Block Instantiation
Error correction: Instantiate the function block.

PROGRAM PLC_PRG
VAR
END_VAR

FB();

FUNCTION_BLOCK FB
VAR
END_VAR

--> C0080: Functionblock 'FB' must be instantiated to be accessed
Example:
VAR
 inst : FB;
END_VAR
inst();

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2364

Compiler error C0081
Message: Unexpected Pragma: '<pragma name>' found without matching 'if'
Possible error cause: The IF condition is missing when using the pragma.
Error correction: Complete the IF condition of the pragma.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

i := 5;
{END_IF}

--> C0081: Unexpected Pragma: 'END_IF' found without matching 'if'
Example:
{IF <expression>}
i := 5;
{END_IF}

Compiler error C0082
Message: '<invalid pragma>' is no valid condition for pragma
Possible error cause: When using a pragma, an invalid expression is used in the IF condition.
Error correction: Use valid pragma conditions.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

{IF abc}
i := 5;
{END_IF}

--> C0082: '!!!ERROR!!!' is no valid condition for pragma
Example:
{IF defined (abc)}

Compiler error C0084
Message: '<pragma operand>' is no valid operand for pragma
Possible error cause: Syntax error
Error correction: Use valid pragma operands.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2365

PROGRAM PLC_PRG
VAR
END_VAR

{IF defined(0)}
{END_IF}

--> C0084: 'defined(null)' is no valid operand for pragma
Example:
{IF defined (abc)}

Compiler Error C0085
Message: Define value expected instead of '<value>‘.
Possible error cause: A string is expected instead of the current value at the displayed location
of the pragma.
Error correction: Replace the current value with a string.

PROGRAM PLC_PRG

{IF hasvalue(define, defineValue)}
{END_IF}

--> C0086: C:0085: Define value expected instead of 'defineValue‘
Example:
PROGRAM PLC_PRG

{IF hasvalue(define, '120')}
{END_IF}

Compiler error C0086
Message: No definition found for interface '<interface name>'
Possible error cause: An undefined interface is used.
Error correction: Define the interface.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB IMPLEMENTS XY
VAR
END_VAR

--> C0086: No definition found for interface 'XY'
Example:
INTERFACE XY

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2366

Compiler error C0087
Message: There is no implementation for method '<method name>' defined in interface '<inter-
face name>'.
Possible error cause: One of the methods specified by the interface has not be provided by
the implemented function block.
Error correction: Implement all methods that are specified by the interface.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

INTERFACE XY
METHOD METH1
VAR_INPUT
END_VAR

FUNCTION_BLOCK FB IMPLEMENTS XY
VAR
END_VAR
METHOD METH2
VAR_INPUT
END_VAR

--> C0087: There is no implementation for method 'METH1' defined in
interface 'XY'

Compiler error C0089
Message: Interface of overridden method '{0}' of interface '{1}' does not match declaration
Possible error cause: The signature of the implemented method does not match the signature
of the method in the interface.
Error correction: Make sure that the same return types and parameters are declared.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

INTERFACE XY
METHOD METH1
VAR_INPUT
 iPar : INT;
END_VAR

FUNCTION_BLOCK FB IMPLEMENTS XY
VAR
END_VAR
METHOD METH1
VAR_INPUT

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2367

END_VAR

--> C0089: Interface of overridden method 'METH1' of interface 'XY'
does not match declaration

Compiler error C0090
Message: No definition found for base class '<function name>'
Possible error cause: The function block specified as the base does not exist or is not a
function block.
Error correction: Use a function block as the base.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS POU
VAR
END_VAR

FUNCTION POU
VAR
END_VAR

--> C00090: No definition found for base class 'POU'

Compiler error C0091
Message: Recursion in base function block list: <function name>
Possible error cause: A base function block is extended by itself.
Error correction: Recursion in base function block lists is not possible.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS FB
VAR
END_VAR

--> C00091: Recursion in base function block list: FB -> FB

Compiler error C0094
Message: Interface of overridden method '<method name>' of interface '<function block name>'
doesn't match declaration
Possible error cause: The signature of the method of the first interface does not match the
signature of the method in the second interface, which is extended by the first.

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2368

Error correction: Align the signatures.

PROGRAM PLC_PRG
VAR
 xyz : XY2;
END_VAR

FUNCTION_BLOCK XY
METHOD METH1
VAR_INPUT
END_VAR

FUNCTION_BLOCK XY2 EXTENDS XY
METHOD METH1
VAR_INPUT
 iPar : BOOL;
END_VAR

--> C00094: Interface of the overridden method METH1 of interface XY
doesn't match declaration

Compiler error C0096
Message: Only one base function block may be defined in EXTENDS-list.
Possible error cause: Two or more base function blocks are defined in the EXTENDS list.

Error correction: Define only one base function block in the EXTENDS list.

PROGRAM PLC_PRG
VAR
 fb : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS FB2, FB3
VAR
END_VAR

FUNCTION_BLOCK FB2
VAR
END_VAR

FUNCTION_BLOCK FB3
VAR
END_VAR

--> C00096: Only one base function block may be defined in EXTENDS-
list

Compiler error C0097
Message: Duplicate definition of variable '<variable name>' in function block '<function block
name>' and in base '<base function block name>'
Possible error cause: A variable is declared with the same name in a function block and its
base.
Error correction: Use different variable names.

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2369

PROGRAM PLC_PRG
VAR
 fb : FB;
END_VAR

FUNCTION_BLOCK FB EXTENDS FB2
VAR
 i : INT;
END_VAR

FUNCTION_BLOCK FB2
VAR
 i : INT;
END_VAR

--> C00097: Duplicate definition of variable 'i' in function block
'FB' and in base 'FB2'

Compiler error C0098
Message: The keyword "FUNCTIONBLOCK" is no longer supported. Use "FUNC-
TION_BLOCK" instead.
Possible cause of error: Syntax error
Error correction: Use the keyword "FUNCTION_BLOCK".

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTIONBLOCK FB
VAR
END_VAR

--> C00098: The keyword "FUNCTIONBLOCK" is no longer supported. Use
"FUNCTION_BLOCK" instead. Use "FUNCTION_BLOCK" instead.

Compiler Error C0099 (Compiler Version < 3.5.7.0)
Message: Local defined enumeration are no longer supported. Use datatype definition instead.
Possible error cause: A local enumeration declaration was used together with a compiler
version that does not support this.
Error correction: Use a later compiler version, or define the enumeration in a DUT.

PROGRAM PLC_PRG
VAR
 localEnumVar : (RED, GREEN, BLUE) := RED;
END_VAR

--> C0099: Local defined enumeration are no longer supported. Use
datatype definition instead.

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2370

Compiler error C0101
Message: Data Recursion: '<recursion>'
Possible error cause: Recursive data initialization over two function blocks
Error correction: Avoid recursions for data initialization.

PROGRAM PLC_PRG
VAR
 inst0 : FB1;
END_VAR

FUNCTION_BLOCK FB1
VAR
 inst1 : FB2;
END_VAR

FUNCTION_BLOCK FB2
VAR
 inst2 : FB1;
END_VAR

--> C0101: Data Recursion: FB1->FB2->FB1

Compiler error C0102
Message: Out of retain memory: Variable '<variable name>', <byte size> bytes.
Possible error cause: More retain memory is used than is available on the PLC. It is also
possible that the retain memory is too fragmented due to incremental builds.
Error correction: Use the “Clean” for fragmenting the memory. This will force the reallocation of
all data at the next build.

Compiler error C0104
Message: 'Out of global data memory: Variable '<variable name>', <byte size> bytes.
Possible error cause: More memory for data is used than is available on the PLC. It is also
possible that the memory is too fragmented due to incremental builds.
Error correction: Use the “Clean” for fragmenting the memory. This will force the reallocation of
all data at the next build.

Compiler error C0114
Message: Invalid destination <jump label> for 'JMP'
Possible error cause: Syntax error or typographical error in the JMP destination
Error correction: Correct the typographical or syntax error.

PROGRAM PLC_PRG
VAR
END_VAR
JMP 0;

--> C0114: Invalid destination 0 for 'JMP'

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2371

Compiler Error C0115
Message: The second parameter of a conditional call (????ALWAYS CALC????) has to be a
valid call statement.
Error correction: Specify the call of a function, method, or function block in the second param-
eter of the conditional ????CALC??? call.

PROGRAM PLC_PRG
VAR
 condition : BOOL;
END_VAR
CALC(condition, 1+2);

--> C0115: The second parameter of a conditional call has to be a
valid call statement.
Example:
CALC(condition, MyFunction(1,2))

Compiler error C0116
Message: The label '<jump label>' is a duplicate
Possible error cause: A label is defined multiple times.
Error correction: Define each label one time only.

PROGRAM PLC_PRG
VAR
END_VAR
JMP label;
label:

label:

--> C0116: The label 'LABEL' is a duplicate

Compiler error C0117
Message: No such label '<jump label>' within the scope of the 'JMP' statement
Possible error cause: A jump is made to a label that does not exist.
Error correction: Define the label that you specify as the destination.

PROGRAM PLC_PRG
VAR
END_VAR
JMP A;

--> C0117: No such label 'A' within the scope of the 'JMP' statement

Compiler error C0118
Message: The label '<jump label>' has not been referenced.

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2372

Possible error cause: A jump label is defined that is not referenced.
Error correction: Remove the unused jump labels.

PROGRAM PLC_PRG
VAR
END_VAR
LABEL:

--> C0118: The label ' LABEL' has not been referenced

Compiler error C0119
Message: An 'FB_init'-Method of a functionblock or struct needs two inputs 'bInitRetains' and
'bInCopyCode' of type BOOL
Possible error cause: One or both of the inputs 'bInitRetains' and 'bInCopyCode' of type BOOL
is missing.
Error correction: Define the missing inputs.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB
METHOD FB_init
VAR_INPUT
END_VAR

--> C0119: An 'FB_init'-Method of a functionblock or struct needs two
inputs 'bInitRetains' and 'bInCopyCode' of type BOOL
Example:
METHOD FB_init
VAR_INPUT
 bInitRetains : BOOL;
 bInCopyCode : BOOL;
END_VAR

Compiler error C0120
Message: An 'FB_Exit'-Method of a functionblock or struct needs an input 'bInCopyCode' of
type BOOL.
Possible error cause: The input 'bInCopyCode' of type BOOL is missing.
Error correction: Define the input.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2373

METHOD FB_exit
VAR_INPUT
END_VAR

--> C0120: An 'FB_Exit'-Method of a functionblock or struct needs an
input 'bInCopyCode' of type BOOL.
Example:
METHOD FB_exit
VAR_INPUT
 bInCopyCode : BOOL;
END_VAR

Compiler error C0122
Message: Expression 'SUPER' is not allowed in this context
Possible error cause: "SUPER^" is used outside of derived function blocks.
Error correction: Use "SUPER^" in function blocks only.

PROGRAM PLC_PRG
VAR
END_VAR

SUPER^.METH(TRUE, TRUE);

--> C0122: Expression 'SUPER' is not allowed in this context

Compiler error C0124
Message: 'Initialization' is no valid initialization for an enumeration
Possible error cause: A data type that is not ANY_INT is used for the enum initialization.
Error correction: Use only ANY_INT for enum initializations.

PROGRAM PLC_PRG
VAR
 inst : DUT;
END_VAR

TYPE DUT :
(
 enum_member := 1.5
) DWORD;
END_TYPE

--> C0032: Cannot convert type 'LREAL' to type 'DUT'
--> C0124: 'Initialization' is no valid initialization for an
enumeration

Compiler error C0125
Message: The constant <constant value> is assigned to more than one enumeration.
Possible error cause: The same value is assigned to two or more enumerations.

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2374

Error correction: Assign different values to the enumerations.

PROGRAM PLC_PRG
VAR
 inst : DUT;
END_VAR

TYPE DUT :
(
 enum_member := 0,
 enum_member2 := 0
);
END_TYPE

--> C0125: The constant 0 is assigned to more than one enumeration

Compiler error C0126
Message: Variable of type '<data type>' requires exactly 1 Index
Possible error cause: Multiple indexes are assigned to a variable with one index.
Error correction: Assign only one index.

PROGRAM PLC_PRG
VAR
 pi : POINTER TO INT;
END_VAR
pi[0,1] := 0;

--> C0126: Variable of type 'POINTER TO INT' requires exactly 1 Index
Example:
pi[0] := 0;

Compiler error C0130
Message: <object> '<object name>' referenced without parentheses '()'
Possible error cause: A method is referenced without parentheses.
Error correction: Always reference methods by means of parentheses.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR
inst.METH1

--> C0130: METHOD 'METH1' referenced without parentheses '()'
Example:
inst.METH1();

Example of the
error:

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2375

Compiler error C0131
Message: '<value>' is not allowed as operand for 'ADR'
Possible error cause: A constant is passed as an operand to the operator ADR.
Error correction: Use only valid operands for ADR.

PROGRAM PLC_PRG
VAR
 i : INT;
 pt : POINTER TO INT;
END_VAR

pt := ADR(1);

--> C0131: '1' is not allowed as operand for 'ADR'
Example:
pt := ADR(i);

Compiler error C0132
Message: No enclosing loop of which to EXIT
Possible error cause: EXIT is used outside of a loop.
Error correction: Use EXIT inside of a loop only.

PROGRAM PLC_PRG
VAR
END_VAR

EXIT
;

--> C0132: No enclosing loop of which to EXIT

Compiler error C0136
Message: ambiguous use of name '<variable name>'
Possible error cause: A variable is declared in multiple GVLs.
Error correction: Qualify the variable with the desired GVL.

PROGRAM PLC_PRG
VAR
 j : INT := g_i;
END_VAR

GVL1:
VAR_GLOBAL
 g_i : INT;
END_VAR

GVL2:

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2376

VAR_GLOBAL
 g_i : INT;
END_VAR

--> C0136: ambiguous use of name 'g_i'
Example:
j : INT := GVL1.g_i;

Compiler Error C0138
Message: No matching 'FB_Init' method found for instantiation of POU.
Possible error cause: No FB_Init method exists that accepts the passed parameters.

Error correction: Check which arguments FB_Init has to receive and adjust the passed
arguments.

PROGRAM PLC_PRG
VAR
 myPOU : POU(arg1 := 1, arg2 := 2);
END_VAR

--> C0138: No matching 'FB_Init‘ method found for instantiation of
POU.

Compiler error C0139
Message: The code <code> has no effect. Is this the intent?
Possible error cause: The written code is syntactically correct but does not do anything.
Error correction: Write code that has a purpose.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

i;

--> C0139: The code 'i;' has no effect. Is this the intent?

Compiler error C0140
Message: Reference assign is only allowed to variables of Reference type
Possible error cause: An attempt is made to assign a reference value to a variable not defined
as a reference type.
Error correction: Define the variable as a reference type.

PROGRAM PLC_PRG
VAR
 i : INT;
 I_r : INT;
END_VAR

Error correc-
tion:

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2377

I_r REF= i;

--> C0140: Reference assign is only allowed to variables of Reference
type
Example:
I_r : REFERENCE TO INT;

Compiler error C0141
Message: Reference assign needs variable with write access
Possible error cause: A constant is assigned to the reference assignment.
Error correction: Assign a writable variable.

PROGRAM PLC_PRG
VAR
 i : INT;
 I_r : REFERENCE TO INT;
END_VAR

I_r REF= 314;

--> C0141: Reference assign needs variable with write access
Example:
I_r REF= i;

Compiler error C0142
Message: A local variable named '<variable name>' is already defined in '<pou name>'
Possible error cause: The same variable name is used two times.
Error correction: Use different variable names.

PROGRAM PLC_PRG
VAR
 i : INT;
 i : INT;
END_VAR

--> C0142: A local variable named 'i' is already defined in 'PLC_PRG'

Compiler error C0143
Message: The property '<property name>' cannot be used in this context because it lacks the
get accessor
Possible error cause: The property does not have Get access.
Error correction: Make sure that the property has a Get access definition.

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2378

PROGRAM PLC_PRG
VAR
 i : INT;
 inst: FB;
END_VAR

i := inst.Prop;

FUNCTION_BLOCK FB
VAR
END_VAR

PROPERTY Prop : INT
Set;

--> C0143: The property 'Prop' cannot be used in this context because
it lacks the get accessor

Compiler error C0144
Message: Inheritance only allowed in Functionblocks, Interfaces and Structures
Possible error cause: An attempt is made to use inheritance in an object that does not permit
inheritance.
Error correction: Use EXTENDS in function blocks, interfaces, and structures only.

PROGRAM PLC_PRG
VAR
 inst : DUT_1;
END_VAR

TYPE DUT:
(
 enum_member := 0
);
END_TYPE

TYPE DUT_1 EXTENDS DUT:
(
 enum_memberX := 0
);
END_TYPE

--> C0144: Inheritance only allowed in Functionblocks, Interfaces and
Structures

Compiler error C0145
Message: Interfaces can only be implemented by Functionblocks
Possible error cause: An attempt is made to implement an interface outside of a function
block.
Error correction: Implement interfaces only in function blocks.

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2379

PROGRAM PLC_PRG
VAR
END_VAR

POU();

FUNCTION POU IMPLEMENTS ITF
VAR
END_VAR

--> C0145: Interfaces can only be implemented by Functionblocks

Compiler error C0149
Message: Variable declarations are not allowed in interfaces
Possible error cause: An attempt is made to define a variable in an interface.
Error correction: Do not define variables in interfaces.

PROGRAM PLC_PRG
VAR
 inst : ITF;
END_VAR

INTERFACE ITF
VAR_INPUT
 i : INT;
END_VAR

--> C0149: Variable declarations are not allowed in interfaces

Compiler error C0161
Message: Border <array bound> of array is no constant value
Possible error cause: A variable is specified as an array bound.
Error correction: Use constants for the array bounds.

PROGRAM PLC_PRG
VAR
 i : INT := 3;
 arr1 : ARRAY[1..i] OF INT;
END_VAR

--> C0161: Border 'i' of array is no constant value
Example:
arr1 : ARRAY[1..3] OF INT;

Compiler error C0162
Message: Number <number of array values> of array initialisations is no constant value
Possible error cause: The initialization [Wert1,AnzahlWert2(Wert2)] works only with a
constant for AnzahlWert2.

Error correction: Use constants only.

Example of the
error:

Example of the
error:

Example of the
error:

Error correc-
tion:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2380

PROGRAM PLC_PRG
VAR
 i : INT := 3;
 arr1 : ARRAY[1..4] OF INT := [1,i(7)];
END_VAR

--> C0162: Number 'i' of array initialisations is no constant value
Example:
arr1 : ARRAY[1..4] OF INT := [1,3(7)];

Compiler Error C0164
Message: POU <name> writes to output <name> and is called in several tasks.
Possible error cause: The device setting codegenerator\check-multiple-task-
output-write is set and multiple tasks access the same output.

Error correction: Do not call a program that changes outputs in multiple tasks.

PROGRAM PLC_PRG
VAR
 Output AT %QB7 : BYTE
END_VAR

Output := 0;

--> C0164: POU 'PLC_PRG' writes to output 'QB7' and is called in
several tasks

Compiler Error C0165
Message: Variable '<variable name>‘, which is mapped on address '<address>‘ is written in
different tasks.
Possible error cause: The device setting codegenerator\check-multiple-task-
output-write is set and multiple tasks access the same output.

Error correction: Write an output in one fixed task only. If multiple tasks need to calculate data
for one output, then you should try to transfer this information by means of global variables to
one fixed task, which then writes the data to one output.

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2381

PROGRAM PLC_PRG_1
VAR
 Output AT %QB7 : BYTE;
END_VAR
Output := 0;

PROGRAM PLC_PRG_2
VAR
 Output AT %QB7 : BYTE;
END_VAR
Output := 1;

--> C0165: Variable 'Output‘, which is mapped on address 'QB7‘ is
written in different tasks.

Compiler error C0168
Message: 'VAR_CONFIG' declaration only allowed in VAR_CONFIG - list
Possible error cause: 'VAR_CONFIG' is used outside of a VAR_CONFIG list.
Error correction: Use 'VAR_CONFIG' only in VAR_CONFIG lists.

PROGRAM PLC_PRG
VAR_CONFIG
 i : INT;
END_VAR

--> C0168: 'VAR_CONFIG' declaration only allowed in VAR_CONFIG - list

Compiler error C0169
Message: 'VAR_GLOBAL' declaration only allowed in Global variable list
Possible error cause: 'VAR_GLOBAL' is used outside of global variable lists.
Error correction: Use 'VAR_GLOBAL' in global variable lists only.

PROGRAM PLC_PRG
VAR_GLOBAL
 i : INT;
END_VAR

--> C0169: 'VAR_GLOBAL' declaration only allowed in Global variable
list

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2382

Compiler Error C0173
Message: '<keyword>' not allowed in this place
Possible error cause: A declaration keyword (example: VAR_INPUT, VAR_OUTPUT, or VAR) is
not allowed at this location.
Error correction: Correct the declaration: Inputs and outputs are not useful or necessary in
type definitions or global variable lists.
TYPE DUT :
STRUCT
 member : INT;
END_STRUCT
END_TYPE

TYPE DUT :
STRUCT
 VAR_INPUT
 member : INT;
 END_VAR
END_STRUCT
END_TYPE

--> C0173: 'VAR_INPUT' not allowed in this place.
Example:
TYPE DUT :
STRUCT
 member : INT;
END_STRUCT
END_TYPE

Compiler error C0174
Message: 'VAR_TEMP' declaration not allowed in this place
Possible error cause: 'VAR_TEMP' is used outside of a program or function block.
Error correction: Use 'VAR_TEMP' inside of programs and function blocks only.

PROGRAM PLC_PRG
VAR
END_VAR

FUN();

FUNCTION FUN
VAR_TEMP
END_VAR

--> C0174: 'VAR_TEMP' declaration not allowed in this place

Compiler error C0175
Message: 'RETAIN' or 'PERSISTENT' not allowed in this place
Possible error cause: 'RETAIN' or 'PERSISTENT' is used in a function.
Error correction: Use 'RETAIN' or 'PERSISTENT' at the intended locations.

Example of the
error:

Error correction

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2383

PROGRAM PLC_PRG
VAR
END_VAR

POU_1();

FUNCTION POU_1
VAR RETAIN
END_VAR

--> C0175: 'RETAIN' or 'PERSISTENT' not allowed in this place
See also
● Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN” on page 2124
● Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN” on page 2124

Compiler error C0177
Message: '<object>' is of type 'type' and cannot be instantiated
Possible error cause: An attempt is made to instantiate a function.
Error correction: Instantiate only objects that can be instantiated.

PROGRAM PLC_PRG
VAR
 inst : POU;
END_VAR

FUNCTION POU
VAR
END_VAR

--> C0177: 'POU' is of type 'FUNCTION' and cannot be instantiated

Compiler error C0178
Message: No external access to 'VAR_IN_OUT' parameter '<parameter name>' of '<object
name>'
Possible error cause: An attempt is made to remotely access a 'VAR_IN_OUT' parameter.
Error correction: Do not remotely access 'VAR_IN_OUT' parameters.

PROGRAM PLC_PRG
VAR
 inst : FB;
 i : INT;
END_VAR
i := inst.in_out;

FUNCTION_BLOCK FB
VAR_IN_OUT
 in_out : INT;
END_VAR

--> C0178: No external access to 'VAR_IN_OUT' parameter 'in_out' of
'FB'

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2384

Compiler Error C0179
Message: '<identifier>' is no output of 'Function block'
Possible error cause: The initialization of a function block instance must not contain
VAR_IN_OUT variables.

Error correction: Use VAR_IN_OUT variables in function block calls only. When initializing a
function block instance, only assign the inputs of a function block.

Example:
FUNCTION_BLOCK MyFB
VAR_IN_OUT
 inOut : INT;
END_VAR

PROGRAM PLC_PRG
VAR
 iValue : INT;
 fb : MyFB := (inOut := iValue);
END_VAR

--> C0179: 'inOut' is no output of 'MyFB'

Compiler Error C0180
Message: Ambiguous namespace '<library 1>' defined by library '<library 2>'
Possible error cause: The namespace of the library <library 1> is not unique. It is already used
for <library 2>.
Error correction: Change the namespace of the library accordingly (“Properties” button in the
Library Manager).

--> C0180: Ambiguous namespace 'STANDARD' defined by library
'Standard, 3.5.15.0 (System)'

Compiler error C0182
Message: Return type is only possible for POUs of Type FUNCTION and METHOD
Possible error cause: An attempt is made to define a return value in a program.
Error correction: Define a return value only in methods and functions.

PROGRAM PLC_PRG : BOOL
VAR
END_VAR

--> C0182: Return type is only possible for POUs of Type FUNCTION and
METHOD

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2385

Compiler Error C0183
Message: Global scope operation '.' is not valid on expression '<expression>'
Possible error cause: The '.' operator is used to access a global variable. However, at this
location it is not followed by a valid IEC identifier, but for example a character such as ";" or a
reserved identifier such as FUNCTION, or an operator such as TO_STRING.

Error correction: Use a valid IEC identifier for a global variable.

PROGRAM PLC_PRG
...

iVar := .FUNCTION;// ERROR: C0183 because ; is not a valid identifier
strVar := .TO_STRING;
--> C0183: Global scope operation '.' is not valid on expression
'<expression>'
Example: globalValue is declared in a GVL.
PROGRAM PLC_PRG
iVar := .globalValue;

Compiler error C0185
Message: It is not possible to perform component access '.', index access '[]' or call '()' on result
of function call. Assign result to help variable first.
Possible error cause: Component or index access to the result of a function call is performed.
Error correction: Assign the result to a variable in order to access.

PROGRAM PLC_PRG
VAR
 it : ITF;
END_VAR

POU_1()[0].METH1();

FUNCTION POU_1 : ARRAY[0..0] OF ITF

INTERFACE ITF

METHOD METH1

--> C0185: It is not possible to perform component access '.', index
access '[]' or call '()' on result of function call. Assign result to
help variable first.

Compiler Error C0186
Message: It is not possible to compare interface that is return value of call. Assign to variable
first.
Possible error cause: A comparison operation is applied to an interface that is returned by a
function.
Error correction: First assign the result of the function call to a variable and then compare the
value of the variable. This will also reduce the number of function calls that are required.

Example of the
error:

Error correction

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2386

INTERFACE MyInterface

FUNCTION GetInterface : MyInterface

PROGRAM PLC_PRG
IF GetInterface() <> 0 THEN
 // ...
END_IF

--> C0186: It is not possible to compare interface that is return
value of call. Assign to variable first.
Example:
PROGRAM PLC_PRG
VAR_TEMP
 tempInterface : MyInterface;
END_VAR
tempInterface := GetInterface();
IF tempInterface <> 0 THEN
 // ...
END_IF

Compiler Error C0188
Message: Device not installed to the system. No code generation possible.
Possible error cause: The desired device is not installed.

Error correction: Install the missing device in the device repository, or replace the existing
device already inserted in the device tree with another existing device (“Update Device”).

Compiler error C0189
Message: ';' expected instead of '<token>'
Possible error cause: Syntax error
Error correction: Make sure that the syntax is correct.

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2387

PROGRAM PLC_PRG
VAR
 INT
END_VAR

--> C0009: Unexpected Token '<Token>' found
--> C0189: ';' expected instead of 'INT'

Compiler error C0190
Message: ';' expected instead of end of POU
Possible error cause: Syntax error in the POU
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
i := 5

--> C0190: ';' expected instead of end of POU

Compiler error C0191
Message: The operator 'INDEXOF' is no longer supported. Use ADR instead. ADR on a POU-
Name returns a Pointer to a Pointer to the function code.
Possible error cause: The outdated operator 'INDEXOF' is used.
Error correction: Use the operator 'ADR'.

Compiler error C0195
Message: Implicit conversion from signed Type '<data type 1>' to unsigned Type '<data type
2>' : possible change of sign
Possible error cause: A sign conflict may have been missed in the implicit conversion.
Error correction: Convert only data types with the same sign implicitly.

PROGRAM PLC_PRG
VAR
 i : INT;
 b : UINT;
END_VAR

b := i;

--> C0195: Implicit conversion from signed Type 'INT' to unsigned
Type 'UINT' : possible change of sign

Compiler error C0196
Message: Implicit conversion from unsigned Type '<data type 1>' to signed type '<data type
2>' : possible change of sign

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2388

Possible error cause: A sign conflict may have been missed in the implicit conversion.
Error correction: Use explicit conversions.

PROGRAM PLC_PRG
VAR
 i : INT;
 b : UINT;
END_VAR

i := b;

--> C0196: Implicit conversion from unsigned Type 'UINT' to signed
type 'INT' : possible change of sign

Compiler error C0197
Message: Implicit conversion from '<data type 1>' to '<data type 2>': possible loss of informa-
tion
Possible error cause: An attempt is made to convert a variable from data type DINT or LINT to
data type REAL.
Error correction: For DINT, use the data type LREAL, and when converting from LINT to
LREAL make sure that the value of LINT does not exceed the capacity of LREAL.

PROGRAM PLC_PRG
VAR
 i : DINT;
 b : REAL;
END_VAR
b := i;

--> C0197: Implicit conversion from 'DINT' to 'REAL': possible loss
of information

Compiler error C0198
Message: String constant '<string value>' too long for destination type '<data type>'
Possible error cause: The string constant has too many characters.
Error correction: Use shorter string constants or declare larger strings.

PROGRAM PLC_PRG
VAR
 str : STRING(4) := '12345';
END_VAR

--> C0198: String constant '12345' too long for destination type
'STRING(4)'

Compiler error C0199
Message: Interface '<interface name>' must be instantiated to be accessed
Possible error cause: An attempt is made to access an interface method without the interface
being instantiated.

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2389

Error correction: Instantiate the interface.

PROGRAM PLC_PRG
VAR
END_VAR

ITF.METH();

INTERFACE ITF

METHOD METH
VAR_INPUT
END_VAR

--> C0199: Interface 'ITF' must be instantiated to be accessed
Example:
itest: ITF;

Compiler error C0201
Message: Type '<data type 1>' is not equal to type '<data type 2>' of VAR_IN_OUT 'Variable'
Possible error cause: The data type that is passed to the function as a VAR_IN_OUT param-
eter does not match the data type defined in it.
Error correction: Pass a variable with the correct data type.

PROGRAM PLC_PRG
VAR
 Inst: POU;
 b : BOOL;
END_VAR

inst(in_out := b);

FUNCTION_BLOCK POU
VAR_IN_OUT
 in_out : INT;
END_VAR

--> C0201: Type 'BOOL' is not equal to type 'INT' of VAR_IN_OUT
'Variable'

Compiler error C0203
Message: Only Structures and Function Blocks can contain variables of type BIT.
Possible error cause: An attempt is made to declare a variable of type BIT outside of struc-
tures and function blocks.
Error correction: Declare variables of type BIT only in structures and function blocks.

PROGRAM PLC_PRG
VAR
 b : BIT;
END_VAR

--> C0203: Only Structures and Function Blocks can contain variables
of type BIT.

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2390

Compiler error C0204
Message: Variables of type BIT must be declared within a VAR_INPUT-, VAR_OUTPUT or
VAR-block
Possible error cause: An attempt is made to define a variable of type BIT or as a
VAR_IN_OUT parameter.
Error correction: Define variables of type BIT only within a VAR_INPUT, VAR_OUTPUT or
VAR block.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB
VAR_IN_OUT
 b : BIT;
END_VAR

--> C0204: Variables of type BIT must be declared within a
VAR_INPUT-, VAR_OUTPUT or VAR-block

Compiler error C0205
Message: POINTER TO BIT is not allowed
Possible error cause: An attempt is made to declare a POINTER TO BIT.
Error correction: Do not declare POINTER TO BIT.

PROGRAM PLC_PRG
VAR
 pt : POINTER TO BIT;
END_VAR

--> C0205: POINTER TO BIT is not allowed

Compiler error C0206
Message: BIT is not allowed as base type of an array
Possible error cause: An attempt is made to declare a BIT array.
Error correction: Do not declare BIT arrays.

PROGRAM PLC_PRG
VAR
 arr : ARRAY[1..2] OF BIT;
END_VAR

--> C0206: BIT is not allowed as base type of an array

Compiler Error C0207
Message: There is no system definition for '<identifier>'

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2391

Possible error cause: An attempt was made to access a variable in __SYSTEM that does not
exist.
Error correction: Check and correct the specified identifier of the respective variable.

PROGRAM PLC_PRG
VAR
 Value : INT;
END_VAR
Value := __SYSTEM.UnknownVariable;

--> C0207: There is no system definition for 'UnkownVariable‘

Compiler error C0208
Message: 'MOD' is not defined for 'REAL'
Possible error cause: An attempt is made to perform a modulo operation with a variable of
type REAL.

Error correction: Modulo operations are only possible with variables of type ANY_INT.

PROGRAM PLC_PRG
VAR
 r1 : REAL;
END_VAR
r1 := r1 MOD 2;

--> C0208: 'MOD' is not defined for 'REAL'

Compiler Error C0209
Message: You have defined '<number>' applications for device '<device name>'. The maximum
number is '<number>'. So you will not be able to download all applications.
Possible error cause: Some devices only support a specific number of applications (device
description). If a project contains more applications, then not all will be downloaded to the
device.
Error correction: Remove applications from your project or use another device.

Compiler error C0211
Message: Variable declaration expected instead of <expression>
Possible error cause: Syntax error
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
VAR
 VAR

 END_VAR
END_VAR

--> C0211: Variable declaration expected instead of VAR END_VAR

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2392

Compiler error C0212
Message: VAR, VAR_INPUT, VAR_OUTPUT or VAR_INOUT expected instead of <expression>
Possible error cause: Syntax error
Error correction: Make sure that the syntax is correct.

PROGRAM PLC_PRG
i : INT;

--> C0212: VAR, VAR_INPUT, VAR_OUTPUT or VAR_INOUT expected instead
of i : INT;

Compiler Error C0215
Message: Direct address declaration is not possible in persistent list
Possible error cause: Persistent variables are not allowed to have a direct address.
Error correction: Remove the direct address assignment in the persistent variable list.

VAR_GLOBAL PERSISTENT RETAIN
 directAddressVar AT %QB7 : BYTE;
END_VAR

--> C0215: Direct address declaration is not possible in persistent
list.

Compiler error C0216
Message: Case label duplicate
Possible error cause: A CASE label is used multiple times.
Error correction: Use each CASE label only one time.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR

CASE i OF
 1: i := i+1;
 1: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0216: Case label duplicate

Compiler error C0217
Message: Case label <case label> also contained in range <case range begin> .. <case range
end>
Possible error cause: A CASE label is part of the range of another CASE label.
Error correction: Make sure that there is no intersecting.

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2393

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
CASE i OF
 3..5: i := i+2;
 4: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0217: Case label 4 also contained in range 3 .. 5

Compiler error C0218
Message: Case label requires literal or symbolic integer constant
Possible error cause: An attempt is made to use a variable as a CASE label.
Error correction: Use only literals and symbolic integer constants.

PROGRAM PLC_PRG
VAR
 i : INT;
 a : INT := 2;
END_VAR

CASE i OF
 1: i := i+1;
 a: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0218: Case label requires literal or symbolic integer constant

Compiler error C0219
Message: Case contains overlapping range <case range 1 begin> .. <case range 1 end> and
<case range 2 begin> .. <case range 2 end>
Possible error cause: Two branches of CASE markers have the same elements or subsets.
Error correction: Make sure that there is no intersecting.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
CASE i OF
 3..5: i := i+2;
 1..4: i := i+2;
ELSE
 i := i+10;
END_CASE;

--> C0219: Case contains overlapping range 1 .. 4 and 3 .. 5

Example of the
error:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2394

Compiler error C0221
Message: Direct Address '<address>' malformed
Possible error cause: An address is not displayed completely.
Error correction: Make sure that the address is displayed correctly.

PROGRAM PLC_PRG
VAR
 xVar : BOOL;
END_VAR;
xVar := %IX0;

--> C0221: Direct Address '%IXO' malformed
Example:
xVar := %IX0.2;

Compiler error C0222
Message: Outputs can't be of type 'REFERENCE TO'
Possible error cause: An attempt is made to define REFERNCE TO as an output parameter.

Error correction: Do not use REFERENCE TO as an output parameter.

PROGRAM PLC_PRG
VAR
 inst : FB;
END_VAR

FUNCTION_BLOCK FB
VAR_OUTPUT
 re : REFERENCE TO INT;
END_VAR

--> C0222: Outputs can't be of type 'REFERENCE TO'

Compiler error C0224
Message: Call Recursion: <recursion>
Possible error cause: A function calls itself.
Error correction: Make sure that functions are not recursive.

PROGRAM PLC_PRG
VAR
END_VAR

POU();

FUNCTION POU
VAR
END_VAR

POU();

--> C0224: Call Recursion: POU -> POU

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2395

Compiler Error C0225
Message: '<name>' is not an instance of '<name>'
Possible error cause: A function block in a graphical programming language has been
assigned with an explicitly specified type that does not match the declared type.
Error correction: Replace the explicit type with the one used in the declaration part, or remove
the specification of the explicit type from the POU.

PROGRAM PLC_PRG
VAR
 fbVar : MyFB;
END_VAR

--> C0225: 'fbVar‘ is not an instance of 'MyFB2‘
Error correction:

or

Compiler error C0227
Message: Initialisation of constant variable <constant name> not constant
Possible error cause: A constant is initialized with a variable.
Error correction: Initialize constants only with constant values.

PROGRAM PLC_PRG
VAR
 i : INT;
END_VAR
VAR CONSTANT
 k : INT := i;
END_VAR

--> C0227: Initialisation of constant variable 'k' not constant

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2396

Compiler error C0228
Message: No initial value for constant variable '<constant name>'
Possible error cause: A constant is not initialized.
Error correction: Initialize the constants.

PROGRAM PLC_PRG
VAR
END_VAR
VAR CONSTANT
 k : INT;
END_VAR

--> C0228: No initial value for constant variable 'k'
Example:
k : INT := 1;

Compiler Error C0230
Message: Type name '<data type>' not expected in this place
Possible error cause: The data type name of an enumeration is used at an invalid position.
Error correction: Check whether the data type name is used correctly at this location. Maybe
there is a spelling error.

TYPE MyEnum :
(
 enum_member := 0
);
END_TYPE

PROGRAM PLC_PRG
VAR
 value : INT;
END_VAR
value := MyEnum;
MyEnum := value;

--> For PLC_PRG, the error message is issued 2x:
C0230: Type name 'MyEnum' not expected in this place
Example:
value := MyEnum.enum_member;
MyEnum.enum_member := value;

Compiler Error C0232
Message: Array initialisation expected
Possible error cause: An array of arrays is initialized, but the initialization values are not
nested.
Error correction: Use a nested array initialization as shown in the example below.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2397

PROGRAM PLC_PRG
VAR
 value : ARRAY[0..2] OF ARRAY[0..2] OF INT := [1,2,3];
END_VAR

--> C0232: Array initialisation expected
Example:
value : ARRAY[0..2] OF ARRAY[0..2] OF INT := [
[1,2,3],
[4,5,6],
[7,8,9]];

Compiler Error C0233
Message: Initialisation list for {0} <data type> expected
Possible error cause: An array of the type of a structure is initialized with elements that are not
structure initializations or variables.
Error correction: As shown in the example below, use structure initializations or existing varia-
bles to initialize arrays of structures.

PROGRAM PLC_PRG
VAR
 values : ARRAY[0..2] OF COLOR := [1,2,3];
END_VAR

--> C0233: Initialisation list for COLOR expected
Example:
PROGRAM PLC_PRG
VAR
 colorVariable : COLOR := (red:=0, green:=0, blue:=255);
 value : ARRAY[0..2] OF COLOR := [
 colorVariable,
 (red:=255, green:=0, blue:=0),
 (red:=0, green:=255, blue:=0)];
END_VAR

Compiler error C0234
Message: First Operand of __QueryInterface must be an interface reference or the instance of
a function block
Possible error cause: Incorrect operands are passed to the operator __QueryInterface.

Error correction: Pass an interface reference or the instance of a function block.

PROGRAM PLC_PRG
VAR
 a : INT;
 ITFref, ITFref2 : ITF;
 ITFref2 : ITF2;
END_VAR

__QueryInterface(a ,ITFref);

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2398

INTERFACE ITF EXTENDS __SYSTEM.IQueryInterface
INTERFACE ITF2 EXTENDS ITF

--> C0234: First Operand of __QueryInterface must be an interface
reference or the instance of a function block
Example:
__QueryInterface(ITFref2, ITFref);

Compiler error C0235
Message: Second Operand of __QueryInterface must be an interface reference
Possible error cause: Incorrect operands are passed to the operator __QueryInterface.

Error correction: Pass an interface reference.

PROGRAM PLC_PRG
VAR
 a : INT;
 ITFref, ITFref2 : ITF;
 ITFref2 : ITF2;
END_VAR

__QueryInterface(ITFref2, a);

INTERFACE ITF EXTENDS __SYSTEM.IQueryInterface
INTERFACE ITF2 EXTENDS ITF

--> C0235: Second Operand of __QueryInterface must be an interface
reference
Example:
__QueryInterface(ITFref2, ITFref);

Compiler error C0236
Message: Wrong type definition for VAR_EXTERNAL <variable name>
Possible error cause: The variable is declared in VAR_GLOBAL / VAR_EXTERNAL as different
types.
Error correction: Use the same type definition in VAR_GLOBAL and VAR_EXTERNAL.

PROGRAM PLC_PRG
VAR_EXTERNAL
 ig : STRING;
END_VAR

VAR_GLOBAL
 ig : INT;
END_VAR

--> C0236: Wrong type definition for VAR_EXTERNAL ig

Compiler error C0237
Message: No global definition found for VAR_EXTERNAL '<variable name>'

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2399

Possible error cause: An attempt is made to declare a variable in VAR_EXTERNAL which does
not exist in VAR_GLOBAL.

Error correction: Make sure that the identifiers match.

PROGRAM PLC_PRG
VAR_EXTERNAL
 i : INT;
END_VAR

VAR_GLOBAL
 ig : INT;
END_VAR

--> C0237: No global definition found for VAR_EXTERNAL 'i'

Compiler error C0238
Message: No initial value allowed for VAR_EXTERNAL <variable name>
Possible error cause: An attempt is made to initialize a variable in VAR_EXTERNAL.

Error correction: Do not initialize variables in VAR_EXTERNAL.

PROGRAM PLC_PRG
VAR_EXTERNAL
 ig : INT := 2;
END_VAR

VAR_GLOBAL
 ig : INT;
END_VAR

--> C0238: No initial value allowed for VAR_EXTERNAL ig

Compiler error C0239
Message: Interface <interface name 1> does not extend <interface name 2>
Possible error cause: The used interface does not extend another interface.
Error correction: Extend the interface.

PROGRAM PLC_PRG
VAR
 ITFref : ITF;
 ITFref2 : ITF2;
END_VAR

__QueryInterface(ITFref2,ITFref);

INTERFACE ITF
INTERFACE ITF2 EXTENDS ITF

--> C0239: Interface ITF__Union does not extend
__System.IQueryInterface
Example:
INTERFACE ITF EXTENDS __System.IQueryInterface

Example of the
error:

Example of the
error:

Example of the
error:

Error correc-
tion:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2400

Compiler error C0240
Message: First Operand of __QueryPointer must be an interface reference or the instance of a
function block
Possible error cause: Incorrect operands are passed to the operator __QueryPointer.

Error correction: Pass an interface reference or the instance of a function block.

PROGRAM PLC_PRG
VAR
 a : INT;
 ITFref : ITF;
 pt : POINTER TO FB;
END_VAR

__QueryPointer(a,pt);

--> C0240: First Operand of __QueryPointer must be an interface
reference or the instance of a function block
Example:
__QueryPointer (ITFref, pt);

Compiler error C0241
Message: Second Operand of __QueryPointer must be pointer
Possible error cause: Incorrect operands are passed to the operator __QueryPointer.

Error correction: Pass a pointer.

PROGRAM PLC_PRG
VAR
 b : INT;
 ITFref : ITF;
 pt : POINTER TO FB;
END_VAR

__QueryPointer(ITFref,b);

INTERFACE ITF EXTENDS __System.IQueryInterface

--> C0241: Second Operand of __QueryPointer must be pointer
Example:
__QueryPointer (ITFref, pt);

Compiler error C0242
Message: Operand of __DELETE must be pointer
Possible error cause: An incorrect operand is passed to the operator __DELETE.

Error correction: Pass a pointer.

Example of the
error:

Error correc-
tion:

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2401

PROGRAM PLC_PRG
VAR
 a : INT;
 pt : POINTER TO INT;
END_VAR

__DELETE(a);

--> C0242: Operand of __DELETE must be pointer
Example:
__DELETE (pt);

Compiler error C0243
Message: The name used in the signature is not identical to the object name
Possible error cause: The object name differs from the name used in the code.
Error correction: make sure that the names are the same.

Compiler Error C0380
Message: The Operators LOWER_BOUND and UPPER_BOUND are only supported for arrays
of variable length.
Possible error cause: One of the two operators LOWER_BOUND or UPPER_BOUND is not
used for an array of variable length.
Error correction: Use the operators LOWER_BOUND and UPPER_BOUND only for an array
of variable length.

For compiler version 3.5.14.0 and higher, the operators can also be used for
static arrays. As a result, the error C0380 occurs only in the case of earlier
compiler versions.

FUNCTION_BLOCK POU
VAR_IN_OUT
 arrin : ARRAY [*] OF INT;
END_VAR
VAR
 arrtest : ARRAY [0..5] OF INT;
 test1: DINT;
 test2: DINT;

Example of the
error:

Error correc-
tion:

Example of the
error:

Example of the
error:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2402

END_VAR

test1 := UPPER_BOUND(arrin, 1);
test2 := UPPER_BOUND(arrtest, 1);

--> C0380: The operators LOWER_BOUND and UPPER_BOUND are supported
only for arrays with variable length.

Compiler error C0509
Message: Multiple assignments for operator '__New' not allowed
Possible error cause: In one line of code, the assignment operator ":=" is called a multiple
number of times with the __New operator.

Error correction: Program the memory allocation with the __New operator in a separate line of
code for each pointer that points to dynamically allocated memory.

PROGRAM PLC_PRG
VAR
 pbAlpha : POINTER TO BYTE; // Typed pointer to Alpha
 pbBeta: POINTER TO BYTE; // Typed pointer to Beta
 xInit : BOOL := TRUE;
 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pbBeta := pbAlpha := __NEW(BYTE); // Incorrect code for memory
allocation
END_IF

pbBeta := pbAlpha := 16#01;

IF (xDelete) THEN
 __DELETE(pbAlpha); // Frees memory of pointer
END_IF

--> C0509: Multiple assignments for operator '__New' not allowed

PROGRAM PLC_PRG
VAR
 pbAlpha : POINTER TO BYTE; // Pointer to Alpha
 pbBeta: POINTER TO BYTE; // Pointer to Beta
 xInit : BOOL := TRUE;
 xDelete : BOOL;
END_VAR

IF (xInit) THEN
 pbAlpha := __NEW(BYTE); // Allocates memory for Alpha
 pbBeta := __NEW(BYTE); // Allocates memory for Beta
END_IF

pbBeta := pbAlpha := 16#01; // Multiple assignment

IF (xDelete) THEN
 __DELETE(pbAlpha); // Frees memory of pointer
END_IF

Example of the
error:

Error correc-
tion:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2403

See also
● Ä Chapter 6.4.1.20.3.59 “Operator '__NEW'” on page 2201
● Ä Chapter 6.4.1.20.6.3.13 “Attribute 'enable_dynamic_creation'” on page 2281

Compiler error C0511
Message: The function block '<function block name>' is ABSTRACT and cannot be used as a
target for an assignment.
Possible error cause: A value was assigned to an abstract function block. The concrete
function blocks may have different types and therefore cannot be copied.
Error correction: In order to copy the data of the function block, concrete function blocks have
to be used.

PROGRAM PLC_PRG
VAR
refAbstract1 : REFERENCE TO AbstractPOU;
refAbstract2 : REFERENCE TO AbstractPOU;
END_VAR

refAbstract1 := refAbstract2;
--> C0511: The function block 'refAbstract1' is ABSTRACT and cannot
be used as a target for an assignment.
Error correction:
Use the reference assignment REF= to assign the reference refAbstract1 to the same
function block as refAbstract2.

Compiler Error C0542
Message: Inheritance is not intended for the data type "UNION" <data type name>.
Possible error cause: A structured data type (DUT) is derived from a UNION by extending with
EXTENDS, or a UNION is derived from a DUT. This kind of derivation is not permitted. However,
for reasons of compatibility only a warning is issued.

TYPE U_StringExt EXTENDS U_StringBase :
UNION
 str10 : STRING(10);
END_UNION
END_TYPE TYPE U_StringBase :
UNION
 str20 : STRING(20);
END_UNION
END_TYPE PROGRAM PLC_PRG
VAR
 uStringExt : U_StringExt;
END_VAR

uStringExt.str20 := 'a234567890b234567890'; -> C0542

Example of the
error:

Example of the
error

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2404

Compiler Error C0543
Message: The name <keyword> is a reserved keyword in the IEC 1131-3 standard. An error
will be issued in future versions.
Possible error cause: A reserved keyword was assigned as the name of a variable.
Error correction: Rename the variable.

PROGRAM PLC_PRG
VAR
 char : BYTE;
END_VAR

--> C0543: The name 'char' is a reserved keyword in the IEC 1131-3
standard. An error will be issued in future versions.
Note: For violations in compiled libraries, only a text message (information) will be issued
instead of a warning.
The following keywords are reserved:
● CHAR
● WCHAR
● ANY_DERIVED
● ANY_ELEMENTARY
● ANY_MAGNITUDE
● ANY_SIGNED
● ANY_DURATION
● ANY_CHARS
● ANY_CHARS
● CHAR_TO
● TO_CHAR
● WCHAR_TO
● TO_WCHAR
● ATAN2
● USING
● CLASS

See also
● Ä Chapter 6.4.1.20.9 “Keywords” on page 2335

Compiler Error C0549
Message: Initialization of the static variable '<variable name>' is not constant, or replaced
constants is disabled.
Possible error cause: VAR_STAT and CONSTANT declarations are used together in a function
block declaration. The Replaces constants compile option is disabled.

Example of the
error:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2405

The Replace constants compile option is disabled.
VAR CONSTANT
 iMaxInst : INT := 2;
END_VAR
VAR_STAT
 iIDs : INT := iMaxInst - 1;
END_VAR

Message: C0549: Initialization of the static variable 'iIDs' is not constant, or replaced constants
is disabled.
Error correction: In Project → Project Settings, on the “Compile Options” tab, enable the
“Replace constants ” compile option.

Example

Compiler Error C0550
Message: Attribute 'pack_mode' for 'FUNCTION' ('METHOD') not allowed
Possible error cause: Functions or methods which are attributed with the pragma {attribute
'pack_mode' := ' <pack mode value>'}

{attribute 'pack_mode' := '2'}
METHOD METH : INT
VAR_INPUT
END_VAR
{attribute 'pack_mode' := '1'}
FUNCTION FunPacked : DINT
VAR_INPUT
 by1: BYTE;
END_VAR
VAR
 by2: BYTE;
END_VAR

Example

Message:
C0550: Attribute 'pack_mode' for 'METHOD' not allowed
C0550: Attribute 'pack_mode' for 'FUNCTION' not allowed
Error correction: Delete the attribute pragma.

Compiler Error C0554
Message: No explicit calls of '<FB name>' allowed. <value of attribute 'no_explicit_call'>
Possible error cause: A function block with the no_explicit_call attribute has been called.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2406

{attribute 'no_explicit_call' := 'Call of this FB is not allowed'}
FUNCTION_BLOCK FB1
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
END_VAR
PROGRAM PLC_PRG
VAR
 myFB: FB1;
END_VAR

myFB();

Example

Message:
C0554: No explicit calls of 'FB1' allowed. Call of this FB is not allowed.
Error correction: Delete the attribute pragma.

Compiler Error C0555
Message: The string literal <literal> contains characters that cannot be displayed. The project
option 'UTF-8 encoding for STRING' could be used.
Possible error cause: Input of unknown characters which cannot be transformed to Latin-1.

PROGRAM PLC_PRG
VAR
 str1: STRING(200);
 str2: STRING := '1 €';
 str3: STRING(200) := ' !$"#$$%&$'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~';
END_VAR
str1 := '你好,世界';
str1 := 'ABC abc 123 äöü ß#~=" §% /(!)[]{}\ ´`^*~°€µ *_-.; 中文字
Ω �';
str1 := '1 £';
str1 := '1 €';
str1 := ' !$"#$$%&$'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~';

Example

Message:
C0555: The string literal '你好,世界' contains characters that cannot be displayed. The project
option 'UTF-8 Encoding for STRING' could be used.
Error correction: Select the option.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2407

6.4.1.21 Reference, User Interface
6.4.1.21.1 Notifications... 2408
6.4.1.21.2 Objects.. 2409
6.4.1.21.3 Menu Commands.. 2551
6.4.1.21.4 Dialogs... 2745

6.4.1.21.1 Notifications
Notifications inform you about important information, such as available updates or security
notices.

To open the “Notifications” view, click the icon in the upper right corner of the frame window
of CODESYS. All received notifications are displayed in this view. Notifications marked as “read”
are deleted from the list the next time CODESYS is started.

The red icon indicates that new notifications are available, as well as how many.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2408

6.4.1.21.2 Objects
6.4.1.21.2.1 General... 2409
6.4.1.21.2.2 Object 'Application'... 2410
6.4.1.21.2.3 Object 'POU Locations'... 2411
6.4.1.21.2.4 Objects for Alarm Management.. 2412
6.4.1.21.2.5 Object 'Data Source Manager'.. 2412
6.4.1.21.2.6 Object 'Data Source'... 2414
6.4.1.21.2.7 Object 'DeviceTrace'... 2426
6.4.1.21.2.8 Object 'Device' and Generic Device Editor................................. 2427
6.4.1.21.2.9 Object 'DUT'... 2461
6.4.1.21.2.10 Object 'External File'... 2464
6.4.1.21.2.11 Object 'GlobalTextList'.. 2465
6.4.1.21.2.12 Object 'GVL' - Global Variable List... 2465
6.4.1.21.2.13 Object 'GVL' - Global Variable List (task-local)......................... 2466
6.4.1.21.2.14 Object: IEC Symbol Publishing.. 2466
6.4.1.21.2.15 Object 'Image Pool'... 2468
6.4.1.21.2.16 Object 'Library Manager'... 2469
6.4.1.21.2.17 Object 'OPC UA Information Model'... 2472
6.4.1.21.2.18 Object 'Network Variable List (Sender)'.................................... 2475
6.4.1.21.2.19 Object 'Network Variable List (Receiver)'................................. 2475
6.4.1.21.2.20 Object 'Persistent variable list'.. 2476
6.4.1.21.2.21 Object 'POU'... 2477
6.4.1.21.2.22 Object 'POUs for Implicit Checks'... 2500
6.4.1.21.2.23 Object 'Project Settings'.. 2514
6.4.1.21.2.24 Object 'Project Information'... 2515
6.4.1.21.2.25 Object 'Recipe Manager'.. 2519
6.4.1.21.2.26 Object 'Recipe Definition'.. 2522
6.4.1.21.2.27 Object 'Symbol Configuration'.. 2523
6.4.1.21.2.28 Object 'Text List'.. 2532
6.4.1.21.2.29 Object 'Task Configuration'... 2533
6.4.1.21.2.30 Object 'Task'... 2538
6.4.1.21.2.31 Object 'Trace'.. 2541
6.4.1.21.2.32 Object 'Trend Recording Manager'... 2545
6.4.1.21.2.33 Object 'Trend Recording'.. 2545
6.4.1.21.2.34 Object 'Trend Recording Task'.. 2548
6.4.1.21.2.35 Object 'Unit Conversion'... 2549

General
Objects in CODESYS provide special functionalities to create applications. Examples: Applica-
tion, program, function, Library Manager, devices, image pool. Objects are managed in tree
structures in the views “Devices”, “POUs” and “Modules”.
You can add an object to the belonging "tree" by use of the command “Project è Add Object”.
The possible insert positions depends on the position within the tree.
Each object provides properties, which can be viewed and accessed with the command from
the context menu of the object.
See also
● Ä Chapter 6.4.1.21.3.4.22 “Command 'Properties'” on page 2597

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2409

Object 'Application'
Symbol:
The object is displayed as a node in the device tree. It comprises the objects which are required
for a controller program to run.
You can insert an application object below a “PLC Logic” node (below a programmable device)
or as a child application below an existing application (parent application).
Below each application, there has to be a “Task Configuration” where you configure which
program of the application will be called by which task and using which settings.
Furthermore, you insert the POUs of your controller program below an application, for example
POUs, global variables lists, and the Library Manager. These POUs are available only for this
application and its child applications.
In addition, the application can also use instances of project-global POUs. You manage project-
global POUs in the “POUs” view. The use of these kinds of instances follows the thinking behind
object-oriented programming.
Multiple applications can be inserted below a PLC device object. To do this, they have to have
unique names.

NOTICE!
An online change after a changing the parent application will remove the child
application from the PLC.

When multiple applications are directly below a device object, for the I/O handling of the device
you have to define the application whose variables CODESYS should use for communication
with the target system. The settings are configured on the “PLC Settings” tab of the device
editor.
The application that you want to work with in online mode has to be set as the "active applica-
tion" (see “App2” in the figure above).
You can set special properties for an application on the “Application Build Options” tab of the
“Properties” dialog of the application object. Example: Activation of dynamic memory allocation.
When downloading the application to the PLC, you can include information about the application
contents. This is also a setting on the “Application Build Options” tab. Then later you can
compare the application on the controller with the active application in CODESYS.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2410

If you want to add individual information about the author, version, and an individual short
description, you can modify the information in the general “Project Information” on the
“Information” tab of the “Properties” dialog.
When you want to log in to the target system (PLC or simulation) with an application, it will
first be checked which applications are currently on the PLC and whether or not the application
parameters on the controller match those in the project configuration. Corresponding messages
will notify you about mismatches and possible options for further action. In this step, you can
also delete applications from the PLC.
On the “Application” tab of the device editor, you can see which applications currently exist on
the device. There you can also delete applications from the target system. It is possible that you
also see additional applications which are not represented by a separate object in the device
tree, for example the <application>_symbols.app, which contains a symbol list created for
the application (see “Symbol Configuration”).
See also
● Ä Chapter 6.4.1.21.2.29 “Object 'Task Configuration'” on page 2533
● Ä Chapter 6.4.1.21.4.11.10 “Dialog 'Properties - Application Build Options'” on page 2759
● Ä Chapter 6.4.1.11 “Downloading an Application to the PLC” on page 1965
● Ä Chapter 6.4.1.21.2.8.10 “Tab 'PLC Settings'” on page 2439
● Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941
● Ä Chapter 6.4.1.14.2 “Executing the online change” on page 2025
● Ä Chapter 6.4.1.21.3.5.13 “Command 'Project information'” on page 2604

Object 'POU Locations'
This object is available only for specific controllers. It is displayed automatically in the device
tree. The object cannot be added or removed manually. The object can be used for mapping
the executable code of an application in different code areas on the controller. Specifically small
controllers often have limited internal code areas (flash memory). If one or more additional code
areas (for example, external flash memory) are available on the controller, then the location of
the code POUs of an application can be changed specifically.
If there are no specific requirements, then the code POUs are stored sequentially in the code
areas (“default”). This means that the next code POUs are stored in the next areas only when
the first code area is filled. In the “POU Locations” editor, you will see the current location of the
POUs in the memory areas and you can change them specifically.

Double-clicking the “POU Locations” object in the device tree of the controller opens the editor.
Then it receives the entry “<application>”. After a code generation, all program blocks of the
application are displayed with the respective object type, current location in the memory, and
code size.
In the “Configured Location” column, you can set one of the memory areas other than the
“Current Location” for each POU or library.
In order to move the POUs to the recently configured memory locations, you first have to
“Clean” and then “Generate Code” again.

Make sure to pay attention to the messages in the category “POU Locations”.
This also shows when a code POU cannot be moved as expected.

Editor 'POU
Locations'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2411

“Clean” Deletion of the compile information for the application. Corresponds to the menu
command “Build è Clean”. Requirement for moving the POUs to the configured
memory locations.

“Generate code” Starting of the code generation for the application. Corresponds to the menu
command “Build è Generate Code”. Requirement for moving the POUs to the
configured memory locations.

“Objects” Objects of the application, including the objects from the referenced libraries

“Type” Object type; examples: “Function block”, “Method”, “Library”

“Current location” Current memory location of the POU: area_<n>.

“Configured location” Configured memory location where the POU is moved at the next code genera-
tion. Possible values:
● “default”: Automatically assigned area.
● “area_<n>”: Explicitly assigned memory area (n=number)

“Code size” Code size of the POU (in bytes)

● Ä Chapter 6.4.1.21.3.6.2 “Command 'Clean'” on page 2618
● Ä Chapter 6.4.1.21.3.6.1 “Command 'Generate Code'” on page 2618

Objects for Alarm Management
The help pages for alarm management are summarized in the help for CODESYS Visualization.
So please see there for help on the following objects::
● Object “Alarm Configuration”
● Object “Alarm Class”
● Object “Alarm Group”
● Object “Alarm Storage”
● Object “Remote Alarms”

Object 'Data Source Manager'
Symbol:
The object is used as a node for data sources below it. At least one data source has to exist. An
application with the data source manager communicates with remote devices.
See also
● Ä Chapter 6.4.1.10.6 “Data Link with Data Sources” on page 1947

Function: The command opens the “Add Data Source” dialog.
Call
● Menu bar: “Project”
● Context menu in the “Devices” view of the CODESYSperspective
● Context menu in the “Data Sources” view of the “HMI” perspective
Requirement: The “Data Source Manager” object is selected that should have an additional
data source.

Command 'Add
Object' > 'Data
Source'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2412

“Name” Example: Data_Source_A
“Select data source type” Data source type that matches the controller configuration in order to establish

communication.
● “CODESYS Symbolic”:

Requirement: The local device is a CODESYS HMI.
The data is transmitted by means of symbolic monitoring. This requires that
symbols are configured in the symbol configuration of the remote PLC appli-
cation.
Note: As long as the symbol configuration is not impacted by an application
change, you have the advantage that the application in the local device does
not have to be updated.
Hint: Use this communication connection unless there are no resources
available in the remote PLC for a symbol configuration.

● “CODESYS ApplicationV3”:
The data is transmitted via the CODESYS address protocol. This requires
that the address information between the remote PLC and the local device
match. Otherwise a connection cannot be established.
Advantage: A symbol configuration is not required in the remote application.
Note: For changes to the remote application, the local application has to be
updated (for example, the HMI application).
Hint: Use this communication for embedded or mini PLCs when there are no
available resources for the symbol configuration.

● “OPC UA Server”:
Data is transferred from an OPC UA server to the local controller via a TCP
connection.

“Add” Opens the “Initialize Data Source - Provider settings” dialog. The contents of the
dialog depend on the selected data source type.

NOTICE!
The remote PLC should be running and the remote PLC application loaded and
started.

See also
● Ä Chapter 6.4.1.21.2.5 “Object 'Data Source Manager'” on page 2412
● Ä Chapter 6.4.1.21.2.6.2 “Tab 'Variables'” on page 2415

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Tab 'Communication".

The dialog is used to configure the connection initially when you have selected “CODESYS
Symbolic” as the data source type. The communication is done by means of symbolic mon-
itoring. The configuration can be modified later in the editor of the data source on the
“Communication” tab.
See also
● Ä Chapter 6.4.1.21.2.6.4 “Tab 'Communication' via CODESYS Symbolic” on page 2417

Dialog 'Add
Data Source'

Dialog 'Initialize
Data Source
Wizard - Pro-
vider settings'
(for 'CODESYS
Symbolic')

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2413

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Tab 'Communication".

The dialog is used to configure the connection initially when you have selected “CODESYS
ApplicationV3” as the data source type. The communication is done by means of address
monitoring.
See also
● Ä Chapter 6.4.1.21.2.6.5 “Tab 'Communication' via CODESYS ApplicationV3” on page 2422

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Tab 'Communication".

The dialog is used to configure the connection initially when you have selected “OPC UA
Server” as the data source type. The communication takes place over a TCP connection.
See also
● Ä Chapter 6.4.1.21.2.6.6 “Tab 'Communication' via OPC UA Server” on page 2424

The settings of this dialog are described in the following chapter: Object 'Data
Source' - Dialog 'Choose Variables'.

Function: You can select the variables for data transmission from the variables of the remote
PLC. By clicking “Finish”, the data source is initialized and the data types and variables (data
interface) are declared below the folder “DataSources_Objects”. You can modify the settings in
the editor of the data source object.
Call: Automatic
See also
● Ä “Dialog 'Choose Variables'” on page 2416

Object 'Data Source'
General

Symbol:
In the editor (object type “Data Source”), the access to the data of a remote device is managed
on the “Variables”, “Type Mappings”, “Communication”, and “General and Diagnosis” tabs.

The status bar which is always visible notifies you about the data source type and the most
important communication settings. When the communication is established by means of the
data source type CODESYS Symbolic, the name of the data source type, the connection
type, and the network name of the remote device are displayed. When the communication is
established by means of data source type CODESYS ApplicationV3 , then the name of the data
source type, the location of the remote project, and the instance name of the remote application.
Example:
CODESYS Symbolic (CODESYS V3): PLC_Name

Dialog 'Initialize
Data Source
Wizard - Pro-
vider settings'
(for 'CODESYS
ApplicationV3')

Dialog 'Initialize
Data Source
Wizard - Pro-
vider settings'
(for 'OPC UA
Server')

Dialog 'Initialize
Data Source
Wizard - Browse
data items'

Status bar

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2414

CODESYS ApplicationV3 (D:\Projects\Project_A): Project_A.App_A

See also
● Ä Chapter 6.4.1.10 “Working with Controller Networks” on page 1936

Tab 'Variables'
The variables for the data originating from the remote source are declared in the global variable
list <name of data source>. The global variable list acts as a data interface to the remote
PLC. The object is located below the application and below the “DataSources_Objects” folder.

“Update variables” Establishes a connection to the remote device and opens the “Choose
Variables” dialog.

“Local variable” Variable in the local application. Contains the remote data.

“Access rights” Access rights of the variables. The respective remote variable has the same
access rights.

● : Write access. Every time the values changes, the variable is updated on
the controller.

● : Read access. Every time the values changes on the controller, the vari-
able is updated in the application.

● : Read/Write access
Note: If you change the access rights, then a download is required for the
change to go into effect.

“Update always” : The controller data is updated automatically (via the data source). A variable
is updated automatically if it is used in the visualization, trend, recipe, or as an
alarm.
Note: This is the recommended setting type.

: The variable is updated in each cycle.
Note: Select the option only when the variable is used exclusively in IEC code. If
a variable is used in the visualization code, then it is updated automatically.
Note: When an instance of a function block or a data type is updated in this way,
the instance is always transferred completely.

“Create or map” Mapping type for how the remote variable is mapped to the local variable.

● : Mapping to a specific created variable with the data type of the remote
variable. The control data is mapped 1:1. That is the recommended mapping
type. The variable is declared in the GVL <name of data source>.

● : Mapping to an existing variable. This requires that the existing variable
has the same data type.

● : Mapping to a specific created variable with type-conforming data type to
the remote data type: remote and local data types are not the same, but
compatible. For example, a type-conforming data type can be available in a
library. The variable is declared in the GVL <name of data source>.

“Type mapping” Data type of the remote variable. If the variable is not a scalar type, then the type
is listed on the “Type Mappings” tab.

“Remote variable” Variable in the remote PLC

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2415

Symbol:
Function: The dialog lists the remote variables that are accessed by means of the configured
connection.
Call: “Update variables” command on the “Variables” tab.
Requirement: The remote PLC is running. The control application is downloaded.

“Variables” The remote variables are listed in the tree view. The top node is identified by the
remote application name. Its variables are listed below that. Structured data is
listed with all of its subordinate elements.
Example: appControl_A

: The variable is selected for transferring to the local device. When the variable
is structured, it is applied with all subelements. If the variables themselves are
subelements, then only this subelement is applied without accepting the struc-
ture completely.
Red font: When a variable is displayed in a red font, the variable is not available
(anymore) in the remote PLC.
Note: You can click “Uncheck unavailable variables” to remove the variable from
the list.

: The variable is not selected for the transfer.

The variable has expandable elements. By clicking the symbol, the variable is
extended by their elements.

“Insert the items structured” : The selected variables are transferred with this structure if they are struc-
tured.

: The variable is transferred unstructured with a scalar data type.

“Uncheck unavailable
variables”

Requirement: The link is visible when previously are no longer available in the
variable available on the remote PLC. These variables are marked in red in the
window above. The symbol configuration or the application presumably changed
in the remote PLC.
By clicking the command, the red variables are removed from the list box.

Tab 'Type Mappings'
The tab lists the non-scalar data types as they are currently available in the
“DataSources_Objects” folder. You can edit or delete the data type declaration by selecting
a data type and then the declared elements in the lower window. Moreover, you can modify the
name, reset access rights, map another type, or select another remote variable.

“Local type” Data type in the local application

“Create or map” ● : Mapping to a new created data type. Declared in the
“DataSources_Objects” folder.

● : Mapping to an existing data type
● : Mapping to a type-conforming data type. Declared in the

“DataSources_Objects” folder.

“Mapping name” Name of the data type

“Remote type” Data type of the remote PLC

Dialog 'Choose
Variables'

Tab 'Type Map-
pings'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2416

List with the subordinate elements of the selected data type.

“Local variable” Local variable name of the element of the selected data type

“Access right” Access rights to the element

“Type mapping” Data type of the element

“Remote variable” Remote variable name of the element of the selected data type

[Del] Removes the selected element

See also
● Ä Chapter 6.4.1.10.6.3 “Editing data source variables” on page 1954

Tab 'Communication' via CODESYS Symbolic
The tab includes the communication settings via CODESYS Symbolic for the remote data
source.
When initially adding a data source, you have selected the “CODESYS Symbolic” data source
type, and depending on that the communication settings to the data source were configured.
Afterwards, the communication settings are outdated on this tab. You can only initially set the
“Data source type” setting.
CODESYS Symbolic means that in the case of an active connection the communication is
done via symbolic monitoring. This kind of symbolic access is possibly for CODESYS V2 and
CODESYS V3 controller variants. In addition, the runtime system has to support the symbol
configuration.

You can develop a local application offline based on the symbol information
without a connection to the data source. To do this, you refer to a symbol file
in the configuration settings in which all required variable information has been
stored. Then no active connection is established.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2417

“Variable information” Source of the variable information
● “From connection settings”

A connection is established actively according to the communication settings
specified below (“Connection type” and “Connection Settings”). The variable
information is read from the remote controller application.

● “<device name>.<application name>.symbol configuration”
The variable information is read from the symbol configuration. The symbol
configuration is part of the active project and located in the device tree at the
object of the remote controller below the application. An active connection is
not established to the controller.

● “From symbol file”
The variable information is read from a symbol configuration file that is
stored on the development system. In the “Choose symbol file” field, specify
this data. An active connection is not established to the controller.

“Choose symbol file” The path of the symbol file for the “Variable information” selection is “From
symbol file”.
The symbol file is stored on the development system and contains the
required variable information. By default, a symbol file path is created in the
project directory in the following structure: <project folder>\<project
name>.<device name>.<application name>.xml.

Example:
D:\Projects\Project_A\VisualizeWithHMI.Device.Application.x
ml
Note: If the “Alarm Table” element or “Trend” element is used in the visualization,
then the symbol file required for symbolic access and the respective project
must both be saved in the same folder. The project contains the configuration for
the alarm table element or the trend recording for the trend element. This is the
default case for automatically generated symbol files.
Example: D:\Projects\Project_A\VisualizeWithHMI.project

“Connection type” Connection type between the remote PLC and the local device.
Depending on the selected connection type, the following settings below change.
Note: Whenever possible, avoid a direct connection without a gateway.
● “CODESYS V2”

The devices exist in the same network. The V2 runtime on the remote PLC
provides a communication interface.

● “CODESYS V2 (Via gateway)”
The devices do not exist in the same network. They are connected via a V2
gateway.

● “CODESYS V3”
The devices exist in the same network. The V3 runtime on the remote PLC
provides a communication interface.

● “CODESYS V3 (Via gateway)”
The devices do not exist in the same network. They are connected via a V3
gateway.

Tab 'Communi-
cation' via
CODESYS Sym-
bolic

Connection set-
tings for con-
nection type
'CODESYS V2'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2418

“PLC”

“Driver type” ● “Tcp/Ip (Level 2 Route)”
● “Tcp/Ip (Level 2)”
● “Tcp/Ip”

“Address” Example: localhost (for the currently used system on your computer)

“Port” Example: 1200
“Block size” Example: 128

Requirement: The driver type is “Tcp/Ip (Level 2)”.

“Target ID” Example: 0
Requirement: The driver type is “Tcp/Ip (Level 2 Route)”.

“Motorola byte order” : Byte order on the PLC in big endian (Motorola format)

: Byte order in little endian (Intel format)

“Gateway” The gateway settings are configured in addition to the PLC settings.
Note: For this connection, a “CoDeSys V2.3 Gateway Server” (V2 Gateway)
also has to be installed on the development computer where CODESYS V3 is
running.

“IP address” Example: localhost
“Port” Example: 1217

“PLC”

“Name or address of device” The setting that you make here varies according to the selection in the “Type of
name or address” list box. For options that are derived automatically, you do not
have to specify the setting here. The setting can remain empty.
Example: Nothing specified for “...(automatically derived)”

Example: PLC_A for “Node name”

Example: [ABCD] for “Node address”

Example: 192.168.1.5:11741 for “IP address”

Example: POU.dssCommVar with data type
DatasourceSym.ConnectionSetup for “Dynamic from variable”

Hint: : Opens the input to select the program variables for
dynamic configuration. This variable has to be the data type
DatasourceSym.ConnectionSetup.

Connection set-
tings for con-
nection type
'CODESYS V2
(Via gateway)'

Connection set-
tings for con-
nection type
'CODESYS V3'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2419

“Type of name or address” ● “Node name (automatically derived)”
● “Node address (automatically derived)”
● “IP address (automatically derived)”
● “Node name”
● “Node address”
● “IP address”
● “Dynamic from variable”

“Dynamic from variable” The device name or address is configured dynamically at runtime by means
of an IEC variable of data type DatasourceSym.ConnectionSetup. The
data type DatasourceSym.ConnectionSetup (STRUCT) is defined in the
Datasource Symbolic Access library. For the configuration, the structure
member xDataValid first has to be set to FALSE. If the address data has been
specified, then xDataValid has to be set back to TRUE.

Use case: The device name or address is not available when a project is being
created.
The dynamic configuration can also be used to change the settings at runtime
without restarting the HMI application.
Note: For this connection type, the connection is also not done dynamically via
gateway.

“Gateway” The gateway settings are configured in addition to the PLC settings.

“IP address” Example: localhost
“Port” Example: 1217

NOTICE!
It is not recommended to configure the PLCHandler manually.

The connection to the controller is established via the CODESYS PLCHandler communication
interface. In this case, the configuration is performed in the PLCHandler INI format and allows
for advanced parameterization.

“Advanced”

“Used as” ● “Don't use”
Recommended setting
The “INI content” property as well as any specified configuration settings
there are ignored.

● “Extend the configuration by the following content”
As a rule, the configuration settings are used which are specified in the
“Connection Settings for CODESYS V3 (Via gateway)” property. Moreover,
the configuration settings are used in the “INI content” property.

● “Configure completely with the following content”
The configuration settings of the “Configuration Settings for CODESYS V3
(Via gateway)” property are ignored. Instead, only the configuration settings
are used in the “INI content” property.

Connection set-
tings for con-
nection type
'CODESYS V3
(Via gateway)'

Extending the
communication
settings for the
PLCHandler
interface

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2420

“INI content” Requirement: “Used as” is set to “Extend the configuration by the following
content”.
Example:

logfilter=16#000000FF
Example:

parameter0=EncryptCommunication
value0=1
Note: If the parameters are generic, then they can be specified as 0-based
(parameter0 and value0). When extending, the numbering is automatically
adjusted so that the extended parameters connect to the existing ones. The
number of parameters (parameters=<n>) is also set to the correct value.

“INI content” Requirement: “Used as” is set to “Configure completely with the following
content”.
Example:

[PLC:PLC_IdArti]
interfacetype=ARTI
active=1
logevents=1
motorola=0
nologin=0
timeout=10000
precheckidentity=0
tries=3
waittime=12
reconnecttime=10
buffersize=0
device=Tcp/Ip (Level 2 Route)
instance=PLCWinNT_TCPIP_L2Route
parameters=4
parameter0=Address
value0=localhost
parameter1=Port
value1=1200
parameter2=TargetId
value2=0
parameter3=Motorola byteorder
value3=No

“Login Configuration” If a visualization user management is configured on the remote device, then
valid credentials are required at login.

“Type” Defines how the visualization user management gets credentials
● “Login using the following credentials”

The credentials are hard-coded into the “User name” and “Password” set-
tings. They are used each time a connection is attempted.

● “Login using the credentials determined at runtime”
At runtime, a dialog opens and prompts the user to specify a user name and
password. Hard-coded credentials, which have nonetheless been specified
in “User name” and “Password”, are ignored.

Communication
settings for con-
trollers with vis-
ualization user
management

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2421

“User name” Example: max.smith
“Password” Example: ···

See also
● Ä Chapter 6.4.1.10.6.2 “Initially Adding a Data Source” on page 1949
● Ä Chapter 6.4.1.21.2.5 “Object 'Data Source Manager'” on page 2412

Tab 'Communication' via CODESYS ApplicationV3
The tab includes the communication settings for a remote data source.
When initially adding a data source, you have selected the CODESYS ApplicationV3 data
source type, and depending on that the communication settings to the data source were config-
ured. Afterwards, the communication settings are outdated on this tab. You can only initially set
the “Data source type” and “Select the project type” settings.
CODESYS ApplicationV3 means that in the case of an active connection the communication is
done via address monitoring. In this case, the remote PLC is configured by directly specifying
the device address or automatically via network scan.

“Select the project type” The project type indicates where the controller is configured: in the same project
as the HMI application or in a separate project.
● “Current project”

The control application is part of the currently open project. The communica-
tion settings can be updated automatically or manually.

● “Other Project”
The control application is part of a separate project whose location is speci-
fied in “Choose file”. The communication settings are done manually.

In the initial setting of the data source object, this option is fixed and influences
which settings are available for “Target device”.

“Choose file” Name and path of the project that contains the control application (source
project)
Example: D:\PLCs\PLC_A.project
Requirement: The “Select the project type” is “Other Project”.

Window area for controllers of
the project

Controllers and their subordinate applications, read from the selected project
Example:

Tab 'Communi-
cation' via
CODESYS
ApplicationV3

Settings for 'Se-
lect the project
type' == 'Current
project'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2422

“Target device” Note: The following settings are available when “Select the project type” is set to
“Current project”.

“Automatic configuration” : The configuration is read automatically from the source project. This is the
recommended setting.
Example: “[DEVICE_A]”

Example: “[undetermined]”: No configuration can be read.
Note: Make sure that the application is running on the controller and the network
path is active. The communication settings of the controller are applied only
then. These are the communication settings that were configured in the source
project in the device editor on the “Communication Settings” tab.

“Manual configuration” : More configuration settings are displayed.
See "Manual configuration" below.

The communication setting is done only manually.
See "Manual configuration" below.

“Dynamic from variable” : The communication parameters are configured at applica-
tion runtime by means of an IEC variable of data type
DatasourceAppV3.ConnectionSetup.

: Opens the input for selecting the IEC variables for a dynamic configuration.
The data type DatasourceAppV3.ConnectionSetup (STRUCT) is defined in
the Datasource ApplicationV3 Access library. For the configuration, the
structure member xDataValid first has to be set to FALSE. If the address data
has been specified, then xDataValid has to be set back to TRUE.

Use case: The communication parameters are not available yet when a project is
being created.

“Use device address” : The communication is done via the address specified here.
Example: 0101
Hint: Click “From device” for an automatic address setting.

“From device” The data of the currently connected data source device is read automatically and
specified in “Use device address”. The address corresponds to the setting of the
device in the device editor in “Communication Settings”.

“Search for the target device
using the network scan”

: The data source manager starts the network scan for devices in the network.
The scan is successfully when controllers are found whose communication set-
tings match the selected search criteria. The result is displayed in the input
fields.

“Node name” : Search for the specified node name
Example: WST06

“Target type” : Search for the specified target type
Example. 4096

“Target ID” : Search for the specified target ID
Example: 0000 0001

“Target version” : Search for the specified target version
Example: 1.0.0.0

Settings for 'Se-
lect the project
type' == 'Other
Project'

Manual configu-
ration

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2423

“Network location” ● “Direct child of the data sources PLC”: The scanned remote PLC has an
address that is running with the address of the local controller (of the data
source manager).
Example: Data sources PLC: 0000.0001; remote source PLC:
0000.0001.0001

● “Direct child of node with address”: Specify the address of the parent node
● “Direct child of the data source PLC or of the node with address”: Combina-

tion of both options above.

“Search type” ● “First found device”: The first controller in the device tree is selected that
fulfills the specified criteria.

● “Exactly found device”: The controller is selected that fulfills the specified
criteria exactly.
Note: The data source manager waits until the network scan is complete.
This usually takes about 10 seconds.

“Login Configuration” If a visualization user management is configured on the remote device, then
valid credentials are required at login.

“Type” Defines how the visualization user management gets credentials
● “Login using the following credentials”

The credentials are hard-coded into the “User name” and “Password” set-
tings. They are used each time a connection is attempted.

● “Login using the credentials determined at runtime”
At runtime, a dialog opens and prompts the user to specify a user name and
password. Hard-coded credentials, which have nonetheless been specified
in “User name” and “Password”, are ignored.

“User name” Example: max.smith
“Password” Example: ···

“Advanced” : The subsequent settings are changed.

“Default communication buffer
size”

Default setting: 50000

See also
● Ä Chapter 6.4.1.10.6.2 “Initially Adding a Data Source” on page 1949
● Ä Chapter 6.4.1.21.2.5 “Object 'Data Source Manager'” on page 2412

Tab 'Communication' via OPC UA Server

Where to find the server layout
“Browse Live Server:” The client connects to the server and detects the existing variables and types.

Communication
settings for con-
trollers with vis-
ualization user
management

Specific set-
tings of the
communication
buffer

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2424

From Information Model The client reads the data structure (layout) of the OPC UA Server from the infor-
mation model set here and as a result receives the information about available
variables and types. A connection to the server is not required.
The list box contains the information models installed in the OPC UA Information
Model Repository.
Ä Chapter 6.4.1.21.3.9.12 “Command 'OPC UA Information Model Repository'”
on page 2665

Read Connection Settings
from IEC Variable

: The connection settings used by the device are not read here from the
dialog, but at runtime from the IEC variable specified here.
For this possibility, see: Using a Dynamic Connection to an OPC UA Server
Ä Chapter 6.4.1.10.6.7 “Data Source OPC UA Client” on page 1960

Connection Type

“Server URl” URI of the OPC UA Server; editable

“Show All Endpoints” The button opens the “Available Endpoints” dialog with the end points available
on the OPC UA Server. An "endpoint" is a combination of security settings.
The lower part of the dialog displays the available user tokens: “PolicyId,
TokenType”, and “SecurityPolice”.
For the selected end point, clicking “Apply” will apply the security set-
tings “SecurityMode” and “SecurityPolicy” on the “Communication” tab in the
“Security” section.

Security

“Messages Security Mode” Type of encryption
● “None”: No encryption and no signing

Note: if you select this option, there can be no guarantee who receives the
data. Therefore, “None” should be used exclusively in closed networks.

● “Sign and Encrypt”: The transferred data will be signed and encrypted.
Signing makes sure that the data is not manipulated and the receiver is
correct.

● “Sign”: The transferred data will be signed.
Signing and encryption work only for certificates.

“Security Policy” List box for the encryption method to be used:
● Basic256sha256
Requirement: Either “Sign and Encrypt” or “Sign” was selected for “Messages
Security Mode”.

“Client certificate” Here you can specify a certificate for an encrypted signed access to the OPC UA
Server for the purpose of browsing.
Note: The access which is safeguarded in this way is ONLY for browsing the
server (see above, “Browse Live Server” option). For encrypted data exchange
between the server and client in online mode, a separate certificate is required,
which can be created in the security screen. For more information see: OPC UA
Server, Creating a certificate of the CODESYS OPC UA Server.

In case a certificate is not available for selection, you can click the button
to open the “Create Self-Signed Certificate ”dialog. Here you define a password
for your private key and a file name for the certificate. When you click [OK],
the certificate files .cer and .pfx are created in the project directory and the
certificate is automatically registered in the certificate manager.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2425

“Authentication”

“Anonymous” Access without authentication. Permission for this can be granted for com-
patibility reasons in the “Change Communication Policy” dialog on the
“Communication Settings” tab of the device editor.

“User name” Access to the OPC UA Server requires the entry of a user name and password.
You can programmatically set up how the transfer of this authentication data
should be done:
To help with the creation of a POU for this purpose in the project, you can
click the “Create Authentification Provider” button to create a program template
Datasource_OPCUA_Initializer and program it accordingly.

● Ä Chapter 6.4.1.21.2.5 “Object 'Data Source Manager'” on page 2412

Tab 'General and Diagnosis'
The “General and Diagnosis” tab provides information about the status of the data source
communication.

“Update Configuration”

“Update rate (ms)” Example: 200

“Connection Information”

“Connection status” Example: online
“Error information” Example: OK

See also
● Ä Chapter 6.4.1.10.6.5 “ Updating data interfaces” on page 1957

Object 'DeviceTrace'
Symbol:
A “DeviceTrace” object shows trace data in one or more diagrams, as does a “Trace” object.
The difference is that a “DeviceTrace” directly accesses traces that are running on the controller.
The object is inserted below the device in the device tree. Therefore there is no immediate
dependency on the applications in the CODESYS project.

You can use the DeviceTrace for visualizing the processor load of a multicore
controller.

For more information about the editor and its operation, refer to the help page for the “Trace”
object.
See also
● Ä Chapter 6.4.1.21.2.31 “Object 'Trace'” on page 2541
● Ä “Runtime system component CmpTraceMgr, "Trace manager"” on page 2008
● Ä Chapter 6.4.1.13.3.5 “Accessing All Traces on the Controller” on page 2014

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2426

Object 'Device' and Generic Device Editor
General

Symbol:
A device object represents a type of hardware; examples: control device, fieldbus node, bus
node, drive, I/O module, monitor. The arrangement of the device objects in the device tree,
that is the view “Devices” in CODESYS, maps the hardware structure. In the device object
configuration editors inter alia you connect the controller I/Os with project variables.
Use command “Add Device” or “Insert Device” to insert a device object in the device tree.
Depending on the insert position CODESYS always offers the currently matching devices.
A double-click on a device object in the device tree opens the associated device editor. The
editor provides generic and device-specific tabs for the device configuration.
See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427

Generic device editor
The generic device editor contains tabs for the configuration of a PLC device in CODESYS.
Additionally there are device-specific tabs, so that the configuration editor consists of many
different dialogs, depending on the device.
The editor opens after a double-click the device object in the device tree (“Devices” view).
You can make general settings for a device editor in the CODESYS “Options” in the “Device
Editor” category. For example, you can show and hide the tabs of the generic device editor.
A device editor is given the name of the device. The following tabs of the generic device editor
can be included:
● “Communication”: Configuration of the connection between the development system and a

programmable device (PLC). Not available in the case of pure I/O devices.
● “Applications”: List of the applications on the controller.
● “<device> Parameters”: Display and configuration of device parameters.
● “Files”: Configuration of the file transfers between a host file system and the device.
● “Log”: Display of the PLC log file.
● “PLC Settings”: Configuration of the handling of the I/Os: which application, behavior in the

stop state, updating, bus cycle options, etc.
● “PLC Shell”: Text-based control monitor for interrogating certain information from the con-

troller.
● “Users and Groups”: User management with regard to the device at runtime.
● “Access Rights”: Rights for access to objects and files on the device.
● “Symbol Rights”: Access rights of individual user groups to symbols (symbol sets) on the

device.
● “Task List”: Overview of all inputs and outputs, which are assigned to tasks – useful for

troubleshooting.
● “Status”: Device-specific status and diagnostic messages.
● “Information”: General information about the device (name, vendor, version etc.)
See also
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835

Tab 'Communication Settings'
On this tab of the generic device editor, you define the connection between CODESYS and
the device on which your application(s) should run. This includes security settings such as
encrypted communication and signing.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2427

If you prefer the classic mode of display for the dialog, then select it in the
CODESYS “Options” in the “Device editor” category).

You select a gateway and a target device from the list boxes. The possible selections depend
on the entries in the “Manage Gateways” and “Manage Favorite Devices” dialogs (see the
“Gateway” menu).
You can also specify the target directly with the IP address (example: "192.168.101.109"),
device address (example: "[056D]"), or device name (example: "MyDevice"). After the device is
entered, CODESYS searches for the device in the network of the gateway.

The option of searching by device name requires unique device names in the
network.

The solid circle on the lower right corner of the gateway symbol provides information about the
connection status:
● Red: CODESYS cannot establish the connection.
● Green: The connection is established.
● Black: The connection status is unknown.

Some communication protocols allow regular checking of the gateway so that
the status cannot be displayed.

Clicking the solid circle of the target device starts a network scan for the device. This works only
if the network is not already being scanned.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2428

“Scan Network” This button opens the “Select Device” dialog. It lists all configured gateways
with the associated devices. You can select one target device from this list. If
the name of the selected device is unique, then the name will be used in the
connection settings. Otherwise, the unique device address is applied.
For details about this dialog, see the description of the classic view below.
Option: Hide non-matching devices, filter by Target ID:

: The display is limited on the devices that have the same target ID as the
current device configured in the project.

: All available devices in the network are displayed. Double-clicking the entry
of a device, which has a different target system ID than the device configured in
the project, opens a dialog box. This dialog box allows you to update the device
description of the device in the project to the one matching the selected device.
Note: This kind of update is possible only with devices which have different IDs,
not for those which only have different versions. The update also requires that
the device description is already installed in the repository.

“Gateway ” This menu includes the following commands:
● “Add New Gateway”: Opens the “Gateway” dialog for defining a new

gateway channel.
● “Manage Gateways”: Opens the “Manage Gateways” dialog with an overview

of all gateways. You can add or delete entries here or change their order.
● “Configure Local Gateway”: Opens the “Gateway Configuration” dialog. You

can configure the block drivers for the local gateway.

“ Device” This menu includes the following commands:
● Options:

– “Add Current Device to Favorites”: Adds the currently set device to the
list of favorite devices.

– “Manage Favorite Devices”: Opens the favorites dialog with a list of all
preferred devices. In this dialog, you can add or delete entries or change
their order. The top device is the default.

– “Confirmed Online Mode”:
: For security reasons, CODESYS requires you to confirm the fol-

lowing when calling the following online commands: Force Values, Write
Values, Multiple Loading, Release Force List, Single Cycle, Start,
Stop.

– “Store Communication Settings in Project”:
: CODESYS saves the communication settings in the project for reuse

on the same computer.
Note: If you use the project on another computer, then you have to reset
the active path.

: CODESYS saves the communication settings in the options of the
local installation for reuse on the same computer.
Note: When using CODESYS SVN, the option should be cleared in order
to prevent blocking the device object.

● “Rename Active Device”:
Opens a dialog for changing the device name.

● “Wink Active Device”: Devices that support this function react by blinking.
● “Send Echo Service”: CODESYS sends five echo services to the controller.

These are used to test the network connection, similar to the ping function.
The services are sent first without a payload and then with a payload. The
scope of the payload depends on the communication buffer of the PLC. A
message view opens with information about the average echo service delay
and the scope of the sent payload.

● “Encrypted Communication”:
: The communication to this controller is encrypted. A certificate of the

controller is required in order to log in to the controller. If the certificate is
not available, then an error message opens prompting whether or not the
certificate should be displayed and installed.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2429

If the “Enforce encrypted communication” option is selected as “Security
level” in the “Security Screen” view, then the “Encrypted Communication”
command is disabled here.

● “Change Runtime Security Policy”
Opens the “Change Runtime Security Policy” dialog for changing the device
setting for the encryption of communication.

● “Change Runtime Password Policy”
Opens the “Change Runtime Password Policy” dialog to change the settings
for the password policy and the login lock

● “Security Settings”: This command is available only if CODESYS Security
Agent >= 1.3.0.0 is installed. It opens the “Device Security Settings” dialog.
The current security settings on the connected device are displayed. You can
change the settings in the “Value” column and click “OK” to write them to the
device.

●
● “Filter Network Scans by Target ID”:

: The display is limited on the devices that have the same target ID as the
current device configured in the project.

Table 402: Dialog “Change Runtime Security Policy”
When you select a new communication policy in this dialog, the configuration in the runtime system is changed.

“Communication Settings”

“Current policy” Shows the currently selected policy for the encryption of communication with the
device

“New policy” List box for the new policy for encryption
● “No encryption”: The controller does not support encrypted communication.
● “Optional encryption”: The controller supports encrypted and unencrypted

communication.
● “Enforced encryption”: The controller supports encrypted communication

only.

“Code Signing”

“Current policy” Display of the code signing policy which is currently set in the runtime system

“New policy” ● “All”: All types of application code are accepted.
● “Enforced signing”: Only signed application code is accepted (preventing

loading an application from untrusted sources).

“Device User Management”

“Current policy” Shows the currently selected policy for user management

“New policy” ● “Optional user management”: It is the responsibility of the user to enable
user management on the device or leave the device unprotected.

● “Enforced user management”: The user management on the device is ena-
bled and cannot be disabled by the user.

“Allow anonymous login” : Specific registered components (for example, OPC UA) can connect to the
controller without the providing any credentials. Even if anonymous access to
the OPC UA is permitted, the created device user management for the controller
remains active.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2430

Table 403: Dialog “Change Runtime Password Policy”
The runtime system password policy configured here is already checked in advance in the programming system
when the password for a new device user is entered or when the existing password of a device user is changed.

“Password policy is active” : The “Password settings” can be changed and are used when a password for
the device user management is created.
“Password settings”

● “Minimum length”
Default setting: 8

● “Number of unique characters”
Default setting: 4

● “Requires lowercase letter”
Default setting: enabled

● “Requires uppercase letter”
Default setting: enabled

● “Requires digit”
Default setting: enabled

● “Requires special character”
Default setting: enabled

● “Must not contain username”
Default setting: enabled

The following rules for the password always apply, even when the rules are
partially or completely disabled:
● The password must not be blank.
● The password must not be the same as the user name.

“Login lock is active” : The “Login lock settings” are applied at login.
“Login lock settings”

● “Scope”
– “ADMINS”: The settings apply to users who have administrator permis-

sions.
– “NOADMINS”: The settings apply to all users who do not have adminis-

trator permissions.
– “ALL”: The settings apply to all users.

● “Maximal Retries”: When the number of login attempts specified here is
exceeded, the user will be locked out for the amount of time which is speci-
fied in the “Lock duration” field. The user cannot log in again until the lock is
removed by an administrator or the lockout time has expired.

● “Lock duration [s]”: Lock time (in seconds)
For information about unlocking a locked user, see: Ä Chapter 6.4.1.11.3
“Encrypting Communication, Changing Security Settings” on page 1967

In the CODESYS options, you can activate the classic mode of the dialog (“Tools è Options”,
"Device Editor" category).

“Select the network path to the
controller”

Gateway channel for the connection.
Select the channel from the lower part of the view.

Communication
Settings -
Classic Mode

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2431

Table 404: “View displaying configured gateway channels and network devices”
Left side of view Tree structure of the configured gateway channels with the connected devices in

the local network:

Note: CODESYS saves these entries on the local system, not in the project.

The device entries are preceded by a device symbol (). Entries with a target ID
that are different from those currently configured in the project are displayed in
gray.
Click “Scan Network” to refresh the list.
Note: If you created the first project on the local system, then the local gateway is
listed as an entry in the tree by default. CODESYS starts this gateway automati-
cally on system boot.
The solid circle on the lower right corner of the gateway symbol provides infor-
mation about the connection status:
● Red: CODESYS Development System cannot establish the connection.
● Green: The connection is established:
● Black: The connection status is unknown.

Note: Some communication protocols allow regular checking of the gateway
so that the status cannot be displayed.

Each of the device entries in the tree consists of a symbol followed by the
“Device name”> [“Device address”]. On the right side of the view, you also
see the “Target ID”, “Target Name”, “Target Type, Target Vendor”, and “Target
Version”.

Right side of view Information about the gateway channel of device selected on the left side of the
view.
When a gateway channel is selected in the left view, the following information is
displayed: “Device name”, “IP address”, “Port”, “Driver”

When a device is selected in the left view, the following information is dis-
played (depending of the device): “Device name”, “Device address”, “Number
of channels”, “Block driver”, “Serial number”, “Encrypted communication”, “Target
vendor”, “Target ID”, “Target name”, “Target type”,“ Target version”.

Table 405: “Filter and sorting functions on the right side of the dialog”
“Filter” You can reduce the displayed list of devices that have the same “Target ID” as

the current device configured in the project.

“Sorting order” You can sort the list by “Name” or “Device Address” in alphabetical or ascending
order.

Table 406: Command buttons on the right side of the dialog
“Set Active Path” The command sets the selected communications channel as active. Double-

clicking the entry in the channel tree achieves the same result.

“Add Gateway” The command opens the “Gateway” dialog where you can define a gateway that
CODESYS should add to the current configuration.

“Add Device” The command opens the “Add Device” dialog. Here you can manually define a
device that is to be inserted under the gateway entry currently selected in the
tree. Note the functionality of “Scan Network” as well.

“Scan Network” The command starts a search for available devices in the local network. The
configuration tree of the gateway is refreshed accordingly.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2432

Table 407: “Commands in the context menu of the gateway tree and device tree in the dialog”
“Scan for Device by Address” The command searches the network for devices with a unique address as given

in the configuration tree. CODESYS displays the detected devices with the given
address below the gateway. The search always applies to the devices below the
selected gateway or below the selected entry.

“Scan for Device by Name” The command searches the network for devices with the same name as given in
the configuration tree. Capitalization is ignored. CODESYS displays the detected
devices below the gateway with the given name together with its unique device
address. The search always applies to the devices below the selected gateway
or below the selected entry.

“Scan for Device by IP
Address”

The command searches the network for devices with a unique IP address as
given in the configuration tree. CODESYS displays the detected devices with
the given address below the gateway together with its name. The search always
applies to the devices below the selected gateway or below the selected entry.

“Send Echo Service” CODESYS sends five echo services to the controller. These are used to test
the network connection, similar to the ping function. The services are sent first
without a payload and then with a payload. The scope of the payload depends
on the communication buffer of the PLC. A message view opens with information
about the average echo service delay and the scope of the sent payload.

“Delete Selected Device” The command deletes the selected device from the channel tree.

“Edit Gateway” The command opens the “Gateway” dialog for editing the settings for the
selected gateway.

“Configure the Local Gateway” The command opens a dialog for configuring a local gateway. This provides an
alternative to manually editing the Gateway.cfg file.

Table 408: Options in the lower part of the dialog
“Don't store
communication
settings in project”

● : CODESYS saves the communication settings in the options of the local installation
for reuse on the same computer.
Note: When using CODESYS SVN, the option should be selected in order to prevent
blocking the device object.

● : CODESYS saves the communication settings in the project for reuse on the same
computer.
Note: If you use the project on another computer, then you have to reset the active
path.

“Confirmed Online
Mode”

: For security reasons, CODESYS requires you to confirm the following when calling the
following online commands: “Force Values”, “Write Values”, “Multiple Loading”, “Release
Force List”, “Single Cycle”, “Start”, “Stop”.

Tab 'Parameters'

This dialog is intended for test purposes. Its values should be changed only by
experts.

The device-specific parameters are displayed in a table on this tab of the generic device editor.
The device description defines which parameters you can edit in this dialog.
You can sort the entries in alphabetically ascending or descending order or in the default order
by clicking the column header.

“Parameter” Parameter name, not editable

“Type” Data type of the parameter, not editable

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2433

“ Value” Initially displays the default value of the parameter, directly or the corresponding
symbol name. Non-editable parameters are displayed in light-gray. If the param-
eter is editable you can open an input field, a drop-down list or a file selection
dialog with a double-click the table field and use it to change the value.

“Default value” Default value of the parameter defined by the device description, not editable

“Unit” Unit of measure for the value (example: "ms" for milliseconds; not editable)

“Description” Short description of the parameter specified by the device description, not edit-
able

See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427

Tab 'Applications'
On this tab of the generic device editor you can see which applications exist on the device.
Depending on the system you can delete the applications from the device or retrieve detailed
information about the application.

“Applications on the PLC” List of the applications found via “Refresh list” during the last scan of the control
device.

“Delete”

“Delete All”

Deletes the application selected in the list or all listed applications on the con-
troller
Note: If a safety controller is inserted below a PLC, then this command can
permanently interrupt the communication links of the safety controller to other
safety controllers (via safety network variables), to field devices, and to the
development system. The safe field devices and the other safety controller can
enter the safe state as a reaction. The connection to the development system
is affected only in the case of a safety controller that is connected to the main
controller via a fieldbus. For more information, refer to the section "Subordinate
Safety Controller".

“Details” Opens the dialog box “Details”. It displays information defined for the application
on the “Information” tab of the dialog box “Properties”.

“ Contents” Requirement: The “Download the application info” option is activated in the
“Properties” of the application object on the “Application generation options” tab.
This causes information about the contents of the application to be additionally
loaded to the PLC.
The “Contents” button opens a dialog box with additional information about the
differences between the latest generated code and the application code that
exists on the controller. The different modules are displayed in a comparison
view.

“Refresh List” The controller is scanned for applications and the list is refreshed accordingly

You can configure the commands “Remove Application from Device” and
“Remove Applications from Device” by means of the dialog box form “Tools
è Customize”. These commands correspond to the “Delete” and “Delete All”
buttons.

See also
● Ä Chapter 6.4.1.21.2.8 “Object 'Device' and Generic Device Editor” on page 2427
● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2434

● Ä Chapter 6.4.1.21.2.8.20 “Tab 'Information'” on page 2460
● Ä Chapter 6.4.1.21.4.11.10 “Dialog 'Properties - Application Build Options'” on page 2759
● Ä Chapter 6.4.1.21.3.7.2 “Command 'Login'” on page 2624
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964

Tab 'Backup and Restore'
In this tabbed page of the generic device editor, you can backup and restore the application-
specific file on the PLC by saving and reading a zip archive.
Requirement: The communication settings are correct for connection to the device. The applica-
tion for backup is available on the PLC.

Table 409: Menu Bar
“Backup” This button opens a menu with the following commands:

● “Read Backup Information from Device”: This command searches for
application-specific files from the $PlcLogic$ directory of the PLC and lists
them in a table in the lower part of the tabbed page.

● “Create Backup File and Save to Disk”:
Requirement: The “Read Backup Information from Device” command was
used for determining the backup-related files. These files are located in the
table in the lower part of the tabbed page.
This command compresses the files in the table set as “Active” and the
meta.info information file into a backup zip file. The file extension is tbf
(="Target Backup File").

● “Save Backup File to Device”:
Requirement: The backup file has been saved to the disk. This command
saves the backup file to the TBF directory of the PLC.

“Restore” This button opens a menu with the following commands:

● “Load Backup File from Disk”: This command opens the “Open” dialog
box for navigating the file system for a saved backup file. The included files
are listed in a table in the lower part of the tabbed page.

● “Load Backup File from Device”: This command generates a list of all
backup files found on the PLC. Select one of these files to view its contents
in a table on the tabbed page. For the restore operation, you can deactivate
optional components and edit the comments.

● “Restore on Device”: This command is available if at least one component
of the backup file that is currently loaded in the tabbed page is set to active.
It prompts for restoring the application status on the device. The user inter-
face is blocked during restore. You can cancel the operation.

Table 410: “Target Information”
“ID” ID of the PLC (example: 0000 0001)

“Type” Device type (example: 4096)

“Version” Device version (example: 3.5.8.0)

Table 411: “Backup Information”
“File name” Storage path of the backup file. Clicking the symbol () opens the file system

dialog box. Example: PlcLogic$/Application/Application.crc
“Size of active files” (in kilobytes) Total size of the files set as active in the table (example: 206 KB

(210965 bytes)).

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2435

“Mode” Defines the scope of the backup: “Application”. The application-related files are
added to the archive.

“Comment” Optional entry for comments to be saved in the meta.info file of the backup
and reading when the files are restored.

Table 412: Table of files for backup
“Active” : Optional files can be deactivated here for exclusion in the backup file.

Required components are shown here with a green check mark (no check box).

“Component” Affected components (example: file system)

“File” Name of the component file to back up (example: $PlcLogic$/
Application/Application.app)

“Size” File size in bytes (example: 43280)

“Requires STOP” : For components, the application must be stopped before backup and restore.
A dialog prompt will open to warn you of any backup or restore conflicts.

See also
● Ä Chapter 6.4.1.13.9 “Backup and restore” on page 2024

Tab 'Synchronized Files'
The tab of the generic device editor lists the files that are downloaded to the PLC when
the application is downloaded. For example, these are external files that were added to an
application.
Implicit files, such as the source code archive file, are displayed here only if their time of
download is configured for this and the “Show implicit files for application download on the
editor of a PLC” option is activated in the CODESYS options (“Device Editor” category).

“Refresh” Refreshes the view

“Download 'on-demand' files” For internal use only.

“File Name” Name of the file below the application, or direct name of the implicitly transferred
file (example: archive.prj).

Double-click the file name to open the file.

“Host Path” Location or original location of the file (example: D:\Proj1\Files).

Double-click the path to open the directory in the file explorer.

“Timing” Time interval of the file update on the PLC (example: “After application
download/online change”).

“Information” Object-dependent additional information (example: “Object: External File”).

“Provider” General origin type of the file (example: “External File Objects”, “Source code
download provider”).

See also
● Ä Chapter 6.4.1.21.4.14.7 “Dialog 'Options' - 'Device Editor'” on page 2786
● Ä Chapter 6.4.1.21.2.10 “Object 'External File'” on page 2464

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2436

Tab 'Files'
In this tab of the generic device editor, you can transfer files between CODESYS (host) and
the PLC. If the communication settings are correct and the PLC is online, then CODESYS
establishes the connection automatically to the PLC for the duration of the file transfer.

Table 413: “Host” / “Runtime”
 Access to the file system of the host with the functionalities of a standard file

manager

“Location” Current directory for the file transfer on the host side

Opens a dialog to create a new directory in the set path

“” Deletes the selected files or directories

Updates the list of files and directories there for the set location

Copies the selected files and directories to the respective other file system from
the host and runtime system
If a file is not already available in the target directory, then it is created. If it
is already available and not write-protected, then it is overwritten. Then a corre-
sponding message is displayed.

 corresponds to the “Write File to Controller” command.

 corresponds to the “Write File from Controller” command.

By default, the “Write File to Controller” and “Write File from Controller” com-
mands are not included in any menu. You can add it to a menu by means of the
“Tools è Customize” dialog, in the “Online” command category.

See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.15 “Copying files to/from PLC” on page 2027

Tab 'Log'
You can view the PLC log on this tab of the generic device editor. It lists the events that were
recorded on the target system. This concerns the following:
● Events during the startup and shutdown of the system (components loaded, with version)
● Application download and loading of the boot application
● Custom entries
● Log entries from I/O drivers
● Log entries from data sources

The “Log” tab also opens when you click “Open Log Page”. You can configure
this as a menu command in the “Customize” dialog.

Table 414: Menu bar
Refreshes the list of log events for all runtime system component

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2437

“Components” Filters the display of log events by the runtime system components selected in
the list box
Example:
CmpApp displays all events which occur in these components, for example
"Application [<name>] loaded via [OnlineChange]".

“<all components>”: Displays the reported events of all components

Loads the next page with newer log messages

Loads the previous page with older log messages

Loads the page with the newest log entries and enables automatic scrolling

: Indicates that there are new log messages which have not been displayed
yet.
Hint: This is also displayed on the status bar as “Auto-Scroll: ON”.

Loads the page with oldest log messages

Filters events with the severity “Warning” and notifies about how many
Blue-outlined button: Warnings are displayed.

Filters events with the severity “Error” and notifies about how many
Blue-outlined button: Errors are displayed.

Filters events with the severity “Exception” and notifies about how many
Blue-outlined button: Exceptions are displayed.

Filters events with the severity “Information” and notifies about how many
Blue-outlined button: Information is displayed.

Filters events with the severity “Debug” and notifies about how many
Blue-outlined button: Debug messages are displayed.

Logger Enables a logger for displaying its recorded events
By default, the <default logger> defined by the system is set. For example,
that is the logger PlcLog for a CODESYS Control Win V3 runtime system.

“UTC time” : Converts the times displayed below “Timestamp” to the local time of the
development system. The conversion is based on the time zone of the operating
system where the CODESYS is running. (default setting)

: Displays the original time stamp of the runtime system
If you change the option, then the displayed time stamp is converted automati-
cally.

Exports the list contents to an xml file. You can select the file name and location.

Imports an XML file with log messages stored in the file system . A separate
window opens to display the log messages.

Table 415: Display window with log file
Tabular display of the log messages
Ten thousand log messages are displayed per page.

“Severity” ● : Warning
● : Error
● : Exception
● : Information
● : Debug message

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2438

“Time Stamp” Date and time of the development system or of the runtime system)
Example: 01/12/07 09:48

“Description” Description of the event
Example: PLC started

“Component” Runtime component where the reported event occurred

Table 416: Status bar
“Auto-Scroll” Displays whether auto-scrolling is enabled (“ON”) or disabled (“OFF”)

Hint: Click the button to enable “Auto-Scroll”.
● “ON”: The log list is refreshed automatically when changes occur.
● “OFF”: When a new log event occurs, it is displayed next to “Off”. Moreover,

the button is decorated on the menu bar: .

Note for error checking

For exceptions with the description *SOURCEPOSITION*, the affected function
opens in the editor by double-clicking it or by means of the “Display Source
Code in Editor” command in the context menu. The cursor jumps to the
line that is causing the error. You can also perform this diagnosis when you
have the CODESYS project archive, including the download information files
and the exported log file. When the affected function is protected, then the
following message appears: "The source code is not available for
<function name>".

If a VendorException is reported, then a manufacturer-specific exception
error has occurred in the CODESYS runtime. Contact the PLC manufacturer for
more information.

See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.21.2.8 “Object 'Device' and Generic Device Editor” on page 2427
● Ä Chapter 6.4.1.13.6 “Reading the PLC log” on page 2021
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801

Tab 'PLC Settings'
On this tab of the generic device editor you make the basic settings for the configuration of the
PLC, for example the handling of inputs and outputs and the bus cycle task.

“Application for I/O handling” Application that is responsible for the I/O handling.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2439

Table 417: “PLC Settings”
“ Refresh I/Os in stop” : The values of the input and output channels are also refreshed when the

PLC is in STOP mode. If the watchdog detects a malfunction, the outputs are set
to the predefined default values.

: The values of the input and output channels in STOP mode are not
refreshed.

“Behavior of the outputs at
stop”

Handling of the output channels when the controller enters the stop state:
● “Retain values”: The current values are retained.
● “All outputs to default value”: The default values resulting from the I/O map-

ping are assigned.
● “Execute program”: You can control the handling of the output values via

a program contained in the project, which CODESYS executes at "STOP".
Enter the name of the program in the field on the right.

“Always update variables” Global setting that defines whether or not CODESYS updates the I/O variables
in the bus cycle task. This setting is effective for I/O variables of the slaves and
modules only if 'deactivated' is defined in their update settings.
● Deactivated (update only if used in a task): The I/O variables are updated

only if they are used in a task.
● “Enabled 1 (use bus cycle task if not used in any task)”: CODESYS updates

the I/O variables in the bus cycle task if they are not used in any other task.
● “Enabled 2 (always in bus cycle task)”: CODESYS updates all variables in

each cycle of the bus cycle task, regardless of whether they are used and
whether they are mapped to an input or output channel.

Table 418: “Bus Cycle Options”
“Bus cycle task” Task that controls the bus cycle. By default the task defined by the device

description is entered.
By default the bus cycle setting of the superordinate bus device (use cycle set-
tings of the superordinate bus) applies, i.e. the device tree is scanned upwards
for the next valid bus cycle task definition.

NOTICE!
Before you select the “<unspecified>” setting for the bus cycle task, you should
be aware that "<unspecified>" means that the default setting given in the device
description goes into effects. You should therefore check this description. Use
of the task with the shortest cycle time may be defined as the default there, but
use of the task with the longest cycle time could equally well be defined!

NOTICE!
For fieldbuses, a fixed cycle matrix is necessary to assure a determined
behavior. Therefore, do not use the type 'freewheeling' for a bus cycle task.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2440

Table 419: “Additional Settings”
“Force variables for the I/O
mapping ”

This setting is available only if it is supported by the device.

: When compiling the application CODESYS creates two global variables for
each I/O channel that is mapped to a variable in the dialog “I/O Mapping”. You
can use these variables for the forcing of the input or output value on this
channel, for example via an HMI visualization.

“Activate diagnostics for
devices”

: The CAA Device Diagnosis library is integrated in the project. An implicit
function block is generated for each device. If there is already a function block
for the device, then either an extended function block is generated (example:
EtherCAT) or another function block instance is added. This then contains a
general implementation of the device diagnostics.
By means of the function block instances you can determine the status of all
devices in the application and evaluate errors. In addition, the library contains
functions for the programmatic editing of the device tree. Example: Scanning of
all children of a bus system, jumping to the parent element.

“Create additional parameters” This setting is available only if it is supported by the device.
Create additional parameters.

“ Display I/O warnings as
errors ”

Warnings concerning the I/O configuration are displayed as errors.

“ Enable symbolic access for
I/Os”

: Input and output variables (VAR_INPUT and VAR_OUTPUT) are automati-
cally created for the I/O channels of the device. For this purpose, an extended
function block is created for each slave. The basis is the existing function
block of the slave. This kind of automatically generated function block can be
accessed directly in the application code.
This symbolic access works in parallel to the I/O mapping which was set up
manually.

: Access to I/O channels is not supported. It is necessary to manually set up a
mapping and specifically assign new or existing variables per I/O channel.

See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444
● Ä Chapter 6.4.1.21.3.6.4 “Command 'Build'” on page 2619
● PDF document 'CAA Device Diagnosis', which is a component of the library.

Tab 'PLC Shell'
This tab of the generic device editor includes a text-based control monitor for querying spe-
cific information from the controller. You can specify device-dependent commands for this and
receive the response from the controller in a result window.

Table 420: ABB AG standard commands
Command with Possible Parameters Description
? List of available PLC shell commands with possible parameters and

short description
applist Provides a list of all loaded applications

The order in the list defines the application index beginning with 0.

batt [INFO, ACK] Get battery status; batt INFO: displays detailed information;
batt ACK: acknowledge fail state

cdump [exp,sdc,rst] handle logging data in case of crash or malfunction; cdump ? for
help

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2441

Command with Possible Parameters Description
cert-createcsr [<number for
search result by "cert-
getapplist">]

Generates CSR files for all applications

cert-export <trust level>
[<number for search result by
"cert-getcertlist">]

Exports the specified certificate

cert-genselfsigned [<number
for search result by "cert-
getapplist"> <expdays=>]

Generates self-signed certificates
The validity period of the certificate can be specified by means of
expdays=.

Default value: 365 days
cert-gendhparams [length in
bits]

Generates the parameters for the Diffie-Hellman key exchange
Caution: This operation can take several minutes to complete.

cert-getapplist Provides all registered and used certificates (ID of the component
and usage).

cert-getcertlist [<trust level>] Lists all certificates of the specified trust level
If a trust level is not given, then all certificates are listed.
Possible trust levels
● untrusted: Untrustworthy certificates
● trusted: Trustworthy certificates
● own: Certificate of the controller
● quarantine: Certificates whose trust level (trusted, untrusted)

cannot be determined by validation. Incoming connections were
therefore denied.

cert-import <trust level> <file
name.cer>

Imports the specified certificate

cert-remove <trust level>
<number for search result by
"cert-getcertlist" or "all">

Removes the specified certificate

channelinfo Provides information about the communication channel
clearsram <segment number
retrieved by "getsramlayout" or
"all">

Init and mark SRAM segment or complete SRAM as free

coupler desc Get version information of communication modules
com settings Get information of serial COM ports
cpuload Shows the processor load of the CPU (for multicore, each pro-

cessor core)
date [yyyy-mm-dd] Get/set system date; date: get system date; date yyyy-mm-dd:

set system date
ethernet [netstat,desc] Will show Ethernet information; ethernet ? for help

getcmdlist List of names of available PLC shell commands
getmulticoreinfo Shows whether or not multicore is supported and the number of

available processor cores
getprgprop [not implemented,
yet] *

-

getprgstat [<application name>|
<application index>] *

Provides the program status of the given application, or the pro-
gram status of all loaded applications if no application is given

getsramlayout Display layout of complete SRAM

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2442

Command with Possible Parameters Description
gettaskgroups Provides a list of all task groups, their tasks, and the CPU core

binding
gettaskgroups Provides a list of defined task groups

The assigned tasks are shown for each task group.
gettasks Get list of all tasks, its name and the optional bound taskgroup
heapinfo Print memory usage and heap statistics
io-bus [stat,desc] Will show I/O bus information; io-bus ? for help

license
[export,import,required,availabl
e,generate]

License handling commands; license ? for help

pid [<application name>|
<application index>] *

Provides the GUID (application index) of one or all loaded applica-
tions

pinf [<application name>|
<application index>] *

Provides the contents of the following fields from the project infor-
mation: title, version, author, and description.
Requirement: The option “Create POU for properties access
automatically” in the “Project Information” dialog is activated.

plcload Shows the processor load of the controller (in percent)
proddata Get production data and public keys information of CPU
reboot Performs PLC reboot
reflect Repeats the given command (for testing the connection)
reload[<application name>|
<application index>] *

Loads the boot application of the given application, or the boot
projects of all loaded applications if no application is given

resetprg [<application name>|
<application index>] *

Resets the given application, or all loaded applications if no appli-
cation is given

resetprgcold [<application
name>|<application index>] *

Executes a cold boot of the given application, or all loaded applica-
tions if no application is given

restoreretains
[<applicationname>]

Restore retains to files(s). [Optional only from specified application].

restoresram <filename> Restore complete SRAM content to file
rtc-get Provides the universal time (UTC) via the DataTime string

rtc-set Sets the universal time (UTC) via the DataTime string (see
ISO 8601), required format: "rtc-set YYYY-MM-DDThh:mm:ss[,sss

rtsinfo Provides information about the runtime system, for example the
processor and version of the runtime system

safestopinfo <slot> Get version errors from DPRAM from communication module
<slot>

saveretains [<applicationname>] Save retains to files(s). [Optional only from specified application].
savesram <filename> Save complete SRAM content to file
sdclone <slot> Clone content of SM560-s at slot <slot>
sessinfo-getcnt Provides the number of currently logged in clients/users
sessinfo-list Provides a list of all currently logged in clients/users
showsecuritysettings Show the list of all security settings and the current configuration
sram Export or import data from SRAM
startprg [<application name>|
<application index>] *

Starts the given application, or all loaded applications if no applica-
tion is given

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2443

Command with Possible Parameters Description
stopprg [<application name>|
<application index>] *

Stops the given application, or all loaded applications if no applica-
tion is given

time [hh:mm:ss] Get/set system time; time: get system time; time hh:mm:ss: set
system time

trenddatastore Configure location of the trend DB, reboot of CPU and download is
required

versioninfo Get version information on AC500 components

* Application name: Name of the application in the device tree
Application index: Results from the list of all applications on the controller that you can call with
the “applist” command. Index 0 stands for the first application in the list, 1 for the second, and
so on.

See also
● Ä Chapter 6.4.1.13.7 “Using PLC shell for requesting information” on page 2022
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.21.3.5.13 “Command 'Project information'” on page 2604

Tab '<device name> I/O Mapping'
This tab is displayed in device editors for devices with I/O channels. It shows the available
channels and allows for the mapping of input, output, and memory addresses of the controller to
variables or entire function blocks of the application. In this way, you create the 'I/O Mapping'.
The application that is to take care of the I/O handling is defined on the “PLC Settings” tab.

You can use the "Online Configuration Mode" if the device supports it. In this
mode, you can access the I/Os of the hardware without having to download an
actual application to the device beforehand.

You can also create the I/O mapping in the “Edit I/O Mapping” dialog. Here you
get a mapping list with search and filter functions for an entire device tree.

NOTICE!
Mapping 'too large' data types
If a variable of a data type that is larger than a byte is mapped to a byte
address, the value of the variable will be truncated to byte size there. For
monitoring the variable value in the “I/O Mapping” dialog, this means that, in the
root element of the address, the value is displayed which the variable currently
has in the project. The current individual bit values of the byte are displayed in
succession in the bit elements below that, but this may not be sufficient for the
entire variable value.

Example of the “<device name> I/O Mapping” tab for a CAN bus slave:

Devices with I/O
channels

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2444

The tab contains a table for editing the I/O mapping. The information displayed for the inputs
and outputs originates from the device description.

“Find” (1) Input field for a search string for the mapping table. The search results are
marked in yellow.

“Filter” (2) List box with filters for the I/O mappings displayed in the mapping table:
● “Show all”
● “Show only outputs”
● “Show only inputs”
● “Show only unmapped variables”
● “Show only mapped variables”
● “Show only mapping to existing variables”
● “ Show only mapping to new variables”

 “Add FB for IO channel” (11) Depending on the device, available if the channel entry is selected in the map-
ping table. Opens the “Select Function Block” dialog for selecting the function
block that should be linked directly to the channel.

 “Go to instance” (12) Available if the entry is selected in the mapping table. Jumps to the corre-
sponding entry on the “<device name> IEC Objects” tab.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2445

“Variable” Depending on the device, the inputs and outputs of the device are displayed as
nodes and below them, indented, the associated channels or, depending on the
device, only the implicitly created device instance.
The symbol indicates the type of channel:

: Input

: Output
Double-click the cell to open an input field.
● Option 1: The variable already exists; specify complete path: <application

name>.<module name>.<variable name>; example: app1.plc_prg.ivar;
input assistance via .

● Option 2: The variable does not exist yet; enter a simple name; automatically
created internally as a global variable.

Depending on the device, inputs or outputs can be linked directly to a function
block. In this case, the “Add FB for IO channel” button can be clicked. See
above.

“Mapping” (3) Type of mapping:

● : Existing variable
● : New variable
● : Mapping to function block instance

“ Channel” (4) Symbolic name of the channel.

“Address” (5) Address of the channel (example: %IW0).

Address strikethrough: Indicates that you should not assign any more variables
to this address. Reason: Although the variable specified here is managed – as
an existing variable –at a different memory location, ambiguity could result when
the values are written, particularly with outputs.

: Indicates that this address has been edited and fixed. If the arrangement of
the device objects in the device tree changes, then CODESYS does not adapt
this address automatically.

“Type” (6) Data type of the channel (example: BOOL).

Structures or bit fields defined in the device description are displayed only if they
are part of the IEC standard and are identified as IEC data types in the device
description. Otherwise the table cell remains empty.
When mapping structured variables, the editor prevents you from specifying
both the structure variable (example: %QB0) and individual structure elements
(example: %QB0.1 and QB0.2). Therefore, if there is a main entry with a subtree
of bit channel entries in the mapping table, then the following applies: You can
input a variable either into the line of the main entry, or into the lines of the
subelements (bit channels), but not into both.

“Default value” Default value of the parameter that applies to the channel: Appears only if
the option “Set all outputs to default” is selected in the “PLC Settings” for the
behavior of the outputs at stop.
Note: For compiler version V3.5 SP11 and higher, the initialization value of the
variables is used automatically as the default value when mapping to an existing
variable. You can edit the “Default value” field only if you map to a new created
variable or if no mapping is specified. In older versions, users had to specify
explicitly that the default value and initialization value were identical.

“Unit” (7) Unit for the parameter value (example: ms for milliseconds).

“Description” (8) Short description of the parameter.

“Current value” Actual value of the parameter applied to the channel; displayed in online mode
only.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2446

The change of the default value by an online change is allowed, however the
value is applied only after a "Reset cold" or "Reset warm".

“Reset Mapping” (9) CODESYS resets the mapping settings to the default values as defined in the
device description file.

“Always update variables” (10) Definition for the device object about updating I/O variables. The default value is
defined in the device description:
● “Use parent device setting”: Update according to the setting of the superordi-

nate device.
● “Enabled 1 (use bus cycle task if not used in any task)”: CODESYS updates

the I/O variables in the bus cycle task if they are not used in any other task.
● “Enabled 2 (always in bus cycle task)”: CODESYS updates all variables in

each cycle of the bus cycle task, regardless of whether they are used and
whether they are mapped to an input or output channel.

If a UNION is represented by I/O channels in the mapping dialog, it depends on
the device whether mapping to the root element is also possible.

For devices with I/O drivers, you can set the bus cycle task here in the “I/O Mapping” tab if the
general settings should not be used (“PLC Settings” tab).

Table 421: Bus Cycle Options
“Bus Cycle Task ” The list box provides all tasks which are defined in the task configuration of

the active application (example: “MainTask”. In case of “Use parent bus cycle
setting”, the settings of the parent node will be used.

Generally, for each IEC task, the used input data is read at the start of each task (1) and the
written output data is transferred to the I/O driver at the end of the task (3). The implementation
in the I/O driver is decisive for additional transfer of the I/O data. It is responsible for the time
frame and time point that the actual transfer to the corresponding bus system occurs.
The bus cycle task of the PLC can be defined globally for all fieldbuses in the PLC settings. For
some fieldbuses, however, you can change this independent of the global setting. The task with
the shortest cycle time is used as the bus cycle task (setting: “unspecified” in the PLC settings).
The messages are normally sent on the bus in this task.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

Devices with I/O
drivers

General infor-
mation about
the bus cycle
task

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2447

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Task usage
The “Task Deployment” tab provides an overview of used I/O channels, the set bus cycle task,
and the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
If the same inputs are used in various tasks, then it is possible for the input
to change during the processing of a task. This happens when the task is
interrupted by a task with a higher priority and causes the process image to be
read again. Solution: At the beginning of the IEC task, copy the input variables
to variables and then work only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

See also
● Ä Chapter 6.4.1.8.2 “Configuring Devices and I/O Mapping” on page 1836
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.21.3.5.35 “Command 'Edit I/O Mapping'” on page 2615
● Ä Chapter 6.4.1.21.2.8.13 “Tab '<device name> IEC Objects'” on page 2449
● Ä Chapter 6.4.1.21.4.4 “Dialog 'Select Function Block'” on page 2746
● Ä Chapter 6.4.1.21.3.5.39 “Command 'Online Config Mode'” on page 2616
● Ä Chapter 6.4.1.21.2.8.10 “Tab 'PLC Settings'” on page 2439

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2448

Tab '<device name> IEC Objects'

NOTICE!
Please note that manually creating another instance of the device object can
lead to malfunctions.

In this tab of the generic device editor, "objects" are listed that allow for access to the device
from the IEC application. In online mode, this is used as the monitoring view.
For devices for which a function block instance is created implicitly, at least this instance is listed
as an object here in the table. This instance can be used, for example, in order to restart a bus
or to query information from the application. The device type determines whether this kind of
device instance is available and which access options it has. Please refer to the help for the
special device configuration.
Instances of function blocks that are linked with inputs or outputs of the device are also dis-
played here. The mapping of a function block to a channel is defined in the “<device name> I/O
Mapping” tab. The “Go to Instance” command takes you directly to the affected object from
there.
In addition, you can create more objects in the table here that are not yet linked with a device
channel.
In online mode, you can use the table of IEC objects as a monitoring view. It also shows the
current value, the address, and the comment for the function block variable at the channel.
Finally, it provides the capability of writing and forcing values.

 “Add”

 “Edit”

Opens the “Select Function Block” dialog for creating a new instance or for
editing the instance selected in the table.

 “Delete” Deletes the selected entry.

 “Go to Variable” Jumps from the selected entry directly to the corresponding mapping in the
“<device name> I/O Mapping” tab.

“Variable” The object name comprises the device name and the function block name.
Example: EL2004_Relay. Changing the device name has an immediate effect.
The part of the name after the device name is editable here.

“Mapping” Mapping type, as in the “<device name> I/O Mapping” tab

“Type” Data type: Here it is the name of the function block.

“Value”

“Prepared value”

“Address ”

“ Comment”

In online mode only:
Display of the current value, the address, and the comment for the variable at
the channel. Moreover, the option of specifying a value for writing or forcing the
variable.

See also
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2449

Tab 'Users and Groups'

NOTICE!
Recommendations regarding data security
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for teleaccess, and install firewall mechanisms.
Restrict access to authorized persons only, and change any existing default
passwords during the initial commissioning, and change them regularly.

On this tab of the generic device editor, you edit the device user management of the PLC.
Depending on how it is supported by the device, you can define user accounts and user groups.
In combination with the configuration on the “Access Rights” tab, you thus control access to
control objects and files at runtime.
Requirements: The controller has a user management and allows it to be edited. You have login
data in order to be able to log in to the controller.

It is possible to apply user account definitions from the project user manage-
ment into the device user management (see below: “Import” button).

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2450

Table 422: Toolbar of the tab
 Synchronization Switches on and off the synchronization between the editor and the user man-

agement on the device.
If the button is not pressed, then the editor is blank or it contains a configuration
that you loaded from the hard disk.
When the button is pressed, CODESYS synchronizes the display in the editor
continuously with the current user management on the connected device.
When you enable the synchronization while the editor contains a user configura-
tion that is not synchronized with the device yet, you are prompted what should
happen to the editor contents. Options:
● “Upload from the device and overwrite the editor content”: The configuration

on the device is loaded into the editor, overwriting the current contents.
● “Download the editor content to the device and overwrite the user

management there”: The configuration in the editor is transferred to the
device and applied there.

 Import from disk CAUTION: The import of a device user management by means of a *.dum2
file completely overwrites the existing user management on the device. In order
to log in to the device again afterwards, you need authentication data from the
new user management. This means that you have to log in as a user from the
imported user management after the import.
● When you click the button on the “Users and Groups” tab to import a “Device

user management file *.dum2”, the default dialog for selecting a file opens
to select a device user management file from the hard drive. After you
select the file, the “Enter Password” dialog opens. You have to specify the
password that was assigned when the file was exported. Then the user
management is enabled.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab to import a “Device
rights management file *.drm”, the default dialog for selecting a file opens to
select a corresponding file from the hard drive. The existing configuration in
the dialog is overwritten by the imported file.

 Export to disk ● When you click the button on the “Users and Groups” tab, first the “Enter
Password” dialog opens for assigning a password to the device user man-
agement file. Note: This password has to be repeated later when this file is
imported to enable this user management on the controller.
After the password assignment dialog is closed, the default dialog for
selecting and importing a user management configuration from the hard disk
opens. In this case, the file type is “Device user management files (*.dum2)”.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab, the file type is “Device
rights management files (*.drm)”. In this case, a password does not have to
be assigned for the file before saving.

“Device user” User name of the user currently logged in on the device

Table 423: “User”
All currently defined users, and below them their memberships of user groups, are listed in a tree structure.

 “Add” Opens the “Add User” dialog for creating a new user account.

 “Import” Opens the “Import User” dialog. It displays all the user accounts defined in the
project user management.
Select the desired entries and click “OK” in order to import them into the device
user management. CAUTION: The passwords are NOT applied.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2451

 “Edit” Opens the “Edit User <user name>” dialog. It corresponds to the “Add User”
dialog and you can change the settings of the user account.

 “Delete” Deletes the account of the currently selected user.

Table 424: “Groups”
All currently defined groups, and below them the users assigned to them, are listed in a tree structure.

 “Add” Opens the “Add Group” dialog.
Define a new group name. From the list of defined users, select those that are to
belong to the group. Click “OK” to confirm the selection. The group is displayed
in the tree.

 “Import” Opens the “Import User” dialog. It displays all the user groups defined in the
project user management.
Select the desired entries and click “OK” in order to import them into the device
user management.

 “Edit” Opens the “Edit Group <group name>” dialog. It corresponds to the “Add Group”
dialog where you can change the group definition.

 “Delete” Deletes the currently selected group.

Table 425: “Add Dialog 'Add User'”
“Name” Name of the new user

“Default group” List box with all configured user groups. Every user has to belong to at least one
group. You define this here as a default group.

“ Password”

“Confirm password”

“Password strength” Password security in a range from “Very weak” to “Very good”.

“Hide password” : The password is shown only with asterisks "*" when it is typed in.

“Password can be changed by
the user”

“Password must be changed at
first login”

See also
● Ä Chapter 6.4.1.21.2.8 “Object 'Device' and Generic Device Editor” on page 2427
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971
● Ä Chapter 6.4.1.21.2.8.15 “Tab 'Access Rights'” on page 2453
● Ä Chapter 6.4.1.21.3.7.16 “Command 'Add Device User'” on page 2637

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2452

Tab 'Access Rights'

NOTICE!
Recommendations regarding data security
In order to minimize the risk of data security violations, we recommend the
following organizational and technical actions for the system where your appli-
cations are running. Whenever possible, avoid exposing the PLC and control
networks to open networks and the Internet. Use additional data link layers
for protection, such as a VPN for teleaccess, and install firewall mechanisms.
Restrict access to authorized persons only, and change any existing default
passwords during the initial commissioning, and change them regularly.

NOTICE!
Detailed information on the concept and use of device user management is
provided in "Handling of Device User Management".
There you will also find the following instructions on how to use the editor:
– First-time login to the controller for editing and viewing its user management
– Setting up a new user in the user management of the controller
– Changing of access rights to controller objects in the user management of

the controller
– Loading user management from a *.dum file, modifying it, and downloading

it to the controller in offline mode

On this tab of the device editor, you define the device access rights of device users to objects
on the controller. As in the project user management, users must be members of at least one
user group and only user groups can be granted certain access rights.
Requirements for the “Access Rights” tab to be displayed:
● In the CODESYS options, in the “Device Editor” category, the “Show access rights page”

option has to be selected.
Note that this CODESYS option can be overwritten by the device description.

Requirements for the access rights to be granted to user groups
● A component for the user management has to be available on the controller. That is the

primary requirement.
● Users and user groups have to be configured on the “Users and Groups” tab.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2453

Table 426: Toolbar of the tab
 Synchronization Switches on and off the synchronization between the editor and the user man-

agement on the device.
If the button is not pressed, then the editor is blank or it contains a configuration
that you loaded from the hard disk.
When the button is pressed, CODESYS synchronizes the display in the editor
continuously with the current user management on the connected device.
When you enable the synchronization while the editor contains a user configura-
tion that is not synchronized with the device yet, you are prompted what should
happen to the editor contents. Options:
● “Upload from the device and overwrite the editor content”: The configuration

on the device is loaded into the editor, overwriting the current contents.
● “Download the editor content to the device and overwrite the user

management there”: The configuration in the editor is transferred to the
device and applied there.

 Import from disk CAUTION: The import of a device user management by means of a *.dum2
file completely overwrites the existing user management on the device. In order
to log in to the device again afterwards, you need authentication data from the
new user management. This means that you have to log in as a user from the
imported user management after the import.
● When you click the button on the “Users and Groups” tab to import a “Device

user management file *.dum2”, the default dialog for selecting a file opens
to select a device user management file from the hard drive. After you
select the file, the “Enter Password” dialog opens. You have to specify the
password that was assigned when the file was exported. Then the user
management is enabled.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab to import a “Device
rights management file *.drm”, the default dialog for selecting a file opens to
select a corresponding file from the hard drive. The existing configuration in
the dialog is overwritten by the imported file.

 Export to disk ● When you click the button on the “Users and Groups” tab, first the “Enter
Password” dialog opens for assigning a password to the device user man-
agement file. Note: This password has to be repeated later when this file is
imported to enable this user management on the controller.
After the password assignment dialog is closed, the default dialog for
selecting and importing a user management configuration from the hard disk
opens. In this case, the file type is “Device user management files (*.dum2)”.
Note: Before V3.5 SP16, the “Device user management files (*.dum)” file
type was used which did not require any encryption.

● When you click the button on the “Access Rights” tab, the file type is “Device
rights management files (*.drm)”. In this case, a password does not have to
be assigned for the file before saving.

“Device user” User name of the user currently logged in on the device

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2454

Table 427: “Objects”
In the tree structure, the objects are listed to which actions can be executed at runtime. The objects are each
assigned by their object source and partially sorted in object groups. In the “Rights” view, you can configure the
access options for a user group to a selected object.

Object source (root node)
● “File system objects è Device”: In these objects, the rights can be granted to folders of the current execution

directory of the controller.
● “Runtime objects è /”: In these objects, all objects are managed that have online access in the controller and

therefore have to control the access rights.
A description of the objects is located in the table. Ä “Overview of the objects” on page 2457

Object groups and objects (indented)
Example: “Device” with child nodes “Logger”, “PlcLogic”, “Settings”, “UserManagement”.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2455

Table 428: “Rights”
In general, the access rights are inherited from the root object (also “Device” or “/” to the subobjects. This means
that if a permission of a user group is denied or explicitly granted to a parent object, then this first affects all child
objects.
The table applies for the object that is currently selected in the tree. For every user group, it shows the rights
currently configured for the possible actions on this object.

Possible actions on the object:
● “Add/Remove”
● “Modify”
● “View”
● “Execute”

When an object is clicked, a table on the right side shows the access rights of the available user groups for the
selected object.
This allows you to quickly see:
● Which access rights are evaluated by an object
● Which user group has which effective rights to which object
Meanings of the symbols

● : Access right granted explicitly
● : Access right denied explicitly
● : Access right granted through inheritance
● : Access right denied through inheritance
● : The access right was not granted or denied explicitly and also not inherited by the parent object. Access is

not possible.
● No symbol: Multiple objects are selected that have different access rights.
Change the permission by clicking the symbol.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2456

The “Logger” object on the “Access Rights” tab was created by the "Logger" component and
controls its access rights. It is located directly below the “Device” runtime object.
The possible access rights for this object can be granted only for the “View” action.

Initially, each object has a read access. This means that every user can read the "Logger"
of a controller. If this access right should be denied for a single user group (“Service” in the
example), then the read access to the logger object has to be denied explicitly.

Example

“Runtime objects è Device”

“Logger” Online access to the logger is read only. Therefore, only the “View” access right can be
granted or denied here.

“PlcLogic” All IEC applications are inserted here automatically as child objects during download. When
an application is deleted, it is removed automatically. This allows specific control of online
access to the application. Access rights can be assigned centrally over all applications in
the “PlcLogic” The “Administrator” and “Developer” user groups have full access to the IEC
applications. The “Service” and “Watch” user groups only have read access (for example for
read-only monitoring of values).

 The following table shows which action is affected in particular when a specific access right is
granted for an IEC application.
x : The right has to be set explicitly.

- : The right is not relevant.

 “Application” Operation Access Rights
 “Add/

Remove”
“Execute” “Modify” “View”

 Login - - - x
 Create x - - -
 Create child

object
x - - -

 Delete x - - -
 Download /

online change
x - - -

 Create Boot
Application

x - - -

Overview of the
objects

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2457

 Read variable - - - x
 Write Variable - - x x
 Force variable - - x x
 Set and

delete break-
point

- x x -

 Set Next
Statement

- x x -

 Read call
stack

- - - x

 Single cycle - x - -
 Switch on flow

control
- x x -

 Start / Stop - x - -
 Reset - x - -
 Restore retain

variables
- x - -

 Save retain
variables

- - - x

“PlcShell” Only the “Modify” permission is evaluated at this time. This means that only when the “Modify”
permission has been granted to a user group can PLC shell commands also be evaluated.

“RemoteConnecti
ons”

Additional external connections to the controller can be configured below this node. Currently,
access to the CODESYS OPC UA server can be configured here.

“Settings” This is the online access to the configuration settings of a controller. By default, access to
“Modify” is granted only to the administrator.

“UserManagemen
t”

This is the online access to the user management of a controller. By default, read/write
access is granted only to the administrator.

“X509” This controls the online access to the X.509 certificates. Two types of access are distin-
guished here:
● Read (“View”)
● Write (“Modify”)
Every operation is assigned to one of these two access rights. Each operation is inserted as a
child object below X509. Therefore, access per operation can now be fine-tuned even more.

“File system objects è /”

 All folders from the execution path of the controller are inserted below the "“/”" file system
object. This allows you to grant specific rights to each folder of the file system.

See also
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'” on page 2450

Tab 'Symbol Rights'
In this tab of the generic device editor, you define the access rights of different user groups
(clients) to the individual symbol sets available on the controller.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2458

Requirement: User management must be set up on the PLC. An application was downloaded to
the controller for which symbol sets were defined in the CODESYS project. They have access
data for logging in to the controller.
In the “Symbol Sets” view, all symbol sets are listed below the “Application” node whose
definition was downloaded with the application to the controller.
In the “Rights” view, the user groups defined in the user management of the controller are listed
in a table. When a symbol set is selected, you see the access rights of the corresponding user
group to the symbols of this set. : Access granted; : Access not granted. You can change
the access rights by double-clicking the symbol.

Click the button to save the current access configuration to an XML file The file type is
“Device symbol management files (*.dsm)”. Click the button to read a file like this from the
hard drive.
See also
● Ä “Creating symbol sets with different access rights for different control clients”

on page 1943
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.21.2.8.15 “Tab 'Access Rights'” on page 2453
● Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'” on page 2450

Tab 'Licensed Software Metrics'
The tab of the device editor displays the code sizes of the applications of the open project in
a tree structure. The display is refreshed when you click “Build è Generate Code” or “Online
è Login” for the active application. When the compile information is deleted, the displayed code
size of the corresponding application is reset.

“Metric” Applications of the open project

“Size” ● “Size of User Code”: Sum of the displayed code sizes of the applications
listed below

● Code size of the respective application

“ Unit” Unit in which the “Size” is displayed

“Max. Allowed” Not implemented yet

Tab 'Task deployment'
This sub-dialog box of the device editor displays a table of inputs and outputs as well as their
assignment to the defined tasks.
The information only becomes visible after code has been generated for the application. It is
used for troubleshooting, because it shows where inputs or outputs are used in several tasks
with different priorities. Multiple use can lead to undefined values through overwriting.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2459

Table 429: “I/O Deployment for Tasks” (1)
“I/O Channels” (2) All inputs and outputs of the linked devices. The display corresponds to that in

the dialog box “I/O Mapping” of the device editor.
By double-clicking on an input or output you can open the associated I/O map-
ping editor.

“<task name>” (3) A column appears for every task defined in the task configuration. The title
contains the task name and priority.
The priority of the tasks decreases from first to the last column. A red cross
appears in the box for inputs and outputs that are written or read by a task: .
In addition, the task defined as a “Bus cycle task” in the “PLC Settings” of the
device editor is marked at these points with a blue double arrow symbol .
Following a mouse-click on the title cell, only the I/Os assigned to this task are
displayed.
Following a mouse-click on the “I/O Channels” cell, all channels are shown
again.

See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444
● Ä Chapter 6.4.1.21.2.8.10 “Tab 'PLC Settings'” on page 2439
● Ä Chapter 6.4.1.9.17.2 “Creating a task configuration” on page 1914

Tab 'Status'
This tab of the generic device editor displays status information, for example 'Running' or
'Stopped', and specific diagnostic messages from the respective device, also information about
the card used and the internal bus system.
See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427

Tab 'Information'
This tab of the generic device editor displays general information that originates from the device
description file: name, vendor, categories, version, order number, description, if necessary an
illustration.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2460

See also
● Ä Chapter 6.4.1.21.2.8.2 “Generic device editor” on page 2427

Object 'DUT'
Symbol:

● for a DUT without text list support
● for an enumeration data type with text list support
A DUT (Data Unit Type) declares a user-specific data type.
You can add this kind of object below the application or in the “POUs” view. When the object is
created, the “Add DUT” dialog opens. There you select among the “Structure”, “Enumeration”,
“Alias”, or “Union” data types.
Moreover, enumerations can have a text list stored to localize the enumeration values. Then the
object also has a localization view.
TYPE <identifier> : <data type declaration with optional
initialization>
END_TYPE
How the data type declaration has to be done syntactically depends in detail on the selected
data type.

Syntax

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2461

TYPE S_POLYGONLINE :
STRUCT
 aiStart : ARRAY[1..2] OF INT := [-99, -99];
 aiPoint1 : ARRAY[1..2] OF INT;
 aiPoint2 : ARRAY[1..2] OF INT;
 aiPoint3 : ARRAY[1..2] OF INT;
 aiPoint4 : ARRAY[1..2] OF INT;
 aiEnd : ARRAY[1..2] OF INT := [99, 99];
END_STRUCT
END_TYPE

TYPE S_PENTAGON EXTENDS S_POLYGONLINE :
STRUCT
 aiPoint5 : ARRAY[1..2] OF INT;
END_STRUCT
END_TYPE
{attribute 'qualified_only'}
{attribute 'strict'}
TYPE E_TRAFFICSIGNAL :
(
 eRed,
 eYellow,
 eGreen := 10
);
END_TYPE

Enumeration with text list support in the localization view

The “Textual View” and “Localization View” buttons are located on the right edge of the
editor. Click the buttons to toggle between the views.
TYPE A_MESSAGE : STRING[50];
END_TYPE
TYPE U_DATA :
UNION
 lrA : LREAL;
 liA : LINT;
 dwA : DWORD;
END_UNION
END_TYPE

Examples
Declaration of
a structure

Extension of a
structure

Declaration of
an enumera-
tion

Declaration of
an alias
Declaration of
a union of
components
with different
data types

Function: The dialog is used to configure a new DUT (Data Unit Type).
Call: Menu bar: “Project è Add Object è DUT”; context menu of the application object.

Dialog 'Add
DUT'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2462

“Name” Name of the new DUT data type
Example: S_POLYGONLINE

Table 430: “Type”
“Structure” Creates an object which declares a structure that combines multiple variables

with different data types into a logical unit. The variables declared within the
structure are called members.
Example: S_POLYGONLINE

“Extends” : Extends an existing structure by more members. In the input field, specify
an existing structure. The members of the existing structure are automatically
available in the new structure.
Example: S_PENTAGON

“Enumeration” Creates an object which declares an enumeration that combines multiple integer
constants into a logical unit. The constants declared within an enumeration are
also called enumeration values.
Example: E_TRAFFICSIGNAL

“Add Text List Support” : Enumeration that does not have any text list support

: Enumeration with additionally stored text list for the enumeration values. The
text list allows you to localize the names of the enumeration values.
Example: ETL_TRAFFICSIGNAL
Note: In the case of an existing enumeration type, text list support can be added
or removed at any time. As a result, the “Add Text List Support” and “Remove
Text List Support” commands are provided in the context menu of the object.
Hint: The localized texts can be displayed, for example, in a visualization. In
this case, the text output of a visualization element displays the symbolic enu-
meration values in the current language instead of the numeric enumeration
values. When an enumeration with text list support is specified in the “Text
variable” property of a visualization element, it gets the additional property < <
enumeration name> >.

Example: In a visualization, you use the variable PLC_PRG.eTrafficLight of
type ETL_TRAFFICSIGNAL. ETL_TRAFFICSIGNAL is an enumeration with text
list support. Then the entry in the properties editor of the visualization element
looks like this: PLC_PRG.eTrafficLight <ETL_TRAFFICSIGNAL>.

Hint: When you edit the enumeration type in the application, a prompt opens
when you close the application and asks whether the affected visualizations
should be updated automatically.
See also: Help for "Enumerations" with information about the declaration syntax

“Alias” Creates an object which declares an alias with which an alternative name is
declared for a base type, data type, or function block

“Union” Creates an object which declares a union that combines multiple members with
mostly different data types into a logical unit.
All members have the same offset so that they are occupy the same memory.
The memory requirement of a union is determined by the memory requirement of
its "largest" component.

“Add” Closes the dialog and creates the new object

The object is displayed with the symbol in the device tree or in the “POUs”
view. When a text list is also stored for the object, the symbol is displayed.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2463

See also
● Ä Chapter 6.4.1.20.5.19 “Alias” on page 2267
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263
● Ä Chapter 6.4.1.20.5.17 “Structure” on page 2261
● Ä Chapter 6.4.1.20.5.20 “Data type 'UNION'” on page 2268
● Ä Chapter 6.4.1.21.3.21.12 “Command 'Add Text List Support'” on page 2732
● Ä Chapter 6.4.1.21.3.21.13 “Command 'Remove Text List Support'” on page 2732
● Help for CODESYS Visualization: Using Texts

Object 'External File'
An “External File” is any file that you add to the project in the “POUs” view or “Devices” view.
Click “Project è Add Object” to open the “Add External File” dialog and define how the file
belongs to the project.
An external file which was inserted in the “POUs” view is never downloaded to the controller.
An external file which was added in the “Devices” view is always downloaded to the controller
when an online change or a download is performed due to an IEC code change.
When an external file is downloaded to the controller, it is not updated in the project.

“File path” The button opens a dialog for selecting a file in the local file system.

“Name” Object name for the file in CODESYS. If you do not type anything, the file will
have its previous name.

Table 431: “File Handling”
“Remember the link” The file is available in the project only as long as it exists in the defined file path.

“Remember the link and
embed into project”

CODESYS saves an internal copy of the file in the project, as well as the link to
the defined file path. The update option selected below applies as long as the
external file exists there. Otherwise CODESYS uses the version saved in the
project.

“Embed into project” CODESYS saves only one copy of the file in the project. There is no longer a link
to the external file.

Table 432: “Change Tracking”
“Reload the file automatically” If the external file changes, then CODESYS updates the file in the project.

“Prompt whether to reload the
file”

If the external file changes, then a dialog prompt opens whether CODESYS
should also update the file in the project.

“ Do nothing” The file remains unchanged in the project, even if the external file changes.

“Display File Properties” Clicking this button opens the default “Properties of <file name>” dialog, which
you can also open in the Windows file system by right-clicking the file.

“Open” The file object is inserted into the device tree (“Devices” or “POUs” view) and
opened in the editor for the matching file format.

Dialog 'Add
External File'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2464

ms-its:core_visualization.chm::/_visu_use_texts.htm

See also
● Ä Chapter 6.4.1.21.3.5.1 “Command ‘Add Object’” on page 2598
● Ä Chapter 6.4.1.21.4.11.8 “Dialog 'Properties' - 'External file'” on page 2757

Object 'GlobalTextList'
Symbol:
This object is for the management and translation of texts that are written as static text in visual-
izations in the project. It contains a table with these texts. If you write a text in a visualization
in an element under the property “Texts”, CODESYS automatically adds a line in the table. You
cannot write any new text here, you can only edit an existing text.
In addition CODESYS makes the following commands available, in order to consolidate the
“GlobalTextList”:
● “Check Visualization Text IDs”
● “Update Visualization Text IDs”
● “Remove Unused Text List Entries”

The object is located in the POUs view and exists once at the most

“ID” Unambiguous identifier of the text

“Default” Source text as a character string with one formatting specification at the most,
for example Information A: %i possibilities. If no translation is written
under a language column , CODESYS uses this text.
Double-click in the field in order to edit the text.

The table contains as many language columns as you have added. A language column is named with a language
code that you entered when creating the column with the command “Insert Language”.

“<Language code>” Name of the language as a language code, for example en-US. This column
contains the translation of the text that is written under “Standard”.
If the language code is selected as a language in the visualization manager,
a visualization displays the translation during operation. A running visualization
can switch over during operation to another language at the request of a user.
Double-click in the field in order to edit the text.

See also
● Ä Chapter 6.4.1.21.3.21.1 “Command 'Add Language'” on page 2728
● Ä Chapter 6.4.1.21.3.21.2 “Command 'Create Global Text List'” on page 2728
● Ä Chapter 6.4.1.21.3.21.6 “Command 'Import/Export Text Lists'” on page 2729
● Ä Chapter 6.4.1.21.3.21.7 “Command 'Remove Language'” on page 2730
● Ä Chapter 6.4.1.21.3.21.9 “Command 'Remove Unused Text List Entries'” on page 2731
● Ä Chapter 6.4.1.21.3.21.10 “Command 'Check Visualization Text IDs'” on page 2731
● Ä Chapter 6.4.1.21.3.21.11 “Command 'Update Visualization Text IDs'” on page 2731
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891

Object 'GVL' - Global Variable List
Symbol:
A global variable list is used for the declaration, editing and display of global variables.
A GVL is added to the application or the project with the command “Project è Add Object
è Global Variable List”.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2465

If you insert a GVL under an application in the Device tree, the variables are valid within this
application. If you add a GVL in the POUs view, the variables are valid for the entire project.

You can apply settings for the editor of the object in the dialog “Tools è Options” in the
categories “Declaration Editor” and “Text Editor”.
If the target system supports network functionality, you can convert the variables of a GVL into
network variables and thus use them for data exchange with other devices in the network. To do
this you must define corresponding properties for the GVL in the “Network Variables” tab of the
“Properties” dialog.
See also
● Ä Chapter 6.4.1.9 “Programming of Applications” on page 1844
● Ä Chapter 6.4.1.21.4.11.12 “Dialog 'Properties' - 'Network Variables'” on page 2760
● Ä Chapter 6.4.1.21.4.14 “Dialog 'Options'” on page 2781

Object 'GVL' - Global Variable List (task-local)
Symbol:
A global variable list (task-local) is used for the declaration, editing and display of global varia-
bles. For this special global variable list, the declared variables in the list can be written by one
task only. All other tasks have only read-only access. This makes sure that the values of these
variables are always consistent, even for multicore projects.
The object is available for compiler version 3.5.13.0 with the corresponding device description.

“Task with write access” Task that has exclusive write access to the variables.

See also
● Ä Chapter 6.4.1.9.4.6 “Using Task-Local Variables” on page 1855
● Ä Chapter 6.4.1.9.4.5 “Declaring global variables” on page 1854
● Ä Chapter 6.4.1.21.2.12 “Object 'GVL' - Global Variable List” on page 2465
● Ä Chapter 6.4.1.21.2.29.6 “Tab 'Task Groups'” on page 2537

Object: IEC Symbol Publishing

The“ IEC Symbol Publishing” object contains an editor for configuring variables and IEC data
types from the project for publishing via an OPC UA Server. A group of symbols can be
compiled and configured for each created object.
The editor is a newer alternative to the already known editor for the Symbol Configuration.
Use the Add Object dialog to attach one or more IEC Symbol Publishing objects below an OPC
UA Server object below the Communication Manager. You can change the object name, for
example to webvisu, if the symbols are to be used for exchange with a web visualization.

Function: Configuration of a symbol set for exchange via OPC UA
Call: Double click or [Edit Object] command on the desired “<name of IEC symbol publishing>”
object in the device tree.
The editor consists of two tabs: On the“ IEC Symbol Editor” tab, you configure the symbol set
to be published from individual variables from the project. On the “Symbol Type Editor” tab, you
work with whole data types, such as GVL and FB.

Editor: IEC
Symbol Pub-
lishing

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2466

Note that the editor works with variables and types from the precompile state of the project. If
changes are made to variables or types in the project, then it can create inconsistencies with the
current configuration in the symbol publishing editor. They are indicated at the relevant places in
the editor by icons of the error, warning, or information. A tooltip on the icon provides
more information about the inconsistency and a possible fix. The tooltip contains at least the
message text, which also appears in the message window in the “IEC Symbol Publishing”
category.

 “Refresh” Refreshes the display in the editor according to the current
situation in the project

“Use access rights defined in
the user management”

: The access rights to the symbol set are taken from the
current settings in the user management of the controller.

On this tab of the editor, you configure individual variables from the application as symbols to be
published. You do this by dragging the desired variables from the “Precompile Sets” from the left
part of the tab to the right part, where the symbols can then be configured.

“Precompile Sets” The tree structure shows all variables which are already avail-
able for publication in the project before compilation. To do
this, the project scans the following:
● “<device>.<application>”: Project POUs below the device

application
● “Libraries”: Integrated libraries
● “Pool”: Project POUs in the “POUs” view

A list of excluded types can be found in the tooltip after the
Warum erscheint meine Variable nicht icon.

D Sync This button is operable as long as there are inconsistencies
between the current symbol configuration and the project.
In this case you will see icons of the type , , or infor-
mation. After correcting the inconsistencies, synchronize the
editor with the project again.

The display of information about the configured symbols can
be filtered. In the list after , you select which table columns
are to be displayed. When you enter a string in the search
field, the search hits are highlighted in yellow in the table.

Table of configured symbols Information about the individual symbols, depending on the
set filter:
● Symbol: Variable name (example: iVar)
● Path: Variable path (example: PLC_PRG.iVar,

PLC_PRG.fb1_inst)
● IEC type: IEC data type of the variable (example: INT,

FB1)
● Symbol Type (Exported Type Name): Name of the

symbol under which it will appear after export. In the case
of structured types, the instance can be selected here.

● Access Rights: Permissions to the symbol. Example:
Read/Write

● Comment: Comment stored in the application code

Editor: IEC
Symbol Pub-
lishing, Tab: IEC
Symbol Editor

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2467

On this tab of the editor, you configure entire "symbol types" for publishing. To do this, you
drag the desired “IEC Data Types” from the left part of the window to the right side into the
configuration table. Then there you can configure for each symbol type in detail which of its
components should be exported with which access rights and with which name.

You can also filter the display in this table via and search for strings.

Symbol Type (Exported Type
Name)

The name of the symbol type dragged from IEC data types
can be edited. It is used after export as defined here.

Members The button opens the Data type members of <symbol
type> dialog (see above).

IEC Type IEC data type as defined in the project (example: Color)

Dialog: Data type members of <symbol type>.

Call: button on the“ IEC Symbol Type Editor” tab in the “Members”

In this dialog, you select which members of the symbol type in question should be exported as
symbols. You can define a name for each member under which it will be exported, including the
access rights.

Export : The member is exported as a symbol.

Exported Name Default: Member name (IEC Name) from the project; can be
edited

IEC Name Member name from the project

IEC Type IEC data type of the member (example: INT)

Symbol Type (Exported Type
Name)

Name of the data type to which the member belongs
(example: Color)

Access Rights Access right to the symbol (Read, Write, Read/Write)

Above the table, there are filter and search options, just like on the editor tabs described above.

Object 'Image Pool'
The “Image Pool” object contains a table with image ID assignments.

“ID” ID of the image; you reference this ID, for example in the visualization of the
image.

“File name” File path of the image; if you click for more settings (), the “Select Image”
dialog box opens.

“Image” Show a thumbnail of the image.

“Link type” Opens the “Select Image” dialog box, where you define the link type.

Editor: IEC
Symbol Pub-
lishing, Tab:
Symbol Type
Editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2468

“Image file” Name and directory of the image file (example: "C:\Pro-
gramme\images\logo.bmp") CODESYS supports the following image formats:
BMP, EMF, GIF, ICO, JPG, PNG, SVG, and TIFF. Please note that a controller
may not support all formats.
Whether or not you can use images formatted as scalable vector graphics (*.svg)
depends on the operating system. Any necessary information is located in the
device description of the hardware vendor.

Table 433: “File Handling”
“Remember the link” CODESYS saves only the link. CODESYS automatically updates any changes to

an image file in the image pool. You must ensure that the path of the image file
does not change.
When saving the project as an archive, CODESYS embeds the image file in the
project archive.

“Remember the link and
embed into project”

CODESYS copies the image to the image pool and the link information is
retained. In this way, CODESYS recognizes any changes to the image file and
then update the image pool can as needed. This behavior is controlled with the
options in the next table.
Embedded image files increase the memory requirement of the project.

“Embed into project” CODESYS copies the image to the image pool. If the image file is changed
again afterwards, then it is not updated in the project. For libraries, you must
embed the image in the project.
Embedded image files increase the memory requirement of the project.

Table 434: “Change Tracking”
These options are available only if you have selected the “Remember the link and embed into project” check box
as described above.

“Reload the file automatically” CODESYS automatically updates the image file in the project without prompting.

“Prompt whether to reload the
file”

If the image file has changed, you may be prompted whether or not the image
file should be updated.

“Do nothing” CODESYS does not update the image file in the image pool.

See also
● Ä Chapter 6.4.1.9.11 “Using image pools” on page 1899

Object 'Library Manager'
Symbol:
The Library Manager lists all libraries that were integrated in the project for creating applica-
tions. It provides information about the type of library, its properties, and its contents.
You can expand or collapse the list of integrated libraries, as well as edit library properties for
non-dependent libraries.
The Library Manager consists of three views:
● Upper view: List of integrated libraries
● Lower left view: Tree structure with all modules of the library selected in the upper view
● Lower right view: Documentation for the module selected in the tree

Dialog box 'Se-
lect Image'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2469

See also
● Ä Chapter 6.4.1.17 “Using Libraries” on page 2034

List of all libraries integrated in the project. If a library depends on other libraries, then these
referenced libraries are automatically integrated.

Displayed in gray fonts The library was added to the project automatically by means of a plug-in.

Displayed in black fonts The library was added to the project automatically by means of the “Add Library”
command.

“Name” Display of the integrated library in the following syntax:
“<placeholder name> = <library name>, <version> (<company>)”:
“<placeholder name>”: If it is a placeholder library for a library, then the place-
holder name is before a “ = ”.
“<library name>”: Name of the library that is used for management in the library
repository.
“<version>”: Version that was referenced at the first time it was integrated.
“ (<company>)”: Vendor (optional)

“Namespace” Namespace for unique access to the contents of the library.
It is prepended to a module identifier for this purpose:
<namespace>.<library module identifier>
The namespace usually coincides with the library name.
Note: If the library has the property LanguageModelAttribute
"qualified-access-only", then you must access the library module in
the application code by means of the namespace. Qualified (unique) access
is enforced.
You can modify the standard namespace for local use (within the project) in the
“Properties” dialog.

“ Effective version” Version of the library after the resolution. This version is used in the project.
Requirement: The Library Manager exists in the “Devices” view and a place-
holder library is selected.
Example: 3.5.10.0
A placeholder library that is integrated below an application is resolved by
assigning a special resolution to the placeholder library in the “Placeholders”
dialog. Then the selected library is loaded. Other resolutions are ignored. If no
special resolution is given, then a check is performed as to whether or not a res-
olution is specified in the device description and library profile of the application.
The first search hit is applied.

Symbol with tooltip to notify about the current device-dependent resolution of the
selected library.
Example when the Library Manager is in the “Devices” view: “This placeholder is
explicitly redirected to this version (see the Placeholders dialog)”

Example when the Library Manager is in the “POUs” view: “In the 'Device_1'
device, the placeholder is resolved to 'VisuElemsAlarms, 1.0.0.0 (System)”

A placeholder library that is integrated in the “POUs” view is resolved by
checking depending on the application whether or not a resolution is specified
in the device description. Afterwards, the library profile is checked. The first
detected resolution is used. If you have assigned a special resolution to the
placeholder library in the “Placeholders” dialog, then this will always be ignored.
The result is shown in the tooltip of the symbol.

List of inte-
grated libraries

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2470

Library that is signed with a trusted certificate (compatible with CODESYS >= V3
SP15)

Library that is signed with a trusted certificate, but references at least one
unsigned library

Library that is signed with a private key and token (compatible with CODESYS <
V3 SP15)

Library that is not signed, or signed with an untrusted or expired certificate. In
the case of an untrusted certificate, the “Trust Certificate” command is provided
in the context menu.

Library that is defined as optional and not currently available

Library whose status is being determined

Licensed library for which no valid license is currently available

Library symbol for a library that cannot be loaded because its signature (encryp-
tion) could not be verified

Table 435: Commands in the Library Manager
 “Add Library” Opens the dialog for selecting a library. All libraries installed in the library reposi-

tory are offered.

 “Delete Library” Removes the presently selected library from the project

 “Properties” Opens the dialog for the display and editing of the properties of the presently
selected library

 “Details” Opens a dialog with details for the presently selected library (general informa-
tion, contents, properties, license information)

 “Try to Reload Library” If you select a library marked as not found, you can attempt to load it into the
project again using this command.

 “Download Missing
Libraries”

CODESYS scans for the missing libraries in the download servers specified in
the project options.
After that you can download and install the library.

 “Placeholders” The “Placeholders” dialog opens. The current resolution is displayed there and
you can edit it.

 “Library Repository” Opens the “Library Repository” dialog for installing and uninstalling libraries and
for defining library locations

 “Icon legend” Opens the “Information” dialog with a legend of the icons that display the current
status of a library in the list of integrated libraries (see above)

 “Summary” Opens the “Library Summary” dialog. All libraries referenced in the project are
displayed in a tree structure in the dialog, and those libraries which reference
these libraries.
● Command “Display all occurrences in library hierarchy and close dialog”: In

the editor of the Library Manager, the libraries in the open tree structure
are marked which reference or use this library. Requirement: A library is
selected. The “Information” dialog is then closed.
This command is also executed when you double-click a library.

Display of the libraries
● “Managed Library”: Name and version of the library
● “Number of Occurrences”: Number of locations where this library is refer-

enced by other libraries.
When you click “+” for a library, the libraries, which reference this library, are
displayed in the next level down.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2471

 “Trust Certificate” Only in the context menu of a library selected in the Library Manager, in which
the library has been signed with an untrusted certificate. The command turns the
untrusted certificate into a trusted certificate and the prepended icon changes
from to .

“Export Library” Only in the context menu of a library selected in the Library Manager: Opens the
default dialog for saving the library file in the file system

See also
● Ä Chapter 6.4.1.21.3.15.1 “Command 'Add Library'” on page 2712
● Ä Chapter 6.4.1.21.3.15.5 “Command 'Export Library'” on page 2716
● Ä Chapter 6.4.1.21.3.15.3 “Command 'Properties'” on page 2714
● Ä Chapter 6.4.1.21.3.9.5 “Command 'Library Repository'” on page 2657
● Ä Chapter 6.4.1.21.3.15.4 “Command 'Placeholders'” on page 2716
● Ä Chapter 6.4.1.21.4.14.16 “Dialog 'Options' – 'Library Download'” on page 2790
● Ä Chapter 6.4.1.21.2.24 “Object 'Project Information'” on page 2515

All library modules that were integrated with the library are listed in the tree structure.
Requirement: A library is selected in the upper view.

The usual sorting and search functions are available in the menu bar.

Tab “Inputs/Outputs” Interface (inputs/outputs) of the library module

Tab “Graphical” Graphical display of the module

Tab “Documentation” Documentation for the library module.
Note: As a library developer, you have to follow the rules for documentation
inclusion in 'Guidelines for library development'.

Tab “Parameter List” Requirement: The library project contains a parameter list.
You can change the values of these parameters in the column “Value (editable)”.

See also
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

Object 'OPC UA Information Model'
Symbol:
The “OPC UA Information Model” object is added to the “Communication Manager” in the
application. When added, an OPC UA publishing object and below that an information model
object as a child object are also added.
In the “Add OPC UA Information Model” dialog, specify a name for the information model and
select the OPC UA information model. The selection includes the OPC UA information models
which are installed in the “OPC UA Information Model Repository”.

Tree structure of
all modules of a
selected library

Documentation
for the library
module selected
in the lower left
view

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2472

Symbol:
The editor is used to select the object types and data types of the OPC UA information model
which you want to use in the open CODESYS project. The selected OPC UA types are con-
verted to IEC types in the editor.

“Browse Information Model ” List box
The currently used information model and the information models which are
referenced by the current model are displayed. The dependencies depend on
the respective information model. The OPC UA base model is always displayed.

“Generate IEC declarations ” Generates an IEC declaration for all OPC UA types converted into an IEC type.
The generated IEC types are saved in a folder (example: “OPC Objects”) in the
“Devices” view and can be used in the implementation of the IEC code. When
implementing the CODESYS project, you can select them in the “Input Assistant”
dialog.
When the IEC declarations are generated, the appropriate attrib-
utes are automatically added to the generated POUs (example:
'opcua.mapping.type','opcua.mapping.member.accesslevel').

Note: The attributes added by the system should not be changed by the user.

When the IEC type cannot be created, the entry UNKNOWN_TYPE is displayed
in the declaration instead of the data type. The user should delete this variable
because in this case it is almost always an OPC UA feature which is not sup-
ported yet. OPC UA features which are not supported yet are grayed out in the
left area.

“Data Model”

Left area: OPC UA data model

“Types” Display of the OPC UA data types and object types in a tree structure
When you drag an OPC UA type to the right area, CODESYS converts the OPC
UA type into the corresponding IEC type which can be used in the implementa-
tion of the CODESYS project. In this case, only the root node of an OPC UA type
can be dragged to the right area.
For a detailed description of the assignment of individual OPC UA types to the
corresponding IEC types in the mapping operation, see the chapters "Mapping of
OPC UA Types to IEC Types" and "Mapping of Reference Types".

“Element Type” OPC UA element type

“Reference Type” OPC UA reference types
Example: HasComponent, HasProperty
For a description of these reference types, see the chapter "Mapping of OPC UA
Types to IEC Types".

“Modelling Rule” ● “Mandatory”: For the corresponding OPC UA type, the respective members
are generated in the project when the “Generate IEC declarations” command
is executed. In the right area, the “Generate member” field is activated and
cannot be deactivated.

● “Optional”: Generating an IEC member for this OPC UA type is optional.
● “Optional placeholder”: in the right, you can drag another IEC type for this

placeholder. For an example as a screenshot, see the chapter "Using OPC
UA Companion Information Models".

Right area: Object types and data types of the OPC UA information model which are mapped to IEC types

OPC UA infor-
mation model
editor

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2473

“Name” Name of the IEC POU or data type in the project
By default, the name of the type is displayed in the OPC UA information
model. OPC UA also supports names which are invalid in IEC. In these cases,
CODESYS automatically generates a valid IEC name.
You can change the name.

“IEC Type” IEC type to which the OPC UA type was mapped (example: BOOL, “Method”).

“OPC UA Type” Corresponds to the “Element Type” displayed in the left area

“Generate member” ● : When the “Generate IEC declarations” command is executed, a corre-
sponding member or a placeholder is generated in the project. Only the
interfaces are automatically generated here. The implementation still has to
be manually created later in a POU.
When the “Modelling Rule” is “Mandatory” for the OPC UA type in the right
area, this option cannot be deactivated.

● : When the “Generate IEC declarations” command is executed, a corre-
sponding member is not generated in the project. Click this option to activate
it.

Symbol:
In the editor, the instances (OPC UA objects) of the OPC UA types are configured which should
be available to the OPC UA Clients via the controller

“Search for Mapped Instances” Searches in GVLs and PRGs below the current application for instances of the
mapped OPC UA types which have already been declared. The search result is
displayed in the list.
Note: Instances in the “POUs” view and in libraries are not taken into considera-
tion.

“Create New Instance” Opens the “Create New Instance” dialog to select the IEC type for which a new
instance should be generated.
Instances can be generated for the POUs which have been created in the OPC
UA information model editor from OPC UA types. These instances can be used
in POUs in the application.
Requirement: In the OPC UA information model editor, the “Generate IEC
declarations” command has been executed after mapping the OPC UA types
to the IEC types.

“Root Node” Selection of directories or the object instance of the server which is displayed
on the OPC UA Client for publishing the instances. The list box depends on the
applied OPC UA companion specification.

Tabular list of generated instances:

“OPC UA Variable” Variable which has been generated as an instance of an OPC UA type. This
variable can be published in an OPC UA Client.
You can edit the displayed name.

“OPC UA Type” OPC UA type of the “OPC UA Variable”

“Map or Generate” ● : The “OPC UA Variable” has been mapped to an existing variable.
● : The “OPC UA Variable” has been generated as a new instance.

“IEC Variable” Full variable name

“IEC Type” IEC type of the IEC variable

OPC UA pub-
lishing editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2474

“Access Rights” Note that an OPC UA Client may have read/write access the OPC UA variable.
In the function blocks, the access rights to the variables can be changed by
attributes which can also be read from the XML file if necessary.
Reading and writing

“Maximal” Maximum possible permissions for the OPC UA variable

● Ä Chapter 6.4.1.21.3.9.12 “Command 'OPC UA Information Model Repository'”
on page 2665

Object 'Network Variable List (Sender)'
Symbol:
A network variable list (sender) is used for declaring and listing global variables that should be
sent to network variable lists (receiver) of other devices or network projects.
You add the object to the device tree by clicking “Add Object è Network Variable List (Sender)”
of an application.
You can configure the protocol and transfer parameters in the “Add Network Variable List
(Sender)” dialog box or “Properties” dialog box of the object in the “Network Variables” tab.

Function: This dialog box defines the network properties for the sender NVL. When you close
the dialog box, CODESYS adds the sender NVL of the application to the device tree.
Call: Main menu “Project è Add Object è Network Variable List (Sender)” while the application
is selected in the device tree.
This dialog box corresponds to the “Network Variables” tab in the “Properties” of the network
variable list object.
See also
● Ä Chapter 6.4.1.21.4.11.12 “Dialog 'Properties' - 'Network Variables'” on page 2760
● Ä Chapter 6.4.1.21.2.19 “Object 'Network Variable List (Receiver)'” on page 2475
●

Object 'Network Variable List (Receiver)'
Symbol:
The object is used for listing the received network variables and displaying the information:
network and transmit information and sender.
You add the object to an application by clicking “Add Object
è Network Variable List (Receiver)”.
The network variable list (receiver) shows the received network variables, which were declared
in network variable list (sender) of another device or project. You cannot change the network
variables in the object editor.
The object editor consists of two parts:
● Information about the sender and transfer log of the list
● List of declarations of network variables

Function: This dialog box defines the receiver NVL to a sender NVL and adds the receiver NVL
to the application object in the device tree.
Call: Main menu “Project è Add Object è Network Variable List (Receiver)” (when the applica-
tion object is selected).

See also

Dialog Box 'Add
Network Vari-
able List
(Sender)'

Dialog Box 'Add
Network Vari-
able List
(Receiver)'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2475

“Task” Task of the current application that controls the variables to be
received.

“Sender” Drop-down list
● Available sender NVLs of another device in the project
● “Import from file”: Required if the necessary sender NVL is

defined in another project. For this, the necessary sender NVL
must have been generated in another project as “GVL export file
*.gvl” in the properties dialog of the NVL in the “Link To File” tab.

“Import from file” File name in “GVL export file *.gvl” format if you have selected
“Import from file” for “Sender ”.

See also
●
● Ä Chapter 6.4.1.21.2.18 “Object 'Network Variable List (Sender)'” on page 2475

Object 'Persistent variable list'
Symbol:
The object contains the declaration of global persistent variables in the declaration section
VAR_GLOBAL PERSISTENT RETAIN .. END_VAR. The variables are stored in special non-
volatile memory.
The persistence editor shows the variables as a list in the usual way. The displayed list does
not influence the persistence behavior of the variables, but only the list stored internally in
the process image. The list there contains all variables ever declared in chronological order.
Variables that you have removed are marked with a placeholder and continue to exist as a gap.
The declaration section can also contain instance paths, which refer to locally declared persis-
tent variables and were created with the command “Declarations è Add All Instance Paths”.

NOTICE!
Before you decide how to set up persistence for an application, it would
be helpful for you to be familiar with the use cases described in the “Data
Persistence” section. Moreover, it is helpful if you can differentiate between
the mechanisms of persistent variables, retain variables, variables of the Persis-
tence Manager, and recipe variables.

The following commands are provided in the persistence editor:
● Command “Declarations è Add All Instance Paths”
● Command “Declarations è Reorder List and Clear Gaps”

See also
● TODO
● Ä Chapter 6.4.1.21.3.18.1 “Command 'Reorder List and Clean Gaps'” on page 2719
● Ä Chapter 6.4.1.9.19.2 “Preserving data with persistent variables” on page 1923
● Ä Chapter 6.4.1.9.19.3 “Preserving data with retain variables” on page 1925
● Ä Chapter 6.4.1.21.3.18.4 “Command 'Add all instance paths'” on page 2720

Commands

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2476

Object 'POU'
General

Symbol:
An object of the type “POU” is a Program Organization Unit in a CODESYS project. You write
source code for your controller program in POUs.
There are the following types of POUs:
● Program
● Function
● Function block
A “POU” object is inserted by using the command “Project è Add Object” in the Device tree
or in the “POUs” view. When adding a POU you define the POU type and the implementation
language.
You can also add other programming objects (method, action, etc.) to these objects.
Calling POUs
Certain POUs can call other POUs. Recursions are not permitted.
When calling POUs via the namespace, CODESYS browses the project for the POU to be
called in accordance with the following order:
1. Current application
2. “Library Manager” of the current application
3. “POUs” view
4. “Library Manager” in the “POUs” view

If you want to call a POU that exists with the same name in a library used in the
application and as an object in the “POUs” view, note the following: There is no
syntax that allows you to call the POU in the “POUs” view only by its name. In
this case you must shift the library from the application's library manager to the
project's library manager (in the “POUs” view). After that you can call the POU
object in the “POUs” view purely by its name. If you add the namespace to the
library, you can call the POU of the library.

The term “POU” is also used in CODESYS for the “POUs” view in which
CODESYS manages the global objects in the project.

See also
● Ä Chapter 6.4.1.21.2.21 “Object 'POU'” on page 2477
● Ä Chapter 6.4.1.21.4.11 “Dialog 'Properties'” on page 2753

Function: The dialog is used to configure a new POU according to the IEC 61131-3 standard.
This means that a POU can be a program, a function, or a function block.
Call: “Project è Add Object” menu; context menu in the “Devices” view when an application is
selected; context menu in the “POUs” view

“Name” Name of POU

Dialog 'Add
POU'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2477

Table 436: “Type”
“Program”

“Function Block” ● “Extends”: Specification or selection of a base function module in the
sense of object-oriented programming. Specified with the EXTENDS key-
word in the function block declaration

● “Implements”: Specification or selection of an interface in the sense of
object-oriented programming. Specified with the IMPLEMENTS keyword in
the function block declaration. When the POU is created, all methods are
created which are defined via the interface.

● “Final”: Derived access is not allowed. This means that you cannot extend
the function block with another function block. This allows for optimized code
generation.

● “Abstract”: Identifies that the function block has a missing or incomplete
implementation and cannot be instantiated. Abstract FBs are used exclu-
sively as base function blocks and the implementation typically occurs in
a derived FB. If a non-abstract function block is created, which in turn
extends an abstract function block, then all abstract methods of the abstract
basic function block are added to the new function block as (non-abstract)
methods.

● “Access specifier”
– “PUBLIC”: Corresponds to the specification of no access specifier.
– “INTERNAL”: Access to the function block is restricted to the namespace

(library).
● “Method implementation language”: When you select the “Implements”

option, you can select an implementation language here for all method
objects that CODESYS generates by means of the implementation of the
interface.
The “Method implementation language” does not depend on the implementa-
tion language of the function block.

“Function” Note: Not available when “Sequential Function Chart (SFC)” is selected as the
“Implementation language”.
“Return type:”: Data type of the return value

“Implementation language” Implementation language of the POU

See also
● Ä Chapter 6.4.1.21.2.21.3 “Object 'Function Block'” on page 2479
● Ä Chapter 6.4.1.21.2.21.2 “Object 'Program'” on page 2478
● Ä Chapter 6.4.1.21.2.21.4 “Object 'Function'” on page 2482
● Ä Chapter 6.4.1.9.22.2 “Extension of function blocks” on page 1929
● Ä Chapter 6.4.1.9.22.3 “Implementing interfaces” on page 1931

Object 'Program'
A program is a POU that supplies one or more values during execution. After execution of the
program, all values are retained until the next execution. The order of calling the programs
within an application is defined in task objects.
A program is added to the application or the project using the command “Project è Add Object
è POU”. In the Device tree and in the “POUs” view the program POUs have the suffix “(PRG)”.
The editor of a program consists of the declaration part and the implementation part.
The uppermost line of the declaration part contains the following declaration:
PROGRAM <program>

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2478

Programs and function blocks can call a program. A program call is not permitted in a function.
There are no instances of programs.
If a POU calls a program and values of the program change as a result, these changes are
retained until the next program call. The values of the program are also retained even if the
repeat call takes place by another POU. This differs from the call of a function block. When
calling a function block only the values of the respective instance of the function block change.
The changes only need to be observed if a POU calls the same instance again.
You can also set the input or output parameters for a program directly when calling.
Syntax: <program>(<input variable> := <value>, <output value> =>
<value>):
If you insert a program call via the input assistant and the “Insert with arguments” option in the
input assistant is activated at the same time, CODESYS adds input and/or output parameters to
the program call in accordance with the syntax.

Calls:
IL:

With assignment of the parameters:

ST:
 PLC_PRG()
 erg := PLC_PRG.out2;

With assignment of the parameters:
PLC_PRG(in1:=2, out1=>erg);

Examples

See also
● Ä Chapter 6.4.1.21.2.21 “Object 'POU'” on page 2477
● Ä Chapter 6.4.1.9.17 “Task Configuration” on page 1914

Object 'Function Block'
A function block is a POU that yields one or more values when executed.
The object is added to the application or the project by clicking “Project è Add Object è POU”.
In the device tree or in the “POUs” view, function block POUs have the “(FB)” suffix.
It always calls a function block by means of an instance that is a copy of the function block.

Calling a pro-
gram

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2479

The editor of a function block consists of the declaration part and the implementation part.
The values of the output variables and the internal variables remain unchanged after execution
until the next execution. This means that the function block does not necessarily return the
same output values for multiple calls with the same input variables.
In addition to the functionality described in IEC 61131-3, you can also use function blocks in
CODESYS for the following functionalities of object-oriented programming:
● Extension of a function block
● Implementation of interfaces
● Methods
● Properties
The top line of the declaration part contains the following declaration:
FUNCTION_BLOCK <access specifier> <function block> | EXTENDS <function
block> | IMPLEMENTS <comma-separated list of interfaces>

The call is always made by means of an instance of the function block. When a function block is
called, only the values of the respective instance change.
Declaration of the instance:
<instance> : <function block>;
You access a variable of the function block in the implementation part as follows:
<instance> . <variable>

NOTICE!
Note the following:
– You can access only input and output variables of a function block from

outside the function block instance, not the internal variables.
– Access to a function block instance is restricted to the POU in which the

instance is declared, unless you have declared the instance globally.
– You can assign the desired values to the function block variables when you

call the instance.

Calling a func-
tion block

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2480

Access to function block variables:
The function block FB1 has the input variable iVar1 of type INT and the output variable
out1. In the following, the variable iVar1 is called from the program Prog.

PROGRAM Prog
VAR
inst1:FB1;
END_VAR

inst1.iVar1 := 33; (* FB1 is called and the value 33 is assigned
to the variable iVar1 *)

inst1(); (* FB1 is called, that's necessary for the
following access to the output variable *)

ires := inst1.out1 (* the output variable out1 of the FB1 is read
*)

In FBD:

Example

Assigning variable values when calling:
In the textual languages IL and ST, you can assign values directly to input and/or output
variables when you call the function block.
A value is assigned to an input variable with := .

A value is assigned to an output variable with => .

The instance CMD_TMR of the timer function block is called with assignments for the input
variables IN and PT. Then the output variable Q of the timer is assigned to the variable A.

PROGRAM PLC_PRG
VAR
 CMD_TMR : TOF;
END_VAR

CMD_TMR(IN := %IX5.1, PT := T#100MS);
A := CMD_TMR.Q;

Example

When you insert a function block instance by means of the “Input Assistant”
and select the “Insert with arguments” option in the “Input Assistant” dialog,
CODESYS inserts the call with all input and output variables. Then you only
have to insert the desired value assignment. In the example above, CODESYS
inserts the call as follows: CMD_TMR (IN:= ,PT:= , Q=>).

You can use the attribute 'is_connected' and a local variable to determine
at the time of the call in the function block instance whether or not a specific
input receives an external assignment.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2481

See also
● Ä Chapter 6.4.1.21.2.21 “Object 'POU'” on page 2477
● Ä Chapter 6.4.1.9.22.2 “Extension of function blocks” on page 1929
● Ä Chapter 6.4.1.9.22.3 “Implementing interfaces” on page 1931
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.20.6.3.24 “Attribute 'is_connected'” on page 2293

Object 'Function'
A function is a POU that supplies precisely one data element when executed and whose call in
textual languages can occur as an operator in expressions. The data element can also be an
array or a structure.
The object is added to the application or the project by clicking “Project è Add Object è POU”.
In the device tree or in the “POUs” view, function POUs have the “(FUN)” suffix.

NOTICE!
Functions have no internal status information, which means that functions do
not save the values of their variables until the next call. Calls of a function with
the same input variable values always supply the same output value. Therefore,
functions must not use global variables and addresses!

The editor of a function consists of the declaration part and the implementation part.
The top line of the declaration part contains the following declaration:
FUNCTION <function> : <data type>
Below that, you declare the input and function variables.
The output variable of a function is the function name.

NOTICE!
If you declare a local variable in a function as RETAIN, this has no effect. In this
case, CODESYS issues a compiler error.

NOTICE!
You cannot mix explicit and implicit parameter assignments in function calls in
CODESYS V3. This means that you have to use either only explicit or only
implicit parameter assignments in function calls. The order of the parameter
assignments when calling a function is arbitrary.

In ST, you can use the call of a function as an operand in expressions.
In SFC, you can use a function call only within step actions or transitions.

Calling a func-
tion

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2482

Function with declaration part and a line implementation code

Function calls:
ST:
result := POU_Funct(5,3,22);

AWL:

FBD:

Examples

According to the IEC 61131-3 standard, functions can have additional outputs. You declare
the additional outputs in the function between the keywords VAR_OUTPUT and END_VAR. The
function is called according to the following syntax:
<function> (<function output variable1> => <output variable 1>,
<function output variable n> => <output variable n>)

The fun function is defined with two input variables in1 and in2. The output variable of the
fun function is written to the locally declared output variables loc1 and loc2.
fun(in1 := 1, in2 := 2, out1 => loc1, out2 => loc2);

Example

Functions with
additional out-
puts

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2483

See also
● Ä Chapter 6.4.1.21.2.21 “Object 'POU'” on page 2477

Object 'Interface'
Symbol:
Keyword: INTERFACE
An interface is a means of object-oriented programming. The object ITF describes a set of
method and property prototypes. In this context, prototype means that the methods and proper-
ties contain only declarations and no implementation.
This allows different function blocks having common properties to be used in the same way. An
object “ITF” is added to the application or the project with the command “Project è Add Object
è Interface”.

Table 437: “Adding an interface”
“Inheritance”

“Name” Interface name

“Extends” : Extends the interface that you enter in the input field or via the input assistant
. This means that all methods of the interface that extend the new interface

are also available in the new interface.

You can add the objects “Interface property” and “Interface Method” to the object “ITF”. Interface
methods may contain only the declarations of input, output and input/output variables, but no
implementation.
So that you can also use an interface in the program, there must be a function block that
implements this interface.
This means:
● the function block contains the interface in its IMPLEMENTS list in its declaration part
● the function block contains an implementation for all methods and property prototypes of the

interface
A function block can implement one or more interfaces. You can use the same method with
identical parameters, but different implementation code in different function blocks.
Please note the following:
● You may not define variables within an interface. An interface has no implementation part

and no actions. Only a collection of methods is defined, in which you may define only input,
output and input/output variables.

● CODESYS always treats variables declared with the type of an interface as references.
● A function block that implements an interface must contain implementation code for the

methods of the interface. You have named the methods exactly as in the interface and the
methods contain the same input, output and input/output variables as in the interface.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2484

NOTICE!
Interface references and online change
The following can happen with a compiler version < 3.4.1.0: if a function block
changes its data because variables are added or deleted, or because the type
of variables changes, then CODESYS copies all instances of the function block
to a new memory location. In this case, however, an interface reference refers
not to the new memory location, but still to the old one.
In case of compiler versions >= 3.4.1.0, CODESYS automatically re-addresses
the interface references so that CODESYS also references the correct interface
in case of an online change. CODESYS requires additional code and more
time for this, so that jitter problems can occur depending on the number of
objects concerned. Therefore, CODESYS displays the number of variables and
interface references concerned before the execution of the online change and
you can then decide whether the online change should be executed or aborted.

Definition of an interface and its use in a function block
You have inserted the interface “ITF” below the application. The interface contains the
methods “Method1” and “Method2”. “ITF”, “Method1” and “Method2” contain no implementa-
tion code. You insert the required variable declarations only in the declaration part of the
methods.
If you subsequently insert a function block in the device tree that implements the interface
“ITF”, CODESYS automatically also inserts the methods “Method1” and “Method2” under the
function block. Here you can implement function-block-specific code in the methods.

Example

● Ä Chapter 6.4.1.9.22.3 “Implementing interfaces” on page 1931
● Ä Chapter 6.4.1.9.22.4 “Extending interfaces” on page 1933

Object 'Method'
Symbol:
Keyword: METHOD

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2485

Methods are an extension of the IEC 61131-3 standard and a tool for object-oriented program-
ming which is used for data encapsulation. A method contains a declaration and an implemen-
tation. However, unlike a function, a method is not an independent POU, and it is subordinated
to a function block or program. A method can access all valid variables of the superordinate
POU.
You can use interfaces for the organization of methods.
You can add a method below a program or a function block. Click “Project è Add Object
è Method” to open the “Add Method” dialog.

● The variables of a method contain temporary data that are valid only during the execution of
the method (stack variables). All variables that are declared and implemented in a method
are reinitialized each time the method is called.

● Like functions, methods can have additional outputs. You have to assign these additional
outputs in the method call.

● Depending on the declared access specifier, a method can be called only within its own
namespace (INTERNAL), only within its own POU and its derivatives (PROTECTED), or only
within its own POU (PRIVATE). For PUBLIC, the method can be called from anywhere.

Interface methods can have declared input, output, and VAR_IN_OUT variables, but do not
contain an implementation.
See also
● Ä Chapter 6.4.1.21.2.21.7 “Object 'Interface Method'” on page 2490

● Access to function block instances or program variables is allowed in the implementation of
the method.

● The THIS pointer allows for access to its own function block instance. Therefore, the pointer
is allowed only in methods that are assigned to a function block.

● A method cannot access VAR_TEMP variables of the function block.
● A method can call itself recursively.

NOTICE!
When you copy a method below a POU and add it below an interface, or move
the method there, the contained implementation is removed automatically.

<return value variable> := <POU name> . <method name> (<method input
name> := <variable name> (, <further method input name> := <variable
name>)*);
For the method call, you assign transfer parameters to the input variables of the method.
Respect the declaration when doing this. It is enough to specify the names of the input variables
without paying attention to their order in the declaration.

Declaration

Implementation

Calling a
method
Syntax for calls:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2486

METHOD PUBLIC DoIt : BOOL
VAR_INPUT
 iInput_1 : DWORD;
 iInput_2 : DWORD;
 sInput_3 : STRING(12);
END_VAR

bFinishedMethod := fbInstance.DoIt(sInput_3 := 'Hello World ',
iInput_2 := 16#FFFF, iInput_1 := 16);

When the method is called, the return value of the method is assigned, for example, to
variables declared locally. When you omit the names of the input variables, you have to pay
attention to the declaration order.

Example
Declaration

Call

METHOD PUBLIC DoIt : BOOL
VAR_INPUT
 iInput_1 : DWORD;
 iInput_2 : DWORD;
 sInput_3 : STRING(12);
END_VAR

bFinishedMethod := fbInstance.DoIt(16, 16#FFFF,'Hello World ');

Example
Declaration

Call

Within the implementation, a method can call itself, either directly by means of the THIS pointer,
or by means of a local variable for the assigned function block.
● THIS^. <method name> (<parameter transfer of all input and output

variables>)
Direct call of the relevant function block instance with the THIS pointer

● VAR fb_Temp : <function block name>; END_VAR
Call by means of a local variable of the method that temporarily instantiates the relevant
function block

A compiler warning is issued for a recursive call. If the method
is provided with the pragma {attribute 'estimated-stack-usage' :=
'<sstimated_stack_size_in_bytes>'}, then the compiler warning is suppressed. For
an implementation example, see the "Attribute 'estimated-stack-usage'" chapter.
To call methods recursively, it is not enough to specify only the method name. If only the method
name is specified, then a compiler error is issued: “Program name, function or function block
instance expected instead of”

See also
● Ä Chapter 6.4.1.9.22.5 “Calling methods” on page 1933
● Ä Chapter 6.4.1.20.6.3.14 “Attribute 'estimated-stack-usage'” on page 2281
● Ä Chapter 6.4.1.20.2.16 “THIS” on page 2126

Recursive
method call

Special
methods of a
function block

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2487

FB_Init Declarations automatically implicit, but explicit declaration also possible
Contains initialization code for the function block, as is defined in the declaration
part of the function block

FB_Reinit Explicit declaration is necessary.
Call after the instance of the function block was copied (as during an online
change). It reinitializes the new instance module.

FB_Exit Explicit declaration is necessary.
Call for each instance of the function block before a new download or a reset or
during an online change for all shifted or deleted instances.

Properties Provides Set and/or Get accessor methods.

See also
● Ä Chapter 6.4.1.20.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 2336
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.21.2.21.8 “Object 'Interface Property'” on page 2490

Function: Defines a method below the selected POU when the dialog is closed.
Call: Menu bar: “Project è Add Object è Method”; context menu
Requirement: A program (PRG) or a function block (FUNCTION_BLOCK) is selected in the
“POUs” view or the “Devices” view.
The interface of a method inserted below a basic function block is copied when a method with
the same name is inserted below a derived function block.

“Name” Example: meth_DoIt.

The standard methods FB_Init and FB_Exit are offered in a list box if they
are not already inserted below the POU. If it is a derived function block, then the
list box also offers all of the methods of the basic function block.

“Return type” Default data type or structured data type of return value
Example: BOOL

“Implementation language” Example: “Structured Text (ST)”

“Access specifier” Controls access to data.
● “PUBLIC” or not specified: Access is not restricted.
● “PRIVATE”: Access is restricted to the program, function block, or GVL.

The object is marked as (private) in the POU or device view. The decla-
ration contains the keyword PRIVATE.

● “PROTECTED”: Access is restricted to the program, function block, or GVL
with its derivations. The declaration contains the keyword PROTECTED.
The object is marked as (protected) in the POU or device view.

● “INTERNAL”: Access to the method is restricted to the namespace (library).
The object is marked as (internal) in the POU or device view. The
declaration contains the keyword INTERNAL.

“Abstract” : Identifies that the method does not have an implementation and the imple-
mentation is provided by the derived FB

“Add” Adds a new method below the selected object.

Dialog 'Add
Method'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2488

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.
Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Example

See also
● Ä Chapter 6.4.1.9.22 “Object-Oriented Programming” on page 1929
● Ä Chapter 6.4.1.21.2.21.10 “Object 'Action'” on page 2497
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.21.2.21.11 “Object 'Transition'” on page 2499

See also
● Ä Chapter 6.4.1.20.1.4.2 “ST editor in online mode” on page 2050
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002
● Ä Chapter 6.4.1.20.2.10 “Instance variables - VAR_INST” on page 2120

Input support
when gener-
ating inheriting
POUs

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2489

Object 'Interface Method'
Symbol:
This object is used for object-oriented programming.
The object “Interface Method” is added to an interface via the command “Project
è Add Object”.
If a method is inserted underneath an interface, you can add and instance only variable declara-
tions (input, output and input/output variables) in this method.
You can only add program code to the method if a function block 'implements' the interface to
which the method belongs. CODESYS then inserts the method underneath the function block.
See also
● Ä Chapter 6.4.1.21.2.21.5 “Object 'Interface'” on page 2484
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.9.22.3 “Implementing interfaces” on page 1931

Object 'Interface Property'
Symbol:
Interface properties are an extension of the IEC 61131-3 standard and a tool for object-oriented
programming. An interface property declares the accessor methods Get and Set (no imple-
mentation code). Therefore, a function block that implements an interface also inherits their
interface properties.
You can add an interface property to the device tree for an interface. Then an interface is
extended with the accessor methods Get and Set. The Get accessor is for read access.
The Set accessor is for write access. You can delete an unneeded accessor. Click “Project
è Add Object è Interface Property” to add an accessor. The “Add Interface Property” dialog
opens.
See also
● Ä Chapter 6.4.1.21.2.21.5 “Object 'Interface'” on page 2484
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2490

This interface itf_A has the property Literal_A with the accessor methods Get and Set.

The function blocks fb_A1 and fb_A2 implement the interface itf_A and therefore inherit its
interface property. Each FB has its own implementation.

INTERFACE itf_A
VAR
END_VAR
PROPERTY Literal_A : STRING

FUNCTION_BLOCK fb_A1 IMPLEMENTS itf_A
VAR
 str_1 : STRING;
 str_2 : STRING;
 iCnt : INT;
END_VAR
iCnt := iCnt + 1;

str_1 := 'Function block A1';

Declaration
and implemen-
tation of the
interface prop-
erty
Literal_A

Interface
itf_A

FB fb_A1

Example

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2491

VAR
END_VAR
Literal_A := CONCAT (str_1,' and property.');

VAR
END_VAR
str_2 := Literal_A;

FUNCTION_BLOCK fb_A2 IMPLEMENTS itf_A
VAR
 str_1 : STRING;
 str_2 : STRING;
 iCnt : INT;
END_VAR

iCnt := iCnt + 1;
str_1 := 'Function block A2';

VAR
END_VAR
Literal_A := str_1;

VAR
END_VAR
str_2 := Literal_A;

PROGRAM PLC_PRG
VAR
 iCnt : INT;
 my_1 : fb_A1;
 my_2 : fb_A2;
 strName_1 : STRING;
 strName_2: STRING;
END_VAR

iCnt := iCnt + 1;
my_1();
my_2();
strName_1:= my_1.Literal_A;
strName_2:= my_2.Literal_A;
my_1.Literal_A := 'Hello 1';
my_2.Literal_A := 'World 2';

This leads to the following monitoring of PLC_PRG when the application is in runtime mode:

Accessor
fb_A1.Litera
l_A.Get

Accessor
fb_A1.Litera
l_A.Set

FB fb_A2

Accessor
fb_A2.Litera
l_A.Get

Accessor
fb_A2.Litera
l_A.Set

Program
PLC_PRG

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2492

Object 'Property'
Symbol:
Keyword: PROPERTY
Properties are an extension of the IEC 61131-3 standard and a tool for object-oriented program-
ming.
Properties are used for data encapsulation because they allow for external access to data and
act as filters at the same time. For this purpose, a property provides the accessor methods Get
and Set which allows for read and write access to the data of the instance below the property.

You can add a property with accessor methods below a program, a function block, or a global
variable list. Click “Project è Add Object è Property” to open the “Add Property” dialog.

You can add an interface property below an interface.

When you copy a property that is inserted below a POU and add it below an
interface, or if you move the property there, the included implementations are
removed automatically.

See also
● Ä Chapter 6.4.1.21.2.21.8 “Object 'Interface Property'” on page 2490

Function: Creates a new property below the selected POU when the dialog is closed.
Call: Menu bar: “Project è Add Object è Property”; context menu
Requirement: A program (PRG), a function block (FUNCTION_BLOCK), or a global variable list
(GVL) is selected in the “POUs” view or the “Devices” view.

“Name” Name (identifier) of the property
Example: prop_iA

“Return type” Default type or structured type of return value
Example: INT

“Implementation language” Example: “Structured Text (ST)”

Dialog 'Add
Property'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2493

“Access specifier” Controls access to data

“PUBLIC” or unspecified Access is not restricted.

“PRIVATE” Access is restricted to the program, function block, or GVL.
The object is marked as (private) in the POU or device view. The declaration
contains the keyword PRIVATE.

“PROTECTED” Access is restricted to the program, function block, or GVL with its derivations.
The object is marked as (protected) in the POU or device view. The declara-
tion contains the keyword PROTECTED.

“INTERNAL” Access is restricted to the namespace (library).
The object is marked as (internal) in the POU or device view. The declara-
tion contains the keyword INTERNAL.

“Abstract” : Identifies that the property does not have an implementation and the imple-
mentation is provided by the derived FB

“Add” Adds a new property be low the selected object and below that the accessor
methods Get and Set
Note: When you select a property, you can also add a previously removed
accessor explicitly by clicking “Add Object”.

You can program the data access in the editor. The code can contain additional local variables.
However, it must not contain any additional input variables or (as opposed to a function or
method) output variables.

Editor 'Property'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2494

FUNCTION_BLOCK FB_A
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
END_VAR

iA := iA + 1;

PROPERTY PUBLIC prop_iA : INT

prop_iA := iA;

iA := prop_iA;

PROGRAM PLC_PRG
VAR
 fbA : FB_A;
 iVar: INT;
END_VAR

fbA();
IF fbA.prop_iA > 500 THEN
 fbA.prop_iA := 0;
END_IF
iVar := fbA.prop_iA;

Example

Function block
FB_A

Property
prop_iA
Accessor
method
FB_A.prop_iA.
Get
Accessor
method
FB_A.prop_iA.
Set

The call of the Set accessor is written to the property. Then it is used in the same way as an
input parameter. When the Get accessor is called, the property is read. It is used in the same
way as an output parameter. Access is restricted in each case by means of access modifiers
(qualifiers). As a result, the objects are identified accordingly.
When a property is accessed as read only or write only, you can delete the unneeded acces-
sors.
You can add accessors explicitly by selecting a property and clicking “Add Object”. A dialog
opens, either “Add Get accessor” or “Add Set accessor”. There you can set the implementation
language and the access.

Table 438: Dialog “Add Get (Set) Accessor”
“Implementation language” Example: “Structured Text (ST)”

Get and Set
accessors

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2495

“Access specifier” Qualifier for the declaration part

PUBLIC or unspecified Access is not restricted.

PRIVATE Access is restricted to the program, function block, or GVL.
The object is marked as (private) in the POU or device view. The declaration
contains the keyword.

PROTECTED Access to the property is restricted to the program, function block, or GVL and its
derivations. The declaration contains the keyword.
The object is marked as (protected) in the POU or device view.

INTERNAL Access to the method is restricted to the namespace (the library).
The object is marked as (internal) in the POU or device view. The declara-
tion contains the keyword.

“Add” Adds the accessor methods Get or Set below the selected property.

The following pragmas are provided for the monitoring of properties in online mode. You insert
them at the top position of the property definition:
● {attribute 'monitoring' := 'variable'}

Each time the property is accessed, CODESYS saves the actual value to a variable and
displays the value of this variable. This value can become outdated if no more access to the
property takes place in the code.

● {attribute 'monitoring' := 'call'}
Each time the value is displayed, CODESYS calls the code of the Get accessor. If this
code contains a side effect, then the monitoring executes the side effect.

You can monitor a property with the help of the following functions.
● Inline monitoring

Requirement: The “Enable inline monitoring” option is selected in the “Text Editor” category
of the “Options” dialog.

● Watch List
See also
● Ä Chapter 6.4.1.20.6.3.26 “Attribute 'monitoring'” on page 2295

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.
Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Monitoring of
properties in
online mode

Input support
when gener-
ating inheriting
POUs

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2496

Example

See also
● Ä Chapter 6.4.1.9.22 “Object-Oriented Programming” on page 1929
● Ä Chapter 6.4.1.21.2.21.10 “Object 'Action'” on page 2497
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.21.2.21.11 “Object 'Transition'” on page 2499

Object 'Action'
Symbol:
Implement more program code in an action. You can implement this program code as the base
implementation in another language. The base implementation is a function block or a program
where you inserted the action.
An action does not have its own declaration and it works with the data from the base implemen-
tation. This means that the action uses the input and output variables and the local variables
from its base implementation.
Add an “Action” to a function block or program by clicking “Project è Add Object è Action”.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2497

Table 439: “Add Action”
“Name” Name of the action

“Implementation language” List box of implementation language

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.
Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Example

See also
● Ä Chapter 6.4.1.9.22 “Object-Oriented Programming” on page 1929
● Ä Chapter 6.4.1.21.2.21.10 “Object 'Action'” on page 2497
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.21.2.21.11 “Object 'Transition'” on page 2499

Input support
when gener-
ating inheriting
POUs

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2498

Syntax:
<program>.<action> or <FB instance>.<action>
To call an action from only within the base implementation, you only have to provide the action
name.

Calling a “Reset” action from another POU The call is not executed from the base implementa-
tion.
Declaration:
PROGRAM PLC_PRG
VAR
 Inst : Counter;
END_VAR

Calling a “Reset” action from an IL POU
CAL Inst.Reset(In := FALSE)
LD Inst.Out
ST ERG

Calling a “Reset” action from an ST POU
Inst.Reset(In := FALSE);
Erg := Inst.out;

Calling a “Reset” action from an FBD POU

Examples

Actions are used frequently in the SFC implementation language.

See also
● Ä Chapter 6.4.1.20.1.5.8.2 “SFC Element 'Action'” on page 2075

Object 'Transition'
Symbol:
The object can be used as a transition element in a program block implemented in SFC.
See also
● Ä Chapter 6.4.1.20.1.5.8.1 “SFC elements 'Step' and 'Transition'” on page 2073

When you doing object-oriented programming and using the inheritance (keyword EXTENDS) of
POUs, you can get support as follows:
When you insert an action, a property, a method, or a transition below a POU derived from
a base POU, the “Add …” dialog opens. Then the input field for the name extends to a list
box. The list box contains a valid selection from the actions, properties, methods, or transitions
available in the base POU. Now you can, for example, easily accept a method of the base POU
and then adapt it to the derived function of the POU.

Calling an
action

Input support
when gener-
ating inheriting
POUs

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2499

Methods and properties with the access modifier PRIVATE are not listed here because they are
also not inherited. Methods and properties with the access modifier PUBLIC automatically get a
blank access modifier field when accepting into the derived POU, which means the same thing
functionally.

Example

See also
● Ä Chapter 6.4.1.9.22 “Object-Oriented Programming” on page 1929
● Ä Chapter 6.4.1.21.2.21.10 “Object 'Action'” on page 2497
● Ä Chapter 6.4.1.21.2.21.9 “Object 'Property'” on page 2493
● Ä Chapter 6.4.1.21.2.21.6 “Object 'Method'” on page 2485
● Ä Chapter 6.4.1.21.2.21.11 “Object 'Transition'” on page 2499

Object 'POUs for Implicit Checks'
General

You can add these special POUs to an application to equip them with implicit monitoring
functions. At runtime, these functions check the limits of arrays or subrange types, the validity
of pointer addresses, and division by zero. Please note: This option can be disabled for devices
that are already equipped with these kinds of monitoring blocks by a special implicit library.
The command “Add Object è POU for Implicit Checks” is used for adding to the application.
The command opens the “Add POU for Implicit Checks” dialog where you can select a moni-
toring function type (see table below). Depending on the monitoring function, you have to adapt
the implementation code or create it yourself from scratch.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2500

To prevent multiple inclusions, monitoring functions that have already been inserted are disa-
bled in the “Add POU for Implicit Checks” dialog.

NOTICE!
To get the feature for monitoring functions, do not edit their declaration part.
However, you are permitted to add local variables.
After removing an implicit monitoring function (example: Check Bounds) from
the project, only a download is possible, not an online change. A corresponding
message is issued.

By default, CODESYS does not run implicit checks for function blocks from
libraries used in the application. However, you can extend the check to the
libraries by opening the “Properties” dialog of the application and specifying
the compiler definition checks_in_libs in the “Compiler-Defines” field in the
“Build” tab. This definition affects implementation libraries (*.library) only,
not protected libraries (*.compiled-library).

You can use the "no_check" attribute to deactivate the check for special POUs
in the project.

Table 440: “Available Functions”
Monitoring function Type
“Check Bounds” “Bound Checks”

Appropriate handling of bound violations; such handling includes setting flags or
changing field indices.

“CheckDivDInt” “Division checks”:
Monitors the divisor value to avoid division by zero.“CheckDivLInt”

“CheckDivReal”

“CheckDivLReal”

“CheckRangeSigned” “Range checks”:
Monitors the range limit of a subrange type in runtime mode. Valid for data types
DINT/UDINT.

“CheckRangeUnsigned”

“CheckLRangeSigned” “L-range checks”:
Monitors the range limit of a subrange type in runtime mode. Valid for data types
LINT/ULINT.

“CheckLRangeUnsigned”

“CheckPointer” “Pointer checks”

You are responsible for filling in this function completely with implementation
code. Refer to the help page for "POU 'CheckPointer'". The function should
monitor whether the passed pointer reference a valid memory address, and
whether the orientation of the referenced memory area matches the variable
type to which the pointer refers. If both conditions are fulfilled, then the pointer is
returned. If not, then CheckPointer should complete an appropriate error han-
dling. CheckPointer monitors the same way as variables of type REFERENCE
TO.

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928
● Ä Chapter 6.4.1.21.2.22.2 “POU 'CheckBounds'” on page 2502
● Ä Chapter 6.4.1.21.2.22.3 “POU 'CheckDivInt'” on page 2505
● Ä Chapter 6.4.1.21.2.22.4 “POU 'CheckDivLInt'” on page 2505

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2501

● Ä Chapter 6.4.1.21.2.22.6 “POU 'CheckDivLReal'” on page 2507
● Ä Chapter 6.4.1.21.2.22.5 “POU 'CheckDivReal'” on page 2506
● Ä Chapter 6.4.1.21.2.22.11 “POU 'CheckPointer'” on page 2513
● Ä Chapter 6.4.1.21.2.22.7 “POU 'CheckRangeSigned'” on page 2508
● Ä Chapter 6.4.1.21.2.22.9 “POU 'CheckRangeUnsigned'” on page 2511
● Ä Chapter 6.4.1.21.2.22.8 “POU 'CheckLRangeSigned'” on page 2510
● Ä Chapter 6.4.1.21.2.22.10 “POU 'CheckLRangeUnsigned'” on page 2512
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755
● Ä Chapter 6.4.1.20.6.3.29 “Attribute 'no_check'” on page 2298

POU 'CheckBounds'
The task of this monitoring function is to handle bound violations appropriately. Examples of
reactions to violations include setting error flags and changing the value of the array index. The
check is performed only for one variable array index. An incorrect constant array index causes
a compiler error. CODESYS calls the function implicitly when values are assigned to an ARRAY
variable.
After inserting the function, you receive automatically generated code in the declaration and
implementation parts. See below.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration part.
However, you are permitted to add local variables.

// Automatically generated code: DO NOT EDIT
FUNCTION CheckBounds : DINT
VAR_INPUT
 index, lower, upper: DINT;
END_VAR
// This automatically generated code is a suggested implementation.
IF index < lower THEN
 CheckBounds := lower;
ELSIF index > upper THEN
 CheckBounds := upper;
ELSE
 CheckBounds := index;
END_IF

(* It is also possible to set a breakpoint, log messages or e.g. to
halt on an exception:
Add CmpApp.library, SysExcept.library and SysTypes2_Itf as newest.
Declaration:
VAR
 _pApp : POINTER TO CmpApp.APPLICATION;
 _result : SysTypes.RTS_IEC_RESULT;
END_VAR

Implementation:
_pApp := AppGetCurrent(pResult:=_result);
IF index < lower THEN
 CheckBounds := lower;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp:=_pApp,
ulException:=RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSIF index > upper THEN
 CheckBounds := upper;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp:=_pApp,

Functions for
Bound Checks:
CheckBounds

Declaration part

Implementation

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2502

ulException:=RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSE
 CheckBounds := index;
END_IF
*)
When the “CheckBounds” function is called, it receives the following input parameters:
● index: Index of the array element
● lower: Lower limit of the array range
● upper: Upper limit of the array range

The return value is the index of the array element, as long as it is within a valid range. If not,
then the CODESYS returns either the upper or lower limit, depending on which threshold was
violated.

In the sample program below, the index falls short of the defined lower limit of the a array.

PROGRAM PLC_PRG
VAR
 a: ARRAY[0..7] OF BOOL;
 b: INT:=10;
END_VAR

a[b]:=TRUE;
In this example, the CheckBounds function causes a to change the upper limit of the array
range index to 10. The value TRUE is assigned then to the element a[7]. In this way, the
function corrects array access outside of the valid array range.

Example: Cor-
rection of the
access to an
array outside
the defined
array bounds

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2503

Add the following libraries in the library manager of the application:
● CmpApp.library and SysExcept.library as placeholder libraries
● SysTypes2_Itfs.library with “Newest version always”

Add a “CheckBounds” object below the application and modify the specified code as shown
below.
FUNCTION CheckBounds : DINT
VAR_INPUT
 index, lower, upper: DINT;
END_VAR
VAR
 _pApp : POINTER TO CmpApp.APPLICATION;
 _Result : ISystypes2.RTS_IEC_RESULT;
END_VAR
// This automatically generated code is a suggested implementation.
_pApp := AppGetCurrent(pResult := _Result);
IF index < lower THEN
 CheckBounds := lower;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp := _pApp, ulException :=
RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSIF index > upper THEN
 CheckBounds := upper;
 IF _pApp <> 0 THEN
 AppGenerateException(pApp:=_pApp,
ulException:=RtsExceptions.RTSEXCPT_ARRAYBOUNDS);
 END_IF
ELSE
 CheckBounds := index;
END_IF

Program a “MAIN_PRG” object below the application with the contents shown below.
PROGRAM MAIN_PRG
VAR
 xInit : BOOL;
 arData : ARRAY[0..7] OF BYTE;
 i : INT;
 dwAdr : DWORD;
END_VAR

IF NOT xInit THEN
 // Required for CheckBounds
 xInit := TRUE;
END_IF

// Set i to a value > 7 or < 0
// Generates an exception in CheckBounds, user-defined
arData[i] := 11;

When you load and start this application, an exception will be thrown when array bounds are
violated. Processing stops in “CheckBounds” so that the type of error can be detected.

Example:
Output of an
exception
when array
limits are vio-
lated.

Declaration
part

Implementa-
tion part

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928
● Ä Chapter 6.4.1.21.2.8.9 “Tab 'Log'” on page 2437

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2504

POU 'CheckDivInt'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928

POU 'CheckDivLInt'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2505

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928

POU 'CheckDivReal'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2506

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928

POU 'CheckDivLReal'

To prevent division by zero, you can use the functions CheckDivInt, CheckDivLint,
CheckDivReal, and CheckDivLReal. If you include these functions in the application, then
they are called before each division operation in the code.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

Functions for
preventing divi-
sion by zero:
CheckDivInt,
CheckDivLint,
CheckDivReal,
and
CheckDivLReal

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2507

Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckDivReal : REAL
VAR_INPUT
 divisor:REAL;
END_VAR

Implementation section:
// This automatically generated code is a suggested implementation.
IF divisor = 0 THEN
 CheckDivReal:=1;
ELSE
 CheckDivReal:=divisor;
END_IF;

The DIV operator uses the output of the CheckDivReal function as a divisor. In the sample
program below, CheckDivReal prevents division by 0 by changing the implicit value of the
divisor d from "0" to 1 before the division operation is executed. Therefore, the division result is
799.
PROGRAM PLC_PRG
VAR
 erg:REAL;
 v1:REAL:=799;
 d:REAL:=0;
END_VAR
erg:= v1 / d;

The default
implementation
of CheckDiv-
Real:

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928

POU 'CheckRangeSigned'
Function for monitoring the range limits of a subrange type of type DINT.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2508

If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

The assignment of a value to a DINT variable of a signed subrange type is a condition for
automatically calling the CheckRangeSigned. This function restricts the assignment value
to the subrange as defined in the variables declaration. The default implementation of the
function in ST is as follows:
Declaration section:

// This is automatically generated code: DO NOT EDIT
FUNCTION CheckRangeSigned : DINT
VAR_INPUT
 value, lower, upper: DINT;
END_VAR

Implementation:

// This automatically generated code is a suggested implementation.
IF (value < lower) THEN
 CheckRangeSigned := lower;
 ELSEIF(value > upper) THEN
 CheckRangeSigned := upper;
ELSE
 CheckRangeSigned := value;
END_VAR

Example for
CheckRangeSi
gned

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2509

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928

POU 'CheckLRangeSigned'
Function for monitoring the range limits of a subrange type of type LINT.
For an implementation example of range monitoring, refer to the help page for the
CheckRangeSigned function.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);
If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2510

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928
● Ä Chapter 6.4.1.21.2.22.7 “POU 'CheckRangeSigned'” on page 2508

POU 'CheckRangeUnsigned'
Function for monitoring the range limits of a subrange type of type UDINT.
For an implementation example of range monitoring, refer to the help page for the
CheckRangeSigned function.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);
If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2511

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928
● Ä Chapter 6.4.1.21.2.22.7 “POU 'CheckRangeSigned'” on page 2508

POU 'CheckLRangeUnsigned'
Function for monitoring the range limits of a subrange type of type ULINT.
For an implementation example of range monitoring, refer to the help page for the
CheckRangeSigned function.

This monitoring function is responsible for the appropriate handling violations to range limits.
Examples of reactions to violations include setting error flags and changing values. The func-
tions are called implicitly when a value is assigned to a subrange type variable.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

When the function is called, it receives the following input parameters:
● value: Value that should be assigned to the subrange type variables
● lower: Lower range limit
● upper: Upper range limit

The return value is the assignment value as long as it is within the valid range. If not, then either
the upper or lower limit is returned, depending on which threshold was violated.
For example, the assignment i := 10*y is replaced implicitly by i :=
CheckRangeSigned(10*y, -4095, 4095);
If y is "1000", then "10*1000=10000" is not assigned to i like in the original code. Instead, the
upper range limit of "4095" is assigned.
The same is true for CheckRangeUnsigned function.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2512

NOTICE!
If functions are not available, then the subrange is not checked for the respec-
tive variables at runtime. In this case, you can assign any value between
-2147483648 and +2147483648 (or between 0 and 4294967295) to a var-
iable of subrange type DINT/UDINT. You can assign any value between
-9223372036854775808 and +9223372036854775807 (or between 0 and
18446744073709551615) to a variable of a subrange type LINT/ULINT.

CAUTION!
Linking area monitoring functions can lead to endless loops. For example, an
endless loop can occur if the counter variable of a FOR loop is a subrange type
and the counting range for the loop exits the defined subrange.

VAR
 ui : UINT (0..10000);
 ...
END_VAR

FOR ui:=0 TO 10000 DO
 ...
END_FOR

The program never exits the FOR loop because the CheckRangeSigned monitoring function
prevents ui from being set to a value greater than 10000.

Example of an
endless loop:

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928
● Ä Chapter 6.4.1.21.2.22.7 “POU 'CheckRangeSigned'” on page 2508

POU 'CheckPointer'
Monitoring function for pointers (Checkpointer)
Use this function to monitor the memory access of pointers in runtime mode. As opposed
to other monitoring functions, a standard suggestion does not exist for the implementation of
CheckPointer. You must define an implementation according to your own requirements.

The CheckPointer function should check whether the returned pointer references a valid
memory address; monitors whether the orientation of the referenced memory range matches
the variable type that the pointer refers to. If both conditions are fulfilled, then the pointer is
returned. If not, then the function should complete an appropriate error handling.

CAUTION!
To obtain the feature for monitoring functions, do not edit the declaration sec-
tion. However, you are permitted to add local variables.

NOTICE!
An implicit monitoring function call does not occur for THIS pointer and SUPER
pointer.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2513

NOTICE!
For complier version 3.5.7.40 and later, the implicit check function
“Checkpointer” also acts on REFERENCE variables in the same way as on
pointer variables.

// Automatically generated code: DO NOT EDIT
FUNCTION CheckPointer : POINTER TO BYTE
VAR_INPUT
 ptToTest : POINTER TO BYTE;
 iSize : DINT;
 iGran : DINT;
 bWrite: BOOL;
END_VAR

// Not a standard implementation. Please add your own code here.
CheckPointer := ptToTest;

When the function is called, CODESYS provides the following input parameters:
● ptToTest: Target address of the pointer
● iSize: Size of the referenced variable; the data type of iSize must be compatible with

INT and cover the dimensional scope of the variables.
● iGran: Granularity of the referenced size; this is the largest non-structured data type

contained in the referenced variables; the data type of iGran must be compatible with
INT

● bWrite: Access type (TRUE = write access, FALSE = read access); the data type of
bWrite must be BOOL

When the result of the check is positive, the unchanged pointer is returned (ptToTest).

Model
Declaration:

Implementa-
tion: (incom-
plete)

See also
● Ä Chapter 6.4.1.9.21 “Using POUs for implicit checks” on page 1928

Object 'Project Settings'
Symbol:
Function: This object contains the configuration of the project.
Call:
● “Project è Project Settings”
● Double-click on the object in the device tree
CODESYS saves the project settings directly in the project. If, for example, you transfer a
project to another system, the “Project Settings” object is also transferred with it without a
project archive being required.
The project settings are valid project-wide and offer setting possibilities for various categories
such as “AS” or “Users and Groups”. The available categories vary, depending on which soft-
ware packages you have installed via the package manager.
See also
● Ä Chapter 6.4.1.3.4.3 “Making project settings” on page 1814
● Ä Chapter 6.4.1.21.3.9.4 “Command 'Package Manager'” on page 2655
● Ä Chapter 6.4.1.21.4.12.2 “Dialog 'Project Settings' - 'SFC'” on page 2767
● Ä Chapter 6.4.1.21.4.12.3 “Dialog 'Project Settings' - 'Users and Groups'” on page 2768
● Ä Chapter 6.4.1.21.4.12.4 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 2769

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2514

● Ä Chapter 6.4.1.21.4.12.5 “Dialog Box 'Project Settings' - 'Compiler Warnings'”
on page 2770

● Ä Chapter 6.4.1.21.4.12.6 “Dialog 'Project Settings' – 'Source Download'” on page 2770
● Ä Chapter 6.4.1.21.4.12.7 “Dialog 'Project Settings' - 'Page Setup'” on page 2772
● Ä Chapter 6.4.1.21.4.12.8 “Dialog 'Project Settings' - 'Security'” on page 2772
● Ä Chapter 6.4.1.21.4.12.9 “Dialog 'Project Settings' - 'Static Analysis Light'” on page 2773
● Ä Chapter 6.4.1.21.4.12.10 “Dialog 'Project Settings' - 'Visualization'” on page 2776
● Ä Chapter 6.4.1.21.4.12.11 “Dialog 'Project Settings' - 'Visualization Profile'” on page 2777

Object 'Project Information'
Symbol:
Function: The object contains the properties, meta-information, and project information. With
this, you can check the authorship and integrity of the project.
Call
● Double-click the object in the device tree
● Menu bar: “Project è Project Information”

Requirement: CODESYS creates the object when you click “Project è Project Information”,
and the dialog opens.
CODESYS saves the project information directly in the project. For example, if you transfer a
project to another system, then the “Project Information” object is also transferred. You do not
need a project archive.

The tab displays the properties of the project file and their attributes. You cannot edit these
attributes. They correspond to the file properties of Windows Explorer.

The tab contains general information and meta-information of the project file. CODESYS uses
this information to create keys on the “Properties” tab. For example, if the name Company_A is
specified in “Company”, then the Company key with the value Company_A is provided on the
“Properties” tab.

NOTICE!
If you save your project as a library project, then you should pay attention to the
guidelines for library developers (Library Development Summary).

For a library project, a “Company”, a “Title”, and a “Version” must be specified to install the library.

“Company” Name of the company (example: Company_A).

“Title” Title of the project (example Automation_A).

“Version” Version of the project (example: 0.0.0.1).

“Released” : Activates protection from modification.
Result: If you edit the project now, then a dialog prompt opens to confirm
whether you really want to change the project. If you reply to this prompt
one time by clicking “Yes”, then no additional prompts appear for more editing
actions.

Tab 'File'

Tab 'Summary'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2515

“Categories” Categories of the library project, according to which you can sort in the “Library
Repository” dialog. If no category is specified, then the category “Other” is
assigned to the library.
The categories originate from one or more external description files in XML
format. However, they can also originate from a library project that has already
been created.
Requirement: The project is a library project.

: The “Library Categories” dialog opens where you can add library categories.

“Default namespace” If you do not define a standard namespace here, then the name of the library file
is applied automatically as the namespace.

“Author” Author of the project (example: Arnold Best).

“Description” Example: For internal use only

See also
● Ä Chapter 6.4.1.21.3.2.7 “Command 'Save Project as Compiled Library'” on page 2556
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

Table 441: Dialog “Library Categories”
List of categories List of the categories that are assigned to the library project. They can originate

from several sources. After you specify all desired categories, click “OK” to
confirm.

Button “Add” The “From Description File” and “From Other Library” commands appear.

Button “Remove” CODESYS removes the selected category.

Command “From Description
File”

The “Select Description File” dialog opens for you select a description file
(*.libcat.xml). The file contains command categories. When you click
“Open”, CODESYS accepts the categories.

Command “From Other
Library”

The “Select Library” dialog opens, where you select a library with command
categories to be accepted. When you click “Open”, CODESYS accepts the cate-
gories.

Button “OK” CODESYS provides the categories as project information and displays it in the
“Library Categories” field.

See also
● Ä Chapter 6.4.4.2 “Guidelines for creating libraries” on page 2852
● Ä Chapter 6.4.1.21.3.9.5 “Command 'Library Repository'” on page 2657

On this tab, you can define keys that you can control externally from user-specific programs.

NOTICE!
If you have opened a library project, then note the description of the relevant
keys in the guidelines for library developers (Library Development Summary).
If you have opened a symbol library as a project, then the key
VisuSymbolLibrary = TRUE must be defined. It identifies the library as a
symbol library.

“Key” Name of the key. Specify any string of text for the new key, or select an existing
key from the “Properties” table.

“Type” Data type of the key. Possible types: “Text”, “Date”, “Number”, “Boolean”,
“Version”.

Tab 'Properties'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2516

“Value” Value of the key in permitted format
● “Text”: Any character string
● “Date”: Example: Friday, January 1, 2016 00:00:00. Minimum entry

for the date: 1.1
● “Number”: Integer in Integer32 format with or without a sign (example:

-32500).
● “Boolean”: True or False, capitalization irrelevant.
● “Version”: Examples: 1.1, 1.0.1.0, maximum four figures.

“Add” Adds the new defined key to the “Properties” table.

“Modify” Saves the change made for the key selected in the “Properties” table.

“Remove” Removes the key selected in the “Properties” table.

“Properties” List of the properties that are defined as keys. CODESYS creates keys automati-
cally for the information in the “Summary” tab.
Click a key to edit it in the input fields above the list.

See also
● Ä Chapter 6.4.4.2 “Guidelines for creating libraries” on page 2852
● Using the Symbol Library in the Visualization
● Ä Chapter 6.4.1.21.4.11.18 “Dialog 'Properties' - 'Image Pool'” on page 2764

The dialog provides statistical information about the number of objects of the individual type or
use in the project.

The dialog is for the license protection of libraries.

CAUTION!
You can protect only compiled libraries in this way.

Table 442: “Variables”
“Activate dongle licensing” : The library requires a dongle with a license to use it.

“Firm code” License information that must be supplied from the dongle for using the library
later.“Product code”

“Activation URL”

“Activation mail”

See also
● Ä Chapter 6.4.4.2 “Guidelines for creating libraries” on page 2852

This tab is displayed only for existing libraries whose signing has been created with this tab.
This tab is no longer visible for newly generated libraries.
When a certificate-signed library is created (possible as of CODESYS V3 SP15) and library
compatibility with CODESYS < V3 SP15 is not set, the settings on this tab are disabled. In this
case, the signing is done by means of a certificate that has to be assigned to the user profile in
the security screen.

Tab 'Statistics'

Tab 'Licensing'

Tab 'Signing'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2517

ms-its:core_Visualization.chm::/_visu_using_symbol_library.htm

One method, which is not recommended but may be necessary in some case for compatibility
with versions < V3 SP15, is the less secure signing of a library by means of a vendor-specific,
one-time key in this dialog. Requirement: This key is available as a private key file (*.libpk)
with an associated token. The user of the library also has to obtain this key in order to be able to
check whether the last signing was actually performed by the library vendor.

“Activate signing” : CODESYS signs the library project with a single-use, manufacturer-specific
key.

“Private key file” Location of the private key file *.libpk (example: D:\for lib developers
only\mycomp_libkey.libpk).

“Public key token” Example: 427A5701DA3CF3CF
Requirement: A private key file is specified, and CODESYS has read and
entered the token.

“Create Private Key File” CODESYS creates a new private key file.

See also
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

“Automatically generate
'Project Information' POUs”

Note: The functions that are created with this option can be used only if the
runtime supports the WSTRING data type. If this is not the case, then you can
use the functions that were created automatically for the with the individual items
of the project information, at least in the application for accessing properties.
These functions are not registered in the runtime.

: CODESYS creates POUs of the FUNCTION type in the “POUs” view, allowing
programmatic access to the project properties in the application. The function
blocks GetCompany, GetTitle and GetVersion are created for the proper-
ties “Company”, “Title” and “Version”.
The following function blocks are available for user-defined properties:
● GetBooleanProperty: BOOL (TRUE/FALSE)
● GetNumberProperty: DINT (numeric value)
● GetTextProperty: WSTRING (character string)
● GetTextProperty2: POINTER TO WSTRING (unlimited length)
● GetVersionProperty: VERSION (version number as character string)

Note: Do not activate this option for standard libraries, because this can cause
problems on smaller systems due to the additional memory requirements.
Note: If a library also contains this project information POU, then you should use
the operator __POOL to make sure that this POU is accessed.

“Automatically generate
'Library Information' POUs”

: CODESYS creates POUs of the FUNCTION type in the “POUs” view, allowing
programmatic access to the project properties in the application.
For the “Version” and “Released” properties, the following functions
are created: GetLibVersion (version number as character string),
GetLibVersionNumber (version number as numeric value), and
IsLibReleased (TRUE/FALSE).

Note: These functions are not registered in the runtime. The option is avail-
able as an alternative solution is the runtime does not support the WSTRING
data type, therefore not permitting you to use the functions created with the
“Automatically generate 'Project Information' POUs” option.

Options for cre-
ating blocks for
accessing
project informa-
tion

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2518

See also
● Ä Chapter 6.4.1.3.4.2 “Retrieving and Editing Project Information” on page 1813
● Ä Chapter 6.4.1.3.4.3 “Making project settings” on page 1814
● Ä Chapter 6.4.1.20.3.74 “Operator '__POOL'” on page 2217

Object 'Recipe Manager'
The recipe manager provides functions for maintaining user-defined variable lists, known as
recipe definitions. The recipe definitions can be stored in recipe files on the PLC.

“Storage Type” “Textual”: CODESYS saves the recipe in a readable Format with the configured
columns and delimiters.
“Binary”: CODESYS saves the recipe in a non-readable binary format. This
format requires less storage space.
Note: You can read binary recipes again only if you have not changed the
variable lists.

“File path” <directory name>\
Example: AllRecipes\
Path on the runtime system
Notes:
● The path has to end with a backslash ("\").
● The path is usually a relative path on the target system in the directory of the

runtime files (PlcLogic).
● Access to paths outside of the directory PlcLogic is not permitted on

every controller. An absolute path for Windows systems can be selected by
pressing the button.

Example of the file path in the runtime system: PlcLogic/AllRecipes
CODESYS saves a file in this directory for each recipe when downloading to the
PLC. The requirement is that you select the “Recipe management in the PLC”
option.
The files are loaded to the recipe manager each time the application is restarted.

“File extension” File extension for the recipe file in the format .<file extension>
The resulting default name for recipe files is in the form <recipe>.<recipe
definition>.<file extension>.

“Separator” Delimiters between the individual values in the saved file

“Available Columns”

“ Selected Columns”

Defines the information that is saved and in which order in the recipe file

“Save as Default” CODESYS uses the settings on the tab throughout the entire project for all other
recipe managers.

“Recipe management in the
PLC”

: Has to be selected for the user program or visualization elements to load rec-
ipes at runtime. If you transfer recipes to the PLC exclusively via the CODESYS
program interface, then you can clear this option.

Tab 'Storage'

Tab 'General'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2519

Table 443: “Save Recipe”
“Save recipe changes to recipe
files automatically”

When “Recipe management in the PLC” is selected, there is the following option
for saving the recipe:

: We recommend this option because it helps the recipe manager operate
"normally". The recipe files on the PLC are updated automatically at runtime
whenever a recipe is changed.

Table 444: “Load Recipe”
When “Recipe management in the PLC” is selected, there are the following two options for downloading from the
PLC:

“Download only for exact
match of the variable list”

: The recipe is only downloaded if the file on the PLC contains all variables
from the variable list of the recipe definition of the application and these are
sorted in the same order. Additional entries at the end are ignored. If the required
match does not exist, then the error status ERR_RECIPE_MISMATCH is set
(RecipeManCommands.GetLastError).

“Download variables with
matching names”

: The recipe values are downloaded only for those variables that have the
same name in the recipe definition of the application as in the recipe file on the
PLC. If the variable lists differ in composition and sorting, then no error status is
set.
In this way, recipe files can also be downloaded if variables in the file or in the
recipe definition have been deleted.

“Overwrite existing recipes on
download”

: If recipe files with the same name exist on the controller, then they are
overwritten with the configured values from the project when the application is
started. If the values from the existing recipe files should be loaded instead, then
this option has to be disabled.
Requirement: The “Storage Type” is “Textual” and the “Save recipe changes to
recipe files automatically” option is selected.

Table 445: “Write Recipe”
The following options are available for writing recipe values to the variables on the PLC:

“Limit the variable to min/max
when recipe value is out of the
range”

: If the recipe contains a value that is outside of the range of values specified
in the definition, then the defined minimum or maximum value is written to the
PLC variable instead of this value.

“Do not write to a variable
when the recipe value is out of
the min/max range”

: If the recipe contains a value that is outside of the range of values specified
in the definition, then no value is written to the PLC variable. It retains its current
value.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2520

Table 446: “Read Recipe”
The following option is available for reading recipe values from the PLC into the recipe in the project:

“Check recipe for changes” Always use the function block RecipeManCommands from
RecipeManagement.library to read recipes. Never call the method cycli-
cally. This is because each call can be written to the file system, which is
time-intensive and burdens the controller. For example, a Raspberry protocol
interpreter has a limited number of write cycles.

: With each method call, the current PLC variable values are first read into
the recipe. Then the system checks whether the values have changed. Only if
the values have changed is the recipe saved. This means that the recipe file is
overwritten with the current recipes.
The option can be used in order to update the recipe file in the local file system
only if recipe values have changed on the PLC. However, it affects performance
because it generates additional code for checking.

: With each method call, the current PLC variable values are first read into the
recipe. Then the recipe is written to the recipe file in the local file system.
Note: As the file system is written to each call, the controller can be very bur-
dened.

Table 447: Option “Save recipe changes to recipe files automatically” is selected.
Menu commands Behavior of the recipes

defined in the project
Behavior of the defined rec-
ipes at runtime

“Online è Reset Warm”

“Online è Reset Cold”

“Online è Download”

The recipes of all recipe def-
initions are downloaded with
the values from the current
projects.

Dynamically generated rec-
ipes remain unchanged.

“Online è Reset Origin” The application is removed from the PLC. If a download is
done again afterwards, then the recipes are restored as for an
online reset warm.

Shutdown and restart of the
PLC

After a restart, the recipes are downloaded again from the
automatically created files. This will restore the same state as
before shutdown.

“Online è Online Change” The recipe values remain unchanged. In runtime mode, a
recipe can be changed only via the function block command
RecipeManCommands.

“Debug è Stop”

“Debug è Start”

The recipes remain unchanged when the PLC is stopped or
started.

Table 448: Option “Save recipe changes to recipe files automatically” is not selected.
Actions Recipes defined in the

project
Recipes defined at runtime

“Online è Reset Warm”

“Online è Reset Cold”

“Online è Download”

The recipes of all recipe def-
initions are downloaded with
the values from the current
projects. However, these are
set in the memory only. To
save recipes to a file, you
have to run the “Save Recipe”
command explicitly.

Dynamically generated rec-
ipes are lost.

“Online è Reset Origin” The application is removed
from the PLC. When a down-
load is performed afterwards,
the recipes are restored.

Dynamically generated rec-
ipes are lost.

Recipes during
online mode

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2521

Actions Recipes defined in the
project

Recipes defined at runtime

Shutdown and restart of the
PLC

After the restart, the recipes are downloaded again from the
automatically created files. This will restore the same state as
before shutdown.

“Online è Online Change” The recipe values remain unchanged. In runtime mode, a
recipe can be changed only via the function block command
RecipeManCommands.

“Debug è Stop”

“Debug è Start”

The recipes remain unchanged when the PLC is stopped or
started.

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20.9 “Command 'Read and Save Recipe'” on page 2726
● Ä Chapter 6.4.1.21.2.26 “Object 'Recipe Definition'” on page 2522
● Method Calls of the 'Recipe Management' Library

Object 'Recipe Definition'
In the recipe definition (1), you define different data sets for the variables, which are termed
recipes (2).
You can toggle the display of the recipe definition between the flat list view (3) and the struc-
tured view (4). In the structured view, CODESYS groups variables according to structure.

“Type” Entered automatically

“Name” Optional

“Minimal Value”

“Maximal Value”

If the variable value is less than the “Minimal Value” or greater than the “Maximal
Value”, then CODESYS sets the value to the “Minimal Value” or “Maximal
Value”.

“Comment” Additional information, for example the unit of the value.

“Current Value” Current variable value; not shown in online mode

Table 449: “Additional commands in the context menu in the structured view”
“Add Sibling” Adds a sibling variable to the recipe definition.

“Add Child” Adds a child variable to the recipe definition.

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2522

ms-its:Recipe Management.chm::/RecipeManCommands.html

Object 'Symbol Configuration'
You can use the symbol configuration for creating symbol descriptions for project variables.
Click “Project è Add Object” to add a symbol configuration object to the device tree. Then
define specific presets. See dialog below: “Add Symbol Configuration”.
Double-click the “Symbol Configuration” object to open the symbol configuration editor.

Function: This dialog is used to define the defaults for a “Symbol Configuration” object.
Call: “Project è Add Object è Symbol Configuration” menu; context menu of the application
object.

“Include comments in XML” Exports the symbol file with the comments assigned to the variables.

“Support OPC UA features” Note: Availability and editability of this option depend on the device.

: When downloading the symbol configuration, additional information is also
downloaded to the controller. The information below is necessary for operating
the OPC UA server.
● Base types of inherited function blocks
● Contents of attributes that were assigned via compiler pragmas
● Scopes (example: VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT)

Table 450: “Client-Side Data Layout”
For detailed information and examples of layout options, see the next section "Symbol Configuration Editor".

“Compatibility layout” This setting is used for the compatibility of old projects. The data layout created
for the client is matched as much as possible to the layout created internally by
the compiler.

“Optimized layout” Recommended for new projects. Calculates the output layout in optimized form
detached from the internal compiler layout. Does not generate any gaps for
unpublished elements and strictly fulfills the requirements for memory alignment
of the data types. Requires compiler version 3.5.7.0 or higher.

The editor includes a table with selected variables and a menu bar for editing.

Table 451: Menu bar
 “View” You can use this button for activating and deactivating the following categories of

variables used in the configuration editor:

● “Unconfigured from Project”: Variables that have not been added to the
symbol configuration, but are provided in the project.

● “Unconfigured from Libraries”: Variables that have not been added to the
symbol configuration, but are provided in the project.

● “Symbols Exported via Attribute”: This filter also lists the variables that
have already been marked for export in the symbol file by means of the
{attribute 'symbol' := 'read'} pragma. These symbols are dis-
played in gray. The “Attribute” column shows which access rights are set by
the pragma.

 “Build” Compiles the project. Requirement for current preparation of variables in the
configuration editor.

Dialog 'Add
Symbol Config-
uration'

Symbol configu-
ration editor

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2523

 “Settings” ● “Support OPC UA features”:
Note: Availability and editability of this option depend on the device.

: When downloading the symbol configuration, additional information is
also downloaded to the controller. The information below is necessary for
operating the OPC UA server. This currently includes the following informa-
tion:
– Base types of inherited function blocks
– Contents of attributes that were assigned via compiler pragmas
– Scopes (example: VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT)

● <!> “Include comments in XML”
: Exports the symbol file with the comments assigned to the variables.

● “Include Node Flags in XML”
: The namespace node flags provide additional information about the

origin of a node in the namespace. The node flags always in the symbol
table when OPC UA is activated. However, its inclusion in the XML file can
be deactivated as some defective parsers have problems with it.

● “Configure Comments and Attributes”
Opens the “Comments and Attributes” dialog. Here you configure the details
of what should be included in the symbol configuration and XML file with
respect to comments and attributes.

● “Configure synchronization with IEC tasks”:
Opens the “Properties - <device name>” dialog, “Options” tab.
This setting allows for the symbolic clients (e.g. visualizations or database
links based on the PLCHandler) to have consistent read/write access
synchronized with the IEC tasks. For a detailed description of this setting,
see the "Setting: Configure synchronization with IEC tasks" section below.
Note: Variable access which is synchronous with the IEC tasks can increase
the jitter for all IEC applications on this device. Synchronized consistent
access can interrupt the real-time capability.

● List box for defining the data layout type for the client of the symbol configu-
ration:
Note: See the "Example of data layout types" section at the end of this help
page.
– “Optimized layout”: Recommend for new projects. Calculates the output

layout in optimized form detached from the internal compiler layout. Does
not generate any gaps for unpublished elements and strictly fulfills the
requirements for memory alignment of the data types. Requires compiler
version 3.5.7.0 or higher.

– “Compatibility layout”: This setting is used for the compatibility of old
projects. The data layout created for the client is matched as much as
possible to the layout created internally by the compiler.
Due to the configuration possibilities of the symbol configuration which
have grown over time, problematic offsets can still result.
Causes of offsets
Memory gaps due to internal pointers or references in function blocks
and structure components that are not released for symbol configuration.
Memory gaps that occur differently in 32-bit and 64-bit systems
depending on the data type, such as __XINT / __XWORD .
Fields that are at uneven addresses. Some clients are not set up for this.
Unintentional memory misalignment, which occurs when using the attrib-
utes 'pack_mode' or 'relative_offset'.

● “Use Empty Namespaces by Default (V2 Compatibility)”: Required when
using a CODESYS V2-compatible OPC server configuration.

: Behavior same as in CODESYS V2.3.
– Program variables are exported without an application name

(Application.PLC_PRG.MyVar --> PLC_PRG.MyVar
– Global variables are exported additionally without the GVL name

(Application.GVL.MyGlobVar --> .MyGlobVar

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2524

● “Enable Direct I/O Access”: This feature is potentially dangerous and not
intended for operation in production. Activate only for error checking
and tests, or when commissioning the machinery (for example, for checking
cables connections).

: In the symbol configuration, you can also use access to direct I/O
addresses that correspond to IEC syntax (for example, "%IX0.0"). Access
to input addresses (I) is read-only*. Access to output addresses (Q) and
memory addresses (M) can be read-write.
*Information: In simulation mode, write access to symbols is also possible for
input addresses.
Because external clients for protocols such as OPC or OPC UA do not
always support IEC syntax for direct addresses, access is also provided
using an array syntax in the namespace __MIO of the implicit code. For
example, you can also access __MIO.MIO_IX[2].x3 instead of %IX2.3.
However, the symbols for array access are hidden in browsers because
some clients cannot handle the large number of nodes (several thousand
depending on the size of the I/O ranges).

● “Support Calls of Functions, FBs, Methods, and Programs”:
Note: Availability and editability of this option depend on the device.

: The access rights “execute” can be set in the symbol table for symbols
of POUs of type function, function block, method, or program. The “Support
OPC UA features” option also has to be selected in the “Settings”.

● “Include Call information in XML”:
: The information about called functions, function blocks, methods, or pro-

grams is also listed in the XML file of the symbol configuration. The option is
enabled only if the “Support calls of functions, FBs, methods, and programs”
option is supported by the device.

● “Enable Symbol Sets”:
: A toolbar with buttons and a list box is displayed above the symbol table.

You can use this to configure symbol sets for client-specific assignment of
access rights to the controller. See "Toolbar for symbol set configuration"
below.

“Download” If you use a device that supports its own application file for the symbol con-
figuration, then this button is also available in the toolbar. If you change the
symbol configuration in online mode, then you can load the new <application
name>._symbols file immediately to the PLC.

“Tools” “Save XSD Scheme File”: This command opens the standard dialog for saving a
file in the file system. With this command, you can prepare the XSD format of the
symbol file, for example for use in external programs.

Table 452: Symbol table
“Access Rights” You can change the access rights for a symbol by clicking the symbol in the

“Access Rights” column.
Icons for access rights (in ascending order)
● : Read only
● : Write only
● : Read and write

● : Execute
This permission allow for execute access to functions, function blocks,
methods, and programs.
Requirements for the assignment: The device provides the “Support calls
of functions, FBs, methods, and programs” and “Support OPC UA features”
options. Both options are activated in the “Settings”.

Note: In case the controller has a user management, you can use symbol sets to
define client-specific access rights to the same symbols.

“Maximal” Maximum access rights for this symbol

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2525

“Attribute” If the access right was assigned by attribute, then a corresponding icon is dis-
played here.

“Type” Alias data types are also displayed In CODESYS V3.5 SP6 and higher.
Example: MY_INT : INT for a variable declared with the data type MY_INT
(type INT).

“Members” You can add variables of a structured data type also by selecting a check box
for symbol configuration in the “Symbols” column. This causes CODESYS to
export all member variable symbols. However, in the “Members” column, you
can click the ellipsis button () to select only specific structural components.
Note: This selection applies to all instances of this data type for which symbols
are exported. If a member of a structured type cannot be selected, then an
asterisk () is displayed in the check boxes of the members to indicate that all
exportable members of that type are exported.

Table 453: Toolbar for symbol set configuration
“List box” Already defined symbol sets

 “Add New Symbol Set” Opens the “Add New Symbol Set” dialog for specifying a name for this set

 “Add Duplicate from
Selected Symbol Set”

Opens the “Add Duplicate from Selected Symbol Set” dialog. A copy is created
for the set selected in the list box. You can change the default name (<group
name>_duplicate).

 “Rename Selected Symbol
Set”

Opens the “Rename Selected Symbol Set” dialog for specifying another name
for the set selected in list box.

 “Delete selected Symbol
Set”

Opens a dialog prompting whether or not the symbol set selected in the list box
should be deleted.

“Configure Symbol Rights” Opens the “Symbol Rights” tab of the device editor. When logged in there, you
can assign different access rights for each user group (client) to the symbol set
selected in the list box.

See also
● Ä Chapter 6.4.1.21.2.8.16 “Tab 'Symbol Rights'” on page 2458

Table 454: “Symbol Table Contents”
“Enable extended OPC UA
information”

Note: Availability and editability of this option depend on the device.

: Additional information that can be evaluated by OPC UA servers is included
in the symbol table. This includes inheritance information of user-defined data
types and the namespace node flags. Additional information, such as comments
and attributes, can also be included if the OPC UA setting is active.
When the OPC UA setting is enabled, attributes are included in the symbol table
according to the following rule:
● In compiler versions V3.5.5.0 to V3.5.7.X, all attributes are included

according to the “Match simple identifiers” setting.
● In compiler version V3.5.8.X, all attributes are included according to the

setting “Include all attributes”.
● In compiler version V3.5.9.0 and higher, you can customize the attributes

that are included.

“Include comments” Requirement: “Enable extended OPC UA information” is activated.

: Comments and attributes are also saved in the symbol table.

Dialog 'Com-
ments and
Attributes'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2526

“Include attributes”

“Also include comments and
attributes for type nodes”

Requirement: “Include comments” is activated.

: The information for type nodes is also included (user-defined types, such as
STRUCT and ENUM elements).

: Only directly exported variables have comments and attributes.

Table 455: “XML symbol file contents”
“Include namespace node
flags”

: The namespace node flags provide additional information about the origin
of a node in the namespace. The node flags always in the symbol table when
OPC UA is activated. However, its inclusion in the XML file can be deactivated
as some defective parsers have problems with it.

“Include comments” : Comments can also be saved in the XML file.
In compiler versions V3.5.5.x to V3.5.8.0, this includes the setting “Prefer docu-
comments”.

“Include attributes” : Attributes can also be saved in the symbol file.

“Also include comments and
attributes for type nodes”

Requirement: “Include comments” is activated.

: The information for type nodes is also included (user-defined types, such as
STRUCT and ENUM elements).

: Only directly exported variables have comments and attributes.

Table 456: “Select Comments”
Requirement: “Include comments” is activated.

“Include docu comments”

“Include normal comments ”

“Always include both types of
comments”

“Prefer docu comments,
fallback to normal ones”

“Prefer normal comments,
fallback to docu comments”

The options determines the comments that are saved in the symbol configura-
tion.

Table 457: “Filter Attributes (Case-Insensitive)”
Requirement: “Include attributes” is activated.

“Include all attributes”

“Include attributes starting with”

“Filter attributes with regular
expression”

Defines the attributes that are saved in the symbol configuration.

“Match simple identifiers” Exists primarily due to the backward compatibility to older versions in order to
emulate the old behavior.

For synchronously consistent access, the symbolic client waits in the runtime when processing
a read or write request until a time is found when no IEC task is executed. When this gap is
detected, restarting the IEC tasks is prevented until all values of the variable list have been
copied. Then the IEC tasks are planned again as usual. Synchronized access can cause a
delayed starting of IEC tasks, which is shown as increased jitter. As all applications in the run-
time are managed by a common scheduler, this potential impairment of the real-time behavior

Setting: Con-
figure synchro-
nization with
IEC tasks

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2527

affects all applications on the device. All applications of the device are affected, regardless
of whether or not they include a symbol configuration or they have been downloaded to the
controller from one or more CODESYS projects. Therefore, the runtime permits synchronized
consist access only if this it allows all applications that are downloaded to the controller at the
time of access.

The setting is located in the editor of the symbol configuration of the “Settings”
menu. In addition, the setting is also located in the context menu of the con-
troller when you click the “Properties” command and then select the “Options”
tab in the opened dialog.

For applications without symbol configuration, the setting can only be found in
the properties dialog.

NOTICE!
After changing the setting, all applications downloaded to the device by means
of a download or online change have to be reloaded and all boot applications
updated.

In which cases is synchronized consistent access necessary?
As a rule, there is no need for consistent values for displayed values because it is mostly
irrelevant from which IEC task cycle the changed values originate. It is completely irrelevant
for seldom changed values. Even when writing there are almost no hard consistency demands
because typically the machine must be in a kind of standby mode (for example when writing
recipes) in which there is no direct access to the values written as recipes.
In contrast, consistent values are particularly necessary for database links to save production
data. For clocked machines, however, these values must be synchronous with the production
timing (one value set per produced product) and not consistent with reference to one or more
IEC tasks. With reference to the machine clocking, the consistency must be already ensured
by the IEC application. For this purpose, the values that arise during a production cycle are
typically collected in a global variable list. At the end of the cycle, the symbolic client is notified
by means of an additional variable (BOOL or counter) that the machine cycle has ended and
the values are valid. Now the client has the chance to archive the values from the production
cycle. Depending on necessity, the successful reading can also be displayed in the opposite
direction by means of a released variable, so that the production can also be halted in case
the production data cannot be archived. Synchronized consistent access is not necessary and
helpful for this use case because the synchronization takes place at the application level.
In contrast, synchronized consistent access by symbolic clients is typically applied in the
process industry with continuously running systems without production clocking when, for
example when process values are written consistently and cyclically in a fixed time frame of
60s. This can take place either by synchronization on the application level similar to clocked
machines (see above) or by synchronization of the synchronized consistent symbolic access.
The advantage of the latter is that no logic has to be implemented in the IEC program and
access is controlled entirely by the client.

CAUTION!
Due to the increased jitter, the synchronized consistent monitoring is not suit-
able for motion or real-time critical applications. For these reasons, synchron-
ized consistent access should be released and used only if it is absolutely
necessary.

If a client uses synchronous consistent access released by this setting, then it has and effect on
the client. Depending on the scheduler of the runtime, the response time can jitter more here for
read/write access because the system might still have to wait for an execution gap of the IEC
tasks. Read and/or write access can still fail when IEC tasks run for a long time (in the range of
several 100 ms) or the CPU load is close to 100% for an extended period of time with one or
more IEC tasks (in the range of several 100 ms). Therefore, the availability of the values also
depends on the load of the controller by the IEC application.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2528

Moreover, the client can minimize the effects on itself and on the runtime if it observes the
following in the definition of the variable lists to be read or written:
● Synchronized consistent access only to those variables that are absolutely and consistently

required.
● Separate variable lists for variables that have to be consistent and for variables that could

be inconsistent.
● Divide variable lists with several consistent variables into several smaller lists.
● Select read intervals for cyclic reading of values as large as possible.

Entries marked in red in the symbol table show variables that they are configured for export to
the symbol file but are currently invalid in the application. The cause for this can be that the
declaration has been removed from the block.
In version 3.5.8.0 and higher, a warning appears in the editor if variables that have configured
symbols are not used in the IEC code or are not mapped in the case of I/O variables. In
addition, the compiler indicates variables that are referenced from outdated library versions n
the symbol configuration.

NOTICE!
Object variables that are not used in the program code remain uncompiled by
default and are therefore not available in the symbol configuration.
However, CODESYS provides variables from uncompiled objects in the symbol
configuration when one of the following conditions is met:
– The “Link always” POU property is selected.
– The {attribute 'linkalways'} pragma is used.

See also
● Ä Chapter 6.4.1.10 “Working with Controller Networks” on page 1936
● Ä Chapter 6.4.1.21.4.11.20 “Dialog 'Properties' - 'Options'” on page 2765
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755
● Ä Chapter 6.4.1.20.6.3.25 “Attribute 'linkalways'” on page 2294
● Ä Chapter 6.4.1.20.6.3.46 “Effects of Pragmas on Symbols ” on page 2315

Support for the
current configu-
ration and pos-
sible corrective
actions

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2529

The following examples from an IEC application will show how gaps can result in the client-
side memory layout caused by unpublished symbols, internal "invisible" pointers, or a "pack
mode" definition in the device description. With the “Optimized layout” setting, the gaps are
avoided. The symbol file contains different information about the size and offset of memory
locations, depending on the selected layout setting.
// Example of a big structure, where not all members get published :
STRUCT
 {attribute 'symbol':='readwrite'}
 PublicNumber : INT;

 {attribute 'symbol':='none'}
 InternalData : ARRAY[0..100] OF BYTE;

 {attribute 'symbol':='readwrite'}
 SecondNumber : INT;

 {attribute 'symbol':='none'}
 MoreData : ARRAY[0..100] OF BYTE;
END_STRUCT
END_TYPE

Resulting entries in the symbol file; pay attention to "size" and "byteoffset":
<TypeUserDef name="T_LargeStructure" size="208" nativesize="208"
typeclass="Userdef" pouclass="STRUCTURE" iecname="LargeStructure">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="0"
vartype="VAR" />

<UserDefElement iecname="SecondNumber" type="T_INT"
byteoffset="104" vartype="VAR" />

</TypeUserDef>
<TypeUserDef name="T_LargeStructure" size="4" nativesize="208"
typeclass="Userdef" pouclass="STRUCTURE" iecname="LargeStructure">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="0"
vartype="VAR" />

<UserDefElement iecname="SecondNumber" type="T_INT" byteoffset="2"
vartype="VAR" />

</TypeUserDef>

// The following mechanisms can cause memory misalignment:
// - {attribute 'relative_offset':='…'} at a member
// - {attribute 'pack_mode':='…'} at a structure declaration
// - target setting 'memory-layout\pack-mode' in the device
description

{attribute 'pack_mode':='1'}
TYPE UnevenAddresses:
STRUCT
 {attribute 'relative_offset':='3'}
 {attribute 'symbol':='readwrite'}
 PublicNumber : INT;

Examples for
the layout
types

Example:
Large structure

Symbol file,
large structure,
compatibility
layout option

Symbol file,
large structure,
optimized
layout option

Example:
Structure with
uneven
addresses

Example for the
data layout
types

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2530

 {attribute 'symbol':='readwrite'}
 PublicValue : LREAL;
END_STRUCT
END_TYPE
Resulting entries in the symbol file; pay attention to "size" and "byteoffset":
<TypeUserDef name="T_UnevenAddresses" size="13" nativesize="13"
typeclass="Userdef" pouclass="STRUCTURE" iecname="UnevenAddresses">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="3"
vartype="VAR" />

<UserDefElement iecname="PublicValue" type="T_LREAL" byteoffset="5"
vartype="VAR" />

</TypeUserDef>
<TypeUserDef name="T_UnevenAddresses" size="16" nativesize="13"
typeclass="Userdef" pouclass="STRUCTURE" iecname="UnevenAddresses">

<UserDefElement iecname="PublicNumber" type="T_INT" byteoffset="0"
vartype="VAR" />

<UserDefElement iecname="PublicValue" type="T_LREAL" byteoffset="8"
vartype="VAR" />

</TypeUserDef>
// Each POU contains some implicit variables, which do not get
published. Depending on the data type these might cause memory gaps
of different sizes.
FUNCTION_BLOCK POU IMPLEMENTS SomeInterface
VAR_INPUT
 in : INT;
END_VAR
VAR_OUTPUT
 out : INT;
END_VAR
VAR
END_VAR

Each POU contains some implicit variables, which do not get published. If it is a data type
such as __XWORD, then different sizes of memory gaps result in the client-side data layout,
depending on whether the system is 64-bit or 32-bit.
Resulting entries in the symbol file for 64-bit and 32-bit; pay attention to "size" and "byteoffset":
<TypeUserDef name="T_POU" size="24" nativesize="24"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="16"
vartype="VAR_INPUT" />

<UserDefElement iecname="out" type="T_INT" byteoffset="18"
vartype="VAR_OUTPUT" />

</TypeUserDef>
<TypeUserDef name="T_POU" size="4" nativesize="24"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="0"
vartype="VAR_INPUT" />

Symbol file,
structure with
uneven
addresses,
compatibility
layout option

Symbol file,
structure with
uneven
addresses,
optimized
layout option

Example:
Function block

Symbol file,
function block,
compatibility
layout option,
64-bit

Symbol file,
function block,
optimized
layout option,
64-bit

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2531

<UserDefElement iecname="out" type="T_INT" byteoffset="2"
vartype="VAR_OUTPUT" />

</TypeUserDef>
<TypeUserDef name="T_POU" size="12" nativesize="12"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="8"
vartype="VAR_INPUT" />

<UserDefElement iecname="out" type="T_INT" byteoffset="10"
vartype="VAR_OUTPUT" />

</TypeUserDef>
<TypeUserDef name="T_POU" size="4" nativesize="12"
typeclass="Userdef" pouclass="FUNCTION_BLOCK" iecname="POU">

<UserDefElement iecname="in" type="T_INT" byteoffset="0"
vartype="VAR_INPUT" />

<UserDefElement iecname="out" type="T_INT" byteoffset="2"
vartype="VAR_OUTPUT" />

</TypeUserDef>

Symbol file,
function block,
compatibility
layout option,
32-bit

Symbol file,
function block,
optimized
layout option,
32-bit

See also
● Ä Chapter 6.4.1.10.3 “Symbol Configuration” on page 1941

Object 'Text List'
Symbol:
This object is used to create, manage, and translate texts. It contains a table with texts where
you can add new texts. You can select a text which you have composed here can be selected in
a visualization in the “Dynamic texts” property of an element. In runtime mode, the visualization
displays this text dynamically in the selected language.
When the object is assigned to an alarm group and is located below the “Alarm Configuration”
object, CODESYS adds the texts of the alarm group to the table. You can also add texts.

“ID” Unique identifier of the text

“Standard”: Source text as character string (example: Information A: %i options).
Use the keyboard shortcut [Ctrl]+[Enter] to add a line break.
Double-click in the field to edit the text.

The table contains as many language columns as you want to add. A language column is named with a language
code that you specified when you created the column by means of the “Insert Language” command.

“<language code>” Name of the language as a language code. Example: en-US. This column con-
tains the translation of the text which is composed under “Standard”. Under the
condition that the language code is selected as the language in the visualization
manager, a visualization displays the translated text in runtime mode. If a trans-
lation has not been composed, then CODESYS uses the text under “Standard”.
A visualization in runtime mode can also change the language if requested by a
user.

Blank line Edit the line to add your own text.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2532

See also
● Ä Chapter 6.4.1.21.2.11 “Object 'GlobalTextList'” on page 2465
● For descriptions about alarm management and alarm visualization, see the help for

CODESYS Visualization.

Object 'Task Configuration'
General

Symbol:
The object is used to define and display the basic settings for the task configuration.
The “Task Configuration” object must be included exactly one time in each application.
“Task Configuration” tabs and functions
● “Properties”: Display of the basic settings
● “System Events”: Linking of POU calls with system events
● “Monitor”: Display of the status and current statistics for the cycles times in online mode
● “Variable Usage”: Overview of the tasks that access the variables and how they do it
● “Task Groups”: Definitions of the tasks groups and their assignment to CPUs
● “CPU Load”: Graphical representation of the CPU load in online mode
See also
● Ä Chapter 6.4.1.9.17.2 “Creating a task configuration” on page 1914
● Ä Chapter 6.4.1.21.2.29.2 “Tab 'Properties'” on page 2533
● Ä Chapter 6.4.1.21.2.29.3 “Tab 'System Events'” on page 2533
● Ä Chapter 6.4.1.21.2.29.4 “Tab 'Monitor'” on page 2536
● Ä Chapter 6.4.1.21.2.29.5 “Tab 'Variable Usage'” on page 2537
● Ä Chapter 6.4.1.21.2.29.6 “Tab 'Task Groups'” on page 2537
● Ä Chapter 6.4.1.21.2.29.7 “Tab 'CPU Load'” on page 2537
● Ä Chapter 6.4.1.21.2.30 “Object 'Task'” on page 2538

Tab 'Properties'
Object: “Task Configuration”

In this tab, you define the basic settings of the task configuration as predefined by the target
system, such as the maximum values for tasks and watchdog parameters.

Tab 'System Events'
Object: “Task Configuration”

On the “System Events” tab, you define which event calls which function and whether or not the
configuration is currently activated. You use this tab when a system event (instead of a task)
should call a project function.

“Add Event Handler” Opens the “Add Event Handler” dialog

“Remove Event Handler” Deletes the selected list assignment

“Event Info” Shows information from the corresponding event library

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2533

“Open Event Function” Opens the editor of the new function for the selected assignment You have
selected the implementation language of the new function in the “Add Event
Handler” dialog.

Assignment of functions to call for events with: “Name”,“Description”, “Function to call”, and “Active” (acti-
vate/deactivate configuration).

Table 458: “Add Event Handler”
Adds a new assignment "Event – Function to call" to the list

“Event” The possible selection depends on the target device. CODESYS marks unavail-
able events with a red symbol in front of the name.
A list of all possible system events is located at the end of this section.

“Function to call” Function name (“POU”, type “FUNCTION”)
You have to specify the name of the new function. CODESYS inserts the func-
tion to the device tree after you confirm the dialog.

“Scope” ● “Application”: The function is available to the application.
● “POUs”: The function is available to the entire project.

“Implementation language” Implementation language for the new function

“Description” Short description of the selected event

The list of assignments from called functions to events also includes the following information:
“Event Status”, “Call Count”, and the “Online Reset” button.

“Event Status” 0: No error has occurred.

Does not equal 0: Error. You need to consult the respective runtime system
documentation.

“Call Count” Displays how often the event has occurred or the associated function has been
called.

“Online Reset” CODESYS reinitializes the event lists and resets the counter for the events/func-
tion calls. Incorrectly initialized events are displayed with a red status cell.

Event Description Task Debugging
PrepareStart Call before starting the

application
Communication task No

StartDone Call after starting the
application

Communication task No

PrepareStop Call before stopping
the application

Communication task No

StopDone Call after stopping the
application

Communication task No

PrepareReset Call before resetting
the application

Communication task No

ResetDone Call after resetting the
application

Communication task No

PrepareOnline-
Change

Call before online
change of the applica-
tion

Communication task No

Features in
“Online Mode”

Possible system
events

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2534

Event Description Task Debugging
OnlineChangeDone Call after online

change of the applica-
tion

Communication task No

PrepareDownload Call before down-
loading the application

Communication task No

DownloadDone Call after downloading
the application

Communication task No

PrepareDelete Call before deleting the
application

Communication task No

DeleteDone Call after deleting the
application

Communication task No

PrepareExit Call before exiting the
application

Communication task No

ExitDone Call after exiting the
application

Communication task No

CodeInitDone Event is sent after
Code Init. Called within
the task safe section
and only for an online
change change (for
example, the copy
code for online change
is executed here).

Communication task No

Exception The event is sent if an
exception has occurred
in the context of an
application.

Exception handling task of
the runtime, or the task
itself if the runtime does
not support exception han-
dling

Depends on the
task

Login Login of a client to this
application

Communication task No

Logout Logout of a client from
this application

Communication task No

BeforeReadingIn-
puts

Call before reading the
inputs

IEC task Yes

AfterReadingInputs Call after reading the
inputs

IEC task Yes

BeforeWritingOut-
puts

Call before writing the
outputs

IEC task Yes

AfterWritingOutputs Call after writing the
outputs

IEC task Yes

DebugLoop Event is sent in cycles
to the debug loop if
the IEC task stops at a
breakpoint.

Communication task No

PrepareShutdown Event is sent immedi-
ately before the run-
time system is down-
loaded.

Runtime main loop No

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2535

Event Description Task Debugging
PrepareExitComm Event is sent during

download before
exiting the communica-
tion server.

Runtime main loop No

PrepareExitTasks Event is sent during
download before
exiting all tasks.

Runtime main loop No

Tab 'Monitor'
Object: “Task Configuration”

In online mode, the tab shows the status of the tasks of the task configuration, as well as
some current measurements of the cycles and cycle times. CODESYS updates the values in
the same time interval as for the monitoring of values from the PLC.
The displayed values can be reset to 0 by means of the “Reset” context menu command.

“Task” Task name (as defined in the task configuration)

“Status” ● “Not created”: The task has not been started since the last update (especially for
event tasks).

● “Generated”: The task is recognized in the runtime system, but not yet in opera-
tion.

● “Valid”: The task is operating normally.
● “Exception”: The task has produced an exception status.

“IEC-Cycle Count” Number of cycles executed since starting the application where the IEC code was
executed (0 if the target system does not support the counter function)

“Cycle Count” Number of executed cycles since logging in to the PLC
It depends on the target system whether cycles are also counted where the appli-
cation is not running. In these cases, the “Cycle Count” may be greater than the
“IEC-Cycle Count”.

“Last Cycle Time (µs)” Last measured cycle time [µs]

“Average Cycle Time (µs)” Average cycle time over all cycles [µs]

“Max. Cycle Time (µs)” Maximum measured cycle time over all cycles [µs]

“Min. Cycle Time (µs)” Minimum measured cycle time over all cycles [µs]

“Jitter (µs)” Current value of the periodic jitter [µs]
Note: From CODESYS 3.5 SP11 to SP15, the peak-peak value of the periodic jitter is
displayed. In earlier versions and in SP16 and later, the current value of the periodic
jitter is displayed.

“Min. Jitter (µs)” Minimum measured periodic jitter [µs]

“Max. Jitter (µs)” Maximum measured periodic jitter [µs]

“Core” Number of the processor core where the task is currently running
Example: 2
Requirement: The controller is equipped with a multicore processor.
If the CPU is not a multicore CPU, then the value -1 is displayed here.

See also
● Ä Chapter 6.4.1.9.17.3 “Definitions of Jitter and Latency” on page 1915
● Ä Chapter 6.4.1.9.17 “Task Configuration” on page 1914

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2536

Tab 'Variable Usage'
Object: “Task Configuration”

The “Variable Usage” tab provides an overview of all variables and their usage. There you can
see the tasks where variables are accessed.
When using multicore, write access (w) to a variable should take place only in a task because
otherwise it can cause inconsistencies.
In the context menu, you can hide individual tasks and show the cross-reference list to varia-
bles.

“Variables” Name of the variable

“Type” Data type

“Number” Number of tasks that access these variables.

“<task name>” Access to the variable (r: read, w: write, rw: read/write)

See also
● Ä Chapter 6.4.1.9.17 “Task Configuration” on page 1914

Tab 'Task Groups'
Object: “Task Configuration”

You define task groups on the “Task Groups” tab. Task groups can be distributed over the
individual processor cores in multicore systems. The tasks of a task group are bound to the
processor cores according to the strategy defined in the “Core” field.

“Add Group” The button adds a new task group named NewGroup_<no>.

“Remove Group” Deletes the selected task group.

“Group Name” The name can be changed by double-clicking in the field.

“Core” Determines the processor core for process the tasks of this group.
● “Free floating”: All tasks are bound dynamically to different processor cores.

The user does not have any influence over this. The operating system is
responsible for the distribution.

● “Sequentially pinned”: All tasks are bound and fixed to different processor
cores. The user does not have any influence over this.

● “Fixed pinned”: All tasks are bound to one processor core. By default, the
runtime system determines the processor core.

● “<core number>”: Fixed defined processor core. If the processor core is not
available, then an error message is issued.

Tab 'CPU Load'
Object: “Task Configuration”

The “CPU Load” tab is available in online mode for multicore devices only. The load of the
individual CPUs is presented in the trace editor.
You open the trace configuration by double-clicking the legend in the window on the right side.
Adding more variables is not possible here.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2537

See also
● Ä “Displaying the CPU load with DeviceTrace objects in the CODESYS project (example)”

on page 2015

Mapping of Task Priorities on a Linux System
When the target system is running in Linux, specific priorities of the IEC tasks are mapped
to specific priorities and scheduling policies. Depending on the priority, the scheduling policy
SCHED_FIFO or SCHED_OTHER is displayed as in the table.

IEC Task Priority Linux Priority Linux (Default)
0 (highest real-time priority) 56 (SCHED_FIFO)

15 (lowest real-time priority) 41 (SCHED_OTHER)

16 (no real-time priority) 0 (SCHED_OTHER)

31 (no real-time priority) 0 (SCHED_OTHER)

Object 'Task'
General

Symbol:
In this object, you define the conditions for starting and calling the task.
You insert the object below “Task Configuration” in the device tree.

Tab 'Configuration'
Object: “Task”

“Priority” Possible values: 0..31, where 0 is the highest priority

“Task group” Assigned task groups which can be assigned to specific processor cores in
multicore
Example:
IEC Tasks Note: The task group is shown in brackets after the task in the device
tree.

When using a runtime system in Linux, there exist fixed dependencies between
task groups and priorities. For more information, see: Ä Chapter 6.4.1.21.2.29.8
“Mapping of Task Priorities on a Linux System” on page 2538

Dependencies
between IEC
task priorities
and Linux priori-
ties

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2538

Table 459: “Type”
Type “Cyclic” Processing of the task is done cyclically.

Input field Interval Required
Time span after which the task is restarted (task cycle time)
● As a time definition in the format TIME

Example: t#200ms
● As a number

Example: 200 Hint: the number is displayed automatically in the format TIME
when the input field is in focus again.

Note: Deviations of the task from this desired task cycle time are displayed at
runtime as periodic jitter on the Watchdog tab.

Time unit of the interval If only a number and not a time definition is specified in the Interval input field,
then the unit selected here determines the time dimensions.
Example: ms
Note: A task cycle time in µs is always displayed as a number.

Type “Event” Processing of the task starts event-controlled on the rising edge of the event
variable.

Input field “Event” Global variable (Boolean type)
The task starts as soon as the variable value switches from 0 to 1.

Type “External” Processing of the task starts event-controlled on the rising edge of the event
variable.

List box “Event” List with target system-dependent events (Boolean type)
Note: The target system determines which events are supported and offered in
the list box.
Hint: Not to be confused with system events

“Interval” Time definition in TIME format or as a number with a time unit Note: Only
available when the event requires a time definition

“Freewheeling” Processing of the task starts automatically in a continuous loop at program start
and at the end of a complete pass
Note: A cycle time is not defined.

“Status” Processing of the task starts state-triggered by the event variables

Input field “Event” Global variable (Boolean type) When the variable has the state TRUE hat, the
task starts.

NOTICE!
For fieldbuses, a fixed cycle matrix is necessary to assure a determined
behavior. Therefore, you should not use TypeFreewheeling for a bus cycle task.

NOTICE!
Note the following difference between the processing types Status and Event.
If the given event yields TRUE, then the start condition of a task of type Status
is fulfilled. In contrast, the start of a task of type Event requires a switch of the
event from FALSE to TRUE. If the sampling rate of the task scheduler is too
low, then the rising edge of the event can remain unnoticed.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2539

NOTICE!
When setting the task cycle time, you have to identify which bus system is
currently being used. For example, the task cycle time in a CAN bus system
must match the currently set baud rate and the number of frames used in the
bus. In addition, the times set for heartbeat, node guarding, and sync should
always be a multiple of the task cycle time. If not, then CAN frames can be lost.

Table 460: “Watchdog”
Defines the time monitoring for a task. If the target system supports an advanced watchdog configuration, then
the following settings may be predefined in the device description.
● Upper and lower limit
● Default watchdog time
● Time specified as percentage
The default watchdog settings depend on the device.

“Enable” The watchdog is active.
If the task exceeds the currently set “Time” of the watchdog, then the task is
halted with an error status (exception). The application in whose task the error
occurred and its child applications are also halted. In this way, all tasks of the
affected applications are also halted. Then the currently defined “Sensitivity” is
also taken into account. If you activate the option “Update I/Os” in the “PLC
Settings” of the PLC, then CODESYS resets the outputs to the defined default
values.
Possible cases:
● Multiple consecutive timeouts:

Sensitivity: 0, 1 - exception in cycle 1
Sensitivity: 2 - exception in cycle 2
Sensitivity: n - exception in cycle n

● Single timeout: Exception if the cycle time of the current cycle is longer than
(time * sensitivity). Example: Time=t#10ms, Sensitivity=5 (i.e., exception as
soon as the one-time task runs longer than 50 ms)

“Time (e.g. t#200ms)” Watchdog time
Defines (together with “Sensitivity”) the watchdog for a task; description as for
“Enable”.
Depending on the target system, the monitoring time span is given as a per-
centage of the task interval if possible. In this case, the list box for the unit is
disabled and displays “%”.

“Sensitivity” Number
Defines (together with the watchdog) the watchdog for a task; description as for
“Enable”.

Using the functions from the library CmpIecTask.library, you can deactivate
a watchdog for specific PLC cycles. This is useful for cycles that demand more
time due to initialization.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2540

Deactivating/reactivating the watchdog:
hIecTask := RTS_IEC_HANDLE //Declaration of the variable hIecTask
hIecTask := IecTaskGetCurrent(0);
IecTaskDisableWatchdog(hIecTask); // Watchdog disabled
...
IecTaskEnableWatchdog(hIecTask); Watchdog enabled

Example

List of “POU”s that the task calls
The calling order corresponds to the POU order in the list (from top to bottom).

“Add Call” Defines a new program call

“ Open POU” Opens the selected POU

“Move Up”

“Move Down”

Changes the calling order

The normal watchdog of an IEC task is triggered when the execution time of
the IEC task exceeds the watchdog time. The "Omitted Cycle" watchdog is
triggered when the task does not start at all. This is the case when the task
does not execute any cycle at all within the maximum of <Time * Sensitivity> or
<2 * Interval>. The cause could be crowding by other tasks or a failure in the
scheduler, which no longer enables the task.

See also
● Ä Chapter 6.4.1.21.2.29 “Object 'Task Configuration'” on page 2533
● Ä Chapter 6.4.1.21.2.29.4 “Tab 'Monitor'” on page 2536
● Ä Chapter 6.4.1.21.2.29.6 “Tab 'Task Groups'” on page 2537

Object 'Trace'
Symbol:
An object of type “Trace” is used for configuring and displaying application-specific trace data
in one or more charts. At application runtime, value curves of trace variables, which you can
monitor in the trace editor in CODESYS, are recorded on the controller. Requirements are that
a trace configuration has been configured transferred to the controller, and the trace recording
has been started. The recorded data is transferred to the development system and displayed in
diagrams according to the configuration. You can navigate through the data when tracing.

If the controller supports a Trace Manager, then you can use the 'DeviceTrace'
object type in the Trace Manager to access all traces that are running on the
controller.

Double clicking the trace object opens the trace editor. The corresponding toolbar contains the
most important trace commands. The trace variable list shows the variable whose value curve is
recorded.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2541

● (1): Toolbar of the trace editor
● (2): Trace editor
● (3): Trace variable list
● (4): Links for trace configuration

“Configuration”
“Add Variable”

See also
● Ä Chapter 6.4.1.13.3 “Data Recording with Trace” on page 2007
● Ä Chapter 6.4.1.21.2.7 “Object 'DeviceTrace'” on page 2426

See also

● : Ä Chapter 6.4.1.21.3.22.6 “Command 'Download Trace'” on page 2734
● : Ä Chapter 6.4.1.21.3.22.16 “Command 'Start Trace'” on page 2741
● : Ä Chapter 6.4.1.21.3.22.17 “Command 'Stop Trace'” on page 2741
● : Ä Chapter 6.4.1.21.3.22.13 “Command 'Reset Trigger'” on page 2740
● : Ä Chapter 6.4.1.21.3.22.9 “Command 'Mouse Zooming'” on page 2737
● : Ä Chapter 6.4.1.21.3.22.2 “Command 'AutoFit'” on page 2733
● : Ä Chapter 6.4.1.21.3.22.5 “Command 'Cursor'” on page 2733
● : Ä Chapter 6.4.1.21.3.22.3 “Command 'Compress'” on page 2733
● : Ä Chapter 6.4.1.21.3.22.3 “Command 'Compress'” on page 2733
● : Ä Chapter 6.4.1.21.3.22.18 “Command 'Stretch'” on page 2742

At application runtime, the runtime system buffer of the trace component is filled with the
recorded samples. The data is transferred to the development system and stored in its trace
editor buffer. The trace editor accesses this data and displays it in diagrams as a graph over
time. When you close the trace editor, the trace editor buffer will be freed.
Use menu commands for controlling the trace. In addition, you can use menu commands,
keyboard shortcuts, and mouse input for navigating through the data.
See also
● Ä Chapter 6.4.1.13.3.4 “Operating the data recording” on page 2014
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Toolbar of the
trace editor

Trace editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2542

The trace variable list provides an overview of the current trace configuration. In the list, all
charts with the respective trace variables are displayed in a table. When you double-click a
trace variable, the “Trace Configuration” dialog also opens with the variable settings.

A list box opens by means of the “Hide Instance Paths” command.

“Hide Instance Paths” Display of the variable name in the list

● : Variable name with full instance path
Example: PLC_PRG.iCounter

Table 461: Charts
Tabular display of the charts:

“Name” List of charts with the respective variables

● “Chart <n>” : The chart is displayed.
The chart name can be changed by clicking the selected name.

● “<variable>” : The variable is displayed.
The variable name can be changed by clicking the selected name in the line
editor.

When you select a “Chart <n>” in the table, the corresponding chart is also
selected in the editor. This also works the other way around.

“Cursor <n>” Y-value at the cursor position

“Delta” Delta of the Y-value from “Cursor 2” to “Cursor 1”

Multiselection With multiselection, you can use the numpad keys * and / to expand and col-
lapse selected charts.

You can drag the charts and variables to sort them or move them to other
diagrams. When the [Ctrl] key is pressed, the variable is copied. This is also
possible in online mode.

Table 462: Context menu in the trace variable list
“Add Variable” Adds a new trace variable and opens the “Trace Configuration” dialog with its

variable settings. Select a variable in the input field of the “Variable” setting to
trace its value curve.

“Visible” Toggles the visibility of the graph (value curve or trace variable) in the corre-
sponding diagrams:

● : Visible.
● : Invisible.
When multiple charts or variables are selected in the trace variable list by multi-
selection, the visibility can be toggled for these graphs.

“Display Mode” Opens the “Trace Configuration” dialog. Select a configuration item in the “Trace
Record” tree view or “Presentation (Diagrams)”.

“Configuration” Opens the “Trace Configuration” dialog. The “Variable Settings” are displayed on
the right.

See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804

Trace variable
list

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2543

Table 463: With mouse input
User input with the mouse Mouse cursor

symbol during user
input

Effect

Drag the graph along the X-axis. Scrolls trace graphs of all diagrams at the
same time along the time axis (X-axis).

Hold down the [Ctrl] key and drag the
graphs along the Y-axis.

Scrolls the trace graphs of the selected dia-
grams along the Y-axis.

Roll the mouse wheel backwards. Compressed time axis (like the symbol).

Roll the mouse wheel forwards. Stretches time axis (like the symbol).

Press and hold down the [Ctrl] key and roll
the mouse wheel backwards.

 Compresses the Y-axis.

Press and hold down the [Ctrl] key and roll
the mouse wheel forwards.

 Stretches the Y-axis.

Requirement: One or two trace cursors are
activated.
Drag the triangle of a trace cursor to another
position along the time axis.

Refreshes the Y-values in the trace variable
list at the same time
● First value: Y-value at the position of the

left cursor.
● Second value: Y-value at the position of

the right cursor.
● Third value: Difference between both

values.

Requirement: “Mouse zooming” is activated
().
Stretch a rectangle.

Zooms the trace graphs of all diagrams to
the rectangle.

Table 464: With keyboard shortcuts
Shortcut Effect
Requirement: No trace cursor is activated.
[Arrow Left]

[Arrow Right]

Scrolls trace graphs of all diagrams at the same time along
the time axis.

[Arrow Up]

[Arrow Down]

Scrolls the trace graphs of the selected diagrams along the
Y-axis.

Requirement: One or two trace cursors are acti-
vated.
[Alt]+[Arrow Left]

[Alt]+[Arrow Right]

Scrolls trace graphs of all diagrams at the same time along
the time axis.

[-] Compressed time axis (like the symbol).

[+] Stretches the X-axis (like the symbol).

[Ctrl]+[-] Compresses the Y-axis of the selected diagram.

[Ctrl]+[+] Stretches the Y-axis of the selected diagram.

[Tab] Selects the next lower diagram.

Navigating in
the diagram

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2544

Shortcut Effect
Requirement: One or two trace cursors are acti-
vated.
[Arrow Left]

[Arrow Right]

Moves the black trace cursor.

Requirement: Two trace cursors are activated.
[Shift]+[Arrow Left]

[Shift]+[Arrow Right]

Moves the gray trace cursor.

See also
● Ä Chapter 6.4.1.21.3.22.5 “Command 'Cursor'” on page 2733
● Ä Chapter 6.4.1.21.3.22.9 “Command 'Mouse Zooming'” on page 2737
● Ä Chapter 6.4.1.13 “Application at Runtime” on page 1995

Object 'Trend Recording Manager'
Symbol
A “Trend Recording Manager” object makes it possible to save data at runtime in a database for
a long period of time. This data is recorded with the “CmpTraceMgr” runtime system component.
In the device tree, this object is used as a node for trend recordings that are created below an
application. It is available below an application only one time.
See also
● Ä Chapter 6.4.1.13.4 “Data Recording with Trend” on page 2016
● Ä Chapter 6.4.1.21.3.5.1 “Command ‘Add Object’” on page 2598
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545

Object 'Trend Recording'
Symbol:
A “Trend Recording” object is always located below a “Trend Recording Manager” and enables
editing of the trace configuration. At runtime, CODESYS transfers the configuration that is
available to the runtime system component CmpTraceMgr. You can configure an application
with any number of trend recordings.

NOTICE!
Timeout for trend recording
During a trend recording, it can happen that the application task triggers a
timeout that is caught with an exception when transitioning from “Running” to
“Stop”. Causes can be that file operations with the SQLite database are taking
too long or that too many variables are being recorded. This usually happens on
a target device with weak performance.
You can avoid the occurrence of an exception:
– Configure the trend recording with less memory demand so that the amount

of data that is stored is adapted to the target system.
– Reduce the number of variables.

The editor includes the configuration for trend recording. The tree view shows the trend configu-
ration and enables navigation there.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2545

The top entry contains the trend name. When this entry is selected, the “Record Settings”
are displayed next to it. An entry is located here for each variable whose data was recorded
continuously. When a variable is selected, the “Variable Settings” are displayed next to it.

“Add Variable” When you click the link, a new entry is displayed in the trend configuration with
its blank configuration below the “Variable Settings” group.

“Delete Variable” The selected variable is removed. Requirement: A variable is selected.

See also
● Command 'Edit Trend Recording'

The data is recorded in the runtime system component by means of the functionality which is
also used for the trace. The settings that appear here are the same. The options that are not
required here are deactivated.

The settings that affect the trigger are deactivated. Only a trace configuration for a trace editor can configure
triggering.

“Task” Task where data was recorded. Click to open a list box with all tasks available
in the project. In general, the trend recording runs in the same task as the main
program. For example: MainTask

“Recording condition” Condition under which the application records data:
● IEC variable of type INT. The condition is fulfilled for TRUE.
● Bit access to an integer variable. The condition is fulfilled for 1.

As read access to a property.
The contents of a pointer are not permitted.
Note: If no condition is defined, then the recording starts automatically.

“Comment” Comment (example: Data recording of sensor A)

“Resolution” Resolution that the application saves the time stamp
Note: If the task where the trend object is executed has a cycle time of 1 ms or
less, then you should set the resolution of the time stamp to “1 µs”.

“Trend Storage” The “Trend Storage” dialog opens.

“Advanced” The “Advanced Trend Settings” dialog opens.

See also
● Ä Chapter 6.4.1.21.4.17 “Dialog Box 'Trend storage'” on page 2809
● Ä Chapter 6.4.1.21.4.18 “Dialog Box 'Advanced Trend Settings'” on page 2810

'Recording Set-
tings'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2546

ms-its:core_Visualization.chm::/_visu_cmd_trend_edit_trend_recording.htm

“Variable” Variable for recorded value.
● IEC variable with valid data type
● Property
● Reference
● Contents of the pointer
● Array element of a valid data type
● Enumeration of a valid data type
Valid data types are all standard types, except STRING, WSTRING, and ARRAY.

“Parameter” Parameter for the recorded value
The “Input Assistant” dialog lists all valid system parameters in the “Parameters”
category of the “Categories” tab.

Click the symbol to toggle between “Variable” and “Parameter”.

“Recording condition” Condition under which the application records the data of these “Variables”:
● IEC variable of type INT. The condition is fulfilled for TRUE.
● Bit access to an integer variable. The condition is fulfilled for 1.

As read access to a property
The contents of a pointer are not permitted.
Note: If no condition is defined, then the recording starts automatically.

“Attached y axis” Y-axis of the trend diagram that displays the “Variable”. The list box provides the
standard Y-axis and the configured Y-axes.
Requirement: This option is visible only when the “Trend” visualization element
has configured additional Y-axes in the “Edit Display Settings” dialog.

“Display variable name” : The visualization shows the name of the IEC variable in the trend diagram at
runtime. Either alone or in parentheses after the “Description”

: The name of the IEC variable is shown and does not appear in parentheses
after the “Description”.
Requirement: If any text is typed in “Description”, then you can disable the
option.

“Description” Text for the tooltip (example: Sensor A): When a visualization user focuses on
the variable in the trend diagram, the visualization shows the text as a tooltip.
The text is typed into the “GlobalTextList” object and can be localized there.
When the “Display Variable Name” property is activated, then the text is
supplemented with the variable name in parentheses. Example: Sensor A
(PLC_PRG.iSensor_A)
If “Description” does not contain any text, then “Display Variable Name”
is enabled. The name is then alone without parentheses (for example,
PLC_PRG.iSensor_A).

If a legend is assigned to the trend, then the trend variable is labeled in the
legend and shown like the trend is configured here.

“Curve type” ● “Line”
● “Area”:

“Graph color” Color of the curve in the trend diagram

“Line type” ● “Line”: Values are linked to form a line.
● “Step”: Values are linked in the form of steps.
● “None”: Values are not linked.
Requirement: The “Curve type” is “Line”.

'Variable Set-
tings'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2547

“Filling type” ● “No filling”
● “Plain color”:
● “Gradient”

Requirement: The “Curve type” is “Area”.

“Filling color” : The area is filled with the selected color.
Requirement: The “Curve type” is “Area”.

“Transparency” Value (0 to 255) for defining the transparency of the selected color
Example 255: The color is opaque. 0: The color is completely transparent

Requirement: The “Curve type” is “Area”.

“Line width” Value (in pixels)
Example: 1

“Line style” The display of the line is solid, dash, dot, dash-dot, or dash-dot-dot.

“Point type” Display as scatter chart
● “Dot”: Value as a dot.
● “Cross”: Value as a cross.
● “None”: No dot display
Hint: Select “None” for larger size data.

“Activate minimum warning” : Warning when below the lower limit.

“Critical lower limit” If the variable value is below the limit, then the variables are displayed with the
alert color in the trend diagram.

“Color” Warning color on falling below the limit

“Activate maximum warning” : A warning is issued if the upper limit is exceeded.

“Critical upper limit” If the variable value exceeds the limit, then the variables are displayed with the
alert color in the trend diagram.

“Color” Warning color on exceeding the limit

See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Dialog 'Display Settings'
● Visualization Element 'Legend'

See also
● Ä Chapter 6.4.1.21.3.5.1 “Command ‘Add Object’” on page 2598
● Ä Chapter 6.4.1.13.4 “Data Recording with Trend” on page 2016
● Visualization Element 'Trend'

Object 'Trend Recording Task'
Symbol
If you design a visualization with a “Trend” element, then CODESYS automatically extends the
“Task Configuration” with a “Trend Recording Task”. The task is below an application one time at
most and calls the
VisuTrendStorageAccess.GlobalInstances.g_TrendRecordingManager.CyclicC
all program to run the trend recording manager.

See also
● Ä Chapter 6.4.1.21.3.5.1 “Command ‘Add Object’” on page 2598
● Ä Chapter 6.4.1.13.4 “Data Recording with Trend” on page 2016

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2548

ms-its:core_visualization.chm::/_visu_cmd_trend_configure_appearance_settings.htm
ms-its:core_Visualization.chm::/_visu_elem_legend.htm
ms-its:core_Visualization.chm::/_visu_elem_trend.htm

Object 'Unit Conversion'
Symbol
A “Unit Conversion” object is used to define a conversion rule. The following table lists all
defined conversion rules. You can edit a conversion rule in the input fields listed below the table.

“Name” <name> : <name>_Impl is the name of the conversion rule. CODESYS auto-
matically implements the entry as a function block <name>_Impl and instances
it as <name>.

“Type” Type of conversion rule
● “Single scaling (offset)”: adds an offset to the input variable. Result :=

Input + Offset
● “Single scaling (factor)”: multiplies the input variable by a factor. Result :=

Input * Factor
● “Linear scaling 1 (factor and offset)”: converts the input variable with a factor

and offset. Result := Input * Factor + Offset
● “Linear scaling 2 (Base and target range)”: converts the input variable for the

output value to be within a target range. CODESYS calculates the functional
linear equation internally.

● “User defined conversion”: configures a user-defined conversion rule with
IEC operators. The input variable is rValue.

● “Switchable conversion”: defines a conversion rule that CODESYS executes
independent of any specified language or variable.

“Setting” Displays the configured conversion rule.

“Condition” ● “TRUE”: CODESYS always executes the conversion.
● “Language” If the language in the visualization is the language defined here,

then CODESYS executes the conversion. The current visualization language
is located in the VisuElems.CurrentLanguage variable.

● “Variable”: If the comparison is TRUE, then CODESYS executes the conver-
sion rule. CODESYS can pass the comparison for a constant, variable, or
IEC expression.
You can edit the comparison below the table in the “Condition Setting”.

“Condition Setting” If you select “TRUE” as the “Condition”, then the field is hidden.
If you configure “Language” as the “Condition”, then the field shows the current
configuration, for example en,de.

If you select “Variable” as the “Condition”, then the field shows the current con-
figuration, for example PLC_PRG.bActual=PLC_PRG.bSet.

You can edit the current condition setting below the table in the input fields for
“Condition Setting”.

The input variable is added with an offset.

“Offset” ● as a number, including REAL
● as an IEC variable

The input variable is multiplied by the factor.

Table of conver-
sion rules

Input field
'Single scaling
(offset)'

Input field
'Single scaling
(factor)'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2549

“Factor” ● as a number, including REAL
● as an IEC variable

The input variable is converted with the linear equation defined below.

“Factor” ● as a number, including REAL
● as an IEC variable

“Offset” ● as a number, including REAL
● as an IEC variable

The input variable is converted to be within a target range. CODESYS internally creates a linear
equation from the following input values.

“Base start value” Lowest possible value for the input variable.
● as a number, including REAL
● as an IEC variable

“Base end value” Highest possible value for the input variable.
● as a number, including REAL
● as an IEC variable

“Target start value” Lowest possible value for the output variable.
● as a number, including REAL
● as an IEC variable

“Target end value” Highest possible value for the output variable.
● as a number, including REAL
● as an IEC variable

Conversion of electric current from a 10-bit input signal to an amperage range of 4-20 mA

“Base start value” 0
“Base end value” 1024
“Target start value” 4.0
“Target end value” 20.0

Example

“Convert :=” Conversion rule as mathematical function of rValue The input variable is
rValue.

“Reverse :=” Reverse function of the function defined in “Convert”

Input field 'Li-
near scaling 1
(factor and
offset)'

Input field 'Li-
near scaling 2
(Base and target
range)'

Input field 'User
defined conver-
sion'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2550

Use this conversion rule when you want to apply a conversion that is language-specific or
variable-dependent.

“Switchable conversion name” Selected from a list of predefined conversion rules. Double-click directly into the
field for editing.

“Condition setting”“” Configured condition. Click into the input fields in “Condition setting” to edit the
condition.

The Conv_A_LanguageDependent conversion rule that defines which conversion rule is
executed for the English or German language.

“Name” “Type” “Setting” “Condition” “Condition
setting”

Conv_A_Langu
ageDependent

“Switchable
conversion”

Conv_AInInch
, Conv_AInMM

“Language”

“Switchable conversion name” “Condition setting”
Conv_AInInch en
Conv_AInMM de

Example

See also
●

6.4.1.21.3 Menu Commands
General

By default the most important commands are already provided in the CODESYS user inter-
face. If you want to customize the menu configuration individually, choose command “Tools
è Customize è Menu”.
When you have installed any packages or add-ons, additional menus and commands might be
available.

Input field
'Switchable con-
version'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2551

Menu 'File'
6.4.1.21.3.2.1 Command ‘New Project’.. 2552
6.4.1.21.3.2.2 Command 'Open Project'... 2553
6.4.1.21.3.2.3 Command ‘Close Project’.. 2554
6.4.1.21.3.2.4 Command 'Save project'.. 2554
6.4.1.21.3.2.5 Command 'Save Project as'.. 2555
6.4.1.21.3.2.6 Command 'Save Project and Install into Library Repository'... 2556
6.4.1.21.3.2.7 Command 'Save Project as Compiled Library'........................ 2556
6.4.1.21.3.2.8 Command 'Save/Send Archive'... 2557
6.4.1.21.3.2.9 Command 'Extract Archive'... 2558
6.4.1.21.3.2.10 Command 'Source Upload'.. 2559
6.4.1.21.3.2.11 Command 'Source Download'... 2560
6.4.1.21.3.2.12 Command 'Print'.. 2560
6.4.1.21.3.2.13 Command 'Print Preview'.. 2560
6.4.1.21.3.2.14 Command 'Page Setup'... 2560
6.4.1.21.3.2.15 Command ‘Recent Projects’.. 2561
6.4.1.21.3.2.16 Command 'Exit'.. 2561

Command ‘New Project’
Symbol: , Shortcut: [Ctrl] + [N]

Function: This command opens the “New Project” dialog box for the creation of a new project
file.
Call: “File” menu

Function: Selection of a project category and a project template.
Call: “File è New Project”

Depending on the template, you obtain a project that is automatically equipped with a certain
range of objects.

Table 465: “Categories”
“Libraries”

“Projects”

Table 466: “Templates”
“Projects” category::

“Empty project” Contains only the “Project Settings” object

“Standard project” Contains a basic range of objects and libraries. A wizard assists with the creation
– see below.

“Standard project with
Application Composer”

Contains a basic range of objects and libraries for working with the Application
Composer. A wizard assists with the creation.

“Libraries” category:

“CODESYS container library ” Library that contains only further libraries, but no function blocks of its own.

“CODESYS interface library ” Library only for the definition of the interface of a software component. Thus
contains only objects that do not generate any code (constants, structures, inter-
faces, etc.).

“Empty library” Contains only the “Project Settings” object

'New Project'
dialog box

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2552

“ External CODESYS library ” Target-system-specific library which is implemented as part of the runtime
system (in ANSI C or C++).

“Name” Name of the project to be created. Depending on the template, a standard name
appears. The numerical suffix ensures the uniqueness of the name in the file
system.
You can change the file name, taking into consideration the file path conventions
of the operating system. Periods are not permitted in names.
CODESYS automatically adds the appropriate file extension to the selected
template.

“Location” Location for the new project file.

 opens a dialog box for browsing the file system.

 displays the history of previously entered paths

“OK” CODESYS opens a new project. An error symbol next to the input field draws
attention to missing specifications. If you place the mouse pointer on it, a tooltip
appears, informing you what to do.

Function: Wizard for the creation of a standard project.
Call: Command “File è New Project”; in the “New Project” dialog box, select the “Projects”
category and the “Standard project” template and click on “OK”.

“Device” Selection list with PLC devices. The selected device is inserted as an object in
the Devices view below the root node

“PLC_PRG in” Selection list with the programming languages. The automatically inserted pro-
gram PLC_PRG is created in the selected language.

Command 'Open Project'
Symbol: ; shortcut: [Ctrl]+[O]

Function: The command opens the default dialog for loading a project. You can search for a
CODESYS project in the file system and open it in the development system.
Call: Menu bar: “File”

“File type” Type of the CODESYS project to be loaded to the development system

“All supported files” Filters by all projects which CODESYS can load
Hint: For example, you can select PRO projects which have been created with
CoDeSys V2.3. These kinds of projects are also converted.

File extension project Filters by projects which have been created with CODESYS V3

File extension
projectarchive

Filters by project archives which have been created with CODESYS V3

“Standard
Project” dialog
box

Dialog 'Open
Project'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2553

File extension library Filters by library projects which have been created with CODESYS V3

“Open” Loads the project you selected to CODESYS
Note: Depending on the state of your CODESYS installation, it may be neces-
sary to update or supplement the installation. If this is the case, then first open
another “Open Project” dialog with options for installation management.

See also
● Ä Chapter 6.4.1.3.2 “Opening a V3 Project” on page 1808
● Ä Chapter 6.4.1.3.3 “Opening a V2.3 project” on page 1809

Command ‘Close Project’
Function: This command closes the currently opened project. CODESYS remains opened.
Call: “File” menu. In addition implicitly when opening a new/other project, while another project
is still open.
If the project contains unsaved changes, a query appears, asking whether the project should be
saved.
If you have not yet explicitly saved the project, a query appears asking whether you wish to
delete the project files.

Command 'Save project'
Symbol: , shortcut [Ctrl] + [S]

Function: this command saves the project file.
Call: “File” menu
This command saves the project file with the current project name, which appears in the title bar
of the main window. If the project has been changed since it was last saved, the project name is
given an asterisk.
The command is not available if the project is read-only.
Write protection exists if
● the project is identified in the project information (summary) as 'Released'
● the option “Open read-only” was selected in the dialog box “Open Project” when opening the

project
Write protection is indicated by a line in the top right corner of the main window. A mouse-click
on this line brings up a menu with commands for the possible actions:
● “Save project under a different file name on the disk”: a mouse-click on this option leads to

'Save file as…'
● “Exit read-only mode”: appears only if the option “Open read-only” was selected when

opening the project.
● “Remove read-only attribute from the project on the disk”: appears only if the project file had

been provided with the property 'Read-only' on the disk at the time of opening.
● “Remove identification 'Released' in the project information”: appears only if this attribute is

currently set.
Backup copy
Optionally a backup copy of the project file can be created. If the option “Create backup copy”
is activated in the option dialog box 'Load and Save', the project is additionally copied to a file
<projectname.backup> each time the project is saved.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2554

See also
● Ä Chapter 6.4.1.21.3.2.5 “Command 'Save Project as'” on page 2555
● Ä Chapter 6.4.1.6.9 “Saving the Project” on page 1831
● Ä Chapter 6.4.1.21.4.14.17 “Dialog 'Options' – 'Load and Save'” on page 2791

Command 'Save Project as'
This command opens the standard Windows dialog box for saving a file. The project can be
stored with the desired location and file type.

“File type” For both normal projects and library projects, this drop-down list contains the
respective versions of the development system for which the project can be
saved. If the current project contains add-ons that are not available in the
selected memory format (profile), then the “Extend Profile” dialog box opens.
● “Project files (CODESYS v<version>) (*.project)”: The project is saved as

a CODESYS project file "<project name>.project " for the currently used or
selected version of the development system.

● “Library files (CODESYS v<version>) (*.library)”: The project is saved as
a CODESYS library file "<project name>.library" for the currently used or
selected version of the development system.

If the project should be opened later in an older version, then it makes sense to
save for precisely this version, as you will then be informed immediately about
possible data loss.

Before saving a project as a library:
● Make sure that the rules for creating libraries have been followed.
● If it is to be possible to configure global constants provided by the library at a later time in an

application, then you must define them in a parameter list. A parameter list is a special type
of global variable list.

● When saving the project, no automatic check for errors is performed.
● Unlike CoDeSys V2.3, there is no distinction between 'external' and 'internal' libraries. Now

you can define in the properties of each individual project object whether or not it should be
treated as 'external'.

● Consider whether the library created is to be installed in the system library repository
immediately. If so, then use the command 'Save project and install in the library repository'.

● If you want to protect the library project from later changes, then set the “Released” attribute
in the “Project Information” dialog box. At the next attempt to save the project, a corre-
sponding message will be displayed and the user must respond to the write protection with
deliberate actions.

● If you save the project as a version of the development system other than the one currently
in use, then you will be informed first about possible data loss.

In this dialog box, the selected profile (memory format) can be extended by the add-ons that are
contained in the current project. The profile is saved temporarily and then deleted after being
saved or exported.

“Add to profile” : The current profile is extended by the add-on so that the add-on data of the
current project is also saved.

“Add-on” The add-on of the current project that is not contained in the selected memory
format.

“Version” Version of the “Add-on” included in the current profile.
If several versions are installed, then the version can be selected.

Dialog box 'Ex-
tend Profile'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2555

“Save profile” Opens the “Enter Profile Name” dialog box. In this dialog box, specify the name
for the new profile. The new profile is saved permanently at $ProgramData$/
$PRODUCT$/CustomInformationalProfiles.

“Use saved profile” The profile which was permanently saved in “Save profile” is used for saving or
exporting the current project.

● Ä Chapter 6.4.1.21.3.2.4 “Command 'Save project'” on page 2554
● Ä Chapter 6.4.1.6.9 “Saving the Project” on page 1831
● Ä Chapter 6.4.1.21.4.14.17 “Dialog 'Options' – 'Load and Save'” on page 2791
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035
● Ä Chapter 6.4.1.21.3.2.6 “Command 'Save Project and Install into Library Repository'”

on page 2556

Command 'Save Project and Install into Library Repository'
Function: this command saves the project as a library in the 'system' library repository.
Call: Main menu “File”.
With this command CODESYS saves the project as a library in the 'system' library repository.
This is an extension to the saving of a project as a library file using the “Save Project as”
command. The library is installed on the local system and is immediately available for insertion
into a project.
See also
● Ä Chapter 6.4.1.21.3.2.5 “Command 'Save Project as'” on page 2555

Command 'Save Project as Compiled Library'
Function: The command saves a library project in encrypted form.
Call: Menu bar: “File”

The command opens the default dialog for saving a file in the file system. The “Compiled
CODESYS Libraries” file type is already preset. The file extension is .compiled-library-v3
or .compiled-library (CODESYS < SP15). In this format, then source code of the library
POU is not visible when the library is used in a project.
If the “Enforce signing of compiled libraries” option is selected in the “Security Screen” view
on the “User” tab, then a library project has to be provided with a digital certificate-based signa-
ture when being saved. When a suitable certificate is available, it is provided in the “Security
Screen” on the “User” tab in the “Digital Signature” section. In the “Project Information”, on the
“Summary” tab, a “Library compatibility” with a CODESYS version >= V3 SP15 is set by default.
In this case, the project file is stored with the file extension .compiled-library-v3 when
being saved as a compiled and signed library. If you still have not specified a suitable valid
certificate for your user profile in the “Security Screen”, then a dialog prompt opens next for you
to do this. Afterwards, you can execute the save command again.
In all other respects, compiled library files behave just like *.library files, and therefore they
can be installed and referenced with the same steps.
We recommend the use of compiled libraries signed with certificates. Besides the protection of
the source code and the unauthorized use of a library, less memory is also used which therefore
results in shorter loading times.

See also

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2556

If you have the corresponding help files with translations, then as of CODESYS
V3 SP15 you can extend the library documentation with the translation into
other languages. This is done as follows:

Place the files created for the new languages __lmd__<language>.aux in
a directory <library name>.lmd parallel to the library project <library
name>.compiled-library-v3. If the files are correct, then they are included
in the compiled library file when saving the library project by means of the “Save
Project as Compiled Library” command.

Example: The directory standard.lmd is exists parallel to the library file
standard.compiled-library-v3 and contains the file __lmd__fr.aux
with the French translation of the library documentation. After the compiled
library is saved, the French version of the documentation is also available in the
Library Manager.

See also
● Ä “Tab 'Summary'” on page 2515
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035
● Ä Chapter 6.4.1.21.3.2.6 “Command 'Save Project and Install into Library Repository'”

on page 2556

Command 'Save/Send Archive'
Function: This command opens the dialog “Project Archive” for the configuration of project
archives.
Call: Menu bar: “File è Project Archive”

An archive file (*.projectarchive) contains all files contained and referenced in the currently
opened project. It can either be saved or dispatched as an e-mail attachment. The dispatch by
email is very helpful for providing an employee with all project-relevant files. The file can be
simply unpacked again with the command “Extract Archive”.

NOTICE!
The archiving function is not intended for the storage of a project, but rather for
the simple summarizing of all project-relevant files.

See also
● Ä Chapter 6.4.1.6.10 “Saving/Sending the project archive” on page 1832
● Ä Chapter 6.4.1.21.3.2.9 “Command 'Extract Archive'” on page 2558

The dialog displays all the categories that can be added to the project archive. In this dialog,
complete categories or individual objects from the categories can be added to the project
archive by setting a check mark ().

Entries that are display as red in the list require your attention. Move the mouse
pointer over this library for more information.

Dialog 'Project
Archive'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2557

“Additional Files” Opens the dialog “Additional Files”. Here, further files can be added to the
archive with the “Add” button.

“Comment” Opens the "Comment" dialog. Here, comments can be added to the archive.

“Save” Creates the archive file and saves it. The storage location and the archive name
are specified in the subsequent dialog

“Send” Creates a temporary archive file that is attached to an empty e-mail. A cor-
rect installation of the MAPI (Messaging Application Programming Interface) is
required for the successful execution of this operation. Failure is documented
by the display of a corresponding error message. The temporary archive is
automatically deleted after sending the e-mail.

Command 'Extract Archive'
Function: The command extracts a project archive, that was created with the command “Save/
Send Archive”. You have to configure which objects of the archive CODESYS shall extract and
in which directory of the file system they will be copied.
Call: Main menu “File è Project Archive”

The file extension of an archive is .projectarchive.

After the archive is selected, the dialog “Extract Project Archive” opens to configure the extract
parameters.

This dialog box shows the contents of the project archive. You can exclude complete categories
or single objects from categories by clearing the check boxes () from the extraction.

Table 467: “Locations”
“Extract into the same folder
where the archive is located”

The archive is extracted to the same directory.

“Extract into the following
folder”

The contents of the archive are extracted to the given path.

“Advanced” Opens the “Advanced” dialog box for you to define where special and additional
files from the archive are extracted.

Table 468: “Contents”
“Items” Shows the contents of the archive structured in object categories.

: The object is extracted.

: The object is not extracted.

“Comment” Comment that was entered when creating the project archive

“Extract” If an extracted file has the same name as an existing file in the target directory,
then a dialog box opens, prompting whether the local file should be replaced.
The decision can be applied automatically to any additional conflicting names. In
this case, you have to select the “Apply to all objects and files” check box.

Dialog Box 'Ex-
tract Project
Archive'

Dialog 'Advan-
ced'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2558

Table 469: “Repositories”
“Install devices into” Drop-down list with currently available repositories. Select the repositories, in

which CODESYS shall install the devices and the libraries of the archive.“Install libraries into”

Table 470: “Additional Files”
By default the "additional files" are set to “Do not extract”. Select the entries in the table and chose one of the
following options:

“Extract into project folder” Folder of the project file

“Extract into folder” User defined folder

“Do not extract” Default

See also
● Ä Chapter 6.4.1.21.3.2.8 “Command 'Save/Send Archive'” on page 2557

Command 'Source Upload'
Function: This command loads the project source code (as project archive) from the controller.
Call: Main menu “File”.
Requirement: The network path for the controller must be configured.
After you execute the command, an overview opens with all devices in the network. Select a
controller from this overview. The dialog box “Extract Project Archive” then opens with export
settings.
See also
●
● Ä Chapter 6.4.1.21.3.2.11 “Command 'Source Download'” on page 2560

This dialog box shows the contents of the project archive. You can exclude complete categories
or single objects from categories by clearing the check boxes () from the extraction.

Table 471: “Locations”
“Extract into the same folder
where the archive is located”

The archive is extracted to the same directory.

“Extract into the following
folder”

The contents of the archive are extracted to the given path.

“Advanced” Opens the “Advanced” dialog box for you to define where special and additional
files from the archive are extracted.

Table 472: “Contents”
“Items” Shows the contents of the archive structured in object categories.

: The object is extracted.

: The object is not extracted.

“Comment” Comment that was entered when creating the project archive

Dialog Box 'Ex-
tract Project
Archive'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2559

“Extract” If an extracted file has the same name as an existing file in the target directory,
then a dialog box opens, prompting whether the local file should be replaced.
The decision can be applied automatically to any additional conflicting names. In
this case, you have to select the “Apply to all objects and files” check box.

Command 'Source Download'
Function: This command loads the project source code (as project archive) to the controller.
Call: Main menu “File”.
Requirement: The network path for the controller must be configured.
After you execute the command, an overview opens with all devices in the network. Select
a controller from this overview. Then the Archiv.prj project archive is downloaded to this
controller. You can click “Source Upload” to upload the complete source code to the CODESYS
development system at a later time.
If you are already connected to a controller (in online mode), then the “Source Download to
Connected Device” command is also available for this process.
See also
●
● Ä Chapter 6.4.1.21.3.2.10 “Command 'Source Upload'” on page 2559
● Ä Chapter 6.4.1.21.3.7.7 “Command 'Source Download to Connected Device'”

on page 2631

Command 'Print'
Symbol:
Function: This command opens the default Windows dialog box for printing documents.
Call: Main menu “File”

See also
● Ä Chapter 6.4.1.21.4.12.7 “Dialog 'Project Settings' - 'Page Setup'” on page 2772

Command 'Print Preview'
Function: This command opens a print preview for the currently open element.
Call: Main menu “File”

Requirement: An object is open in the editor.
See also
● Ä Chapter 6.4.1.21.4.12.7 “Dialog 'Project Settings' - 'Page Setup'” on page 2772
● Ä Chapter 6.4.1.21.3.2.12 “Command 'Print'” on page 2560

Command 'Page Setup'
Symbol:
Function: This command opens the “Page Setup” dialog box for configuring the layout of the
printed version of the project contents.
Call: Main menu “File è Page Setup”

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2560

See also
● Ä Chapter 6.4.1.21.4.12.7 “Dialog 'Project Settings' - 'Page Setup'” on page 2772
● Ä Chapter 6.4.1.21.3.2.12 “Command 'Print'” on page 2560

Command ‘Recent Projects’
Function: Opens the list of the projects used recently, from which you can select a project to
open.
Call: “File” menu

Command 'Exit'
Shortcut: [<Alt>]+[<F4>]

Function: this command exits from the programming system. If a project is currently opened
that has been changed since it was last saved, a dialog box opens asking whether the project
should be saved.
Call: “File” menu

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2561

Menu 'Edit'
6.4.1.21.3.3.1 Standard Commands.. 2562
6.4.1.21.3.3.2 Command 'Find', 'Find in Project'.. 2563
6.4.1.21.3.3.3 Command 'Replace', 'Replace in Project'................................ 2564
6.4.1.21.3.3.4 Command 'Find Next'.. 2565
6.4.1.21.3.3.5 Command 'Find Next (Selection)'.. 2565
6.4.1.21.3.3.6 Command 'Find Previous'.. 2565
6.4.1.21.3.3.7 Command 'Find Previous (Selection)'..................................... 2566
6.4.1.21.3.3.8 Command 'Insert File as Text'... 2566
6.4.1.21.3.3.9 Command 'Overwrite Mode'.. 2566
6.4.1.21.3.3.10 Command 'View Whitespace'.. 2566
6.4.1.21.3.3.11 Command 'View Indentation Guides'..................................... 2567
6.4.1.21.3.3.12 Command 'Go to Line'... 2567
6.4.1.21.3.3.13 Command 'Make Uppercase'.. 2567
6.4.1.21.3.3.14 Command 'Make Lowercase'.. 2567
6.4.1.21.3.3.15 Command 'Go to Matching Bracket'...................................... 2568
6.4.1.21.3.3.16 Command 'Select to Matching Bracket'................................. 2568
6.4.1.21.3.3.17 Command 'Expand All Folds'... 2568
6.4.1.21.3.3.18 Command 'Collapse All Folds'... 2568
6.4.1.21.3.3.19 Command 'Comment Out Selected Lines'............................. 2569
6.4.1.21.3.3.20 Command 'Uncomment Selected Lines'................................ 2569
6.4.1.21.3.3.21 Command 'Enable Inline Monitoring'..................................... 2569
6.4.1.21.3.3.22 Command 'Toggle Bookmark'.. 2569
6.4.1.21.3.3.23 Command 'Next Bookmark (Active Editor)'........................... 2570
6.4.1.21.3.3.24 Command 'Next Bookmark'... 2570
6.4.1.21.3.3.25 Command 'Previous Bookmark (Active Editor)'..................... 2570
6.4.1.21.3.3.26 Command 'Previous Bookmark'.. 2570
6.4.1.21.3.3.27 Command 'Clear All Bookmarks (Active Editor)'................... 2571
6.4.1.21.3.3.28 Command 'Clear All Bookmarks'... 2571
6.4.1.21.3.3.29 Command 'Browse Cross References'.................................. 2571
6.4.1.21.3.3.30 Command 'Browse Global Cross References'...................... 2571
6.4.1.21.3.3.31 Command 'Browse Call Tree'.. 2572
6.4.1.21.3.3.32 Command 'Auto Declare'... 2572
6.4.1.21.3.3.33 Command 'Input Assistant'.. 2574
6.4.1.21.3.3.34 Command 'Go to Source Position'... 2575
6.4.1.21.3.3.35 Command 'Next Message'... 2576
6.4.1.21.3.3.36 Command 'Previous Message'.. 2576
6.4.1.21.3.3.37 Command 'Go to Definition'... 2576
6.4.1.21.3.3.38 Command 'Go To Reference'.. 2576
6.4.1.21.3.3.39 Command 'Go to Instance'.. 2577
6.4.1.21.3.3.40 Command 'Refactoring' - 'Rename <...>'............................... 2577
6.4.1.21.3.3.41 Command 'Refactoring' - 'Update Referenced Pins'............. 2578
6.4.1.21.3.3.42 Command 'Refactoring' - 'Add Variable'................................ 2578
6.4.1.21.3.3.43 Command 'Refactoring' - 'Remove <variable>'..................... 2580
6.4.1.21.3.3.44 Command 'Refactoring' - 'Reorder Variables'........................ 2581
6.4.1.21.3.3.45 Command 'Advanced' - 'Format Document'.......................... 2581

Standard Commands
CODESYS provides the following standard commands:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2562

● Undo: , shortcut: [Ctrl] + [Z]
● Redo: , shortcut: [Ctrl] + [Y]
● Cut: , shortcut: [Ctrl] + [X]
● Copy: , shortcut: [Ctrl] + [C]
● Paste: , shortcut: [Ctrl] + [V]
● Delete: , shortcut: [Ctrl]
● Select all: shortcut: [Ctrl] + [Ctrl]

Not all editors support the “Insert” command. In some editors it can be used with limitations.
Graphical editors only support the command if the pasted elements will create a valid construct.
In object trees like POUs or device view the command refers to the currently selected object.
Multi selection is possible.

Command 'Find', 'Find in Project'
Symbol ; keyboard shortcut: [Ctrl]+[F]

Symbol , keyboard shortcut [Ctrl]+[Shift]+[F]

Function: These commands scan the project or parts of it for a specified character string.
Call: Menu bar: “Edit è Find Replace”

This command opens the “Find” dialog where the searched character string is specified and the
search options are defined.

“Search for” Character string to be searched.

“Match case”: : The search considers uppercase and lowercase.

“Match whole word”: : Only character strings are found that exact matches.

“Search up”: : The specified search range runs upwards.

: The specified search range runs downwards.

“Use regular expressions”: Use the button to receive support when specifying regular expressions.

“Search in” : Drop-down list with the areas of the project to be searched:
● “Active editor”
● “All open editors”
● “Selected objects & Subobjects”
● “Entire project”
● “Entire project & Uncompiled libraries”
● “Selection only”

: Opens a dialog where you set the areas of the project to be searched (see
below)

“Find next” Start the search

“Find all” All search results are listed in the message view with their object path, project
name, object name, and object position. Possible additional information for posi-
tion: “(Decl)” = Declaration part of the object; “(Impl)” = Implementation part of
the object
Double-clicking the entry in the list opens the match position in the respective
object editor.

“Replace” Switches to the “Replace” dialog

Dialog 'Find'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2563

The color of the search result markings can be customized in the options of the
text editor. This is done by means of the parameter “Selection color” - “Inactive”
in the “Text Area” tab.

See also
● Ä “Tab 'Text Area'” on page 2799

“Entire project” All editable positions in all objects of the project are searched.

“Entire project and all
uncompiled libraries”

All editable positions in all objects of the project, including integrated uncompiled
libraries, are searched.

“Within the following objects” Only the editable positions within the objects defined here are searched:

● “Scheme”: The “Save” command saves the current search configuration by
the specified name. All saved schemes are available in the drop-down list
().

● “Object types”: : The object is searched.
● “Name filter”: Name filter for the searched objects. The placeholder "*" can

be used.
Example: Filter "*CAN*": All objects are searched that have "CAN" in the
name.

“All open editors” All editors are searched that are currently open in a window.

“Active editor” Only the editor is searched where the cursor currently is.

“Selection only” Only the text is searched that is currently selected in an object.

See also
● Ä Chapter 6.4.1.21.3.3.3 “Command 'Replace', 'Replace in Project'” on page 2564
● Ä Chapter 6.4.1.9.15 “Searching and replacing in the entire project” on page 1910

Command 'Replace', 'Replace in Project'
Symbol ; keyboard shortcut: [Ctrl]+[H]

Symbol , keyboard shortcut [Ctrl]+[Shift]+[H]

Function: These commands scan the project or parts of it for a specified character string and
replaces it.
Call: Menu bar: “Edit è Find Replace”

Requirement: The application is in online mode.
This command opens the “Replace” dialog where the search and replace character strings are
specified and the search options are defined.

Table 473: In addition to the options of the “Search” dialog, the following settings are still possible:
“Replace with” Input field for the new character string.

“Replace” Each next found string is highlighted in the editor and replaced (step-by-step
replace).

Dialog for set-
ting the objects
to be searched

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2564

“Replace all” All found strings are replaced at one time without them being displayed in the
editors.

“Leave changed objects open
after "Replace all"”

The editors of the found objects remain open.

Replacement in referenced libraries is not possible.

See also
● Ä Chapter 6.4.1.21.3.3.2 “Command 'Find', 'Find in Project'” on page 2563
● Ä Chapter 6.4.1.9.15 “Searching and replacing in the entire project” on page 1910

Command 'Find Next'
Symbol ,keyboard shortcut [F3]

Function: During the search for a certain string within the project, this command selects the
next match at its position in the respective editor.
Call: Menu “Edit è Search Replace”

Requirement: You have already started searching the project for a certain string by using the
commands “Find” or “Replace”.
See also
● Ä Chapter 6.4.1.21.3.3.2 “Command 'Find', 'Find in Project'” on page 2563
● Ä Chapter 6.4.1.21.3.3.3 “Command 'Replace', 'Replace in Project'” on page 2564
● Ä Chapter 6.4.1.9.15 “Searching and replacing in the entire project” on page 1910

Command 'Find Next (Selection)'
Keyboard shortcut [Ctrl] + [F3]

Function: The command searches the project for the next string matching the string which is
currently selected or in which you have currently placed the cursor.
Call: Menu “Edit è Find Replace”

Requirement: You have the cursor placed in an editable string in your project, or you have
selected an editable string.
See also
● Ä Chapter 6.4.1.21.3.3.2 “Command 'Find', 'Find in Project'” on page 2563
● Ä Chapter 6.4.1.21.3.3.3 “Command 'Replace', 'Replace in Project'” on page 2564
● Ä Chapter 6.4.1.9.15 “Searching and replacing in the entire project” on page 1910

Command 'Find Previous'
Symbol , keyboard shortcut [Shift] + [F3]

Function: During the search for a certain string within the project, this command selects the
next match at its position in the respective editor.
Call: Menu “Edit è Search Replace”

Requirement: You have already started searching the project for a certain string by using the
commands “Find” or “Replace”.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2565

See also
● Ä Chapter 6.4.1.21.3.3.2 “Command 'Find', 'Find in Project'” on page 2563
● Ä Chapter 6.4.1.21.3.3.3 “Command 'Replace', 'Replace in Project'” on page 2564
● Ä Chapter 6.4.1.9.15 “Searching and replacing in the entire project” on page 1910

Command 'Find Previous (Selection)'
Keyboard shortcut [Ctrl] + [Shift] + [F3]

Function:The command searches the project for the previous string matching the string which
is currently selected or in which you have currently placed the cursor.
Call: Menu “Edit è Find Replace”

Requirement: You have the cursor placed in an editable string in your project, or you have
selected an editable string.
See also
● Ä Chapter 6.4.1.21.3.3.2 “Command 'Find', 'Find in Project'” on page 2563
● Ä Chapter 6.4.1.21.3.3.3 “Command 'Replace', 'Replace in Project'” on page 2564
● Ä Chapter 6.4.1.9.15 “Searching and replacing in the entire project” on page 1910

Command 'Insert File as Text'
Function: This command copies the contents of a text file to the active editor as the current
cursor position.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Text Editor”).
Requirement: The file must have the extension .txt. The command is available in a text editor
only.
Many development environments and text processing applications provide the option of
exporting code and text as a plain text file. This command can copy the contents of this file
to the editor.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'Overwrite Mode'
Shortcut: [Insert]

Function: This command activates the overwrite mode.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened.
If the overwrite mode is activated, characters in front of the cursor are overwritten when entering
new characters. If the overwrite mode is deactivated, characters are inserted and existing
characters in front of the cursor are retained.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'View Whitespace'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2566

Function: This command causes control characters for spaces and tabs to be shown.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened.
CODESYS visualizes spaces by a period and tabs by an arrow.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'View Indentation Guides'
Function: This command activates the indentation help lines.
Call: Menu “Edit è Extended”

Requirement: A text editor is opened.
If the indentation help lines are activated, a broken line is inserted for each manual indentation
in the code. This facilitates the overview of the different levels in the code. You can insert
manual indentations with the [Tab] key.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'Go to Line'
Function: With this command the cursor jumps to a defined line in the code.
Call: Menu “Edit è Extended”

Requirement: A text editor is opened.
This command opens a dialog box with an input field “Line number”.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'Make Uppercase'
Shortcut: [Ctrl]+[Shift]+[U]

Function: This command converts all lowercase letters in the selected code into uppercase
letters.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened and code is selected, or the declaration editor is opened
and variable declarations are selected.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'Make Lowercase'
Shortcut: [Ctrl]+[U]

Function: This command converts all uppercase letters in the selected code into lowercase
letters.
Call: Menu “Edit è Advanced”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2567

Requirement: a text editor is opened and code is selected, or the declaration editor is opened
and variable declarations are selected.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'Go to Matching Bracket'
Function: This command makes the cursor jump to the other part of the selected code paren-
thesis.
Call: Menu “Edit è Advanced”

Requirement: A text editor is opened and the cursor is positioned at an opening or closing code
parenthesis. If you position the cursor at a code parenthesis, CODESYS displays the corre-
sponding parenthesis in color, provided you have activated the option “Associated parentheses”
in the CODESYS options in the “Text Editor” category, “Text Area” tab.
See also
● Ä “Tab 'Text Area'” on page 2799

Command 'Select to Matching Bracket'
Function: This command selects the entire code section within the currently selected code
parentheses.
Call: Menu “Edit è Extended”

Requirement: A text editor is opened and the cursor is positioned at an opening or closing code
parenthesis. If you position the cursor at a code parenthesis, CODESYS displays the corre-
sponding parenthesis in color, provided you have activated the option “Associated parentheses”
in the project options in the “Text Editor” category, “Text Area” tab.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Command 'Expand All Folds'
Function: This command expands all collapsed code segments in the textual editor or result
locations in the cross-reference list so that the code and all search locations are displayed in full
again.
Requirement: A textual editor is active and indentation is activated in the “Options” (“Text
Editor” category); or the cross-reference list is active.
Call: Textual editors: main menu“Edit è Advanced”, or right-click. In the cross-reference list:
right-click.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798
● Ä Chapter 6.4.1.21.3.3.18 “Command 'Collapse All Folds'” on page 2568
● Ä “Right-click commands in the cross-reference list” on page 2589

Command 'Collapse All Folds'
Function: This command collapses all expanded code segments in the textual editor or result
locations in the cross-reference list. In this way, only the uppermost level of code and only the
root node of the result locations displayed.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2568

Requirement: A textual editor is active and indentation is activated in the “Options” (“Text
Editor” category); or the cross-reference list is active.
Call: In textual editors: main menu “Edit è Advanced”, or right-click. In the cross-reference list:
right-click.
See also
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798
● Ä Chapter 6.4.1.21.3.3.17 “Command 'Expand All Folds'” on page 2568
● Ä “Right-click commands in the cross-reference list” on page 2589

Command 'Comment Out Selected Lines'
Symbol ; keyboard shortcut: [Ctrl]+[O]

Function: The command inserts comment marks ('//') at the beginning of the selected lines.
Call: Menu bar: “Edit è Advanced”; context menu
Requirement: In the ST editor, either the cursor is located in a line of the implementation or
multiple lines are selected.
See also
● Ä Chapter 6.4.1.21.3.3.20 “Command 'Uncomment Selected Lines'” on page 2569

Command 'Uncomment Selected Lines'
Symbol ; keyboard shortcut: [Ctrl]+[I]

Function: The command removes any comment marks ('//') at the beginning of the selected
lines.
Call: Menu bar: “Edit è Advanced”; context menu
Requirement: In the ST editor, either the cursor is located in a line of the implementation or
multiple lines are selected.
See also
● Ä Chapter 6.4.1.21.3.3.19 “Command 'Comment Out Selected Lines'” on page 2569

Command 'Enable Inline Monitoring'
Function: This command enables or disables the inline monitoring function. This works the
same way as the check box with the same name in the CODESYS options (“Text Editor”
category).
Requirement: A text editor is active.
Call: Context menu of the text editor in the “Advanced” submenu.
See also
● Ä “Tab 'Monitoring'” on page 2800
● Ä Chapter 6.4.1.13.2 “Monitoring of Values” on page 1995

Command 'Toggle Bookmark'
Symbol , keyboard shortcut [Ctrl]+[F12]

Function: The command sets or removes a bookmark at the current position.
Call: Menu bar: “Edit è Bookmarks”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2569

Requirement: A POU is open in the editor and the cursor is at a program line.
See also
● Ä Chapter 6.4.1.9.14.3 “Setting and using bookmarks” on page 1908

Command 'Next Bookmark (Active Editor)'
Symbol: ; keyboard shortcut: [F12]

Function: The command jumps to the next bookmark in the active editor.
Call: Menu bar: “Edit è Bookmarks”

Requirement: A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 6.4.1.21.3.3.24 “Command 'Next Bookmark'” on page 2570
● Ä Chapter 6.4.1.9.14.3 “Setting and using bookmarks” on page 1908

Command 'Next Bookmark'
Symbol:
Function: The command jumps to the next bookmark in the “Bookmarks” view and in the
project, and opens the respective POU. The order of jumping to bookmarks corresponds to the
order of bookmarks in the table of the “Bookmarks” view.
Call:
● “Next Bookmark” button in the “Bookmarks” view
● The command is not in any menu by default. You can add it to a menu by using the dialog

from “Tools è Customize” (command category “Bookmarks”).
Requirement:
● A project is open.
● The “Bookmarks” view is open.
See also
● Ä Chapter 6.4.1.21.3.3.23 “Command 'Next Bookmark (Active Editor)'” on page 2570

Command 'Previous Bookmark (Active Editor)'
Symbol: ; keyboard shortcut: [Shift]+[F12]

Function: The command jumps to the previous bookmark in the active editor.
Call: Menu bar: “Edit è Bookmarks”

A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 6.4.1.21.3.3.26 “Command 'Previous Bookmark'” on page 2570
● Ä Chapter 6.4.1.9.14.3 “Setting and using bookmarks” on page 1908

Command 'Previous Bookmark'
Symbol:
Function: The command jumps to the previous bookmark in the “Bookmarks” view and in the
project, and opens the respective POU. The order of jumping to bookmarks corresponds to the
order of bookmarks in the table of the “Bookmarks” view.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2570

Call:
● “Next Bookmark” button in the “Bookmarks” view
● The command is not in any menu by default. You can add it to a menu by using the dialog

from “Tools è Customize” (command category “Bookmarks”).
Requirement:
● A project is open.
● The “Bookmarks” view is open.
See also
● Ä Chapter 6.4.1.21.3.3.25 “Command 'Previous Bookmark (Active Editor)'” on page 2570
● Ä Chapter 6.4.1.9.14.3 “Setting and using bookmarks” on page 1908

Command 'Clear All Bookmarks (Active Editor)'
Symbol:
Function: The command deletes all bookmarks in the active editor.
Call: Menu bar: “Bookmarks”

Requirement: A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 6.4.1.21.3.3.28 “Command 'Clear All Bookmarks'” on page 2571
● Ä Chapter 6.4.1.9.14.3 “Setting and using bookmarks” on page 1908

Command 'Clear All Bookmarks'
Symbol:
Function: The command deletes all bookmarks in the open project.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Bookmarks”).
Requirement: A POU is open in the editor and the cursor is positioned in the POU.
See also
● Ä Chapter 6.4.1.21.3.3.27 “Command 'Clear All Bookmarks (Active Editor)'” on page 2571
● Ä Chapter 6.4.1.9.14.3 “Setting and using bookmarks” on page 1908

Command 'Browse Cross References'
Symbol:
Function: The command shows all occurrences of a variable in the “Cross Reference List” view.
Call: Menu bar: “Edit è Browse”; cross reference view: toolbar
Requirement: A POU is open in the editor and the cursor is set at a variable. Or the “Cross
Reference List” view is open and a variable is specified in the “Name” field.
See also
● Ä Chapter 6.4.1.21.3.3.30 “Command 'Browse Global Cross References'” on page 2571

Command 'Browse Global Cross References'
Symbol:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2571

Function: The command shows all occurrences of all variables with the same name in the
“Cross Reference List” view. In contrast to the “Browse Cross References” command, these can
be different variables.
Call: Menu bar: “Edit è Browse”; cross reference view: toolbar
Requirement: A POU is open in the editor and the cursor is set at a variable. Or the “Cross
Reference List” view is open and a variable is specified in the “Name” field.
See also
● Ä Chapter 6.4.1.9.14.1 “Using the cross-reference list to find occurrences” on page 1906
● Ä Chapter 6.4.1.21.3.3.29 “Command 'Browse Cross References'” on page 2571

Command 'Browse Call Tree'
Symbol:
Function: The command opens the view “Call Tree”, which displays the calls of a module and
also its callers.
Call:
● Menu “Edit è Browse”
● Context menu, see below: Requirement
Requirement: A module is opened in the editor and the cursor is placed in a variable, or a
module is selected in the “Devices” view or in the “POUs” view.
See also
● Ä Chapter 6.4.1.21.3.4.16 “Command 'Call tree'” on page 2590

Command 'Auto Declare'
Keyboard shortcut: [Shift]+[F2]

Function: The command opens the “Auto Declare” dialog, which supports the declaration of a
variable.
Call: Menu bar: “Edit”

Requirement: An object or a device of the project is opened in the editor.
With the auto-declaration function, the “Auto Declare” dialog also appears when the cursor is
located in the implementation part of a POU in a line containing the name of an undeclared vari-
able. The requirement for this is that you must have clicked “Tools è Options” and enabled the
“Declare unknown variables automatically (AutoDeclare)” option in the “SmartCoding” category.
With the smart tag function, the “Auto Declare” command also appears when you place the
cursor over an undeclared variable in the implementation part of the ST editor and then click .

“Scope” Scope of the variable that is not declared yet.
Example: VAR (default setting for local variables)

“Name” Variable name not declared yet
Example: bIsValid

Dialog 'Auto
Declare'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2572

“Type” Example: BOOL
● : Lists the standard data types.
●

– “Input Assistant”: Opens the “Input Assistant” dialog
– “Array Assistant”: Opens the “Array” dialog

“Object” Object where the new variable is declared. By default, the object that you are
editing now.
Example: fbA

: Lists that objects where the variable can be declared.
If no objects are available for the selected “Scope”, the entry “<create object>”
appears. When you select the “<create object>” entry, the “Add Object” dialog
opens for generating a suitable object.

“Initialization” Example: FALSE
If you do not specify an initialization value, then the variable is initialized auto-
matically.

: Opens the “Initialization Value” dialog. This procedure is helpful for the
initialization of structured variables.

“Address” Memory address of the application for the variable that is not declared yet.
Example: %IX1.0
Note:
Possible only for the following scopes:
● Local variable (VAR)
● Global variable (VAR_GLOBAL)
● Or for a persistent variable (PERSISTENT).

“Flags” Attribute keywords
● CONSTANT: Keyword for a constant.
● RETAIN: Keyword for a remanent variable.
● PERSISTENT: Keyword for a persistent variable (stricter than RETAIN).

The selected attribute keyword is added to the variable declaration.

“Comment” Example: New input In1
In the tabular declaration editor, the comment entered is displayed in the
“Comment” column, while in the textual declaration editor it is displayed above
the variable declaration.

“Apply changes using
refactoring”

: When you exit the dialog, the variable is not declared yet, but then it opens
the “Refactoring” dialog. You can continue editing your changes here.
The option appears for the following scopes:
● Input variable (VAR_INPUT)
● Output variable (VAR_OUTPUT)
● VAR_IN_OUT variables (input variable and output variable)

“OK” The variable is declared and appears in the declaration.
Example:

VAR RETAIN
 // New input In1
 xIn1 AT %IX1.0: BOOL := FALSE;
END_VAR

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2573

“Ranks and base type
specification”

Definition of the field sizes (“Dimension”) by entering the lower and upper limits
and the “Base type” of the array. You can enter the basic type directly or with the
help of the “Input Assistant” or “Array” dialogs when you click the button.

“Result” Display of the defined array

NOTICE!
CODESYS reinitializes variables only if you have modified the initialization
values of the variables.

List of the variables with name (“Expression”), “Initialization Value” and “Data Type”.
Modified initialization values are displayed in bold fonts.

Input field below the list Input of an initialization value for the selected variable(s)

“Apply value to selected lines” Change of the initialization value of the selected line(s) according to the value of
the input field

“Reset selected lines to default
values”

Resets the default initialization values

“OK” CODESYS applies the initialization values in the “Auto Declare” dialog.

In the case that the variable to be initialized by means of this dialog is a function block instance
with an extended FB_Init method, an additional table is displayed above the “Initialization Value”
table. The additional FB_Init parameters are listed in this table. The meaning and operation
essentially correspond to the lower table with the following differences:
● All variables have to be assigned with initialization values. Otherwise “OK” remains disa-

bled.
● For complex data types (structures, arrays), no components contained within are displayed

(type cannot be expanded). In this case, the complex type has to be initialized with a
corresponding variable.

For FB_Init parameters configure this way, a corresponding symbol is displayed after the initiali-
zation value in the “Auto Declare” dialog.

See also
● Ä Chapter 6.4.1.20.10 “Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'” on page 2336
● Ä “Dialog box 'Refactoring'” on page 2578
● Ä Chapter 6.4.1.20.4.12 “Addresses” on page 2231
● Ä Chapter 6.4.1.21.4.14.22 “Dialog 'Options' - 'Refactoring'” on page 2794
● Ä Chapter 6.4.1.20.1.4.1 “ST Editor” on page 2049

Command 'Input Assistant'
Symbol: ; keyboard shortcut: [F2]

Function: This command opens the “Input Assistant” dialog which helps you to select one of
the possible programming elements at the current cursor position.
Call: Menu bar: “Edit”; context menu.
Requirement: A POU is open in the editor and the cursor is at a program line.

Dialog 'Array'

Dialog 'Initializa-
tion Value'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2574

The input assistant provides all program elements that you can insert at the current cursor
position in the editor.
The elements are sorted by “Categories”. In the category “Variables”, you can also set a “Filter”
for the scope, for example “Local variables”, “Global variables”, or “Constants”.

“Structured view” : The elements are displayed in a structure tree. You can show/hide the
columns “Type”, “Address”, and “Origin” by right-clicking the column title and
selecting/clearing the column name in the dropdown list.

: The elements are displayed in a flat structure.

“Show documentation” : The dialog is extended with the “Documentation” field.

“Insert with arguments” : Elements that include arguments (for example, functions) also insert with
these arguments at the cursor position.
Example: If you insert the function block fb1, which contains an input variable
fb1_in and an output variable fb1_out, "with arguments", then this appears in
the editor as follows: fb1(fb1_in:= , fb1_out=>).

“Insert with namespace prefix” : Inserts the selected element with the appended namespace. In the case
of library modules, the check box remains disabled if the requirement for a
namespace has been defined in the library properties.

If you create objects with the same name in the same category, whether glob-
ally (“POUs” view) or assigned to an application (“Devices” view), then only
one entry appears in the input assistant. The usage conforms to the usual call
priority (application assigned before global).

This tab allows you to search for specific objects. When you begin typing a search string into
the search field, the names of all objects are listed whose names include the search string.
Double-click an object to insert it at the current cursor position in the editor.

“Filters” Limits the search to a specific variable category

See also
● Ä Chapter 6.4.1.9.7 “Using input assistance” on page 1885
● Ä “Dialog 'Properties'” on page 2714
● Ä Chapter 6.4.1.21.3.3.33 “Command 'Input Assistant'” on page 2574

Command 'Go to Source Position'
Function: The command sets the cursor to the position in the source code that causes the
message.
Call: Main menu “Edit”, context menu of the message in the message view.
Requirements: A message is selected in the message view.
Use the command “Next Message” or “Previous Message” to display the source code position of
the next or previous message.
See also
● Ä Chapter 6.4.1.21.3.3.35 “Command 'Next Message'” on page 2576
● Ä Chapter 6.4.1.21.3.3.36 “Command 'Previous Message'” on page 2576
● Ä Chapter 6.4.1.21.3.4.5 “Command 'Messages'” on page 2583

Dialog 'Input
Assistant' - Tab
'Categories'

Dialog 'Input
Assistant' - Tab
'Text Search'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2575

Command 'Next Message'
Keyboard shortcut: [F4]

Function: This command selects the next message in the messages view.
Call: Main menu “Edit”.
If the last message in the list has been reached, then the marking jumps to the beginning.
See also
● Ä Chapter 6.4.1.21.3.3.36 “Command 'Previous Message'” on page 2576

Command 'Previous Message'
Keyboard shortcut: [Shift]+[F4]

Function: This command selects the previous message in the messages view.
Call: Main menu “Edit”

If the first message in the list has been reached, then the marking jumps to the end.
See also
● Ä Chapter 6.4.1.21.3.3.35 “Command 'Next Message'” on page 2576

Command 'Go to Definition'
Symbol:
Function: This command shows the definition locations of a variable or function.
Call: Main menu “Edit è Browse”

Requirement: A POU is open in the editor and the cursor is at a variable or function.
See also
● Ä Chapter 6.4.1.9.14.2 “Finding declarations” on page 1908

Command 'Go To Reference'
Symbol:
Function: The command opens the declaration location of the variable that is referenced by the
pointer currently in focus in online mode.
Call:
● Context menu in the declaration part or implementation code
● Menu bar: “Edit è Browse”

Requirement: Online mode. A POU is open in the editor and the cursor is at a pointer. The
referenced variable is stored in static memory.

If the pointer does not point exactly to the beginning of the variable, then a cor-
responding message is displayed when you switch to the variable declaration.

See also
● Ä Chapter 6.4.1.20.5.13 “Pointers” on page 2243

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2576

Command 'Go to Instance'
Symbol:
Function: This command opens the instance of a function block in a new window.
Call: Menu bar: “Edit è Browse for Symbol”

Requirement: The application is in online mode. A POU is open in the editor and the cursor is
at an instance of a function block.
The command is not available for temporary instances or instances from compiled libraries.
See also
● Ä Chapter 6.4.1.9.14.2 “Finding declarations” on page 1908

Command 'Refactoring' - 'Rename <...>'
Function: This command opens a dialog box for renaming an object or variable across the
project.
Call: Main menu “Edit è Refactoring” or right-click.
Requirement: An object is selected in the device tree or in the “POUs” view, or the cursor is
placed before or on a variable identifier in the declaration section of a programming object.
You can rename the following:
● Variables
● POUs
● GVLs
● Methods
● Properties
● Devices
● Variables and unit conversions in the unit conversion edit

“Current name” Name of the object or variable

“New name” Input field for a new name.
If the name already exists, then CODESYS reports this directly below this input
field.

“OK” Can be activated if you have typed a valid name in “New name”.
Opens the “Refactoring” dialog box.

The affected objects and occurrences are highlighted in both views.
You can determine how to handle the occurrences in each view by right-clicking
the occurrences and clicking the available commands.

This dialog box displays all occurrences in the project.
The affected objects and occurrences are highlighted in both views.

Right view Displays the occurrence within an object where “Current name” occurs.

Left view Device tree of the project with the object.

Dialog box 'Re-
name'

Dialog box 'Re-
factoring'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2577

You can determine how to handle the occurrences in each view by right-clicking the occurrences and clicking the
available commands.

“Reject this change” Reject the single change in view on the right.

“Accept this object” Accept all changes in the affected object.

“Reject this object” Reject all changes in the affected object.

“Accept whole project” Accept all changes in the project.

“Reject whole project” Reject all changes in the project.

CODESYS highlights the accepted changes in yellow and the rejected changes in gray.

See also
● Ä Chapter 6.4.1.9.16 “Refactoring” on page 1910

Command 'Refactoring' - 'Update Referenced Pins'

NOTICE!
Currently, this command applies only to the CFC, FBD, LD, and IL editors. It is a
combination of the “Reset Pins” and “Update Parameters” commands.

Function: This command modifies the pins according to the latest block declaration in all
affected occurrences of the block.
Call: Main menu “Edit è Refactoring” or right-click.
Requirement: The cursor is placed in the name of the block in the first line of the block
declaration or in the device tree.
See also
● Ä Chapter 6.4.1.9.16 “Refactoring” on page 1910
● Ä Chapter 6.4.1.21.3.13.24 “Command 'Reset Pins'” on page 2694
● Ä Chapter 6.4.1.21.3.14.38 “Command 'Update Parameters'” on page 2710

Command 'Refactoring' - 'Add Variable'
Symbol:
Function: This command enables the declaration of variables in a POU, as well as the
automatic update to the occurrence of the POU.
Call: Main menu “Edit è Refactoring”, or right-click.
Requirements: The declaration part is in focus.
The command opens the default dialog box for declaring variables.
See also
● Ä “Dialog 'Auto Declare'” on page 2572

After clicking “OK” to close the declaration dialog, the “Refactoring” dialog box opens with two
frames.

Dialog box 'Re-
factoring'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2578

“Right dialog frame ” Declaration part and implementation of the POU where the variable is added.
Colored highlighting of changed locations: New added declarations have a blue
font and are highlighted in yellow (1).

“Left dialog frame ” Device tree or POUs tree of the project.
Colored highlighting of blocks where the POU is used: red font and yellow
highlight (2).
After you double-click the POU object, the detail view opens.

Before you decide which changes to accept at which locations, select the required option from
the drop-down list (3) at the upper right part of the window:

“Add inputs with placeholder
text”

Default placeholder text: _REFACTOR_; editable

The placeholder text defined here is used at the occurrence locations of the new
added variables in the implementation code. This is used for searching for the
affected locations.

“Add inputs with the following
value”

Initialization value for the new variable.

You can accept or reject changes by right-clicking the changed locations or by executing com-
mands in the left or right area of the dialog box. Refer to the description of the “Refactoring
è Rename” command.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2579

1. By refactoring, the fun block receives a new input variable input3 with the initialization
value 1. The change has the following effect:

Before:
fun(a + b, 3, TRUE);
fun(input1:= a + b , input2 :=3 , inputx := TRUE);

After:
fun(a + b, 3, 1, TRUE);
fun(input1:= a + b , input2 :=3 , _REFACTOR_, inputx := TRUE);

2. By refactoring, the "fun" block receives a new input variable input3 with the placeholder
text "_REFACTOR_":
Before:
inst(input1 := a + b, input2 := 3, inputx := TRUE);
fun(a + b, 3, TRUE);

After:
inst(input1 := a + b, input2 := 3, input3 := _REFACTOR_, inputx
:= TRUE);
fun(a + b, 3, _REFACTOR_, TRUE);

Examples

See also
● Ä Chapter 6.4.1.9.16 “Refactoring” on page 1910
● Ä Chapter 6.4.1.21.3.3.40 “Command 'Refactoring' - 'Rename <...>'” on page 2577

Command 'Refactoring' - 'Remove <variable>'
Symbol:
Function: This command removes an input or output variable from the POU and all occur-
rences of the POU.
Call: Main menu “Edit è Refactoring”, or right-click.
Requirements: In the declaration part of the POU, the cursor is located in the identifier of the
variable to be removed.
Then, the command opens a dialog box with information about the removal. After you confirm
this, the “Refactoring” dialog box opens. For a description of the “Refactoring” dialog box, refer
to the “Edit è Refactoring è Rename” help page.
When you accept the changes in the “Refactoring” dialog box, the respective input and output
parameters are deleted at the occurrence locations of the affected POU.

In CFC, only the connection is removed between the removed input or output to
the block. The input or output itself remains in the chart.

In a POU, refactoring removes the input4 input variable. The occurrences are updated
automatically:
Before removal:
inst(input1 := a + b, input2 := 3, input4 := 1, input5 := TRUE);
fun(a + b, 3, 1, TRUE);

After removal:
inst(input1 := a + b, input2 := 3, input5 := TRUE);
fun(a + b, 3, TRUE);

Example in ST

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2580

See also
● Ä Chapter 6.4.1.9.16 “Refactoring” on page 1910
● Ä Chapter 6.4.1.21.3.3.40 “Command 'Refactoring' - 'Rename <...>'” on page 2577

Command 'Refactoring' - 'Reorder Variables'
Symbol:
Function: This command allows changing the order of variables in the declaration editor for the
selected scope: VAR_INPUT, VAR_OUTPUT, or VAR_IN_OUT.

Call: “Edit è Refactoring”; context menu of the focused scope in the declaration editor.
Requirement: One of the above scopes is selected in the declaration, and more than one
variable is declared in it.
The command opens the “Reorder” dialog box with a list of all declarations of the selected
scope. You can drag a selected declaration up or down to another position.
See also
● Ä Chapter 6.4.1.9.16 “Refactoring” on page 1910

Command 'Advanced' - 'Format Document'
Symbol:
Function: The command starts an automatic formatting of the code in the open ST editor.
Call: Menu bar: “Edit è Advanced”; context menu of the window in focus in the ST editor
Requirement: The focus is in the ST editor. The syntax of the ST code does not contain any
errors.
The following formatting is performed automatically:
● Keywords are converted to uppercase letters.
● Spacing is standardized.
● Indentations are changed according to syntax.
● Long lines are wrapped in sensible places.
See also
● Ä Chapter 6.4.1.20.1.4.1 “ST Editor” on page 2049

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2581

Menu 'View'
6.4.1.21.3.4.1 Standard Menu in View 'Devices', 'POUs', 'Modules'.............. 2582
6.4.1.21.3.4.2 Command 'Devices'... 2582
6.4.1.21.3.4.3 Command ‘POUs’.. 2583
6.4.1.21.3.4.4 Command 'Modules'.. 2583
6.4.1.21.3.4.5 Command 'Messages'... 2583
6.4.1.21.3.4.6 Command 'Element properties'... 2584
6.4.1.21.3.4.7 Command 'ToolBox'... 2584
6.4.1.21.3.4.8 Command 'Watch' - 'Watch <n>'.. 2584
6.4.1.21.3.4.9 Command 'Watch' - 'Watch All Forces'.................................... 2584
6.4.1.21.3.4.10 Command 'Add All Forces to Watchlist'................................. 2585
6.4.1.21.3.4.11 Command 'Bookmarks'.. 2585
6.4.1.21.3.4.12 Command 'Breakpoints'... 2586
6.4.1.21.3.4.13 Command 'Cross Reference List'.. 2587
6.4.1.21.3.4.14 Command 'Browse Cross References in Classic View'......... 2589
6.4.1.21.3.4.15 Command 'Call Stack'... 2590
6.4.1.21.3.4.16 Command 'Call tree'.. 2590
6.4.1.21.3.4.17 Command 'Memory'... 2592
6.4.1.21.3.4.18 Command 'Security Screen'.. 2592
6.4.1.21.3.4.19 Command 'Settings of Memory Reserve for Online

Change' .. 2595
6.4.1.21.3.4.20 Command 'Start Page'... 2596
6.4.1.21.3.4.21 Command 'Full Screen'... 2597
6.4.1.21.3.4.22 Command 'Properties'... 2597

Standard Menu in View 'Devices', 'POUs', 'Modules'
The views “Devices”, “POUs” and “Modules” provide the button in the top right corner to open
a menu with the following commands:

● “Open in editor”: Opens the selected object in the corresponding editor.
● “Find object”: Opens the dialog “Find Object” for the object tree. Starting to enter a

search string all matching objects will be displayed with their path. Use the button “Open” to
open the selected search result in the editor.

● “Sort by type”: Sorts the objects in the view alphabetic by type.
● “Sort by name”: Sorts the objects in the view alphabetic by name.
● “Sort ascending”: Displays the chosen sorting in ascending order.
● “Sort descending”: Displays the chosen sorting in descending order.
● “Track active editor”: CODESYS selects the object, that is opened in the active editor, in the

device tree of the view.
See also
● Ä Chapter 6.4.1.21.3.4.2 “Command 'Devices'” on page 2582
● Ä Chapter 6.4.1.21.3.4.3 “Command ‘POUs’” on page 2583
● Ä Chapter 6.4.1.21.3.4.4 “Command 'Modules'” on page 2583

Command 'Devices'
Symbol: , view: [Alt] + [0]

Function: The command opens the view “Devices” in the CODESYS main window. The view
contains the project's "device tree", where you configure your applications

Button opens the standard menu for navigating in the tree view.
Call: Menu “View”

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2582

See also
● Ä Chapter 6.4.1.21.3.4.3 “Command ‘POUs’” on page 2583
● Ä Chapter 6.4.1.21.3.4.1 “Standard Menu in View 'Devices', 'POUs', 'Modules'”

on page 2582

Command ‘POUs’
Symbol: , Shortcut: [Alt] + [1]

Function: This command opens the “POUs” view in the CODESYS main window. POUs located
here are available in the entire project.
Call: Menu “View”

See also
● Ä Chapter 6.4.1.21.3.4.1 “Standard Menu in View 'Devices', 'POUs', 'Modules'”

on page 2582

Command 'Modules'
Symbol:
Function: This command opens the “Modules” view and shows the modules of the application
composer in a tree structure.
Call: Main menu “View”

See also
● Ä Chapter 6.4.1.21.3.4.1 “Standard Menu in View 'Devices', 'POUs', 'Modules'”

on page 2582

Command 'Messages'
Symbol:
Function: This command opens the “Messages” view.
Call: Menu bar: “View”.

Message category The messages are categorized by component or functionality for selection from a
drop-down list. Filter the message display by selecting a category.

Message type Click the symbol of the message type to show or hide messages. CODESYS
displays the number of messages next to each symbol.

● : Error
● : Warning
● : Message

Deletes all messages in the selected message category.

Deletes all messages in all message categories.

“Description”

Message text with the reported object and the location in the object.
Double-click a message in the table to jump to the source text location.

“Project”

“Object”

“Position”

View 'Messages'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2583

Table 474: “Commands in the context menu”
“Next Message” The source text position of the next message is displayed.

“Previous Message” The source text position of the previous message is displayed.

“Go to Source Position” The source position of the selected message is displayed.

Command 'Element properties'
Symbol:
Function: This command opens the “Element Properties” view.
Call: Main menu “View”

This command opens the properties view for the open object. This view is available only for a
few objects, for example visualization and POU (SFC).
The properties are displayed in a structured table. You change the property values by clicking
into the value fields. You can filter or sort the properties view.

Command 'ToolBox'
Symbol:
Function: This command opens the “ToolBox” view.
Call: Main menu “View”

This command opens the toolbox view for the open object. By default, this view is available for
graphical editors and visualizations. It includes the graphical programming elements that you
can drag into the editor.

Command 'Watch' - 'Watch <n>'
Symbol:
Function: This command opens the "Watch <n>" view. You can populate a watchlist with varia-
bles from your project in order to monitor, force, or write these variable values in an individual
view in online mode. The value "n" can be 1, 2, 3, or 4 for a total of up to four watchlists.
Call: Main menu “View”

See also
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002

Command 'Watch' - 'Watch All Forces'
Symbol:
Function: The command opens the “Watch All Forces” view, which is a special kind of watch
list.
Call: Menu bar: “View è Watch è Watch All Forces”

Requirement: A project is in offline mode or online mode.
The view contains all variables currently prepared for forcing, and all forced variables of the
application in one list. Actions are possible in the list which are also possible in other watch lists.
Moreover, the following commands are available in the “Unforce” list box of the view:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2584

Table 475: “Watch All Forces”
Tabular view of all forced variables of the application, including variables prepared for forcing

“Expression” Variable name

“Data Type” Data type of the variable

“Value” Currently forced value of the variable

“Prepared Value” Value prepared for forcing

“Overwritten value at start of
cycle”

For inputs, the actual value is already overwritten by the force value before the
application code is executed. As a result, this is the forced value.
For outputs, this is the forced value.

“Overwritten value at end of
cycle”

For outputs, this is the value which is calculated in the cycle. However, this value
is overwritten by the force value at the end of the cycle.
For inputs, this is the forced value.

● “Unforce and Keep All Selected Values”: For all selected entries in the list, the variables will
be set to the forced value and the forcing will be lifted

● “Unforce and Restore All Selected Values”: For all selected entries in the list, the variables
will be reset to the values they had before they were forced, and the forcing will be lifted.

See also
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002

Command 'Add All Forces to Watchlist'
Function: The command adds all variables of the active application, which are currently pre-
pared for forcing, or which are already forced, to the watchlist. Please regard, that this works
only for docked watch list views.
Call: Context menu of view “Watch”

Requirement: Online mode, a watch list view is active.

There is a special watch list: “Watch All Forces”. This view shows automatically
all variables currently prepared for forcing or already being forced. It provides
additional commands for releasing any forces.

See also
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002
● Ä Chapter 6.4.1.21.3.4.8 “Command 'Watch' - 'Watch <n>'” on page 2584
● Ä Chapter 6.4.1.21.3.4.9 “Command 'Watch' - 'Watch All Forces'” on page 2584
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

Command 'Bookmarks'
Symbol:
Function: This command opens the “Bookmarks” view.
Call: Menu bar: “View”.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2585

“Previous Bookmark” Jumps to the bookmark that above the selected bookmark in the table and opens
the respective POU in the editor.

“Next Bookmark” Jumps to the bookmark that below the selected bookmark in the table and opens
the respective POU in the editor.

Deletes the selected bookmark from the table and in the respective POU.

List of bookmarks in the project with the following information: “Bookmark”, “Object”, and “Position”.
You can edit the bookmark order per drag&drop.
When you double-click a row, CODESYS opens the respective “Object” in the editor and jumps to this bookmark.

“Bookmark” Name of the bookmark as assigned by CODESYS in ascending numerical order:
“Bookmark_0”, “Bookmark_2” etc.
If the bookmark is selected and you click in the field, then it is editable and you
can modify the bookmark name.

“Object” Name and project path of the POU where the bookmark is set
Example: POU_Add [PLC_1: SPS-Logic: Application]

“Position” Position of the bookmark in the POU
Example: Row 3, Column 1 (Impl)
(Impl): in the implementation part of the POU

(Decl): in the declaration part of the POU

See also
● Ä Chapter 6.4.1.9.14.3 “Setting and using bookmarks” on page 1908
● Ä Chapter 6.4.1.21.3.3.24 “Command 'Next Bookmark'” on page 2570
● Ä Chapter 6.4.1.21.3.3.26 “Command 'Previous Bookmark'” on page 2570

Command 'Breakpoints'
Symbol:
Function: This command opens the “Breakpoints” view.
Call: Menu bar: “View”.
This view shows an overview of all defined breakpoints for an application. You have access to
all breakpoint commands within this view.

Table 476: Table of current breakpoints
“Application” Select the required application from the list.

“POU” Name of the function block that will receive the breakpoint

“Location” Location of the breakpoint in the POU
● Text editor: Line number and column number
● Graphical editor: Network number or element number
For function blocks, "(Impl)" indicates that the breakpoint is located in the imple-
mentation of the function block, not in an instance.

“Instance Path” Complete object path of the breakpoint location.

“Tasks” Names of tasks that will be effective when the breakpoint is executed. If there
are no restrictions, then "(all)" is displayed here.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2586

“Condition” ● “Break always”: No additional enable condition defined; the breakpoint is
always enabled.

● Boolean expression. The expression must yield TRUE for the breakpoint to
be enabled.

“Hit Count Condition” When the breakpoint should be in effect (depending on the hit count)

“Current Hit Count” How often the breakpoint has already been reached up to now during the execu-
tion

Table 477: Toolbar
“New Breakpoint” This command opens the “Breakpoint Properties” dialog.

“New Data
Breakpoint”

This command opens the “New Breakpoint” dialog.

“Clear Breakpoint” Removes the breakpoint (not the same as disable)

“Enable/Disable
Breakpoint”

Toggles the status of the breakpoint or execution point between "enabled" and
"disabled"

● Breakpoint enabled
● Breakpoint disabled
● Execution point enabled
● Execution point disabled
● Data breakpoint enabled
● Data breakpoint disabled
● Data execution point enabled
● Data execution point disabled
As opposed to "Clear breakpoint", a disabled breakpoint remains in the list and can
be enabled again.

“Properties” The “Breakpoint Properties” dialog opens for editing the breakpoint parameters.
This dialog is the same as “New Breakpoint”. In online mode, you can change the
breakpoint into an execution point.

“Go to Source
Position”

Opens the online view of the affected block. The cursor is set at the breakpoint
location.

“Clear All
Breakpoints”

Deletes all breakpoints and execution points in the application. The list is cleared.
Not to be confused with "deactivate".

“Enable All
Breakpoints”

Enables all currently disabled breakpoints and execution points.

“Disable All
Breakpoints”

Disables all currently enabled breakpoints and execution points. The points remain
in the list and can be enabled again.

See also
● Ä Chapter 6.4.1.21.4.6 “Dialog 'Breakpoint Properties'” on page 2747
● Ä Chapter 6.4.1.21.3.8.4 “Command 'New Breakpoint'” on page 2645
● Ä Chapter 6.4.1.21.3.8.5 “Command 'New Data Breakpoint'” on page 2645
● Ä Chapter 6.4.1.21.3.8.7 “Command 'Enable Breakpoint'” on page 2646
● Ä Chapter 6.4.1.21.3.8.8 “Command 'Disable Breakpoint'” on page 2646
● Ä Chapter 6.4.1.21.3.8.9 “Command 'Toggle Breakpoint'” on page 2646

Command 'Cross Reference List'
Symbol:
Function: This command opens the “Cross Reference List” view.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2587

Call: Menu bar: “View”, or “Edit è Browse è Browse Cross References”.
This view shows a list of cross-references for a symbol in the project. The symbol can be a
variable, a POU (program, function block, function), or a user-specific data type (DUT). The
cross-reference list offer two basic types of searches:
● Text search: By specifying a symbol name, the cross-references of all symbols in the project

are displayed with their names. If multiple symbols with the same are found, then the display
can be limited to individual declarations by means of the context menu.

● Declaration search: The symbol can be selected by means of the input assistant or
by specifying a qualified path (for example, Device.Application.PLC_PRG.i or
__POOL.POU.a). Then only the occurrence locations of this symbol are displayed, even
if there exist other symbols with the same name.

Input field Symbol name (variable name, POU name, DUT name). Input options:

● Selection of a declared symbol by means of the input assistant (button).
● Manual input of the symbol name. Triggering of the search by pressing the

 button or the [Enter] key.
For the text search, you can use the placeholders "*" (any number of
characters) or "?" (exactly any one character) in combination with a partial
string of a variable identifier.
Use the percent sign "%" to search for IEC addresses. Examples: "%MW8",
"%M*".

More options outside of cross-reference list view:
● Use the command “Browse for Symbol è Browse Cross References” if

the name of a declared symbol is selected in an editor, or if the cursor is
in the name field. A search is also possible if the object is selected in the
device tree or POU pool.

● Automatic if the name of a declared symbol is selected in an editor, or if
the cursor is in the name field. A automatic search is also possible if the
object is selected in the device tree or POU pool.
Requirement: CODESYS option “Automatically list selection in cross
reference view” is activated (category “SmartCoding”.

The following input is valid:
● Variable name, simple or qualified. Examples: "iVar", "PLC_PRG.iVar".
● POU name: Examples: "PLC_PRG", "myFB".
● DUT name: Example: "mySTRUCT".
● Strings combined with placeholders: asterisk (*) for any character or ques-

tion mark (?) for exactly one characters).
Example: "iVar*" applies to iVar1, iVar_glob2, iVar45, etc.
"iVar?" refers to iVar1, iVar2, iVarX, and so on, but not
iVar_glob2, iVar45 and so on...

● "%<IEC address>": CODESYS searches for variables that are assigned
to this address and direct memory access. Example: "%QB0", %Q0 := 2.

Open input assistant for selecting a symbol

Perform a search

Define columns to search for the string.

Input field String that is searched for in the selected columns. The result locations are
marked in yellow. Cross references without this string are hidden.

Show source position of previous cross-reference, [Shift]+[F4]

Show source position of next cross-reference, [F4]

Limit results to current declaration: Available if multiple declarations are found
for a symbol. Limits the display to the declaration that you have selected in the
list.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2588

Show source position of selected cross-reference: The focus jumps to the
occurrence location of the symbol.

Print cross-reference list: The default dialog opens for setting up a print job.

The cross references are displayed with the following information:

“Symbol” The result locations for the symbols (variables, POUs, or DUTs) are grouped
by declaration. The declaration occurrence comprises the root node and the
occurrence locations in the project are indented below. The precise expression
is displayed that has the symbol at the occurrence location.
Example: If there is a global variable i in the project and a local declared
variable i in a POU, then two root node entries will be listed after a text
search for cross-references with the occurrences of the variable i below each.

“POU” Block name; also a task name if a block call in the task configuration.

“Variable” Only the variable name (for example, iVar)

“Access” Type of access to the variable at the occurrence location: “Declaration” /
“Read” / “Write” / “Call”.
Special case for pointers: An assignment type p := ADR(var1) is displayed
as write | address when searching for var1. The reason for this: Any
write access to p is not displayed when searching for var1. Write access is
also possible by means of pointer variables.

“Type” Data type of the variable

“Address” IEC address if variables are assigned Example: "AT %QB0".

“Position” Location of the occurrence in the POU editor, for example line number, net-
work number, declaration part, or implementation part. Example: "line 1,
column 1 (Impl)".

“Object” POU name plus complete path of the occurrence location in brackets (if
this is found in the “Devices” view). Example: "PLC_PRG [Device:Plc
Logic:Application]"

“Comment” Comments if available in the declaration of the variable

The search yields all result locations in the project and in included, uncompiled libraries.

“Show source position”: Opens the respective POU and marks the occurrence: for root entries,
the declaration, and for subordinate entries, the respective occurrence location. As an alterna-
tive, you can double-click a line.
“Limit Results to Selected Declaration”: Limits the display of results to the selected symbol
declaration if multiple declarations are found.
“Expand All”: In the list, every single result location is shown.
“Collapse All”: In the list, only the root nodes of the result locations are shown.

See also
● Ä Chapter 6.4.1.21.3.3.29 “Command 'Browse Cross References'” on page 2571
● Ä Chapter 6.4.1.9.14.1 “Using the cross-reference list to find occurrences” on page 1906
● Ä Chapter 6.4.1.21.3.23.3 “Command 'Limit Results to Current Declaration'” on page 2744
● Ä Chapter 6.4.1.21.3.3.18 “Command 'Collapse All Folds'” on page 2568
● Ä Chapter 6.4.1.21.3.3.17 “Command 'Expand All Folds'” on page 2568

Command 'Browse Cross References in Classic View'
Symbol

Right-click com-
mands in the
cross-reference
list

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2589

Function: This command opens the “Classic Cross Reference List” view.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Browse Project”).
The view corresponds to the “Cross Reference List” view before CODESYS V3.5 SP6.

Command 'Call Stack'
Symbol:
Function: This command opens the “Call Stack” view.
Call: Main menu “Debug”.
This view is very useful when you want to step into programs. It shows the current location with
the complete call path.

“Application” Name of the active application that controls the current POU

“Task” Name of the task that controls the current POU

“POU” Name of the POU where program execution has halted
The first line in the list describes the current execution location (marked with a
yellow arrow). If this location is in a block that is called by another block, then
the call location is described in the second line. In turn, if the caller is called by
yet another block, then that call location is described in the third line, and so
on.

“Location” Position within the POU where program execution has halted
● Line and column numbers for textual editors
● Network or element numbers for graphical editors

“Instance
path”

Instance where program execution has halted

The call stack is also available in offline mode and normal online mode when you are not
currently using any debugging functions). In this case, it receives the last displayed location
during a stepped execution, but it is displayed in gray.

The “Call Tree” view, in contrast to the “Call Stack”, at any time provides infor-
mation on the calls of a POU.

See also
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981
Ä Chapter 6.4.1.21.3.4.16 “Command 'Call tree'” on page 2590

Command 'Call tree'
Symbol:
Function: This command opens the “Call Tree” view.
Call:
● “View” menu
● Context menu of a callable block in the “Devices” or “POUs” view.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2590

The call tree is available at all times, even before compiling the application. It is a static
representation of the caller and the calls of the block that you specify explicitly. Therefore, the
tree always contains two root nodes above the respective call order is displayed as successive
indented entries. Recursive calls are detected quickly in this tree representation.
Example of a call tree (1) for the (2) PLC_PRG block:

● (3) Node “<block name> is called by:”
● (4) Node “<block name> calls:”

“Block name” Name of the program block; specified manually, by dragging from another view,
or by means of the button .
The drop-down list includes the last specified block names.

Toolbar and keyboard usage

: Find block CODESYS searches for the block specified in “Block name” and displays its
caller and calls.

: Use block from the input
assistant

The “Input Assistant” dialog box opens for selecting a block call or instance call.
The call tree is refreshed automatically after the selection.

: Show source code position
of the selected block

CODESYS jumps to the occurrence location of the block in the source code of
the program.

[F4]: Show source code posi-
tion of the next block
[Shift]+[F4]: Show source code
position of the previous block

The selection in the call tree jumps to the next or previous block in the call
structure. At the same time, the associated source code position is opened in the
respective editor.
Note: Double-clicking an entry in the call tree also opens the associated source
code position.

Display of the call tree:

“Symbol” “<block name> is called by”: The call order is displayed for below this node. The
bottom entry in this tree structure shows the start of the calls.
“<block name> calls”: The calls from this block are displayed below this node.
The bottom entry in this tree structure shows the end of the call chain.

“Position” For the root node in the call tree: Line numbers of the declaration (“Decl”) of the
block.
For the caller or calls below the root node: Line number, column number, and
network number of the position, depending on the implementation language.

Context menu for the entry selected in the tree:

“Collapse All” The expanded entries in the call tree are collapsed, except for the two root
nodes.

View 'Call tree'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2591

“Show Source Position” CODESYS jumps to the occurrence location of the block in the source code of
the program.

“Set as New Root Node” The entry selected in the call tree is displayed in “Block name”. The tree is
refreshed automatically for the new root nodes.

The “Call list” view is provided for immediate information when stepping through
a program, as opposed to the static call tree that provides call information about
a block. The call list always shows the full call path of the current position that is
reached.

See also
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985
● Ä Chapter 6.4.1.21.3.4.15 “Command 'Call Stack'” on page 2590
● Ä Chapter 6.4.1.21.3.3.31 “Command 'Browse Call Tree'” on page 2572

Command 'Memory'
Symbol:
Function: In CODESYS V3.5 version earlier than SP11, the command opens the “Memory”
view.
Call: Menu bar: “View è Memory”.
As of SP11, the command provides the notice that you must install the CODESYS Memory
Tools package (available in the CODESYS Store) in order to use the memory view. After
installation, you can open the “Memory” view by clicking “View è Show Memory View”.

Command 'Security Screen'
Symbol:
Function: The command opens the “Security Screen” view.
Call:
● “View” menu
● icon or in the status bar

The icon is displayed in blue when a valid certificate is specified for the digital signature.
When only one client certificate is specified for the encrypted communication, the icon
remains gray, resulting in the client certificate providing no increased security for the user.

The following security features of CODESYS are configured and displayed in the view:
● Personal user certificate
● Encrypted communication
● Encryption and signatures of IEC projects
● Encryption and signature of download, online change, and boot application
● Security level

NOTICE!
When the “Security Screen” is opened and closed, the current settings are
applied in the user options, even when no active changes have been made.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2592

If the CODESYS Security Agent add-on product is installed, then the “Security
Screen” view provides an additional “Devices” tab. This allows for the configura-
tion of certificates for the encrypted communication with controllers.

On this tab, certificates are configured that are required for the encrypted communication and
the digital signature of the user. Only certificates with private keys can be specified here. The
user profile is saved as an XML file in the user options.

“User Profile and Certificate
Selection”

By default, the login name for Windows is specified as the user profile.

List box with existing user pro-
files

: Opens the “User Profiles” dialog. Here you specify the name for a new user
profile.

: Deletes the selected user profile. This user profile is no longer displayed in
the list box.

“Digital Signature” : Opens the “Certificate Selection” dialog for selecting the certificate for the
digital signature.
One certificate can be selected. The certificate has to have a private key.

: Deletes the displayed certificate.
One certificate can be selected. The certificate has to have a private key.

“Project File Decryption” : Opens the “Certificate Selection” dialog for selecting the certificate for
decrypting project files.
One certificate can be selected. The certificate has to have a private key.

: Deletes the displayed certificate.

See also
● Ä Chapter 6.4.1.21.4.19 “Dialog 'Certificate Selection'” on page 2811

Table 478: “Security Level”
“Activate the Use of Certificates for Enhanced Security”

“Enforce encrypted
communication”

: When the user communicates with the controller, the server certificate of
the controller is used for establishing an encrypted connection. Then the entire
communication is encrypted.

“Enforce encryption of project
files”

: All project files of the user are encrypted with a certificate. When the project
is saved, it is encrypted with the certificate specified in the project settings
(“Project Settings è Security” dialog). The selected certificate is displayed on
the “Project” tab in the “Project file encryption” group.
To open this project, the certificate to be encrypted has to be specified in “Project
file decryption” with a private key.

“Enforce signing of project
files”

: All project files of the user are signed with a certificate. In “Digital Signature”,
a certificate has to be specified with a private key.
When a project is saved, a signature file <project name>.project.p7s is
generated in the project directory containing the signature.

Tab 'User'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2593

“Enforce encryption of
downloads, online changes
and boot applications”

: The data that is downloaded to the controller has to be encrypted with a
controller certificate.
This certificate is defined directly either in the properties dialog of the application
on the “Encryption” tab, or in the security screen, on the “Project” tab, in the
“Encryption of Boot Application, Download and Online Change” group.
Controller certificates are located in the local Windows Certificate Store in the
“PLC Certificates” directory. If the certificates of your controller are not available
in the directory, then they first have to be loaded from the controller and installed
to the directory. For instructions, see the "“Controller Certificates”" chapter.

“Enforce signing of downloads,
online changes and boot
applications”

: The online code (downloads, online changes, and boot applications) have to
be signed with a certificate with a personal key. The certificate is selected from
the “Digital Signature” area.
Requirement: The “Encryption of boot application, download and online change”
option is selected.

“Enforce signing of compiled
libraries”

: The “File è Save Project as Compiled Library” command generates a signed
library <library name>.compiled-library-v3.

Requirements
● A certificate with a private key that supports code signing is available.
● A library compatibility >= CODESYS V3 SP15 is set in the project informa-

tion.

“Enforce timestamping of signed compiled libraries”: : The URL of the
time stamp server which created the time stamp has to be entered in the
“Timestamping server” field. Example: timestamp.comodoca.com/rfc3161.

See also
● Ä Chapter 6.4.1.16 “Using the Command-Line Interface” on page 2028
● Ä Chapter 6.4.1.21.3.2.7 “Command 'Save Project as Compiled Library'” on page 2556
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

All project-specific settings are configured on this tab. These elements are active only when a
primary project is loaded.

“Project file encryption”

“Technology” : Opens the “Project Settings è Security” dialog
When you select the “Encryption” project setting and then “Certificates” in the
dialog, you can choose a corresponding certificate by clicking . For more
information, see the description of the "Project Settings: Security" dialog.

“Certificates of Users Sharing
this Project”

Area for listing the certificates that encrypt the project file.

Tab 'Project'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2594

“Encryption of Boot Application, Download and Online Change”

List of the applications of the
controller

Double-clicking an application in the list opens the “Properties è Encryption”
dialog. Depending on the settings of the “Security Level” on the “User” tab of the
“Security Screen”, the following fields are available in the open properties dialog:
● “Encryption” tab with active “Certificates” area
● “Encryption” tab with “Encryption Technology” list box.

In the “Properties è Encryption” dialog, click the button to select the
controller certificate for “Encryption of Boot Application, Download and Online
Change”. For more information, see the description of the "Properties: Encryp-
tion" dialog.
Controller certificates are located in the local Windows Certificate Store in the
“PLC Certificates” directory. If the certificates of your controller are not available
in the directory, then they first have to be loaded from the controller and installed
to the directory. For instructions, see the "Protecting and Saving a Project" - "
Encryption with Certificates" chapter.

See also
● Ä Chapter 6.4.1.21.4.12.8 “Dialog 'Project Settings' - 'Security'” on page 2772
● Ä Chapter 6.4.1.21.4.11.4 “Dialog: Properties: Security” on page 2754
● Ä Chapter 6.4.1.6.8 “Encrypting Projects with Certificates” on page 1829

This tab is available only after you have installed the CODESYS Security Agent
add-on. For a description of this tab, see the help for the CODESYS Security
Agent.

Command 'Settings of Memory Reserve for Online Change'
Function: This command opens the “ Online Change Memory Reserve” view.
Call: Menu bar: “View”.
In the view, memory reserves are configured for the function blocks during the online change.

“Scan Application” ● Searches the selected application for function blocks and displays them in
the “Function blocks” area

● Updates the “Function blocks” area after the application is built again.
● Updates the “Function blocks” area after an online change.

Drop-down list with the applica-
tions of the open project

Selection of the application whose function blocks should be displayed and/or
edited in this view.

Table 479: “Function Blocks”
“All” All function blocks of the selected application are displayed.

“Pool” All function blocks of the “POUs” view that are displayed which are referenced in
the application.

“No memory-reserve” All function blocks with a memory reserve of 0 bytes are displayed.

“<memory reserve> bytes” Display of all function blocks with the number of bytes is displayed that is defined
in “Memory reserve”.

Information about the function blocks
Multiple selection is also possible when selecting a POU for the configuration of the memory reserve.

Tab 'Devices'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2595

“Function block” Name of the function block

“Size” Size of the function block
Size of an instance of a function block
Specified in bytes

“Number of instances ” Number of instances of a function block in the project

“Memory reserve” Display of the memory reserve for each instance of the function block

“Additional memory for all
instances”

Product of “Number of instances” and “Memory reserve”

“Remaining memory reserve” Number of bytes that are available as reserve.

Table 480: “Settings”
“Memory reserve (in bytes)” Input field for the memory reserve for the selected function block.

Specified in bytes
Requirement: the application is not located on the controller yet or you have
allowed the memory reserve to be changed by clicking the “Edit” button in the
“Allow editing” area.

“Apply for Selection” The “Memory reserve (in bytes)” is assigned to the function block and the table
column “Memory Reserve” is updated.
In multiple selection, the specified value is assigned to each function block.
In order to update the columns “Size”, “Number of Instances”, “Additional
Memory for All Instances”, and “Remaining Size of the Memory Reserve”, click
“Build è Build”, and then click the “Scan Application” button.

Table 481: “Enable Editing”
“Enable” The input field “Memory reserve (in bytes)” is editable.

This button is modified in “Editable”.

Table 482: “Information”
“Number of FBs” Total number of function blocks in the application

“Additional memory for all
instances”

Sum of the memory reserves of all function block instances of the application.
Specified in bytes

See also
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629

Command 'Start Page'
Symbol:
Function: This command opens the “Start Page” view.
Call: Main menu “View”

The view includes some basic commands and a list of recently opened projects. In addition, the
CODESYS homepage is displayed.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2596

If you access the Internet through a proxy, then you can save the authentication
data in the project options (“Proxy Settings”) so you do not have to provide this
data every time you use this command.

By moving the mouse pointer over the list of recently opened projects, you can remove or pin
individual projects in the list. Pinned projects remain in this list until you remove the pin.
In the project options (“Load and Save”), you can configure whether this start page should open
automatically when you start CODESYS.
See also
● Ä Chapter 6.4.1.21.4.14.17 “Dialog 'Options' – 'Load and Save'” on page 2791
● Ä Chapter 6.4.1.21.4.14.21 “Dialog 'Options' - 'Proxy Settings'” on page 2793

Command 'Full Screen'
Symbol: , keyboard shortcut [Ctrl]+[Shift]+[F12]

Function: This command switches the CODESYS display to full screen mode.
Call: Main menu “View”

Choosing this command displays the main window of the CODESYS user interface in full-
screen mode. You can return to the previous setting by choosing the command again or with the
keyboard shortcut [Ctrl]+[Shift]+[F12].

Command 'Properties'
Symbol:
Function: This command opens the properties of the currently selected object in the POUs tree
or device tree.
Call: Main menu “View”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2597

Menu 'Project'
6.4.1.21.3.5.1 Command ‘Add Object’... 2598
6.4.1.21.3.5.2 Command ‘Add Folder’.. 2599
6.4.1.21.3.5.3 Command 'Insert Device'... 2599
6.4.1.21.3.5.4 Command 'Plug Device'.. 2600
6.4.1.21.3.5.5 Command 'Scan for Devices'.. 2600
6.4.1.21.3.5.6 Command 'Update Device'.. 2602
6.4.1.21.3.5.7 Command 'Acknowledge Diagnosis', 'Acknowledge Diagnosis

for Subtree'.. 2602
6.4.1.21.3.5.8 Command 'Edit Object'.. 2603
6.4.1.21.3.5.9 Command 'Edit Object with'... 2603
6.4.1.21.3.5.10 Command 'Check integrity'.. 2603
6.4.1.21.3.5.11 Command 'Edit Object (Offline)'.. 2603
6.4.1.21.3.5.12 Command 'Set Active Application'... 2603
6.4.1.21.3.5.13 Command 'Project information'.. 2604
6.4.1.21.3.5.14 Command 'Project Settings'.. 2604
6.4.1.21.3.5.15 Command 'Project Environment'... 2604
6.4.1.21.3.5.16 Command 'Project Localization' - 'Create Localization Tem-

plate'.. 2604
6.4.1.21.3.5.17 Command 'Project Localization' - 'Manage Localizations'..... 2605
6.4.1.21.3.5.18 Command 'Project Localization' - 'Toggle Localization'......... 2606
6.4.1.21.3.5.19 Command 'Document' .. 2606
6.4.1.21.3.5.20 Command 'Compare objects'.. 2607
6.4.1.21.3.5.21 Command 'Compare'... 2607
6.4.1.21.3.5.22 Command 'Commit Accepted Changes'................................ 2611
6.4.1.21.3.5.23 Command 'Map pool devices'.. 2611
6.4.1.21.3.5.24 Command 'Export'... 2611
6.4.1.21.3.5.25 Command 'Import'... 2612
6.4.1.21.3.5.26 Command 'Export PLCopenXML'.. 2612
6.4.1.21.3.5.27 Command 'Import PLCopenXML'.. 2612
6.4.1.21.3.5.28 Command 'User management' – 'Log in User'...................... 2613
6.4.1.21.3.5.29 Command 'User management' – 'Log out User'.................... 2613
6.4.1.21.3.5.30 Command 'User management' – 'Rights…'........................... 2613
6.4.1.21.3.5.31 Command 'Insert Device'... 2614
6.4.1.21.3.5.32 Command 'Generate EtherCAT XML'.................................... 2614
6.4.1.21.3.5.33 Command 'Generate Sercos SCI XML'................................. 2614
6.4.1.21.3.5.34 Command 'Disable Device' – 'Enable Device'....................... 2614
6.4.1.21.3.5.35 Command 'Edit I/O Mapping'... 2615
6.4.1.21.3.5.36 Command 'Import Mappings from CSV'................................ 2615
6.4.1.21.3.5.37 Command 'Export Mappings to CSV'.................................... 2616
6.4.1.21.3.5.38 Command 'Read PLC Parameter File to Configuration'........ 2616
6.4.1.21.3.5.39 Command 'Online Config Mode'.. 2616
6.4.1.21.3.5.40 Command 'Runtime licensing'... 2617

Command ‘Add Object’
Symbol:
Function: This command opens a submenu with objects that contain all objects that can be
inserted, depending on the current position in the “Devices” or “POUs” view.
Call: “Project” menu, context menu in the “Devices” or “POUs” view.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2598

Requirement: If CODESYS is to insert the object in the device tree, select an already existing
object under which the new one is can be inserted indented. If CODESYS is to insert the object
in the POUs tree, set the focus in any free place in the CODESYS window.

Command ‘Add Folder’
Symbol:
Function: This command opens a dialog box for defining a new folder in the Devices or POUs
view.
Call: “Project” menu, context menu in the Devices or POUs view

You cannot structure the arrangement of device nodes and device objects
through folders that you have created yourself.

This command inserts the folder below the object that has just been selected in the tree. If no
object is selected, CODESYS inserts the folder right at the top in the tree directly under the root
node.

Command 'Insert Device'
Function: this command opens the dialog box “Add Device” for the selection of a device object
that is to be inserted in the device tree below the currently selected object.
Call: Context menu of a device object in the device tree.
Requirement: An object is selected in the device tree below which a device object can be
inserted.
See also
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835

Function: Depending on the currently selected position in the device tree, the dialog box
offers a selection of the devices that can be inserted at this point. In addition, it contains the
commands also available in the context menu: “Insert Device”, “Add Device”, “Plug Device”,
“Update Device”.
Requirement: The devices are installed in the device repository on the local system.

If you have opened the dialog box, it always displays the selection to suit the
object currently selected in the device tree until you click “Close”.

“Name” Name with which the device is to appear in the device tree. Must be a valid IEC
identifier.

Table 483: “action”
“Add device” CODESYS inserts the selected device indented below the selected object in the

device tree.

“Insert device” CODESYS inserts the selected device at the same level as the selected object
below it in the device tree.

Dialog box 'Add
device'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2599

“Plug device” CODESYS inserts the selected device in the selected slot. If the slot is already
occupied, the existing module is replaced by the new one.

“Update device” CODESYS replaces the device selected in the device tree by the one selected.
Please note: Depending on the device, this may cause the configuration already
done in the device editor to be overwritten with the default values!

“String for the full text search” This field is editable after clicking in it. For any character string entered, only
those devices that include the character string are displayed in the lower view.
The matched string is highlighted in yellow for these devices.

“Vendor:” Drop-down list with manufacturers whose available devices are displayed.

“Group by category” : The available devices (newest version) are sorted by category. The category
is defined in the device description file.

: The available devices appear flat and alphabetically sorted.

“Display all versions (for
experts only)”

: In addition, all other available versions of the devices can also be selected.

: Only the newest version of each device is available for selection

“Display outdated versions” : In addition, outdated versions of the devices can also be selected. Outdated
versions result, for example, from the update of plug-ins.

: Outdated device versions are not displayed.

The information provided by the device description file is displayed:
device name, vendor, categories, version, order number and a short description, device-specific bitmap.

See also
● Ä Chapter 6.4.1.21.3.5.31 “Command 'Insert Device'” on page 2614
● Ä Chapter 6.4.1.21.3.5.4 “Command 'Plug Device'” on page 2600
● Ä Chapter 6.4.1.21.3.5.6 “Command 'Update Device'” on page 2602

Command 'Plug Device'
Function: Like the command “Add Device”, this command opens the dialog box “Add Device”
for the selection of a device object that is to be inserted in the device tree in the currently
selected slot.
Call: Context menu of the slot of a device object in the device tree.
Requirement: The slot of a device object is selected in the device tree.

An empty slot is identified by the symbol and the entry "<empty> (<empty>)". An occupied
slot is given the symbol and the name of the device.
In the case of an occupied slot, this command replaces the existing module with the new one.
See also
● Ä Chapter 6.4.1.21.3.5.3 “Command 'Insert Device'” on page 2599
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835

Command 'Scan for Devices'
Function: The command establishes a brief connection to the hardware and determines the
devices in the network. Then you can apply the devices found into the device tree of your
project.
Call: Menu bar: “Project”; context menu of a device object in the device tree

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2600

Requirement: The communication settings to the controller are correct. The gateway and the
PLC are started. The device supports the scan function.
The following devices provide the scan function: EtherCAT master, EtherNet/IP Scanner
(IEC), Sercos master, CANopen Manager, CANopen Manager SIL2, PROFINET controller and
PROFIBUS DP master.

You can perform the device scan immediately if the scan function is perma-
nently implemented in the PLC. When scan function is implemented in a library,
you have to log in only one time to download the library to the controller.

The command refers to the master controller selected in the device tree. For example, an
already inserted PROFINET IO controller can be selected and the command used to determine
the I/O devices and I/O modules assigned to it.
After performing the scan operation, the “Scan Devices” dialog opens and displays the found
devices.

Table 484: “Scanned Devices”
“Device name, Device type,
Address, Station name, etc.”

Data about the scanned device depending on network type.
When you change a value in the list of scanned devices, the value is shown
in italics. This indicates that the new value has been changed in the editor in
CODESYS, but not in the device. When you download the value to the device, it
is shown normally.
Value that indicate differences between the project and the scanned device are
shown in orange.
If multiple device descriptions are available for the scanned device, then the
name is displayed in bold. The selection of the matching device description is
resolved differently for different fieldbuses. For more detailed information, see
the corresponding fieldbus chapters.
If a device description cannot be found, then the following message is shown:
"Attention! The device was not found in the repository." Depending on the bus
system, additional information is displayed, such as manufacturer number and
product number. The device cannot be inserted into the project without the
installed device description.

“Show differences to project” : The table in the dialog also shows additional configured devices (in the
device tree of the project).

: The table shows all scanned devices. The configured devices are not shown.

“Scan for Devices” Starts a new search.

“Copy All Devices to Project” The device that is selected in the table is inserted into the device tree in the
project. If nothing is selected, then all scanned devices are shown.

NOTICE!
If you insert devices, which are available in the device tree, to the device tree
with “Copy All Devices to Project”, then the following should be noted. The data
of the “Process Data” and “<...> I/O Mapping” tabs of the existing devices can
be overwritten with the data of the recently inserted devices.

Dialog 'Scan
Devices'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2601

Table 485: “Configured Devices”
This part of the dialog is visible only when you select the “Show differences to project” option.
Differences between the scanned and configured devices are color-coded. Devices displayed in green are iden-
tical on both sides. Devices displayed in red are available only in the view of the scanned or configured devices.

If you have selected a device in both views, then the scanned devices are
inserted above the selected configured device.

If you have selected a device in both views, then the scanned devices are
inserted below the selected configured device.

If you have selected a device in both views, then the configured devices are
replaced by the selected scanned device.

All scanned devices are copied to the project.

Deletes the selected configured device.

The dialogs for the scan differ depending on the type of device. See the help pages for the
respective device editor.

Command 'Update Device'
Function: Like the command “Add Device”, this command opens the dialog box “Add Device”
for the selection of a device object. This object is inserted in the device tree in place of the
currently selected object.
Call: Context menu of a device object in the device tree.
Requirement: An object is selected in the device tree below which a device object can be
inserted.
With this command you can insert either a different version of a device or a different type of
device in place of the previous one.
The symbolic device name used in the device tree is retained, but the device type specified
in parentheses behind it changes if a different type has been selected. Thus if only the device
version is changed, the object entry appears unchanged.
If the device type does not change, the configuration tree indented below the device entry con-
cerned is retained. In this case the configuration settings also remain the same. Inconsistencies
in the configuration resulting from the device update are reported by CODESYS at the next
compilation of the application. This also concerns implicitly inserted libraries, which CODESYS
does not remove accordingly during a device update.
See also
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835
● Ä Chapter 6.4.1.21.3.5.3 “Command 'Insert Device'” on page 2599

Command 'Acknowledge Diagnosis', 'Acknowledge Diagnosis for Subtree'
Function: The command acknowledges a diagnosis message.
Call: Context menu of a device object in the device tree
Requirement: The project is in online mode.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2602

The “Acknowledge diagnosis” command acknowledges the diagnosis messages of an individual
device. The “Acknowledge Diagnosis for Subtree” command also acknowledges the diagnosis
messages of all subordinate devices. The diagnosis message of a pending malfunction is
indicated by a red exclamation mark at the device object. The diagnosis message of a corrected
malfunction is indicated by a gray exclamation mark.

Command 'Edit Object'
Function: This command opens the object in its editor.
Call: Main menu “Project”, context menu.
Requirement: An object is selected in the device tree or in the “POUs” view.

Command 'Edit Object with'
Function: When multiple objects are available for an object, this command opens a dialog box
for selecting an editor.
If only one editor is available for an object, then this command opens the object in that editor.
Call: Main menu “Project” or shortcut menu (right-click)
Requirement: An object is selected in the device tree or in the “POUs” view.
In the standard installation of CODESYS, there is no object that has multiple available editors.

Command 'Check integrity'
Function: Automation Builder checks the project integrity for the complete project ("Project
integrity" checks if all devices in the device tree are installed in the device repository).
Call: Main menu “Project”, Context menu.
Requirement: A project is open.

Command 'Edit Object (Offline)'
Function: The command opens the object offline in the editor.
Call: Main menu “Project”, Context menu
Requirement: The application is in online mode. An object is selected in the device tree or in
the “POUs” view.
The command allows you to edit objects in online mode. After editing you transfer the changes
to the controller by use of the command “Online è Online Change” or “Online è Load”.
See also
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629
● Ä Chapter 6.4.1.21.3.7.5 “Command 'Load'” on page 2628

Command 'Set Active Application'
Function: This command sets the selected application as the active application.
Call: Main menu “Project”, or right-click the “Application” object.
Requirement: The project has at least two applications. The selected application is not active.
Online actions apply only to the active application. The name of an active application is dis-
played in bold typeface in the device tree.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2603

Command 'Project information'
Symbol:
Function: This command opens the dialog box “Project Information”.
Call: Main menu“Project”

When you execute the command in the project for the first time, CODESYS creates the “Project
Information” object.
See also
● Ä Chapter 6.4.1.3.4.2 “Retrieving and Editing Project Information” on page 1813
● Ä Chapter 6.4.1.3.4.3 “Making project settings” on page 1814
● Ä Chapter 6.4.1.21.2.24 “Object 'Project Information'” on page 2515

Command 'Project Settings'
Symbol:
Function: This command opens the “Project Settings” dialog box.
Call: “Project” menu or double-click on the object “Project Settings” in the “POUs” view
Requirement: A project is open.
See also
● Ä Chapter 6.4.1.3.4.3 “Making project settings” on page 1814
● Ä Chapter 6.4.1.21.4.12 “Dialog 'Project Settings'” on page 2766
● Ä Chapter 6.4.1.21.2.23 “Object 'Project Settings'” on page 2514

Command 'Project Environment'
Function: This command opens the “Project Environment” dialog box.
Call: “Project” menu
Requirement: A project is open.
this command is for checking the currentness of software and files integrated in the project and
enables them to be updated.
See also
● Ä Chapter 6.4.1.21.4.13.2 “Dialog 'Project Environment' – 'Library Versions'” on page 2778
●
● Ä Chapter 6.4.1.21.4.13.3 “Dialog 'Project Environment' - 'Compiler Version'” on page 2778
● Ä Chapter 6.4.1.21.4.13.4 “Dialog 'Project Environment' - 'Device Versions'” on page 2779
● Ä Chapter 6.4.1.21.4.13.5 “Dialog 'Project Environment' – 'Visualization Profile'”

on page 2779
● Ä Chapter 6.4.1.21.4.13.6 “Dialog 'Project Environment' – 'Visualization Styles'”

on page 2780
● Ä Chapter 6.4.1.21.4.13.7 “Dialog 'Project Environment' – 'Visualization Symbols'”

on page 2780

Command 'Project Localization' - 'Create Localization Template'
Function: This command opens the “Create Localization Template” dialog. Define here which
information should be exported from the project to a translation template (*.pot file).

Call: Menu bar: “Project è Project Localization”.
Requirement: A project is open.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2604

This dialog is used for selecting the textual information that should be used in the localization
template.

Table 486: “Include the Following Information”
“Names” Texts, such as dialog captions and object names in the device tree

“Identifier” Variable identifier (example: Counter)

“ Strings” Example: 'count' in the following declaration: strVar: STRING :=
'count';

“Comments” Comment texts in the POUs

“Position information” Selection of which positions of the selected text categories in the project should
be included in the translation file. The position information is located in the first
line(s) of a segment for a translation. Example:
#: D:\Proj1.project\Project_Settings:1
msgid "Project settings"
msgstr ""
● “All”: All detected positions of the text are listed.
● “First appearance”: In the translation file, the position is included in the

project where the text to be translated appears for the first time.
● “None”

“Generate” This button opens the dialog for saving a file. The translation template is created
in a text file of type *.pot (portable object template). Each further generation
creates a completely new template file.

See also
● Help about CODESYS Visualization: Multi-language capability

Command 'Project Localization' - 'Manage Localizations'
Function: This command opens the “Manage localizations” dialog. Select the desired locali-
zation language in the dialog or the original version of the project. You can still accept the
localization files *.<language>.po into the project or remove them.

Call: Menu bar: “Project è Project localization”.
Requirement: A project is open.

“Available Localizations” List of the localization files available in the project. Example:
proj1-de.po
proj1-en.po
<original version>
The original version is always available. The project can be edited only in the
original version.

“Add” This button opens the dialog for selecting an additional po file from the file
system.

“Remove” This button removes the po file, which is selected on the left side, from the
project.

“Default localization” : The selected localization is for the default localization. The entry is display in
bold.

Dialog 'Create
Localization
Template'

Dialog 'Manage
localizations'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2605

“Switch Localization” Use this button to switch to the selected localization.

“OK” The project is displayed in the language that is provided by the file selected
below the files. If you select “<original version>”, then the project appears in the
editable non-localized version.

See also
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

Command 'Project Localization' - 'Toggle Localization'
Symbol:
Function: This command switches between the currently set project localization and the
<original version>.

Call: Menu bar: “Project è Project Localization”; button in the “Manage Localizations” dialog;
button on the toolbar.
Requirement: A project is open. A default localization for the project is defined in the “Manage
Localizations” dialog.
See also
● Help about CODESYS Visualization: Multi-language capability
● Ä Chapter 6.4.1.21.3.5.17 “Command 'Project Localization' - 'Manage Localizations'”

on page 2605

Command 'Document'
Symbol:
Function: This command opens the “Document Project” dialog box, where you can define the
project documentation. This includes the selection of objects in the open project that you want
to print.
Call: Main menu “Project”

Table 487: “Document Project” dialog box
“Please select the objects
which are to be printed”

Project tree view
In this view, you can select or clear objects for printing.
All objects are selected by default.

“Title page” CODESYS creates a title page named "Project Documentation" with the fol-
lowing information:
● File: project file name
● Date: Creation date of the project documentation
● Profile: CODESYS profile of the project

“Table of contents” CODESYS creates a table of contents for the project documentation.

“Preview” CODESYS creates and opens a print preview of the project documentation.

“Select” CODESYS opens a drop-down list of all or single object types for the project
documentation.

“Deselect” CODESYS opens a drop-down list of all or single object types that should be
excluded from the project documentation.

“OK” The “Print” dialog box opens.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2606

See also
● Ä Chapter 6.4.1.21.4.12.7 “Dialog 'Project Settings' - 'Page Setup'” on page 2772
● Ä Chapter 6.4.1.21.3.2.12 “Command 'Print'” on page 2560

Command 'Compare objects'
Function: To compare similar objects within a project.
Call: Main menu “Project”, Context menu.
Requirement: Both projects have to be open.
Ä Chapter 6.3.2.2.3.3 “Comparing objects” on page 1456

Command 'Compare'
Symbol:
Function: This command opens the “Project Comparison” dialog. In this dialog, you define the
reference project to compare with the current project. You configure the comparison process by
means of options. When the dialog is exited, the comparison starts and the result is shown in
the view “Project Compare - Differences”.
Call: Menu bar: “Project è Compare”.
Requirement: A project is open.
See also
● Ä Chapter 6.4.1.5 “Comparing projects” on page 1817
● Ä Chapter 6.4.1.21.3.5.22 “Command 'Commit Accepted Changes'” on page 2611

Table 488: “Compare the currently open project with:”
“Project on disk” Path of the reference project on the file system.

“Project in a source control
database”

“Host”: Name of the host where the source code management is located.
“Port”: Number of the port for connecting to the source code management.
“Location”: Path of the reference project.
Requirement: The project is linked to source code management.

Table 489: “Compare Options”
“Ignore whitespace” : Whitespace differences between the current project and the reference project

are ignored.

“Ignore comments” : Comments in the programming code are excluded from the comparison.

“Ignore properties” : Object properties are excluded from the comparison.

“OK” Starts the project compare and displays the result in the view “Project compare -
Differences”.

The project compare view opens when you click “OK” to close the “Project Compare” dialog.

Dialog 'Project
Comparison'

View 'Project
Comparison' -
'Differences'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2607

(1) Object tree of the current project
(2) Object tree of the reference project
(3) Command 'Accept Block', command 'Accept Single'
(4) Compare options, configured in 'Project Compare' dialog
 Compare statistics: added, deleted, and changed objects

Table 490: Toolbar
Switches to the detailed compare view “Project Comparison' - '<object name>
Differences” for the object selected in the tree. Alternative: Double-click the
object.

Selects the next bottom object in the device tree where differences were
detected.

Selects the next top object in the device tree where differences were detected.

“Accept Block” The block (selected object with all subordinate objects and units) is selected for
acceptance from the reference block to the current block.

Repeated clicking of “Accept Block” undoes the effects of its last change.

“Accept Single” The object is selected in the current object for acceptance from the reference
line.

Requirement: The properties, access rights, or contents of the objects selected
in the object tree are different.
Opens the “Accept” dialog.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2608

Table 491: Display of differences with colors, and symbols
Black font Objects are identical.

Object name with Child objects of the object are different

Gray highlight Objects are different.

Gray highlight + bold blue font Object is only in the reference project.

Gray highlight + bold green
font

Object is only in the open project (not in reference project).

Gray highlight + red font + Object has different properties.

Gray highlight + red font + Access rights of object and reference object are different.

Gray highlight + bold red font + Implementation of objects is different.
Double-click the line to display the object-specific compare view.

Yellow highlight Object is activated for acceptance.

Yellow highlight + Adding the reference object to the open project is activated.

Yellow highlight + Deleting the object (in the open project) is activated.

Yellow highlight + Acceptance of the properties of the reference project is activated.

Yellow highlight + red font + Acceptance of the access rights of the reference project is activated.

Gray highlight + bold red font + Acceptance of the implementation of the reference project is activated.

“Compare options” Defined comparison options in the “Project Comparison” dialog.

“Compare statistics” Number of additions, deletions, and changes in the current project, as compared
to the reference project. “Change” means differences of an object available in
both projects.

The dialog prompt opens: “Do you want to commit the changes which you made
in the diff view?”

“Yes”: The contents, properties, or access rights of the objects highlighted in
yellow are modified in the project. Now they correspond to the reference project.
Then the project compare view is closed completely.

Function: Detail compare view
Call in the project compare view:
● Select an object that is identified as having different contents which you need to view in

detail. Click .
● Double-click the object.

Table 492: Toolbar
Switch back to the project compare view.

Selects the next line below in the code where differences were detected.

View 'Project
Comparison' -
'<object name>
Differences'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2609

Selects the next line above in the code where differences were detected.

“Accept Block”2 The block (with all subordinate lines) is selected for acceptance of the reference
blocks into the current project.
A block in the detailed compare view consists of the unit where the cursor is
located and all corresponding units that have the same difference markers. A
unit is a line, network, or element. Subsequent lines of a line are examples of
corresponding units.

Repeated clicking of “Accept Block” undoes the effects of its last change.

“Accept Single” The line is selected in the current object for acceptance of the reference line.

Switches between the default display where different units (lines, networks, ele-
ments) are displayed in red and another display: The units are displayed as
recently added in the open project. In the reference project, they are displayed
as deleted.
Available within the detailed compare view only.
Note: Depending on the display, detected differences in the statistics are
counted as changed, inserted, or deleted.

Table 493: Display of differences with colors, and symbols
Black font Objects are identical.

Gray highlight + bold blue font Code is only in the reference project.

Gray highlight + bold green
font

Code is only in the current project (not in reference project).

Yellow highlight The object is activated for acceptance.

The dialog prompt opens: “Do you want to commit the changes which you made
in the diff view?”

“Yes”: The code highlighted in yellow is accepted into the project. The code
corresponds to the reference project. Then the detailed view is closed and the
project view is displayed. You can continue working with project compare.

Table 494: “Which meta data should be accepted?”
“Access rights” : Access rights that are selected for acceptance.

“Accepted groups” Grouping with access rights accepted by the reference project. A group is
accepted if it is present in both projects with different access rights.
Example: Group_A

“Unaccepted groups (missing
in a project) ”

The group is not accepted if it is not present in one of the two projects.

“Properties” : Properties activated for accept
Requirement: The properties of the reference object and object are different.

Dialog 'Accept'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2610

“OK” Settings are accepted.

Command 'Commit Accepted Changes'
Symbol:
Function: This command commits the accepted differences from the project comparison to the
current project.
Call: “Project è Commit Accepted Changes”.
Requirement: Changes from the project comparison have been accepted.

The changes are only copied to the project. This command does not save them
to the hard disk.

See also
● Ä Chapter 6.4.1.5.3 “Opening the detailed compare view” on page 1818

Command 'Map pool devices'
Symbol:
Function: Maps imported devices from the device pool to already configured devices below a
PLC.
Call: Main menu “Project”, Context menu.
Requirement: A project is open.
Ä Chapter 6.6.1.1.8 “Arrange or map devices imported to the device pool” on page 4194

Command 'Export'
Function: This command opens a dialog box for exporting objects from a project to an XML file.
Call: Menu bar: “Project”.

This dialog box lists all objects from the device tree, POU tree, and module tree that CODESYS
can export.

One file per subtree : CODESYS generates a separate export file for each subtree that is located
directly under the root node and includes selected files.

: CODESYS generates one export file for all selected objects.

“Saved version” This version should correspond to the target version where the export file will
later be imported.
If the current project contains plug-ins or add-ons that are not available in the
selected memory format (profile), then the “Extend Profile” dialog box opens. In
this dialog box, the selected profile can be extended with the add-ons.

See also
● Ä Chapter 6.4.1.21.3.2.5 “Command 'Save Project as'” on page 2555
● Ä Chapter 6.4.1.21.3.5.25 “Command 'Import'” on page 2612
● Ä Chapter 6.4.1.4.2 “Exporting and importing projects” on page 1815

Dialog 'Export'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2611

Command 'Import'
Function: This command opens a dialog box for importing objects from an XML file.
Call: Menu “Project”

Requirement: A project is open.

The dialog box lists all objects from the export file that CODESYS can import at this point.

“Currently selected target
objects”

Object that is selected in the Device tree

“Insertable items” Displays all objects of the export file that CODESYS can insert below the
selected object.

“Show contents” Displays the contents of the export file in a tree structure

Command 'Export PLCopenXML'
Function: This command opens a dialog box for exporting objects from a project into an XML
file in the PLCopen format.
Call: Menu “Project”

The dialog box lists all objects from the Device tree that CODESYS can export into an XML file
in accordance with the PLCopen format.

The PLCopenXML scheme does not permit VAR_GLOBAL and VAR_GLOBAL
CONSTANT POUs to be in the same variable list. Therefore, if you wish to
export both, you must first divide the variables into two separate variable lists.

See also
● Ä Chapter 6.4.1.21.3.5.27 “Command 'Import PLCopenXML'” on page 2612

Command 'Import PLCopenXML'
Function: This command opens a dialog box for importing objects from an XML file in PLCopen
format.
Call: Menu “Project”

Requirement: A project is open.

The dialog box lists all objects from the PLCopen export file that CODESYS can import at this
point.

“Currently selected target
object”

Object that is selected in the Device tree

“Insertable items” Displays all objects of the export file that CODESYS can insert below the
selected object.

Dialog box 'Im-
port'

Dialog box 'Ex-
port PLCo-
penXML'

Dialog box 'Im-
port PLCo-
penXML'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2612

The PLCopenXML scheme does not permit VAR_GLOBAL and VAR_GLOBAL
CONSTANT POUs to be in the same variable list. Therefore, if you wish to
export both, the variables must first be divided into two separate variable lists.

Command 'User management' – 'Log in User'
Symbol:
This command opens the dialog box “Login”. Here you specify the project that you wish to edit
and enter the login data for a user account with the corresponding rights. In addition, you can
open the password manager from this dialog box.
The command is available in the menu “Project è User Management”.
See also
● Ä Chapter 6.4.1.6.7 “Logging in via User Account and Password Manager” on page 1827

Command 'User management' – 'Log out User'
Symbol:
The user currently logged in to the project is logged out again with this command. This takes
place without a dialog box or message, unless no user is currently logged in.
The command is available in the menu “Project è User Management”.
If the user is currently logged in to several projects or to libraries integrated in them (it does not
have to be the same user account), then the dialog box “Logout” opens, in which the specific
project or library project can be selected from which the current user is to be logged out.
The status bar always displays the user who is currently logged into the project.

A double-click on the field “Current user” in the status bar enables quick access to the “Login” or
“Logout” dialog box.
See also
● Ä Chapter 6.4.1.6.7 “Logging in via User Account and Password Manager” on page 1827
● Ä Chapter 6.4.1.21.3.5.28 “Command 'User management' – 'Log in User'” on page 2613

Command 'User management' – 'Rights…'
This command opens the dialog box “Rights”, in which you define the actions that may be
carried out, the user groups that may carry them out and the project objects on which they may
be carried out.
The command is available in the menu “Project è User Management”.
See also
● Ä Chapter 6.4.1.6.6 “Protecting Objects in the Project by Access Rights” on page 1826

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2613

Command 'Insert Device'
Function: Like the command “Add Device”, this command opens a dialog box “Insert Device”
for the selection of a device object. This object is inserted in the device tree at the same level as
the currently selected object.
Call: Context menu of a device object in the device tree.
Requirement: An object is selected in the device tree below which a device object can be
inserted at the same level.
See also
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835
● Ä Chapter 6.4.1.21.3.5.3 “Command 'Insert Device'” on page 2599

Command 'Generate EtherCAT XML'

The command is not integrated in the standard main menu. You can add it via
the dialog box “Tools è Customize” from the category “Devices”.

Function: This command opens the standard dialog box for saving a file in the local file system.
You can define a name and a storage location for an xml file, in which CODESYS is to store the
EtherCAT configuration of the EtherCAT master currently selected in the device tree. This may
be necessary in order to operate an external EtherCAT stack.
Call: Context menu of an EtherCAT master device object in the device tree.
See also
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835

Command 'Generate Sercos SCI XML'

The command is not integrated in the standard menu. You can add it via the
dialog box “Tools è Customize” from the category “Devices”.

Function: This command opens the standard dialog box for saving a file in the local file system.
You can define a name and a location for an xml file in which CODESYS then stores the
configuration data of the sercos master currently selected in the device tree. This may be
necessary in order to operate an external sercos stack.
Call: Context menu of a sercos master device object in the device tree.
See also
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835
● Ä Chapter 6.4.1.2.2.2 “Customizing menus” on page 1802

Command 'Disable Device' – 'Enable Device'
Function: This command switches back and forth between the enabled (activated) and disabled
(deactivated) states of a device in the bus system.
Call: Context menu of a device object in the device tree.
Requirement: The project is in offline mode. The bus driver must support the function.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2614

A disabled device is not taken into account and is not addressed. Note that with some bus
systems the deactivation of a node can lead to the master stopping.
The entry of a disabled device in the tree appears in light-gray lettering.
Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835

Command 'Edit I/O Mapping'
Function: This command opens the “Edit I/O Mapping” dialog box. This displays all I/O map-
pings of the currently selected device object, including I/O mappings of all additional device
objects that are inserted in the device tree below this object.
Call: Context menu of a device object in the device tree.

You can edit the I/O mapping in this dialog box in exactly the same way as in the dialog box “I/O
mapping” of the individual device editors. The respective other dialog boxes are directly updated
accordingly.

“Search” Input field for a search string for the mapping table. The search results are
marked in yellow.

“Filter” Drop-down list for filtering I/O assignments displayed listed in the mapping table:
● “Show all”
● “Show outputs only”
● “Show inputs only”
● “Show unmapped variables only”
● “Show mapped variables only”
● “Show mappings to existing variables only”
● “ Show mappings to new variables only”

In the context menu you will find among other things the following commands:
“Export Mappings to CSV”: Stores the mappings of a device and its sub-devices in an external
file. To do this you select the device in the device tree or in the mapping list.
“Import Mappings from CSV”: Inserts mappings from a file created beforehand by export.
See also
● Ä Chapter 6.4.1.8 “Configuring I/O Links” on page 1835
● Ä Chapter 6.4.1.21.3.5.35 “Command 'Edit I/O Mapping'” on page 2615
● Ä Chapter 6.4.1.21.3.5.37 “Command 'Export Mappings to CSV'” on page 2616
● Ä Chapter 6.4.1.21.3.5.36 “Command 'Import Mappings from CSV'” on page 2615

Command 'Import Mappings from CSV'
Function: The command opens the default dialog for opening a file in the local file system.
The filter is set to the file format CSV in order to import the I/O mapping configuration of a
device from the file which was exported previously by means of the “Export Mappings to CSV”
command. CODESYS writes the configuration to the selected device.
Call: Context menu of a device object in the “Devices” view.
Requirement: A project is open with a device and an I/O mapping configuration. The device
matches the exported CSV file.

Dialog box 'Edit
I/O mapping'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2615

NOTICE!
I/O mapping configurations are stored in CSV files with the semicolon separator.
These files can be edited manually. If the files are edited manually, then it
is imperative that this format is retained in order to import successfully. Note:
The entries of the file to the I/O mapping of the device are assigned by the
device name and the parameter name. Parameter names that are not unique
are numbered sequentially in this file (@<n>).
Fields without contents in the CSV file are ignored at import. To remove an
existing entry in the I/O mapping by importing, you have to add a space in the
respective field in the CSV file.

See also
● Ä Chapter 6.4.1.21.3.5.37 “Command 'Export Mappings to CSV'” on page 2616
● Ä Chapter 6.4.1.8.2 “Configuring Devices and I/O Mapping” on page 1836

Command 'Export Mappings to CSV'
Function: The command opens the default dialog for saving a file to the local file system. The
filter is set to file format CSV. After specifying a name and a location, CODESYS stores the I/O
mapping configuration in a CSV file with the semicolon separator.

Call: Context menu of a device object in the “Devices” view.
Requirement: A device object with an I/O mapping configuration is selected in the device tree.

Parameter names that are not unique are numbered sequentially in this file
(@<n>).

See also
● Ä Chapter 6.4.1.21.3.5.36 “Command 'Import Mappings from CSV'” on page 2615
● Ä Chapter 6.4.1.8.2 “Configuring Devices and I/O Mapping” on page 1836

Command 'Read PLC Parameter File to Configuration'
Function: This command reads the configuration file IoConfig.par of the PLC and stores the
values in the project. Such a file is created if the parameters of the PLC have been changed by
another device, for example via a visualization. Then these parameters are changed only in the
memory of the PLC, but not in the configuration of the project.
Call: Context menu of the PLC device object
Requirement: You have made the command available using the dialog in “Tools è Customize”.

Command 'Online Config Mode'
Function: This command is for switching the online configuration mode on and off. At
switch-on it establishes a connection to the PLC and loads an implicitly created application
“HiddenOnlineConfigModeApp” to the PLC. Depending on the device, CODESYS goes into
simple online configuration mode or a dialog box appears for selecting between simple and
advanced online configuration mode.
Call: Context menu of the PLC object in the device tree
Requirement: The communication settings for the PLC device are correctly set.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2616

Simple online configuration mode:
This command creates the implicit application HiddenOnlineConfigModeApp and loads it to
the controller. The application automatically initializes all inputs and outputs of the controller
once. After that you can access the I/Os as follows:
● Read I/Os
● Write outputs
● Diagnosis (in the device tree and on the “Status” tab of the device editor)
● Scan (of the current hardware)
● Interactive online functions, if supported (for example, writing asynchronous messages)
Advanced online configuration mode (parameter mode):
If there are already applications on the PLC and the controller supports it, the command first
opens the dialog box “Devices”, which displays the applications existing on the controller. From
this dialog you can connect via the button “Parameter mode” to the PLC and then access the
values of the device parameters without having to log in with a real application.

Writing and forcing in the I/O mapping
In online configuration mode the writing and forcing of values on the “I/O
Mapping” tab works differently to the way it works in real online mode. The out-
puts are written immediately after insertion into the table. There is no “Prepared
Value” column; instead, the initial values can be changed directly after a double-
click on the column “Current Value”.

This dialog box appears after the command “Online Config Mode” if the device supports the
advanced online configuration mode and there are already real applications on the controller.

“Parameter mode” The controller configuration in the project is compared with that on the device.
If they correspond, CODESYS establishes a connection to the PLC. Unlike the
simple online configuration mode it permits the reading and – if supported by the
driver – the writing of parameters in the generic device editor. The applications
already loaded to the device remain unchanged in this case!

“Config application mode” CODESYS switches to the 'simple online configuration mode'.

Command 'Runtime licensing'
Symbol:
Function: Management of runtime licenses on the PLC. The use of some libraries and devices
require the PLC to have a runtime license.
Call: Main menu “Project”, Context menu. Displayed only offline.
Requirement: A project is open. Log-in required for managing runtime licenses without need for
memory card.
The license status of a PLC can be displayed at any time Ä Chapter 6.3.2.2.2.6 “View license
information” on page 1453.

Dialog box
'Config applica-
tion mode'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2617

Menu 'Build'
6.4.1.21.3.6.1 Command 'Generate Code'... 2618
6.4.1.21.3.6.2 Command 'Clean'.. 2618
6.4.1.21.3.6.3 Command 'Clean All'... 2618
6.4.1.21.3.6.4 Command 'Build'.. 2619
6.4.1.21.3.6.5 Command 'Rebuild'... 2619
6.4.1.21.3.6.6 Command 'Generate Runtime System Files'........................... 2619
6.4.1.21.3.6.7 Command 'Check all Pool Objects'... 2621
6.4.1.21.3.6.8 Command 'Generate Code for Active Application'.................. 2621
6.4.1.21.3.6.9 Command 'Check All Application Objects'............................... 2621
6.4.1.21.3.6.10 Command 'Check Library Compatibility'................................ 2622
6.4.1.21.3.6.11 Command 'Generate Disassembly File'................................. 2622

Command 'Generate Code'
Symbol ; shortcut: [F11]

Function: The command starts the code generation for the active application.
Call: Menu bar: “Build”

When generating code with this command, code is generated as when downloading the applica-
tion to the PLC, but the code is not transferred to the PLC. At this time, other source code
tests are performed As a result, you can check the code for bugs that were not detected by the
compiler and for fixing any bugs before the code is used in online mode.
See also
● Ä Chapter 6.4.1.11.5 “Generating Application Code” on page 1976

Command 'Clean'
Function: This command deletes the build information for the active application.
Call: Main menu “Build”.
During the last download, the build information was created and saved to a file (*.compileinfo).
After a cleaning process, an online change is no longer possible for the affected application.
The application must be fully downloaded to the controller again.
See also
● Ä Chapter 6.4.1.21.3.6.3 “Command 'Clean All'” on page 2618

Command 'Clean All'
Function: This command deletes the build information for all applications in the project.
Call: Main menu “Build”.
During the last download, the build information was created in the local file system and saved to
a file (*.compileinfo).
This command requires a download before another login An online change is no longer pos-
sible. As compared to the “Clean” command (only the active application), CODESYS regener-
ates the language model for all objects, which is very time-consuming.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2618

NOTICE!
Reconsider carefully whether or not executing this command is really neces-
sary. If you only want to rebuild and download the active application, then
execute the “Clean” command.

See also
● Ä Chapter 6.4.1.21.3.6.2 “Command 'Clean'” on page 2618

Command 'Build'
Function: The command starts the build operation for the active application.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Build”).
During the build operation, CODESYS performs a syntactic validation of all objects in the
application. However, code is not generated like at log in to the target system or download of
the application. The build operation is always performed automatically when you log in with a
changed program.
When the check is complete, CODESYS displays any error messages or warnings in the
message view (“Build” category).
If the program has not been changed since it was compiled without errors the last time, then it is
not recompiled. The message "The application is current" appears. If the syntactic validation is
repeated, then you must execute the “Rebuild” command.
See also
● Ä Chapter 6.4.1.21.3.6.5 “Command 'Rebuild'” on page 2619

Command 'Rebuild'
Function: The command starts the build operation for the active application, even if the last
build contained errors.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Build”).
See also
● Ä Chapter 6.4.1.21.3.6.4 “Command 'Build'” on page 2619

Command 'Generate Runtime System Files'
Function: The command generates a C stub file and an M4 interface file from the current library
project. These files are used as the basis for creating an external library file.
Call: Menu bar: “Build”

Requirement: A library project is open.
The command opens the “Generate Files for Runtime System” dialog.

“Output directory” Directory where CODESYS creates the runtime system files. Click the button
to open the default dialog for browsing the file system.

“Component names” Name of the library project

“Which files do you want to create?”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2619

“M4 interface file” : Interface file <project name>Itf.m4 with definitions. Example of m4 file:

“C stub file” : Stub file for reprogramming the library in C. Example of stub file:

“Options”

“Export referenced types
included in libraries”

: The referenced types are included in the export.

“Use original type names ” : The type names of the library project are used.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2620

Command 'Check all Pool Objects'
Symbol ; shortcut: [F11]

Function: The command starts a build operation (a syntax check) for all pool objects that
are managed in the POU view and as a result are available throughout the project. First and
foremost, this is useful when creating libraries.
Call: Menu bar: “Build”

Requirement: A library project is open.

NOTICE!
The command does not result in code generation. In addition, no file is created
in the project directory with information about the build operation.

See also
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

Command 'Generate Code for Active Application'
Function: The command generates the code for the application of a library project.
Call: Menu bar: “Build”

Requirement: The project contains an application.
● A library project is open.
● The library project contains an application.
When generating code with this command, code is generated as when downloading the applica-
tion to the PLC, but the code is not transferred to the PLC. At this time, other source code
tests are performed As a result, you can check the code for bugs that were not detected by the
compiler and for fixing any bugs before the code is used in online mode.
See also
● Ä Chapter 6.4.1.21.3.6.6 “Command 'Generate Runtime System Files'” on page 2619

Command 'Check All Application Objects'
Function: This command starts a build operation for all objects of the active application, even
for the POUs that are not used by the application. After the build operation, the errors that were
found in the unused objects are also displayed in the message window.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
from “Tools è Customize” (command category “Build”).
Requirement: An application of the open project is active.

NOTICE!
The command does not result in code generation. In addition, no file is created
in the project directory with information about the build operation.

See also
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2621

Command 'Check Library Compatibility'
Function: The command triggers a check whether the currently opened library project is com-
patible with the last installed version of this library (next lower version number) .
Call: By default the command is not available in any menu. You can add it to a menu by using
the “Tools è Customize” dialog, command category “Build”.
Requirement: A library project is opened.
The check regards differences in the implemented interfaces of a method. So, after the check
you will get displayed error messages in the messages window in the following cases:
● Adding or removing inputs or outputs of function blocks, functions or methods
● Changing the data type of inputs or outputs
● Modifying the implemented interfaces of a method
See also
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

Command 'Generate Disassembly File'
Function: This command generates a disassembly file <project name>.asm from the cur-
rent project and saves it in the file directory in the project folder.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Build”).
See also
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2622

Menu 'Online'
6.4.1.21.3.7.1 Command 'Choose Active Application'.................................... 2623
6.4.1.21.3.7.2 Command 'Login'... 2624
6.4.1.21.3.7.3 Command 'Logout'... 2627
6.4.1.21.3.7.4 Command 'Create Boot Application'.. 2627
6.4.1.21.3.7.5 Command 'Load'.. 2628
6.4.1.21.3.7.6 Command 'Online Change'.. 2629
6.4.1.21.3.7.7 Command 'Source Download to Connected Device'............... 2631
6.4.1.21.3.7.8 Command 'Download Manager'.. 2631
6.4.1.21.3.7.9 Command 'Multiple Download'.. 2631
6.4.1.21.3.7.10 Command 'Reset Cold'.. 2633
6.4.1.21.3.7.11 Command 'Reset Warm'.. 2634
6.4.1.21.3.7.12 Command 'Reset Origin'.. 2635
6.4.1.21.3.7.13 Command 'Reset Origin Device'.. 2636
6.4.1.21.3.7.14 Command 'Logoff Current Device User'................................ 2637
6.4.1.21.3.7.15 Command 'Download'.. 2637
6.4.1.21.3.7.16 Command 'Add Device User'... 2637
6.4.1.21.3.7.17 Command 'Remove Device User'.. 2638
6.4.1.21.3.7.18 Command 'Change Password Device User'.......................... 2639
6.4.1.21.3.7.19 Command 'Stop Execution on Handled Exceptions'............. 2639
6.4.1.21.3.7.20 Command 'Connect to Device'.. 2640
6.4.1.21.3.7.21 Command 'Disconnect from Device'...................................... 2640
6.4.1.21.3.7.22 Command 'Wink'.. 2640
6.4.1.21.3.7.23 Command 'Simulation... 2640
6.4.1.21.3.7.24 Command 'Operating Mode'.. 2642
6.4.1.21.3.7.25 Command 'Virtual mode'... 2643
6.4.1.21.3.7.26 Command 'Virtual system testing'... 2644

Command 'Choose Active Application'
Symbol:
The command is implemented as a list box from which you can set an application active. By
default, the list box is located on the toolbar.
Function: The list box displays the currently active application with its device path.
Call: The list box contains all applications that are organized in the “Devices” view. By clicking
an entry in the list box, you activate the selected application.
Requirement: The project has multiple applications.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2623

Example

When you call commands in the “Build” oder “Online” menus, these commands
are applied to the active application. This is displayed in the list box, and also
displayed in bold in the device tree. In particular, this applies to the “Build
è Build” and “Online è Login” commands.

You can also access these commands using the command icons on the toolbar
where the list box is located. When the command icons are called, they are also
applied to the active application.

However, if you call a command from the context menu of a device object in
the device tree, then the command is applied to the corresponding object. For
example, by calling , you can establish a connection to an application on the
device which is not active.

See also
● Ä Chapter 6.4.1.21.3.5.12 “Command 'Set Active Application'” on page 2603
● Ä Chapter 6.4.1.21.3.6.4 “Command 'Build'” on page 2619
● Ä Chapter 6.4.1.21.3.7.2 “Command 'Login'” on page 2624

Command 'Login'
Symbol: ; shortcut: [Alt]+[F8].
Function: The command connects the application to the target system (PLC to simulated
device) and starts the online mode.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2624

Call: Menu bar: “Online”; context menu of an “Application” object
Requirement: The application contains no errors and the communication settings are config-
ured.
A dialog prompt opens if the communication settings are incorrect. You can then switch directly
to the “Communication Settings” of the PLC.
If you click “Login” from the online menu, then the currently active application is connected to
the target system. If you choose this command from the context menu (right-click) while an
application is selected in the device tree, then that application is logged in, even if it is not set as
the active application.
If an online user management is configured on the target device, then you are prompted for
user data when you log in. The “Device User Login” dialog opens for this.

CAUTION!
Check controller accessibility
For security reasons, controllers should not be accessible from the Internet
or untrusted Networks under any circumstances! In particular, the TCP/IP pro-
gramming ports (usually UDP-Ports 1740..1743 and TCP-Ports 1217 + 11740 or
the controller specific ports) should not be accessible from the internet without
protection. In case Internet access to the controller is needed, using a a safe
mechanism is absolutely mandatory, such as VPN and password protection of
the controller.
Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

Possible situations when logging in:
● A later version of the device description (than in the project) is on the PLC. A warning

prompt is displayed with the option to cancel the process.
● The application does not exist on the PLC: You are prompted to confirm the download.
● The application is already on the PLC and has not been changed since the last download.

The login continues without any more prompts.
● The application exists on the PLC, but it has been changed since the last download.

You are prompted to select one of the following options:
– Login with online change (Note the information about online changes in the help page

"Command 'Online Change' ".)
– Login with download
– Login without any change
The position also provides the option of updating the boot application on the PLC.

● An unknown version of the application exists on the PLC. CODESYS prompts you to
replace it.

● A version of the application exists on the PLC and is running. CODESYS prompts you to log
in anyway and overwrite the currently running application.

● The application on the PLC is currently halted at a breakpoint. You are logged out and the
program has been changed: CODESYS prompts you with a warning that the PLC will be
stopped completely if an online change or download occurs. This happens also if several
tasks exist and the breakpoint affects only one of them.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2625

Click “Details” in the dialogs above to open the “Application Information” dialog.

In CODESYS V3.5 SP17 and higher, only exactly one CODESYS instance
can ever be logged in to an application of a controller. If a second CODESYS
instance wants to log in to the same application of the same controller, then an
error message is displayed.

See also
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964

The dialog provides two tabs with comparative information about the application changed in the
development system and its previous version currently located on the PLC. There are two tabs:
● “Application information”: The application properties of the “Application in the IDE” (Inte-

grated Development Environment) are compared with those of the “Application in the PLC”:
Project name, Last modification, IDE version, Author, Description. In addition, CODESYS
shows the objects that have changed since the last download.

● “Application contents”: When the “Download application info” is selected, the contents of
the applications on both the (1) development system and (2) PLC can be compared. The
“Download application info” option is located on the “Application Build Options” tab of the
application properties.
If the code in the development system is not current, then (3) “Application not up to date.
Generate code now?” appears at the bottom left of the dialog. Execute this command to
update the application source code.
This detailed information can help you to better assess the effects of login in the current
situation and to make a decision about downloading the new application.

The comparison can also be displayed in the device editor (“Applications” tab)
by clicking “Content”.

See also
● Ä Chapter 6.4.1.21.2.8.5 “Tab 'Applications'” on page 2434
● Ä Chapter 6.4.1.5 “Comparing projects” on page 1817

Dialog 'Applica-
tion Information'
(Details)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2626

If one or more applications are already on the PLC, but are not in the project, then CODESYS
opens a dialog with a list of these applications. You can then define whether an application
should be deleted before loading the current application from the PLC. This also applies to child
applications that are on the PLC, but have been deleted from the project in the meantime.

If an application program has not been compiled since the last change, then CODESYS com-
piles the project before login. This operation is the same as the “Generate Code” command
when logged out.
If compile errors occur, then a dialog prompt opens. The errors are displayed in the message
view in the “Build” category. You can then decide whether or not you log in without downloading
the program to the PLC.
See also
● Ä Chapter 6.4.1.21.3.6.4 “Command 'Build'” on page 2619

If an error occurs when logging in to the PLC, then CODESYS cancels the loading operation
with an error message. The error dialog gives you the options of showing the error details. If an
exception was thrown and the text *SOURCEPOSITION* is included in the log, then you can
display the affected function in the editor by clicking “Show in Editor”. The cursor jumps to the
line containing the error.

If CODESYS downloads the project to the PLC at login, then the following information is printed
to the message view:
● Generated code size
● Size of the global data
● Resulting memory requirement on the PLC
● List of the affected blocks (for online change)

In online mode, you cannot change the settings of the devices or modules. You
have to logout of the application for changing device parameters. Depending
on the bus system, there may be some special parameters that you can also
change in online mode.

CODESYS saves the view configuration separately in online and offline mode.
In addition, views are closed that cannot be used in any operating mode. For
this reason, the view can change automatically at login.

Command 'Logout'
Symbol: , keyboard shortcut: [Ctrl]+[F8].
Function: This command disconnects the application from the target system (controller or
simulated device) and returns to offline mode.
Call: Main menu “Online”, or context menu of the “Application” object.

Command 'Create Boot Application'
Function: This command generates a boot application.
Call: Main menu “Online”.

Unknown appli-
cations on the
PLC

Compiling the
project before
login

Error at login

Messages
during the
download oper-
ation

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2627

A boot application is the application that is started automatically when the controller is switched
on or started.
In offline mode, you can save the boot application in any directory. In online mode, CODESYS
save the boot application to the target device. The file name is <application name>.app.

See also
● Ä Chapter 6.4.1.11.7 “Generating boot applications” on page 1978
● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410

Command 'Load'
Function: This command causes a compilation of the active application with subsequent down-
load to the controller.
Call: Menu bar: “Online”.
Requirement: The application is in online mode.
When you execute this command, CODESYS performs a syntax check and generates the
application code. This code is downloaded to the PLC. Furthermore, CODESYS generates the
build log <project name>.<device name>.<application ID>.compile info in the
project directory.

NOTICE!
During loading all variables are re-initialized with the exception of persistent
variables.

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

The description of the “Login” command describes the possible situations when logging in and
loading.
If you attempt to download an application when the same version of the application is already
on the PLC, then you get the message: "Program is unchanged. Application was not down-
loaded". CODESYS downloads the application to the PLC.
During loading a record of the actions being executed (generation of code, execution of initiali-
zation, etc.) appears in the Message window in the message category “Compile”. Furthermore,
information is displayed regarding the memory ranges, the size of the code, the global data and
the allocated memory. For the purpose of clarity, as opposed to the online change, the modified
function blocks are no longer listed.
See also
● Ä Chapter 6.4.1.21.3.7.2 “Command 'Login'” on page 2624
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2628

Command 'Online Change'
Function: The command is used for initiating an online change on the current application.
When this is done, CODESYS re-downloads only the changed parts of an application that is
already running on the PLC.
Call: Menu bar: “Online”; context menu of an “Application” object
Requirement: The application is in online mode.
The command is available in the context menu if an application is selected in the device tree.
In this way, you can perform an online change just for one application, even if that application is
not currently active.

CAUTION!
An online change modifies the running application program and does not cause
a restart.
Make sure that the new application code still has the required effect on the
controlled system.
Depending on the controlled plant, the plant and workpieces may be damaged
or the health and life of persons could be endangered.

NOTICE!
1. When an online change is performed, the application-specific initializations
(example: homing) are not executed because the machine retains its status. For
this reason, the new program code may not have the intended effect.
2. Pointer variables retain their value from the last cycle. When a pointer refers
to a variable whose value was changed in an online change, the variable no
longer yields the correct value. Make sure that the pointers are re-assigned in
each cycle.
3. After the parent application has been changed, a child application is removed
from the controller when an online change is performed.

NOTICE!
For compiler version >= 3.5.0.0, a fast online change is performed for minor
changes. In this case, only the modified blocks are compiled and downloaded.
In particular, no initialization code is generated. This means that also no code
is generated when variables with the init_on_onlchange attribute are initial-
ized. As a rule, this has no effect because the attribute is used primarily for
initializing variables with addresses. However, it cannot happen that a variable
changes its address during an online change.
To secure the effect of the init_on_onlchange attribute in the entire appli-
cation code, you must deactivate the fast online change in general for the
application by using the compiler definition no_fast_online_change. To do
this, insert the definition in the application “Properties” (“Build” tab).

At the time of download, CODESYS also lists the changed interfaces, affected variables, and
all blocks with new generated code in the “Build” category of the message view. If memory
locations change, a dialog will inform you of possible problems in conjunction with pointers.

In the “Online Change Memory Reserve” view, memory reserves can be config-
ured for the online change so that instance variables do not have to be moved
in the memory when changing a function block in an online change.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2629

There are actions in CODESYS after which an online change on a controller is no longer
possible. Afterwards, the application always has to be completely recompiled. A typical case
is the “Clean All” action which deletes the compile information stored at the last download.
However, these kind of actions typically generate a warning which you have to acknowledge.
But there are also "normal" editing actions that result in an online change not being possible at
the next login. Therefore, pay attention to the following symbol in the status bar when editing
in the program POUs: . When this symbol turns red in color (), only a full download to
the controller can be performed. Double-clicking the symbol opens the “Application Information”
dialog with a list of differences to the last download. In the dialog, you also find information
about which of the changes prevent an online change.
Actions and changes in different areas of an application that prevent an online change:

Check func-
tions

Activation or removal of a check function (CheckBounds, CheckRange,
CheckDiv, etc.)

Change in an interface of a check function (also the insertion and deletion of
local variables)

Task configu-
ration

Change in the configuration settings

Project set-
tings

Change of the “Compile Options” in the “Settings” section (Unicode, replace
constants, logging in, breakpoints)
Change in the “Compiler defines”

Application
properties

Change of the “Target system memory settings” (“Build” tab)

POU proper-
ties

Change of the “External implementation” option (“Build” tab)

Task-local
global vari-
able list

All changes

Function
block

Change of the base POU of a function block (EXTENDS FBbase), also the
insertion or deletion of such a base POU
Change in the interface list (IMPLEMENTS ITF). Exception: Adding a new
interface at the end of a list

Data type Change of the data type of a variable from a user-defined data type to another
user-defined data type (for example, from TON to TOF)

Change of the data type from a user-defined data type to a base type (for
example, from TON to TIME)

Note: As a workaround, you should always change the name of the variable
together with the data type. Then the variable is initialized as a new variable
and the old one is removed. Then an online change is possible.

Alarm config-
uration

Change in the alarm database configuration
Change of the number of latch variables (also has an effect on the memory
format in the database)
Change to the configuration of the distributed alarms

Data source All changes in the configuration

Device config-
uration

Change in the device tree (also by the “Update Device” command)
Change in a device configuration: By default, changes to device parameters
are not capable of online change. However, exceptions can be configured in
the device description.
Note: I/O mapping to variables is possible by online change.

What prevents
an online
change?

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2630

Visualization Toggling of the overlay function
Before V3.5 SP6: Change in the configuration of the trace element
Note: In V3.5 SP6 and higher, the following applies: For online changes
that affect visualizations or affect the data of the application (for example,
a new variable is inserted), the visualization is completely reinitialized. For
TargetVisu, for example, this means that the visualization closes and reopens
with the start page. For WebVisu, the visualization also restarts with the start
visualization after a short waiting period.

Unit conver-
sion

Insertion or removal of objects for unit conversion

Trend Change of the number of variables or maximum number of variables. Change
of the number of variables with a description or special line settings

See also
● Ä Chapter 6.4.1.21.3.6.3 “Command 'Clean All'” on page 2618
● Ä Chapter 6.4.1.11.5 “Generating Application Code” on page 1976
● Ä Chapter 6.4.1.14.2 “Executing the online change” on page 2025
● Ä “ Dialog 'Application Information' (Details)” on page 2626
● Ä Chapter 6.4.1.20.6.3.21 “Attribute 'init_on_onlchange'” on page 2291
● Ä Chapter 6.4.1.21.2.30.2 “Tab 'Configuration'” on page 2538
● Ä Chapter 6.4.1.21.4.12.4 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 2769
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755

Command 'Source Download to Connected Device'
Function: This command loads the project source code (as project archive) to the controller
currently connected.
Call: Main menu “Online”.
Requirement: The application is in online mode.
See also
● Ä Chapter 6.4.1.21.3.2.10 “Command 'Source Upload'” on page 2559
● Ä Chapter 6.4.1.21.3.2.11 “Command 'Source Download'” on page 2560

Command 'Download Manager'
Symbol:
Function: Download or create a boot project from the project devices or update the firmware oft
he device.
Call: Main menu “Online”, Context menu.
Requirement: A project is open.

Command 'Multiple Download'
Function: The command causes the code generation of the applications contained in the
project as well as the loading of the applications to the corresponding controllers.
Call: Menu bar: “Online”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2631

The command opens a dialog with a list of the applications. In this dialog, select the applica-
tions that are to be loaded. Then, CODESYS performs the syntax check of these applications
and generates the respective code. The code is then downloaded to the respective PLC.
For each selected application, CODESYS generates a build log with the name <project
name>.<device name>.<application ID>.compileinfo in the project directory.

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

“Please select the items to be
downloaded”

: Selection of the applications. The applications are thereby also loaded to
different controllers.

“Move Up”, “Move Down” Change of the order of download of the applications.
The applications are downloaded to the PLCs in the order of this list. By default,
this list is alphabetically sorted. Parent-child relationships of applications are
thereby taken into account.

“OK” Checks the syntax of all selected applications. Afterwards, the communication
with the associated controller is verified for each application before the download
takes place.

Table 495: “Online Change Options”
If an earlier version already exists on the PLC and is different from the current version, then the following options
are provided:

“Try to perform an online
change. If this is not possible,
perform a full download.”

Activated by default. If an online change cannot be executed for one of the
applications, then a download is performed.

“ Force an online change. If
this is not possible, cancel the
operation.”

If an online change cannot be performed for (at least) one of the applica-
tions, then no download is performed and the online change is terminated (for
example, if you have executed the command “Clean All” beforehand).

“Always perform a full
download.”

Downloads all parts of the applications to the PLC, regardless of any existing
versions.

For selected applications that do not exist on the PLC yet, CODESYS performs a download
automatically to the PLC.

Dialog 'Multiple
Download'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2632

Table 496: “Other Options”
“Delete all applications on the
PLC which are not part of the
project. ”

: Corresponding applications are deleted

“Start all applications after
download or online change”

: The applications are started after the download or online change.

“Do not release forced
variables”

: If an application with forced variables exists on the controller, and if the
implementation of this application has been changed, then no download is per-
formed for this application.
The message “Error: Skipped because one or more variables have been forced”
appears for this application in the window “Multiple Download - Result”.

Note that variables with the key attribute PERSISTENT RETAIN are not gener-
ally initialized. If you change the data layout, however, the persistent variables
are automatically re-initialized.

After completion of the download a listing of all selected applications appears in the download
order that you configured. In addition, you are shown information on the success of the down-
load for each application in the “Multiple Download - Result” dialog:
● “Created”: A new application has been created and downloaded to the controller.
● “Not changed”: The application which exists on the controller has not been changed.
● “Online changed”: The application which exists on the controller has been modified by an

online change.
● “Downloaded”: The application which exists on the controller has been replaced by a new

created application.
● “Skipped due to impossible online change”: An online change could not be performed for the

application. The application was not changed.
● “Error”: An error has occurred for this application during download. More details may be

displayed.
● “Cancelled by user”: The operation has been aborted by the user.

See also
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920
● Ä Chapter 6.4.1.11.5 “Generating Application Code” on page 1976
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920
● Ä Chapter 6.4.1.21.3.7.5 “Command 'Load'” on page 2628

Command 'Reset Cold'
Function: The command results in a cold start of the active application on the controller.
Call: Menu bar: “Online”

Requirement: The application is in online mode.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2633

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Cold”, the following happens:
● Application code is retained on the controller.
● Variables are initialized (with the initialization value or the default initialization value 0), and

the previous values are lost.
● Retain variables are initialized, and the previous values are lost.
● Persistent variables are retained with values.
● Breakpoints that were set in the code are retained with their status (for example, activated

or deactivated).
● The application goes into the “STOP” state.
You can also select the command while debugging the application when it halts at a break-
point in the “HALT ON BP” state. Then either the warm start is executed immediately, or the
remaining statements of the current cycle are processed. Therefore, a message window opens
for you to select the next action. However, the message window opens only if the runtime
system is capable of restarting the cycle without terminating it first.
After the reset, you can run the application as usual and, for example, start the execution by
clicking “Debug è Start”.

See also
● Ä Chapter 6.4.1.12.6 “Resetting applications” on page 1990
● Ä Chapter 6.4.1.9.19.2 “Preserving data with persistent variables” on page 1923
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981
● Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964
● Ä Chapter 6.4.1.21.3.7.11 “Command 'Reset Warm'” on page 2634
● Ä Chapter 6.4.1.21.3.7.12 “Command 'Reset Origin'” on page 2635

Command 'Reset Warm'
Function: The command results in a warm start of the active application on the controller.
Call: Menu bar: “Online”

Requirement: The application is in online mode.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2634

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections temporarily.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Warm”, the following happens:
● Application code remains loaded on the controller.
● Variables are initialized (with the initialization value or the default initialization value 0).
● Retain variables are retained with values.
● Persistent variables are retained with values.
● Breakpoints that were set in the code are retained with their status (for example, activated

or deactivated).
● The application goes into the “STOP” state.
You can also select the command while debugging the application when it halts at a break-
point in the “HALT ON BP” state. Then either the warm start is executed immediately, or the
remaining statements of the current cycle are processed. Therefore, a message window opens
for you to select the next action. However, the message window opens only if the runtime
system is capable of restarting the cycle without terminating it first.
After the reset, you can run the application as usual and, for example, start the execution by
clicking “Debug è Start”.

See also
● Ä Chapter 6.4.1.12.6 “Resetting applications” on page 1990
● Ä Chapter 6.4.1.9.19.2 “Preserving data with persistent variables” on page 1923
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981
● Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964
● Ä Chapter 6.4.1.21.3.7.10 “Command 'Reset Cold'” on page 2633
● Ä Chapter 6.4.1.21.3.7.12 “Command 'Reset Origin'” on page 2635

Command 'Reset Origin'
Function: The command results in a reset origin of the active application on the controller.
Call: Menu bar: “Online”

Requirement: The application is in online mode.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2635

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections permanently.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Origin”, the following happens:
● The application code is deleted, and as a result the application has no state.
● Variables are deleted, and the values are lost.
● Retain variables are deleted, and the values are lost.
● Persistent variables are deleted, and the values are lost.
● Breakpoints that were set in the code are lost.

See also
● Ä Chapter 6.4.1.12.6 “Resetting applications” on page 1990
● Ä Chapter 6.4.1.9.19.2 “Preserving data with persistent variables” on page 1923
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981
● Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964
● Ä Chapter 6.4.1.21.3.7.11 “Command 'Reset Warm'” on page 2634
● Ä Chapter 6.4.1.21.3.7.10 “Command 'Reset Cold'” on page 2633

Command 'Reset Origin Device'
Function: The command opens a dialog to reset the device to its factory settings. All applica-
tions, boot applications, and remanent variables will be deleted from the device. Depending
on the version of the device, a selection of the elements to be deleted can be made in this
dialog. When these elements are unselected in the dialog, they are not deleted during the reset
and remain on the controller. By default, all elements are selected and everything is deleted.
Elements that are not available for selection are generally also deleted.
Call: Right-click a programmable device in the device tree.

NOTICE!
If a safety controller is inserted below a controller, then this command can
interrupt the communication connections permanently.
Connections of the safety controller to other safety controllers (via safety net-
work variables), to field devices, and to the development system are affected.
The safe field devices or other safety controller can enter the safe state as a
reaction. The connection to the development system is affected only when a
safety controller that is connected to the main controller via a fieldbus.
For more information, see the "Subordinate Safety Controllers" chapter.

After restarting with “Reset Origin Device”, the following happens:
● All applications are reset as with the “Reset Origin” command.
● All files, which are not deleted by the “Reset Origin” command, are deleted (for example,

files from visualization, alarms, and recipes).

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2636

● The user management is deleted.
● All certificates which are currently managed by the runtime system are deleted.

Note: When resetting the device, the objects selected in this dialog are also deleted. If not all displayed objects
are selected in this dialog, then possibly other objects can no longer be used or they are also deleted. .

“Delete” : The object is deleted when the “Reset Origin Device” command is executed.

“Object” Objects that can be excluded from “Delete”.
The listed objects depend on the version of the controller. In version 3.5.16.20
and higher, the following objects can be excluded from the delete operation.
● “User Management”
● “PLC Logic”
● “Certificates”

See also
● Ä Chapter 6.4.1.21.3.7.12 “Command 'Reset Origin'” on page 2635
● Ä Chapter 6.4.1.21.3.7.11 “Command 'Reset Warm'” on page 2634
● Ä Chapter 6.4.1.21.3.7.10 “Command 'Reset Cold'” on page 2633
● Ä Chapter 6.4.1.10.7 “Subordinate safety controller” on page 1964

Command 'Logoff Current Device User'
Symbol:
Function: This command logs out the user currently logged in to the controller (device). If
CODESYS still has a connection to the controller, then it will be disconnected.
Call: Main menu “Online”.
Requirement: The application is in online mode.

You can manage the device user management in the “Users and Groups”
tab and “Access control” of the device editor. The commands in the “Online
è Security” menu provide another simple option for protecting access to the
target device.

See also
● Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'” on page 2450
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

Command 'Download'
Function: This command loads the compiled project in the PLC.
Call: Main menu “Online”, Context menu.
Requirement: A project is open. Log-in required for download.

Command 'Add Device User'
Symbol:
Function: This command configures a new device user and adds this user to the administrator
group.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2637

Call: Menu bar: “Online è Security”

Requirement: The device supports a device user management. You are logged in to the device
as a user.

You can manage the device user management in the “Users and Groups”
tab and “Access control” of the device editor. The commands in the “Online
è Security” menu provide another simple option for protecting access to the
target device.

See also
● Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'” on page 2450
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

This command opens the “Add Device User” dialog. Here you define the access data of the new
user.
The dialog corresponds to the dialog in the “Users and Groups” tab of the device editor for
adding a new user.
Please use a strong password as follows:
● Password length >= 8 characters (best >= 12)
● Use uppercase and lowercase
● Include numbers
● Use special characters
● Do not use existing names or sequence of characters that are easy to guess (for example,

“123”, “abc”, “qwerty”)

CAUTION!
After performing this action, you can no longer use a blank username and
password to log in. You must remember your password.

See also
● Ä Chapter 6.4.1.21.3.7.17 “Command 'Remove Device User'” on page 2638
● Ä Chapter 6.4.1.21.3.7.18 “Command 'Change Password Device User'” on page 2639

Command 'Remove Device User'
Symbol:
Function: This command removes a user from the user management on the target system
(device).
Call: Menu bar: “Online è Security”

Requirement: You are logged in to the device as a user.

You can manage the device user management in the “Users and Groups”
tab and “Access control” of the device editor. The commands in the “Online
è Security” menu provide another simple option for protecting access to the
target device.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2638

See also
● Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'” on page 2450
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

This command opens the “Remove Device User” dialog. Specify the user name and password
of the user to be removed and click “OK” to confirm.

CAUTION!
After performing this action, you can no longer use this removed user account
to log in. If this user is the only one on the target system, then a dialog prompt
notifies you that this user cannot be removed.

See also
● Ä Chapter 6.4.1.21.3.7.16 “Command 'Add Device User'” on page 2637
● Ä Chapter 6.4.1.21.3.7.18 “Command 'Change Password Device User'” on page 2639

Command 'Change Password Device User'
Symbol:
Function: The command changes the password for the user who is currently logged on the
PLC.
Call: “Online è Security” menu
Requirement: You are logged in to the device as a user.
The command opens the “Change Password for Device User” dialog for defining a new pass-
word. You have to specify the old password again.

NOTICE!
After performing this action, you can no longer use the previous password to log
in.

Make sure that you use a strong password. Note the following:
● Password length >= 8 characters (best >= 12)
● Use uppercase and lowercase
● Include numbers
● Use special characters
● Do not use existing names or sequence of characters that are easy to guess (for example,

"123", "abc", "qwerty")
See also
● Ä Chapter 6.4.1.21.3.7.16 “Command 'Add Device User'” on page 2637
● Ä Chapter 6.4.1.21.3.7.17 “Command 'Remove Device User'” on page 2638
● Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

Command 'Stop Execution on Handled Exceptions'
Function: This command halts the application where the error is located despite a programmed
exception handling.
Call: This command is not available by default, but it can be configured from the “Tools
è Customize”, “Add Command” dialog box (“Online” category).

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2639

Requirement: The application is in online mode and contains a programmed exception han-
dling with the __TRY and __CATCH operators.

If you have configured this command from the “Online” menu and you call it from there, then
the currently active application is affected. Furthermore, this command can help you to detect
errors.
See also
● Ä Chapter 6.4.1.20.3.62 “Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'”

on page 2206
● Ä “Adding commands” on page 1803
● Ä Chapter 6.4.1.21.3.9.16 “Command 'Customize'” on page 2667

Command 'Connect to Device'
Function: The command establishes a connection to the device currently selected in the device
tree.
Call: Context menu of the device.
Requirements: A device is selected in the device tree. The communication settings are config-
ured correctly.
See also
● Ä Chapter 6.4.1.21.3.7.21 “Command 'Disconnect from Device'” on page 2640

Command 'Disconnect from Device'
Function: The command disconnects the connection from a device.
Call: Context menu of the device.
Requirements: A device is selected in the device tree.
See also
● Ä Chapter 6.4.1.21.3.7.20 “Command 'Connect to Device'” on page 2640

Command 'Wink'
Symbol:
Function: The command causes an LED of a connected controller to blink. As a result, the
hardware can be identified clearly.
Call: The command is not in any menu by default. You can add it to a menu by means of the
“Tools è Customize” dialog, in the “Online” command category.
Requirement: The controller supports this function and the connection parameters are config-
ured correctly.

Command 'Simulation
Function: The command switches the development system to simulation mode.
Call: Menu bar: “Online”

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2640

In simulation mode, you can start and debug the active application an on a simulated target
device. A physical target device is not necessary for testing the online behavior of an applica-
tion. When logging in for the first time, you are prompted whether the application should be
created or loaded. For a simulated device, you do not have to configure the communication set-
tings. In CODESYS simulation mode, the entry of the controller in the device tree is displayed in
italics.

NOTICE!
No C code for simulation mode
In simulation mode, C code is not generated and loaded to the runtime system.
To simulate the code contained in the C modules anyway, you can implement it
for this purpose in the respective IEC objects of the C code module.

After successful login, the red triangle symbol () in the device tree indicates simulation mode.
You can use the corresponding online commands for testing the application.
To switch off simulation mode, log out of the controller and execute the “Simulation” command
again.
The command affects the active application only.

 Simulation Physical Controller
Real-time
behavior / multi-
core

● Runs in the CODESYS process
with normal priority

● Single-core
--> Worse real-time behavior

● Real-time operating system
● Single-core or multicore

Architecture
scope

● Simulation 64-bit (depends on
the CODESYS installation): -->
Possible compile error in the IEC
application if the application has
been previously run only as 32-
bit (for example, use of DWORD
as POINTER)

● Controller 32-bit

FPU (rounding
error)

● Uses FPU of the PC
● Different configuration of the

FPU exceptions

● Uses FPU of the controller or
FPU emulation

● Different configuration of the
FPU exceptions

Handling of
exceptions

● Exception handling of the Win-
dows Runtime System

● Exception handling of the con-
troller

Differences
between simula-
tion mode and
operation with a
physical con-
troller

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2641

 Simulation Physical Controller
External libraries
(Cmp/Sys/CAA/O
EM/…)

● Only a few external Cmp/
SysLibs are physically available.
As compared to embedded,
more SysLibs could also be
available.

● Other implementation/behavior
of the SysLibs (Windows in con-
trast to the OS of the controller)

● "Unresolved Reference error“ on
download is ignored. The appli-
cation can still be downloaded to
the controller and started. If the
missing functions are actually
called, they return nonsense
values.
Therefore, an IEC implementa-
tion can also be specified for
external POUs. This substitute
IEC code is then executed in the
simulation.

● "Unresolved Reference error" on
download when external libraries
do not exist in the controller

I/O drivers ● I/O configuration is generated
but not evaluated.

● Fieldbus stacks are not evalu-
ated.

● I/O channels are not updated
and no bus telegrams are sent.

● Mostly no restriction, but
depends on the capabilities of
the controller

SoftMotion
drivers

● All SoftMotion axes are set to vir-
tual and therefore simulated.

● Mostly no restriction, but
depends on the capabilities of
the controller

See also
● Ä Chapter 6.4.1.12.2 “Testing in simulation mode” on page 1980

Command 'Operating Mode'
Function: The commands set the controller to a state which prevents accidental change to the
project.
Call: Menu bar: “Online è Operating Mode”

You can use these commands, for example, to lock the state of a controller in order to prevent
the controller from switching to another state while you program another controller.
When programming is complete, the controller should then be switched to a defined and exter-
nally visible state that is set exactly the same way after restarting.

The , , and symbols in the status bar indicate the current operating mode. Double-
clicking one of these symbols opens a help window.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2642

If it supports the controller, then you can switch the controller to the following operating modes:

● “Debug”: No restrictions
● “Locked”: The current state of debugging is locked on the application. No additional

breakpoints can be set and no additional variables can be forced. Writing variables is still
possible and breakpoints which are already set remain active.
Only the "RUN" state of an application is preserved in “Locked” operating mode even if
the controller is restarted.
With this operating mode, a developer can prevent himself or another developer from
changing the application on the controller, for example by setting or deleting a breakpoint,
by forcing, or by making changes to the file system. This operating mode is helpful to
prevent a download to an incorrect controller when, for example, multiple controllers of a
plant are programmed.

● “Operational”:
This operating mode makes sure that the controller reloads the same applications after a
restart and that no debug features are active anymore. The operating mode is set when a
controller is completely programmed and should be accepted or already is.
Conditions for activating the “Operational” mode
– A boot application for each application has to exist on the controller.
– There must not be any active breakpoints set.
– All applications have to be running.
– There must not exist any forced values.
– Furthermore, the device can define more of its own restrictions.

The “Locked” and “Operational” operating modes are different in the use cases and in the
requirements for activating the operating mode. However, for both operating modes the runtime
system prevents the following actions:
● Regarding the application

– Download of an application
– Online change
– Force variables
– Set breakpoints
– Stop application
– Reset application
– Start application
– Delete application

● Regarding the file transfer of the controller
– Download of a file to the controller
– Delete a file on the controller
– Rename a file on the controller
– Create a directory on the controller
– Delete a directory on the controller
– Rename a directory on the controller

You cannot switch the operating mode between “Locked” and “Operational”.

Command 'Virtual mode'
Function: “Virtual Mode” option enables virtual mode for Automation Builder.
Call: Main menu “Online”, Context menue
Requirement: A project is open. Command is only available, if a license for advanced simula-
tion support is acitvated.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2643

Command 'Virtual system testing'
Function: The “Virtual system testing” editor contains settings for the virtual devices and the
simulation set-up and control.
Call: Main menu “Online”, Context menu
Requirement: A project is open. Command is only available, if a license for advanced simula-
tion support is acitvated.

Menu 'Debug'
6.4.1.21.3.8.1 Command 'Start'.. 2644
6.4.1.21.3.8.2 Command 'Stop'.. 2645
6.4.1.21.3.8.3 Command 'Single Cycle'.. 2645
6.4.1.21.3.8.4 Command 'New Breakpoint'.. 2645
6.4.1.21.3.8.5 Command 'New Data Breakpoint'.. 2645
6.4.1.21.3.8.6 Command 'Edit Breakpoint'... 2645
6.4.1.21.3.8.7 Command 'Enable Breakpoint'.. 2646
6.4.1.21.3.8.8 Command 'Disable Breakpoint'... 2646
6.4.1.21.3.8.9 Command 'Toggle Breakpoint'... 2646
6.4.1.21.3.8.10 Command 'Step Over'... 2646
6.4.1.21.3.8.11 Command 'Step Into'... 2647
6.4.1.21.3.8.12 Command 'Step Out'... 2647
6.4.1.21.3.8.13 Command 'Run to Cursor'... 2648
6.4.1.21.3.8.14 Command 'Set Next Statement'.. 2648
6.4.1.21.3.8.15 Command 'Show Next Statement'... 2648
6.4.1.21.3.8.16 Command 'Force Values'... 2649
6.4.1.21.3.8.17 Command 'Write Values'... 2649
6.4.1.21.3.8.18 Command 'Unforce Values'... 2650
6.4.1.21.3.8.19 Command 'Force All Values from <Device.Application>'....... 2650
6.4.1.21.3.8.20 Command 'Write All Values from <Device.Application>'....... 2651
6.4.1.21.3.8.21 Command 'Unforce All Values from <Device.Application>'... 2652
6.4.1.21.3.8.22 Command 'Flow Control'... 2652
6.4.1.21.3.8.23 Menu 'Core Dump'... 2653
6.4.1.21.3.8.24 Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadeci-

mal'.. 2654

Command 'Start'
Symbol: ; keyboard shortcut: [F5]

Function: This command starts the application (status: “RUN”).
Call: Menu bar: “Debug”; context menu of object: “Application”

Requirement: The application is in online mode and its status is “STOP”.
Executing this command from the “Debug” menu will affect the application that is currently in
focus.
See also
● Ä Chapter 6.4.1.11.6 “Downloading the application code, logging in, and starting the PLC”

on page 1977

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2644

Command 'Stop'
Symbol: ; keyboard shortcut: [Shift]+[F8]

Function: This command stops the application (status: “STOP”).
Call: Menu bar: “Debug”; context menu of object: “Application”

Requirement: The application is in offline mode and its status is “RUN”.
Executing this command from the “Debug” menu will affect the application that is currently in
focus.

Command 'Single Cycle'
Keyboard shortcut [Ctrl]+[F5]

Function: This command executes the active application for one cycle.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the program is halted at a program step.

Command 'New Breakpoint'
Symbol: , keyboard shortcut [Alt]+[F7].
Function: This command opens the “Breakpoint Properties” dialog box.
Call: Main menu “Debug”.
Requirement: The application must be in online mode.

With the “Toggle Breakpoint” command, you can set a new breakpoint directly at
the current cursor position in online mode.

See also
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Command 'New Data Breakpoint'
Symbol:
Function: The command opens the “New breakpoint” dialog.
Call: Menu bar: “Debug”

Requirement:
● The application is in online mode.
● The device description file of the target device contains the entries for the "data breakpoints"

functionality. Currently, data breakpoints are possible only with the CODESYS Control Win
V3.

See also
● Ä Chapter 6.4.1.21.4.9 “Dialog 'New Breakpoint'” on page 2750
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Command 'Edit Breakpoint'
Symbol:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2645

Function: This command opens the “Breakpoint Properties” dialog box.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the cursor is halted at a breakpoint.
See also
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Command 'Enable Breakpoint'
Function: This command enables a disabled breakpoint.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the cursor is halted at a disabled break-
point.
See also
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Command 'Disable Breakpoint'
Function: This command disables an enabled breakpoint.
Call: Main menu “Debug”.
Requirement: The application is in online mode and the cursor is halted at an enabled break-
point.
See also
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Command 'Toggle Breakpoint'
Keyboard shortcut [F9]

Function: This command sets a breakpoint or clears an existing breakpoint.
Call: Main menu “Debug”.
Requirement: The application is in online mode. The cursor is positioned at a breakpoint.
See also
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Command 'Step Over'
Symbol , shortcut [F10]

Function: The command executes the statement where the program is currently located and
halts before the next statement in the POU.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode).

If the executed statement contains a call (from a program, function block instance, function,
method, or action), then the subordinate POU is processed completely in one step and returned
to the call. Then it halts before the next statement (in the next line of code).

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2646

Click “Step Into” to jump to a subordinate POU and process it in single steps.

See also
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985
● Ä Chapter 6.4.1.21.3.8.11 “Command 'Step Into'” on page 2647

Command 'Step Into'
Symbol , shortcut [F11]

Function: The command executes the statement where the program is currently located and
halts before the next statement.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode).
If the executed statement contains a call (from a program, function block instance, function,
method, or action), then the program execution jumps to this subordinate POU. Its code opens
in a separate editor. The first statement there is executed and the program execution halts
before the next statement. The new current breakpoint position is then in the called POU.

Click “Step Over” to remain in the currently active POU and execute the call in
one step.

See also
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985
● Ä Chapter 6.4.1.21.3.8.10 “Command 'Step Over'” on page 2646

Command 'Step Out'
Symbol , shortcut [Ctrl]+[F11]

Function: The command executes the program until the next return and halts afterwards.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode).
If the current breakpoint position is in a subordinate POU, then this is run through to the end.
Then the program execution jumps back to the calling point in the calling POU and halts there
(in the line with the call).
If the current breakpoint position is in the main program, then the POU is run through to the end.
Then the program execution jumps back to the beginning (to the program start at the first line of
code in the POU) and halts there.

See also
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2647

Command 'Run to Cursor'
Symbol:
Function: The command executes a program until a specified position as marked by the cursor.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode). Moreover, you have marked any line of code in any POU with the
cursor.

The statements between the current breakpoint position and the cursor position are executed
in one step. Then the execution halts at the cursor position, which then becomes the next
breakpoint position. Remember that the line of code where you placed the cursor is reached but
not executed.

See also
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985

Command 'Set Next Statement'
Symbol:
Function: The command determines which statement is executed next.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode). Moreover, you have marked any line of code in any POU with the
cursor.
The line of code marked with the cursor becomes the current breakpoint position without
executing the statements in between or the statement that jumped to it.

See also
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985

Command 'Show Next Statement'
Symbol:
Function: The command displays the program statement that is processed in the next step.
Call: Menu bar: “Debug”

Requirement: The application is in online mode and the program is halted at the current break
position (debug mode). The break position is in a line of code that you cannot see.
The command makes the window with the current breakpoint position active (in the code high-
lighted in yellow and marked with the symbol) and makes the breakpoint position to become
visible. This is useful if you have multiple editors open and the breakpoint position is hidden in
an inactive editor.

See also
● Ä Chapter 6.4.1.12.4 “Stepping Through a Program” on page 1985

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2648

Command 'Force Values'
Keyboard shortcut: [F7]

Function: The command sets a permanent predefined value to a variable on the controller.
Call: Menu bar: “Debug”

Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

With this command, CODESYS permanently sets one or more variables of the active application
to defined values on the PLC.

A forced value is marked with the forced symbol ().
For more information about the functionality of forcing and the p of values, see the "Forcing and
Writing of Variables" help page.

By default, the “Force Values [All Applications]” command, which applies to all
application in the project, and is not included in a menu.

See also
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä Chapter 6.4.1.21.4.8 “Dialog Box 'Prepare Value'” on page 2749
● Ä Chapter 6.4.1.21.3.8.18 “Command 'Unforce Values'” on page 2650

Command 'Write Values'
Keyboard shortcut [Ctrl]-[F7]

Function: This command sets a predefined value to a variable on the controller one time.
Call: Main menu “Debug”.
Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

With this command, one or more variables of the active application are set to defined values
on the controller one time. Writing is done one time at the beginning of the next cycle.
Values are prepared by
● Clicking in the field “Prepared value” in the declaration section
● Clicking in the inline monitoring field in the implementation section
● Clicking in the field “Prepared value” in the watch window

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2649

The command “Write Values [All Applications]” affects all application in the
project and is not included in a menu by default.

See also
● Ä Chapter 6.4.1.21.3.8.16 “Command 'Force Values'” on page 2649
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

Command 'Unforce Values'
Keyboard shortcut [Alt]+[F7]

Function: This command resets the forcing of all variables. The variables receive their current
values from the PLC.
Call: “Debug”.
Requirement: The application is in online mode.
The “Remove Force List” command has the same functionality as this command with one
difference. If the “Remove Force List” command cannot be executed for all forced values, then
no message is displayed.

CAUTION!
Unusual changes to variable values in an application currently running on
the PLC can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled system, the result may lead to
damage to machinery and equipment or injury to health and life of personnel.

The command “Force Values [All Applications]” affects all application in the
project and is not included in a menu by default.

See also
● Ä Chapter 6.4.1.21.3.8.16 “Command 'Force Values'” on page 2649
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

Command 'Force All Values from <Device.Application>'
Function: This command resets all values of variables from the selection <Device.Application>
to predefined values permanently.
Call:
● Context menu of the application in the device tree
● Context menu in the editor of a POU from the selected application
Requirement: The application is in online mode.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2650

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

With this command, CODESYS permanently sets one or more variables of the active application
to defined values on the PLC. This is done at the beginning and end of a processing cycle.
Order of processing: 1) read inputs, 2) force values, 3) process code, 4) force values, 5) write
outputs.
You can prepare values as follows:
● Click in the “Prepared value” field in the declaration part and type in the value. For Boolean

variables, you change the value by clicking the field.
● Click in the inline monitoring field in the implementation part of the FBD/LD/IL editor
● Click in the “Prepared value” field in the monitoring view and type in the value.

A forced value is marked with the forced symbol ().
CODESYS forces the value until you explicitly lift it by
● Clicking “Unforce Values”
● Clicking “Unforce All Values from <Device.Application>”
● Lifting the force in the “Prepare Value” dialog
● Logging out of the application

The command “Force Values [All Applications]” affects all application in the
project and is not included in a menu by default.

See also
● Ä Chapter 6.4.1.21.4.8 “Dialog Box 'Prepare Value'” on page 2749
● Ä Chapter 6.4.1.21.3.8.18 “Command 'Unforce Values'” on page 2650
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä Chapter 6.4.1.21.3.8.21 “Command 'Unforce All Values from <Device.Application>'”

on page 2652

Command 'Write All Values from <Device.Application>'
Function: This command resets all values of variables from the selection <Device.Application>
to predefined values one time.
Call:
● Context menu of the application in the device tree
● Context menu in the editor of a POU from the selected application
Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2651

With this command, one or more variables of the selected <Device.Application> are set to
defined values on the PLC one time. Writing is done one time at the beginning of the next cycle.
You can prepare values as follows:
● Click in the "Prepared value" field in the declaration part and type in the value. For Boolean

variables, you change the value by clicking the field.
● Click in the inline monitoring field in the implementation part of the FBD/LD/IL editor
● Click in the "Prepared value" field in the monitoring view and type in the value.
See also
● Ä Chapter 6.4.1.21.3.8.17 “Command 'Write Values'” on page 2649
● Ä Chapter 6.4.1.21.3.8.19 “Command 'Force All Values from <Device.Application>'”

on page 2650
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

Command 'Unforce All Values from <Device.Application>'
Function: This command resets the forcing of all values of the variables from the selected
<Device.Application>. The variables receive their current values from the PLC.
Call:
● Context menu of the application in the device tree
● Context menu in the editor of a POU from the selected application
Requirement: The application is in online mode.

CAUTION!
Unusual changes to variable values in an application currently running on
the controller can lead to undesired behavior of the controlled machinery.
Evaluate possible dangers before forcing variable values. Take the respective
safety precautions. Depending on the controlled machinery, the result may lead
to damage to machinery and equipment or injury to health and life of personnel.

See also
● Ä Chapter 6.4.1.21.3.8.19 “Command 'Force All Values from <Device.Application>'”

on page 2650
● Ä Chapter 6.4.1.21.3.8.18 “Command 'Unforce Values'” on page 2650

Command 'Flow Control'
Function: This command activates and deactivates the flow control.
Call: Menu“Debug”

Requirement: The application is in online mode.

NOTICE!
An active flow control extends application runtime.
When “Confirmed Online Mode” is activated in the communication settings, a
dialog prompt appears when switching on the flow control to cancel the process.
When flow control is activated, it is not possible to use breakpoints or step
through the program.

See also
● Ä Chapter 6.4.1.12.7 “Flow Control” on page 1992

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2652

Menu 'Core Dump'
6.4.1.21.3.8.23.1 Command 'Load Core Dump'... 2653
6.4.1.21.3.8.23.2 Command 'Create Core Dump'.. 2653
6.4.1.21.3.8.23.3 Command 'Close Core Dump'.. 2654
6.4.1.21.3.8.23.4 Command 'Load Device Log from Core Dump'.................. 2654

Command 'Load Core Dump'
Function: CODESYS scans the project directory for core dump files. When a new core dump
is forced with the “Create Core Dump” command, the dump file is automatically loaded from
the controller to the project directory. If multiple core dump files are available, then CODESYS
prompts you to choose whether the latest file should be opened in the project. You can also
select one of the other files.
When a file is loaded into the project, an online view of the application appears with state of
the application at the time when the core dump was generated. You can then view the variable
values afterwards. Finally, the call tree is also available.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in offline mode.

NOTICE!
You can close the core dump view only by clicking “Close Core Dump”. The
“Logout” command has no effect in this view.

See also
● Ä Chapter 6.4.1.21.3.8.23.2 “Command 'Create Core Dump'” on page 2653
● Ä Chapter 6.4.1.21.3.8.23.3 “Command 'Close Core Dump'” on page 2654

Command 'Create Core Dump'
Function: This command causes CODESYS to check whether a core dump file is already
available on the controller.
If a core dump file is available, then CODESYS prompts you to load this file to the project
directory.
With the following requirements, CODESYS generates a new dump file with the current applica-
tion data:
● A core dump file is still not available or CODESYS has rejected a core dump file from being

loaded.
● The application is currently stopped at breakpoint or an exception has occurred.
The generated core dump file is saved directly to the project directory: <project
name>.<device name>.<application name>.<application Guid>.core. You can
cancel the file generation by clicking the button in the status bar.
The amount of detail in the dump depends on the support from the runtime system. Runtime
systems that are appropriate for this purpose generate just one dump in the case of an excep-
tion error. The core dump output from clicking “Load Core Dump” can therefore be used for error
analysis.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in online mode.
See also
● Ä Chapter 6.4.1.21.3.8.23.1 “Command 'Load Core Dump'” on page 2653

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2653

Command 'Close Core Dump'
Function: This command closes the core dump view of the application that is open in the
project.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in offline mode and you have loaded a core dump file to the
project from the controller.

Command 'Load Device Log from Core Dump'
Function: This command imports the controller log list that was saved with the last generated
core dump. The log list is displayed in the same view as in online mode in the “Log” tab of the
device editor.
Call: Main menu “Debug è Core Dump”.
Requirement: The application is in offline mode and a core dump is open in the project.
See also
● Ä Chapter 6.4.1.21.2.8.9 “Tab 'Log'” on page 2437

Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'
Function: These commands in the “Display Mode” submenu are used for setting the format of
values in the display mode when monitoring in online mode.
Call: Main menu “Debug”.
Requirement: The project is in either online or offline mode.

The "Binary" and "Hexadecimal" display modes are unsigned, and "Decimal" is
signed.

See also
● Ä Chapter 6.4.1.13.2.2 “Calling of monitoring in programming objects ” on page 1996

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2654

Menu 'Tools'
6.4.1.21.3.9.1 Command 'IP-Configuration'.. 2655
6.4.1.21.3.9.2 Command 'Install additional licence'.. 2655
6.4.1.21.3.9.3 Command 'Migrate third party devices'................................... 2655
6.4.1.21.3.9.4 Command 'Package Manager'.. 2655
6.4.1.21.3.9.5 Command 'Library Repository'.. 2657
6.4.1.21.3.9.6 Command 'License Manager'.. 2659
6.4.1.21.3.9.7 Command ‘License Repository’... 2662
6.4.1.21.3.9.8 Command 'Device Repository'.. 2663
6.4.1.21.3.9.9 Command 'Create Device list CSV'... 2665
6.4.1.21.3.9.10 Command 'Multi Online Change'... 2665
6.4.1.21.3.9.11 Command 'Device ECAD data'.. 2665
6.4.1.21.3.9.12 Command 'OPC UA Information Model Repository'.............. 2665
6.4.1.21.3.9.13 Command 'Scripting' - 'Execute Script File'........................... 2666
6.4.1.21.3.9.14 Command 'Scripting' - 'Enable Script Tracing'....................... 2667
6.4.1.21.3.9.15 Command 'Scripting' - 'Scripts'.. 2667
6.4.1.21.3.9.16 Command 'Customize'... 2667
6.4.1.21.3.9.17 Command 'Options'... 2667
6.4.1.21.3.9.18 Command 'Import and Export Options'.................................. 2668
6.4.1.21.3.9.19 Command 'Device Reader'.. 2668

Command 'IP-Configuration'
Function: Scan the project for IP address, device ID and other Informations.
Call: Main menu “Tools”, Context menu
Requirement: -
Ä Chapter 6.3.2.9.2 “Configuration of the IP settings with the IP configuration tool”
on page 1506

Command 'Install additional licence'
Function: Installs additional engineering license.
Call: Main menu “Tools”, Context menu
Requirement: -

Command 'Migrate third party devices'
Function: After a selection of a previous version profile, all the third party devices which have
been installed inside this version profile are listed and can migrated.
Call: Main menu “Tools”, Context menu
Requirement: -
Ä Chapter 6.3.1.5 “Migration of third party devices” on page 1439

Command 'Package Manager'
Symbol:
Function: The command opens the “Package Manager” dialog where you install, uninstall, and
manage packages.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2655

Call: Menu bar: “Tools”

You can also call the Package Manager as a standalone application from the command line.

Table 497: “Currently Installed Packages”
List of installed packages with “Name”, “Version”,“Installation date”, “Update info”, “License info”

If a package originates from the CODESYS Store, then CODESYS identifies it with the red package symbol
instead of the yellow symbol.

When an update is available, CODESYS indicates this with an entry in the “Update info” column and with the
symbol.

“Refresh” Refreshes the list

“Install” Opens the standard dialog for finding a file in the file system. By default, the file
type is *.package.
You can also install two versions of a package.
After you select the package, the “Check package signatures” dialog opens.
● In the dialog, the package is displayed with the information about signing.

Detailed information about signing is displayed in the tooltip and also in a
dialog which opens when you double-click a package.

● “Allow unsigned and self-signed packages” : The package should be
installed although it is unsigned or self-signed.

After the package is selected, the installation wizard opens with the dialogs:
● “Installation - License Agreement”

In this dialog, CODESYS also displays the “Checksum” of the package.
Displayed only when the package has a license agreement.

● “Choose Setup Type”
The options are package-dependent.
– “Complete setup”: CODESYS installs all components
– “Typical setup”: CODESYS installs a standard set of components as

defined in the package
– “Custom setup”: CODESYS installs those components which are

selected in a dialog
● “Installation - Target Versions”: You select which of the existing target ver-

sions should be updated by the package installation. You have to select at
least one version profile.

When this dialog is successfully completed, the selected package is ready for
installation. You have to close all CODESYS instances in order for the package
installation to be automatically started and run.

“Uninstall ” Uninstalls the selected package
● When the “Display versions” option is not selected, CODESYS uninstalls all

versions of the selected package.
● When the “Display versions” option is selected and you have selected a

package node on the top level, CODESYS uninstalls all versions of the
selected package.

● When the “Display versions” option is selected and you have selected an
individual package version, CODESYS uninstalls exactly this version.

When this dialog is closed, all CODESYS instances have to be closed in order
for the package uninstallation to start.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2656

“Details” Opens the “Details” dialog for the selected package with the following tabs:
● “Package Details”

– “Name”: Package name
– “Version”
– “Checksum”: SHA-1 checksum of the package
– “Vendor”
– “Copyright”
– “Description”
– “Installation date”

● “License Agreement”
● “Installations Log”

“Search updates in
background”

: CODESYS automatically searches for updates every time the programming
system is started and then one time every hour.

“Display versions” : Displays all versions of the installed package.

You can compare the “Checksum” with the package checksum from the
package vendor. CODESYS displays this checksum in the “Details” dialog and
in the “Installation - License Agreement” dialog of the installation wizard. You do
this to make sure that you have installed an original package.

If you have installed a newer version of the programming system in the same
installation directory as the previous version, the license information about the
previously installed package remains unchanged and CODESYS displays the
information in the “Package Manager” dialog.

Table 498: “Updates”
“Search Updates” Searches for the selected package on your system and in the CODESYS Store

Updates.
CODESYS displays the found updates in the “Update Info” column of the
package list.

“Download” Installs the update package from the “Download Package” dialog. In the
“Download Package” dialog, click the “Download and Installation” button for this.

Table 499: “CODESYS Store”
“Rating” Give an rating of the package

“CODESYS Store” Link to the homepage of the Store

Command 'Library Repository'
Symbol:
Function: The command opens the “Library Repository” dialog. In this dialog you define which
libraries are installed on the local system and are thus available for your application.
Call: Menu bar: “Tools”

Dialog 'Library
Repository'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2657

Table 500: “Location”
Display of the directory on the local system in which the library files are located. The libraries in this “Location” are
listed in the “Installed libraries” area.

“Edit Locations” Opens the “Edit Repository Locations” dialog.

1. You can only use empty directories for new repositories.

2. You can also use existing repositories as locations.

3. The "System" repository is not editable; CODESYS indicates this by the italic
lettering of the entry.

Table 501: Dialog “Edit Repository Locations”
List of the repositories with “Location” and “Name”

“Add” Creates a new repository.
Opens the “Repository Location” dialog. The selected directory (“Location” input
field) has to be either empty or an existing valid repository. “Name” is the input
field for a symbolic repository name.

“Edit” Opens the “Repository Location” dialog (see “Add”)

“Remove ” A dialog box open, asking whether only the entry should be removed from the
list of repositories, or whether the directory with the library files should be deleted
from the file system. If you want to delete the directory, you have to confirm this.

Table 502: “Installed libraries”
List of the libraries in a tree structure. Display of each library with category, name, company and version. The icon
to the left of the name indicates whether the library is digitally signed or unsigned.

“Company ” List box for filtering the displayed libraries.

“Install” Opens the “Select Library” dialog. Possible filters:
● “Compiled CODESYS library files (* .compiled-library)”.
● “Compiled CODESYS library files (* .compiled-library-v3)” ab V3 SP15
● “Library files (*.library)” for still uncompiled library projects
● “All files (*.*)”

“Uninstall” Uninstalls the selected library.

“Export” Opens the default dialog for saving the library project to the local file system.
The file type is Library files (*.library), Compiled library files
(*.compiled-library), or Compiled library files (*.compiled-
library-v3).

“Find” Searches for libraries and function blocks.
Opens the “Find Library” dialog. When you enter a string in the input field,
CODESYS displays the libraries that it finds with a corresponding string.

“Details” Opens the “Details” dialog with details from the project information of the library
for the selected version of a library. You find the following information by clicking
“More” in the “Details” dialog:
● “Size”: Specified in bytes
● “Created”: Creation date
● “Changed”: Date of the last change
● “Last access”: Date
● “Attributes”
● “Properties”

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2658

“Dependencies” For the selected library, the “Dependencies” dialog opens, showing the depend-
encies on other libraries. “Title”, “Version” and “Company” are shown for
each library reference. References that function via placeholders are displayed
according to the syntax: #<placeholder name>.

“Group by category” ● : Grouping by library category
● : Alphabetical sorting
The categories are defined by external description files '*.libcat.xml'.

Table 503: “Library Profiles”
A library profile defines the library version with which CODESYS resolves a library placeholder if a certain
compiler version is set in the project.

“Import” Imports a *.libraryprofile file.

If the import already contains existing placeholder entries, a query appears
asking whether CODESYS should overwrite it.

“Export” Exports an xml file with the extension *.libraryprofile with the assign-
ments of the selected placeholder entries; you can only select a single entry of a
“Compiler version”.

Placeholder resolutions can also be defined in the target device currently in
use and even by a specific local specification in the Placeholders dialog in the
Library Manager.

See also
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035
● Ä Chapter 6.4.1.21.2.24 “Object 'Project Information'” on page 2515
● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469
● Ä Chapter 6.4.1.21.4.3 “Dialog 'Library Reference Conversion'” on page 2746
● Ä Chapter 6.4.1.17.6 “Exporting library files” on page 2037

Command 'License Manager'
Symbol:
Function: This command opens the wizard for configuring licenses for CODESYS add-on
products. The wizard starts with the “License Manager - Select target” dialog.
Call: Menu bar: “Tools”.
The License Manager can handle licenses for CODESYS add-on products on the local com-
puter, as well as licenses for RTS add-on products on devices. It supports both the installation in
a soft container and on a dongle.

This is the start dialog of the License Manager wizard. Here you decide where the license will
be installed.

“Workstation” Local computer

“Device” Controller. The connection to this device must be configured correctly in order to
license (“Communication Settings” tab of the device editor).

After clicking “Next”, you decide the container where you want to manage the licenses.

Dialog 'License
Manager -
Select Target'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2659

“Dongle” A corresponding dongle must be connected to the computer or device. Not all
devices support dongles.

“Soft container” "CODESYS Security Key. A corresponding soft container must be registered in
the CodeMeter Control Center. The CODESYS installation provides an existing
soft container.

If you are installing a product on your local computer (“Workstation”), then the “License
Manager” opens immediately for the specific selection of the dongle or soft container, and the
next actions. This happens after you choose the container type and click “Next >”.
If you are licensing the add-on product for a controller, then first the dialog opens for selecting
the device in the network after you click “Next >”. This dialog corresponds to the classic view of
the “Communication Settings” tab of the device editor.

“Container” Depending on whether “Dongle” or “Soft container” was selected: Drop-down list
of all CODESYS dongles or soft containers that were found on the computer or
device.

“Products” List of all installed products that are subject to licensing. A prepended symbol
indicates the existence and validity of the license.
On the right side of the window, the following information is displayed for the
selected product and corresponding licenses:
“Name”

“Company”

“Unit counter”

“License quantity”

“Usage period”

“Feature map”

“Activation time”

“Expiration time”

“Firm code”

“Product code”

“Description”

“Install Licenses” Opens the dialog “Install licenses on <computer> - Select Operation”:
● “Activate license”: Opens the dialog “Install licenses on <computer> -

Activate License” (see more below)
● “Request license”: Opens the dialog “Install licenses on <computer> -

Request License” (see more below)
● “Install license”: Opens the dialog “Install licenses on <computer> - Install

License” (see more below)

“Additional Functions” Opens the menu with the following actions:
● “Return license”: Opens the “Return Licenses” (see more below)
● “Restore license”: This function is available in the case of device licensing

only. Opens the “Restore Licenses” dialog (see more below)

Dialog 'License
Manager -
Select con-
tainer'

Dialog 'License
Manager'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2660

Table 504: “Install Licenses on <computer> - Activate License”
This is the recommended way to activate a license available via the License Server when you have an Internet
connection. Requirement: The computer has an Internet connection.

“Ticket ID” Input field for the ticket ID that you received from the software vendor. The
ticket ID consists of five sets of five alphanumerical characters (for example:
LYSQ3-ZU93K-24LWC-XGWJ8-5AY7H).

“License server” Drop-down list of the license server that provides the license for activating the
product. You receive the server URL from the software vendor.

“Select Ticket from Repository” Opens the “License Repository” dialog.

“Next” CODESYS connects to the license server.
● If the specified ticket contains only one license, then a dialog opens to

confirm the successful activation after completion of the server action.
● If the specified ticket contains multiple licenses, then the dialog “Install

licenses - Select Licenses” opens with a list of these licenses (see descrip-
tion below).

Table 505: “Install Licenses - Select Licenses”
Selection of the licenses to be activated for the ticket which you specified in the dialog “Install Licenses - Activate
License”.

“Name” Product name

“Available” Number of available licenses

“Used” Number of used licenses

Total Sum of all used and available licenses

Next CODESYS connects to the license server. After successful completion of the
server action, a dialog opens with the confirmation of the activation.

Table 506: “Install Licenses on <computer> - Request License”
If the computer does not have an Internet connection, then you can generate a context file from this dialog. The
file "WibuCmRaC" is then transmitted to the license server via an Internet-enabled computer. When activation is
complete, a license update file "WibuCmRaU" is provided for download.

“Software vendor” Input field for firm codes from the software vendor that provided the license for
activating the product. As an alternative, you can select the software vendor from
the drop-down list.

“Context file” Location and name

Table 507: “Install Licenses on <computer> - Install License”
If you downloaded a license update file from the Internet during software activation, then you can use this dialog
to install the license on your dongle. To do this, specify the path of the license update file in the input field.

Table 508: “Return License”
If the license permits, you can return it in order to reactivate it later on another computer.

“Ticket ID” Field for specifying the ticket ID that was used for licensing.

“License server” Drop-down list for selecting the license server that provides the license for acti-
vating the product. You receive the server URL from the software vendor.

“Load License(s)” Button for showing all current licenses installed for the given ticket ID on the
server in the “Licenses” window.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2661

“Licenses” List of licenses available on the server for the given ticket ID. The following
information for the selected license is displayed next to the window on the right:
● “Name”
● “Number of activations”
● “Return allowed”
● “Activation type”
● “Activation date”
● “Firm code”
● “Comment”

“Return License(s)” Button for returning the selected license(s). These can be reactivated later on
another system.

Table 509: “Install Licenses - Restore Licenses”
When activated, device licenses are saved to a file (*.WibuCmRau) on the local computer and in the "CODESYS
Central License Server". If lost, they can be restored from this file to the identical device.

“Ticket ID” Field for specifying the ticket ID that was used for licensing that has already
occurred.

“Restore” If a corresponding license backup file is found, then the license is reactivated in
the device.

See also
● Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Settings'” on page 2427
● Ä Chapter 6.4.1.21.3.9.7 “Command ‘License Repository’” on page 2662

Command ‘License Repository’
Symbol:
Function: This command opens the dialog box “License Repository” for viewing information
about the individual licenses.
Call: Main menu “Tools”

Requirements: CODESYS is in offline or online mode.
In the license repository, after entering the ticket number, you can obtain information about the
licenses concerned from the central license server.
To do this you can paste the ticket number(s) from the clipboard or import it/them from a text file.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2662

Table 510: “Tickets”
<List of the ticket IDs imported
into the repository for compo-
nents requiring licenses>

“Licenses” If you select an entry in the list of tickets, the name and the status of the licensed
component are displayed here.

: License available and valid

: License found, but invalid

: License not found
In the right-hand part of the dialog box you will then receive then the following
information about this license:

 “Name”: name of the product to be licensed
“Item number”: item number in the license server.
“Return allowed”: It is possible to have this license deactivated so that it can be
re-activated on another system.
“Can be activated”: you can have the license activated via the license manager.
“Activation quantitiy”: number of activations that have taken place so far.
“Activation date”: date of the current activation
“Container serial ”

“Firm codes”

“Comment”

“Import Tickets” The standard dialog box for browsing the local file system appears. If you open a
text file containing one or more “tickets”, i.e. license numbers, these are imported
into the repository. Alternatively you can also insert the numbers from the clip-
board into the list.

Command 'Device Repository'
Symbol:
Function: This command opens the “Device Repository” dialog. This dialog is used for man-
aging the devices that are installed on the local system and can be integrated into CODESYS
projects.
Call: Menu bar: “Tools”.

CAUTION!
Do not change the internal device repository manually. Do not copy any
files to or from the repository. Always use the device repository dialog to install
or uninstall devices.

Dialog 'Device
Repository'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2663

Table 511

“Location” Shows the device repository directory on the local system. The list box shows
the currently set save locations. By default, CODESYS creates the system repo-
sitory during installation. The devices of the selected location are listed in the
“Installed device descriptions” field.

“Edit Locations” Opens the “Edit Repository Locations” dialog.

Table 512: Dialog 'Edit Repository Locations'
List of the repositories with “Location” and “Name”.

“Add” Creates a new repository.
Opens the “Repository Location” dialog. The selected directory (“Location” input
field) must be empty or it must be a valid repository.

“Edit” Opens the “Repository Location” dialog (see “Add”).

“Remove ” A dialog prompt opens for you to decide whether the respective directory should
also be deleted from the hard disk.

Table 513: “Installed Device Descriptions”
List of device descriptions in multilevel tree structure. Shows all device descriptions with “Name”, “Vendor”, and
“Version”. The top nodes represent device categories, for example PLCs, fieldbuses, and logical devices.

“String for full-text search in all
devices”

This field is editable after clicking in it. For any character string entered, only
those devices that include the character string are displayed in the lower view.
The matched string is highlighted in yellow for these devices.

“Vendor” Drop-down list with manufacturers whose available devices are displayed.

“Install” Opens the “Install Device Description” dialog.
For the default devices with file type "*.devdesc.xml". You can also select
manufacturer-specific description files, such as "*.gsd" files for PROFIBUS DP
modules, "*.eds" and "*.dcf" files for CAN devices.
When you click “OK” to confirm the selection, CODESYS inserts the new device
into the device repository. If an error occurs during installation (for example,
missing files that are referenced by the device description), then CODESYS
reports the error to the lower part of the device repository dialog.

“Uninstall” Removes the selected device. If you delete the device from the device reposi-
tory, then it is no longer available for use in the programming system.

“Renew Device Repository” Updates all devices in the device repository.
When new versions of import plug-ins are available, some device descriptions
may be outdated. The affected devices are marked with a warning symbol ().
This command opens a dialog to confirm the update.

“Download Missing Device
Descriptions”

Opens when you use devices in your project that are not available in the device
repository. When you execute this command, a list of missing devices is dis-
played. There you can select the corresponding devices for download.

“Details” Opens the “Details” dialog for the selected device description. This dialog pro-
vides additional information from the device description file.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2664

NOTICE!
During installation, CODESYS copies the device description files and all addi-
tional reference files to an internal location. Therefore, any changes to the
original files no longer influence the installed devices. You must reinstall the
devices to make any changes effective. We recommended that you change the
internal version number of a device description after a modification.

See also
● Ä Chapter 6.4.1.18.2 “Installing devices” on page 2038
● Ä Chapter 6.4.1.21.4.14.6 “Dialog 'Options' – 'Device Description Download'” on page 2785

Command 'Create Device list CSV'
Symbol:
Function: MS Excel template of device list for device import is opened.
Call: Main menu “Tools”, Context menu
Requirement: -
Ä Chapter 6.6.1.3.3 “Creating CSV device list” on page 4198

Command 'Multi Online Change'
Function: The MultiOnlineChange tool/plug-in for Automation Builder enables firmware update,
download and online change of the same project to several AC500 V2 PLCs.
Call: Main menu “Tools”, Context menu
Requirement: -

Command 'Device ECAD data'
Function: Automation Builder provides an ECAD interface for exchanging the PLC config-
uration data with EPLAN Electric P8 and Zuken E3. This feature removes double data
entry between electrical engineering in the ECAD tool and the control logic programming in
Automation Builder by synchronizing the PLC hardware including topology and I/O signals
between these tools.
Call: Main menu “Tools”, Context menu
Requirement: A project is open.
Ä Chapter 6.6.1.1 “Exporting and importing ECAD data (PBF)” on page 4191

Command 'OPC UA Information Model Repository'
Function: The command opens the “OPC UA Information Model” dialog. The OPC UA infor-
mation models, which are installed on the local system and can be integrated in CODESYS
projects, are managed in the dialog.
Call: Menu bar: “Tools”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2665

Table 514: Dialog 'OPC UA Information Model'
“Location” Displays the OPC UA information model directories on the local system. The list

box shows the currently set locations. By default, CODESYS creates the system
repository during installation. The information models of the selected location are
listed in the “Installed OPC UA information models” area.

“Edit Locations” Opens the “Edit Repository Locations” dialog.

“Installed OPC UA information models”

List of installed information models. Double-click to open installed information model documentation.
Note: The information models of this repository can also be added to project archives.

“Install ” Opens the “Select Installed OPC UA Information Model(s)” dialog.
● File type: OPC UA Information Models *NodeSet2.xml (example:

“Informationmodel.NodeSet2.xml”. When you click “Open”, the selected
information model is inserted in the repository.

● File type: All files *.*: You can select an OPC UA documentation, for
example, in PDF or Word format. When you click “Open”, the “Assign
Documentation OPC UA Information Models” opens. For a description of
the dialog, see below.

“Uninstall” Uninstalls the selected OPC UA information model. When you delete the infor-
mation model from the repository, it is no longer available in the development
system for use in the CODESYS Development System.

“Details” Opens the “Details” dialog for the selected information model. The dialog
includes additional information about the information model. In “Alias”, you can
specify an alias name for the URI. Moreover, information is displayed as to
whether or not a documentation for the information model is available.
● “Model URI”
● “Publication date”
● “Publisher”
● “Repository”
● “Alias”
● “Documentation available”:

– “Yes”: The “Uninstall documentation” button is available.
– “No”: The “Install documentation” button is available.

● “Install documentation”: Opens the “Select OPC UA Information Model
Documentation” dialog. The data type OPC UA Information Model
Documentation (*.pdf) is set as default in the dialog.

“Documentation” Opens the installed documentation for the selected information model.
If no documentation is installed for the selected information model, then the
command is disabled.

“Display all versions” All installed versions of the information model are displayed in a tree structure.

● Ä Chapter 6.4.1.21.2.17 “Object 'OPC UA Information Model'” on page 2472

Command 'Scripting' - 'Execute Script File'
Symbol:
Function: This command opens a dialog for selecting and then executing the script file (*.py).
Call: Menu bar: “Tools è Scripting”.

See also

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2666

Command 'Scripting' - 'Enable Script Tracing'
Symbol:
Function: This command makes CODESYS print all commands from the script file to the
message view. Use this command for monitoring and debugging scripts. A blue frame around
the symbol indicates that the option is active.
Call: Main menu “Tools è Scripting”.

Command 'Scripting' - 'Scripts'
Function: This command executes a script that is stored in the ScriptDir folder.

Call: Menu bar: “Tools è Scripting è Scripts”.
Requirement: The ScriptDir folder exists in the CODESYS installation directory. Python
scripts are stored in this folder with the file extension .py.

All scripts that are contained in the ScriptDir folder are executable as menu commands and
are sorted alphabetically by file name.

Command 'Customize'
Function: This command opens the “Customize” dialog box, where you can customize the
menus, toolbars, and keyboard shortcuts according to your individual requirements.
Call: Main menu “Tools”

Command 'Options'
Function: The command opens the dialog box “Options” for the configuration of the CODESYS
options. These options define the behavior and appearance of the CODESYS user interface.
CODESYS saves the settings in your current user profile on your local system. The current
profile specifies the standard settings.
Call: “Tools” menu
See also
● Ä Chapter 6.4.1.21.4.14.23 “ Dialog 'Options' - 'SFC Editor'” on page 2795
● Ä Chapter 6.4.1.21.4.14.4 “Dialog 'Options' - 'CFC Editor'” on page 2784
● Ä Chapter 6.4.1.21.4.14.5 “Dialog 'Options' – 'Declaration Editor'” on page 2785
● Ä Chapter 6.4.1.21.4.14.7 “Dialog 'Options' - 'Device Editor'” on page 2786
● Ä Chapter 6.4.1.21.4.14.6 “Dialog 'Options' – 'Device Description Download'” on page 2785
● Ä Chapter 6.4.1.21.4.14.10 “Dialog 'Options' - 'FBD, LD, and IL'” on page 2787
● Ä Chapter 6.4.1.21.4.14.14 “Dialog 'Options' – 'International Settings'” on page 2790
● Ä Chapter 6.4.1.21.4.14.15 “Dialog 'Options' – 'Libraries'” on page 2790
● Ä Chapter 6.4.1.21.4.14.16 “Dialog 'Options' – 'Library Download'” on page 2790
● Ä Chapter 6.4.1.21.4.14.17 “Dialog 'Options' – 'Load and Save'” on page 2791
● Ä Chapter 6.4.1.21.4.14.20 “Dialog 'Options' - 'PLCopenXML'” on page 2793
● Ä Chapter 6.4.1.21.4.14.21 “Dialog 'Options' - 'Proxy Settings'” on page 2793
● Ä Chapter 6.4.1.21.4.14.22 “Dialog 'Options' - 'Refactoring'” on page 2794
● Ä Chapter 6.4.1.21.4.14.24 “Dialog 'Options' - 'SmartCoding'” on page 2796
● Ä Chapter 6.4.1.21.4.14.26 “Dialog 'Options' - 'Text Editor'” on page 2798

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2667

Command 'Import and Export Options'
Function: This command opens the “Import and Export Options” dialog. Here you can configure
the export and import of selected settings of the CODESYS options. The settings are saved to
an XML file with the default extension (options.xml).

Call: Menu bar: “Tools”.

“Export selected options” “Select options”: In the table, you can select the categories of options, either
user-specific or machine-specific (computer), whose current settings are to be
exported to the XML file.
“File”: Path of the export file in the local file system. Example:
D:\system1.options.xml.

Button : Opens the default dialog to search for an existing file in the local file
system, or to create one. The “File type” option export (*.options.xml)
is preset.

“Import selected options” “File”: Path of the options export file whose contents are to be imported.

Button : Opens the default dialog to search for an existing file of type option
export (*.options.xml) in the local file system.

After you click “OK” to close the dialog, the settings described in the file are
applied to the project.

See also
● Ä Chapter 6.4.1.2.1.1 “Setting CODESYS options” on page 1802

Command 'Device Reader'
Function: The command opens the standard “Select Device” dialog and reads the license and
product information of the selected controller. This license and product information is displayed
in the “Device Reader” dialog.
Call: Menu bar: “Tools”

Requirement: No applications exist on the controller.

If the command is selected although an application exists on the controller, then
a dialog prompts the user whether or not all applications should be removed
from the controller. When the user click “No” to this dialog, the “Device Reader”
command is aborted.

Table 515: Dialog “Device Reader”
“Status of Available Device Features”

“Product” CODESYS product (example: SoftMotion)

“Feature” Feature of “Product”

Example: CNC is a “Feature” of SoftMotion.

“License Active/Count ” Yes: A license exists for the feature.

No: A license does not exist for the feature.

“Count”: Number of licenses

Dialog 'Import
and Export
Options'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2668

Menu 'Window'
6.4.1.21.3.10.1 Command 'Next Editor'.. 2669
6.4.1.21.3.10.2 Command 'Previous Editor'... 2669
6.4.1.21.3.10.3 Command 'Close All Editors'... 2669
6.4.1.21.3.10.4 Command 'Close All Editors of Inactive Applications'........... 2670
6.4.1.21.3.10.5 Command 'Reset Window Layout'... 2670
6.4.1.21.3.10.6 Command 'New Horizontal Tab Group'................................. 2670
6.4.1.21.3.10.7 Command 'New Vertical Tab Group'...................................... 2670
6.4.1.21.3.10.8 Command 'Float'.. 2671
6.4.1.21.3.10.9 Command 'Dock'... 2671
6.4.1.21.3.10.10 Command 'Auto Hide'.. 2671
6.4.1.21.3.10.11 Command 'Next Pane'... 2671
6.4.1.21.3.10.12 Command 'Previous Pane'.. 2671
6.4.1.21.3.10.13 Command 'Toggle First Pane'.. 2672
6.4.1.21.3.10.14 Command 'Toggle Second Pane'.. 2672
6.4.1.21.3.10.15 Command 'Windows'... 2672
6.4.1.21.3.10.16 Command 'Close All Editors But This'................................. 2673
6.4.1.21.3.10.17 Command 'Select Object in Navigator'................................ 2673
6.4.1.21.3.10.18 Command 'Select Parent Object in Navigator'.................... 2673
6.4.1.21.3.10.19 Commands of the Submenu 'Window' 2673

Command 'Next Editor'
Keyboard shortcut: [Ctrl]+[F6]

Function: This command switches focus from the currently active view to the next view. The
next view is identified by the tab to the right of the currently active tab.
Call: Main menu “Window”

Requirement: At least one object is open.
See also
● Ä Chapter 6.4.1.21.3.10.2 “Command 'Previous Editor'” on page 2669

Command 'Previous Editor'
Keyboard shortcut: [Shift]+[Ctrl]+[F6]

Function: This command switches focus from the currently active view to the previous view.
The previous view is identified by the tab to the left of the currently active tab.
Call: Main menu “Window”

Requirement: At least one object is open.
See also
● Ä Chapter 6.4.1.21.3.10.1 “Command 'Next Editor'” on page 2669

Command 'Close All Editors'
Symbol:
Function: This command closes all currently open editor views.
Call: Main menu “Window”

Requirement: At least one editor is open.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2669

See also
● Ä Chapter 6.4.1.21.3.10.4 “Command 'Close All Editors of Inactive Applications'”

on page 2670
● Ä Chapter 6.4.1.21.3.10.16 “Command 'Close All Editors But This'” on page 2673

Command 'Close All Editors of Inactive Applications'
Function: This command closes all editor views for objects that are located directly below a
currently inactive application. Object editors in the POU view remain open.
Call: Main menu “Window”

Requirement: At least one object of an inactive application is open.
See also
● Ä Chapter 6.4.1.21.3.10.3 “Command 'Close All Editors'” on page 2669
● Ä Chapter 6.4.1.21.3.10.16 “Command 'Close All Editors But This'” on page 2673

Command 'Reset Window Layout'
Function: This command resets all currently open windows and views to their default positions.
You are prompted for a confirmation before the command is executed.
Call: Main menu “Tools”

Command 'New Horizontal Tab Group'
Symbol:
Function: This command moves the currently active view to a new, separate tab group below
the existing one.
Call: Main menu “Window” or context menu of the tab
Requirement: Several editor views are open as tabs next to each other.
If you open another object in the editor, then this is automatically included in the tab group that
is currently in focus.
See also
● Ä Chapter 6.4.1.21.3.10.7 “Command 'New Vertical Tab Group'” on page 2670

Command 'New Vertical Tab Group'
Symbol:
Function: This command moves the currently active view to a new, separate tab group to the
right of the existing one.
Call: Main menu “Window” or context menu of the tab
Requirement: Several editor views are open as tabs next to each other.
If you open another object in the editor, then this is automatically included in the tab group that
is currently in focus.
See also
● Ä Chapter 6.4.1.21.3.10.6 “Command 'New Horizontal Tab Group'” on page 2670

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2670

Command 'Float'
Function: This command releases a docked view from its frame in the user interface and
repositions it on the screen as a floating window.
Call: Main menu “Window”

Requirement: The application is in online mode.
This window can then be positioned outside of the user interface. Use the “Dock” command to
return a floating window to the frame of the user interface.
See also
● Ä Chapter 6.4.1.21.3.10.9 “Command 'Dock'” on page 2671

Command 'Dock'
Function: This command returns a floating window, which was released by the “Float” com-
mand, to the frame of the user interface.
Call: Main menu “Window”

See also
● Ä Chapter 6.4.1.21.3.10.8 “Command 'Float'” on page 2671

Command 'Auto Hide'
Keyboard shortcut: [F7]

Function: This command shows or hides a view.
Call: Main menu “Window”

Hide simply means that CODESYS minimizes the view to a tab at the bottom of the user
interface which is visible only when you move the mouse over the tab. The command functions
like a check box. When a window is hidden, the check box is selected in the menu. When you
click the command again, the checkbox is cleared and the window is shown.

Command 'Next Pane'
Keyboard shortcut: [F6]

Function: This command sets the focus on the next pane.
Call: Main menu “Window”

Requirement: An object is open that contains two or more panes.
Example: If an object is open in the ST editor and the cursor is currently in the declaration
section, then command sets the focus to implementation section.
See also
● Ä Chapter 6.4.1.21.3.10.12 “Command 'Previous Pane'” on page 2671

Command 'Previous Pane'
Keyboard shortcut: [Shift]+[F6]

Function: This command sets the focus on the previous pane.
Call: Main menu “Window”

Requirement: An object is open that contains two or more panes.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2671

Example: If an object is open in the ST editor and the cursor is currently in the declaration
section, then command sets the focus to implementation section.
See also
● Ä Chapter 6.4.1.21.3.10.11 “Command 'Next Pane'” on page 2671

Command 'Toggle First Pane'
Keyboard shortcut [Alt]+[F6]

Function: This command shows and hides the declaration view.
Call: “Window”.
Requirement: The cursor is positioned in the editor of one of the following objects:
● POU
● Transition
● Method
● Get accessor method of a property
● Set accessor method of a property
● Visualization

You can also toggle the subviews by means of the buttons.

See also
● Ä Chapter 6.4.1.21.3.10.14 “Command 'Toggle Second Pane'” on page 2672

Command 'Toggle Second Pane'
Function: This command shows and hides the implementation view.
Call: “Window”.
Requirement: The cursor is positioned in the editor of one of the following objects:
● POU
● Transition
● Method
● Get accessor method of a property
● Set accessor method of a property
● visualization

You can also toggle the subviews by means of the buttons.

See also
● Ä Chapter 6.4.1.21.3.10.13 “Command 'Toggle First Pane'” on page 2672

Command 'Windows'
Function: This command opens the “Windows” dialog box, which lists all open objects. You can
then activate or close any of the listed views.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2672

Call: Main menu “Window”

Command 'Close All Editors But This'
Function: This command closes all editor views except the currently open one.
Call: Right-click the tab
Requirement: At least two objects are open.
See also
● Ä Chapter 6.4.1.21.3.10.3 “Command 'Close All Editors'” on page 2669
● Ä Chapter 6.4.1.21.3.10.4 “Command 'Close All Editors of Inactive Applications'”

on page 2670

Command 'Select Object in Navigator'
Function: This command selects the object of the active editor in the device tree.
Call: Right-click the tab
Requirement: At least one object is open.

This command is executed automatically when you select the “Track active
editor” option for the device tree.

See also
● Ä Chapter 6.4.1.21.3.10.18 “Command 'Select Parent Object in Navigator'” on page 2673

Command 'Select Parent Object in Navigator'
Function: This command selects the parent object in the device tree.
Call: Right-click the tab
Requirement: At least one object is open.
See also
● Ä Chapter 6.4.1.21.3.10.17 “Command 'Select Object in Navigator'” on page 2673

Commands of the Submenu 'Window'
Function: The command activates the selected window.
Call: Main menu “Window”

For each opened editor window the menu “Window” contains a command “<n><object name>”.
Choosing this command activates the corresponding window. In offline mode CODESYS adds
the extension “(Offline)”. To differentiate between the implementation or the instances of a
function block the extension “(Impl)” or “<instance path>” is added.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2673

Menu 'Help'
6.4.1.21.3.11.1 Command 'Contents'... 2674
6.4.1.21.3.11.2 Command 'Index'... 2674
6.4.1.21.3.11.3 Command 'Find'... 2674
6.4.1.21.3.11.4 Command 'About'.. 2675

Command 'Contents'
Symbol: ; keyboard shortcut: [Ctrl]+[Shift]+[F1]

Function: This command opens the CODESYS help.
Call: Menu bar: “Help”.

Command 'Index'
Symbol: ; keyboard shortcut: [Ctrl]+[Shift]+[F2]

Function: This command opens the CODESYS help.
Call: Menu bar: “Help”.
An index search is not possible in the online help. The “Index” tab opens in the offline help.
All index entries of the help are listed alphabetically in the index view.

“ Look for ” As you type letters into the input field, CODESYS searches automatically for
matches in the index list.

“Display” Opens the help page for the highlighted index entry in the list and displays the
title of the help page and location of the help file (*.chm) in the “Index results for
<index entry>” view. When several pages are found and then displayed in this
view, then you view a specific help page by clicking its entry in the list.
Clicking an entry in the index list achieves the same result.

Command 'Find'
Symbol:
Function: This command opens the CODESYS help.
Call: Menu bar: “Help”.
In the online help, you can run a full-text search from the input field on the top right of the help
page. The “Find” tab opens in the offline help.

Table 516: Tab 'Search'
“Search for” Combo box for defining the search term or for selecting the 25 most recent

search terms.

“ Search in titles only” The search is performed only in the titles of the help pages.

“Display partial matches” Displays terms also as search results that include the search term.

“Limit to matches ” Limits the number of search results.
Maximum value: 1000

“Find” Starts the full-text search.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2674

Command 'About'
Function: This command opens a splash screen with information about the CODESYS version
and copyright. In addition, buttons are available for detailed information about the version,
license, and acknowledgments.
Call: Main menu “Help”.

“Version Info” Opens the “Detailed Version Information” dialog box with a list of CODESYS
components and information about the operating system.
“Export”: Exports the detailed version information as a *.txt file or in any other
format.

“License Info” Opens the “License Information” dialog box.
● “Plug-in”: Drop-down list for the plug-in to display the license information
● “Software License”: License information about selected “Plug-in”

“Acknowledgments”

Menu 'SFC'
6.4.1.21.3.12.1 Command 'Init Step'.. 2675
6.4.1.21.3.12.2 Command 'Insert Step'.. 2676
6.4.1.21.3.12.3 Command 'Insert Step After'.. 2676
6.4.1.21.3.12.4 Command 'Insert Transition After'... 2676
6.4.1.21.3.12.5 Command 'Insert Transition'.. 2677
6.4.1.21.3.12.6 Command 'Insert Step-Transition'... 2677
6.4.1.21.3.12.7 Command 'Insert Step-Transition After'................................. 2677
6.4.1.21.3.12.8 Command 'Add Entry Action'... 2678
6.4.1.21.3.12.9 Command 'Add Exit Action'... 2678
6.4.1.21.3.12.10 Command 'Parallel'.. 2678
6.4.1.21.3.12.11 Command 'Alternative'... 2679
6.4.1.21.3.12.12 Command 'Insert Branch'.. 2679
6.4.1.21.3.12.13 Command 'Insert Branch Right'... 2679
6.4.1.21.3.12.14 Command 'Insert Action Association'.................................. 2680
6.4.1.21.3.12.15 Command 'Insert Action Association After'.......................... 2681
6.4.1.21.3.12.16 Command 'Insert Jump'... 2681
6.4.1.21.3.12.17 Command 'Insert Jump After'.. 2681
6.4.1.21.3.12.18 Command 'Insert Macro'.. 2682
6.4.1.21.3.12.19 Command 'Insert Macro After'... 2682
6.4.1.21.3.12.20 Command 'Zoom Into Macro'.. 2682
6.4.1.21.3.12.21 Command 'Zoom Out of Macro'... 2682
6.4.1.21.3.12.22 Command 'Paste After'.. 2683
6.4.1.21.3.12.23 Command 'Change Duplication' - 'Set'................................ 2683
6.4.1.21.3.12.24 Command 'Change Duplication' - 'Remove'........................ 2683
6.4.1.21.3.12.25 Command 'Do Not Display Embedded Objects'.................. 2684

Command 'Init Step'
Symbol:
Function: This command converts the selected step into an initial step.
Call: Main menu “SFC”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2675

After you choose this command, the borders of the step element change to a double line. The
previous initial step is automatically displayed as a normal step with a single-line border.
You can also activate and deactivate the property “Init step” in the properties dialog of a step.
However, CODESYS does not automatically adjust the settings of other steps.
This command is useful if you want to convert a diagram. When you create a new SFC object,
it automatically includes an initial step followed by a transition (TRUE) and a jump back to the
initial step.

Please note: In online mode, it is possible to reset the diagram to the initial step
using the SFCInit and SFCReset flags.

See also
● Ä Chapter 6.4.1.20.1.5.6 “SFC Flags” on page 2067
● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080

Command 'Insert Step'
Symbol:
Function: This command inserts a step before the selected point.
Call: Menu bar “SFC”; context menu in SFC editor
The new step is named Step<n> by default, where n is an incremental number starting at 0 for
the first step that is inserted in addition to the initial step. The name can be edited by clicking on
it.
See also
● Ä Chapter 6.4.1.21.3.12.7 “Command 'Insert Step-Transition After'” on page 2677
● Ä Chapter 6.4.1.21.3.12.1 “Command 'Init Step'” on page 2675
● Ä Chapter 6.4.1.20.1.5.8.1 “SFC elements 'Step' and 'Transition'” on page 2073

Command 'Insert Step After'
Symbol:
Function: This command inserts a step after the selected point.
Call: Menu bar “SFC”; context menu in SFC editor
The new step is named Step<n> by default, where n is an incremental number starting at 0 for
the first step that is inserted in addition to the initial step. The name can be edited by clicking on
it.
See also
● Ä Chapter 6.4.1.21.3.12.7 “Command 'Insert Step-Transition After'” on page 2677
● Ä Chapter 6.4.1.21.3.12.1 “Command 'Init Step'” on page 2675
● Ä Chapter 6.4.1.20.1.5.8.1 “SFC elements 'Step' and 'Transition'” on page 2073

Command 'Insert Transition After'
Symbol:
Function: This command inserts a transition after the selected point.
Call: Menu bar “SFC”; context menu in SFC editor

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2676

The new transition is named Trans<n> by default, where n is an incremental number beginning
at 0 for the first transition. The name can be edited by clicking on it.

See also
● Ä Chapter 6.4.1.21.3.12.7 “Command 'Insert Step-Transition After'” on page 2677
● Ä Chapter 6.4.1.20.1.5.8.1 “SFC elements 'Step' and 'Transition'” on page 2073

Command 'Insert Transition'
Symbol:
Function: This command inserts a transition before the selected point.
Call: Menu bar “SFC”; context menu in SFC editor
The new transition is named Trans<n> by default, where n is an incremental number beginning
at 0 for the first transition. The name can be edited by clicking on it.

See also
● Ä Chapter 6.4.1.21.3.12.7 “Command 'Insert Step-Transition After'” on page 2677
● Ä Chapter 6.4.1.20.1.5.8.1 “SFC elements 'Step' and 'Transition'” on page 2073

Command 'Insert Step-Transition'
Symbol:
Function: This command inserts a step and a transition before the selected point.
Call: Main menu “SFC”

If you have selected a step, then CODESYS inserts a new step-transition combination. If you
have selected a transition, then a new transition-step combination is inserted.
The new step is named Step<n> by default, where n is an incremental number beginning at
0 for the first step that was inserted in addition to the initial step. The new transition is named
Trans<n> by default. You can edit the default names directly by clicking the names.

See also
● Ä Chapter 6.4.1.21.3.12.7 “Command 'Insert Step-Transition After'” on page 2677
● Ä Chapter 6.4.1.21.3.12.1 “Command 'Init Step'” on page 2675
● Ä Chapter 6.4.1.20.1.5.8.1 “SFC elements 'Step' and 'Transition'” on page 2073

Command 'Insert Step-Transition After'
Symbol:
Function: This command inserts a step and a transition after the selected point.
Call: Main menu “SFC”

If you have selected a step, then CODESYS inserts a new transition-step combination. If you
have selected a transition, then a new step-transition combination is inserted.
The new step is named Step<n> by default, where n is an incremental number beginning at
0 for the first step that was inserted in addition to the initial step. The new transition is named
Trans<n> by default. You can edit the default names directly by clicking the names.

See also
● Ä Chapter 6.4.1.21.3.12.6 “Command 'Insert Step-Transition'” on page 2677

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2677

Command 'Add Entry Action'
Symbol:
Function: This command opens the “Add Entry Action” dialog box where you define a new
entry action. Depending on the SFC options, a dialog prompt may open for selecting the
duplication mode for the new step action.
Call: Menu bar: “SFC”; context menu of the selected step element.
Requirement: A step element in SFC is selected.
The entry action is opened automatically in the ST editor. The step element contains an E in the
lower left corner.

Options:
● “Copy reference: A new step will call the same actions”: If the step is copied in SFC, the link

to the step action(s) is also copied. The steps copied by each other will therefore call the
same actions.

● “Copy implementation: New action objects are created for a new step.”: This means that
the step actions for a copied step are embedded. By default, the generated action objects
appear below an SFC box in the device tree or “POUs” view. These objects contains a copy
of the original implementation code of the respective action.
The display of the embedded objects can be activated and deactivated in the tree by means
of the “Show Embedded Objects” and “Hide Embedded Objects” commands in the context
menu of an SFC object.

See also
● Ä Chapter 6.4.1.21.4.14.23 “ Dialog 'Options' - 'SFC Editor'” on page 2795
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.20.1.5.8.2 “SFC Element 'Action'” on page 2075
● Ä Chapter 6.4.1.21.3.12.25 “Command 'Do Not Display Embedded Objects'” on page 2684

Command 'Add Exit Action'
Symbol:
Function: This command opens the “Add Exit Action” dialog box where you define a new exit
action. Depending on the SFC options, a dialog prompt may open for selecting the duplication
mode for the new step action. For more information, refer to the help page for the “Add Exit
Action” command.
Call: Menu bar: “SFC”; context menu of the selected step element.
Requirement: A step element in SFC is selected.
See also
● Ä Chapter 6.4.1.21.3.12.8 “Command 'Add Entry Action'” on page 2678
● Ä Chapter 6.4.1.21.4.14.23 “ Dialog 'Options' - 'SFC Editor'” on page 2795
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.20.1.5.8.2 “SFC Element 'Action'” on page 2075
● Ä Chapter 6.4.1.21.3.12.25 “Command 'Do Not Display Embedded Objects'” on page 2684

Command 'Parallel'
Symbol:
Function: This command converts the selected alternative branch into a parallel branch.
Call: Main menu “SFC”

Requirement: The horizontal connecting line of a branch is selected.

Confirmation
prompt for
selecting the
duplication
mode

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2678

Please note that after you convert a branch, you must check and modify the layout of the steps
and transitions before and after the branch.
See also
● Ä Chapter 6.4.1.21.3.12.11 “Command 'Alternative'” on page 2679

Command 'Alternative'
Symbol:
Function: This command converts the selected parallel branch into an alternative branch.
Call: Main menu “SFC”

Requirement: The horizontal connecting line of a branch is selected.
Please note that after you convert a branch, you must check and modify the layout of the steps
and transitions before and after the branch.
See also
● Ä Chapter 6.4.1.21.3.12.10 “Command 'Parallel'” on page 2678

Command 'Insert Branch'
Symbol:
Function: This command inserts a branch to the left of the selected point.
Call: Main menu “SFC”

This command functions similar to the “Insert Branch Right” command.
See also
● Ä Chapter 6.4.1.20.1.5.8.3 “SFC element 'Branch'” on page 2078
● Ä Chapter 6.4.1.21.3.12.13 “Command 'Insert Branch Right'” on page 2679

Command 'Insert Branch Right'
Symbol:
Function: This command inserts a branch to the right of the selected point.
Call: Main menu “SFC”

The type of inserted branch depends on the selected element.
● If the uppermost element of the selected elements is a transition or an alternative branch,

then CODESYS inserts an alternative branch.
● If the uppermost element of the selected elements is a step, a macro, a jump, or a parallel

branch, then CODESYS inserts a parallel branch with the Branch<x> jump marker, where
x is an incremental number. You can edit the default name of the jump marker or define the
jump marker as a jump destination.

● If a common element of an existing branch (horizontal line) is selected, then CODESYS
inserts the new branch line as a branch line on the far right. If an entire branch line of an
existing branch is selected, then CODESYS inserts the new branch line directly to the right
as a new branch line.

Please note: You can convert a branch into another type with the “Alternative”
and “Parallel” commands.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2679

The following image shows a new inserted parallel branch generated by the “Insert Branch
Right” command while the Step11 step was selected. CODESYS automatically inserts a step
(Step2 in the example).

Processing in online mode: If t2 yields TRUE, then CODESYS executes Step2 immediately
after step11 and before t3 is passed.

Thus, CODESYS processes both branch lines as opposed to alternative branches.

Example of
parallel branch

The following image shows a new inserted alternative branch generated by the “Insert Branch
Right” command while the t4 transition was selected. CODESYS automatically inserts a step
(Step32 in the example), a preceding transition, and a subsequent transition (t41, t42).

Processing in online mode: If Step3 is active, then CODESYS passes the subsequent tran-
sitions (t4, t41) from left to right. The first branch line of the main branch with the first
transition yielding TRUE is passed. Therefore, only one branch line is processed as opposed to
with a parallel branch.

Example of
alternative
branch

See also
● Ä Chapter 6.4.1.20.1.5.8.3 “SFC element 'Branch'” on page 2078
● Ä Chapter 6.4.1.21.3.12.12 “Command 'Insert Branch'” on page 2679
● Ä Chapter 6.4.1.21.3.12.10 “Command 'Parallel'” on page 2678
● Ä Chapter 6.4.1.21.3.12.11 “Command 'Alternative'” on page 2679

Command 'Insert Action Association'
Symbol:
Function: This command assigns an IEC action to a step.
Call: Main menu “SFC”

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2680

Requirement: A step is selected.
CODESYS inserts the action element to the right of the selected step element.
If you have already assigned one or more actions to the step, they are displayed in an action
list. The new action is then inserted as follows:
● If you selected the step element, the action is inserted as the first action of the step at first

position of the action list.
● If you selected one of the available actions in the action list, then the action is inserted

directly above the selected action.
The left section of the action element includes the qualifier (N by default). You enter the action
name in the right section. To set this value, click in the box to obtain an editing frame. You must
have already created this action as a POU in the project.
You can also edit the qualifier. Valid qualifiers are described in the chapter “Qualifiers for Actions
in SFC".
See also
● Ä Chapter 6.4.1.21.3.12.15 “Command 'Insert Action Association After'” on page 2681
● Ä Chapter 6.4.1.20.1.5.4 “Qualifiers for Actions in SFC” on page 2065

Command 'Insert Action Association After'
Symbol:
Function: This command assigns an IEC action to a step.
Call: Main menu “SFC”

Requirement: A step is selected.
This command functions similar to the “Insert Action Association” command. The difference
between the two commands is that CODESYS inserts the new action in the last position of the
action list, not the first position. If you select an action in the action list, then CODESYS inserts
the new action at the bottom of the list, not at the top.
See also
● Ä Chapter 6.4.1.21.3.12.14 “Command 'Insert Action Association'” on page 2680
● Ä Chapter 6.4.1.20.1.5.4 “Qualifiers for Actions in SFC” on page 2065

Command 'Insert Jump'
Symbol:
Function: This command inserts a jump element before the selected element.
Call: Main menu “SFC”

Requirement: A step is selected.
CODESYS automatically inserts the jump with the Step destination. Then, you still have to
replace this jump destination with an actual destination by using the input assistant.
See also
● Ä Chapter 6.4.1.20.1.5.8.4 “SFC element 'Jump'” on page 2079
● Ä Chapter 6.4.1.21.3.12.17 “Command 'Insert Jump After'” on page 2681

Command 'Insert Jump After'
Symbol:
Function: This command inserts a jump element after the selected element.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2681

Call: Main menu “SFC”

CODESYS automatically inserts the jump with the Step destination. Then, you still have to
replace this jump destination with an actual destination by using the input assistant.
See also
● Ä Chapter 6.4.1.20.1.5.8.4 “SFC element 'Jump'” on page 2079
● Ä Chapter 6.4.1.21.3.12.16 “Command 'Insert Jump'” on page 2681

Command 'Insert Macro'
Symbol:
Function: This command inserts a macro element before the selected element.
Call: Main menu “SFC”

The new macro is named Macro<x> by default, where x is an incremental number beginning at
0 for the first macro. You can edit the default name directly by clicking the name.

To edit the macro, click “Zoom Into Macro” in the macro editor.
See also
● Ä Chapter 6.4.1.21.3.12.20 “Command 'Zoom Into Macro'” on page 2682
● Ä Chapter 6.4.1.21.3.12.19 “Command 'Insert Macro After'” on page 2682

Command 'Insert Macro After'
Symbol:
Function: This command inserts a macro element after the selected element.
Call: Main menu “SFC”

This command functions similar to the “Insert Macro” command.
See also
● Ä Chapter 6.4.1.21.3.12.20 “Command 'Zoom Into Macro'” on page 2682
● Ä Chapter 6.4.1.21.3.12.18 “Command 'Insert Macro'” on page 2682

Command 'Zoom Into Macro'
Symbol:
Function: This command opens a macro for editing in the macro editor.
Call: Main menu “SFC”

Requirement: A macro is selected.
By choosing this command, CODESYS closes the main view of the SFC editor and opens the
macro editor. This is also an SFC editor for editing the section of the SFC diagram that is
displayed as a macro box in the main view.
Click “Zoom Out of Macro” to return to the main view.
See also
● Ä Chapter 6.4.1.21.3.12.21 “Command 'Zoom Out of Macro'” on page 2682

Command 'Zoom Out of Macro'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2682

Function: This command closes the macro editor and returns to the main view of the SFC
editor.
Call: Main menu “SFC”

Requirement: A macro is open in the macro editor.
See also
● Ä Chapter 6.4.1.21.3.12.20 “Command 'Zoom Into Macro'” on page 2682

Command 'Paste After'
Symbol:
Function: This command pastes the elements from the clipboard after the selected position.
Call: Main menu “SFC”.

Command 'Change Duplication' - 'Set'
Function: This command embeds every step action or transition, which is called by a step or
transition in the SFC box, with the caller. In this way, the action or transition object can be called
only from exactly this caller (pseudo-embedding). The result is that copying step and transition
elements that call cations or transitions automatically creates new action or transition objects.
the implementation code is also copied.
Call: Menu bar: “SFC”.
For more details about duplication mode, refer to the help page for the SFC element properties
and the instructions for adding step actions.

Pseudo-embedded objects can be hidden in the “Devices” or “POUs” view by
means of a command.

See also
● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880

Command 'Change Duplication' - 'Remove'
Function: This command removes the embedding of action, transition, and property objects by
a step or transition that calls it for the entire SFC box. In this way, the pseudo-embedding of the
action, transition, or property objects is removed. If step or transition elements are copied, which
call actions, transitions, or properties, then the copying calls the same actions and transitions as
the source.
Call: Menu bar: “SFC”.
For more details about duplication mode, refer to the help page for the SFC element properties
and the instructions for adding step actions.

Pseudo-embedded objects can be hidden in the “Devices” or “POUs” view by
means of a command.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2683

See also
● Ä Chapter 6.4.1.20.1.5.8.6 “SFC element properties” on page 2080
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.21.3.12.25 “Command 'Do Not Display Embedded Objects'” on page 2684

Command 'Do Not Display Embedded Objects'
Function: This command causes action and transition objects, which are embedded in an SFC
box by a step or transition, do not appear in the tree.
Call: Context menu of an SFC box in the “Devices” or “POUs” view.
See also
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2684

Menu 'CFC'
6.4.1.21.3.13.1 Command 'Edit Worksheet'... 2685
6.4.1.21.3.13.2 Command 'Edit Page Size’.. 2686
6.4.1.21.3.13.3 Command 'Negate'.. 2686
6.4.1.21.3.13.4 Command 'EN/ENO'.. 2686
6.4.1.21.3.13.5 Command 'None'... 2687
6.4.1.21.3.13.6 Command 'R (Reset)'.. 2687
6.4.1.21.3.13.7 Command 'S (Set)'.. 2687
6.4.1.21.3.13.8 Command 'REF= (Reference Assignment)'.......................... 2687
6.4.1.21.3.13.9 Command 'Display Execution Order'..................................... 2688
6.4.1.21.3.13.10 Command 'Set Start of Feedback'....................................... 2688
6.4.1.21.3.13.11 Command 'Send to Front'.. 2688
6.4.1.21.3.13.12 Command 'Send to Back'.. 2689
6.4.1.21.3.13.13 Command 'Move Up'... 2689
6.4.1.21.3.13.14 Command 'Move Down'... 2690
6.4.1.21.3.13.15 Command 'Set Execution Order'... 2690
6.4.1.21.3.13.16 Command 'Order by Data Flow'.. 2691
6.4.1.21.3.13.17 Command 'Order by Topology'.. 2691
6.4.1.21.3.13.18 Command 'Edit Parameters'.. 2692
6.4.1.21.3.13.19 Command 'Save Prepared Parameters to Project'.............. 2693
6.4.1.21.3.13.20 Command 'Connect Selected Pins'..................................... 2693
6.4.1.21.3.13.21 Command 'Unlock Connection'... 2693
6.4.1.21.3.13.22 Command 'Show Next Collision'.. 2694
6.4.1.21.3.13.23 Command 'Select Connected Pins'..................................... 2694
6.4.1.21.3.13.24 Command 'Reset Pins'.. 2694
6.4.1.21.3.13.25 Command 'Remove Unused Pins'....................................... 2694
6.4.1.21.3.13.26 Command 'Add Input Pin'.. 2695
6.4.1.21.3.13.27 Command 'Add Output Pin'... 2695
6.4.1.21.3.13.28 Command 'Route All Connections'...................................... 2695
6.4.1.21.3.13.29 Command 'Remove Control Point'...................................... 2695
6.4.1.21.3.13.30 Command 'Create Control Point'... 2696
6.4.1.21.3.13.31 Command 'Connection Mark'.. 2696
6.4.1.21.3.13.32 Command 'Create group'... 2696
6.4.1.21.3.13.33 Command 'Ungroup'.. 2697
6.4.1.21.3.13.34 Command 'Prepare Box for Forcing'................................... 2697
6.4.1.21.3.13.35 Command 'Force Function Block Input'............................... 2697
6.4.1.21.3.13.36 Command 'Use Attributed Member as Input'....................... 2698

Command 'Edit Worksheet'
Function: This command opens the “Edit Worksheet” dialog box in which you set the size of the
worksheet.
Call: Main menu “CFC”

Requirements: A CFC editor is active.

Dialog box 'Edit
worksheet'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2685

“Use following dimensions” Here is where you set the size of the worksheet. Your change is only accepted if
the size is sufficient for the existing program.

“Adapt the dimensions
automatically”

Automatically adapts the size of the worksheet to the size of your program.

“Move the working sheet origin
relatively”

Shifts the worksheet along the x or y axis. The input of negative numbers is
permitted.

Command 'Edit Page Size’
Function: This command opens the “Edit Page Size” dialog box, in which you change the size
of the page-oriented CFC editor.
Call: Main menu “CFC”

Requirements: A page-oriented CFC editor is active.

“Width” Width of the page (minimum 24, maximum 1024). Elements outside of the
working area are marked red.

“Height” Height of the page (minimum 24, maximum 1024). Elements outside of the
working area are marked red.

“Margin width” Width of the margin (minimum 6, maximum 25% or page width).

“Set as standard for new CFC
objects”

: The current settings are selected as standard for new CFC objects.

See also
● Ä Chapter 6.4.1.20.1.7.6.1 “CFC element 'Page'” on page 2109

Command 'Negate'
Symbol:
Function: This command negates the selected function block input or function block output.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. A function block input or function block output is
selected.

Command 'EN/ENO'
Symbol:
Function: This command adds a boolean input “EN” (Enable) and a boolean output “ENO”
(Enable Out) to the selected function block.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. A function block is selected.
The added input “EN” activates the function block. The function block is executed only if the
input is TRUE. The value of this signal is output at the “ENO” output.

Dialog box 'Edit
page size'
dialog box

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2686

Command 'None'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and None)
Function: The command removes a Reset (R), Set (S), or REF from the input of the “Output”
element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirement: A CFC editor is active. The input of an “Output” element is selected.

Command 'R (Reset)'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and None)
Function: The command adds a Reset to the input of a Boolean “Output” element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirement: A CFC editor is active. The input of an “Output” element is selected.
If an “Output” element has a Reset input, then the Boolean output value is set to “FALSE” as
soon as the value of the input is “TRUE”. The “FALSE” value at the output is retained, even if
the input value changes.
See also
● Ä Chapter 6.4.1.21.3.13.7 “Command 'S (Set)'” on page 2687

Command 'S (Set)'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and none)
Function: The command adds a Set (S) to the input of a Boolean “Output” element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirement: A CFC editor is active. The input of an “Output” element is selected.
If an “Output” element has a Set input, then the Boolean output value is set to “TRUE” as soon
as the value of the input is “TRUE”. The “TRUE” value at the output is retained, even if the input
value changes.
See also
● Ä Chapter 6.4.1.21.3.13.6 “Command 'R (Reset)'” on page 2687

Command 'REF= (Reference Assignment)'
Symbol: ; keyboard shortcut : [Ctrl]+[M] (to toggle between “S”, “R”, “REF”, and None)
Function: The command assigns a reference to an “Output” element.
Call: Menu bar: “CFC è Set/Reset”; context menu: “Set/Reset”

Requirements: A CFC editor is active. The input of an “Output” element is selected.

Declaration:
ref_int : REFERENCE TO INT;
a : INT;

CFC:

This corresponds to the ST code: ref_int REF= a;

Example:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2687

For more information, see the description for the data type REFERENCE TO.

See also
● Ä Chapter 6.4.1.9.5.3.3 “ Programming in the CFC editor” on page 1871
● Ä Chapter 6.4.1.20.5.14 “Reference” on page 2245

Command 'Display Execution Order'
Function: The command temporarily shows a numbered tag for all CFC elements of the pro-
gramming object.
Call
● Menu bar: “CFC è Execution Order”
● Context menu in the CFC editor
Requirement: A CFC editor is active and the “Auto Data Flow Mode” property is selected.
The numbers represent the automatically determined execution order. The execution order is
determined by data flow. In the case of multiple networks, it is determined by their topological
position in the editor.
The tags are hidden as soon as you click in the CFC editor.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.3.13.10 “Command 'Set Start of Feedback'” on page 2688
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761

Command 'Set Start of Feedback'
Symbol:
Function: The command defines the selected element as the starting point within a feedback.
Call:
● Menu bar: “CFC è Execution Order”
● Context menu: “Execution Order”

Requirement: A CFC editor is active and the “Auto Data Flow Mode” property is selected.
Moreover, a network of the CFC POU contains a feedback, and an element within the feedback
is selected.

In the CFC editor, the starting point within the feedbacks is decorated with the symbol. Then
the element has the lowest number in the execution order within the feedbacks. At runtime, the
processing of the feedback begins with this element.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.3.13.9 “Command 'Display Execution Order'” on page 2688
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761

Command 'Send to Front'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2688

Function: The command numbers the elements so that the selected elements are located at
the front of the execution order.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. At least one element is selected.

The selected elements get the lowest numbers beginning at 0 while keeping the previous order.
The remaining elements are numbered so that their execution order remains the same. The
topological positions of the elements are retained anyway.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761
● Ä Chapter 6.4.1.21.3.13.12 “Command 'Send to Back'” on page 2689
● Ä Chapter 6.4.1.21.3.13.13 “Command 'Move Up'” on page 2689
● Ä Chapter 6.4.1.21.3.13.14 “Command 'Move Down'” on page 2690
● Ä Chapter 6.4.1.21.3.13.16 “Command 'Order by Data Flow'” on page 2691
● Ä Chapter 6.4.1.21.3.13.17 “Command 'Order by Topology'” on page 2691

Command 'Send to Back'
Symbol:
Function: The command numbers the elements so that the selected elements are located at
the end of the execution order.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. At least one element is selected.

The selected elements get the highest numbers while keeping the previous order. The
remaining elements are numbered so that their execution order remains the same. The topolog-
ical positions of the elements are retained anyway.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761
● Ä Chapter 6.4.1.21.3.13.11 “Command 'Send to Front'” on page 2688
● Ä Chapter 6.4.1.21.3.13.13 “Command 'Move Up'” on page 2689
● Ä Chapter 6.4.1.21.3.13.14 “Command 'Move Down'” on page 2690
● Ä Chapter 6.4.1.21.3.13.16 “Command 'Order by Data Flow'” on page 2691
● Ä Chapter 6.4.1.21.3.13.17 “Command 'Order by Topology'” on page 2691

Command 'Move Up'
Symbol:
Function: The command numbers the elements so that the selected elements are located one
position forward.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and at least one element is selected. The “Explicit
Execution Order Mode” property is selected.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2689

The selected elements get a numbering decreased by one while keeping the previous order.
The selected elements are processed one position earlier. The remaining elements are num-
bered so that their execution order remains the same. The topological positions of the elements
are retained anyway.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761
● Ä Chapter 6.4.1.21.3.13.11 “Command 'Send to Front'” on page 2688
● Ä Chapter 6.4.1.21.3.13.12 “Command 'Send to Back'” on page 2689
● Ä Chapter 6.4.1.21.3.13.14 “Command 'Move Down'” on page 2690
● Ä Chapter 6.4.1.21.3.13.16 “Command 'Order by Data Flow'” on page 2691
● Ä Chapter 6.4.1.21.3.13.17 “Command 'Order by Topology'” on page 2691

Command 'Move Down'
Symbol:
Function: The command numbers the elements so that the selected elements are located one
position backward.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and at least one element is selected. The “Explicit
Execution Order Mode” property is selected.

The selected elements get a numbering increased by one while keeping the previous order.
The elements are processed one position later. The remaining elements are numbered so that
their execution order remains the same. The topological positions of the elements are retained
anyway.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761
● Ä Chapter 6.4.1.21.3.13.11 “Command 'Send to Front'” on page 2688
● Ä Chapter 6.4.1.21.3.13.12 “Command 'Send to Back'” on page 2689
● Ä Chapter 6.4.1.21.3.13.13 “Command 'Move Up'” on page 2689
● Ä Chapter 6.4.1.21.3.13.16 “Command 'Order by Data Flow'” on page 2691
● Ä Chapter 6.4.1.21.3.13.17 “Command 'Order by Topology'” on page 2691

Command 'Set Execution Order'
Function: The command opens a dialog for setting the number of the selected element to any
value.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. Exactly one element is selected.

The selected element gets the number specified in the dialog. The remaining elements are
numbered so that their execution order remains the same. The topological positions of the
elements are retained anyway.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2690

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761
● Ä Chapter 6.4.1.21.3.13.11 “Command 'Send to Front'” on page 2688
● Ä Chapter 6.4.1.21.3.13.12 “Command 'Send to Back'” on page 2689
● Ä Chapter 6.4.1.21.3.13.13 “Command 'Move Up'” on page 2689
● Ä Chapter 6.4.1.21.3.13.14 “Command 'Move Down'” on page 2690
● Ä Chapter 6.4.1.21.3.13.16 “Command 'Order by Data Flow'” on page 2691
● Ä Chapter 6.4.1.21.3.13.17 “Command 'Order by Topology'” on page 2691

Command 'Order by Data Flow'
Function: The command numbers the elements in the program by data flow, or in the case of
multiple networks by their topological position in the editor.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected.
The command is also available when no element is selected.

The execution order is determined by data flow. In the case of multiple networks, it is deter-
mined by their topological position of the networks. All numbered elements of the POU are set
accordingly. Afterwards, the execution order is identical to that in auto data flow mode. The
topological positions of the elements are retained anyway.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761
● Ä Chapter 6.4.1.21.3.13.11 “Command 'Send to Front'” on page 2688
● Ä Chapter 6.4.1.21.3.13.12 “Command 'Send to Back'” on page 2689
● Ä Chapter 6.4.1.21.3.13.13 “Command 'Move Up'” on page 2689
● Ä Chapter 6.4.1.21.3.13.14 “Command 'Move Down'” on page 2690
● Ä Chapter 6.4.1.21.3.13.17 “Command 'Order by Topology'” on page 2691

Command 'Order by Topology'
Function: The command orders the execution order of the elements by their topological posi-
tion from right to left and from top to bottom.
Call: Menu bar: “CFC è Execution Order”; context menu: “Execution Order”

Requirements: A CFC editor is active and the “Explicit Execution Order Mode” property is
selected. At least one element is selected.

The command applies to all elements in the program, even if not all elements are selected when
the command is executed. The topological positions of the elements are retained anyway.

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.4.11.14 “Dialog 'Properties' - 'CFC Execution Order'” on page 2761
● Ä Chapter 6.4.1.21.3.13.11 “Command 'Send to Front'” on page 2688
● Ä Chapter 6.4.1.21.3.13.12 “Command 'Send to Back'” on page 2689

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2691

● Ä Chapter 6.4.1.21.3.13.13 “Command 'Move Up'” on page 2689
● Ä Chapter 6.4.1.21.3.13.14 “Command 'Move Down'” on page 2690
● Ä Chapter 6.4.1.21.3.13.16 “Command 'Order by Data Flow'” on page 2691

Command 'Edit Parameters'
Function: This command opens the “Edit Parameters” dialog box, where you change the
constant input parameters of a function block.
Call: Main menu “CFC è Edit Parameters”, or “Right-Click è Edit Parameters”, click the
“Parameter” function block.
Requirements: A CFC editor is active. An instantiated function block has VAR_INPUT CON-
STANT variables in its declaration.

This functionality applies only to blocks that are inserted in a CFC with
CODESYS >= V3.5 SP4.

CODESYS displays blocks with VAR_INPUT CONSTANT variables by the word “Parameter” in
the lower left corner of the block.

“Parameters” Name of the variable

“Type” Data type of the variables

“Value” Click into the field to type a value.

“Initial Value” Initialization Value

“Category” Additional information about the parameters; these values are defined by attrib-
utes and cannot be changed in this dialog box.
● parameterCategory
● parameterUnit
● parameterMinValue
● parameterMaxValue

“Unit”

“Min”

“Max”

“Delete Prepared Parameters” This command is active when you write a prepared value (“Debug
è Write Value”).

When you exit the field and the dialog box by clicking “OK”, the value changes are applied to
the project.

FUNCTION_BLOCK FB1
VAR_INPUT CONSTANT
 {attribute 'parameterCategory':='General'}
 {attribute 'parameterUnit':= 'm/s'}
 {attribute 'parameterMinValue':= '0'}
 {attribute 'parameterMaxValue':= '100'}
 fbin1:INT;
 fbin2:DWORD:=24354333;
 fbin3:STRING:='abc';
END_VAR

Example of a
block with con-
stant inputs

Dialog Box 'Edit
Parameters'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2692

This functionality and the declaration of variables with keyword VAR_INPUT
CONSTANT applies only to the CFC editor. In the FBD editor, CODESYS always
shows all input parameters on the block, regardless of whether or not they are
declared as VAR_INPUT or VAR_INPUT CONSTANT. CODESYS also does not
make a distinction about this in text editors.

See also
● Ä Chapter 6.4.1.20.1.7.5 “CFC Editor in Online Mode” on page 2103
● Ä Chapter 6.4.1.21.3.13.19 “Command 'Save Prepared Parameters to Project'”

on page 2693

Command 'Save Prepared Parameters to Project'
Function: This command saves the prepared parameter values to the project.
Call: Main menu “CFC”.
Requirements: A CFC editor is active. Parameter values of function block instances are
changed in online mode. You are in offline mode.
If the values of constants on the controller are different from the values in the application,
then this is indicated by a red asterisk next to the parameter field. Clicking “Incur Prepared
Parameters” saves the controller values to the application.
See also
● Ä “Changing of constant input parameters of function block instances” on page 2105
● Ä Chapter 6.4.1.21.3.13.18 “Command 'Edit Parameters'” on page 2692

Command 'Connect Selected Pins'
Symbol:
Function: The command establishes a connection between the selected pins.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. Precisely one output and several inputs are selected.
In order to select the pins you must keep the [CTRL] key pressed while clicking on the pins.
Then you execute the command.
See also
● Ä Chapter 6.4.1.21.3.13.23 “Command 'Select Connected Pins'” on page 2694

Command 'Unlock Connection'
Symbol:
Function: This command unlocks a disabled connection.
Call: Main menu “CFC è Routing”, context menu “Routing”

Requirements: A CFC editor is active. A connection or a connection mark is selected.
You obtain a disabled connection if you change the connections of the automatic routing. If you
wish to carry out automatic routing again, you must first unlock a disabled connection.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2693

With a mouse-click on the icon of a disabled connection you can similarly
unlock this connection.

See also
● Ä Chapter 6.4.1.9.5.3.3 “ Programming in the CFC editor” on page 1871
● Ä Chapter 6.4.1.20.1.7.6.12 “CFC element 'Connection Mark - Source/Sink'” on page 2112

Command 'Show Next Collision'
Function: This command displays the next collision in the editor and marks the place con-
cerned.
Call: Menu menu “CFC è Routing”, context menu “Routing”

Requirements: A CFC editor is active and at least one connection with a collision is present.
This function is very useful if you operate with large networks and see only one sub-area. A
collision is additionally indicated to you by the red bordered symbol in the top right corner of the
editor.

Command 'Select Connected Pins'
Symbol: ; shortcut: [Ctrl]+[Left Arrow], or [Ctrl]+[Right Arrow]

Function: The command selects all pins that are connected to the currently selected line, or
connected to the currently selected connection mark in page-oriented CFC.
Call: “CFC” menu; context menu
Requirements: A CFC editor or a page-oriented CFC editor is active. One line and therefore
exactly one connection or exactly one connection mark is selected.

See also
● Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098
● Ä Chapter 6.4.1.20.1.7.3 “CFC editor, page-oriented” on page 2101
● Ä Chapter 6.4.1.20.1.7.6.12 “CFC element 'Connection Mark - Source/Sink'” on page 2112

Command 'Reset Pins'
Symbol: , [Ctrl]+[U]

Function: The command restores the deleted pins of a box.
Call: “CFC è Pins” menu; “Pins” in the context menu
Requirements: A CFC editor is active and a box is selected.
The command restores all inputs and outputs of the box as they are defined in their implementa-
tion.
See also
● Ä Chapter 6.4.1.21.3.13.25 “Command 'Remove Unused Pins'” on page 2694

Command 'Remove Unused Pins'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2694

Function: The command removes all unused pins of the selected element.
Call: Menu “CFC è Pins”, context menu “Pins”

Requirements: A CFC editor is active. An element is selected.
See also
● Ä Chapter 6.4.1.21.3.13.24 “Command 'Reset Pins'” on page 2694

Command 'Add Input Pin'
Symbol:
Function: The command adds a further input to the selected function block.
Call: Main menu “CFC è Pins”, context menu “Pins”

Requirements: A CFC editor is active. A function block is selected.
See also
● Ä Chapter 6.4.1.21.3.13.27 “Command 'Add Output Pin'” on page 2695

Command 'Add Output Pin'
Symbol:
Function: The command adds a further output to the selected function block.
Call: Main menu “CFC è Pins”, context menu “Pins”

Requirements: A CFC editor is active. A suitable function block is selected.
See also
● Ä Chapter 6.4.1.21.3.13.26 “Command 'Add Input Pin'” on page 2695

Command 'Route All Connections'
Symbol:
Function: This command cancels all manual changes to the connections in the program and
re-establishes the original state.
Call: Main menu “CFC è Routing”, context menu “Routing”

Requirements: A CFC editor is active.
CODESYS cannot automatically route connections that are fixed by control points. You must
remove the control points before executing the command. Use the “Remove Control Point”
command to do this. Furthermore you must disconnect connections that have been changed
manually and are marked by the icon. Use the “Disconnect Connection” command to do this.
See also
● Ä Chapter 6.4.1.21.3.13.29 “Command 'Remove Control Point'” on page 2695
● Ä Chapter 6.4.1.21.3.13.21 “Command 'Unlock Connection'” on page 2693

Command 'Remove Control Point'
Function: This command removes a control point.
Call: Context menu “Routing”

Requirements: A CFC editor is active. You have selected a connecting line.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2695

If you move the mouse pointer over a selected connecting line, the existing control points are
displayed with yellow circle symbols. Set the cursor on the control point to be deleted and
execute the command from the context menu.
See also
● Ä Chapter 6.4.1.20.1.7.6.2 “CFC element 'Control Point'” on page 2109
● Ä Chapter 6.4.1.21.3.13.30 “Command 'Create Control Point'” on page 2696

Command 'Create Control Point'
Symbol:
Function: The command creates a control point on a connecting line.
Call: Context menu “Routing”

Requirements: A CFC editor is active. The cursor is over a connection.
The control point is created in the position on the connection at which the cursor is located
when calling the command. The command corresponds to the “Control Point” element in the
“Tools” window.
See also
● Ä Chapter 6.4.1.20.1.7.6.2 “CFC element 'Control Point'” on page 2109
● Ä Chapter 6.4.1.21.3.13.29 “Command 'Remove Control Point'” on page 2695

Command 'Connection Mark'
Symbol:
Function: This command switches the display of the connection between two elements back
and forth between a connecting line and the use of connection marks.
Call: Main menu “CFC”, context menu
Requirements: A CFC editor is active. A connection or a connection mark is selected.
If you have selected a connecting line, the command removes this line and adds a “Connection
Mark - Source” at the output of one element and a “Connection Mark - Sink” at the input of the
other. Both are given the same name by default, “C-<n>”, where n is a sequential number.
If you select a pair of connection marks, the command converts these marks into a connecting
line.
See also
● Ä Chapter 6.4.1.20.1.7.6.12 “CFC element 'Connection Mark - Source/Sink'” on page 2112

Command 'Create group'
Symbol:
Function: This command groups the selected elements.
Call: Main menu “CFC è Group”, context menu “Group”

Requirements: A CFC editor is active. Several elements are selected.

Grouped elements can only be moved together. The position of the elements is not affected by
the grouping.
See also
● Ä Chapter 6.4.1.21.3.13.33 “Command 'Ungroup'” on page 2697

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2696

Command 'Ungroup'
Symbol:
Function: The command undoes a previous grouping.
Call: Main menu “CFC è Group”, context menu “Group”

Requirements: A CFC editor is active. A grouping is selected.
See also
● Ä Chapter 6.4.1.21.3.13.32 “Command 'Create group'” on page 2696

Command 'Prepare Box for Forcing'

This command is required when using compiler versions 3.5.11.x and 3.5.12.x.
The command is no longer required for compiler versions >= 3.5.13.0.

Function: The command activates and deactivates the forceability of the inputs for a function
block element.
Call:
● CFC
● Context menu
Requirements: The CFC editor is in offline mode and a function block element is selected.
After executing the command, the “Force Function Block Input” command is available in online
mode to open a dialog for forcing the box input values.
See also
● Ä Chapter 6.4.1.21.3.13.35 “Command 'Force Function Block Input'” on page 2697
● Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987

Command 'Force Function Block Input'

NOTICE!
This kind of forcing uses a data breakpoint internally and is therefore different
from forcing with the “Force Values” command or [F7].
Values that were forced by the command “Force FB Input” do not respond to the
commands “Show All Forces” or “Unforce Values”.

Function: The command opens the “Force Value” dialog to force the selected input of a func-
tion block. Forcing can be canceled with the same command and dialog.
Call:
● CFC
● Context menu
Requirements:
● The CFC editor is in online mode and the input of the function block is selected.
● For compiler versions 3.5.11.x and 3.5.12.x, the "forceability" of the function block is ena-

bled by the “Prepare Box for Forcing” command.
In the “Force Value” dialog, you can either specify a value that the input of the function block
should be forced, or remove the currently forced value.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2697

After forcing, the input is highlighted in green again. Boolean inputs get a small monitoring view
with the forced value. The forced value is displayed in the “Value” column of monitoring views
(in the declaration part of the POU or in a watch list).

“Expression” Name of the function block input. Example: TON_1.IN.

“Type” Data type of the input

Table 517: “What do you want to do?”
“Set a new value to force” : You can specify a new value in the input field. The format has to correspond

to the data type.

“Remove value” : Forcing at the input is canceled.

See also
● Ä Chapter 6.4.1.20.1.7.2 “CFC Editor” on page 2098
● Ä Chapter 6.4.1.12.5 “Forcing and Writing of Variables” on page 1987
● Ä Chapter 6.4.1.21.3.13.34 “Command 'Prepare Box for Forcing'” on page 2697

Command 'Use Attributed Member as Input'
Symbol:
Function: This command allows for connecting a structure member to a scalar type input.
Call: Menu bar: “CFC è Pins”; context menu: “Pins”

Requirements: A CFC editor is active and a function block input is selected.
The member of the structure that is connected to the input of the subsequent function block
must be provided with the pragma {attribute 'ProcessValue'}. The data type of the
structure member has to be compatible with the data type of the subsequent input. Inputs
connected in this way are flagged with the "V" symbol.

Dialog 'Force
Value'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2698

TYPE QINT :
STRUCT
 Status : STRING;
 {attribute 'ProcessValue'}
 Value1 : INT;
 Value2 : INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 input1: QINT;
 output1: QINT;
 intValue: INT;
END_VAR

If you do not execute the command “Use attributed member as input” for this link, then a
compiler error is issued.

Example

See also
● Ä Chapter 6.4.1.20.6.3.39 “Attribute 'ProcessValue'” on page 2312

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2699

Menu 'FBD/LD/IL'
6.4.1.21.3.14.1 Command 'Insert Network'.. 2700
6.4.1.21.3.14.2 Command 'Insert Network (Below)'....................................... 2701
6.4.1.21.3.14.3 Command 'Toggle Network Comment State'......................... 2701
6.4.1.21.3.14.4 Command 'Insert Assignment'... 2701
6.4.1.21.3.14.5 Command 'Insert Box'... 2701
6.4.1.21.3.14.6 Command 'Insert Box with EN/ENO'..................................... 2702
6.4.1.21.3.14.7 Command 'Insert Empty Box'.. 2702
6.4.1.21.3.14.8 Command 'Insert Empty Box with EN/ENO'.......................... 2702
6.4.1.21.3.14.9 Command 'Insert Box Parallel (Below)'................................. 2702
6.4.1.21.3.14.10 Command 'Insert Jump'... 2703
6.4.1.21.3.14.11 Command 'Insert Label'... 2703
6.4.1.21.3.14.12 Command 'Insert Return'... 2703
6.4.1.21.3.14.13 Command 'Insert Input'.. 2703
6.4.1.21.3.14.14 Command 'Insert Coil'... 2704
6.4.1.21.3.14.15 Command 'Insert Set Coil'... 2704
6.4.1.21.3.14.16 Command 'Insert Reset Coil'... 2704
6.4.1.21.3.14.17 Command 'Insert Contact'... 2704
6.4.1.21.3.14.18 Command 'Insert Contact (Right)'....................................... 2705
6.4.1.21.3.14.19 Command 'Insert Contact in Parallel (Below)'..................... 2705
6.4.1.21.3.14.20 Command 'Insert Contact in Parallel (Above)'..................... 2705
6.4.1.21.3.14.21 Command 'Toggle Parallel Mode'.. 2706
6.4.1.21.3.14.22 Command 'Insert Negated Contact'..................................... 2706
6.4.1.21.3.14.23 Command 'Insert Negated Contact Parallel (Below)'.......... 2706
6.4.1.21.3.14.24 Command 'Paste Contacts: Paste Below'........................... 2707
6.4.1.21.3.14.25 Command 'Paste Contacts: Paste Above'........................... 2707
6.4.1.21.3.14.26 Command 'Paste Contacts: Paste Right (After)'.................. 2707
6.4.1.21.3.14.27 Command 'Insert IL Line Below'.. 2707
6.4.1.21.3.14.28 Command 'Delete IL Line'... 2707
6.4.1.21.3.14.29 Command 'Negation'... 2708
6.4.1.21.3.14.30 Command 'Edge Detection'... 2708
6.4.1.21.3.14.31 Command 'Set/Reset'.. 2708
6.4.1.21.3.14.32 Command 'Set Output Connection'..................................... 2708
6.4.1.21.3.14.33 Command 'Insert Branch'.. 2709
6.4.1.21.3.14.34 Command 'Insert Branch Above'... 2709
6.4.1.21.3.14.35 Command 'Insert Branch Below'... 2709
6.4.1.21.3.14.36 Command 'Set Branch Start Point'...................................... 2709
6.4.1.21.3.14.37 Command 'Set Branch End Point'....................................... 2710
6.4.1.21.3.14.38 Command 'Update Parameters'.. 2710
6.4.1.21.3.14.39 Command 'Remove Unused FB Call Parameters'.............. 2710
6.4.1.21.3.14.40 Command 'Repair POU'.. 2710
6.4.1.21.3.14.41 Command 'View as Function Block Diagram'...................... 2711
6.4.1.21.3.14.42 Command 'View as Ladder Logic'....................................... 2711
6.4.1.21.3.14.43 Command 'View as Instruction List'..................................... 2711
6.4.1.21.3.14.44 Command 'Go to'... 2712

Command 'Insert Network'
Symbol: , shortcut: [Ctrl] + [I]
Function: This command inserts a further network in the FBD/LD/IL editor.
Call: Main menu “FBD, LD, IL”, context menu

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2700

Requirements: The FBD, LD or IL editor is active. No box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.4.1 “FBD/LD/IL element 'Network'” on page 2091
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.21.3.14.2 “Command 'Insert Network (Below)'” on page 2701

Command 'Insert Network (Below)'
Symbol: , shortcut: [Ctrl]+ [T]

Function: This command inserts a further network in the FBD/LD/IL editor below the selected
network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected. No box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Toggle Network Comment State'
Symbol: , shortcut: [Ctrl] + [O]

Function: The command comments the selected network in or out.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Assignment'
Symbol , shortcut: [Ctrl] + [A]

Function: This command inserts an assignment in the FBD or LD editor.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.

In IL an assignment is programmed via the operators LD and ST.

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Box'
Symbol: , shortcut: [Ctrl] + [B]

Function: This command inserts a box that is available in the project at the end of the selected
network.
Call: Main menu “FBD, LD, IL”, context menu

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2701

Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.
If you select this command the input assistant opens, where you can select the desired box.
See also
● Ä Chapter 6.4.1.20.1.6.4.2 “FBD/LD/IL element 'Box'” on page 2092
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.9.7 “Using input assistance” on page 1885

Command 'Insert Box with EN/ENO'
Symbol: , shortcut: [Ctrl] + [Shift]+ [E]

Function: This command inserts a box with a boolean input “Enable” and a boolean output
“Enable Out” at the end of the selected network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: the FBD, LD or IL editor is active. A network is selected, but no box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.9.7 “Using input assistance” on page 1885

Command 'Insert Empty Box'
Symbol: , shortcut: [Ctrl] + [Shift] + [B]

Function: This command inserts an empty function block at the end of the currently selected
network.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected, but no box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Empty Box with EN/ENO'
Symbol:
Function: The command inserts an empty box with a Boolean input “Enable” and a Boolean
output “Enable Out” at the end of the selected network.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD editor, the IL editor or the LD editor is active. A network must be
selected. No other box may be selected.
If “Enable” has the value FALSE at the time of the function block call, then the operations
defined in the FB are not executed. Otherwise, if “Enable” has the value TRUE, these operations
are executed. The ENO output acts as a repeater of the EN input.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Box Parallel (Below)'
Function: This command inserts an empty box parallel below the selected function block.
Call: Menu bar: “FBD/LD/IL”; context menu.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2702

Requirements: A box is selected in the LD editor.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Jump'
Symbol , shortcut: [Ctrl]+[L]

Function: This command inserts a jump element before the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A connecting line is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.7 “FBD/LD/IL element 'Jump'” on page 2093

Command 'Insert Label'
Symbol:
Function: This command inserts a jump label into the currently selected network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The FBD, LD or IL editor is active. A network is selected. No jump label is
selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.6 “FBD/LD/IL element 'Label'” on page 2093

Command 'Insert Return'
Symbol:
Function: This command inserts an element “Return” in the selected place.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or IL editor is active. A box output is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.8 “FBD/LD/IL element 'Return'” on page 2093

Command 'Insert Input'
Symbol: , shortcut: [Ctrl]+[Q]

Function: This command adds a further input to an extendable box (ADD, OR, ADD, MUL,
SEL) above the selected input.
Call: “FBD/LD/IL” menu
Requirements: The FBD or LD editor is active. An input of a box is selected.
If a box is selected, the command “Append Input” is available in the context menu. The input is
inserted at the lower end of the box.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2703

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Coil'
Symbol: , shortcut: [Ctrl] + [A]

Function: This command inserts a coil into the network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The LD editor is active. A network, a coil or a connecting line is selected, but no
box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.12 “LD element 'Coil'” on page 2095

Command 'Insert Set Coil'
Symbol:
Function: This command inserts a set coil into the network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The LD editor is active. A network, a coil or a line is selected, but no box is
selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Reset Coil'
Symbol:
Function: This command inserts a reset coil into the network.
Call: Main menu “FBD, LD, IL”, context menu
Requirements: The LD editor is active. A network, a coil or a line is selected, but no box is
selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.12 “LD element 'Coil'” on page 2095
● Ä “Ladder diagram (LD)” on page 1860

Command 'Insert Contact'
Symbol , shortcut: [Ctrl] + [K]

Function: This command inserts a contact to the left of the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2704

Command 'Insert Contact (Right)'
Symbol: , shortcut: [Ctrl] + [D]

Function: This command inserts a contact to the right of the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line, a contact or a box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094

Command 'Insert Contact in Parallel (Below)'
Symbol: ; keyboard shortcut: [Ctrl]+[R]

Function: This command inserts a contact with lines in parallel with and below the selected
element.
Call: Menu bar: “FBD/LD/IL”; context menu.
Requirements: The LD editor is active. A line or a contact or a box is selected.

You can program closed parallel branches in a LD network as short circuit
evaluation (SCE) or OR constructs. SCE branches are displayed with double
vertical lines, and OR branches with single lines. Refer to the help page for
"Closed branches".

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.21.3.14.20 “Command 'Insert Contact in Parallel (Above)'” on page 2705
● Ä Chapter 6.4.1.20.1.6.4.14 “Closed branch” on page 2096

Command 'Insert Contact in Parallel (Above)'
Symbol: ; keyboard shortcut: [Ctrl]+[P]

Function: This command inserts a contact with lines in parallel with and above the selected
element.
Call: Menu bar: “FBD/LD/IL”; context menu.
Requirements: The LD editor is active. A line, a contact or a box is selected.

You can program closed parallel branches in a LD network as short circuit
evaluation (SCE) or OR constructs. SCE branches are displayed with double
vertical lines, and OR branches with single lines. Refer to the help page for
"Closed branches".

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2705

See also
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.14 “Closed branch” on page 2096

Command 'Toggle Parallel Mode'
Function: This command toggles a parallel branch between an OR construct and the Short
Circuit Evaluation (SCE) .
Call: Menu bar: “FBD/LD/IL”; context menu.
Requirements: The LD editor is active. A vertical line of a parallel branch is selected.

You can program closed parallel branches in a LD network as short circuit
evaluation (SCE) or OR constructs. SCE branches are displayed with double
vertical lines, and OR branches with single lines. Refer to the help page for
"Closed branches".

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.14 “Closed branch” on page 2096

Command 'Insert Negated Contact'
Symbol: , shortcut: [Ctrl] + [K]

Function: This command inserts a negated contact to the left of the selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094

Command 'Insert Negated Contact Parallel (Below)'
Symbol:
Function: The command inserts a negated contact with lines in parallel with and below the
selected element.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line, a contact or a box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.9.5.2.3 “Programming ladder diagrams (LD)” on page 1864

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2706

Command 'Paste Contacts: Paste Below'
Shortcut: [Ctrl] + [F]

Function: This command inserts a previously copied contact with lines below the selected
element.
Call: Main menu “FBD/LD/IL è Paste”, context menu
Requirements: the LD editor is active.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094

Command 'Paste Contacts: Paste Above'
Shortcut: [Ctrl] + [F]

Function: This command inserts a previously copied contact with lines above the selected
element.
Call: Main menu “FBD/LD/IL è Paste Contacts”, context menu
Requirements: the LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094

Command 'Paste Contacts: Paste Right (After)'
Shortcut: [Ctrl] + [G]

Function: this command inserts a previously copied contact to the right of the selected element.
Call: Main menu “FBD/LD/IL è Paste Contacts”, context menu
Requirements: The LD editor is active. A line or a contact is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.11 “LD element 'Contact'” on page 2094

Command 'Insert IL Line Below'
Symbol:
Function: The command inserts an instruction line below the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The IL editor is active. A line is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Delete IL Line'
Symbol: , shortcut: [Ctrl]+[Del]

Function: This command deletes the selected instruction line.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2707

Call: Main menu “FBD/LD/IL”, context menu
Requirements: The IL editor is active. A line is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Negation'
Symbol: , shortcut: [Ctrl] + [N]

Function: This command negates the following elements:
● Input/output of a box
● Jump
● Return
● Coil
Call: Main menu “FBD/LD/IL”, context menu
Requirements: the FBD or LD editor is active. The corresponding element is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Edge Detection'
Symbol FBD: , symbol LD: , shortcut: [Ctrl] + [N]

Function: This command inserts an edge detector before the selected box input or box output.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. A box input or box output is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Set/Reset'
Symbol: , shortcut [Ctrl] + [M]

Function: In the case of an element with a boolean output, this command switches between
reset, set and no mark.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An element with a boolean output is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Set Output Connection'
Symbol: , shortcut [Ctrl]+ [W]

Function: This command turns the selected box output into the forwarding box output.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. One of several box outputs is selected.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2708

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Branch'
Symbol: , shortcut [Ctrl] + [Shift] + [V]

Function: This command creates an open line branch on the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An input or an output of a box is selected.
See also
● Ä Chapter 6.4.1.20.1.6.4.9 “FBD/LD/IL element 'Branch'” on page 2093
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Insert Branch Above'
Symbol:
Function: This command inserts a line branch above the selected open line branch.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An open line branch is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.9 “FBD/LD/IL element 'Branch'” on page 2093

Command 'Insert Branch Below'
Symbol:
Function: This command inserts a line branch below the selected open line branch.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. An open line branch is selected.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.9 “FBD/LD/IL element 'Branch'” on page 2093

Command 'Set Branch Start Point'
Symbol
Function: This command sets the starting point of a line branch on the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line is selected.
See also
● Ä Chapter 6.4.1.20.1.6.4.14 “Closed branch” on page 2096
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2709

Command 'Set Branch End Point'
Symbol
Function: This command sets the end point of a line branch on the selected line.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The LD editor is active. A line is selected. A starting point of the line branch has
been set.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082
● Ä Chapter 6.4.1.20.1.6.4.14 “Closed branch” on page 2096

Command 'Update Parameters'
Function: This command enters changes to the declaration of the selected element in the
diagram.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD, LD or CFC editor is active. A box is selected. An extending change
has been made to the declaration.
The command checks whether a box and its declaration in the declaration editor correspond.
The change is accepted for the box only if the declaration was extended. Deletions and over-
writes are not updated.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Remove Unused FB Call Parameters'
Symbol:
Function: This command deletes inputs and outputs of the selected box to which no variable
and no value were assigned. However, the default inputs and outputs are always retained.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. A box is selected. The box has interfaces to
which no value is assigned.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Repair POU'
Symbol:
Function: This command repairs internal inconsistencies in the selected box.
Call: Main menu “FBD/LD/IL”, context menu
Requirements: The FBD or LD editor is active. The defective box is selected. The editor
has found internal inconsistencies in the programming module that can possibly be resolved
automatically. CODESYS reports the inconsistencies in the Message window.
This situation is conceivable when editing a project that was created with an older programming
system version that did not yet handle the inconsistency concerned as an error.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2710

Command 'View as Function Block Diagram'

CAUTION!
Loss of data! An error-free conversion requires syntactically correct code. Oth-
erwise parts of the implementation can be lost.

Shortcut: [Ctrl] + [1]

Function: This command converts the active instruction list or the active ladder diagram into the
function block diagram.
Call: Menu “FBD/LD/IL è View”

Requirements: The LD or IL editor is active.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'View as Ladder Logic'

CAUTION!
Loss of data! An error-free conversion requires syntactically correct code. Oth-
erwise parts of the implementation can be lost.

Shortcut: [Ctrl] + [2]

Function: This command converts the current function block code or the active instruction list
into a ladder diagram.
Call: Menu “FBD/LD/IL è View”

Requirements: The FBD or IL editor is active.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'View as Instruction List'

If necessary, IL can be activated in the CODESYS options.

CAUTION!
Loss of data! An error-free conversion requires syntactically correct code. Oth-
erwise parts of the implementation can be lost.

Shortcut: [Ctrl] + [3]

Function: This command converts the active function block code or the active ladder diagram
into an instruction list.
Call: Menu “FBD/LD/IL è View”

Requirements: The LD or FBD editor is active.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2711

See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Command 'Go to'
Symbol:
Function: This command allows you to jump to any network.
Call: Main menu “FBD/LD/IL”

Requirements: The LD, FBD or IL editor is active. A network is selected.
This command opens a dialog box with an input field. Enter the number of the desired network
in the input field.
See also
● Ä Chapter 6.4.1.20.1.6.1 “FBD/LD/IL Editor” on page 2082

Menu 'Library'
6.4.1.21.3.15.1 Command 'Add Library'... 2712
6.4.1.21.3.15.2 Command 'Try to Reload Library'.. 2713
6.4.1.21.3.15.3 Command 'Properties'... 2714
6.4.1.21.3.15.4 Command 'Placeholders'... 2716
6.4.1.21.3.15.5 Command 'Export Library'... 2716

Command 'Add Library'
Function: The command opens the “Add Library” dialog. In this dialog, you can add libraries to
the Library Manager and then integrate them in your application.
Call: Menu bar: “Libraries”

Requirement: The Library Manager is open in the editor.

In the line above the library list, you can search for library names or library modules by typing an appropriate
string.

“Library” Suitable libraries that are installed in the library repository. For example, the
selection of libraries is defined in the device description or by the system inte-
grator.
By default, the displayed libraries are grouped into categories.

“Company” Vendor of the library

“Advanced” Opens the advanced “Add Library” dialog

The displayed libraries are grouped into categories.

The displayed libraries are listed in alphabetical order.

All available libraries are displayed.

Specific libraries can be blacklisted in a device description. These libraries
cannot be added below this device in the Library Manager.

Dialog 'Add
Library'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2712

See also
● Ä Chapter 6.4.1.21.3.9.5 “Command 'Library Repository'” on page 2657

You should use this dialog only if you have expert knowledge of library referencing. Using this
dialog, you can link special versions or change placeholder definitions.

We recommend seriously that you follow the guidelines for the creation of
libraries when developing and referencing libraries.

Table 518: Tab 'Library'
“Company” Filtering the list according to vendor

“Group by category” : Display of the libraries in a tree structure grouped in categories.

: Display of the libraries in alphabetical order in a flat structure.

“Display all versions” : Display of all versions of the libraries. Version specification '*' means the
latest version available in the repository.

: Display of the latest versions of the libraries only. A multiple selection of
libraries is possible in this display. To do this, hold down the [Shift] key and select
the entries.

“Details” Opens a detailed view with the library modules.

“Library Repository” Opens the “Library Repository” dialog. There you can install more libraries to
your local system.

Table 519: Tab 'Placeholder'
“Placeholder name” The input field provides a combo box for entering the valid placeholder names

that are read from the currently accessible device descriptions. You can also
enter a new placeholder name in order to define a free placeholder, which is not
resolved by the device or by the library profile.

“Default library” CODESYS uses this library when for any reason no device is available that the
resolution defines. In this way it is possible to compile the current project without
errors.

Note about placeholder resolution
For compiler version V3.5.8.0 and later, the following statement applies in the
case of library placeholders with a resolution in the device description that are
located in the Library Manager of the POU pool. This placeholder is always
resolved automatically according to the description of the device that compiles
the application.

See also
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035
● Ä Chapter 6.4.1.21.3.15.4 “Command 'Placeholders'” on page 2716

Command 'Try to Reload Library'
Function: This command tries to reload the selected library.
Call: Main menu “Library”.
Requirement: A library is selected that failed to load.

Dialog 'Add
Library' – 'Ad-
vanced'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2713

If for any reason a library is not available in the defined repository location when a project is
opened, CODESYS displays a corresponding error message. Once you have rectified the error,
i.e. when the library is properly available again, you can reload the library with this command
without having to leave the project.
See also
● Ä Chapter 6.4.1.21.3.9.5 “Command 'Library Repository'” on page 2657

Command 'Properties'
Function: The command opens the “Properties” dialog for the library selected in the Library
Manager.
Call
● Menu bar: “Library”
● Context menu of the selected library
● Symbol in the toolbar of the Library Manager
Requirement: A library is selected.

NOTICE!
This dialog is intended for library developers. Use this only if you have profound
knowledge of library referencing. In addition, follow the guidelines for library
developers.

See also
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

Table 520: “General”
“Namespace” Namespace of the selected library. By default, this is identical to the library

name, unless it was defined explicitly in the project information when the library
was created. You can change the namespace for the open project.
Example: LA

“Default”: Library that triggers the placeholder when no other trigger is defined or is pos-
sible.
Requirement: The selected library is a library placeholder, and therefore the
setting is available.
Note: For compiler version 3.5.8.0 and higher, the following statement applies
in the case of library placeholders with a resolution in the device description
that are located in the Library Manager of the “POUs” view. This placeholder
is always resolved automatically according to the description of the device that
compiles the application.

If the selected library is developed in compliance with the "Guidelines for Devel-
oping Libraries", then we do not recommend that you change the following
settings.

Dialog 'Proper-
ties'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2714

Table 521: “Version”
Selection of version constraint
Requirement: The settings are available only if the selected library is not a library placeholder.
Note: Container and interface libraries are created automatically with library references with version constraint.
As far as possible, do not create libraries that include library references with version constraint. Otherwise, you
reference the libraries by placeholders. Edit a placeholder resolution in the “Placeholders” dialog.

“Exact version” : (selected from list box) Version is integrated into the project.
Note: This option is strongly recommended for container libraries, and it is usu-
ally preset for this library type.

“Always newest version” : The library repository is scanned and the latest detected version is inte-
grated.
Note: If a newer library version is available, then the library POUs that are
actually used can change. This option is strongly recommended for interface
libraries, and it is usually preset for this library type.

Table 522: “Visibility”
“Allow only qualified access to
all identifiers”

: Library POUs (and variables) are called in the project only with prepended
namespace paths.

“When the current project is
referenced as a library in
another project ”

Note: Changing the following settings makes sense only if you created a library
with your project and therefore opened a library project. In this way, the selected
library is referenced in the new library.

“Make visible all IEC symbols
in the project if is this reference
were directly integrated here.”

: As a container library, the selected library makes the contents of the refer-
enced library visible at the top level (later in a project).
Requirement: A container project is created with a library project. A container
library does not implement its own POUs, but references other libraries exclu-
sively. It bundles libraries. A container library can be employed sensibly to
bundle multiple libraries (in a reference) in a project. This option must be acti-
vated for each library reference.
Symbolic access to library POUs: <namespace of container
library>.<POU name>

: The contents of the referenced library is accessed uniquely by means of the
namespace. The path name consists of the library name and the unique name
(library reference), and it is prepended to the POU name.
Requirement: No container project is created with a library project.

“Do not show this reference in
the dependency tree.”

: The selected library is not displayed in the Library Manager as a library
reference (later in a project). The library is a hidden reference.
Warning: If there are compile errors resulting from hidden library errors, then
detecting the errors may be difficult.

: The selected library is displayed as a library reference (later in a project).

“Optional (if the library is
missing, no error will be
reported).”

: The selected library is treated as optional. When downloading the project that
references the library, no error is reported, even if the library is not available in
the library repository.

See also
● Ä Chapter 6.4.1.21.3.15.4 “Command 'Placeholders'” on page 2716

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2715

Command 'Placeholders'
Function: This command opens the “Placeholders” dialog box. The dialog shows information on
the currently selected placeholder library and allows to assign a project-specific resolution.
Call:
● Menu “Libraries”
● Symbol in the symbol bar in the upper part of the Library Manager window.
Requirement: A placeholder library is selected in the Library Manager.
A placeholder library, which is included in the “Devices” view, will be resolved as follows:
● If you have assigned a specific resolution to the placeholder library via the dialog

“Placeholder”, this will be applied.
● If no specific resolution is defined, it will be checked, whether there is one specified in the

device description of the application..
● Afterwards the library profile will be checked for a resolution definition.
● The result is displayed in the Library Manager below the “Effective Version”.
A placeholder library, which is included in the “POUs” view, gets resolved as follows:
● A specific resolution defined in the dialog “Placeholder” will be ignored.
● For the application it will be checked whether there is a resolution defined in the device

description.
● Afterwards the library profile will be checked.
● The result is displayed in the tooltip of the symbol .
See also
● Ä Chapter 6.4.1.17 “Using Libraries” on page 2034
● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

“Name” Name of the placeholder.

“Library” Current resolution, valid for the project
Double-click on the entry in order to edit the placeholder resolution. A selection
list with the available library versions appears. Additionally the command “Other
Library” is available.

Command “Other Library” The command opens the dialog box “Bibliothek durchsuchen” for searching
and installing libraries. Choose this command, if you do not want to redirect
to another version, but on a specific libray.

“Info” Type of placeholder resolution:
● Resolved by device description
● Resolved by library profile
● Resolved by <specific library>

Command 'Export Library'
Function: This command is used for saving the library file to the hard disk.
Call: Context menu of the Library Manager
Requirement: A library is selected in the Library Manager.
The command opens the standard dialog for saving a file in the local file system. The library
file can have the file type Library files (*.library), Compiled library files
(*.compiled-library), or Compiled library files (*.compiled-library-v3).

Dialog box 'Pla-
ceholders'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2716

See also
● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469
● Ä Chapter 6.4.1.17.6 “Exporting library files” on page 2037

Menu 'Image Pool'
6.4.1.21.3.16.1 Command 'Insert Image'.. 2717

Command 'Insert Image'
Symbol:
Function: This command inserts a new line into an image pool.
Call: Main menu “Imagepool”, or right-click.
Requirements: An image pool is active and a line is selected in the image pool.
See also
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468

Menu 'Declarations'
6.4.1.21.3.17.1 Command 'Insert'... 2717
6.4.1.21.3.17.2 Command 'Edit Declaration Header'..................................... 2717
6.4.1.21.3.17.3 Command 'Move Down'... 2718
6.4.1.21.3.17.4 Command 'Move Up'... 2718

Command 'Insert'
Symbol
Function: This command inserts a new line for a variable declaration in the declaration editor
and the input field for the variable name opens.
Call: Context menu in the tabular declaration editor; button in the declaration heading.
To edit the other fields of the declaration lines, double-click the fields and select the data from
the drop-down lists or by means of the respective dialogs.
See also
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851

Command 'Edit Declaration Header'
Function: The command opens the dialog “Edit Declaration Header”, which serves in the
declaration editor for the configuration of a POU header.
Call: Context menu of the tabular declaration editor
Requirements: The tabular declaration editor is the active editor.
See also
● Ä “Declaring in the tabular declaration editor” on page 1852

Function: The dialog is for configuring the declaration part of a POU.
Call: Click on the header bar of the tabular declaration editor, or context menu in the tabular
declaration editor.

Dialog 'Edit Dec-
laration Header'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2717

“Declaration” Selection list for changing the POU type
● “PROGRAM”
● “FUNCTION_BLOCK”

– “EXTENDS”:
Input field for a basic function block

– “IMPLEMENTS”: Input field for an interface
● “FUNCTION”

– “Return type”

Input field with current POU name: you can change the name of the POU

“Automatically adapt all
references on rename”

: Dialog box “Refactoring” opens.

: Renaming is only effective in the declaration header of the POU.

“Attributes” The dialog box “Attribute ” opens for the input of attributes and pragmas.

See also
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851
● Ä Chapter 6.4.1.20.6 “Pragmas” on page 2269
● Ä Chapter 6.4.1.9.16 “Refactoring” on page 1910

Command 'Move Down'
Symbol:
Function: This command shifts a variable declaration downwards by one row.
Call: Context menu
Requirement: A row with a variable declaration is selected in the tabular declaration editor.
See also
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851

Command 'Move Up'
Symbol:
Function: This command shifts a variable declaration upwards by one row.
Call: Context menu
Requirement: A row with a variable declaration is selected in the tabular declaration editor.
See also
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851

Menu 'Declarations' (Persistence)
6.4.1.21.3.18.1 Command 'Reorder List and Clean Gaps'............................. 2719
6.4.1.21.3.18.2 Command 'Save Current Values to Recipe'.......................... 2719
6.4.1.21.3.18.3 Command 'Restore Values from Recipe'............................... 2719
6.4.1.21.3.18.4 Command 'Add all instance paths'.. 2720

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2718

Command 'Reorder List and Clean Gaps'
Function: This command cleans the gaps that can result when you make changes to the
declaration of persistent variables. The memory requirement is reduced by this cleaning. When
the command is executed, CODESYS displays a warning informing the user about the possible
loss of data.
Call: Main menu “Declarations”, context menu
Requirement: The persistence editor (persistent variable list) is active.
Before cleaning you should consider saving the current values of the persistent variables to
a recipe (command “Save Current Values to Recipe”). Then you can load the values to the
controller again after the next download.
See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920
● Ä Chapter 6.4.1.21.3.18.3 “Command 'Restore Values from Recipe'” on page 2719
● Ä Chapter 6.4.1.21.3.18.2 “Command 'Save Current Values to Recipe'” on page 2719

Command 'Save Current Values to Recipe'
Function: This command creates a new recipe definition in the recipe manager and stores the
current values of the persistent variables in it. You should execute this command before the
command “Reorder List and Clear Gaps” in order to avoid a possible loss of data. You can
subsequently restore the data with the command “Restore Values from Recipe”.
Call: Main menu “Deklarationen”

Requirement: The application is in online mode and the persistence editor (persistent variable
list) is active.

If a list already exists in the recipe manager with the corresponding names
when saving a persistent variable list, then the current persistent variables are
sorted into the list:

– New persistent variables are added to the list
– Variables, that are not in the list, will be deleted

Therefore, it is possible to add more recipes to the list in the recipe manager
and these will be retained . However, if new variables are added to the list, then
these are deleted the next time the command “Save Current Values to Recipe”
is executed.

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920
● Ä Chapter 6.4.1.21.3.18.1 “Command 'Reorder List and Clean Gaps'” on page 2719
● Ä Chapter 6.4.1.21.3.18.3 “Command 'Restore Values from Recipe'” on page 2719
● Ä Chapter 6.4.1.21.2.20 “Object 'Persistent variable list'” on page 2476

Command 'Restore Values from Recipe'
Function: This command restores the values of the persistent variables that you have stored in
a recipe using the command “Save Current Values to Recipe”. You would normally select this
command after executing the command “Reorder List and Clear Gaps”.
Call: Main menu “Declarations”

Requirement: The persistence editor (persistent variable list) is active, the application is in
online mode

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2719

See also
● Ä Chapter 6.4.1.9.19 “Data Persistence” on page 1920
● Ä Chapter 6.4.1.21.3.18.2 “Command 'Save Current Values to Recipe'” on page 2719
● Ä Chapter 6.4.1.21.3.18.1 “Command 'Reorder List and Clean Gaps'” on page 2719
● Ä Chapter 6.4.1.21.2.20 “Object 'Persistent variable list'” on page 2476
● Ä Chapter 6.4.1.21.3.18.2 “Command 'Save Current Values to Recipe'” on page 2719

Command 'Add all instance paths'
Function:
● When you execute the command in the persistence editor, the application is searched for

declarations of persistent variables with the PERSISTENT keyword which are outside of the
persistence editor. For each declaration found, an instance path of this variable is added in
the persistence editor.

● When you execute the command in a variable configuration, an instance path is added
for each variable with an incomplete address. All function blocks of the application are
considered in this case.

Call: Menu bar: “Declarations”, right-click.
Requirement
● the persistence editor (global persistent variable list) is active or a variable configuration

(global variable list with VAR_CONFIG declarations) is opened.
● The application was compiled successfully.

See also
● Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122
● Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN” on page 2124

Menu 'Device Communication', Gateway
6.4.1.21.3.19.1 Command 'Add New Gateway'.. 2720
6.4.1.21.3.19.2 Command 'Configure the Local Gateway'............................. 2721

Command 'Add New Gateway'
Function: This command opens the “Gateway” dialog where you can define a gateway channel
and add it to the current device configuration.
Call: Menu bar: “Gateway” in the “Communication Settings” dialog of the device editor.

“Name” Name of the gateway.

“Driver” Driver type from a drop-down list.

Driver-specific settings, for
example:
IP address, port

Editable after double-clicking the predefined value. A short description for each
parameter is displayed in the lower part of the dialog.
Note: You can also specify the address of a DNS domain. This has to begin with
dns: (example: dns:MyDynDNSAdress).

The dialog is also used for later editing of the gateway entries of your project.
See also
● Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Settings'” on page 2427

Dialog 'Gateway'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2720

Command 'Configure the Local Gateway'
Function: The command opens the “Gateway Configuration” dialog where you can configure
the block drivers for the local gateway. This is an alternative to manually editing the configura-
tion file Gateway.cfg.

Call: Context menu when a gateway entry is selected in the device editor in the
“Communication Settings” dialog.

NOTICE!
A correct configuration of the gateway requires detailed knowledge. In case you
have any doubts, do not change the default configuration settings.

The configuration tree displayed in the dialog corresponds to the description currently valid
configuration file gateway.cfg. It displays the parameters with the current settings for the
interfaces involved. Changes to the configuration in the dialog, confirmed by clicking “OK” result
in the direct update of the configuration file.

After the gateway configuration file gateway.cfg has been changed, the
gateway has to be restarted in order for the changes to be applied.

“Add” Menu with commands for adding interfaces and settings. The commands are
also available in the context menu of the dialog. The selection depends on which
entry is selected and which settings have already been added:
“Add Interface”: Select an interface for communication via the gateway. It is
inserted at the top level of the tree. See the table below for the possible block
driver interfaces.
“Add Configuration Setting”: Select a setting for the selected interface. It is
inserted below the interface in the tree. To edit the value of the setting, double-
click in the “Setting” column to open an editing field. See the table below for the
possible settings per block driver interface.

“Delete” Deletes the selected configuration setting

“Up”, “Down” Moves the selected configuration entry one position up or down.

Dialog 'Gateway
Configuration'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2721

Table 523: Possible block driver interfaces
“COM Port” Serial port on the device, for example for data exchange

according to the RS-232 standard on a COM port intended for
this purpose.

 Possible configuration settings:
“Name”: Symbolic only
“Port”: Physical serial port which is used for this interface, for
example COM 5 on a Windows computer

“Baudrate”: 2400, 4800, 9600, 19200, 38400, 57600, 115200
“Activate auto addressing”: (default =) The setting Local
address is evaluated. Both devices, which communicate via
the serial port, will negotiate their addresses independently
before they begin exchanging messages. If the addresses of
both devices are the same, then they are negotiated again. This
setting is useful when the local addresses cannot be set explic-
itly, for example for physically separated devices.
“Local address”: Evaluated only when “Enable auto addressing”
is activated. Default = actual value for port

“Shared Memory”: Shared memory driver

 Possible settings:
“Name”: Symbolic only
“Forced address”: Default = -1 (= no forced address);
example: 42 means that the driver has to use the fixed address
defined here and that addresses are assigned freely in the range
0-255. This setting can be useful when more than one shared
memory driver is activated in the configuration.

“Ethernet UDP/IP”: Ethernet interface for data exchange according to the "user
datagram protocol".

 Possible settings:
“Name”: Symbolic only
“Port index”: Port number for the communication. Port indices
are in the range 0–3. They are mapped to the following Ethernet
port: 1740 to 1743.

“IP address”: Default = 127.0.0.1. This setting can be useful
to explicit set an interface when the device has several network
interfaces. Example: 127.0.0.1 stands for some local network
interface, also known as localhost. Every other address
(example: 10.27.7.72) represents a real IP address which has
to be available on the device.
“Network mask”: Default = 255.255.255.0; example:
255.255.252.0. This setting can be useful to explicitly set an
interface when there are multiple network interfaces on the
device.
“PPP remote address”: Default = 127.0.0.1; example:
10.13.42.240; establishes a logical point-to-point connection
between the UDP interface and the node named with the
address specified here; has the effect that the UDP interface
communicates exclusively with this node and that no broadcasts
are sent in the network

“Ethernet TCP/IP”: Ethernet interface for data exchange according to the "Transmis-
sion Control Protocol".

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2722

 Possible settings:
“Name”, “Port”, “IP address”: See Ethernet UDP/IP above.
“Inactivity timeout”: Default = 0. This setting defines the time
span (in seconds) after which the TCP connections are closed
when data is no longer exchanged.

“CAN Client” “Name”: Symbolic only
A description for the other settings can be found directly in the
dialog.

“USB Port” “Name”: Symbolic only
A description for the other settings can be found directly in the
dialog.

See also:
● Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Settings'” on page 2427

Menu 'Recipes'
6.4.1.21.3.20.1 Command 'Insert Variable'... 2723
6.4.1.21.3.20.2 Command 'Add a New Recipe'.. 2723
6.4.1.21.3.20.3 Command 'Remove Recipe'.. 2724
6.4.1.21.3.20.4 Command ‘Load Recipe'... 2724
6.4.1.21.3.20.5 Command 'Save Recipe'... 2724
6.4.1.21.3.20.6 Command 'Read Recipe'... 2725
6.4.1.21.3.20.7 Command 'Write Recipe'... 2725
6.4.1.21.3.20.8 Command 'Load and Write Recipe'....................................... 2725
6.4.1.21.3.20.9 Command 'Read and Save Recipe'....................................... 2726
6.4.1.21.3.20.10 Command 'Remove Variables'.. 2726
6.4.1.21.3.20.11 Command 'Load Recipes from Device'................................ 2727
6.4.1.21.3.20.12 Command 'Update Structured Variables'............................. 2727

Command 'Insert Variable'
Symbol:
Function: This command inserts a variable into the currently opened recipe definition before the
selected position.
Call: Main menu “Recipes”.
Requirement: You have opened a recipe definition in the editor and selected the normal view.
CODESYS inserts the default text "NewVariable" in the column “Variable”. You must replace this
name with the respective variable name. To do this, open the input assistant by clicking or
enter the variable name directly into the table element.
See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command 'Add a New Recipe'
Symbol:
Function: This command opens a dialog box for adding a new recipe (new column) to the
recipe definition.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2723

Call: Main menu “Recipes”.
Requirement: You have opened a recipe definition in the editor.
After choosing the command, a dialog box opens for you to define the name of the new recipe.
The dialog box also provides the capability of copying existing recipes into the new recipe.
See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command 'Remove Recipe'
Symbol:
Function: This command removes a recipe from the currently opened recipe definition.
Call: Main menu “Recipes”.
Requirement: You have selected a field in the recipe column of a recipe definition.
See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command ‘Load Recipe'
Symbol:
Function: The command loads a recipe from a file.
Call: Menu bar: “Recipes”.
Requirement: You have selected a field in the recipe column of a recipe definition.
This command overwrites the values of the selected recipe of the recipe definition.

If you have selected the option “Recipe Management in the PLC”, please note
the following.

If you change recipes in the project by choosing the command “Load Recipe” or
“Read Recipe”, then an online change is required when logging in again.

If you want to overwrite only individual recipe variables with new values, then
remove the values for the other variables before loading to the recipe file.
Entries without value definitions are not read, and therefore updating leaves
these variables unchanged on the PLC and in the project.

For values of the data type REAL/LREAL, the hexadecimal value is also written
to the recipe file in some cases. This is necessary so that the exact identical
value is restored when converting back. In this case, change the decimal value
and delete the hexadecimal value.

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command 'Save Recipe'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2724

Function: This command saves the variable values of a recipe to a file.
Call: Main menu “Recipes”.
Requirement: You have selected the value of a recipe in the recipe definition.
When you choose this command, CODESYS saves the values of the selected recipe to a file.
You can define the format in the settings for the recipe manager in the tab “Storage”.
See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command 'Read Recipe'
Symbol:
Function: This command reads the variable values of a recipe from the controller.
Call: Main menu “Recipes”.
Requirement: The application is in online mode and you have selected the value of a recipe in
the recipe definition.
When you choose this command, CODESYS overwrites the values of the selected recipe with
the read values from the controller.

If you have selected the option “Recipe Management in the PLC”, please note
the following.

If you change recipes in the project by choosing the command “Load Recipe” or
“Read Recipe”, then an online change is required when logging in again.

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3 “Menu Commands” on page 2551

Command 'Write Recipe'
Symbol:
Function: This command writes the values of a recipe to the variables in the controller.
Call: Main menu “Recipes”.
Requirement: The application is in online mode and you have selected the value of a recipe in
the recipe definition.
When you choose this command, CODESYS overwrites the values in the controller with the
values of the selected recipe.
See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command 'Load and Write Recipe'
Symbol:
Function: This command loads a recipe from a file and writes the values to the variables in the
PLC.
Call: Menu bar: “Recipes”.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2725

Requirement: The application is in online mode. You have selected the value of a recipe in the
recipe definition.
After choosing the command, you are prompted either to write the variable values also to the
recipe in the project or only to write them to the PLC. Updating the values in the recipe could
require an online change when logging in again.
When you choose this command, CODESYS overwrites the values of the selected recipe of the
recipe definition. In addition, these recipe values overwrite the variable values in the PLC.

If you want to overwrite only individual recipe variables with new values, then
remove the values for the other variables before loading to the recipe file.
Entries without value definitions are not read, and therefore updating leaves
these variables unchanged on the PLC and in the project.

For values of the data type REAL/LREAL, the hexadecimal value is also written
to the recipe file in some cases. This is necessary so that the exact identical
value is restored when converting back. In this case, change the decimal value
and delete the hexadecimal value.

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command 'Read and Save Recipe'
Symbol:
Function: This command reads the variable values of a recipe from the controller and saves
them to a file.
Call: Main menu “Recipes”.
Requirement: The application is in online mode and you have selected the value of a recipe in
the recipe definition.
After choosing the command, you are prompted either to read the variable values to the recipe
or only to save them. Updating the values in the recipe could require an online change when
logging in again.
The values are saved with the default name for recipe files according to the settings for the
recipe manager (tab “Storage”).
See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Command 'Remove Variables'
Symbol
Function: This command removes the selected variables from a “Recipe Definition”.
Call: The command is not in any menu by default. You can add it to a menu by using the dialog
box from “Tools è Customize” (command category “Recipe”).
See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2726

Command 'Load Recipes from Device'
Symbol:
Function: This command initiates the synchronization of the recipes from the open recipe
definition in the project and the recipes located on the device in the form of recipe files.
Call: Menu bar: “Recipes”.
Requirement: The application is in online mode and a recipe definition is open in the editor.
In detail, the synchronization is described as follows:
● The current values for the recipe variables located in the project are overwritten by the

values from the recipes on the controller. As a result, there is likely an online change at the
next login.

● If recipe variables are defined in the recipe files on the controller, and the recipe variables
are missing in the recipe definition of the project, then these variables are ignored when
at the time of download. Before that, a message appears for each recipe file regarding the
variables in question.

● If recipe variables are missing in the recipe files on the controller, and these recipe variables
are included in the recipe definition of the project, then a message appears for each recipe
file with the variables in question.

● If more recipes for these variables have been created on the controller, then they are added
to the recipe definition in the project.

Command 'Update Structured Variables'
Symbol:
Function: This command opens the “Update Structured Variables” dialog box.
Call: Main menu “Recipes”.
In this dialog box, you can update recipe definitions if the declaration of a structured variable
or a block has changed. For example, if the dimension of an array is changed, then you can
automatically add or remove the entries in the recipe definition.

Table 524: Dialog Box 'Update Structured Variables'
“Remove not existing
variables”

: Variables are removed from the recipe definition when they no longer exist in
the project due to a change to a structured element.

“Update instances of structures
and function blocks”

: If the declaration of a structure or function block is extended and available in
the recipe definition with an instance, then the respective variables are added to
the recipe definition.

“Update array dimensions of
array instances”

: If the dimension of an array is extended and available in the recipe definition
with an instance, then the respective variables are added to the recipe definition.

“Update contained global
variable lists”

: If the declaration of a global variable list is extended and available in the
recipe definition with an instance, then the respective variables are added to the
recipe definition.

“Update contained programs” : If the declaration of a program is extended and instanced in the recipe
definition, then the respective variables are added to the recipe definition.

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.1.21.3.20 “Menu 'Recipes'” on page 2723

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2727

Menu 'Text List'
6.4.1.21.3.21.1 Command 'Add Language'.. 2728
6.4.1.21.3.21.2 Command 'Create Global Text List'....................................... 2728
6.4.1.21.3.21.3 Command 'Export Everything as Text'................................... 2728
6.4.1.21.3.21.4 Command 'Export All Unicode .txt Text List Files'................. 2729
6.4.1.21.3.21.5 Command 'Insert Text'... 2729
6.4.1.21.3.21.6 Command 'Import/Export Text Lists'...................................... 2729
6.4.1.21.3.21.7 Command 'Remove Language'... 2730
6.4.1.21.3.21.8 Command 'Rename Language'... 2730
6.4.1.21.3.21.9 Command 'Remove Unused Text List Entries'...................... 2731
6.4.1.21.3.21.10 Command 'Check Visualization Text IDs'............................ 2731
6.4.1.21.3.21.11 Command 'Update Visualization Text IDs'........................... 2731
6.4.1.21.3.21.12 Command 'Add Text List Support'....................................... 2732
6.4.1.21.3.21.13 Command 'Remove Text List Support'................................ 2732

Command 'Add Language'
Symbol:
Function: This command adds a further language column to the text list.
Call: Main menu “Textlist”, context menu
Requirement: A text list or a global text list is open and active.
In the dialog box “Enter Language”, enter a code for the new language, for example “en-US”.
CODESYS inserts the code as column header.

Command 'Create Global Text List'
Symbol:
Function: This command creates the global text list in the “POUs” view.
Call: “Visualization”, context menu.
Requirements: A visualization is open.
See also
● Ä Chapter 6.4.1.21.2.11 “Object 'GlobalTextList'” on page 2465
● Ä Chapter 6.4.1.9.10.7 “Managing static text in global text lists” on page 1894

Command 'Export Everything as Text'
Symbol:
Function: This command exports all the text lists of the project.
Call: Main menu “Textlist”, context menu
Requirement
● A text list or a global text list is open and active.
● The visualization does not code the characters of the texts in Unicode.
CODESYS creates a file as plain text in the format .txt for each text list. The name of the text
list becomes the name of the file. The directory into which the files are exported is set in “Project
è Project Settings è Visualization”, category “General” in “Text list files”.
A controller can read and use this format. For example, you can copy the file to a controller
and, by means of a configuration in the visualization manager, prevent the text lists from being
transmitted again when loading the application.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2728

Command 'Export All Unicode .txt Text List Files'
Symbol:
Function: This command exports all the text lists of the project.
Call: Main menu “Textlist”, context menu
Requirement
● A text list or a global text list is open and active.
● The visualization codes the characters of the texts in Unicode.

– The option “Use Unicode strings” in the visualization manager is activated.
– The compiler instruction VISU_USEWSTRING in the application is set. Check this by

selecting the command “Properties” in the context menu of the application. Then select
the “Compile” tab. VISU_USEWSTRING must be entered in the input field for “Compiler
defines”.

CODESYS creates a file as plain text in the format .txt for each text list. The name of the text
list becomes the name of the file. The directory into which the files are exported is set in “Project
è Project Settings è Visualization”, category “General” in “Text list files”.
A controller can read and use this format. For example, you can copy the file to a controller
and, by means of a configuration in the visualization manager, prevent the text lists from being
transmitted again when loading the application.
See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891

Command 'Insert Text'
Symbol:
Function: This command inserts a new line into the text list above the selected line. An input
field under “Standard” opens, in which you input the source text.
Call: Main menu “Textlist è Insert Text”, context menu
Requirement: A text list, not a “GlobalTextList”, is open and active. A field in the table is
selected.
See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891

Command 'Import/Export Text Lists'
Symbol:
Function: This command exports an active text list, imports a file, or matches a text list with a
file. The file has the CSV format. The “Import/Export” dialog provides options for this.
Call: Menu bar: “Text List è Import/Export Text Lists”; context menu
Requirement: A text list or global text list is active.

“Select File for Import” File that CODESYS reads.

 opens the dialog “Select Text List File” for you to select a file.

“Select export file” File that CODESYS writes to.

 opens the dialog “Select Text List File” for you to select a file and directory.

Dialog 'Import/
Export'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2729

Table 525: “Import/Export Type”
“Import” Requirement: A file is selected in “Select file for compare or import”.

The file can contain text list entries for both the global text list and text lists.
Global text list
● CODESYS reads the file, compares the text list entries for the same source

text, and accepts differences in the translations. CODESYS overwrites any
translations in the project.

Text lists
● CODESYS reads the file, compares the text list entries for the same ID,

and accepts differences in the source text and translations into the project.
CODESYS overwrites any text list entries in the project.

● If the file contains a new ID, then the text list entry is imported into the text
list of the project and the text list is added.

“Import replacement file” Requirement: A replacement file is selected in “Select file for compare or
import”.
The replacement file contains replacements for the global text list.
CODESYS processes the replacement file row by row and performs the speci-
fied replacements in the global text list.
The structure of the replacement file is described in the section "Managing static
text in a global text list".

“Export” Requirement: The file that CODESYS writes to is selected in “Select export file”.
CODESYS exports all texts from all text lists of the current project. All lan-
guages available in the project are inserted as columns in the export file. The
file can be used for the external translation of the language-dependent texts.

“Export text differences only” Requirement: An import file is selected for the comparison in “Select file for
compare or export”, and an export file that CODESYS writes to is selected in
“Select export file”.
CODESYS reads the import file and then uses that information to compare the
rows of the active text list. CODESYS ignores the rows that match. If rows differ,
then CODESYS writes the row to the export file and, if necessary, copies trans-
lations from the text list. CODESYS accepts the translations from the import file
and overwrites them if necessary.

See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891
● Ä “Updating the global text list with a replacement file” on page 1895

Command 'Remove Language'
Symbol:
Function: Removes the selected language column from the text list.
Call: Main menu “Textlist”, context menu
Requirement: A text list or a global text list is open and active. A field is selected in the column
of the language that you wish to remove.
See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891

Command 'Rename Language'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2730

Function: Opens a dialog for specifying a new name for a language that is displayed in the text
list as a column heading.
Call: Menu bar: “Text List”; context menu.
Requirement: A text list or global text list is active. A field in the language column to be
renamed is selected.
See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891

Command 'Remove Unused Text List Entries'
Symbol:
Function: This command checks whether a text list entry in the project is used as static text. If
not, CODESYS removes it from the text list.
Call: Main menu “Textlist”, context menu
Requirement: The “GlobalTextList” is open and active. A field in the table is selected.
See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891

Command 'Check Visualization Text IDs'
Symbol:
Function: This command checks whether the ID of a text list entry in the project is correct and
reports the result.
Call: Main menu “Textlist”, context menu
Requirement: The “GlobalTextList” is open and active. A field in the table is selected.
If CODESYS finds during checking that the global text list and the static texts of the visualiza-
tions do not correspond, this could be because the global text list is or was write protected. The
requirement for this is that you have set up a user management system in the project.
See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891

Command 'Update Visualization Text IDs'
Symbol
Function: This command updates all inconsistent IDs in a static text list.
Call: Main menu “Textlist è Paste Text”, context menu
Requirement: The “GlobalTextList” is open and active. A field in the table is selected. The
object is write protected.
If CODESYS finds during checking that the global text list and the static texts of the visualiza-
tions do not correspond, this could be because the global text list is or was write protected. The
requirement for this is that you have set up a user management system in the project.
See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891
● Ä Chapter 6.4.1.6.6 “Protecting Objects in the Project by Access Rights” on page 1826

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2731

Command 'Add Text List Support'
Symbol:
Function: This command adds text list support to the selected DUT object (type: enumeration).

Call: Context menu of a standard DUT object (type: enumeration).
Text list support allows the localization of the enumeration component identifier and the display
of the symbolic component value in a text output of a visualization.
See also
● Ä Chapter 6.4.1.21.2.9 “Object 'DUT'” on page 2461
● Ä Chapter 6.4.1.21.3.21.13 “Command 'Remove Text List Support'” on page 2732

Command 'Remove Text List Support'
Symbol:
Function: This command removes text list support from the selected enumeration object.

Call: Context menu of an object of an enumeration with text list support ().
Text list support allows the localization of the enumeration component identifier and the display
of the symbolic component value in a text output of a visualization.
47293
See also
● Ä Chapter 6.4.1.21.2.9 “Object 'DUT'” on page 2461
● Ä Chapter 6.4.1.21.3.21.12 “Command 'Add Text List Support'” on page 2732

Menu 'Trace'
6.4.1.21.3.22.1 Command 'Add Variable'... 2732
6.4.1.21.3.22.2 Command 'AutoFit'.. 2733
6.4.1.21.3.22.3 Command 'Compress'... 2733
6.4.1.21.3.22.4 Command 'Configuration'.. 2733
6.4.1.21.3.22.5 Command 'Cursor'... 2733
6.4.1.21.3.22.6 Command 'Download Trace'... 2734
6.4.1.21.3.22.7 Command 'Export Symbolic Trace Config'............................ 2735
6.4.1.21.3.22.8 Command 'Load Trace'... 2737
6.4.1.21.3.22.9 Command 'Mouse Zooming'.. 2737
6.4.1.21.3.22.10 Command 'Convert to Multi-Channel'.................................. 2737
6.4.1.21.3.22.11 Command 'Convert to Single-Channel'................................ 2738
6.4.1.21.3.22.12 Command 'Online List'... 2739
6.4.1.21.3.22.13 Command 'Reset Trigger'.. 2740
6.4.1.21.3.22.14 Command 'Reset View'... 2740
6.4.1.21.3.22.15 Command 'Save Trace'... 2741
6.4.1.21.3.22.16 Command 'Start Trace'.. 2741
6.4.1.21.3.22.17 Command 'Stop Trace'.. 2741
6.4.1.21.3.22.18 Command 'Stretch'.. 2742
6.4.1.21.3.22.19 Command 'Upload Trace'.. 2742
6.4.1.21.3.22.20 Command 'Statistics'... 2742

Command 'Add Variable'
Function: This command adds a trace variable to the configuration.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2732

Call: Main menu “Trace”.
A new variable is displayed in the tree view of the trace configuration. The associated variables
configuration appears to the right in “Variable Settings”.
See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Ä Chapter 6.4.1.13.3.3 “Creating trace configuration” on page 2010

Command 'AutoFit'
Symbol:
Function: This command scales the y-axis of the trace diagram for optimum display of all
graphs, making sure that the y-values fit in the visible region of the diagrams. The command
works with both single-channel and multi-channel displays.
Call: Menu bar: “Trace”; context menu.

When all trace variables are displayed in one diagram, the trace is in single-channel display.

When the trace variables are displayed in multiple diagrams, the trace is in multi-channel
display.

See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Compress'
Symbol:
Function: This command compresses the trace graph by zooming into the displayed time range
by a fixed percentage.
Call: Main menu “Trace”, or context menu.
See also
● Ä Chapter 6.4.1.21.3.22.18 “Command 'Stretch'” on page 2742
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Configuration'
Function: This command opens the “Trace Configuration” dialog box for enabling the configura-
tion of the data recording.
Call: Main menu “Trace”, or context menu.
See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Ä “Subdialog 'Variable Settings'” on page 2807

Command 'Cursor'
Symbol:

Trace in a
single-channel
display
Trace in a multi-
channel display

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2733

Function: This function
● inserts a trace cursor into the trace diagram when no trace cursor is available
● inserts a second trace cursor into the trace diagram when 1 trace cursor is available
● removes the trace cursors when 2 trace cursors are available
Call: Menu bar: “Trace”; context menu.
A trace cursor is a small black triangle with a vertical black line running parallel to the y-axis.

In this mode, you can process the trace diagram with the mouse pointer. The x-value that
focuses on with the cursor is displayed in the status bar with normal style. Example: “Time:
1m23s456ms; Value: 1 ”

In the status bar and y-value, CODESYS prints the time that was marked by the trace cursor.
Example: “Time: 1m23s456ms ”

In the status bar, CODESYS prints the two times and the time interval that are marked by the
two trace cursors. Example: “Time: 1m23s456ms - Time: 1m24s456ms (∆ 1s) ”.

If one or two trace cursors are available, then you can move them along the x-axis.

Mouse Input Symbol Effect
Drag the triangle of a trace
cursor to another position.

While the mouse button is pressed, the cursor can be moved without
restriction. The current y-value is always displayed in the status bar.
When the mouse button is released, the cursor jumps to the nearest
measuring point

Keyboard Shortcuts Effect
[Left arrow]

[Right arrow]

CODESYS moves the black trace cursor to the next measuring point.

[Shift]+[Left Arrow]

[Shift]+[Right Arrow]

CODESYS moves the gray trace cursor to the next measuring point.

See also
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Download Trace'
Symbol:
Function: This command transfers the trace configuration on the controller to the associated
application, and starts the data recording. The recorded data is transferred back to the develop-
ment system. The trace diagram shows the current samples and continues.
Call: Menu bar: “Trace”; context menu.
Requirement: The command is available when the assigned application is in online mode.
See also
● Ä Chapter 6.4.1.13.3.4 “Operating the data recording” on page 2014

Trace diagram
without trace
cursors

Trace diagram
with one trace
cursor

Trace diagram
with two trace
cursors

User input in the
trace diagram

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2734

Command 'Export Symbolic Trace Config'
Function: This command exports a trace configuration to a traceconfig file.

Call: Main menu “Trace”, or context menu.
Requirement: The origin application includes a symbol configuration that defines the configured
trace variables as symbols. Access to the IEC variables where data was recorded is therefore
symbolic. Then you can use the trace configuration for various similar applications.

You can transfer this file to any runtime system. At runtime, its CmpTraceMgr runtime system
component can access and perform data recording. The configuration file also includes informa-
tion about the application context in addition to the configuration data.
The configuration file defines the following context:
● Application name
● Trace name
● Task name
The application that is executed at runtime must fulfill the following conditions:
● The application has the same name as the origin application.
● The trace that is configured in the application has the same as the trace that is configured in

the origin application
● The task that is running in the data recording has the same name as the task that is

configured in the origin application.

NOTICE!
The configuration is not loaded automatically. You must execute the command
explicitly.
You can proceed as follows:
– Access the trace manager programmatically via IEC code by using library

interfaces.
– Register the configuration file with the trace manager. Then the trace man-

ager loads the configuration file when the application is started.

For more information about the functionality of the trace manager, refer to
"Trace Manager Runtime System Component Description".

Using the con-
figuration file

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2735

[key]; [value]
Version; 0x03050000
Name; Application.Trace_Trigger
ApplicationName; Application
ApplicationDataGuid; 00000000-0000-0000-0000-000000000000
IecTaskName; MainTask
Comment;
Trigger.Flags; 5
Trigger.Edge; 2
Trigger.Position; 0
Trigger.UpdatesAfterTrigger; 50
Trigger.Variable.Name; PLC_PRG.B.OUT
Trigger.Variable.AddrFlags; 0x00000101
Trigger.Variable.Class; 0
Trigger.Variable.Size; 1
Trigger.Level;
Condition.Name;
Condition.AddrFlags; 0x00000000
Condition.Class; 0
Condition.Size; 0
EveryNCycles; 1
BufferEntries; 100
Flags; 16
0.Variable; PLC_PRG.S5.OUT
0.Address.AddrFlags; 0x00000101
0.Class; 7
0.Size; 2
0.GraphColor; 4278190335
0.GraphType; 3
0.MinWarningColor; 4278190080
0.MaxWarningColor; 4294901760
0.CriticalLowerLimit; 0
0.CriticalUpperLimit; 0
0.ActivateMinWarning; 0
0.ActivateMaxWarning; 0
0.YAxis; 0
0.Data;
1.Variable; PLC_PRG.B.OUT
1.Address.AddrFlags; 0x00000101
1.Class; 0
1.Size; 1
1.GraphColor; 4278222848
1.GraphType; 1
1.MinWarningColor; 4278190080
1.MaxWarningColor; 4294901760
1.CriticalLowerLimit; 0
1.CriticalUpperLimit; 0
1.ActivateMinWarning; 0
1.ActivateMaxWarning; 0
1.YAxis; 0
1.Data;

Configuration
file
Trace_Trigge
r.traceconfi
g

Sample configu-
ration file

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2736

See also
● Ä Chapter 6.4.1.13.3.7 “Managing trace” on page 2016

Command 'Load Trace'
Function: This command makes it possible to load a file, which contains the configuration and
data, and was saved to the file system of the development system. The “Load Trace” dialog box
opens.
Call: Main menu “Trace”, or context menu.

“File name” Name of the file that is loaded

“File type” File format
● *.trace: “Trace file” that includes the trace configuration
● *.csv: Text file in CSV format that includes a trace configuration

See also
● Ä Chapter 6.4.1.21.3.22.15 “Command 'Save Trace'” on page 2741
● Ä Chapter 6.4.1.13.3.7 “Managing trace” on page 2016

Command 'Mouse Zooming'
Symbol: (command disabled), (command enabled)
Function: This command enables and disables mouse zooming in the trace diagram.
Call: Menu bar: “Trace”; context menu.

If the command is enabled, then you can stretch a box with the mouse. When you release the
mouse button, the display zooms in on the box and the data is enlarged.

See also
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Convert to Multi-Channel'
Function: This command switches the display in the trace editor from single-channel to multi-
channel.
Call: Menu bar: “Trace”; context menu.

Multi-channel display means that the trace variables are displayed in multiple diagrams.

Dialog box
“Load Trace”

User input in the
trace diagram

Multi-channel
display

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2737

See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Convert to Single-Channel'
Function: This command switches the display in the trace editor from multi-channel to single-
channel.
Call: Menu bar: “Trace”; context menu.

If a trace is displayed as single-channel, then all trace variables are included in one diagram.Single-channel
display

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2738

See also
● Ä Chapter 6.4.1.21.4.16.2 “Dialog 'Trace Configuration'” on page 2804
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Online List'
Function: This command opens the “Online List” dialog. If the trace editor of a DeviceTrace
object is active, then all traces that are running on the controller are displayed in a tree view. If
the trace editor of an application-specific trace object is active, then only this trace is displayed if
it is running on the controller.
Call: Menu bar: “Trace”; context menu of the trace editor.
Requirement: The runtime system uses the CmpTraceMgr components. An application
belonging to the device is in online mode.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2739

NOTICE!
Closing the DeviceTrace editor terminates the connection to the con-
troller.
Please note that the connections to the controller is also terminated when
the last open “DeviceTrace” editor is closed. In order for device traces to be
displayed again in the project, you have to reload them into the “DeviceTrace”
objects.
At this time, closing the editor is also the recommended procedure for deliber-
ately terminating the connection to the controller. Logging out is not enough for
this.

“Delete from runtime” Stops and removes the selected trace from the running application.

“Upload” This command is visible when a DeviceTrace is loaded in the trace editor. A
DeviceTrace is a trace that runs on the controller: In the device tree, it can be
represented with a DeviceTrace object directly below a device.
When you execute this command, the trace that is selected in the tree view is
loaded from the runtime system into the trace editor. Any existing configuration in
the project is overwritten. For example, the device can provide traces for data of
the processor load (cpuload, plcload), which then you can track in the trace
editor in CODESYS.
An individual “DeviceTrace” object is necessary in the device tree for each trace
of the device that should be displayed in the project.

See also
● Ä Chapter 6.4.1.13.3.5 “Accessing All Traces on the Controller” on page 2014
● Ä Chapter 6.4.1.21.2.7 “Object 'DeviceTrace'” on page 2426
● Ä Chapter 6.4.1.21.2.31 “Object 'Trace'” on page 2541
● Ä Chapter 6.4.1.21.3.22.19 “ Command 'Upload Trace'” on page 2742

Command 'Reset Trigger'
Symbol:
Function: This command resets the trace configuration after a triggered data recording. Then
the application can record new data and react to a trigger again.
Call: Main menu “Trace”, or context menu.
Requirement: After triggering, the complete data is in the buffer of the development system.
See also
● Ä Chapter 6.4.1.13.3.4 “Operating the data recording” on page 2014

Command 'Reset View'
Symbol:
Function: This command resets the trace diagram to the default view.
Call: Main menu “Trace”, or context menu.

Dialog 'Online
List'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2740

Requirement: The display in the trace diagram has been changed by zooming, scrolling, or
“AutoFit”.
See also
● Ä Chapter 6.4.1.21.3.22.2 “Command 'AutoFit'” on page 2733
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Save Trace'
Function: This command saves the data to a file on the development system. Depending on
the file format, the configuration may also be saved. The “Save Trace” dialog box opens.
Call: Main menu “Trace”, or right-click.

“File name” Name and location of the trace file

“File type” File format
● *.trace:

“Trace file” contains the data and configuration.
You can run the “Load Trace” command to load the file to the trace editor
when offline.

● *.txt:
“Text file” contains the recorded data. You can load this file type and edit it
with tools that support CSV format.
It cannot be loaded to the trace editor when offline because the trace editor
cannot read this format.

● *.trace.csv
“Trace CSV file (data only)” contains the recorded data. Address information
is provided for each trace variable. The created file can be read in the run-
time system. The data is imported but the trace cannot be started because
the variable addresses are not saved.

See also
● Ä Chapter 6.4.1.21.3.22.8 “Command 'Load Trace'” on page 2737
● Ä Chapter 6.4.1.13.3.7 “Managing trace” on page 2016

Command 'Start Trace'
Symbol:
Function: This command starts the data recording on the controller when it is stopped.
Call: Main menu “Trace”, or context menu.
Requirement: The assigned application on the runtime system is running and a trace configura-
tion is loaded.
See also
● Ä Chapter 6.4.1.13.3.4 “Operating the data recording” on page 2014

Command 'Stop Trace'
Symbol:

Dialog Box
'Save Trace'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2741

Function: This command stops the data recording of a trace.
Call: Main menu “Trace”, or context menu.
Requirement: The assigned application on the runtime system is running and executes a trace.
See also
● Ä Chapter 6.4.1.13.3.4 “Operating the data recording” on page 2014

Command 'Stretch'
Symbol:
Function: This command stretches the trace graph by zooming out of the displayed time range
by a fixed percentage.
Call: Main menu “Trace”, or context menu.
See also
● Ä Chapter 6.4.1.21.3.22.3 “Command 'Compress'” on page 2733
● Ä Chapter 6.4.1.13.3.6 “Navigating into trace data” on page 2015

Command 'Upload Trace'
Function: This command establishes the connection to the PLC device, if not already con-
nected. Then it opens the “Online List” dialog listing the traces running on the controller. Then
the selected trace is loaded to the trace editor by means of the “Upload” command in the dialog.
Call: Menu bar: “Trace”; context menu of the trace editor.
Requirement: The editor of a “DeviceTrace” object is open. The runtime system uses the
CmpTraceMgr components (trace manager). At least one application in the runtime system in
running. The communication settings for the PLC are configured correctly in the CODESYS
project.

NOTICE!
Closing the DeviceTrace editor terminates the connection to the con-
troller.
Please note that the connections to the controller is also terminated when
the last open “DeviceTrace” editor is closed. In order for device traces to be
displayed again in the project, you have to reload them into the “DeviceTrace”
objects.
At this time, closing the editor is also the recommended procedure for deliber-
ately terminating the connection to the controller. Logging out is not enough for
this.

See also
● Ä “Dialog 'Online List'” on page 2740
● Ä Chapter 6.4.1.21.2.7 “Object 'DeviceTrace'” on page 2426
● Ä Chapter 6.4.1.13.3.5 “Accessing All Traces on the Controller” on page 2014

Command 'Statistics'
Function: This command opens the “Trace Statistics” dialog box, which shows statistics about
each trace variable.
Call: Main menu “Trace”, or right-click.
Requirement: The trace editor contains samples.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2742

The analyzed time range and duration are shown in the caption.
The table contains one line per signal.

“Signal” Name pf the trace variable (for example, PLC_PRG.S1)

“Index” 0-based index of the signal order

“N” Number of measurements for the calculations

“Min” Smallest value

“Avg” Average

“Median” Middle value when the values are ordered by size

“RMS” Root mean square

“StdDev” Standard deviation

“Max” Largest value

“Integral” Integral

“Min Δt [s]” Smallest change of time intervals for successive values

“Avg Δt [s]” Average change of time intervals for successive values

“Median Δt [s]” Median change of time intervals for successive values

“StdDev Δt [s]” Standard deviation of change of time intervals for successive values

“Max Δt [s]” Largest change of time intervals for successive values

Click a column head in the
table.

CODESYS sorts the table by that column, changing the order from ascending to
descending and back.
Default: The table is sorted ascending by the “Index” column. The signals are
then sorted in the same order as in the signal tree.

Click in the line. The line is selected. You can select or clear other lines by pressing [Shift]+
[arrow] up or down.

[Ctrl]+[C] CODESYS copies the selected lines as text to the clipboard. The values of the
individual columns are tab-separated, and the lines are delimited with the control
character [CR] or [LF].
Requirement: At least one line is selected.

See also
● Ä Chapter 6.4.1.13.3 “Data Recording with Trace” on page 2007

Other
6.4.1.21.3.23.1 Command 'Add Watch'.. 2743
6.4.1.21.3.23.2 Command 'Implement Interfaces'.. 2744
6.4.1.21.3.23.3 Command 'Limit Results to Current Declaration'................... 2744

Command 'Add Watch'
Symbol:
Function: This command adds the variable of the current location of the cursor to a watchlist for
the purpose of online monitoring.

Dialog Box
'Trace Statistics'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2743

Call: Right-click a variable in an editor when the application is in online mode.
This command adds the variable to the currently opened watchlist. If a watchlist is not open,
then the variable is added to the “Watch 1” list and that view opens.
See also
● Ä Chapter 6.4.1.13.2.3 “Using watch lists” on page 2002
● Ä Chapter 6.4.1.13.2 “Monitoring of Values” on page 1995

Command 'Implement Interfaces'
Function: This command updates the implemented interfaces for a function block.
Call: Context menu of the selected function block (FB) in the device tree.
Requirement: The function block implements an interface that you have modified. For example,
an additional method was added to the interface.

In object-oriented programming, if you derive a function block (FB) from a base
function block, which implements one or more interfaces, for the purpose of
inheritance, then the following applies:

When you execute the “Implement Interfaces” command for the derived FB,
all interface methods and interface attributes of the base FB are accepted into
the derived FB in the form of stubs (without implementation). Then you are
responsible for making sure that an "empty" method/attribute in the derived
FB does not conflict with an implemented one in the base FB. The following
actions are taken to support you in this case: If there es a base implementation
for a method/attribute, then CODESYS adds a pragma attribute {error..} in the
first line of the affected derived interface method or interface attribute that will
generate the error message. If there is no base implementation for the method/
attribute, then there is a pragma attribute entry for a warning. After editing the
block, you must remove the error pragma attribute entry explicitly.

See also
● Ä Chapter 6.4.1.21.2.21.5 “Object 'Interface'” on page 2484
● Ä Chapter 6.4.1.9.22.3 “Implementing interfaces” on page 1931

Command 'Limit Results to Current Declaration'
Function: When multiple declarations have been found, this command collapses the display in
the cross-reference list. It shows only the results for the declaration that you selected explicitly
in the list.
Call: Right-click.
Requirement: The cross-reference list is active. Multiple declarations for the searched symbol
are listed as cross-references.
See also
● Ä Chapter 6.4.1.9.14.1 “Using the cross-reference list to find occurrences” on page 1906

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2744

6.4.1.21.4 Dialogs
6.4.1.21.4.1 General... 2745
6.4.1.21.4.2 Dialog 'Import Assistant'... 2745
6.4.1.21.4.3 Dialog 'Library Reference Conversion'....................................... 2746
6.4.1.21.4.4 Dialog 'Select Function Block'.. 2746
6.4.1.21.4.5 Dialog 'Device Conversion' .. 2747
6.4.1.21.4.6 Dialog 'Breakpoint Properties'.. 2747
6.4.1.21.4.7 Dialog 'Permissions'... 2748
6.4.1.21.4.8 Dialog Box 'Prepare Value'... 2749
6.4.1.21.4.9 Dialog 'New Breakpoint'.. 2750
6.4.1.21.4.10 Dialog 'Monitoring Range'... 2752
6.4.1.21.4.11 Dialog 'Properties'... 2753
6.4.1.21.4.12 Dialog 'Project Settings'.. 2766
6.4.1.21.4.13 Dialog 'Project Environment'... 2778
6.4.1.21.4.14 Dialog 'Options'... 2781
6.4.1.21.4.15 Dialog 'Customize'.. 2800
6.4.1.21.4.16 Dialog 'Trace Configuration'... 2803
6.4.1.21.4.17 Dialog Box 'Trend storage'... 2809
6.4.1.21.4.18 Dialog Box 'Advanced Trend Settings'..................................... 2810
6.4.1.21.4.19 Dialog 'Certificate Selection'... 2811

General
The dialogs of the CODESYS user interface bascally are described on the help pages for
the CODESYS menu commands or CODESYS objects. The help book “Dialogs” contains only
descriptions of dialogs, which
● appear only after multi-step calls after a certain menu command call or within an object

editor,
● or which are not placed on a help page for a command or for an object because of their

complexity (multiple subdialogs).

Dialog 'Import Assistant'
Function: The dialog allows for the transfer of CODESYS options and package installations
from an older CODESYS installation that was found in the local computer.
Call: The dialog opens when a recently installed CODESYS version is started for the first time
and an older version is installed on the computer.

“Program settings” : The user-specific CODESYS options are transferred from the older installa-
tion to the new installation.

“Packages” : The packages installed with the older CODESYS version are transferred to
the Package Manager of the new version. See the list of discovered package
installations with the “Name”, “Version”, and “Installation date”.

“Import” The program settings and/or options are transferred to the current CODESYS
version.

“Skip” The program settings and/or options are not transferred to the current
CODESYS version.

See also
● Ä Chapter 6.4.1.2.1.1 “Setting CODESYS options” on page 1802

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2745

Dialog 'Library Reference Conversion'
Function: The dialog defines how references to libraries that are no longer available are to be
handled. Note: The undefined library references can be found in the Global Library Manager
located in the “POUs” view.
Call: When opening a CoDeSys V2.3 project in V3, the dialog opens when the converter
detects a library which cannot be used anymore in the current CODESYS version.

A CoDeSys V2.3 project can be converted into a CODESYS V3 project only
if the CODESYS V2.3 Converter package is installed in CODESYS V3. The
package is available in the CODESYS Store.

Table 526: “What do you want to do?”
“Convert and install the library
as well.”

The converter also converts the library file into the new format. It remains refer-
enced in the project. It is installed automatically in the library repository in the
"Other" category. If the library does not provide the necessary project information
for an installation, then the “Enter Project Information” dialog opens for the infor-
mation to be added.

“Use the following library that
has already been installed”

The previously used library is replaced by another library. The “Browse” button
opens a dialog for selecting from the local library repository.

“Ignore the library. The
reference will not appear in the
converted project”

The library reference is removed from the project.

“Remember this mapping for
all future occurrences of that
library reference”

The settings made here in the dialog are also used for future project conver-
sions.

See also
● Ä Chapter 6.4.1.3.3 “Opening a V2.3 project” on page 1809
● Ä Chapter 6.4.1.21.3.9.5 “Command 'Library Repository'” on page 2657

Dialog 'Select Function Block'
Function: The dialog is used for selecting a function block for I/O mapping. The function block
should be mapped to the I/O channel selected in the “<device name> I/O Mapping” tab or to the
object selected in the “<device name> IEC Objects” tab.
Call:
● Tab “<device name> I/O Mapping”, command button “Add FB for I/O channel”
● Tab “<device name> IEC Objects”, command button “Add”

The dialog provides all function blocks from the active application and the libraries included in
the project which fulfill the following:
● The function block has the {attribute 'io_function_block'} attribute.
● The function block contains input or output parameters that match the channel type

(input, output, data type) and has the {attribute 'io_function_block_mapping'}
attribute.

When a function block is selected that provides multiple matching parameters, only the first
one is mapped automatically to the channel. The others can only be assigned manually in the
“<device name> I/O Mapping” tab.
After the function block is assigned, the parameter of the function block instance is entered in
the “Variable” column of the mapping table. Then the path is composed as follows:

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2746

<application name>.<device channel name>_<FB name>_<continuous FB
instance number>. <FB parameter name>
Example: App1.Out_4_Int_myScale_Output_Int_1.iOutput for the parameter
iOutput of the first inserted instance of the function block myScale_Output.

“Find” Input field for searching for function block names

“Type” Function blocks in the tree structure that match the channel type. Nodes: appli-
cation, library name(s)

“Documentation” Shows the available documentation for the library selected in the tree or the
library block.

See also
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444
● Ä Chapter 6.4.1.20.6.3.23 “Attribute 'io_function_block', 'io_function_block_mapping'”

on page 2293

Dialog 'Device Conversion'
Function: The dialog defines how references to devices that are no longer available are to be
handled.
Call: When opening a CoDeSys V2.3 project in V3, the dialog opens when the converter
detects a device reference which cannot be used anymore.

A CoDeSys V2.3 project can be converted into a CODESYS V3 project only
if the CODESYS V2.3 Converter package is installed in CODESYS V3. The
package is available in the CODESYS Store.

Table 527: “What do you want to do?”
“Use the following device that
has already been installed”

CODESYS replaces the previously used device in the device tree with another
device. The “Browse” button opens a dialog for selecting from the local device
repository.

“Ignore the device. All device
specific objects will not be
available in the new project”

The device entry with all objects inserted below it is removed from the device
tree.

“Remember this mapping for
all future occurrences of that
device”

The settings made here in the dialog are saved in the CODESYS Options, in the
“CODESYS V2.3 Converter” category. As a result, they are also valid for future
project conversions.

See also
● Ä Chapter 6.4.1.3.3 “Opening a V2.3 project” on page 1809
● Ä Chapter 6.4.1.21.3.9.8 “Command 'Device Repository'” on page 2663

Dialog 'Breakpoint Properties'
Function: The dialog is used to display or change the properties of the selected breakpoint in
the “Breakpoints” view.
Call:

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2747

● “Breakpoints” view, “Properties” button
● “Breakpoints” view, “New” button, “New Breakpoint” command or “New Data Breakpoint”

command
Requirement: An entry is selected in the list of breakpoints.
The dialog is identical to the “New Breakpoint” dialog which is opened in the “Debug” menu
by means of the respective commands. Therefore, see the description in the help for the “New
Breakpoint” dialog.
See also
● Ä Chapter 6.4.1.21.4.9 “Dialog 'New Breakpoint'” on page 2750

Dialog 'Permissions'
Function: The permissions of user groups are defined here with which they can execute
specific actions on specific objects in the project.
Call: Menu bar: “Project è User Management”.
Every change made in the dialog is applied immediately.

All possible actions on objects of the projects are listed in “Actions”. The actions are divided
into four categories and assignments to all current objects of the project are listed below each
action. For each "action->object" assignment, you can define the permission for each existing
user group.
Action categories:

 “Commands” Actions regarding the execution of commands

 “Users, groups and
permissions”

Actions regarding the configuration of user accounts, user groups, and their
permissions

 “Object types” Actions regarding the creation of object types

 “Project objects” Actions regarding the viewing, modification, removal, and child-object handling of
objects of the project

Actions in detail:

 “Execute” Execute a menu command

 “Create” Create a new object in the project

 “Add or remove children” Add or remove a child object below an existing object

 “Modify” Modify an object in the editor or modification of user, group, and permission
settings in the corresponding editor/dialog

 “Remove” Delete or remove an object

 “View” Open the view of an object in the editor

Possible target of an action. This can be specific objects of the project, or the
user, group, and permission configuration.

All defined user groups (except the "Owner" group) are listed in “Permissions” with a toolbar for
configuring the permissions of a group.

Actions

Permissions

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2748

 Granted The action, which is selected in the actions view, on the selected target(s) is granted for
the selected group.

 Denied The action, which is selected in the “Actions” view, on the selected target(s) is denied for
the selected group.

The permission that executes the actions, which are selected in the “Actions” view, on
the selected targets has not been defined explicitly. However, the actions are granted by
default; for example, because the corresponding permissions have been granted to the
parent object. Example: The group has the permission for the object "myplc". As a result,
it also has the permission by default for the object "myplc.pb_1".

The action, which is expanded in the actions view, on the selected targets has not been
denied explicitly. However, it is denied by default; for example, because it has been
denied to the parent object.

No symbol There are currently multiple actions selected in the Actions view for which the group
does not have the same permission.

Toolbar:

 “Grant” The selected action on the selected target object is granted explicitly for the selected
group.

 “Deny” The selected action on the selected target object is denied explicitly for the selected
group.

 “Clear” The permission for the selected action on the selected target object is reset to the default
value for the selected group.

“Export/Import” Opens a menu with the commands
● “Export all permissions”
● “Export selected permissions”
● “Import permissions”

“Export all permissions” Exports all actions and their configured access permissions of the current project
to a user-specific file of data type *.perms.

To do this, the “Export Permissions” dialog opens for you to specify a file name
and to select a location in the file directory. The default file type is Permissions
(*.perms).

“Export selected permissions” Exports all selected actions and their configured access permissions of the cur-
rent project to a user-specific file of data type *.perms.

To do this, the “Export Permissions” dialog opens for you to specify a file name
and to select a location in the file directory. The default file type is Permissions
(*.perms).

“Import permissions” The contents of a *.perms file is merged with the actions and permissions of
the current project. Groups that are part of the file but not part of the project are
ignored. The actions and permissions are aligned by name.
To do this, the “Import Permissions” opens for you to select the *.perms file
from the file system.

See also
● Ä Chapter 6.4.1.6.6 “Protecting Objects in the Project by Access Rights” on page 1826

Dialog Box 'Prepare Value'
Function: This dialog box is used for preparing a value for a forced variable. CODESYS
executes the prepared action with the next forcing.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2749

CODESYS opens the dialog box in the following situations:
● When clicking in the field “Prepared value” of a forced variable in the declaration section
● When clicking in the inline monitoring field of a forced variable
● When clicking in the field “Prepared value” of a forced variable in the monitoring window

“Prepare a new value for the
next write or force operation”

Value that CODESYS writes to the variable with the next force operation

“Remove a preparation with a
value”

CODESYS deletes the prepared value.

“Release the force, without
modifying the value”

CODESYS retains the forced value and ends forcing. CODESYS marks the
variable <Unforce>.

“Release the force and restore
the variable to the value it had
before forcing it”

CODESYS resets the forced value and ends forcing. The variable is marked with
<Unforce and restore>.

See also
● Ä Chapter 6.4.1.21.3.8.16 “Command 'Force Values'” on page 2649

Dialog 'New Breakpoint'
Function: In the dialog, you define the settings for a new breakpoint or data breakpoint. It is
identical to the “Breakpoint Properties” dialog which is used in the “Breakpoints” view.
Call:
● “Debug è New Breakpoint”
● “Debug è New Data Breakpoint”

Requirement: The application is in online mode.

The dialog defines the requirements for which program processing should halt at a breakpoint.

NOTICE!
Using conditional breakpoints slows down code execution, even when the con-
dition does not yield TRUE.

Conditional breakpoints required a CODESYS runtime >= V3.5.4.0.

Table 528: “Tasks”
“Break only when the
breakpoint is hit in one of the
following tasks”

: CODESYS evaluates the breakpoint only if it is reached by specific tasks.
The required tasks must be activated.
For example, you can define a single debug task and also prevent other tasks
that use the same block from being affected when debugging.

Tab 'Condition'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2750

Table 529: “Hit Count”
“Hit Count” “Break always”: The program always halts at this breakpoint.

Alternative: The program halts at the breakpoint when the breakpoint has been
hit as often as defined in the following (type in the required hit count or select it
from the number list):
● “Break when the hit count is equal to”
● “Break when the hit count is a multiple of ”
● “Break when the hit count is greater than or equal to”

Table 530: “Condition”
“Break, when true” : CODESYS evaluates the specified condition and halts the program at the

breakpoint only when the result yields TRUE. You can define a condition as a
valid Boolean expression. Examples: x>100, x[y]=z, a AND b, boolVar.

Requirement: This is used for the properties of a data breakpoint.

The function of data breakpoints depends on the target system. Currently, data
breakpoints are possible only with the CODESYS Control Win V3.

On the tab, the variable or memory address is specified for which the data breakpoint is set or will be set.

“Break execution when the
value of the variable or
address changes”

● Input of a qualified variable name
● : Selection of a variable in the “Input Assistant” dialog, in the “Watch

Variables” category
Examples: variable: PLC_PRG.fb_DoSth.dwVariable; address: 16#12A,
0x12A, 129

“Size” Number of bytes of the specified variable or memory address above which
should be monitored for changes. When a new variable or memory address is
specified, a value that matches the data type or memory is set automatically at
first.
Note: The “Size” and quantity depend on the target system. For the CODESYS
Control Win V3, a maximum of four data breakpoints with a maximum size of 8
bytes can be defined.
Example: 4 for data type DWORD
Example: 2 for data type DWORD: Only the two first bytes of the variable are
monitored.

Here. an existing breakpoint or data breakpoint can be converted into an execution point.

Tab 'Data'

Tab 'Execution
Point Settings'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2751

“Execution point (execution
does not stop at breakpoint)”

: The breakpoint becomes an execution point. Processing does not halt at this
point and the given code is executed.

● Execution point of a breakpoint: activated: ; deactivated:
● Execution point of a data breakpoint: activated: ; deactivated:

“Execute the following code” Code that is executed when the execution point is reached.
Looping structures (For, While) and IF or CASE expressions are not possible.

“Print a message in the device
log”

This option is available only when you select the “Enable logging in breakpoints”
option in “Project Settings è Compile Options”.
CODESYS can print variables with the placeholder {variable name} in the mes-
sage text.

Requirement: The command “New breakpoint” was selected.

“POU” POU of the active application where the breakpoint is placed.

“Position” Position of the breakpoint in the POU. Entry as row and column numbers (text
editor) or as network or element numbers.

“Instances” In the case of function blocks, you have to define whether the breakpoint should
be set in the implementation or in an instance.

 CODESYS sets the breakpoint in the instance. For this option, select
“Instance Path”.

 CODESYS sets the breakpoint in the implementation.

“Enable breakpoint
immediately”

: The breakpoint is activated.

: The breakpoint is not activated. To activate later, click the button in the
“Breakpoints” view.

See also
● Ä Chapter 6.4.1.21.4.6 “Dialog 'Breakpoint Properties'” on page 2747
● Ä Chapter 6.4.1.12.3 “Using Breakpoints” on page 1981

Dialog 'Monitoring Range'
Function: This dialog restricts the range of array elements whose values are displayed during
monitoring.
Call: Click in the column field “Data Type” that belongs to the array variable.
Requirement: A POU is in online mode and is being monitored. In addition, a variable of the
POU has the data type “ARRAY”.

“Valid range” The validity range of the array elements that are monitored.
Example of a three-dimensional array: [1..10][-3..3][-10..10]

“Maximum number of array
elements”

Number of elements of the array variables
Example: 1470

When you edit one of the settings “Start”, “End”, or “Scroll range of 1000 elements”, both of the other settings are
adapted automatically.

Tab 'Location'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2752

“Start” Index of the first array element whose value is displayed.

“End” Index of the last array element whose value is displayed.

“Scroll range of 1000
elements”

Scrollbar for selecting a range from the set of array elements.

See also
● Ä Chapter 6.4.1.13.2.2 “Calling of monitoring in programming objects ” on page 1996

Dialog 'Properties'
6.4.1.21.4.11.1 General.. 2753
6.4.1.21.4.11.2 Dialog Box 'Properties' - 'Common'....................................... 2753
6.4.1.21.4.11.3 Dialog 'Properties' - 'Boot Application'................................... 2754
6.4.1.21.4.11.4 Dialog: Properties: Security... 2754
6.4.1.21.4.11.5 Dialog 'Properties' - 'Build'... 2755
6.4.1.21.4.11.6 Dialog 'Properties' – 'Build' (C-integration)............................ 2756
6.4.1.21.4.11.7 Dialog 'Properties' - 'Access Control'..................................... 2757
6.4.1.21.4.11.8 Dialog 'Properties' - 'External file'.. 2757
6.4.1.21.4.11.9 Dialog Box 'Properties' - 'Bitmap'... 2758
6.4.1.21.4.11.10 Dialog 'Properties - Application Build Options'..................... 2759
6.4.1.21.4.11.11 Dialog 'Properties' - 'Target memory settings'...................... 2759
6.4.1.21.4.11.12 Dialog 'Properties' - 'Network Variables'.............................. 2760
6.4.1.21.4.11.13 Dialog 'Properties' - 'Network Settings'................................ 2761
6.4.1.21.4.11.14 Dialog 'Properties' - 'CFC Execution Order'......................... 2761
6.4.1.21.4.11.15 Dialog 'Properties' - 'SFC Settings'...................................... 2762
6.4.1.21.4.11.16 Dialog 'Properties' – 'Link to File'... 2763
6.4.1.21.4.11.17 Dialog 'Properties' - 'Cam'.. 2763
6.4.1.21.4.11.18 Dialog 'Properties' - 'Image Pool'... 2764
6.4.1.21.4.11.19 Dialog 'Properties' - 'TextList'... 2765
6.4.1.21.4.11.20 Dialog 'Properties' - 'Options'... 2765
6.4.1.21.4.11.21 Dialog 'Properties' - 'Monitoring'.. 2766

General
This dialog box is for the configuration of the properties of an object in CODESYS. In addition,
depending on the object, it contains different tabs that each handle a category of properties.
Call: Menu “View”, context menu of the object in the “Devices”, “POUs” or “Modules” view.

Dialog Box 'Properties' - 'Common'
Function: This dialog box shows common information about the selected object.
Call: Main menu “View è Properties”, or context menu of the object (“Common”).
Requirement: An object is selected in the device tree or POUs view.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2753

Table 531
“Name ” Object name as shown in the device tree or POUs view

“Object type ” Type of object (for example, POU, application, or interface)

“Open with ” Type of editor to display or edit the object

Dialog 'Properties' - 'Boot Application'
Function: The settings on this tab define when and how a boot application is created from the
application.
Requirement: The device supports the settings.
Call: Select the application object; context menu: “Properties”; menu bar: “View è Properties”,
“Boot Application” category

“Create implicit boot
application on download”

A boot application is created automatically when downloading the application.

“Create implicit boot
application on Online Change”

A boot application is created automatically when for an online change.

“Remind boot application on
project close”

Before closing the project, CODESYS prompts to create the boot application.

“Verify boot application after
creation”

After the boot application is created, an independent service checks whether or
not the boot application has been created correctly.

Regardless of the presets defined here, you are always able to create a boot
application explicitly when you login.

See also
● Ä Chapter 6.4.1.11.7 “Generating boot applications” on page 1978
● Ä Chapter 6.4.1.21.3.7.6 “Command 'Online Change'” on page 2629

Dialog: Properties: Security
Function: The dialog contains the properties of the application for encryption. If the CODESYS
Security Agent is installed, then you can start a wizard for the encryption of downloads, online
changes, and boot applications.
Call:
● Menu bar: “View è Properties”
● Context menu of an application object

Table 532: “Encryption Technology”
If the “Enforce encryption of downloads, online changes and boot applications” option is selected in the “Security
Screen” view in the “Security level” group, then the encryption technology is set to “Encryption with certificates”
and cannot be changed in this dialog.

“No Encryption”

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2754

“Simple Encryption” You can download the boot application to the controller only when the defined
dongle (license key) is connected to the computer.
The dongle is provided by ABB AG or by the respective hardware manufacturer.
The firmcode is displayed. Type in the delivered product code.

“Encryption with license
management”

You can download the boot application to the controller only after you have
specified the product code and firmcode, and the respective dongle is connected
to both the development computer and the controller. You receive the codes from
the vendor that manages the licenses.

“Encryption with certificates” You can download the boot application to the controller only when a valid certifi-
cate exists for it. The “Certificates” group is enabled. See the description below.
The option is already selected if the “Enforce encryption of downloads, online
changes and boot applications” option is selected on the “User” tab of the
“Security Screen” view.
You can also select the “Digitally sign application code” option.

Table 533: “Certificates”
Note: If the “Enforce encryption of downloads, online changes and boot applications” option is selected in the
“Security Screen” view in the “Security Level” group, then the encryption technology is set to “Encryption with
certificates” and cannot be changed in the “Properties” dialog.

: The “Certificate Selection” dialog opens. Here you can select previously installed
certificates of devices for which the encryption of download, online change, and
boot application is enabled. The list can contain several entries if several devices
are authorized to run this application.

“Digitally sign application code” The application is signed with a digital signature. The certificate for the digital
signature is specified in the “Security Screen” view on the “User” tab.

Area for the display of the
selected certificates with corre-
sponding information

Information per certificate:
● “Issued for”
● “Issued by”
● “Valid from”
● “Valid until”
● “Thumbprint”

“Encryption Wizard” This button is available only if the CODESYS Security Agent is installed. It starts
the wizard with the same name. See the help for CODESYS Security Agent in
this case.

See also
● Ä Chapter 6.4.1.9.18 “Protecting an application” on page 1915
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592
● Help about CODESYS Security Agent

Dialog 'Properties' - 'Build'
Symbol:
Function: The dialog contains options for building (build operation) the object.
Call: Menu bar: “View è Properties”; context menu of the object in the device tree

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2755

Name Description
“Exclude from build” : This object and recursively its child objects are not considered for the next

compile process.
The object entry is displayed in green fonts in the “Devices” or “POUs” view.

“External implementation”

“(Late link in the runtime
system) ”

: CODESYS does not generate any code for this object when compiling the
project. The object is linked as soon as the project is running on the target
system, provided it is available there (for example, in a library).
The object name is postfixed with (EXT) in “Devices” or “POUs” view.

“Enable system call” : A system call (runtime system) for functions is possible.
Background: As opposed to CoDeSys V2.3, the ADR operator in V3 can be used
with function names, program names, function block names, and method names.
It replaces the INSTANCE_OF operator.
BUT: It is not possible to call function pointers from within CODESYS.

“Link always” : The object is marked by the compiler and therefore always included in the
compile information. This means that it is always compiled and downloaded to
the PLC.
Note: The pragma {attribute 'linkalways'} can also be used to instruct
the compiler to always include an object.

“Compiler defines” Here you can specify defines or conditions for compiling the object (conditional
compile). You can also type in the expression expr, which is used in these
kinds of pragmas. Multiple entries are possible as a comma-separated list (see
{define} statements).

Example: hello, test:='1'

“Additional compiler definitions from the device description”

“Defined in device” List of compiler definitions that originate from the device description. These
compiler definitions are used in the build if they are not listed in the “Ignored
definitions” field.

“Ignored definitions” List of compiler definitions from the device description that are not used in the
build.

Copies the selected compiler definition from the “Defined in device” field to the
“Ignored definitions” field.

Moves the selected compiler definition from the “Ignored definitions” field to the
“Defined in device” field. The compiler definition is used in the build.

See also
● Ä Chapter 6.4.1.20.6.4 “Conditional Pragmas” on page 2318
● Ä Chapter 6.4.1.20.6.3.25 “Attribute 'linkalways'” on page 2294

Dialog 'Properties' – 'Build' (C-integration)
Function: In this dialog, you configure the build environment and the necessary data for the
integration of the C development environment.
Call: Main menu “View”, context menu of the object “C Code Module”

Requirement: The object “C Code Module” is selected in the device tree.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2756

NOTICE!
The dialog in this form is valid only for CODESYS Control Win V3 and Visual
Studio. For other environments, the dialog can look different or may not even be
available at all.

“Visual Studio location” Installation path of Visual Studio on the hard disk
You can also select the path with the input assistant or search for it with the
magnifying glass.

“Windows SDK location” Installation path of Windows SDK on the hard disk
You can also select the path with the input assistant or search for it with the
magnifying glass.

“Temporary build folder
Location”

Path on the hard disk for the temporary build files

See also
●

Dialog 'Properties' - 'Access Control'
Function: The dialog defines the access rights of user groups for objects.
Call: Main menu “View è Properties”, context menu of an object in the view “Device” or
“POUs”.
Requirement: An object is selected in the view “Device” or in the view “POUs”.

“Groups, actions and permissions” A table which displays the following user groups access rights on
objects:
● “View”
● “Modify”
● “Remove”
● “Add/remove children”

Perform a double click on the access right symbol to open the drop
down list with the available rights.

See also
● Ä Chapter 6.4.1.6.6 “Protecting Objects in the Project by Access Rights” on page 1826
● Ä Chapter 6.4.1.21.4.7 “Dialog 'Permissions'” on page 2748

Dialog 'Properties' - 'External file'
Function: The dialog is used to view and edit the properties of the external file. The properties
were defined when the object was created. Changed properties are saved by pressing the “OK”
button.
Call: Menu bar: “View è Properties”; context menu of the object
Requirement: The object of the external file is selected in the “Devices” view or the “POUs”
view.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2757

Table 534
“What do you want to do with the external file?”

“Remember the link” The file is available in the project only as long as it exists in the defined file path.

“Remember the link and
embed into project”

CODESYS saves an internal copy of the file in the project, as well as the link to
the defined file path. The update option selected below applies as long as the
external file exists there. Otherwise CODESYS uses the version saved in the
project.

“Embed into project” CODESYS saves only one copy of the file in the project. There is no longer a link
to the external file.

Table 535: “When the external file changes, then”
“Reload the file automatically” If the external file changes, then CODESYS updates the file in the project.

“Prompt whether to reload the
file”

If the external file changes, then a dialog prompt opens whether CODESYS
should also update the file in the project.

“Do nothing” The file remains unchanged in the project, even if the external file changes.

Table 536: “Linked File”
Requirement: Either the “Remember the link” option or the “Remember the link and embed into project” option is
selected.

The following information about the linked file is displayed: “Name”, “Location”, “Size”, “Changed”.

“Display File Properties” Clicking this button opens the default “Properties of <file name>” dialog, which
you can also open in the Windows file system by right-clicking the file.

Table 537: “Embedded file”
Requirement: Either the “Remember the link and embed into project” option or the “Embed into project” option is
selected.

Display of the following information about the embedded file: “Size” and “Changed”

“Update the embedded file” : If the external file that was added to the project is changed in the specified
file path, then CODESYS updates the embedded file in the project.

See also
● Ä Chapter 6.4.1.21.2.10 “Object 'External File'” on page 2464

Dialog Box 'Properties' - 'Bitmap'
Function: The dialog is for assigning a bitmap file to the object. The image will be used in the
graphic view of the Library Manager and in the Toolbox view of the FBD/LD/IL editor.
Call: Main menu “View è Properties”, context menu of the object
Requirement: The object is selected in the view “Devices” or in the view “POUs”

“Render pixels of this color
translparently: ”

The selected color will be displayed transparently.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2758

Dialog 'Properties - Application Build Options'
Function: The dialog includes settings that CODESYS uses for creating a boot application for
the controller.
Call: Menu bar: “View è Properties”; context menu of an application object

“Download application info” This feature requires compiler version >=3.5.0.0, runtime version >=
3.5.0.0.
The information about the application contents is also downloaded to
the PLC. We recommend that you keep this option enabled because
it allows for a difference check between the current application and
the application on the PLC. This compares the number of blocks,
data, and memory locations.
To get the information about the differences, click “Details” in the
“Applications” tab of the device editor. This is also in the message
view that opens when you are downloading an application to the
PLC when it is different from the one already on the PLC.

“Stop parent application in case of
exception”

Available for applications with a parent application.

“Dynamic memory settings” Memory is allocated dynamically for the application, for example
when using the operator __NEW. In this case, define the “Maximum
size of memory (bytes)”.
Caution: The entire memory is not available for creating objects
dynamically. Instead, the system always uses part of it for manage-
ment information.

See also
● Ä Chapter 6.4.1.11.5 “Generating Application Code” on page 1976
● Ä Chapter 6.4.1.11.7 “Generating boot applications” on page 1978
● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410

Dialog 'Properties' - 'Target memory settings'
Function: The dialog allows for changing the memory settings of the target device.
Call: Menu bar: “View è Properties”; context menu of the application
Requirement: The application is selected in the “Devices” view.

“Override target memory
settings”

: The memory settings stored in the device description are overridden by the
values specified in “Input size”, “Output size”, and “Memory size”.
Note: If the memory settings of the target device are changed, then it is no
longer possible to log in to an existing application on the target device, nor is it
possible to perform an online change.

“Input size”

“Output size”

“Memory size”

Input fields for the memory sizes used to override the values
"memory-layout\\input-size", "memory-layout\\output-size", and
"memory-layout\\memory-size" stored in the device description.

Requirement: The “Override target memory settings” option is selected.

See also
● Ä Chapter 6.4.1.21.2.2 “Object 'Application'” on page 2410

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2759

Dialog 'Properties' - 'Network Variables'
Symbol:
Function: In this dialog, you define network properties for the variable list that is selected in
the device tree. Furthermore, any variables in it that are declared as network variables are also
available.
Call: “Context menu of variable list in device tree è Properties”, “Network Variables” tab

“Network type” UDP

“Task” Task of the current application that controls the variables to be sent.
CODESYS always sends the variables at the end of a task cycle.

“List identifier” Used to identify the network variable list. Must be unique

“Pack variables” The size of the packages (telegrams) that are transmitted depends
on the network type. In the case of “UDP”, a package is 256 bytes.

: CODESYS bundles the variables for sending in packages in
order to reduce as much as possible the number of packages to
send. In the case of variables of type array or structured data types,
this can lead to the splitting of the variables into multiple telegrams.
As a result, data inconsistencies are possible within these variables,
even if the variable size is smaller than the package size.

: CODESYS generates one package per variable.

“Transmit checksum” : A checksum is provided for each variable package. The receiver
checks the checksum to make sure that the variable definitions
match from the sender and receiver. A package with non-matching
checksums is not accepted.

“Acknowledgement” : CODESYS sends an acknowledgement message for each
received data package. If the sender does not receive a confirmation
before it sends again, then an error is written to the diagnostic struc-
ture.
Note: For the NetVarUdp library version 3.5.7.0 and later, a receiver
channel is no longer assigned when confirmed transfer is not
selected. In this way, network variable exchange is also possible
between two controllers on one hardware device .

“Cyclic transmission”, “Interval” CODESYS sends the variables within the defined interval. Example
for time definition: "T#70ms".

“Transmit on change”, “Minimum gap” : CODESYS sends the variables only if their values have changed.
You can use "minimum gap" to define the least amount of time
between two transmissions.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2760

“Transmit on event”, “Variable” : CODESYS sends the variables as soon as the defined variable
yields TRUE.

“Settings” Protocol-specific settings; possible entries depend on the network
library.
“Port”: Number of the port that CODESYS uses for data exchange
with other network units. The “Default value” is "1202". You can
change the current value in the “Value” field at any time. Select the
field, press the [Space Bar], and type the value.
Caution: The other nodes in the network must define the same port.
If more than one UDP connection is defined in the project, then the
port numbers in all configurations are adapted to this value.
“Broadcast Adr.”: The “Default value” is 255.255.255.255, which
means that data exchange will take place with all network units.
You can change the current value in the “Value”: select the field,
press the [space bar], and type the address or address range of
a subnetwork (for example, 197.200.100.255 when communica-
tion should be with all nodes that have an IP address in the range
197.200.100.x.

See also
● Ä Chapter 6.4.1.10.5 “Network Variables” on page 1946
●
● Ä Chapter 6.4.1.21.2.19 “Object 'Network Variable List (Receiver)'” on page 2475
● Ä Chapter 6.4.1.21.2.18 “Object 'Network Variable List (Sender)'” on page 2475

Dialog 'Properties' - 'Network Settings'
If the device supports the network functionality, then the current network settings for a GNVL
(global network variable list) can be displayed and changed in the “Properties” dialog of the
object. These are the settings that were used when adding the GNVL in the “Add Network
Variable List (Receiver)” dialog.
See also
● Ä “Dialog Box 'Add Network Variable List (Receiver)'” on page 2475
●

Dialog 'Properties' - 'CFC Execution Order'
Function: The tab switches the mode of the execution order for CFC objects.
Call: Context menu: “Properties” of a CFC object in the “Devices” view or “POUs” view

Tab 'CFC Execu-
tion Order'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2761

“Execution order” In the CFC editor, you position the elements and therefore also the networks
freely. Two modes are available to prevent the execution order in the CFC POU
from being undefined.

“Auto Data Flow Mode” In this mode, the execution order is determined automatically by data flow, or
in case of ambiguity, by network topology. The POUs and the outputs are num-
bered internally. The networks are executed from top to bottom and left to right.
Advantage: The automatically defined execution order is optimized by time and
by cycle. You do not need any information about the internally managed execu-
tion order during the development process.
The following commands are provided afterwards in the “CFC
è Execution Order” menu:
● “Display Execution Order”
● “Set Start of Feedback”

The elements in the CFC editor are displayed without markers and without num-
bering. It is not possible to change the execution order manually. For networks
with feedback, you can also set a starting point.

“Explicit Execution Order
Mode”

In this mode, you can define the execution order explicitly. To do this, the ele-
ments are displayed in the CFC editor with markers and numbering, and menu
commands are provided for defining the order.
The following commands are provided in the “CFC è Execution Order” menu:
● “Send to Front”
● “Send to Back”
● “Move Up”
● “Move Down”
● “Set Execution Order”
● “Order by Data Flow”
● “Order by Topology”

Note: Up to CODESYS V3.5 SP1, this was the usual behavior of CFC POUs.
Pay attention that it is your responsibility to adapt the execution order and
assess the consequences and impacts. This is another reason why the execu-
tion order is always displayed.

“Apply to All CFCs” Changes the mode for all other CFC objects in the project to the mode selected
in the list

See also
● Ä Chapter 6.4.1.9.5.3.2 “Automatic Execution Order by Data Flow” on page 1867
● Ä Chapter 6.4.1.21.3.13.10 “Command 'Set Start of Feedback'” on page 2688
● Ä Chapter 6.4.1.21.3.13.11 “Command 'Send to Front'” on page 2688
● Ä Chapter 6.4.1.21.3.13.12 “Command 'Send to Back'” on page 2689
● Ä Chapter 6.4.1.21.3.13.13 “Command 'Move Up'” on page 2689
● Ä Chapter 6.4.1.21.3.13.14 “Command 'Move Down'” on page 2690
● Ä Chapter 6.4.1.21.3.13.16 “Command 'Order by Data Flow'” on page 2691
● Ä Chapter 6.4.1.21.3.13.17 “Command 'Order by Topology'” on page 2691

Dialog 'Properties' - 'SFC Settings'
Function: The dialog defines the default settings for all POUs used in the project, which are
programmed in SFC.
Call: Main menu “View è Properties”, context menu of a SFC POU in the view “Device” or
“POUs”.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2762

List of all possible SFC flags “Use” : The SFC flag is activated and will be considered in the program
execution.

“Declare” : The SFC flag is declared automatically.
If “Declare” is activated, but “Use” is not activated, the variable will be declared
but the flag has no effect in the program execution.
Hint: If you have manually declared a SFC variable you have to disable the dec-
laration of this flag in the “SFC Settings”. Otherwise the automatically generated
flag will overwrite the manually declared flag.
Hint: A automatically declared flag variable is only visible in the online mode in
the declaration part of the SFC editor.

“Use defaults” : The settings of this dialog overwrites the “SFC settings” of the single POUs.

See also
● Ä Chapter 6.4.1.20.1.5.6 “SFC Flags” on page 2067

Table 538: “Code generation”
“Calculate active transitions
only”

: CODESYS generates code for the currently active transition only.

Dialog 'Properties' – 'Link to File'
Function: The dialog defines the link of an external file with the contents of the global variable
list (GVL). You can either export the GVL to an external file or import it from an external file.
Call: Menu bar: “View è Properties”; context menu of an object of type “Global Variable List”

“File name” Input field of the file path

“Export before compile ” : Before each compile of the project (for example with [F11]), CODESYS saves
a file with the extension gvl in the path, which is specified in the “File name”
field.

“Import before compile ” : The export file which is specified in the “File name” field is read automati-
cally before each project compile. Therefore you can import a GVL which was
exported from another project, for example to set up a communication by means
of network variables.

See also
● Ä Chapter 6.4.1.21.2.12 “Object 'GVL' - Global Variable List” on page 2465
● linktarget [_cds_configuring_network_variables_exchange] doesn't exist but @y.link.required='true'

Dialog 'Properties' - 'Cam'
Function: Use this dialog to define the global variables of the cam.

Flag

Build

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2763

Table 539: “Dimensions”
“Master start/end position” The start and end positions of the master define the range of the master values

and therefore the scale of the horizontal axis of the cam. The default settings are
given in angular degrees with 0 and 360 as limiting values.

“Slave start/end position” The associated slave positions are determined by the graph type that is defined
for the cam. However, the segment depicted by the curves (this is also the scale
of the vertical axis) can be defined by the slave start and end positions given
here.

Table 540: “Period”
These settings affect the work in the cam editor and cam table. Depending on these parameters, the slave start
point is adjusted automatically when the end point is changed, as well as the other way around. This adjustment
optimizes the period transition to be as smooth and jerk-free as possible.

“Smooth transition” : The values for position, velocity, and acceleration are adjusted automatically.

“Slave period” Indicates when the slave period is repeated mechanically. The slave position at
the start and end of the master period may then be in an interval of a whole
number multiple of this value.
This value is effective only if the “Smooth transition” check box is selected.

Table 541: “Continuity Requirements”
Activation of these options for the continuity of the curve does not have any effect when editing the cam. It does,
however, prompt a continuity check, which reports any violations to the message view (CAM). It is not possible to
edit jumps in the position curve. The default setting also requires the continuity of velocity and acceleration. You
can clear these options, for example in the special case of a curve that consists of only linear segments. However,
this will lead to kinks in the position curve. By default, the jerk (3rd derivative) is not tested for jumps.

“Position”

: The entire curve is tested for jumps.
“Velocity”

“Acceleration”

“Jerk”

Table 542: “Compile Format”
When compiling, MC_CAM_REF structure variables are generated. A cam is described according to the following
options:

“Polynomial (XYVA)” Polynomial description of the individual points consisting of the master position,
slave position, slave velocity, and slave acceleration.

Dialog 'Properties' - 'Image Pool'
Function: The dialog allows for setting the basic properties of the selected image pool.
Call: “View è Properties” of an “Image Pool” object type; context menu of an “Image Pool”
object type.

“Download only used images” : Instead of loading all images from the image pool, CODESYS loads only the
images that are actually used in the application on the PLC.

“Download by visualization” : The image pool is downloaded with the visualization to the controller.

“Internal” : CODESYS does not provide the image pool in the “ToolBox” view. You
cannot drag these images to the visualization.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2764

Table 543: “Symbol library settings”
“Mark library as symbol library” Marks the image pool as a symbol library for use in a visualization. The symbol

library receives the key VisuSymbolLibrary = TRUE as file property in the
project information. The VisuElements library is inserted automatically as a
placeholder library in the “POUs” pool of the Library Manager.
Requirement: A library project is open.
CODESYS displays symbol libraries that are installed in the repository in the
“Project Settings” (“Visualization” category, “Symbol Libraries” tab).

“Textlist for symbol translation” Select the text list from the drop-down list that contains the translated texts for
the image pool.

See also
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468
● Ä Chapter 6.4.1.9.11 “Using image pools” on page 1899
● Ä Chapter 6.4.1.21.4.12.10 “Dialog 'Project Settings' - 'Visualization'” on page 2776

Dialog 'Properties' - 'TextList'
Function: The dialog allows for setting the basic properties of the selected text list.
Call: “View è Properties” of an “Text List” object type; context menu of an “Image List” object
type.

“Download by visualization” : The text list is downloaded with the visualization to the controller.

“Internal” : The text list can be used only in a library. It is not available in an ordinary
CODESYS project.

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

Dialog 'Properties' - 'Options'
Function: This dialog provides the settings for monitoring an login for objects of type device.
The availability of the options depends on the device description.
Call: Context menu of the device, or main menu “View è Properties”, if the device is selected.

“Monitoring interval (ms)” Interval of the monitoring (10 ms - 1000 ms)

Table 544: “Interactive Login Mode”
This mode is used to prevent an accidentally login to a different controller.

“None” No interaction with the user during login. Corresponds to the behavior of pre-
vious versions.

“Enter ID” During login CODESYS asks to enter an ID. The ID is stored in the controller.
Without a valid ID no login is possible.
When login a second time, CODESYS does not ask again for the ID if the
computer name, the user name, the device name and the device address have
not changed. The information is saved in the project options.

Options (Con-
troller)

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2765

“Press key” During login a dialog prompts and requests the user to press a key on the
controller. The timeout for this action is saved in the device description.

“Wink (= blink an LED)” During login a led blinks on the connected controller.

Table 545: “Symbol Configuration”
“Access variables in sync with
IEC tasks”

: Default setting, consistent access is not permitted

: Consistent access is permitted
The setting only will take effect when all applications and boot applications are
re-downloaded to the controller.
Note: If the option is activated, then the jitter for all IEC applications may
increase on this device! The consistent access can disturb the real-time capa-
bility.

Siehe also
● Ä Chapter 6.4.1.21.2.8 “Object 'Device' and Generic Device Editor” on page 2427
● Ä Chapter 6.4.1.21.2.27 “Object 'Symbol Configuration'” on page 2523

Dialog 'Properties' - 'Monitoring'
Function: The tab contains options for the monitoring of transitions in SFC.
Call: Select transition object, click “Properties”; menu bar: “View è Properties”.

“Enable monitoring” : An implicit variable is created for the transition, which is then always given
the current property value when the application calls the Transition method. The
value stored last in this variable is displayed in the monitoring.

“Monitoring using call” : The transition to be monitored is read by directly calling the transition.
Note: When you activate this option, you have to consider possible side effects.
These kinds of side effects can occur if additional operations are implemented in
the transition.

See also
● Ä Chapter 6.4.1.21.2.21.11 “Object 'Transition'” on page 2499
● Ä Chapter 6.4.1.20.6.3.26 “Attribute 'monitoring'” on page 2295

Dialog 'Project Settings'
6.4.1.21.4.12.1 General.. 2767
6.4.1.21.4.12.2 Dialog 'Project Settings' - 'SFC'... 2767
6.4.1.21.4.12.3 Dialog 'Project Settings' - 'Users and Groups'....................... 2768
6.4.1.21.4.12.4 Dialog Box 'Project Settings' - 'Compileoptions'.................... 2769
6.4.1.21.4.12.5 Dialog Box 'Project Settings' - 'Compiler Warnings'.............. 2770
6.4.1.21.4.12.6 Dialog 'Project Settings' – 'Source Download'....................... 2770
6.4.1.21.4.12.7 Dialog 'Project Settings' - 'Page Setup'................................. 2772
6.4.1.21.4.12.8 Dialog 'Project Settings' - 'Security'....................................... 2772
6.4.1.21.4.12.9 Dialog 'Project Settings' - 'Static Analysis Light'.................... 2773
6.4.1.21.4.12.10 Dialog 'Project Settings' - 'Visualization'.............................. 2776
6.4.1.21.4.12.11 Dialog 'Project Settings' - 'Visualization Profile'................... 2777

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2766

General
Symbol:
Function: The object contains the basic configuration of the project. In the “Project Settings”
dialogs the configuration can be adjusted.
Call: Double click on the “Project Settings” object in the device tree, or main menu “Project
è Project Settings”.
CODESYS saves the project settings directly in the project. If a project is transferred to another
system for example the “Project Settings” object is transferred as well without the need of a
project archive.
The project settings are valid project wide. Dependent on the installed packages the dialogs
provide settings for several categories, as for example “SFC” or “User and Groups”.
See also
● Ä Chapter 6.4.1.21.3.9.4 “Command 'Package Manager'” on page 2655

Dialog 'Project Settings' - 'SFC'
Symbol:
Function: This dialog is used for configuring the settings of SFC objects. The properties of each
new SFC object automatically have the configured settings.
Call: Menu bar: “Project è Project Settings” (“SFC”).
Requirement: A project is open.

Implicitly generated variables for checking and monitoring the processing in an SFC diagram

“Active” : The corresponding variable is used.

“Declare” : The corresponding variable is created automatically. Otherwise, you have to
declare the variable explicitly if you intend to use it (“Use” is selected).

“Apply to all” In this dialog, CODESYS applies changes to existing SFC objects. CODESYS
selects the “Use defaults” check box in the properties of the SFC POUs.

NOTICE!
Automatically declared variables are visible in the declaration part of the SFC
editor only in online mode.

Table 546: “Code Generation”
“Calculate active transitions
only”

: CODESYS generates code only for currently active transitions.

Tab 'Flags'

Tab 'Build'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2767

Table 547: “SFC Library”
This part of the dialog is available only for compiler versions < 3.4.1.0.

“Company ”

“Title”

“Version”

Defines the SFC library that CODESYS uses by default.

“Namespace” Enables unique references to libraries. Required when various versions of the
library are available on the system. Please make sure that there are no discrep-
ancies between the namespace defined in the library manager and the name-
space defined for the individual object. The SfcIec.library data is used for
the default settings that CODESYS provides with the default profile.

Each SFC block stores the information via the library version that applied when
you added the block. This can cause you to use multiple library versions within
the same project. In order to prevent this, you are prevented from defining
specific versions of IecSfc.library (as of compiler version 3.4.1.0). The
library version, which you use for all SFC blocks in the project, is defined with
a placeholder. CODESYS resolves the placeholder depending on the compiler
version in use. The allocation of the library version to the compiler version is
defined in the library profile.

See also
● Ä Chapter 6.4.1.20.1.5.6 “SFC Flags” on page 2067
● Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

Dialog 'Project Settings' - 'Users and Groups'
Symbol:
Function: This dialog is for the configuration of the user management for the current project.
Call: Menu “Project è Project Settings”, category “Users and Groups”

Displays the users and their memberships in groups

“Add” Opens the “Add User” dialog.

“Edit” Opens the “Edit User” dialog.

“Delete” An error message appears if you attempt to delete the last user of a group, since
a group must have at least one member.

Table 548: “Add User / Edit User”
Input fields for setting up a new user account or changing an existing one

“Active” : You may use the user account, default

: The user cannot log in. If he attempts to login again with incorrect login data,
this can result in automatic deactivation of the account; see below: Settings.

“Memberships” List of all user groups that you have defined in addition to the group “Everyone”
(to which each new user automatically belongs).

<group name> : the new user belongs to the group.

Tab 'User'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2768

Table 549: “Export/Import”
“Export Users and Groups” The command opens the standard dialog for saving a file in the local file system.

You can store the users and groups definitions of the project in a file *.users in
xml format.

“Import Users and Groups” Export users and groups opens the standard dialog for browsing the local file
system for a file. Search for a file with extension *.users in order to import the
users and groups definiitions, stored in this file, into the project.

Display of the groups and their members. A group can also be a member of a group.

“Add” Opens the “Add Group” dialog.

“Edit” Opens the “Edit Group” dialog.

“Delete” If you delete a group, the user accounts of the members remain unchanged.
You cannot delete the groups “Everyone” and “Owner”.

On button “Export/Import” please see above the “User” paragraph.

Display of the groups and their members in a tree structure. A group can also be a member of a group.

“Maximum number of
authentication trials”

 (standard) : If the user has attempted to login with an incorrect password the
number of times specified here, the user account is deactivated.

: The number of the unsuccessful attempts is unlimited

“Automatic logoff after time of
inactivity”

: The user is automatically logged out if CODESYS does not register any user
actions by mouse or keyboard during the time period (minutes) specified here.

See also
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819
● Ä Chapter 6.4.1.21.3.5.28 “Command 'User management' – 'Log in User'” on page 2613

Dialog Box 'Project Settings' - 'Compileoptions'
Symbol:
Function: This dialog box is for configuring the compiler options.
Call: Main menu “Project è Project Settings” (“Compileoptions” category).
Requirement: A project is open.

Table 550: “Compilerversion”
“Fix Version” Defines the compiler version that CODESYS uses when compiling and down-

loading for compile (for example, “3.5.6.0” for version 3.5 SP6).

Tab 'Groups'

Tab 'Settings'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2769

Table 551: “Settings”
“Allow unicode characters for
identifiers”

Cleared by default because using Unicode characters in identifier names is not
permitted in the IEC standard. May be required for some foreign languages (for
example, Asian languages).

“Replace constants” (default): CODESYS loads the value directly for every scalar constant (not for
strings, arrays, and structures). In online mode, CODESYS marks the constants
with a symbol that is prepended to the value in the declaration editor or moni-
toring view. In this case, access is not possible, for example by means of an ADR
operator, forcing, and writing.

: Access to constants is possible, but it prolongs the computation time.

“Enable logging in breakpoints” For breakpoints that are defined as execution points, you can create a message
text in the “Execution point settings” dialog box. CODESYS prints this text to the
device log when the application halts at the execution point.

Table 552: “Compiler Warnings”
“Maximum number of
warnings”

Refers to the warnings that CODESYS prints to the messages view.
You define the selection of displayed compiler warnings in the “Project Settings”
dialog box in the “Compiler Warnings” category.

See also
● Ä Chapter 6.4.1.21.4.12.5 “Dialog Box 'Project Settings' - 'Compiler Warnings'”

on page 2770
● Ä Chapter 6.4.1.21.2.8.9 “Tab 'Log'” on page 2437

Dialog Box 'Project Settings' - 'Compiler Warnings'
Symbol:
Function: This dialog box is used for selecting the compiler warnings that CODESYS displays
in the messages view during a compile process.
Call: Call: Main menu “Project è Project Settings” (“Compiler Warnings” category).
Requirement: A project is open.

You define the maximum number of listed warnings in the “Compileoptions”
dialog box.

See also
● Ä Chapter 6.4.1.21.4.12.4 “Dialog Box 'Project Settings' - 'Compileoptions'” on page 2769
● Ä Chapter 6.4.1.21.3.6.4 “Command 'Build'” on page 2619

Dialog 'Project Settings' – 'Source Download'
Symbol:
Function: This dialog defines the compilation and the storage of the source code as a source-
code download archive on one or more controllers.
Call: “Project è Project settings” menu, “Download source code” category

A source-code download archive is a project archive with the name Archiv.prj.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2770

The settings affect the command “Online
è Load source code to connected controller”. These settings do not affect the
command “File è Load source code to controller”.

Table 553: “Destination device”
Defines the location of the project archive.

“<name of controller>” Selected controller. CODESYS loads the project archive to this controller.
Requirement: the project contains several controllers.

“<all devices in project>” CODESYS loads the project archive to all controllers in the project.

Table 554: “Content”
Defines the contents of the project archive.

“Use compact download” : The project archive contains only that device in the project that contains the
active application.

: The project archive contains all the devices in the project

“Additional Files” Opens the “Additional files” dialog where you can select additional files for down-
loading.

Not all types of additional files are available for each project.
“Download information files” - Project information files
“Library profile” - Includes the applied profile
“Project information” - Includes the project information
“Referenced devices” - Includes all device descriptions of third party devices into
the archive
“Referenced libraries” - Includes all referenced libraries into the archive
“Referenced visualisation styles” - Includes the used styles
“Visualisation profile” - Includes the used profile
The most important types “Referenced devices” and “Referenced libraries”
should always be included, if the archive shall be usable by Automation Builder
installations without availability of the required devices or libraries.

Table 555: “Timing”
Defines the time at which CODESYS creates a project archive.

“Implicitly at program download
and online change”

Each time an application is loaded or an online change is made, CODESYS
additionally loads the project archive to the target device(s) with no further
prompt.

“Implicitly at creating boot
project”

Each time a boot application is created, CODESYS additionally loads the project
archive to the target device(s) with no further prompt.

“Implicitly at creating boot
project, download and online
change”

Each time a boot application is created, an application is loaded or an online
change is made, CODESYS additionally loads the project archive to the target
device(s) with no further prompt.

“Prompt at program download
and online change”

Each time an application is loaded or an online change is made, CODESYS
opens a prompt, where you can select whether CODESYS should load the
project archive to the controller.

“Only on demand” A prompt opens only if the command “Online
è Load source code to connected controller” is called. There you can select
whether CODESYS should load the project archive to the controller.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2771

See also
●
● Ä Chapter 6.4.1.21.3.7.7 “Command 'Source Download to Connected Device'”

on page 2631
● Ä Chapter 6.4.1.21.3.2.11 “Command 'Source Download'” on page 2560

Dialog 'Project Settings' - 'Page Setup'
Symbol:
Function: This dialog defines the layout for the print version of the project contents. This layout
is used for the printout of the project information by clicking “File è Print” and the printout of the
project documentation by clicking “Project è Document”.
Call: Main menu “Project è Project Settings” (“Page Setup”)
You can change settings the following:
● “Paper”
● “Margins”
● “Header and Footer”
● “Document”
● “Title Page”

Table 556: “Edit Header, Edit Footer”
The headers and footers are structured in table style. You can configure rows and columns, and add text and
images to the resulting cells.

“Row spanning” Number of rows that CODESYS should merge into a single column.

“Column spanning” Number of columns that CODESYS should merge into a single row.

Opens the list of available placeholders for the “Text” field. When printing the
page, CODESYS provides the placeholders with the current values.

See also
● Ä Chapter 6.4.1.21.3.2.14 “Command 'Page Setup'” on page 2560
● Ä Chapter 6.4.1.21.3.5.19 “Command 'Document' ” on page 2606
● Ä Chapter 6.4.1.21.3.2.12 “Command 'Print'” on page 2560

Dialog 'Project Settings' - 'Security'
Symbol:
Function: this dialog is for the configuration of the project protection by a password, a dongle,
or a certificate.
Call: Menu bar: “Project è Project Settings” (category “Security”).

NOTICE!
If the encryption password is lost you can no longer open the project. You can
also no longer restore it.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2772

“No protection” : The project file is not protected from unauthorized access and data manipula-
tion.
Note: We strongly recommend that you use security functionality.

: The “Password”, “Dongle”, and “Certificates” options cannot be selected.

“Integrity check” When you create a new project, this option is enabled by default.

: The project file is stored in a proprietary format and its integrity is checked
each time the project is loaded. The file may be incompatible with older versions
of the development system.
Please note that the project file is not encrypted. To better protect your data,
activate one of the encryption functions.

“Encryption” : The “Password”, “Dongle”, and “Certificates” encryption functions can be
selected.

“Password” Entering, changing and confirming the encryption password.
If you save the project with these settings you must enter the password later in
order to open the project again, even if it is to be loaded as a library reference.

“Dongle” Requirement: you have connected the CODESYS security key (dongle) to the
computer.
“Add”: The dialog “Add Registered Dongle” opens.

“Registered dongles” Drop-down list of the registered dongles.

“Certificates” Certificates are used for the encryption of contents of the open project file.
Requirement: The certificates for all users who share the project must be
installed in the local memory.

: The “Certificate selection” dialog opens.

Table 557: Adding a registered dongle
“Dongle” Drop-down list of all connected dongles.

“Update” CODESYS refreshes the drop-down list.

“Flash” The LEDs of the currently selected dongle flash for two seconds (if it supports
this function).

The dongle must be connected to the computer when CODESYS loads the
project, even if it is loaded as a library reference.

See also
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819
● Ä Chapter 6.4.1.6.3 “Assigning Passwords” on page 1824
● Ä Chapter 6.4.1.6.4 “Protecting Projects Using a Dongle” on page 1825
● Ä Chapter 6.4.1.6.8 “Encrypting Projects with Certificates” on page 1829
● Ä Chapter 6.4.1.21.4.19 “Dialog 'Certificate Selection'” on page 2811

Dialog 'Project Settings' - 'Static Analysis Light'
Symbol:
Function: This dialog activates the tests that the light version of CODESYS Static Analysis
performs each time code is generated.
Call: Menu bar: “Project è Project Settings” (“Static Analysis Light” category).

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2773

You can exclude lines of code from the static code analysis by marking
the code with the pragma {analysis ...} or the pragma {attribute
'analysis' := '...'}.

“SA0033: Unused variables” Finds variables that are declared, but not used within the compiled program
code.
For GVL variables: If there are multiple applications in one project, then only the
objects under the currently active application are affected. If there is only one
application, then the objects in the POUs view are also affected.

“SA0028: Overlapping memory
areas”

Detects the locations where two or more variables reserve the same storage
space. For example, this occurs for the following declarations: var1 AT
%QB21: INT and var2 AT %QD5: DWORD. In this case, both variables use
byte 21, which means that the memory range of the variables overlap.

“SA0006: Write access from
multiple tasks”

Detects variables that are written by more than one task.

SA0004 “Multiple write access
on output”

Detects outputs that are written to more than one location.
Note: No error is reported when an output variable (VAR_IN_OUT) is written in
different branches of IF and CASE statements.

Note: A pragma cannot deactivate this rule.

“SA0027: Multiple use of
identifiers”

Detects multiple uses of a name/identifier for a variable or an object (POU) within
the scope of a project.
The following cases are detected:
● The name of an enumeration constant is the same as in another enumera-

tion in the application or used in an included library.
● The name of a variable is the same as an object in the application or an

included library.
● The name of a variable is the same as for an enumeration constant in and

enumeration in the application or an included library.
● The name of an object is the same as another object in the application.
● The name of a variable is the same as the name of a method.
● The name of an object is the same as the name of a superordinate object

("parent object").

“SA0167: Temporary function
block instances”

The test detects function block instances that are declared as temporary varia-
bles. This concerns instances that are declared in a method or in a function or as
VAR_TEMP, and therefore are reinitialized in each processing cycle and for each
POU call.

Additional com-
pile tests

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2774

SA0003: Empty statements

;
(* Comment *);
iVar;

SA0006: Concurrent access
FUNCTION_BLOCK ADD_FB
g_iTemp1 := g_iTemp1 + INT#1;
PROGRAM PLC_PRG //controlled by MainTask
g_iTemp1 := g_iTemp1 + INT#2;
g_xTemp2 := g_iTemp1 > INT#10;
PROGRAM PLC_PRG_1 //controlled by SubTask
g_iTemp1 := g_iTemp1 - INT#3;
g_xTemp2 := g_iTemp1 < INT#-10;

SA0004 Multiple write access on output
VAR_GLOBAL
 g_xVar AT %QX0.0 : BOOL ;
 g_iTest AT %QW0 : INT ;
END_VAR
PROGRAM PLC_PRG
IF iCondition < INT#0 THEN
 g_xVar := TRUE;
 g_iTest := INT#12;
END_IF
CASE iCondition OF
 INT#1:
 g_xVar := FALSE;
 INT#2:
 g_iTest := INT#11;
 ELSE
 g_xVar := TRUE;
 g_iTest := INT#9;
END_CASE

SA0006: Write access from multiple tasks

FUNCTION_BLOCK ADD_FB
g_iTemp1 := g_iTemp1 + INT#1;

PROGRAM PLC_PRG // Controlled by MainTask
g_iTemp1 := g_iTemp1 + INT#2;
g_xTemp2 := g_iTemp1 > INT#10;

PROGRAM PLC_PRG_1 //Controlled by SubTask
g_iTemp1 := g_iTemp1 - INT#3;
g_xTemp2 := g_iTemp1 < INT#-10;

SA0027: Multiple use of name
PROGRAM PLC_PRG
VAR
ton : INT; // error SA0027
END_VAR

SA0029: Different notation in implementation and declaration
The PLC_PRG POU and a fnc function POU are in the device tree.

Examples

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2775

PROGRAM PLC_PRG
VAR
 iVar:INT;
 _123test_var_: INT;
END_VAR
 ivar := iVar + 1; // notation different to that in the
declaration part -> SA0029
 _123TEST_var_ := _123test_var_INT; // notation different to
that in the declaration part -> SA0029
 Fnc(); // notation different to that in the devices tree ->
SA0029
END_VAR

SA0167: Temporary function block instances
PROGRAM PLC_PRG
VAR
END_VAR
VAR_TEMP
 yafb: AFB;
END_VAR

FUNCTION Fun : INT
VAR_INPUT
END_VAR
VAR
 funafb: AFB;
END_VAR

METHOD METH: INT
VAR_INPUT
END_VAR
VAR
 methafb: AFB;
END_VAR

See also
● Ä Chapter 6.4.1.9.13.3 “Analyzing code statically” on page 1904

Dialog 'Project Settings' - 'Visualization'
Symbol:
Function: The dialog is used to configure the project-wide settings for objects of type
“Visualization”.
Call: Menu bar: “Project è Project Settings”, “Visualization” category
Requirement: A project is open.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2776

Table 558: “Visualization Directories”
“Text list files” Directory which contains text lists that are available in the project to configure

texts for different languages. CODESYS uses the directory, for example to
import or export text lists.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

“Image files” Directory which contains image files that are available in the project. Multiple
folders are separated with a semicolon. CODESYS uses the directory, for
example to import or export image files.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

Table 559: “Advanced”
“Activate property handling in
all element properties”

: You can also configure a visualization element with a property in those
of its properties in which you select an IEC variable. Then CODESYS creates
additional code for the property handling when a visualization is compiled.
Requirement: Its IEC code contains at least an object of type “Interface property”
(a property).

Requirement: “Visible” is selected.

“Enable implicit checks for
visualization POUs”

: The implicit check is also performed for visualization POUs. As a result,
additional code is generated, which increases memory usage. When memory is
limited, this option should be disabled.

See also
● Object 'Property'

Table 560: “Visualization Symbol Libraries”
“Symbol libraries” List of all installed symbol libraries (example: VisuSymbols)

“Assigned” : Symbol library is selected in the project and CODESYS makes it available in
the “Visualization ToolBox” view of a visualization.

: Symbol library is installed in the library repository, but CODESYS does not
make it available in the “Visualization ToolBox” view of a visualization.

See also
● CODESYS Visualization
● Dialog 'Add Visualization'

Dialog 'Project Settings' - 'Visualization Profile'
Symbol:
Function: The dialog enables the setting of the visualization profile.

Tab 'General'

Tab 'Symbol
Libraries'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2777

ms-its:codesys.chm::/_cds_obj_property.htm
ms-its:core_Visualization.chm::/_visu_f_core_visualization.htm
ms-its:core_Visualization.chm::/_visu_dlg_add_visualization.htm

Call: Menu “Project è Project Settings”, category “Visualization Profile”

Requirement: A project is open.

Table 561: “Visualization Profile”
“Certain profile” Profile that CODESYS uses in the project and that determines the visualization

elements that are available in the project.
The selection list contains all the profiles installed so far.

Dialog 'Project Environment'
6.4.1.21.4.13.1 General.. 2778
6.4.1.21.4.13.2 Dialog 'Project Environment' – 'Library Versions'.................. 2778
6.4.1.21.4.13.3 Dialog 'Project Environment' - 'Compiler Version'.................. 2778
6.4.1.21.4.13.4 Dialog 'Project Environment' - 'Device Versions'................... 2779
6.4.1.21.4.13.5 Dialog 'Project Environment' – 'Visualization Profile'............. 2779
6.4.1.21.4.13.6 Dialog 'Project Environment' – 'Visualization Styles'............. 2780
6.4.1.21.4.13.7 Dialog 'Project Environment' – 'Visualization Symbols'......... 2780

General
Function: You use this dialog for checking the actuality of the software and of the files, which
are included in the project. CODESYS checks for example the selected compiler and finds out if
there is a newer version. In such a case you can update the affected components.
Call: Main menu“Project”

Dialog 'Project Environment' – 'Library Versions'
Function: This dialog displays the libraries of the opened project for which newer versions are
available.
Call: Main menu “Project è Project Environment”, tab “Library Version ”

This dialog opens automatically when you open a project containing outdated libraries.

Table 562
The list shows the name of the outdated library with version, the currently available version and the planned
action.

“Action” Double-click inside the field to select the desired actions.

“Check for updates when
loading this project”

: Checking takes place each time the project is opened.

: Checking takes place once only.

“Set all to newest” CODESYS uses the newest available version of the library.

“OK” CODESYS performs the selected action(s).

Dialog 'Project Environment' - 'Compiler Version'
Function: This dialog shows the current compiler version of the project and provides the
capability of updating.
Call: Main menu “Project è Project Environment” (“Compiler Version” tab).

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2778

Table 563
“Current compiler version in
project”

Shows the set compiler version for the open project.

“Recommended, newest
version”

Shows the latest version.

“Action” ● “Do not update”: The compiler version of the project remains the same.
● “Update to x.x.x.x”: The selected compiler version is set for the project.

“Check for updates when
loading this project”

: CODESYS checks for new versions each time the project is opened. If there
is a new version, then the respective update dialog opens automatically.

: The compiler version is not checked. The update dialogs do not open auto-
matically.

“Set all to newest” The compiler version is set to the latest version.

Dialog 'Project Environment' - 'Device Versions'
Function: This dialog shows the devices of the open project in which there are new versions
available.
Call: Main menu “Project è Project Environment” (“Device Versions” tab)
This dialog opens automatically when you open a project that contains an outdated device.

Table 564
Names of the outdated devices and their versions, as well as the current version and the planned action.

“Action” Double-click in the field to select the required actions.

“Check for updates when
loading this project”

: The check is performed when the project is opened.

: The check is performed one time only.

“Set all to newest” CODESYS uses the latest library version.

“OK” CODESYS executes the selected actions.

Dialog 'Project Environment' – 'Visualization Profile'
Function: This dialog shows the current visualization profile of the project. The profile can be
updated here.
Call: Menu bar: “Project è Project Environment” (“Visualization Profile” tab).

“Current visualization profile in
the project”

The set visualization profile of the open project.

“Recommended, newest
profile”

The newest version.

“Action” ● “Do not update”: The visualization profile of the project remains unchanged.
● “Update to x.x.x.x”: CODESYS updates the project to the selected visualiza-

tion profile.

“Check for updates when
loading this project”

: CODESYS checks for new profiles each time the project is opened. If there is
a new version, then the respective update dialog opens automatically.

: Not test of the profile when opening the project. The update dialogs do not
open automatically.

“Set all to newest” CODESYS updates the .

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2779

See also
● Help about visualization

Dialog 'Project Environment' – 'Visualization Styles'
Function: This dialog shows the current visualization style of the project and provides the
capability of updating it.
Call: Menu bar: “Project è Project Environment” (“Visualization Styles” tab).

Table 565: “Newer versions are available for the following visualization styles currently in use”
“Visualization style” Version of the set visualization style in the open project

“Current” Current version of the visualization style (example: 3.5.6.0)

“Recommended” Recommended version of the visualization style (example: 3.5.7.0)

“Action” ● “Do not update”: The visualization style of the project remains unchanged.
● “Update to x.x.x.x”: CODESYS updates the project to the version of the

selected visualization style.

“Check for updates when
loading this project”

: CODESYS checks for new versions each time the project is opened. If there
is a new version, then the respective update dialog opens automatically.

: The version is not checked. The update dialogs do not open automatically.

“Set all to newest” CODESYS updates the version.

See also
● Help for visualization, section "Visualization style"

Dialog 'Project Environment' – 'Visualization Symbols'
Function: The dialog lists installed symbol libraries and allows for you to assign symbol libraries
to a project.
Call: Menu bar: “Project è Project Environment”, “Visualization Symbols” tab
Requirement: The open project contains a visualization and has been saved with a compiler
version < 3.5.7.0. CODESYS recognizes symbol libraries in compiler version 3.5.7.0 and
higher.

“Symbol library” List of all installed symbol libraries

“Active” : Symbol library is selected for the project. CODESYS provides its symbols in
the “Visualization Toolbox” view.

: Symbol library has been previously installed only in the library repository.

See also
● Help for visualization, "Using the symbol library in the visualization" chapter

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2780

Dialog 'Options'
6.4.1.21.4.14.1 General.. 2781
6.4.1.21.4.14.2 Dialog 'Options' - 'Automation Builder'................................... 2781
6.4.1.21.4.14.3 Dialog 'Options' - 'C Compiler'... 2782
6.4.1.21.4.14.4 Dialog 'Options' - 'CFC Editor'... 2784
6.4.1.21.4.14.5 Dialog 'Options' – 'Declaration Editor'.................................... 2785
6.4.1.21.4.14.6 Dialog 'Options' – 'Device Description Download'................. 2785
6.4.1.21.4.14.7 Dialog 'Options' - 'Device Editor'.. 2786
6.4.1.21.4.14.8 Dialog 'Options' - 'Diagnosis'... 2786
6.4.1.21.4.14.9 Dialog 'Options' - 'External tools'... 2786
6.4.1.21.4.14.10 Dialog 'Options' - 'FBD, LD, and IL'..................................... 2787
6.4.1.21.4.14.11 Dialog 'Options' - 'Help'.. 2789
6.4.1.21.4.14.12 Dialog 'Options' - 'Help'.. 2789
6.4.1.21.4.14.13 Dialog 'Options' - 'IEC 60870-5-104'.................................... 2789
6.4.1.21.4.14.14 Dialog 'Options' – 'International Settings'............................ 2790
6.4.1.21.4.14.15 Dialog 'Options' – 'Libraries'.. 2790
6.4.1.21.4.14.16 Dialog 'Options' – 'Library Download'.................................. 2790
6.4.1.21.4.14.17 Dialog 'Options' – 'Load and Save'...................................... 2791
6.4.1.21.4.14.18 Dialog 'Options' - 'Message View'.. 2792
6.4.1.21.4.14.19 Dialog 'Options' - 'Monitoring'.. 2792
6.4.1.21.4.14.20 Dialog 'Options' - 'PLCopenXML'... 2793
6.4.1.21.4.14.21 Dialog 'Options' - 'Proxy Settings'.. 2793
6.4.1.21.4.14.22 Dialog 'Options' - 'Refactoring'... 2794
6.4.1.21.4.14.23 Dialog 'Options' - 'SFC Editor'... 2795
6.4.1.21.4.14.24 Dialog 'Options' - 'SmartCoding'.. 2796
6.4.1.21.4.14.25 Dialog 'Options' - 'Startup settings'...................................... 2797
6.4.1.21.4.14.26 Dialog 'Options' - 'Text Editor'.. 2798

General
Function: You use the dialog box for selecting the CODESYS options. With these options you
configure the appearance and the behavior of the user interface. CODESYS saves the current
configuration as standard settings in the local system.
Call: Main menu “Tools è Options”

Dialog 'Options' - 'Automation Builder'
Symbol:
Function: This dialog is for the configuration of the settings for the Automation Builder.
Call: menu “Tools è Options”, category “Automation Builder”

“Show warning message on
delete objects”

: A warning appears whether the selected object should really be deleted from
the project.

“Show device type” : In the project tree the device type is displayed in brackets

“Show device tag” : Show device tag

Tab 'DeviceTree'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2781

“Close Add / Update object
dialog after single transaction”

: The "Add/Update Object" dialog is closed after a single transaction.

“Display all versions” : Some devices are present in several versions. If the check mark is set, then
all devices in all versions are displayed. If the checkbox is not set (default), then
only the latest version is displayed.

“Check integrity on open
project”

: The integrity of an open project is automatically checked in the background.
Ä Chapter 6.4.1.21.3.5.10 “Command 'Check integrity'” on page 2603

“Check configuration on the fly
directly on modify”

: The configuration can be checked directly when changing.

“Incremental update of
configuration data”

: Performs an incremental update of configuration data.

“Activate legacy version of
CSV signal export / import”

: If this checkbox is set, the old version of the CSV signal export/import is
activated.

Max parallel opened editors allowed 25 (max. 99).

“I/O-mapping”

“Use tree based I/O mapping
dialog”

: The view of the I/O mapping dialog is defined, here use tree based I/O
mapping dialog.

“Use list based I/O mapping
dialog”

: The view of the I/O mapping dialog is defined, here use list based I/O
mapping dialog.

“Use both I/O mapping dialog” : The view of the I/O mapping dialog is defined, here use both based I/O
mapping dialog.

: “Participate in ABB usability improvement program” (Function not yet active.)

Dialog 'Options' - 'C Compiler'
Symbol:
Function: This dialog is for the configuration of the settings for the “C Compiler”.
Call: menu “Tools è Options”, category “C Compiler”

“Path to Compiler
executable”

Path to the file location.

“...”: Opens the file manager to search for the file location.

“Reset”: Resets the input.

“Environment
Variables”

“New..”: A new input
window opens.

“Variable name:” Enter new variables.

“Variable value:” Enter new variables.

“Edit...”: A new input
window opens.

“Variable name:” Edit new variables.

“Variable value:” Edit new variables.

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

Tab 'Project'

Tab 'Editors'

Tab 'General'

Tab 'GCC 4.7.3'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2782

“Include path” “New..”: A new input
window opens.

“Path:” Enter a new path.

“Edit...”: A new input
window opens.

“Path:” Edit include path.

C:\Program Files (x86)\ABB\AutomationBuilder\CCodeToolchain\FWAPI\2.11

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Path to Compiler
executable”

Path to the file location.

“...”: Opens the file manager to search for the file location.

“Reset”: Resets the input.

“Environment
Variables”

“New..”: A new input window opens. “Variable name:” Enter new variables.

“Variable value:” Enter new variables.

“Edit...”: A new input window opens. “Variable name:” Edit new variables.

“Variable value:” Edit new variables.

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Include path” “New..”: A new input window opens. “Path:” Enter a new path.

“Edit...”: A new input window opens. “Path:” Edit include path.

C:\Program Files (x86)\ABB\AutomationBuilder\CCodeToolchain\FWAPI\2.11

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Path to Compiler
executable”

Path to the file location.

“...”: Opens the file manager to search for the file location.

“Reset”: Resets the input.

“Environment
Variables”

“New..”: A new input
window opens.

“Variable name:” Enter new variables.

“Variable value:” Enter new variables.

“Edit...”: A new input
window opens.

“Variable name:” Edit new variables.

“Variable value:” Edit new variables.

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Include path” “New..”: A new input
window opens.

“Path:” Enter a new path.

“Edit...”: A new input
window opens.

“Path:” Edit include path.

C:\Program Files (x86)\ABB\AutomationBuilder\CCodeToolchain\FWAPI\2.11

Tab 'GCC 4.7.3
PM595-4ETH'

Tab 'GCC ++
4.7.3
PM595-4ETH'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2783

“Delete”: Deletes the entries.

“Reset”: Deletes the entries.

“Path to external
diff tool”

“...”: Opens the file manager to search for the file location.

Dialog 'Options' - 'CFC Editor'
Symbol:
Function: This dialog is for the configuration of the settings for editing and printing in the CFC
editor.
Call: menu “Tools è Options”, category “CFC Editor”

“Enable AutoConnect” : If you drag a CFC element onto the work area of the editor and insert it,
CODESYS automatically connects together unconnected pins that 'touch' one
another. Make sure that you do not create unwanted connections when shifting
elements!

“Prepare values in
implementation part”

: In online mode you can also prepare variable values for writing and forcing
in the implementation part of the CFC module. In addition, CODESYS displays
the values you have just prepared in the inline monitoring box of the variable in
angle brackets.

“Display grid points” : Grid points at which you can position the elements are visible in the editor.

“Show box icon” : Existing function blocks that are linked with a bitmap are displayed by
CODESYS in the CFC editor as symbols.
Requirement: You have either created the link for a function block or a function in
the object properties or loaded it via a library.

“Edit Line Colors” Opens the “Edit Line Colors” dialog for the definition of the colors of the con-
necting lines, depending on the data type applied. The lines appear in offline and
online mode in these colors, unless CODESYS paints over them with the thick
black and blue lines used to display the boolean data flow.
● “Add Type:” Adds a data type to the list.
● “Delete Type”

“Font” Display of the font and button for changing the font.

See also
● Ä Chapter 6.4.1.21.4.11.9 “Dialog Box 'Properties' - 'Bitmap'” on page 2758

Setting the “Layout Options”

“Fit method” “Page” or “Poster”

“Scale” Possible values: 20 % - 200 %

Tab 'External
diff tool'

Tab 'General'

Tab 'View'

Tab 'Print'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2784

See also
● Ä Chapter 6.4.1.9.5.3.3 “ Programming in the CFC editor” on page 1871
● Ä Chapter 6.4.1.20.1 “Programming Languages and Editors” on page 2047

Dialog 'Options' – 'Declaration Editor'
Symbol:
Function: This dialog is for the configuration of the display settings for the declaration editor.
Call: Main menu “Tools è Options”, category “Declaration Editor”

“Textual only” Textual view of the declaration editor

“Tabular only” Tabular view of the declaration editor

“Switchable between textual
and tabular”

The declaration editor offers two buttons for switching between the textual and
tabular views:

: textual view

: tabular view
The following option defines the view that appears by default when opening a
programming object:
● “Always textual”
● “Always tabular”
● “Remember recent setting (per object)”
● “'Remember recent setting (global)”

See also
● Ä Chapter 6.4.1.9.4.2 “Using the declaration editor” on page 1851

Dialog 'Options' – 'Device Description Download'
Symbol:
Function: This dialog is for the configuration of addresses of download servers for device
descriptions.
Call: Menu “Tools è Options”, category “Download the Device Descriptions”.
See also
● Ä Chapter 6.4.1.18 “Managing devices” on page 2038

Table 566: “Download server”
List of download servers containing device descriptions. By default 'https://store.codesys.com/
CODESYSDevs' is entered as the download server.

If you select the button “Download Missing Device Descriptions” in the “Device Repository” dialog, CODESYS
uses the servers entered here and uses the set login data for the proxy server.

Double-click on “(Enter new
download server here...)”

An input field opens in which you can enter the URL address of a server.

[Del] Deletes the selected download server.

See also
● Ä Chapter 6.4.1.21.3.9.8 “Command 'Device Repository'” on page 2663
● Ä Chapter 6.4.1.21.4.14.21 “Dialog 'Options' - 'Proxy Settings'” on page 2793

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2785

Dialog 'Options' - 'Device Editor'
Symbol:
Function: This dialog includes settings for displaying the device editor.
Call: Menu bar: “Tools è Options”; category: “Device Editor”.

“Show generic device
configuration views”

: This tab with the list of device parameters is available in the device editors of
parameterizable devices.

“Create cross references
for IEC addresses (clean
necessary) ”

: CODESYS creates the cross-references for unmapped I/Os.

“Communication page” ● “Classic mode”: The “Communication” tab of the device editors appears as
a split window with the left side showing the current configured gateway
channels in a tree structure and the right side showing the associated data
and information.

● “Simple mode”: The “Communication” tab appears as described in the corre-
sponding section in the help.

Additional modes may also be available from customer-specific extensions.

“Show implicit files for
application download on the
editor of a PLC”

: The tab for synchronized files is available in the device editors. Synchronized
files are downloaded to the PLC at the time of application download. These can
be external files that were added to the application, or implicit files such as a
source code archive.

“Show access rights page” : The “Access Rights” tab is available in the device editors.
Note: Depending on the device, the device description may overwrite this setting.

See also
● Ä Chapter 6.4.1.21.2.8.3 “Tab 'Communication Settings'” on page 2427
● Ä Chapter 6.4.1.21.2.8.7 “Tab 'Synchronized Files'” on page 2436

Dialog 'Options' - 'Diagnosis'
Symbol:
Function: This dialog is for the “Diagnosis” setting and views.
Call: menu “Tools è Options”, category “Diagnosis”

Table 567: 'Diagnosis view'
“Enable subtree diagnosis” : The subtree diagnosis is switched on.

“Enable debug columns” : Debug columns are enabled.

Dialog 'Options' - 'External tools'
Symbol:
Function: This dialog is for setting of “External tools”.
Call: menu “Tools è Options”, category “External tools”

Tab 'View'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2786

Tool Version

“Panel builder” “Default”

“Custom”: Opens the file manager to search for the file location.
Sometimes it is required to used dedicated versions of these
tools (qualified versions, versions supporting more legacy types,
…)

“Drive composer pro” “Default”

“Custom”: Opens the file manager to search for the file location.
Sometimes it is required to used dedicated versions of these
tools (qualified versions, versions supporting more legacy types,
…)

“Restore defaults” Resets the custom settings to default.

The modified settings will be valid after restart of Automation Builder.

Dialog 'Options' - 'FBD, LD, and IL'
Symbol:
Function: This dialog is used for configuring the display options for the FBD/LD/IL editor.
Call: “Tools è Options” (category “FBD, LD, and IL”.

Table 568: “View”
“Show network title” The network title is displayed in the upper left corner of the network.

“Show network comment” The network comment is displayed in the upper left corner of the network. When
the network title is also shown in CODESYS, the comment is shown in the line
below.

“Show box icon” The block symbol is displayed in the block element in the FBD and LD editor.
The standard operators also have symbols.

“Show operand comment” CODESYS shows the comment that you indicated for a variable in the imple-
mentation part. The operand comment refers to the local occurrence of the
variable only, as opposed to the symbol comment.
This comment is truncated automatically depending on available space.
You can limit the comment to a defined width by activating the option “Fixed size
for operand fields”.

“Show symbol comment” The comment that you indicated for a variable or symbol in the declaration is
displayed in CODESYS above the variable name. You can also assign a local
operand comment in addition to or instead of the symbol comment.

“Show symbol address” If an address is assigned to a symbol (variable), then this address is displayed
above the variable name.

“Show network separators” A separator is displayed between the individual networks.

Tab 'General'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2787

Table 569: “Behavior”
“Placeholder for new
operands”

The operand field of pins for the new function block is left blank (instead of
"???").

“Empty operands for function
block pins”

Adds blank operands instead of ???.

Table 570: “Font”
Click the input field to open the “Font” dialog.

“Fixed size for operand fields” : “Edit operand sizes” can be enabled.

“Edit operand sizes” The “Operand Sizes” dialog opens for setting the number of characters and
lines.

Table 571: “View”
“Networks with line breaks” : Display of the network with line breaks so that so that CODESYS can show

as many blocks as possible in the current width of the window.

“Connect boxes with straight
line”

: The length of the lines between the elements are fixed and short.

Table 572: “Behavior”
“Default network content” Drop-down list: Contents of a new network

“After insertion select” Drop-down list: Element that CODESYS selects after inserting a new network

Table 573: “View”
“Networks with line breaks” : Display of the network with line breaks so that so that CODESYS can show

as many blocks as possible in the current width of the window.

Table 574: “Behavior”
“Default network content” Drop-down list: Contents of a new network

“After insertion select” Drop-down list: Element that CODESYS selects after inserting a new network

Table 575: “View”
“Enable IL” The IL implementation language is available in the development system.

Table 576: “Behavior”
“Default network content” Drop-down list: Contents of a new network

“After insertion select” Drop-down list: Element that CODESYS selects after inserting a new network

Tab 'FBD'

Tab 'LD'

Tab 'IL'

Tab 'Print'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2788

Table 577: “Layout Options”
“Fit method” Drop-down list for resizing.

“Avoid cutting of elements” Elements that do not fit on the page are printed on the next page.

“Mark connections on adjacent
pages”

Enabled for selection when “Avoid cutting of elements” is selected.

See also
● Ä Chapter 6.4.1.20.1 “Programming Languages and Editors” on page 2047

Dialog 'Options' - 'Help'
Symbol:
Function: This dialog defines whether CODESYS Online Help or CODESYS Offline Help opens
when help is called.
Call: Menu bar: “Tools è Options”; category: “Help”.

“Use CODESYS Online Help, if
available”

● CODESYS Online Help opens when CODESYS Help is called. This is the
default setting.

● CODESYS Offline Help opens when CODESYS Help is called.

See also
●

Dialog 'Options' - 'Help'
Symbol:
Function: This dialog activates the online help if available.
Call: menu “Tools è Options”, category “Help”

: “Use Online Help if available”.

Dialog 'Options' - 'IEC 60870-5-104'
Symbol:
Function: In this dialog you can set this notation of the “Address format”.
Call: menu “Tools è Options”, category “IEC 60870-5-104”

 1.2.3 (separated by dots)

 1-2-3 (separated by hyphens)

 66051 (decimal number, big endian --> 0x10203)

 197121 (decimal number, little endian --> 0x30201)

Tab 'Adress for-
mat'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2789

Dialog 'Options' – 'International Settings'
Symbol:
Function: This dialog is for the setting of the language in the user interface and in the help.
Call: Menu bar: “Tools è Options”, category “International Settings”.

Dialog 'Options' – 'Libraries'
Symbol:
Function: This dialog helps you to manage the mappings of library references that CODESYS
uses during the conversion of an old project. If you have not yet stored any mapping for a
certain library, you must redefine the mapping each time when opening an old project in which
this library is integrated.
Call: Menu bar: “Tools è Options”; category: “Libraries”.
A mapping defines what a library reference looks like following the conversion of the project to
the current format. There are three possibilities:
● You retain the reference. This means that CODESYS similarly converts the library into the

current format (*.library) and installs it in the local library repository.
● You replace a reference with another reference. This means that one of the installed libra-

ries replaces the library that was integrated until now.
● You delete the reference. This means that the converted project no longer integrates the

library.

CODESYS applies all the listed mappings to the library references of an old project the next time it is converted.
Hence, you must repeat the mapping definition if the same library is integrated again in a project that is to be
converted. You can enter a new mapping in the last line.

“Source Library” Path of the library that is integrated in the project before the conversion.
A double-click an entry makes the field editable and the button for the input
assistance appears.

“Target Library” Name and location of the library that is to be integrated in the project after the
conversion.
A double-click an entry opens the dialog “Set target system library”.

Table 578: “Set target system library”
“Scan” The “Select Library” dialog opens. You can select a library from the library repo-

sitory here. The dialog corresponds to the dialog in the library repository.

“Ignore” When CODESYS converts the project, CODESYS always removes the existing
source library from the project.

Dialog 'Options' – 'Library Download'
Symbol
Function: This dialog is for the setting of download servers.
Call: menu “Tools è Options”, “Library Download” category

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2790

If you click on the button “Download Missing Libraries” in the library manager, CODESYS browses these down-
load servers for libraries marked as missing in the library manager and uses the set login details for the proxy
server.

“Download servers” URL of a server containing library files

Double-click on “(Enter new
download server here)”

An input field opens in which you can enter the URL address of a server.

See also
● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469
● Ä Chapter 6.4.1.21.4.14.21 “Dialog 'Options' - 'Proxy Settings'” on page 2793

Dialog 'Options' – 'Load and Save'
Symbol:
Function: The dialog contains settings for the behavior of CODESYS when loading and saving
a project.
Call: Menu bar: “Tools è Options”, “Load and Save” category

“Create backup files” : Each time the project is saved, CODESYS also saves the project as the file
<project name>.project in addition to the file <project name>.backup.
You can rename the backup file and open it in the programming system.

“Automatically save every …
minutes”

: CODESYS automatically saves the project at the specified time intervals in a
file <project name>.autosave, which you can reload following non-regular
closing of the programming system.
CODESYS deletes the .autosave file whenever the project is closed or saved
regularly. CODESYS retains the .autosave file in the case of an irregular
termination. When you open a project for which there is an associated autosave
file, the “Auto Save Backup” dialog opens. In this dialog you select whether
the .autosave file or the version of the project last saved by the user should be
opened.

“Save before build” CODESYS saves the project automatically before each build operation.

“Create project recovery
information”

Requirement: The “No protection” option is selected in the project settings in
the “Security” category. This means that the project is not protected against
unauthorized access and data manipulation, and there is no integrity check
when the project is loaded.

: If a project crashes during editing, then the next time the project is opened,
a prompt is displayed asking whether or not you want to restore the unsaved
data and create a new project file. If you click “Yes”, then another dialog opens.
In this dialog, you can select whether you want to open the restored project or
open the project comparison. This project comparison displays the differences
between the last saved project and the restored project.
Note: The project restore records every change on the hard disk when the
change is made. If a power failure or hard disk error occurs on the hard disk
during this operation, then the last change may be lost.

“Advanced Settings” The “Advanced Settings” dialog opens.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2791

“At startup” List box for the startup screen of CODESYS:
● “Show start page”: The start page of CODESYS is shown.
● “Load last loaded project”
● “Show "Open Project" dialog”
● “Show "New Project" dialog”
● “Show empty environment”

“News page” URL that is opened by means of the command “Help
è CODESYS CODESYS Homepage”.
By default, this page is http://www.codesys.com/startpage.

Table 579: Dialog “Advanced Settings”
“Project compression”

“Level” Requirement: The “No protection” option is selected in the project settings in
the “Security” category. This means that the project is not protected against
unauthorized access and data manipulation, and there is no integrity check when
the project is loaded.
List box for the compression level that is used when saving the project.
● “Least compression - best speed (recommended)”
● “Medium compression - medium speed”
● “Most compression - worst speed”

“Load Behavior”

Libraries and compilation information are loaded in the background while you
edit the project.

See also
● Ä Chapter 6.4.1.6 “Protecting and Saving Projects” on page 1819

Dialog 'Options' - 'Message View'
Symbol:
Function: In this dialog the number of messages can be determined.
Call: menu “Tools è Options”, category “Message View”

“Maximum numer of messages” xxx

Default, 500, max. 9999, min. 20

Dialog 'Options' - 'Monitoring'
Symbol:
Function: This dialog includes settings for displaying the variable values in monitoring.
Call: Menu bar: “Tools è Options”; category: “Monitoring”.

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2792

Table 580: “Display Mode for Integer Variables”
“Binary” The value of the variable is displayed in the corresponding format in online

mode.
This option corresponds to the setting of the command “Debug
è Display Mode”.

“Decimal”

“Hexadecimal”

Table 581: “Floating Point Variables”
“Number of displayed digits” Decimal places that are represented in online mode when REAL values are

displayed.
Note: The settings apply to the watch list, the monitoring of the declaration editor
and the trace editor. The configuration for inline monitoring of the editor is set in
the text editor options.

See also
● Ä “Tab 'Monitoring'” on page 2800

Dialog 'Options' - 'PLCopenXML'
Symbol:
Function:This dialog contains settings for the behavior of CODESYS when exporting or
importing PLCopenXM.
Call: Main menu “Tools è Options”, category “PLCopenXML”

Table 582: “PLCopenXML Export Settings”
“Additionally export
declarations as plain text”

By default, CODESYS splits the declaration parts in accordance with the PLCo-
penXML scheme into individual variables and thus loses the formatting and
some comment information.

: Formatting and comments are retained. CODESYS additionally writes the
plain text of the exported declaration part into the PLCopenXML file and thus
extends the PLCopenXML scheme.

“Export Folder Structure” : CODESYS also exports the folders if they contain one of the selected
objects. That is a CODESYS-specific extension to the PLCopenXML scheme.

Table 583: “PLCopenXML Import Settings”
“Import folder structure” : If the import file contains information about the folder structure of the objects,

CODESYS also imports this structure.

: CODESYS imports objects without structure.

See also
● Ä Chapter 6.4.1.4.2 “Exporting and importing projects” on page 1815
● Ä Chapter 6.4.1.21.3.5.26 “Command 'Export PLCopenXML'” on page 2612
● Ä Chapter 6.4.1.21.3.5.27 “Command 'Import PLCopenXML'” on page 2612

Dialog 'Options' - 'Proxy Settings'
Symbol:
Function: You use this dialog for storing the authentication data for the proxy server which is
currently used for accessing the internet from CODESYS.
Call: Main menu “Tools è Options”, category “Proxy Settings”

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2793

Requirement: Internet access of the network via proxy server

“Enter proxy credentials” A double click opens the input request for the user name and the password for
the proxy server.
CODESYS uses the access data for the establishment of the connection to
the download server for libraries and the device description, for the establish-
ment of the connection to the CODESYS Store and for the command “View
è Start Page”.
Requirement: If the internet access of your computer or of the network takes
place via a proxy server, then the button is available.

● Ä Chapter 6.4.1.21.2.16 “Object 'Library Manager'” on page 2469
● Ä Chapter 6.4.1.21.3.4.20 “Command 'Start Page'” on page 2596

Dialog 'Options' - 'Refactoring'
Symbol:
Function: The dialog is used for defining the operations in the project for which the
automatic refactoring is suggested. The refactoring functionality helps you in your improvement
endeavors.
Call: Menu bar: “Tools è Options”, “Refactoring” category

“Auto-declare” When you change the name of a variable in a declaration by calling AutoDe-
clare ([Shift]+[F2]), the activated option “Apply changes by means of refactoring”
appears. Then the “Refactoring” dialog opens and you can change the variable
throughout the project.
● “On adding or removing variables, or on changing the scope”

: You delete the names in the “Declare Variable” dialog and click “OK”
to close the dialog. Then the “Refactoring” dialog opens for removing the
variable throughout the project.

● “On renaming variables”
: You specify the names in the “Declare Variable” dialog and click “OK”

to close the dialog. Then the “Refactoring” dialog opens for renaming the
variable throughout the project.
See the chapter: "Refactoring", "Changing a variable declaration and
applying refactoring automatically".

“Unit conversion editor” “ On renaming of unit conversions”

● : When you change the name of a conversion in the unit conversion
editor, you are prompted whether CODESYS should perform "Automatic
Refactoring" when renaming.

“Mapping editor” “On renaming variables”

● : When you change a variable name in the device editor (“I/O Mapping”
tab), you are prompted whether CODESYS should perform "Automatic
Refactoring" when renaming.

'Suggest Refac-
toring for the
Following Oper-
ations'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2794

“Navigator” “On renaming objects”

● : When you change the name of an object in the device tree or in
the POUs view, you are prompted whether CODESYS should perform
"Automatic Refactoring" when renaming.

“Tabular declaration editor” “On renaming variables”

● : When you change the name of a variable in the tabular declaration
editor, you are prompted whether CODESYS should perform "Automatic
Refactoring" when renaming.

See also
● Ä Chapter 6.4.1.9.16 “Refactoring” on page 1910
● Ä Chapter 6.4.1.9 “Programming of Applications” on page 1844
● Ä Chapter 6.4.1.21.3.3.40 “Command 'Refactoring' - 'Rename <...>'” on page 2577
● Ä Chapter 6.4.1.21.3.3.32 “Command 'Auto Declare'” on page 2572
● Ä Chapter 6.4.1.21.2.35 “Object 'Unit Conversion'” on page 2549

Dialog 'Options' - 'SFC Editor'
Symbol:
Function: This dialog is used for configuring the settings for the SFC editor.
Call: Menu bar: “Tools è Options” (“SFC Editor” category).
See also
● Ä Chapter 6.4.1.9.5.5.2 “Programming in SFC” on page 1880
● Ä Chapter 6.4.1.21.3.12 “Menu 'SFC'” on page 2675
● Ä Chapter 6.4.1.20.1.5.1 “SFC editor” on page 2062

Table 584: “Elements”
This defines the dimensions of the SFC elements: step, action, qualifier, property. The values are given in matrix
units, where one matrix unit equals the font size that you set in the text editor options (text area / font). The
settings are always active immediately in all open SFC editor views.

“Step height” Possible values: 1-100

“Step width” Possible values: 2-100

“Action width” Possible values: 2-100

“Qualifier width” Possible values: 2-100

“Property width” Possible values: 2-100

Table 585: “Font”
The example text shows the current font. Click it to change the font.

Tab 'Layout'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2795

Table 586: “Step Actions”
“Default insertion method” ● “Copy reference”: The reference to the action objects that call the step are

also copied when the step is copied. The copied step and new step call the
same action.

● “Duplicate implementation”: The reference to the action objects that call the
step are linked to this step. When copying the step element, new action
objects are created for the new step, and the implementation is duplicated.

● “Always ask”: When inserting a step action, you are always prompted
whether the actions of a step element should be duplicated when it is copied,
or whether the reference to the existing action should be applied.
Note: If a step already contains an embedded action, then new inserted
actions of this step are also embedded. Likewise, new inserted actions are
not embedded when the step already contains a non-embedded action. In
these cases, you are no longer prompted for a duplication mode.

Table 587: “Embedded Objects”
“Show action and transition
objects in the navigator”

: Action and transition objects that are embedded in the SFC box by a step are
displayed in the “Devices” or “POUs” tree view.

Table 588: “Property Visibility”
List of element properties for the categories “Common” and “Specific” with definitions of the display options.

“Property” Defines the element properties displayed next to the element in the SFC dia-
gram.

“Value” : Display of the property value.

“With Name” : Display of the property value including name.

Table 589: “Online”
“Show step time” : In online mode, CODESYS displays the step time to the right of the steps.

Dialog 'Options' - 'SmartCoding'
Symbol:
Function: This dialog is for configuring the settings for easier coding.
Call: Menu bar: “Tools è Options”, “SmartCoding” category

“Declare unknown variables
automatically (AutoDeclare)”

: The “Declare Variable” dialog opens when you type an undeclared identifier
into an implementation language editor and then click away from the input line.
In order for the AutoDeclare function to be available in the ST editor as well, the
“Enable for ST editor” option also has to be selected.

“Enable for ST editor” Requirement: The “Declare unknown variables automatically (AutoDeclare)”
option is selected.

: The AutoDeclare function is also available in the ST editor.

: The AutoDeclare function is not available in the ST editor.

Tab 'View'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2796

“Show all instance variables in
Input Assistant”

: The "List components" function also lets you select the local variables of a
function block instance.

: The "List components" function lets select only the input variables and output
variables of a function block instance.

“Show symbols from system
libraries in Input Assistant”

System libraries are inserted in the library manager automatically and displayed
in light gray.

: Symbols, such as global variables, data types, and function blocks, are
offered in the Input Assistant.

: The symbols of the system libraries are not available in the Input Assistant.

“List components after typing a
dot (.)”

: Activates the "List components" function. When you type a dot (.) at a
location where CODESYS expects an identifier, a list box appears with possible
code.

“List components immediately
when typing”

Requirement: The “List components after typing a dot (.)” check box is selected.

: While you type code, a list box appears with possible identifiers and opera-
tors.

“Insert with namespace” : CODESYS adds the namespace before the identifier.

“Convert keywords to
uppercase automatically
(AutoFormat)”

: CODESYS displays all keywords in uppercase.

“Automatically list selection in
cross-reference view”

: The cross-reference list automatically shows the references of variables,
POUs, and DUTs that are currently selected or where the cursor is waiting.

“Underline errors in the editor” : Incorrect or unknown program code is underlined.

“Highlight symbols” : All occurrences of a symbol where the cursor is positioned are highlighted in
color within the editor. In this way, cross-references within the editor are quickly
detected.

“Max. degree of parallelism” List box for the number of parallel threads that can be used for the precompile
processing.
CODESYS detects the displayed number of threads from the number of CPU
cores. This default number should be changed only in exceptional cases.

See also
● Ä Chapter 6.4.1.20.1 “Programming Languages and Editors” on page 2047
● Ä “Smart tag functions” on page 1888
● Ä Chapter 6.4.1.9.14.1 “Using the cross-reference list to find occurrences” on page 1906
● Ä Chapter 6.4.1.20.1.4.1 “ST Editor” on page 2049

Dialog 'Options' - 'Startup settings'
Symbol:
Function: In this dialog the “Version profile” and the “License” are set.
Call: menu “Tools è Options”, category “Startup settings”

“Version profil:” Automation Builder 2.5

 “Display selected dialog at each start”: Refers to the version
of the AB to be displayed

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2797

“License:” “Default: take any available license”

 “Use only local license”

 “Display license selection dialog if shared licenses are
available”

The modified settings will be valid after restart of the Automation Builder.

Dialog 'Options' - 'Text Editor'
Symbol:
Function: The dialog contains settings for displaying and working in a text editor.
Call: Menu bar: “Tools è Options”, “Text Editor” category

On this tab, you set the desired theme in the interface design of the ST editor.

“Theme” Color theme for the text editor. The selected theme is shown in the “Preview”
window. The available color schemes are stored in the installation directory in
the Themes folder.

Tab 'Theme'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2798

“Number of undos” Maximum number of editing steps that you can apply the “Edit è Undo” com-
mand to.

“Folding” Defines the structuring of the code by indentation.
When you select an indentation, you can expand or collapse the indentation
section by means of a plus and minus sign in front of the first line of each
section.
● “Indent”: CODESYS combines all lines that are indented in relation to the

preceding line into one indentation unit.
● “Explicit”: You mark the code segment explicitly with comments that should

be combined in one indentation unit: a comment with three opening braces
"{{{" has to be before the segment, and a comment with three closing braces
"}}}" has to be after the segment. The comments can contain additional text.
Example:

“Word wrap” ● “Soft”: The line break occurs at the edge of the editor window when 0 is
specified for “Wrap margin”.

● “Hard”: The line break occurs after the number of characters specified for
“Wrap margin”.

“ Tab width” Number of characters

“Keep tabs” : CODESYS does not break up the space you have inserted with the [Tab] key
into individual spaces afterwards.

“Indent width” If you have selected “Smart” or “Smart with code completion” for the “AutoIndent”
option, then CODESYS inserts the number of spaces at the beginning of the line.

“AutoIndent” ● “None”
● “Block”: A new line automatically applies the indentation of the previous line.
● “Smart”: Lines that follow a line which contains a keyword (for example, VAR)

indent automatically by the specified Indent width.
● “Smart with code completion”: Indentation as in the case of the “Intelligent ”

option, but CODESYS also inserts the closing keyword (for example,
END_VAR).

“Highlight current line” : The line where the cursor is located is highlighted.

“Matching brackets” : When the cursor is positioned before or after a bracket within a line of code,
the corresponding closing or opening bracket is marked by a frame.

Tab 'Editing'

Tab 'Text Area'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2799

“End of line markers” : The end of each editor line is marked by a small dash after the last character
(including spaces) of the line.

“Wrap guide” : When a soft or hard line break is activated, the defined line break position is
displayed with a vertical line.

“Font” Clicking the field opens the default dialog for configuring the font.

Settings for the left margin of the text editor window, which is separated from the input area by a vertical line:

“Line numbering” : The declaration and implementation parts of the editor are numbered on the
left, each beginning with 1.

“Highlight current line” : The line number of the line where the cursor is located is highlighted.

“Show bracket scope” : Brackets include the lines between the keywords that open and close a
construct (for example, IF and END_IF). When the option is enabled and the
cursor is positioned before, after, or in one of the keywords of a construct, the
bracket area is displayed with a square bracket in the margin.

“Mouse Actions” You can assign one of the following actions to each of the specified mouse
actions or mouse-keyboard combinations. CODESYS performs the selected
action when you move the mouse to the plus or minus sign in front of the header
of a bracketed area:
● “None”: The mouse action does not trigger an action.
● “Select fold”: CODESYS selects all lines of the bracketed area.
● “Toggle fold”: CODESYS opens or closes the bracketed area, or if there are

nested brackets, the first level of the bracketed area.
● “Toggle fold fully”: CODESYS opens or closes all levels of a nested brack-

eted area.

Settings for displaying the monitoring fields

“Enable inline monitoring” : Display of the monitoring fields behind the variables in online mode

“Number of displayed digits” Number of comma places in the monitoring field

“String length” Maximum length of string variable values in the monitoring field

See also
● Ä Chapter 6.4.1.9.5.4.2 “Programming structured text (ST)” on page 1879

Dialog 'Customize'
6.4.1.21.4.15.1 General.. 2800
6.4.1.21.4.15.2 Dialog 'Customize' - 'Menu'... 2801
6.4.1.21.4.15.3 Dialog 'Customize' - 'Command Icons' 2801
6.4.1.21.4.15.4 Dialog 'Customize' - 'Toolbars'... 2802
6.4.1.21.4.15.5 Dialog Box 'Customize' - 'Keyboard' 2802

General
The dialog contains the tabs to configure the user interface.
You can reset the CODESYS settings to default by use of the “Reset” button.

Tab 'Margin'

Tab 'Monitoring'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2800

Dialog 'Customize' - 'Menu'
Function: With this dialog, you define the structure and contents of the user interface.
Call: Main menu “Tools è Customize” (“Menu”).
When you click “OK” to close the dialog, the changes are visible in the menu bar of the
CODESYS user interface.

Table 590: “Menu”
Display of currently defined menus, submenus, and included commands. In CODESYS, a menu or submenu
caption is identified by the caption symbol (). The layout from top to bottom corresponds to the layout displayed
later in the CODESYS menu.

“Add Command” Enabled when a command is selected.
Adds a command above the selected command. Opens the “Add Command”
dialog.
Use the “Add Command” dialog for selecting one or more commands. Left part:
List of categories. Right part: List of commands in the selected category.

“Add Separator” Adds a separator above the selected command.

“Add Popup Menu” Adds a popup menu above the selected menu, submenu, or command. Opens
the “Add Popup Menu” dialog.

“Edit Popup Menu” Opens the “Edit Popup Menu” dialog.

“Reset” Resets the default settings of the entire menu.

“Load” Loads the settings from a stored file (<file name>.opt.menu).

Table 591: “Add Popup Menu”
In CODESYS, a new menu is shown in the menu bar only when the menu contains at least one command.

“Default text” Select this check box when localization is available.

“Localized Texts” List: Languages and localized texts.

“Add Language” Opens a drop-down list of available languages.
In CODESYS, the selected language is displayed in the area “Localized Texts”.
Use the “Text” column for typing the localized texts.

See also
● Ä Chapter 6.4.1.2.2.2 “Customizing menus” on page 1802
● Ä Chapter 6.4.1.21.4.15.4 “Dialog 'Customize' - 'Toolbars'” on page 2802

Dialog 'Customize' - 'Command Icons'
Function: This dialog defines the icons of the menu commands.
Call: Menu bar: “Tools è Customize” (“Command Icons”).

Table 592: “Command icon”
“Assign” Opens a dialog for selecting the new icon (*.ico).

“Remove” Removes the user-defined icon. The default icon is active again.

“Reset” Resets all default settings of the command icons.

“Load” Loads the settings from a stored file (<file name>.opt.keyb).

“Save” Saves the current settings to a file (<file name>.opt.keyb).

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2801

See also
● Ä Chapter 6.4.1.2.2.4 “Customize command icon” on page 1805

Dialog 'Customize' - 'Toolbars'
Function: Use this dialog for generating new toolbars or customizing existing toolbars.
Call: Main menu “Tools è Customize” (“Toolbars”).
When you click “OK” to close the dialog, the changes are visible in the menu bar of the
CODESYS user interface.

Table 593: “Toolbars”
Display of currently defined toolbars. In CODESYS, the associated commands are listed below each toolbar in the
order they will appear in the toolbar.
Double-clicking a toolbar in the list switches to editing mode.

“Add Toolbar” Enabled when a toolbar is selected.
In CODESYS, this adds a toolbar above the selected toolbar and places the
cursor in the name field of the new toolbar.

“Add Command” Enabled when you select a command or blank command entry below a toolbar.
Adds a command above the selected command. Opens the “Add Command”
dialog.
Use the “Add Command” dialog to select one or more commands. Left part: List
of categories. Right part: List of commands in the selected category.

“Add Separator” Adds a separator above the selected command.

“Hide” Hide the selected toolbar from the user interface.

“Show” Shows the selected hidden toolbar in the CODESYS user interface.

“Reset” Resets the default settings of the toolbars.

“Load” Loads the settings from a stored file (<file name>.opt.tbar).

See also
● Ä Chapter 6.4.1.2.2.3 “Customizing toolbars” on page 1804
● Ä Chapter 6.4.1.21.4.15.2 “Dialog 'Customize' - 'Menu'” on page 2801

Dialog Box 'Customize' - 'Keyboard'
Function: This dialog box is used for defining keyboard shortcuts (quick access keys or key-
board combinations) for commands.
Call: Main menu “Tools è Customize” (“Keyboard”).

Table 594: “Keyboard”
“Shortcuts for selected
command”

Keyboard shortcuts for the selected command The drop-down list can include
more than one keyboard shortcut for the command.

“Press shortcut keys” Input field for the keyboard shortcut of the selected field. Permitted combinations
include [Ctrl], [Alt], [Shift], and other keys. You clicking “Assign” to assign a
recorded keyboard shortcut to a selected command.

“Shortcut keys currently used
by”

Command assigned to the currently defined keyboard shortcut

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2802

“Reset” Resets the default settings of the keyboard shortcuts.

“Load” Loads the settings from a stored file (<file name>.opt.keyb).

Dialog 'Trace Configuration'
6.4.1.21.4.16.1 Dialog 'Advanced Trace Settings'.. 2803
6.4.1.21.4.16.2 Dialog 'Trace Configuration'.. 2804

Dialog 'Advanced Trace Settings'
Function: This dialog provides extended settings for recording data.
Call: “Advanced” button in “Trace Configuration ” dialog, “Record Settings” subdialog
Requirement: The trace editor is open and active. The dialog “Trace configuration” is open
and the top node of the trace record tree is selected so that the subdialog “Record settings” is
available.

For the calculation of the values, you have to select a task in the “Trace
Configuration” dialog.

The buffer size is defined as "number of samples". CODESYS calculates the time intervals that corresponds to
this number and displays the result in normal fonts on the right outside the table (for example, “1h1m1s1ms”). The
calculation is possible only with the help of the task configuration settings and when the task cycle time is known.

“Measurement in every n-
th cycle”

Data sampling in every n task cycle
Default: 1; then the application performs the data sam-
pling in each task cycle.

Sampling interval which
is automatically calculated
from the value specified in
the Measurement in every
n-th cycle option
Example: 100ms

“Recommended runtime
buffer size (samples)”

Calculated automatically and therefore recommended
number of samples which the application can store per
trace variable at runtime
This value determines the maximum ring buffer size in
the runtime system. This buffer size is automatically cal-
culated from the task cycle time and the value in the
“Measure in every n-th cycle” option, and the displayed.
This buffer size is used when the “Override runtime
buffer size” option is disabled.

Maximum length of the
time interval during which
the application samples
data on the runtime system
Example: 2s
Note: The calculation is
possible only when the set-
tings of the trace configu-
ration are set in the “Trace
Configuration ”dialog and
therefore the task cycle
time is known.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2803

“Override runtime buffer
size”

 Enables the input field for you to specify your own
defined buffer size At runtime, the value which you have
specified here is used, not the value displayed in the
Recommended runtime buffer size (samples) option.
Example: 100
At least 10

 The application uses this value, not the value calcu-
lated by CODESYS from the Recommended runtime
buffer size (samples) option.

Maximum length of the
time interval during which
the application samples
data on the runtime system
without overwriting it.
Example: 6s

“Trace editor buffer size
per variable (samples)”

Number of values that can be stored per variable in the
trace editor.
Example: 10000

The maximum time period
for the display in the trace
editor results from the
maximum number and the
sampling interval of the
data sampling. You can
scroll back a maximum of
this time in the trace editor.

Column (1) notifies you about the number of samples.
Column (2) next to it displays the calculated time intervals which result.
_cds_img_trace_example_calculation.png
The information displayed in the example means that one sample is taken per task cycle in the
runtime system and continuously cached in a ring buffer, which can hold a maximum of 201
samples. The enabled “Override runtime buffer size” option has the effect that, due to the ring
buffer, the first cached values are first overwritten after 100 samples. During this time, 10000
samples are continuously displayed in the trace editor so that a value curve can be displayed
over an interval of 1 minute and almost 40 seconds.

Example

See also
● Ä Chapter 6.4.1.21.2.31 “Object 'Trace'” on page 2541
● Ä Chapter 6.4.1.13.3.3 “Creating trace configuration” on page 2010

Dialog 'Trace Configuration'
Symbol:
Function: The dialog includes the trace configuration for the data recording.
Call
● “Trace è Configuration”; context menu
● Link “Configuration” in the trace editor
● Link “Add Variable” in the trace editor
Requirement: The editor of a trace object is open and active.
See also
● Ä Chapter 6.4.1.13.3.3 “Creating trace configuration” on page 2010
● Ä Chapter 6.4.1.13.3 “Data Recording with Trace” on page 2007
● Ä Chapter 6.4.1.20.6.3.26 “Attribute 'monitoring'” on page 2295

The tree view lists the variables that are traced and allows for access to the variable settings.Tree view 'Trace
Record'

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2804

Selected trace name The “Record Settings” subdialog is displayed on the right.

Selected trace variable The “Variable Settings” subdialog is displayed on the right.

Table 595: Context menu commands
 “Add Variable” Adds a new trace variable. The “Variable Settings” subdialog opens on the right

and it is partially configured. Select a variable in the input field of the “Variable”
setting to trace its value curve.

“Assign to Diagram” Lists the diagrams (in the submenu on the right) where the selected variable is
not currently displayed. Select a diagram to display the variable there.
The command is available when a variable is selected in the tree view.
Hint: When the command is deactivated, the variable is already displayed in all
diagrams.

“Enabled” Selected by default
Disabled variables are displayed as disabled. They are neither displayed nor
recorded.

The tree view lists the diagrams that are displayed in the trace editor and allows for access to
their display mode.

Selected node “Time axis” The “Display Mode” subdialog for the time axis is displayed on the right. You can
specify the time axis display. See below.

Selected diagram name The settings for the coordinate system of the diagram and a preview are dis-
played on the right. See below.

Selected node “Y-axis” The “Display Mode” subdialog is displayed on the right. You can specify the axis
display. See below.

“Show variables”

Selected trace variable The “Variable Settings” subdialog is displayed on the right. You can configure the
trace variable. See below.
Note: These are the same settings that can be accessed in the “Trace Record”
tree view.

Table 596: Context menu commands
 “Add Diagram” Adds a new diagram below and displays it in the tree view “Presentation

(Diagrams)”.

 “Add New Variable” Adds a new trace variable. The “Variable Settings” subdialog opens on the right
and it is partially configured. Select a variable in the input field of the “Variable”
setting to trace its value curve. Specify its display. In addition, the variable is
assigned to the selected diagram.

“Add Existing Variable” Lists all trace variables (in the submenu on the right) where the selected diagram
is not currently displayed. Select a variable in order to display it in the selected
diagram.
Hint: When the command is deactivated, all trace variables are already displayed
in the selected diagram.

Requirement: The top node is selected in the “Trace Record” tree view.

Tree view 'Pre-
sentation (Dia-
grams)'

Subdialog 'Re-
cord Settings'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2805

“Enable trigger” : Triggering is enabled. The trace data is buffered at runtime only when a
trigger signal has been sent. You determine how the trigger signal is sent in the
“Trigger variable”, “Trigger parameter”, “Trigger edge”, “Post-trigger (Samples)”,
and “Trigger level” settings.

: Continuous display of current records

“Trigger variable” Signal that is used as a trigger. A complete instance path is required.
A valid trigger signal is an IEC variable, a property, a reference, a pointer, an
array element of the application, or an expression. Allowed types are all IEC-
based types except STRING, WSTRING, and ARRAY. Enumerations are allowed
when the base type is not STRING, WSTRING, or ARRAY The contents of a
pointer are not a valid signal.
When the runtime system uses the CmpTraceMgr component, a property that is
linked to the 'monitoring' attribute can then be recorded as a variable.

“Trigger parameter” System parameter that is used as a trigger
The “Input Assistant” dialog lists all valid system parameters in the “Parameters”
category of the “Categories” tab.

Allows the selection of “Trigger variable” or “Trigger parameter”

“Trigger edge” Defined the edge detection for triggering:

● “positive”
– For Boolean trigger variables, triggering occurs when the values changes

from FALSE to TRUE.
– For analog trigger variables, triggering occurs when the value as defined

in “Trigger level” is reached from below.
● “negative”

– For Boolean trigger variables, triggering occurs when the values changes
from TRUE to FALSE.

– For analog trigger variables, triggering occurs when the value as defined
in “Trigger level” is reached from above.

● “both”
– For Boolean trigger variables, triggering occurs when the values

changes.
– For analog trigger variables, triggering occurs when the value as defined

in “Trigger level” is reached.

“Post trigger (samples)” Number of records per trace variable that are buffered after triggering. Default:
50; value range: 0 to (232 - 1)

“Trigger level” Value that is reached to start the triggering

“Task” Task in which the data is recorded.

“Recording condition” At runtime, the application checks the recording condition. If it is fulfilled, then the
trace data is buffered.
Record condition for data recording with CmpTraceMgr runtime system compo-
nent:
● As an expression that includes only permitted operators and operands.

Allowed operators that can also be nested: (logical) AND, NOT,OR, compar-
ison operators <, <=, >, >=, =, <>.
Allowed operands: Variables that are valid for trace.

● As a variable.
Allowed type: BOOL, bit access, property. The condition is fulfilled for TRUE or
1. The contents of a pointer are not permitted.

Recording condition for a data recording with IEC code.
● As an expression that returns a Boolean value.

“Comment” Comment (for example, from the recording condition)

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2806

“Resolution” Unit of measure for the time stamp that is recorded per data set
● “ms”: Time stamp (in milliseconds).
● “µs”: Time stamp (in microseconds) for a task cycle time of 1 ms or less

“Automatic restart” : Persistently saves the trace configuration and the last contents of the RTS
buffer to the target device. After the device has been restarted, the trace is
started automatically if the trigger has not occurred yet.

“Advanced” Opens the “Advanced Trace Settings” dialog.

See also
● Ä Chapter 6.4.1.21.4.16.1 “Dialog 'Advanced Trace Settings'” on page 2803

Requirement: A trace variable is selected in the “Trace Record” or “Display (Diagrams)” tree
view.

“Variable” Valid variable Variable; value recorded with full instance path.
Valid:
● IEC variable
● Property
● Reference
● Contents of the pointer
● Array element
Allowed data type
● IEC-based type except STRING, WSTRING, or ARRAY
● Enumeration when the base type is not STRING, WSTRING, or ARRAY
When the runtime system uses the CmpTraceMgr component, a property that is
linked to the 'monitoring' attribute can then be recorded as a variable.

“Parameter” Parameter whose data is recorded.
Requirement: Runtime system with CmpTraceMgr component

The “Input Assistant” dialog lists all valid system parameters in the “Parameters”
category of the “Categories” tab.

Allows toggling between “Variable” and “Parameter”

“Color” Color of the variable in the trace diagram

“Line type” Display as line chart

● “Line”: Values are linked to form a line.
● “Step”: Values are linked in the form of steps
● “None”: Values are not linked

“Point type” Display as scatter chart

● “Dot”: Value is displayed as a dot
● “Cross”: Value is displayed as a cross.
● “None”: value is not displayed

“Activate minimum warning” : Warning when less than the lower limit

“Critical lower limit” If the value of the trace variable falls below the limit, the variable is displayed in
the warning color.

“Color” Warning color on falling below the limit

“Activate maximum warning” : Warning when exceeding the upper limit

Subdialog 'Vari-
able Settings'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2807

“Critical upper limit” If the value of the trace variable exceeds the upper limit, the variable is displayed
in the warning color.

“Color” Warning color on exceeding the limit

Requirement: An axis is selected in the tree view “Presentation (Diagrams)”

“Display Mode” Scaling
● “Auto”:

Automatically scaled time axis
● “Fixed length”:

Time axis segment with a constant “Length”
● “Fixed”

Time axis segment from “Minimum” to “Maximum”

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Length” Constant segment length; the initial value is adapted automatically.

“Grid” : Diagram with grid line in the X-direction. Select the grid line color from the list
box of colors.

Table 597: “Tick marks”
“Fixed spacing” : Display of tick marks with “Distance” and “Subdivisions”.

“Distance” Distance between tick marks

“Subdivisions” Number of subdivisions between two tick marks

“Font” Font for the time axis.

Link “Preview” Displays the preview of the diagram.

Requirement: A diagram is selected in the tree view “Presentation (Diagrams)”

Subdialog 'Dis-
play Mode'

Diagram pre-
view

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2808

“Background color” Background color of the diagram. opens the list box of colors.

“Background color on
selection”

Background color of the selected diagram.

Link “Add Variable” Adds a new trace variable (in the “Trace Record” tree view).

Link “Delete Variable” Deletes the selected trace variable (in the “Trace Record” tree view).

Link “Add Diagram” Adds a new diagram (in the “Display” tree view).

Link “Delete Diagram” Deletes the selected diagram (in the “Display” tree view).

Link “Reset Display Settings” Resets the display settings of either the selected diagram or Y-axis to the default
values.

“OK” Accepts the configuration changes and saves the trace configuration.

Dialog Box 'Trend storage'
Function: This dialog box includes the configuration for buffering the trend data of a trend
recording.
Call: “Trend Storage” button in the editor of a trend recording.

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2809

“Maximum number of
variables”

Maximum number of trend variables that can be managed in the database. If
you increase this value afterwards, then will CODESYS perform a download and
reconfigure the database.

“Store every N milliseconds” Time interval (in ms) when the CmpTraceMgr runtime system component buf-
fers the recorded data before storing it persistently in the database. The applica-
tion calculates internally the number of task cycles from the time interval. The
duration of a task cycle is defined in the task configuration.
A high value results in better runtime performance. The disadvantage is the
increased risk of losing data if the controller crashes or shuts down. A low
value reduces this risk. The disadvantage is the slower control over a trend
visualization with large amounts of data.

“Limit” : Limit the recording
● “No Limit”: Unlimited number of data records (not recommended)
● “Maximum number of records”: Maximum number of data records that are

stored in the database. A data record consists of time stamp and the values
of the trend variables at this time.

● “Maximum storage size”: Maximum size of the trend storage. The application
calculates internally the number of data records.
Clicking the "down" symbol () of the drop-down list will set the units to
kilobytes (KB), megabytes (MB), or gigabytes (GB).

See also
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545
● Ä Chapter 6.4.1.13.4.2 “Getting started with trend recording” on page 2017

Dialog Box 'Advanced Trend Settings'
Function: This dialog box provides more settings for configuring trend recording.
Call: Click “Advanced” in the editor of a “TrendRecording” object.

“Measure in every n-th cycle” Frequency that the runtime system records data, depending on the number of
processed task cycles. Select a value from the drop-down list or type a value into
the input field.
Using the settings from the task configuration, CODESYS calculates the time
interval according to the frequency. Therefore, the calculation is possible only if
at least the task cycle time is set. The result is shown on the right of the input
field in normal syntax (for example, “1h1m1s1ms”).
Default: 1 means that data is recorded in each task cycle.

“Additional Runtime Buffer for” Length of the time interval when the runtime system can record more data (for
example, 1000 ms).

If a delay occurs when writing data in the runtime system component, then there
is a risk of data loss due to overwriting. In this case, the runtime system uses the
addition buffer.

See also
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545
● Ä Chapter 6.4.1.13.4 “Data Recording with Trend” on page 2016
● Ä Chapter 6.4.1.13.4.3 “Configuring trend recording” on page 2018

Configuration and programming
Programming with CODESYS > CODESYS Development System

2024/01/053ADR010583, 1, en_US2810

Dialog 'Certificate Selection'
Symbol:
Function: This dialog is used for selecting the certificates for encryption, decryption, and digital
signatures.
Call:
● “Security Screen” view, “User” tab
● Main menu: “View è Properties”, “Security” tab when the “Application” is selected in the

device tree.
● Main menu: “Project è Project Settings”, category “Security”

The purpose of the certificate that is selected in the dialog depends on the call location:
● Call location: “Security screen” view, “User” tab

– Certificate for digital signatures
– Certificate for the decryption of project files
– Certificate for encrypted communication

● Call: “View è Properties” of the application
– “Certificates of devices that share the encrypted download and the boot application”

● Call location: “Project è Project settings”, category “Security”
– “Certificate for project encryption”

Listing of the selected certifi-
cates in a table

The following properties are displayed for each selected X.509 certificate:
● “Issued for”
● “Issued by ”
● “Valid from”
● “Valid until”
● “Thumbprint”: SHA1 fingerprint
Double-clicking an entry opens the “Certificate” dialog with the “General” tab,
“Details” tab, and “Certification Path” tab. In that tab, you will find a reference to
Windows help with more information about the dialog.

Adds the selected available certificate to the list of selected certificates.

Deletes the certificate selected in the list.

“Available certificates in the
local Windows Certificate
Store”

Double-clicking an entry opens the “Certificate” dialog with the “General” tab,
“Details” tab, and “Certification Path” tab. In that tab, you will find a reference to
Windows help with more information about the dialog.

Certificate icons ●
● : Certificate with a private key
● : Untrusted certificate

See also
● Ä Chapter 6.4.1.21.3.4.18 “Command 'Security Screen'” on page 2592

Dialog 'Certifi-
cate selection'

Configuration and programming

Programming with CODESYS > CODESYS Development System

2024/01/05 3ADR010583, 1, en_US 2811

6.4.2 Fieldbus Support
6.4.2.1 Device Diagnosis.. 2812
6.4.2.2 Fieldbus Devices and I/O Drivers... 2812
6.4.2.3 Bus Cycle Task... 2814
6.4.2.4 Symbolic Access to I/O Channels.. 2815
6.4.2.5 EtherNet/IP... 2816

6.4.2.1 Device Diagnosis
CODESYS provides general and fieldbus-specific function blocks for performing a diagnosis on
the connected devices.

You can perform a diagnosis on devices regardless of the fieldbus. The function blocks from the
CAA Device Diagnosis library are provided for this purpose.

Before you can work with these function blocks, you have to select the “Enable diagnosis for
devices” option in the PLC settings. This causes CODESYS to create instances of the diagnosis
functions blocks automatically. These function blocks can be used for your diagnosis.

Work exclusively with the automatically generated instances of the diagnosis
function blocks. Do not create your own instances.

See also
● Ä Chapter 6.4.1.21.2.8.10 “Tab 'PLC Settings'” on page 2439
● Library CAA DeviceDiagnosis

For bus-specific diagnosis options, see the diagnosis chapters of the individual fieldbuses.

6.4.2.2 Fieldbus Devices and I/O Drivers
The technical basis for each fieldbus device, which is configured in the device tree, is the
CODESYS I/O driver.
The I/O driver is the link between the fieldbus stack, the IEC application, and the CODESYS
IDE. The driver configures the fieldbus stack from the data of the device configuration. It shows
the diagnosis, provides an API for the IEC application, and is responsible for the I/O mapping
(see chapter "I/O Mapping").
This chapter provides a brief overview of the basic functionality of CODESYS I/O driver devices,
without discussing the details of specific bus systems. In addition, some recommendations for
the configuration are provided.

The bus cycle task is the IEC task in whose context the I/O driver is executed. Some I/O drivers
use multiple tasks: usually one real-time critical task (with high priority), which is used for the
transfer of I/O data, and another task with low priority for tasks such as evaluating diagnostics
and executing acyclic services of the bus system.
With real-time critical bus systems, it has to be ensured that no operations are executed in the
context of this bus task that would interrupt the bus clock due to the execution time.
The bus task can be configured in the I/O mapping dialog of the I/O driver device. Note that
the settings of the parent device are inherited by default. If this device is the PLC, then its PLC
setting applies in the bus cycle task.

General diag-
nosis

Bus-specific
diagnosis

Bus cycle task

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2812

ms-its:CAA%20Device%20Diagnosis.chm::/index.html

NOTICE!
If this above setting is not set, then the task with the shortest cycle time is used.
In this way, a non-real-time I/O driver can be executed unintentionally in the
task context of a real-time critical driver, thus interrupting its communication. To
diagnose these communication problems, it is recommended to check the task
monitoring.

See also
● Ä Table 418 ““Bus Cycle Options”” on page 2440

An essential function of an CODESYS I/O driver is to update the I/O mapping. This means the
mapping of the I/O data of the bus system to variables of the IEC application (and vice versa).
The input/output data is mapped cyclically by copy and conversion operations in both directions
from the internal memory image of the bus system to IEC variables assigned to %I and %Q
addresses.
For the I/O driver, there is no internal difference whether symbolic names or "direct" access
to the %I and %Q addresses are used for this I/O mapping. For the maintainability of the
application, it is recommended to always use descriptive variable names (example: variable
"TemperatureReactor" instead of "%IW117" access).
The updating of the I/O mapping can be set with “Always update variables” (globally in the “PLC
Settings” or individually for each device in the I/O mapping dialog):
● Disabled:

Only I/O data used in the application is mapped.
This may improve performance by avoiding the copy operations, but may cause confusion if
the I/O data in the I/O mapping dialog is not updated (the values are then grayed out). This
setting is recommended for an application whose development has been completed.

● Enabled 1:
All data is updated.

● Enabled 2:
Caution: For productive use in special cases only.
As a result, inconsistent I/O data may occur, because the bus cycle task reads/writes this
data while the application code uses it in other tasks.
See „Consistency of I/O data“.

See also
● Ä Chapter 6.4.1.21.2.8.12 “Tab '<device name> I/O Mapping'” on page 2444

The CODESYS programming system allows the IEC application to use multiple tasks executed
in parallel (for visualization, field buses, or other POUs). The application code can access I/O
data from the context of these tasks via the mapped IEC variables. By accessing the same data
from different tasks, inconsistent or corrupt data could occur (for example, due to interrupted
write access).
The I/O driver ensures data consistency by providing each task executing a task cycle with a
consistent mapping – a snapshot, so to speak – of all I/O data used.
So a code like in the following example cannot cause problems: (Note "DIV by ZERO")

IF(inputData <> 0) THEN // inputData is mapped to %I
 x := y / inputData; // This will never result in
DIV_BY_ZERO Exception
END_IF // inputData is not updated by
bus cycle during execution of POU

I/O mapping

Consistency of
I/O data

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2813

NOTICE!
With the “Always update variables” option set to “Enabled 2 – always in bus
cycle task”, this mechanism is overridden. Accordingly, the application code has
to take this into account.

In addition to the basic functionality, some I/O drivers provide services that can be called from
the CODESYS IDE, such as the device scan function or the setting of device addresses.

Settings:

● “PLC Settings”: I/O updates in stop:
The bus cycle continues even when the application is stopped, for example when the
application is on a debug breakpoint. In this way, communication with the field devices is
maintained and can be continued immediately without interruption.

● “PLC Settings”: “Always update variables” is set to “Enabled 1 – use bus cycle task if not
used in any task”:
During the development of the application, it is useful to see the values of all I/O data.

Task configuration:
● Especially for real-time critical fieldbus systems such as Profinet, EtherCAT, or CAN, which

depend on maintaining an exact send/receive clock, it is recommended to use a separate
bus cycle task with high priority. For less real-time-critical tasks (for example, visualization) a
significantly lower priority should be selected than for the bus cycle task.

● In order to achieve maximum I/O throughput with as little offset as possible, separate POUs
can be executed in the bus task of the fieldbus system. However, these then have to meet
the real-time requirements: for example, no file access or blocking socket functions may be
executed, but for example only the calculation of the output data.

If consistent access to I/O data from multiple tasks and possibly across multiple I/O driver
instances has to be synchronized, then undesired reciprocal interference between the bus and
application task may occur under certain circumstances.
This is the case, for example, when the general system load is high or when the I/O data of the
real-time critical fieldbus system is used together with I/O data of a slow and blocking local bus
system in the same task.
In case of unexpected interference of the communication, with the particularly real-time-critical
fieldbuses (EtherCAT, Profinet, CAN), the task monitoring should therefore first be examined for
very large jitter or outliers in the cycle time (maximum value compared to average value). The
task list provides detailed information about the use of I/O data in different tasks.
It may be possible to avoid using I/O data from different bus systems in one and the same task
or to reduce the number of I/O tasks.
See also
● Ä Chapter 6.4.1.21.2.8.18 “Tab 'Task deployment'” on page 2459

6.4.2.3 Bus Cycle Task
Generally, for each IEC task, the used input data is read at the start of each task (1) and the
written output data is transferred to the I/O driver at the end of the task (3). The implementation
in the I/O driver is decisive for additional transfer of the I/O data. It is responsible for the time
frame and time point that the actual transfer to the corresponding bus system occurs.
The bus cycle task of the PLC can be defined globally for all fieldbuses in the PLC settings. For
some fieldbuses, however, you can change this independent of the global setting. The task with
the shortest cycle time is used as the bus cycle task (setting: “unspecified” in the PLC settings).
The messages are normally sent on the bus in this task.

Services

General recom-
mendations

Multiple I/O
drivers and
tasks (trouble-
shooting)

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2814

Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Task usage
The “Task Deployment” tab provides an overview of used I/O channels, the set bus cycle task,
and the usage of channels.

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
If the same inputs are used in various tasks, then it is possible for the input
to change during the processing of a task. This happens when the task is
interrupted by a task with a higher priority and causes the process image to be
read again. Solution: At the beginning of the IEC task, copy the input variables
to variables and then work only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

6.4.2.4 Symbolic Access to I/O Channels
6.4.2.4.1 General

You get direct access to the I/O channels of your device by means of specially generated
function blocks, without having to actively set up a mapping manually for each device and for
each channel.

● The inputs and outputs are combined into a function block under the name of the I/O
channel. If possible, the basic block defined in the device description is extended.

● The channel name corresponds to the name as specified in the device editor on the I/O
Mapping tab in the "Channel" column.

● The input and output variables created in this way are also displayed in the Input Assistant.

Automated gen-
eration

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2815

● If the I/O channels are structured or enumerations, then their function blocks are also
structured accordingly. As such, the generated function blocks contain structured inputs and
outputs or enumerations.

● For channels with identical names, the suffix _<X> is appended to the input or output of the
function block.

● If a device does not have its own I/O channels (example: EK1100 Slave), then no function
block is created.

6.4.2.4.2 Enable automatic mapping
1. In the Devices view, open the top device. In the device editor, select the PLC Set-

tings tab.
Under Additional Settings, there is the Enable symbolic access for I/Os option.

2. Select the check box.
The generated function block instance is displayed on the IEC Objects tab of the device.
For each I/O channel, a (usually extended) function block is now automatically created
and instantiated. This provides you with direct access immediately. You can access the I/O
channel by means of the variables of the function block.

Example: EtherCAT Slave
The new function block extends the existing function block. The EL1008 function block instance
is listed in the device editor below the EtherCAT IEC Objects tab.
Function block: EL1008_FB
The DrvEthercatLib.ETCSlave_Diag function block is extended to EL1008_FB and gets the
output variables Input_<n>.

If no function block is defined in the device description which can be extended, then a new
function block is generated. For example, the Generic_XN1AI function block instance is listed in
the device editor below the IEC Objects tab.

The BK5120_FB function block, which extends the existing _3SCOS.CANRemoteDevice func-
tion block according to the device description, is generated. The BK5120 function block instance
is listed in the device editor on the CANopen IEC Objects tab.

6.4.2.4.3 Online Mode
In online mode, the data is updated by means of the existing functions. However, only those
of the generated variables which are actually used are updated. Or if the Always update
variables option is enabled.
If a channel is simultaneously accessed symbolically and via I/O mapping, then compiler warn-
ings are issued.

6.4.2.5 EtherNet/IP
6.4.2.5.1 Introduction

EtherNet/IP is used to connect any number of different terminals in a network, using a scanner-
adapter relationship. The scanner can be thought of as a teacher and the adapter as a student.
The scanner gives commands to the adapter in the form of input data and the adapter responds
to the request with output data. For example, a PLC might send input to a motor to determine
the speed of the machine. The motor, acting as an adapter, would respond with an output
containing the speed of the machine.

Example:
Device without a
defined basic
block

Example:
CANopen

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2816

The difference of EtherNet/IP from other protocols, is that the adapters can accept connections
from more than one scanner. With other protocols, such as Modbus RTU, slave devices can
only connect to a master device. A scanner can connect to any number of adapters and access
their data. However, only one scanner can control the outputs of an adapter. Other scanners
can monitor the output of an adapter.
Ä Chapter 6.8.2.6.1.2 “Ethernet protocols and ports for AC500 V3 products” on page 4480

Ä “Pin assignment” on page 381

6.4.2.5.2 Configuration EtherNet/IP adapter
Setting up the communication gateway

To set up the communication between the PC and the PLC, e.g., for downloading the compiled
program, you have to set up the communication parameters.
The IP address of your PC must be in the same class as the IP address of the CPU.
The factory setting of the IP address of the CPU is 192.168.0.10.
The IP address of your PC should be 192.168.0.X. Avoid X = 10 in order to prevent an IP
conflict with the CPU.
Subnet mask should be 255.255.255.0.
1. Open Windows control panel. Click “Network and Internet

è Network and Sharing Center”.
2. Click “Change adapter settings”.

ð
If using existing network with several devices, please pay attention on
given network rules or contact your system administrator.

3. Right-click “Local Area Connection (Ethernet)” and select [Properties].

Setting up of
communication
parameters

Changing of the
IP address

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2817

4. Double-click “Internet Protocol Version 4 (TCP/IPv4)”.

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2818

5. Enter your desired IP address and subnet mask.

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2819

CPU and PC are connected with an Ethernet cable.

1. In the Automation Builder device tree right-click “PLC_AC500_V3”.
2. Select “Communication Settings”.

Setting up the
communication
gateway

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2820

3. Keep the default value in the IP address of the CPU or type in the current IP address, if
differs.

The standard (default) IP address of the port ETH1 is: 192.168.0.10

4. Select [OK] to implement the IP address.

If you need to scan the network for the CPU or if you have multiple CPUs on the same network.
1. Right-click “PLC_AC500_V3” in the device tree.
2. Select “Communication Settings”.

Network scan

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2821

3. Select “...”.

ð “Pick IP Address for PLC_AC500_V3” opens.

The automatic scan runs.
The results will appear in this field.

4. Select the CPU in the field and select [OK] to implement the needed communications
gateway.

If you need to check the communications settings or if you want to see more information about
the current selected CPU.

1. Double-click “PLC_AC500_V3” in the device tree.

Checking the
communication
settings

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2822

2. Select “Communication Settings”.

ð The selected IP address is shown.

3. If the IP address is not visible, enter the IP address manually.
4. To test the connection and/or to see the CPU information press [Enter] or click on the

black dot next to the PLC figure.

6.4.2.5.3 EtherNet/IP - Bus Cycle Task
The term "bus" includes all fieldbuses as well as the Ä I/O bus. Consider that there is no bus
cycle task for Modbus as Modbus does not provide I/O mapping and is controlled by POUs.
It's recommended to define a dedicated bus cycle task for each fieldbus configured in the
project. It's strongly recommended not to use "unspecified" in the "“PLC Settings”" to avoid
unexpected behavior. The task defined in “PLC Settings” determines the bus cycle task of I/O
bus and, depending on the configuration, of the additional fieldbuses (the setting is by default
inherited).
Especially in case of EtherCAT, a dedicated bus cycle task should be used which is not shared
with other fieldbuses. If [unspecified] is set in the “PLC Settings”, the EtherCAT task might be
automatically used by other fieldbuses, potentially causing the EtherCAT task processing to fail.
This should be avoided by specifying a task different to the EtherCAT task in the “PLC Settings”.
As a rule, for each IEC task the used input data is read at the start of each task and the written
output data is transferred to the I/O driver at the end of the task. The implementation in the I/O
driver is decisive for further transfer of the I/O data. The implementation is therefore responsible
for the timeframe and the specific time when the actual transmission occurs on the respective
bus system.
Other tasks copy only the I/O data from an internal buffer that is exchanged only with the
physical hardware in the bus cycle task.

(1) Read inputs from input buffer (2) IEC task
(3) Write outputs to output buffer (4) Bus cycle
(5) Input buffer (6) Output buffer
(7) Copy data to/from bus
(9) Bus cycle task, priority 1, 1 ms
(10) Bus cycle task, priority 5
(11) Bus cycle task, priority 10, interrupted by task 5
Using tasks
The “Task Deployment” provides an overview of used I/O channels, the set bus cycle task, and
the usage of channels.

General infor-
mation

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2823

WARNING!
If an output is written in various tasks, then the status is undefined, as this can
be overwritten in each case.
When the same inputs are used in various tasks, the input could change when
a task is processed. This happens if the task is interrupted by a task with a
higher priority and causes the process map to be read again. Solution: At the
beginning of the IEC task, copy the input variables to variables and then work
only with the local variables in the rest of the code.
Conclusion: Using the same inputs and outputs in several tasks does not make
any sense and can lead to unexpected reactions in some cases.

6.4.2.5.4 Tabs EtherNet/IP Scanner
Tab EtherNet/IP Scanner - “General”

This tab in the configurator of the EtherNet/IP scanner includes the basic settings. The network
interface used by the scanner is configured in the settings of the Ethernet adapter.

Table 598: Options
Auto-reestablish of connec-
tions

: The scanner always attempts to automatically reestablish an interrupted
connection.
For example, if a timeout is detected for UDP I/O messages or the TCP connec-
tion to the adapter is interrupted. If the option is activated, then the scanner
reconnects to the adapters with the lost connection.

Tab “NetX Configuration”

This tab is only displayed if Ethernet communication modules (e. g. CI50x-
PNIO) based on the highly integrated netX100 microcontroller is used.

As an alternative to the general EtherNet/IP node in case of a NetX field bus the EtherNet/IP
node (NetX) can be added to the device tree. This node provides the additional NetX configura-
tion dialog to select the NetX chip (slot for the card) and the communication channel of this chip.
The name of the setting used in the dialog and the possible settings provided by the selection
lists are defined by the device description.

Table 599: NetX settings
Slot Slot to be used. In case of PCI cards with NetX chip, the slot numbers usually

correspond to the PCI card numbers.

NetX Com channel Channel on the card to be used for the communication. A NetX board may have
up to four communication channels for different fieldbuses.

Auto-initialize bus The user is asked to determine if the bus should be reinitialized when down-
loading or when resetting the application. A new initialization will interrupt the
bus and may lead to unwanted behavior of the machine.

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2824

Tab EtherNet/IP Scanner NetX - “General”
This tab in the configurator of the EtherNet/IP scanner contains the basic settings for communi-
cation in the network.

Table 600: Address Settings
Use static IP address

IP address
Subnet mask
Gateway address

These entries each occupy four bytes and serve to identify the scanner within
the network environment

Optain IP address automati-
cally

This option is available only for the NetX scanner

BOOTP Assignment of the IP address by a server by means of Bootstrap Protocol
(BOOTP)

DHCP Automatic configuration of the network settings by the host by means of Dynamic
Host Configuration Protocol (DHCP)

Table 601: Ethernet Settings
Speed and duplex: Bit rate of the transmission. In case of “Auto-negotiation”, the highest of the

available bit rates is selected automatically.

Table 602: Options
Auto-reestablish connections : The scanner always attempts to automatically reestablish an interrupted

connection.
For example, if a timeout is detected for UDP I/O messages or the TCP connec-
tion to the adapter is interrupted. If the option is activated, then the scanner
reconnects to the adapters with the lost connection.

6.4.2.5.5 Tabs EtherNet/IP Adapter
Tab EtherNet/IP Adapter - “General”

The device editor tab shows general information from the device description file. You can modify
these values.

Table 603: EDS File
Vendor name

Vendor ID Provided by the ODVA (Open DeviceNet Vendors Association)

Product name

Values from the EDS file
Product code

Major revision

Minor revision

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2825

Enable ACD Enables the ACD functionality (Address Conflict Detection) for the EtherNet/IP
adapter.
Note: The ACD functionality is normally applied by the operating system. There-
fore, the user should only use this function very conscientiously. By enabling
ACD, complications can result between the controller and the operating system.
ACD is a mechanism that EtherNet/IP devices can use to detect and respond to
IPv4 address conflicts. The ACD mechanism used in EtherNet/IP complies with
the IETF RFC 5227 standard.

Install to Device Repository If a device with the same device identification has already been installed, then
you are asked whether the device should be overwritten. If the device is inserted
as a remote adapter below an EtherNet/IP scanner, then you will be asked to
automatically update the device.

Export EDS File The EDS file is created and stored on the local computer. In this way, the EDS
file can be used in an external configuration file.

Tab EtherNet/IP Adapter - “Connections”
The upper part of this tab displays a list of all configured connections. When there is an "Exclu-
sive owner" connection in the EDS file, it is inserted automatically when adding the adapter. The
configuration data for these connections can be changed in the lower part of the dialog.
The configuration data is defined in the EDS file. The data is transmitted when the connection to
the adapter is established.

RPI (ms) Requested Packet Interval: Exchange interval of the input/output data

O --> T Size (Bytes) Size of the producer data from the scanner to the adapter (Originator --> Target)

T --> O Size (Bytes) Size of the consumer data from the adapter to the scanner (T --> O)

Proxy Config Size (Bytes) Size of proxy configuration data

Target Config Size (Bytes) Size of adapter configuration data

Connection Path Address of the - configuration objects - input objects - output objects

Add Connection Opens the “New Connection” dialog. The parameters for the new connection are
determined here.

Delete Connection Deletes the selected connection from the list

Edit Connection Opens the “Edit Connection” dialog. The parameters for the existing connection
are modified here.

Table 604: “Configuration Data”
The table shows the connections with the configuration parameters from the EDS file. The connections are
divided into configuration groups.

Raw data values If the scaling parameters are defined in the EDS file for the data, then you can
show the values as raw data or converted data.

: The data is displayed without conversion. In the case of enum data types, the
index of the enumeration value is shown.

: The data is displayed with conversion. In the case of enum data types, the
enumeration value is shown.

Show parameter groups : If groups are defined in the EDS file, then the parameters that are defined in
these groups are displayed in a sorted list.

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2826

Defaults Resets to the default values

Value Double-click to change the value. Depending of the data type, you can specify
the value directly in the input field or select from a list box.
In the case of bit field data types and deactivated raw data values, a dialog
opens for you to choose the individual bits. Only those bits can be selected
which fall within defined minimum and maximum values. If bit field data types
contain enumerations in the associated EDS file, then only these enumerations
are shown with the associated bit positions.
If a connection contains a parameterizable connection path in the EDS file, then
here you can modify the different parameters of the respective connection.

Dialog “New Connection”

The dialog contains the parameters for the new connection.

Table 605: Connection Path Settings
Automatically generated path The “Connection Path” is generated automatically from the values for

“Configuration assembly”, “Consuming assembly”, and “Producing assembly”.

User-defined path The “Connection Path” is specified manually in the corresponding input field.

Path defined by symbolic name The path is specified by a symbolic name.
Requirement: The device must support symbolic connection paths.

Table 606: General Parameters
Connection Path The connection path is used to address one or more objects in the adapter that

provide the input data and receive the output and configuration data.
Requirement: The connection path is set to “User-defined path”.

Symbolic name An ANSI string is used instead of the normal connection path. See the manual of
the respective EtherNet/IP adapter for permitted ANSI strings.
Requirement: The connection path is set to “Path defined by symbolic name”.

Trigger type ● “Cyclic”: Data exchange takes place cyclically at intervals set by the RPI.
● “Change of State”: Data is exchanged automatically after a change to the

scanner outputs or adapter inputs.
● “Application”: Not implemented

Transport type Details for this can be taken from the specifications CIP Volume 1 and Volume 2.

RPI (ms) (Requested Packet Interval) Length of the time interval (in milliseconds) in which
the transmitting application requests the transmission of data to the target appli-
cation. This value must be a multiple of the bus cycle task.

Timeout multiplier In case of device failure, there is a time delay (RPI * Timeout multiplier) before
the device state switches to "Error".

Use this option to employ existing connections from an EDS file. The data that can be changed
are defined in the EDS file.

Generic connec-
tion (freely con-
figurable)

Predefined con-
nection (EDS
file)

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2827

Table 607: Scanner to Target (Output)
O-->T size (bytes) Amount of data from scanner to adapter

Proxy config size (bytes) Size of proxy configuration data

Target config size (bytes) Size of adapter configuration data

Connection type ● “Multicast”: A network connection is established. The connection data can be
received by multiple consumers.

● “Point to Point”: A network connection is established. The connection data
can be received by exactly one consumer.

● “Null”: A network connection is not established.

Connection Priority Two scanners using different priorities to one adapter can cause conflicts.
Adapting the connection priority solves this problem.

Fixed/Variable See the specifications CIP volume 1 and volume 2 for details of the parameters.

Transfer format

Inhibit time (ms)

Heartbeat multiplier Requirement: The “Transfer format” is “Heartbeat”.
Extends the interval at which the scanner sends heartbeat messages to the
adapter. This value is multiplied by the “RPI” value.
Example: “RPI” = 10ms and “Heartbeat multiplier” = 10 causes a message to be
sent every 100ms.

Table 608: Target to Scanner (Input)
T-->O size (bytes) See description for “Scanner to Target”.

Connection type

Connection Priority

Fixed/Variable

Transfer format

Inhibit time (ms)

Tab EtherNet/IP Adapter - “Assemblies”
The upper part of this tab displays a list of all configured connections. When a connection is
selected, the associated assemblies in the lower area of the tab are displayed.

Table 609: Connections
A description of the columns is found on the "Connections" tab.

Table 610: Consuming Assembly O-->T, Producing Assembly T-->O
Add Opens the “Select Parameters” dialog.

Delete Deletes all selected parameters.

Move Up
Move Down

Moves the selected parameter within the list. The order in the list determines the
order in the I/O mapping.

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2828

Name
Unit
Help string

You can double-click in the text field to edit the values.

Show filling bytes of assem-
blies

: The filling bytes of the assemblies are shown in the I/O mapping. This can be
helpful in case the parameter layout of the assemblies is not mapped correctly in
the EDS file.

Display parameter groups The dialog displays all parameters from the EDS file by group.

 The dialog displays all parameters from the EDS file in a flat structure.
Individual parameters from this list can be selected and added to the list of
assemblies by clicking “OK”.

Generic parameters You can add generic parameters. Individual values of the parameter can be
edited.

Tab EtherNet/IP Adapter - “User-Defined Parameters”
The tab displays all additional parameters that are transmitted once only into the bus system
during the phase of the starting procedure allotted to this.

NOTICE!
The user parameters are also transmitted again when a connection is reestab-
lished, for example after the failure of a remote adapter.

New Opens the “Select Parameters” dialog for adding a new parameter. The new
parameter is inserted before the selected line.

Edit Opens the “Select Parameters” dialog for changing an existing parameter.

Delete Delete the marked lines.

Move Up, Move Down Changes the order of the user parameters. The order of the parameters in the
list corresponds to the order at the initialization.

Line Number of the line

Name Name of the parameter

Value The value of the respective parameter can be changed directly by double-
clicking the value. If applicable, a list box opens containing possible values.

Unit Unit

Bit Length Length of the bit

Abort on Error : In case of error, the entire transmission of the parameters is aborted.

Jump to Line on Error : In case of error, the program resumes with the line specified in the “Next
Line” column. In this way, an entire block can be skipped during the initialization,
or a return can be defined.
Note: A return can lead to an infinite loop if it is never possible to write a certain
parameter.

Next Line -

Comment Space for comments

Dialog Select
Parameters

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2829

Dialog “Select Parameters”
The dialog contains a list of the parameters that are defined in the EDS file. You can define your
own generic parameters in addition to the specified parameters.
The values of the selected parameter are displayed in the lower section of the dialog. They can
be changed there.

Show parameter groups : Display of the parameters sorted by parameter groups

Generic parameter : Enables the creation of generic parameters

Name Name of the generic parameter

Class Each object class that can be addressed by the network is identified by an
integer value.

A class can also be addressed from the class by specifying a special object
instance (see “Instance”).

Instance Integer value for the unique identification of an object instance within a class.
Example of an object instance:

If the value 0 is assigned to the instance, then the class itself is referenced by
this special instance.
Example – object instance 0:

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2830

Attribute Integer value that can belong to a certain class or instance.
Example attribute:

Data type Different data types (e.g. BOOL, UDINT, WORD, DWORD...)

Bit length 8, 16, 32

Value Input of different values in different output formats.

The values for “Class”, “Instance”, and “Attribute” are defined in the "CIP Net-
works Library" (Vol. 1 and 2) or in the manual of the device manufacturer.

CAUTION!
When individual values are entered, a plausibility check is not performed. Any
errors are identified only when the bus is started and they are reported with a
message in the log file.

Tab EtherNet/IP Adapter - “General”, local
The tab in the device editor of the EtherNet/IP adapter contains the basic settings for network
communication.

Table 611: Address Settings
IP address Address for the identification of the EtherNet/IP adapter device.

Table 612: BOOTP
Bootstrap Protocol
This option is available only for adapters under the NetX scanner.

MAC address Device-specific MAC address of the slave.

Save IP address : The address of the slave is saved. The requirement, however, is that the
slave supports this function. This option is only available for the CIFX scanner.

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2831

Table 613: Electronic Keying
Compatibility check : The adapter uses its own keying values to perform a compatibility check of

the keying values from the EDS file. All keying values are sent to the device.
Then the device decides whether it is compatible with the received values.

: The adapter uses its own keying values to perform an exact check of the
keying values from the EDS file. The user decides which keying information
should be checked.
● Vendor ID
● Device type
● Product code
● Major revision
● Minor revision
If the check fails, then an I/O connection is not established to the device and an
error message is issued to the status page.

Restore Default Values For generic devices only.

6.4.2.5.6 Application notes
How to set up an EtherNet/IP connection and use a PLC as a scanner and set
it up with another PLC as adapter is described in detail in the application example.
AC500 V3 EtherNet/IP - AC500 as scanner connected to another AC500 as adapter.

How to set up an EtherNet/IP connection and use a PLC as a scanner
and set it up with a drive is described in detail in the application example.
AC500 V3 EtherNet/IP - AC500 as scanner connected to a drive.

6.4.2.5.7 Command EtherNet/IP - “Scan for Devices”
Function: The command establishes a brief connection to the hardware and determines the
devices in the network. Then you can apply the devices found into the device tree of your
project.
Call: Menu bar: “Project”; context menu of a device object in the device tree
Requirement: The communication settings to the controller are correct. The gateway and the
PLC are started. The device supports the scan function.
The following devices provide the scan function: EtherCAT master, EtherNet/IP Scanner
(IEC), Sercos master, CANopen Manager, CANopen Manager SIL2, PROFINET controller and
PROFIBUS DP master.

You can perform the device scan immediately if the scan function is perma-
nently implemented in the PLC. When scan function is implemented in a library,
you have to log in only one time to download the library to the controller.

The command refers to the master controller selected in the device tree. For example, an
already inserted PROFINET IO controller can be selected and the command used to determine
the I/O devices and I/O modules assigned to it.
After performing the scan operation, the “Scan Devices” dialog opens and displays the found
devices.

Application
example

Application
example

Dialog 'Scan
Devices'

Configuration and programming
Programming with CODESYS > Fieldbus Support

2024/01/053ADR010583, 1, en_US2832

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010969&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010825&LanguageCode=en&DocumentPartId=&Action=Launch

Table 614: “Scanned Devices”
“Device name, Device type,
Address, Station name, etc.”

Data about the scanned device depending on network type.
When you change a value in the list of scanned devices, the value is shown
in italics. This indicates that the new value has been changed in the editor in
CODESYS, but not in the device. When you download the value to the device, it
is shown normally.
Value that indicate differences between the project and the scanned device are
shown in orange.
If multiple device descriptions are available for the scanned device, then the
name is displayed in bold. The selection of the matching device description is
resolved differently for different fieldbuses. For more detailed information, see
the corresponding fieldbus chapters.
If a device description cannot be found, then the following message is shown:
"Attention! The device was not found in the repository." Depending on the bus
system, additional information is displayed, such as manufacturer number and
product number. The device cannot be inserted into the project without the
installed device description.

“Show differences to project” : The table in the dialog also shows additional configured devices (in the
device tree of the project).

: The table shows all scanned devices. The configured devices are not shown.

“Scan for Devices” Starts a new search.

“Copy All Devices to Project” The device that is selected in the table is inserted into the device tree in the
project. If nothing is selected, then all scanned devices are shown.

NOTICE!
If you insert devices, which are available in the device tree, to the device tree
with “Copy All Devices to Project”, then the following should be noted. The data
of the “Process Data” and “<...> I/O Mapping” tabs of the existing devices can
be overwritten with the data of the recently inserted devices.

Table 615: “Configured Devices”
This part of the dialog is visible only when you select the “Show differences to project” option.
Differences between the scanned and configured devices are color-coded. Devices displayed in green are iden-
tical on both sides. Devices displayed in red are available only in the view of the scanned or configured devices.

If you have selected a device in both views, then the scanned devices are
inserted above the selected configured device.

If you have selected a device in both views, then the scanned devices are
inserted below the selected configured device.

If you have selected a device in both views, then the configured devices are
replaced by the selected scanned device.

All scanned devices are copied to the project.

Deletes the selected configured device.

Configuration and programming

Programming with CODESYS > Fieldbus Support

2024/01/05 3ADR010583, 1, en_US 2833

Scanning an adapter can fail if the PLC is in RUN mode and a connection
already exists from the scanning controller to the adapter. Then the scanning
causes another connection to be established to the adapter, which interrupts the
existing connection in some adapters. Then the scanner restarts the connection
to the adapter, which causes the adapter to interrupt the connection to the
scanning controller.

For this reason, it makes sense to perform a network scan in STOP mode after
a "Reset". If RUN mode cannot be interrupted, then scanning is possible without
an projected remote adapter (EtherNet/IP scanners in the device tree only).

When accepting the remote adapter by means of the “Copy to Project” command, the
I/O dimensions with which the adapter responded are set for the first "exclusive owner"
connection. In order to log all of the detected assembly instances after scanning, the def-
inition IODRVETHERNETIP_PRINT_SCAN_RESULT must be set. By default, it is scanned
by the instance ID 100–199. This can be adapted by means of the library parameters
ParamScanStartOfInstanceAssem and ParamScanLastOfInstanceAssem from the
library IoDrvEtherNetIP Library. This might be necessary, for example to scan in another
manufacturer-specific range (assembly instance ID ranges).

6.4.3 Runtime systems, OPC UA server
6.4.3.1 OPC UA server for AC500 V3 products
6.4.3.1.1 General

OPC UA server can be added as an object below the Ethernet interfaces ETH1 or ETH2.
The user can access the variable interface of the PLC via a client. At the same time, communi-
cation can be protected by means of encryption.
The CODESYS OPC UA server supports the following features:
● Browsing of data types and variables
● Standard read/write services
● Notification for value changes: subscription and monitored item services
● Encrypted communication according to "OPC UA standard (profile: Basic256SHA256)"
● Imaging of the IEC application according to "OPC UA Information Model for IEC 61131-3"
● Supported profile: Micro Embedded Device server Profile
● By default, there is no restriction in the number of sessions, monitored items, and subscrip-

tions. The number depends on the performance of the respective platform.
● Sending of events according to the OPC UA standard.

How to install and configure an OPC V2 or OPC V3 server and how to use it for AC500 PLCs is
described in the application note How to use OPC server.

The application example How to use OPC server V3 - for DA and UA is available to gain a
deeper understanding of the OPC protocol and to configure AC500 V3 accordingly.

6.4.3.1.2 Creating a project for OPC UA access
1. Click “File è New Project è AC500 project” in Automation Builder 2.1 or newer.
2. Choose a PLC - AC500 V3 and click [Add object].
3. Right-click on node ETH1 or ETH2 and “Add object”.
4. Choose OPC UA Server in the dialog and click [Add object].

For experts

Application note

Application
example

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2834

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010406&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010407&LanguageCode=en&DocumentPartId=&Action=Launch

5. Declare some variables of different types in the program.
6. Right-click “Application è Add object”. Choose “Symbol configuration” and click

[Add object].
7. Enable checkbox “Support OPC UA Features” in the dialog “Add symbol configuration”.
8. Double-click “Symbol configuration” in the Devices tree to open the editor “Symbol

configuration”.
9. Click [Build].

ð The variables are displayed in a tree structure.

10. Activate the variables that you want to publish to an OPC UA client. Specify the access
rights.

11. Download the project to the PLC.

6.4.3.1.3 Use node name
1. Double-click node “OPC_UA_Server”.
2. Set parameter “Use node name” to TRUE.
3. Double-click node “PLC_AC500_V3 <...>”.
4. Click “Device” and “Rename active device...”

5. Enter new device name in the following dialog and click [OK].

6.4.3.1.4 Use UaExpert client
The OPC UA client UaExpert is available for download from the Unified Automation website and
can be used free of charge (freeware license).
Using this client, you can connect to the AC500 OPC UA server.
The following description refers to this program. Other OPC UA clients work in a similar way.

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2835

1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the “Add Server” dialog.
4. Enter URL and click [OK].

ð The URL appears in the “Add Server” dialog.

5. Select “Advanced” tab and click [OK].
6. Click [Connect].

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2836

7. Expand the project tree in the “Address Space” window.

8. Drag and drop the needed symbols to “Data Access View”.

6.4.3.1.5 Working with encryption
Creating a certificate for the OPC UA server

Prerequisite: A battery is inserted and the clock is set to actual time.
1. Double-click the Security symbol in the lower right corner of Automation Builder.
2. Select the “Devices” tab.

ð The certificate information opens.

3. Select the PLC in the left “Information” view.

ð All services of the PLC that require a certificate are displayed in the right Information
view.

4. Select the service “OPC UA Server”.
5. Click the icon to create a new certificate for the device.

ð “Certificate Settings” dialog appears.

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2837

6. Define the certificate parameters according the figure above and click [OK].

ð The certificate is created on the PLC.

7. Upload the certificate to your PC.
8. Restart the runtime system.

For further information see Ä Chapter 6.3.4.7.3.4 “OPC UA secure” on page 1728.

Encrypted connection with UaExpert client
1. Start the UaExpert program.

2. Click on the “blue cross symbol”.
3. Double-click on the “blue cross symbol” in the “Add Server” dialog.
4. Enter URL and click [OK].

ð The URL appears in the “Add Server” dialog.

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2838

5. Select “Advanced” tab.

6. Choose option “Basic256ha256” of drop-down list “Security Policy” and “Sign & Encrypt”
of drop-down list “Message Security Mode” and click [OK].

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2839

7. Click menu “Settings” and “Manage Certificates”

8. Click [Create new Application Certificate...].

ð Dialog “New Application Instance Certificate” opens.

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2840

9. Enter the required informations and click [OK].

ð Dialog “Manage Certificates” opens

10. Click [Copy Application Certificate To...] your PC.

11. Download the certificate to AC500 via the “Security Screen” view.
12. Click [Connect] in the UaExpert client.

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2841

ð Dialog “Certificate Validation” opens.

Working with a trusted certificate will avoid this error message.

14. Enable checkbox Accept the server certificate temporarily for this session and click
[Continue].

ð Dialog “Connect Error” opens

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2842

15. Click [Ignore]

16. Check settings in dialog “Manage Certificates”.

6.4.3.1.6 Changing variables via UaExpert client
1. Expand in view “Address Space” “Objects è DeviceSet è PM5670 è Resources

è Application è PLC_PRG”.

ð The variables of the global variable list are visible.

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2843

2. Drag and drop the variables to the Data Access View.
3. Change values in the column Value.

6.4.3.1.7 Configuring OPC UA client
Operating modes

● Objects will be continuously updated in a defined interval
● Create higher load then Subscription
● Is recommended only for a few Symbols

Not yet supported

● Updated objects depending on the publishing interval and filters
● Method to reduce load
● Different intervals
● Filter possible (coming in AC500)

Client defines a group of sym-
bols with

Description

Publishing interval Interval, in which server publish data to client

Sampling interval Interval for sampling and storing data at server and send in
each publishing interval

Queue size Array of data to save data if sampling Interval is faster than
publishing Interval (At AC500 in the moment only 1)

Data change filter Can be used to reduce traffic from server to client.
Criteria:
● Change of data,
● Change of status
● Change of time stamp
AC500 is fix configured for change of data and change of
status.

Polling

Pub/Sub

Subscription
(recommended
mode)

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2844

Using OPC UA with subscription mode

Recommendations:

– Define only variables you need as symbols
– Do not configure publishing Intervals to short (increase load)
– Use different subscriptions with different publishing intervals in order to

decrease load
– Do not use sampling intervals faster then publishing intervals as long as

AC500 OPC UA server don‘t support Queue Size different from 1
– Be careful: Setting „0“ at sampling Interval at client will be interpreted in

server as „as fast as possible“, which is 100ms at AC500 and create a high
load.

Publishing and
sampling inter-
vals in UaExpert

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2845

1. Right-Click on an Item in “Data Access View” and click “Subscription Settings”.

2. Set the recommended values.
Life Time Count: Number of publishing intervals in which client has to send publish
requests to the server. After this period without request from client, subscription in server
will be deletet.
Max Keep Alive Count: If there are no new data to send, server can skip a publishing
interval. After the alive count, server has to send, even if there are no new data.
Click [OK].

3. Right-Click on an Item in “Data Access View” and click “Monitored Item Settings”.

4. Set the recommended values.

6.4.3.2 Using OPC UA Information Models
The OPC UA information models provide plant information according to the OPC UA standard.
This plant data contains both data and metadata, such as data origin, data quality, and data
cross-connections. OPC UA-based plants can therefore be connected and analyzed faster.
In plant and mechanical construction, there are several sector-specific OPC UA information
models. For example, the Companion Specification EUROMAP77 is an information model for
plastics and rubber machinery.
An information model consists of different objects that contain meta-information, runtime infor-
mation, and user data, such as process variables.

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2846

Requirements:
● A CODESYS project is open.
● A controller with integrated OPC UA server functionality has been added to the project.
1. Click “Tools è OPC UA Information Model Repository”.

ð The “OPC UA Information Model” dialog opens.

The information models with the URI http://opcfoundation.org/UA/ and
http://opcfoundation.org/UA/DI/ are already installed by default.

2. To install the OPC UA information model that you need in your project, select it and click
“Install”.

3. In the “Select OPC UA Information Model” dialog, select the information model file
*NodeSet2.xml from the file directory and click “Open”.

ð Now the selected OPC UA information model is displayed in the “OPC UA Information
Model Repository”.

4. Add a “Communication Manager” object to the application of your CODESYS project.
5. Add an “OPC UA Information Model” object to the “Communication Manager”.
6. In the “Add OPC UA Information Model” dialog, specify a name for the information model

according to IEC 61131-3 and select the desired information model in the “Information
Model URI” list box. The list box shows all OPC UA information models from the OPC UA
information model repository. Then click “Add”.

ð The publishing object for which you specified a name in the last step is inserted in
the “Devices” view with the selected “Information Model” inserted below it.
The publishing object is opened in the editor.

7. In the next steps, select those objects and data types from the OPC UA information
model which you want to use in your CODESYS application. To do this, first open the
“Information Model” in the editor.

ð The type declarations of the OPC UA information model are displayed on the left side.

8. Add the OPC UA type declarations desired for your CODESYS application by dragging
them from the left area to the right area. For all types with the “Modelling Rule” as
“Mandatory”, a corresponding IEC member is generated for the application later when the
IEC declarations are generated. For the “Modelling Rule” as “Optional”, in the right area
you can activate an IEC member to be generated for this type as well.

9. For OPC UA types with the modelling rule as “Optional Placeholder”, in the right area you
can drag and drop another corresponding IEC type to insert it.

ð Example:

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2847

10. When you have mapped all desired OPC UA types to IEC, click the “Generate IEC
declarations” button.

ð The generated IEC members are visible, for example in the “OPC_UA_Symbols
Objects” folder, and can be used in the application. These members are available
in the Input Assistant for the implementation of the POUs in your application.

11. When arrays are generated, in the declarations you have to define the upper limits for
the arrays because this information is not included in the installed information model file
*NodeSet2.xml.

12. In the next steps, you configure the OPC UA types which should be published in an OPC
UA Client. To do this, double-click the OPC UA publishing object in the device view.

13. In the OPC UA publishing editor that just opened, you can generate new instances for the
POUs which you have generated in the “Information Model” . Or you can use instances
which you have already declared in your application in PRGs and GVLs.

14. To create a new instance, click “Generate New Instance”.
15. In the “Generate New Instance” dialog, select the “IEC Type” from the list box and click

“OK”.

ð An instance of the selected IEC type is generated and inserted in the editor. You can
double-click the automatically generated name “inst_n” to change it.

16. To search for instances which have already been declared in the application, click “Search
for Mapped Instances”.

17. In the editor, in the “Root Node” list box, select the directory where the instances should
be displayed on the OPC UA Client. The directories that can be selected depend on the
OPC UA companion specification.

18. To publish these instances on an OPC UA Client, click “Online è Login”.
19. When the application has been successfully downloaded to the controller, start the appli-

cation.
20. Start the OPC UA Client.

ð In the OPC UA Client, the instances are displayed which you have selected in the
previous steps in the OPC UA publishing editor.

● Ä Chapter 6.4.1.21.2.17 “Object 'OPC UA Information Model'” on page 2472
● Ä Chapter 6.4.1.21.3.9.12 “Command 'OPC UA Information Model Repository'”

on page 2665
● Ä Chapter 6.4.3.3 “Mapping of OPC UA Types to IEC Types” on page 2848

6.4.3.3 Mapping of OPC UA Types to IEC Types
Table 616: Basic data types
OPC UA IEC Description
Basic types
Boolean BOOL
Byte BYTE
SByte SINT
Int16 INT
UInt16 UINT
INT32 DINT
UInt32 UDINT
Int64 LINT

See also

Mapping of
basic data types

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2848

OPC UA IEC Description
UInt64 ULINT
FLOAT REAL
Double LREAL
Duration LREAL
DateTime LDATEANDTIME
UtcTime LTIME
String STRING Simple strings are converted to IEC strings.

The length of the IEC string can be changed
afterwards and can be chosen without restric-
tion.

Special types
(examples:
NodeId,
Bytestring)

Not currently supported The special data types are ignored when gen-
erating the IEC mappings. Members are not
generated.

Inheritance Inheritance is allowed for all
OPC UA types. For example,
new types can also be derived
from String and Int32.

Note: In the case of derivations of base types,
the base type is used as the basis for the
mapping. As a result, the derived OPC UA
type is no longer available in IEC.

All declarations are declared altogether as local variables between VAR and
END_VAR. The user can change the declarations as needed in VAR_INPUT and
VAR_OUTPUT.

Table 617: Object types
OPC UA IEC Description
OPC UA
object types

Function blocks

Interfaces and
add-ins

Function block. The members
of the interface are members
of the function block.

Example:

Mapping of
object types

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2849

OPC UA IEC Description
Inheritance Instead of generating multiple

function blocks with "Extends",
a flat hierarchy is generated.

Example:

Folder A separate type for each
instance of a folder in an OPC
UA object type.
The user may add the
instances on his own by
editing the declaration of the
IEC POUs. However, function
blocks have to be used which
originate from an OPC UA
companion.
All instances of function
blocks below the folder are
exported. Semantic checks
based on NodeSet2.xml are
not possible.

Initially, a folder is set as an object type in
OPC UA. However, it is not enough to gen-
erate a folder type.

The user is responsible for adding appropriate
elements to the folder.

Table 618: Structured data types
OPC UA IEC
Structure DUT
Union Not currently supported

Optional member Not currently supported

Inheritance Implementation as for the object types

Table 619: OPC UA reference types
OPC UA Meaning in OPC UA Mapping in IEC
Organizes Normally only the derivations

of this type are relevant. The
exception is when folders are
mapped directly to IEC.
See Ä Chapter 6.4.3.3 “Map-
ping of OPC UA Types to IEC
Types” on page 2848

HasSubtype See Ä Chapter 6.4.3.3 “Map-
ping of OPC UA Types to IEC
Types” on page 2848

Mapping of
structured data
types

Mapping of OPC
UA reference
types

Configuration and programming
Programming with CODESYS > Runtime systems, OPC UA server

2024/01/053ADR010583, 1, en_US2850

OPC UA Meaning in OPC UA Mapping in IEC
HasTypeDefinition ● Used to collect all ele-

ments of a type when the
UA types are compiled
according to IEC.

● Declarations of instances
in IEC are then referenced
again by the OPC UA
Server with this reference
to the type in the informa-
tion model.

● HasTypeDefinition for
OPC UA variables is cur-
rently supported only for
the special case when
the variable type has the
same members as the
data type. Then the single
access to the individual
variables of the DUT
instance is allowed in IEC.

HasComponent Variables and objects are
mapped in IEC as var-
iables. Therefore, each
HasComponent reference
becomes an variable decla-
ration in IEC. Methods also
become methods of the func-
tion block in IEC.
The user has to apply the
modelling rules in the infor-
mation model editor before
the IEC POUs are generated.
Optional members can be
selected or deselected and
concrete members can be
generated for placeholders.

HasProperty In OPC UA, properties have
the character of additional
meta-information for process
data. They can be of static
nature, for example engi-
neering units. But they can
also change when the server
is running.

In IEC, this reference
is handled exactly like
HasComponent. As a result,
variables are also created for
this at the function block. An
unresolved issue is the han-
dling of properties at variables
in UA (by means of the detour
of HasTypeDefinition and Var-
iableType). In IEC, the vari-
able of type INT would have
to be structured once again
and have children. Currently,
properties at variables in OPC
UA are ignored and cannot be
reached from IEC.

● Ä Chapter 6.4.3.2 “Using OPC UA Information Models” on page 2846
● Ä Chapter 6.4.1.21.2.17 “Object 'OPC UA Information Model'” on page 2472

See also

Configuration and programming

Programming with CODESYS > Runtime systems, OPC UA server

2024/01/05 3ADR010583, 1, en_US 2851

6.4.4 Libraries
6.4.4.1 General

Libraries are used for preparing POUs and functions for use in CODESYS applications. In
addition to the descriptions presented here in the help, always see the documentation included
in the library as well.
For using libraries in your CODESYS project, see the "Managing Libraries" chapter.
To create your own CODESYS libraries, follow the guidelines for library developers.
Ä Chapter 6.4.1.17 “Using Libraries” on page 2034

6.4.4.2 Guidelines for creating libraries
Libraries must be created according to specific rules to avoid compatibility issues.
The main items include the following:
● Select a meaningful library name (required)
● Use templates to ensure consistency (optional)
● Use a familiar and uniform project structure, when possible (optional)
● Register a unique library namespace (required)
● Enter all project information (required)
● Apply the correct method for referencing other libraries correctly (required)
● Design smart external and internal interfaces (required)
● Implement a user-friendly error handling (required)
● Apply the correct method (protection) for deployment (required)
● Apply a consistent naming convention to get clean code (optional)
● When revising an existing library, consider the interface compatibility with previous versions.
Please follow these guidelines when developing libraries in CODESYS: "Library Development
Summary". You will find this document as a CHM file (LibDevSummary.chm) in the installation
directory of CODESYS, or in the online help.
See also
● Ä Chapter 6.4.1.17 “Using Libraries” on page 2034

6.4.5 CODESYS Visualization
6.4.5.1 Introduction

Everything in one project
In the same CODESYS project, you use CODESYS Visualization to create the suitable user
interface for your application. You link the visualization to the application variables and in this
way they can animate and display data. When creating a visualization and an application, you
use common functions, for example, as library and source code management or find/replace
throughout the project.

● Display variant depending on the target platform
You can execute the same visualization on various target platforms. Possible display var-
iants are CODESYS WebVisu, CODESYS TargetVisu. In addition, there is a display inte-
grated in the development system.

● Visualization editor
In the graphic editor you design the desired user interface from visualization elements. The
visualization elements are provided via libraries in a "ToolBox". You drag them into the editor
area and adapt them with the help of a property configurator.

Overview of
functionality

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2852

● Referenceable visualizations
A visualization can be referenced in other visualizations. This enables the creation of user
interfaces with a complex structure. For this purpose CODESYS Visualization also provides
predefined visualizations, e.g. for dialogs.

● Simple design change
The simple change of the look & feel of a visualization is possible in one place by creating a
different visualization style.

● Multilingualism
You can conveniently prepare visualization texts in several languages with the help of text
lists. You can configure a user input element for switching to a different language in online
mode.

● User management
You can set up the visualization's own user management for access control up to individual
element level.

● Other useful features
Function block instances of visualizations, array accesses to the visualization, real-time data
logging, extendability of the pool of visualization elements, provision of graphic objects via
symbol libraries, calls of PLC functions from the visualization, reusability of visualizations by
depositing them in libraries.

Table 620: Overview of the objects, editors, repositories, etc. relevant for the visualization in the
CODESYS Development System

Visualization Object below an application in the device tree or in the POUs

pool that contains a visualization image. A visualization can
reference other visualizations.

Visualization editor and addi-
tional views

In this IEC 61131-3-compliant editor you can create the
desired graphical user interfaces, panels, dialogs, etc. from
visualization elements. The editor is made up of the following
components:
● Graphic editor area for arranging the elements
● “Interface Editor”: for the parameterization of the visualiza-

tion
● “Hotkey Configuration”: editor for defining keys for online

operation
● “Elementlist”: overview of all visualization elements used,

editor for the position of the elements on the z-axis
The following views are also available:
● “ToolBox”: view for the provision of visualization elements
● “Properties”: view with editor for the configuration of the

element that currently has the focus in the graphic editor

Visualization element Ready-to-use elements from the visualization libraries are
available in the Tools view of the visualization editor for inser-
tion.

Visualization profile The profile defines which visualization elements are available.
Each project that contains a visualization is based on such a
profile (project settings).

Visualization Styles The selected style determines the "look & feel" of the ele-
ments. It is set application-wide in the visualization manager.
Ready-to-use styles are provided and you can also create
your own.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2853

Visualization Manager Each application has a visualization manager of its own

for its visualizations with various settings such as user man-
agement, style, language, input type, etc. The “Visualization
Manager” object is suspended in the device tree below the
application.

Display variant A visualization can be displayed in online mode in the fol-
lowing variants, which are created as objects under the visual-
ization manager:
● CODESYS TargetVisu (target visualization and remote

target visualization on PLC devices)
● CODESYS WebVisu (web visualization via a web

browser)
● Visualization integrated in the development system

Visualization library Collection of visualization elements that are provided in the
toolbox.

Symbol library Collection of images and graphics that you can use in visuali-
zations. When inserting a visualization object you can choose
whether the installed system libraries should be available in
the project.

Visualization Element Reposi-
tory

Repository for the management of the visualization profiles
and the visualization element libraries.

Visualization Styles Repository Repository for the management of visualization styles.

VISU_TASK This task is automatically present as an object in the task
configuration of an application as long as an object for a dis-
play variant of the type WebVisu or TargetVisu is also inserted
under the Visualization Manager.

The user interfaces created in CODESYS can be used in different display variants, depending
on which ones the controller employed supports.
The display variants
● Visualization ("diagnostic visualization") integrated in the CODESYS Development System:

The integrated visualization in the development system is ideal for application tests, for
service or diagnostic purposes and for the commissioning of a system. As soon as a
connection to the controller has been established, the visualization editor switches over and
animates the elements displayed. This variant is part of the free CODESYS Development
System and can always be used, irrespective of the controller employed.

● CODESYS WebVisu:
This variant means web-based display of the user interface in a standard browser (PCs, tab-
lets, smartphones), enabling remote access, remote monitoring and service and diagnosis
of a system via the Internet. A standard web browser communicates by Java Script (option-
ally with SSL encryption) with the web server in the controller and displays the visualization
by means of HTML5. This technology is supported by virtually all browsers and is thus also
available on terminal devices with iOS or Android.

● CODESYS TargetVisu:
This variant runs independent of the platform on control systems with an integrated dis-
play. Logic application and user interface run on the same device; the user interface is
displayed directly on the controller. This variant is suitable for the operation and monitoring
of machines and plants. An optional extension of the runtime system is required for the use
of CODESYS TargetVisu.

System over-
view and mech-
anism, display
variants

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2854

6.4.5.2 Tutorial
6.4.5.2.1 CODESYS visualization - Getting started

If you are not yet familiar with CODESYS visualization, we recommend you to start with the
application example First steps with CODESYS visualization. The example demonstrates the
main features of visualization and provides insights into possible use cases.

To use the Edge browser for CODESYS visualization of AC500 PLCs, follow the steps
described in the application note Usage in the Edge browser.

More examples and step by step instructions are available in the Automation Builder.
Ä Chapter 3.4.10 “Setting up a visualization” on page 53

Ä Chapter 3.4.11 “Creation of a visualization” on page 57

Ä Chapter 3.4.12 “Enabling a web visualization” on page 65

6.4.5.2.2 Show instance names
For complex visualizations, it can be helpful if the instance names are displayed within
the visualization. How to show instance names is described in the application example
Visualization - Instance names.

6.4.5.2.3 Visualizing a Refrigerator Controller
This tutorial demonstrates how to add visualizations to the project and link the elements of the
visualization to the variables of the control program.

This tutorial is based on the sample program RefigeratorControl, which was created in
the "Your First Program in CODESYS" chapter. The finished program can also be found in the
installation directory of CODESYS, in the "Projects" subfolder.
See also
● Your First CODESYS Program

The visualization consists of the following three visualization screens:
● Visualization: Control elements and display of the refrigerator
● Diagnosis: History of the set and actual temperature, parameter settings
● Live Visu: Animation with refrigerator

1. Select the “Application” object in the device tree.
2. Click “Project è Add Object è Visualization”.
3. Specify Live_Visu as the name.

4. Create two more visualizations with the names Diagnosis and Visualization.

This screen consists of control and display elements that control the refrigerator.

Visualization
basics

Preparation

Creating the vis-
ualizations

Structure of the
visualization
Visualization

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2855

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010954&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011171&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010774&LanguageCode=en&DocumentPartId=&Action=Launch
ms-its:codesys.chm::/_cds_quick_guide.htm

● (1) Numeric display of the actual temperature
● (2) Pointer to display of the actual temperature
● (3) Numeric display of the set temperature
● (4) Potentiometer for setting the set temperature
● (5) Label for compressor lamp
● (6) Lamp for compressor on
● (7) Label for signal lamp
● (8) Lamp for signal "Close doors"
● (9) Switch for opening and closing the refrigerator door
1. Open the visualization Visualization in the editor.

2. Drag a “Rectangle” visualization element to the editor.
Change the following properties
● “Texts è Text”: Actual temperature: %2.1f °C
● “Text variables è Text variable”: Glob_Var.rTempActual

3. Drag a “Meter 180°” visualization element to the editor.
Change the following properties
● “Value”: Glob_Var.rTempActual
● “Scale è Scale end”: 20
● “Scale è Main scale”: 5
● “Scale è Subscale”: 1

4. Drag a “Rectangle” visualization element to the editor.
Change the following properties
● “Texts è Text”: Temperature presetting: %.1f °C
● “Text variables è Text variable”: Glob_Var.rTempSet

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2856

5. Drag a “Potentiometer” visualization element to the editor.
Change the following properties
● “Variable”: Glob_Var.rTempSet
● “Background è Background color”: “yellow”
● “Pointer è Color”: “red”
● “Scale è Subscale position”: “Outward”
● “Scale è Scale start”: 3
● “Scale è Scale end”: 13
● “Scale è Subscale”: 1
● “Scale è Main scale”: 1
● “Label è Unit”: °C
● “Label è Scale format (C syntax)”: %.0f
● “Label è Max. text width of labels”: 21
● “Label è Height of labels”:15

6. Drag a “Label” visualization element to the editor.
Change the following properties
● “Texts è Text”: Cooling compressor

7. Drag a “Lamp” visualization element to the editor. Position it behind the text Cooling
compressor.

Change the following properties
● “Variable”: Glob_Var.bCompressor

8. Drag a “Label” visualization element to the editor.
Change the following properties
● “Texts è Text”: Signal (beep)

9. Drag a “Lamp” visualization element to the editor. Position it behind the text "Signal
(beep)".
Change the following properties
● “Variable”: Glob_Var.bSignal
● “Background è Image”: Red

10. Drag a “Rectangle” visualization element to the editor.
Change the following properties
● “Texts è Text”:Door open

11. Drag a “Rocker Switch” visualization element to the editor.
Change the following properties
● “Variable”: Glob_Var.rDoorOpen

In this screen, you can monitor the temperature curve and optimize the parameters.Structure of the
visualization
Diagnosis

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2857

● (1) “Label” elements for the heading
● (2) “Trace” element for displaying the temperature curve
● (3) “Rectangle” elements for displaying the values
1. Open the visualization Diagnosis in the editor.

2. Drag a “Label” visualization element to the editor.
Change the following properties
● “Texts è Text”: Refrigerator Diagnosis & Service Menu
● “Text properties è Font”: Arial, Standard, 18

3. Drag a “Trace” visualization element to the editor.
4. Click the Diagnosis_Trace1 value of the “Trace” property.

ð The “Trace Configuration” dialog opens.

5. Select the “MainTask” in “Task”.
6. Click the “Add Variable” link.

ð A variable is added to the trace. The variable settings are displayed in the dialog.

7. Select Glob_Var.bCompressor for the variable.

8. Add the Glob_Var.rTempSet and Glob_Var.rTempActual variables to the trace. For
the other settings, you can use the default values.

9. Click “OK” to exit the dialog.
10. Drag a “Rectangle” visualization element to the editor. Position it on he right next to the

trace element.
Change the following properties
● “Texts è Text”: %s
● “Text variables è Text variable”: PLC_PRG.rHysteresis

11. Configure the “OnMouseDown” input configuration of the element. Click
“Input configuration è OnMouseDown è Configure”.

ð The “Input Configuration” dialog opens.

12. Assign the “Write Variable” command to the action. Accept the default values and click
“OK”.

13. Drag a “Label” visualization element to the editor. Position it over the first rectangle.
Change the following properties
● “Texts è Text”: Hysteresis Regulator

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2858

14. Adjust the size and position of both elements.
15. Select both of the “Rectangle” and “Label” elements and duplicate them by means of copy

and paste.
16. Adjust the labels and variables of the copied elements.

● “Text”: Compressor Efficiency, “Text variable”: Simulation.P_Cooling
● “Text”: Environment Efficiency, “Text variable”: Simulation.P_Environment
● “Text”: Environ. Efficiency DoorOpen Sim, “Text variable”:

Simulation.P_EnvironmentDoorOpen
● “Text”: Time until Beep for DoorOpen, “Text variable”:

Glob_Var.timDoorOpenThreshold
● “Text”: Time until Beep for Compressor On, “Text variable”:

Glob_Var.timAlarmThreshold

See also
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

This screen includes the representation of a refrigerator. The refrigerator consists of several
polygon type visualization elements. The doors of the refrigerator are drawn in both the closed
and open states. Both doors consist of a group of single elements.

1. Open the Live_Visu visualization in the editor.

2. Select the “Polygon” visualization element in the “Visualization Toolbox” view.

Structure of the
visualization
'Live Visu'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2859

3. Click several times in the editor to create a surface. Right-click to stop adding corner
marks.

4. Move the corner marks to the required position so that the element (1) is formed.

5. Select the element.
Change the following properties:

● “Colors è Use gradient color”:
● “Appearance è Line style”: “Invisible”

6. Click the “Colors è Use gradient color” property.
7. Select the color “Gray” for “Color 1” in the “Gradient Editor” dialog.

8. Create all other elements with the “Polygon” visualization element.
9. Group the elements of the closed doors (2+3+4) and the open doors (5+6+7+8). To do

this, press the [Shift] key and click “Visualization è Group” to select the elements.
10. Move the elements together so that the completed refrigerator is formed. Position the

open doors precisely on the closed doors.
11. Select the "Open doors" group.
12. In the properties, double-click the input field “State variable è Invisible”.
13. Press [F2] to open the Input Assistant.
14. Select the rDoorOpen variable in the “Variables” category (below “Application

è Glob_Var”).
15. Negate the variable with NOT (--> NOT Glob_Var.rDoorOpen).

ð If the rDoorOpen variable is FALSE (door is closed), then the element is invisible.
Then the underlying doors are visible.

16. Copy the following elements from the Visualization screen:

● Potentiometer for setting the temperature
● Rectangle for displaying the set temperature
● Door open switch
● Cooling compressor lamp
● Signal (beep) lamp

17. Insert the elements from the clipboard to the Live_Visu visualization screen.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2860

18. Reduce the elements and position them on the refrigerator.

When the visualization is complete, test it in simulation mode.

1. Click “Online è Simulation”.
2. Click “Online è Login”.

ð A dialog opens and prompts you to create and download the application.

3. Click “Yes” to confirm the dialog.
4. Click “Debug è Start”.
5. Open the visualization Live_Visu in the editor.

ð The refrigerator is in online mode.

6. Open the doors with the switch and monitor the temperature and the alarms. Change the
parameters in the screen Diagnosis and watch the reaction in the temperature curve.

Visualization in
online mode
(simulation)

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2861

6.4.5.2.4 Displaying Array Data in a Histogram

Requirements
● A project contains a visualization object and a program.
● A one-dimensional array is declared in the program (example: histogram :

ARRAY[1...10] OF INT;).
● In the program, histogram data is assigned to the array (example: within the range from 0

to 50).

1. Double-click the “Visualization” object in the device tree.
2. In the “Visualization Toolbox” view, click “Measurement Controls” and drag the “Histogram”

element to the visualization editor.
3. In the visualization editor, click the inserted “Histogram”.

ð The “Properties” view opens.

4. In the “Properties” view, double-click the “Value” input field in the “Data array” element
property. Then click .

5. In the “Input Assistant” dialog in the “Variables” category of the “PLC (PRG)” program,
select the array (example here: histogram : ARRAY[1..10] OF INT;) and click
“OK”.

6. To display only part of the array as a histogram, activate the “Use subrange” option
and specify the index values of the array in “Start index” and “End index” to define the
subrange.

7. Select the “Display type” (example: “Bar”).
8. Specify a value between 1 and 100 (example: 30) for the “Relative bar width”.

9. Click the histogram in the visualization editor and change the size and position as desired.

ð The “Position” property changes its values accordingly.

10. Specify the values for the “Scale” element property. Select the values for “Scale start” and
“Scale end” so that the array is displayed completely. For the example: “Scale start” 0,
“Scale end” 50.

For the distance between values on the main scale, specify the value 10, for example, in
“Main scale”.

11. In the “Label” element property, specify the “Unit” for the display values.
12. Click “Build è Generate Code”.

Setting element
properties for
the histogram

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2862

13. If the project has been compiled without errors, then click “Online è Login” and click
“Debug è Start” to start the application.

ð The histogram is displayed in the visualization as follows:

The visualization displays a histogram with bars all the same color (example: green).
Now you want the bars with values less than 30, for example, to be displayed in another color
(example: red).
1. Click the element property “Colors è Alarm color”.
2. Specify the limiting value in “Alarm value” above or below which the bars should be

displayed in another color.
3. Select “More” from the list box in “Alarm condition” if all values greater than the “Alarm

value” should be displayed in another color. Otherwise, select “Less”.
4. Select an “Alarm color” (example: “Red”).
5. Click “Build è Generate Code”.

Defining alarm
colors for the
histogram

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2863

6. If the project has been compiled without errors, then click “Online è Login” and click
“Debug è Start” to start the application.

ð In the example histogram, all bars with values greater than 30 are displayed in red.

See also
● Ä Chapter 6.4.5.20.1.29 “Visualization Element 'Histogram'” on page 3216

6.4.5.2.5 Displaying Array Variables in Tables
A frequently required function of a user interface is the display of data arrays. CODESYS
Visualization provides the element “Table” for this.
In the configuration of the element “Table”, enter an array variable in the property “Data array”.
The array components are displayed in the rows and columns of the table.

Subsequent instructions describe an example of how an array of a structure is displayed in
a table. As a preparation, create the MYSTRUCT DUT and the declarations in the PLC_PRG
program.

TYPE MYSTRUCT :
 STRUCT
 iNo : INT;
 bOnStock : BOOL;
 strPartNumber : STRING;
 END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 arrStruct : ARRAY[0..6] OF MYSTRUCT;
 iSelectedColumn : INT;
END_VAR

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2864

1. Drag the “Table” visualization element to the visualization editor.
2. Assign the array variable arrStruct to the “Data array” property.

ð The structure members are displayed as column headings and the array index as row
headings.

3. Change the “Columns è Column è [0] è Column header” property to an informative
heading (example: Number).

4. Change the heading of column [1] to in stock and column [2] to Part number. Adjust
the column width.

5. Assign a color to the “Selection è Selection color” property.
6. Define the “Selection è Selection type” property as Row selection.

7. In the “Selection è Variable for selected row” property, define the
PLC_PRG.iSelectedColumn variable.

ð The following display results in online mode:

See also
● Ä Chapter 6.4.5.20.1.13 “Visualization Element 'Table'” on page 3106

6.4.5.2.6 Displaying Web Contents

Requirement: A visualization open in a CODESYS project. The “Visualization Toolbox”
and “Properties” views of the visualization are also open.
1. Drag the “Web Browser” element from “Special Controls” to the visualization editor.
2. Select the element in the editor.

ð In the “Properties” view, the element properties are listed for the “Web Browser”
element.

3. In the “Position” property, specify the size (in pixels) for the “Width” and the “Height”
(example: 600).

4. In “Control variables è URL”, specify the URL for the website (example: 'http://
de.wikipedia.org'). You can also specify a variable here (STRING or WSTRING)
where the URL is assigned in the project.

5. In “Control variables è Display”, specify a Boolean variable (example: bSetURL).

ð If the variable bSetURL has the value TRUE, then the website 'http://
en.wikipedia.org' is displayed at runtime.

Displaying web-
sites in a visual-
ization

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2865

Requirement: The “Web Browser” element of your visualization is configured as described
above.
1. In a POU, declare both Boolean variables bGoBack and bGoForward.

2. In the visualization editor, click the “Web browser”.
3. For the property “Control variables è Back”, select the variable bGoBack from the

Input Assistant. For the property “Control variables è Forward”, select the variable
bGoForward.

4. In “General Controls”, add the “Button” element to your visualization two times.
5. Click a “Button” in the visualization editor and drag the “Button” to the required position

(for example above the “Web Browser” element).
6. In the property “Texts è Text”, specify the character >. In “Text properties è Font”, select

a font from the Input Assistant (example: Arial, Bold, 14).

7. Configure the property “Input configuration è OnMouseClick” so that the variable
bGoForward switches.

8. Configure the second button for back navigation in the same way as described in Steps 5
to 7.

ð If the variable bSetURL has the value TRUE, then the website 'http://
de.wikipedia.org' is displayed with the forward and back buttons. When you click
the buttons, navigation to the previous and next websites is successful.

Ä Chapter 6.4.5.20.1.38 “Visualization Element 'Web Browser'” on page 3262

Ä “Input action 'Toggle Variable'” on page 3379

6.4.5.2.7 Using Client Animation
The example shows a visualization with 3 screens. A menu controls the navigation of the
screens. The menu is hidden until it moves into view by means of a hamburger button. During
the movement, the transparency of the menu is changed. After the screen is selected, the
menu moves back out of view. The animation is computed entirely on the target system. The
CODESYS visualization only defines the target values (positions, transparency).

1. Create a new standard project with the CODESYS Control Win V3 controller.
2. Add a “Visualization” object below the “Application”. Choose the name Visu_Main.

3. Open the Visualization Manager in the editor and select the “Support client animations
and overlay of native elements” option.

The program checks whether the menu button has been pressed. If the menu bar is not visible
(position –300), then the position is moved to the visible area (0). If the menu bar is already
visible (position 0), then the position is moved to the hidden area.

Configuring the
buttons for for-
ward and back
navigation of
the website

1. Preparation

2. Creating the
PLC_PRG pro-
gram

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2866

1. Open the “PLC_PRG” program in the editor.
2. Input the following code into the declaration editor:

PROGRAM PLC_PRG
VAR
 iSelection : INT; // to switch the
referenced visualization page
 xVisible: BOOL; // auxiliary variable to
toggle the menu bar
 iMenuPos : INT := -300; // position of the menu bar
 xToggle: BOOL; // button variable to
toggle the menu bar
END_VAR

3. Input the following code into the implementation:
IF xToggle THEN
 xToggle := FALSE;
 IF xVisible THEN
 xVisible := FALSE;
 iMenuPos := -300;
 ELSE
 xVisible := TRUE;
 iMenuPos := 0;
 END_IF
END_IF

The menu bar has 3 menu items. A visualization screen is displayed by clicking the corre-
sponding menu item.
1. Insert a “Visu_Menu” visualization below the application.
2. Open the object properties. In the “Visualization” tab, set the “Visualization size” to a

“Width” of 300 and a “Height” of 180.
3. Open the visualization in the editor.
4. Select the “Advanced” option in the “Properties” view.
5. In the upper left corner, add a button with a “Width” of 300 and a “Height” of 60.
6. Label the button as "Visu 1". Set the font size to 24.
7. Open the “Input configuration è OnMouseClick” property.
8. Select the “Execute ST code” action.
9. Input the following ST code:

PLC_PRG.iSelection := 0;
PLC_PRG.xToggle := TRUE;

10. Set the “Button state variable è Digital variable” property to PLC_PRG.iSelection=0
11. Add two more buttons named "Visu 2" and "Visu 3".

3. Creating the
menu bar

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2867

12. Edit the button properties of "Visu2" (PLC_PRG.iSelection = 1) and "Visu3"
(PLC_PRG.iSelection = 2).

ð Result:

1. Insert the "Visu1" visualization below the application.
2. Open the object properties. In the “Visualization” tab, set the “Visualization size” to a

“Width” of 800 and a “Height” of 600.
3. Change the background color of the screen (for example, light gray).
4. Insert a “Label” object into the visualization screen and name the element (example: "Visu

1").
5. Insert two more visualizations "Visu2" and "Visu3" below the application. Edit the proper-

ties in the same way as for "Visu1".

On this screen, you can see the menu bar and a button to show or hide the menu bar. The
different visualization screens are navigated in a “Frame” visualization element.

1. Open the properties of the “Visu_Main” visualization. In the “Visualization” tab, set the
“Visualization size” to a “Width” of 800 and a “Height” of 600.

2. Open the visualization in the editor.
3. Insert a “Frame” element into the visualization.

ð The “Frame Configuration” dialog opens.

4. Add the “Visu1” (Index 0), “Visu2” (Index 1), and “Visu3” (Index 2) visualizations.
5. Set the property values of “Position” as follows: “X” = 0, “Y” = 0, “Width” = 800, and

“Height” = 600.

6. Set the property value of “Switch frame variable è Variable” to PLC_PRG.iSelection.

7. Insert a “Button” element into the visualization.
8. Set the property values of “Position” as follows: “X” = 0, “Y” = 0, “Width” = 800, and

“Height” = 600.

9. Set the property value of “Texts è Text” to =.

10. Set the property value of “Text properties è Font” to Arial; 36.

11. Open the “Input configuration è OnMouseClick” property.

4. Creating more
visualization
screens

5. Creating the
main visualiza-
tion screen

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2868

12. Select the “Execute ST code” action.
13. Input the following ST code:

PLC_PRG.xToggle := TRUE;
14. Set the property value of “Button state variable è Digital variable” to

PLC_PRG.xVisible.

15. Insert the “Visu_Menu” visualization element from the “Current Project” category into the
visualization.

16. Set the property values of “Position” as follows: “X” = 0, “Y” = 0, “Width” = 300, and
“Height” = 180.

17. Set the property value “Absolute movement è Movement è X” to PLC_PRG.iMenuPos.

18. Set the property value of “State variables è Invisible” to not(PLC_PRG.xVisible).

19. Set the property value of “Animation duration” to 2000.

ð Result:

See also
● Ä Chapter 6.4.5.20.1.6 “Visualization Element 'Frame'” on page 3053

1. Build the project and download it to the PLC.
2. Start the project.
3. In the browser, connect to the visualization (http://localhost:8080).

ð The WebVisu connects to the controller and the visualization opens.

4. In the visualization, click the menu button.

ð The menu moves into view.

6. Downloading
the project to
the controller
and starting the
WebVisu

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2869

5. Select a menu item.

ð The visualization screen is selected and the menu moves back out of view.

6.4.5.3 Preparing CODESYS and projects
The following provides details of the presets that exist for visualizations and the steps that are
necessary for creating a visualization in a project.

When you create a visualization in a project, you should know that the following presets apply:

Scope Location Setting
Throughout
CODESYS

“Tools è Options”

Categories
“Visualization”
and “Visualization
styles”

● Visualization editor: display, handling
● Paths of the basic text and image files
● Visualization styles

Throughout
the project

“Project
è Project settings”

Categories
“Visualization”
and “Visualization
profiles”

● "Properties handling" for the visualization elements
● Paths of the basic text and image files
● Symbol libraries with ready content
● Visualization profile

Throughout
the application

“Visualization
Manager”:

● Unicode, CurrentVisu variable, multitouch, semi-
transparency, memory size, data transmission,
number of clients

● Visualization styles
● Language setting, language-specific font
● Default keyboard configuration
● Visualizations and visualization references
● Font for each language
● User management

Single visuali-
zation

“Properties” of the
visualization object
Category
“Visualization”

● Purpose and scope of use
● Size definition

Display var-
iant of a single
visualization

Editor of the Web-
Visu or TargetVisu
object

● Start visualization, refresh rate, buffer size, html file
name

● Scaling options
● Display options
● Default text input

Project-specific updates of the visualization profile, the visualization styles, and the visualization
symbol libraries are possible in “Project è Project environment” of the respective tabs.
Customization of the visualization menu is performed in “Tools è Customize”.
See also
● Ä Chapter 6.4.5.21.3.9 “Dialog Box 'Options' - 'Visualization'” on page 3384
● Ä Chapter 6.4.5.21.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 3382
● Ä Chapter 6.4.5.21.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 3387
● Ä Chapter 6.4.5.21.3.14 “Dialog ‘Project Settings’ - ‘Visualization Profile’” on page 3388
● Ä Chapter 6.4.5.21.3.10 “Dialog 'Project Environment' - 'Visualization Profile'” on page 3385
● Ä Chapter 6.4.5.21.3.11 “Dialog 'Project Environment' - 'Visualization Styles'” on page 3386

Presets

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2870

● Ä Chapter 6.4.5.21.3.12 “Dialog 'Project Environment' – 'Visualization Symbols'”
on page 3386

● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

For each visualization, you insert a “Visualization” object into your project like any other object.
This also applies to visualizations that should be used later only within other visualizations. You
can insert the new visualization object directly below an application, or below the root node of
the “Devices” view (for availability throughout the entire project).
The required base libraries and other objects, such as the Visualization Manager, are inserted
automatically. When you insert the visualization object below an application, the subordinate
objects for the display variants supported by the device are also displayed.
Every visualization object can be edited separately in the visualization editor.
The following steps describe a simply example for creating an object for an application-specific
visualization.
Requirement: A project is open. An application is created in the device tree.
1. Select the application in the device tree. Click “Add object è Visualization” in the context

menu.

ð The “Add visualization” dialog box opens. In the “Symbol libraries” table, there is at
least the standard entry “VisuSymbols Vx.x.x. (System)”, and possibly other installed
symbol libraries.

2. Accept the default name Visualization. Activate the “VisuSymbols” option. Then the
visualization symbols (graphical objects) are contained in the library in the visualization
project. Click “Add” to close the dialog box.

ð In the device tree, the “Visualization manager” and “Visualization” objects are inserted
below the application. Depending on the device in use, the “TargetVisu” and/or
“WebVisu” objects are also created below the visualization manager.
If a “TargetVisu” object or “WebVisu” object is created, then a “VISU_TASK” object is
also created below the task configuration with an implicit program call.
The required visualization libraries are added automatically in the “Library Manager” of
the application.
The visualization editor opens with the “Visualization” editor window and the “ToolBox”
and “Properties” views.
In the “ToolBox” view, there is a “Symbols” button for viewing the symbols from the
library VisuSymbols.library.

3. Now you can create the required visualization in the visualization editor.
4. Note: You can create structured visualizations by using a frame element to reference one

visualization in another visualization. Dialog visualizations are a special option for this. In
this case, the input configuration of a visualization element is used for referencing.

For creating an application-dependent visualization, insert the visualization
object directly below the root node of the device tree. This corresponds to
insertion in the “POUs” view. In this case, the visualization manager is not
created with objects for the display variants.

Ä Chapter 6.4.5.21.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 3382

Ä Chapter 6.4.5.21.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 3387

Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

Creating visuali-
zation objects in
the project

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2871

6.4.5.4 Limitation of the number of usable web pages on AC500 V3 PLCs
Automation Builder will get all the available visualizations in the project and count those reach-
able from the visualization client objects (WebVisu and RemoteTargetVisualization).
In case the predefined number of visualizations is exceeded an error is shown in the message
window, preventing the user from compiling the project.
The error will be shown under “Build” category when the user executes the build command.
The PLC program won’t download to the PLC until this error is solved (like with any other build
errors). In the image below, there are 5 visualizations being used (3 of them added directly into
the Automation Builder project and the other 2 referenced from a library that was added to the
project).

The error will look like this when build command is executed:

If the visualizations are in the project but not being referenced (e.g. not reachable from the
“Start Visualization” in the WebVisu) they are not taken into account for this limitation. If the
error condition is solved, the error will disappear when the user executes the build command
again.

6.4.5.5 Designing a visualization with elements
6.4.5.5.1 General

The visualization editor provides the visualization elements for designing a user interface in the
“Visualization Toolbox” view.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2872

Drag the desired element into the editor view and adapt it in the “Properties” view: purely visual
design, labeling, display of data, reaction to user inputs, possibility to input values, etc.
Static or dynamic configuration of the properties is possible. This means the assignment of
fixed values or the assignment of application variables. A dynamic configuration allows for an
animation which is executed at runtime.
See also
● Ä Chapter 6.4.5.21.4.1.1 “Visualization Editor” on page 3393
● Ä Chapter 6.4.5.10 “Animating visualization elements” on page 2912

6.4.5.5.2 Select Element
The “Visualization Toolbox” view provides the following elements for selection:
● All visualization elements which the set visualization profile defines.
● Image elements for all images of the project from the integrated libraries or symbol libraries.
● Frame elements for all visualizations of the project or from the libraries.

See the “Project Settings” for the currently set visualization profile and the
currently used symbol libraries.

The elements are combined into specific categories, each of which has its own button in the
“Visualization Toolbox” view. You can create new categories and assign its elements.
The elements of the categories are displayed in the “Visualization Toolbox” view as preview
images. It is also possible to search for an element name.
Simply drag the preview image of the element to the desired position in the editor window. Then
the configurable properties of the element are displayed automatically in the “Properties” view of
the visualization editor.
Ä Chapter 6.4.5.21.4.1.1 “Visualization Editor” on page 3393

Ä Chapter 6.4.5.21.4.1.2 “View 'Visualization Toolbox'” on page 3394

Ä Chapter 6.4.5.20.1.5 “Visualization Element 'Image'” on page 3038

Ä Chapter 6.4.5.20.1.6 “Visualization Element 'Frame'” on page 3053

Requirement: The visualization editor is open.

1. In the “Visualization Toolbox” view, click the button.

ð the “Configure Categories and Items” dialog opens.

2. In the dialog, click the symbol to open the “Add Category” dialog. Note: Click the
symbol or press the [Del] key to delete the definition of a category.

3. In the “Name” field, specify a name (example: tagA) and click “OK” to close the dialog.

ð In the “Configure Categories and Items” dialog, the new custom category tagA is
inserted below in the tree view. It is provided with the symbol.

4. Click the “Enable” option for the new category, and click “OK” to close the dialog.

ð CODESYS adds a “tagA” button in the “Visualization Toolbox” view. When you click
the button, all elements that are assigned to this category are displayed.

Ä Chapter 6.4.5.21.3.4 “Dialog 'Configure Categories and Items'” on page 3368

Create or
remove new ele-
ment category

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2873

Requirement: The visualization editor is open. You have already created a custom category
tagA. A button labeled tagA is visible in the “Visualization Toolbox” view.

1. In the “Visualization Toolbox” view, right-click an element to open its context menu.

ð A context menu opens. It contains the “Add Item to Category 'tagA'” and “Add to
Categories” commands.

2. Click “Add to Category 'tagA'” and click “OK” to close the dialog.
3. Click the “tagA” button.

ð All elements are displayed which are assigned to this category, below it also the
currently assigned element.

Ä Chapter 6.4.5.21.4.1.2 “View 'Visualization Toolbox'” on page 3394

6.4.5.5.3 Positioning the Element, Adapting Size and Layer
A visualization is a raster image in pixels. The pixel position is specified in X/Y-coordinates. The
origin (0,0) is located at the upper left corner of the window. The positive X-values run to the
right, and the positive Y-values run downwards. The position of an element on the Z-axis of the
visualization is controlled by the position in the element list (see below).

The size and position of an element are specified as pixel coordinates in the “Properties” view.
These settings are displayed graphically in the editor view at the same time.
When you drag a visualization element from the “Visualization Toolbox” view to the editor view, it
is shown as selected, as in the following example of a rectangle element:

The possible positions depend on the set grid. You can change its settings CODESYS options.
Commands in the context menu are available for alignment and grouping.
Now you can move or resize the element directly in the editor. As an alternative, you configure
the “Position” property in the properties editor, which opens automatically for the selected
element. See the description for this, for example in the help page for the “Button” element. The
changes are also updated in the other editor.
1. Focus the element so that the shape of the mouse pointer indicates movement (example:

).
2. Drag the element to any position.

ð The position of the element is also updated in the properties “Position è X” and
“Position è Y ”.

3. Focus on a blue box.

ð The shape of the mouse pointer is a double arrow that indicates the direction you can
drag the box in order to resize the box: .

4. Drag the blue box to resize the element.

ð The position of the element is also updated in the properties “Position è X” and
“Position è Y ”.

Moreover, you can rotate the “Rectangle”, “Line”, “Polygon”, and “Pie” elements.

Assigning a vis-
ualization ele-
ment of an ele-
ment category

Configuring the
size and posi-
tion in the editor

Changing the
element size
and position in
the editor

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2874

1. Select the element for static rotation. Example: Rectangle

ð The rectangle is displayed with a handle next to the movable position boxes.

(1) Handle
2. Drag the mouse pointer over the handle.

ð The cursor is displayed as a rotating arrow .

3. Rotate the element to any position.

ð In the property “Position è Angle”, the set angle is displayed in degrees.

Ä Chapter 6.4.5.10.2 “Configuring rotations and offsets” on page 2912

Each visualization element is in its own layer of the visualization (Z-axis). It can be hidden
by other elements in the foreground and hide other elements in the background. The order of
layers is visible on the “Element List” tab above the editor view. The order of elements from front
to back specifies the order of visualization layers from back to front.
Use the commands from the “Order” context menu to move a selected element.
Example of an element list (1):

Static rotation
of rectangle,
line, polygon,
pie, or image

Moving the visu-
alization ele-
ment forward
and back

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2875

Ä Chapter 6.4.5.21.4.1.1 “Visualization Editor” on page 3393

Ä Chapter 6.4.5.20.1.11 “Visualization Element 'Button'” on page 3089

Ä Chapter 6.4.5.21.2.3 “Command 'Visualization Element List'” on page 3342

Ä Chapter 6.4.5.21.2.5 “Command 'Order'” on page 3344

Ä Chapter 6.4.5.21.2.6 “Command 'Alignment'” on page 3344

Ä Chapter 6.4.5.21.2.7 “Command 'Group'” on page 3347

6.4.5.5.4 Assigning a color
You configure the color of a visualization element either statically by means of the “Color”
property, or dynamically by assigning an application variable by means of the “Color variables”
property. Depending on the element, color assignments are also available in other properties.
For example, for the font color, this is provided in the “Text” property of a labeled element.
For the static assignment of a color value, you can always use the color dialog in the properties
editor, which provides color palettes to choose from.
You can specify the color as a style color. Style colors are color names for color definitions from
the actively applied style. When configuring an corresponding property, you are provided with
a list of available style colors. We recommend that you use style colors because then you
can change colors centrally by means of a style selection or a style customization. You can also
open the “Color” dialog to select a value from color palettes.
In addition, you can define the fill color of an element as a “Gradient”. Then the color changes
linearly, radially, or axially from the initial color to the final color. You configure the “Gradient
setting” in the “Gradient Editor” dialog.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2876

Ä “Element property 'Colors'” on page 2989

NOTICE!
A color assignment with style color allows for easy global color changes.

Requirement: The visualization editor is open.
1. Insert some Rectangle elements.

2. Select an element.

ð The “Properties” view is active.

3. Click in the “Colors è Normal state è Fill color” property.

ð A list box and the button appear.

4. Assign a style color to the rectangle. For example, select “Elementfillcolor” from the list
box.

5. Define the degree of transparency in the “Colors è Normal state è Fill color
è Transparency” property. Use the slider to select the value “136”.

6. Select another rectangle. Click in the “Colors è Normal state è Fill color” property.

ð A list box and the button appear.

7. Assign a fixed color value to the rectangle. Click to do this.

ð The “Color” dialog opens.

8. Select a standard color or “Define Custom Colors” to fine-tune your selection. Then click
“OK”.

ð The color is set as a fixed value. The color is displayed as a small rectangle. The RGB
values are also indicated next to it.

9. Click in the “Colors è Normal state è Fill color è Transparency” property.
10. Use the slider to select the value “136”.

ð The color is semitransparent.

Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979

Requirement: The visualization editor is open.
1. Drag a “Rectangle” element to the visualization.
2. Select the “Colors è Use gradient color” property.
3. Click in the “Colors è Gradient setting” property.

ð The “Gradient Editor” dialog opens.

Designing a vis-
ualization ele-
ment with a
style color or a
fixed color value

Designing a vis-
ualization ele-
ment with a
color gradient

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2877

4. Define the color gradient for the element:
● “Gradient type”: “Radial”
● “Standard radial”: “Center”

ð The fill color of the element changes radially from white to black.

Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The “Color variables” property, which certain elements may have, is used for the color animation
of the element. If you assign a variable there, then you can program color changes in the
application code or configure a user input that results in a color change.
You can see an example in the "Animating Visualization Elements" chapter.
Ä Chapter 6.4.5.10 “Animating visualization elements” on page 2912

Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979

Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

6.4.5.5.5 Using texts
You can get displayed text in an element by assigning a string in the element property “Texts
è Text”. For example all base elements have this property. Also, you can get displayed a text
as a tooltip (element property “Texts è Tooltip”). Texts assigned in this way are static. They
are managed in the object “GlobalTextList” in view “POUs” and they cannot be modified during
runtime, neither programmatically nor via an user input.
However, you can extend a static text by (exactly) 1 placeholder containing a formatting specifi-
cation, in order to output the content of a variable at this place. At runtime the current value of
the variable, which you have assigned to the element via property “Textvariable”, will be output.

On the possible formatting specifications please see: Ä Chapter 6.4.5.20.2
“Placeholders with Format Definition in the Output Text” on page 3329

By dynamic configuration you can animate the optical representation of the text.
You can localize the static texts, if you have set up multilingualism in your project.
See some examples for the text configuration of visualization elements in the following chapters.
Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

Precondition: A project containing a visualization is opened. You have an image file
representing a stop symbol.
1. Below the Application object insert an object “Image Pool” named ImagePool_A.

2. In the image pool ImagePool_A add your stop symbol image file with ID Stop.

ð

Configuring a
visualization
element for
color animation

Labeling an
image element
with a static text

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2878

3. Open the visualization and from the ToolBox draw an element “Image” into the editor.

ð The input assistant opens. In tab Category you see the image poolImagePool_A.

4. Select the image Stop and close the dialog with “OK”.

5. Configure the property “Text” of the image: ImagePool_A, Stop
6. Configure the property “Text properties è Horizontal alignment”: Left.

7. Configure the property “Text properties è Vertical alignment”: Bottom.

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert a “Button” element.

ð The “Properties” view opens for the new element.

2. Configure property “Text”: Number of clicks: %I
ð The string contains the placeholder %I.

3. In POU PLC_PRG of the application declare a type-conform variable: iClicks : INT;
4. Configure the property “Text variable” of the button element with PLC_PRG.iClicks.

ð At runtime the variable value will be output instead of the placeholder.

5. Below property “Inputconfiguration”, in the cell containing the input event OnMouseClick,
click on “Configure”.

6. From the list of possible actions choose Execute ST-Code.

7. Enter the code for the action in the editor “Execute ST-Code”:
PLC_PRG.iClicks := PLC_PRG.iClicks + 1;

8. Close the dialog with “OK”.

ð The user input is configured.

9. Build, download and start the application.

ð The application is running. The visualization opens. The element is labeled and the
number of clicks will be output. If you as user click on the button, the number will be
increased.

Text output: Ele-
ment outputs
the result of ST
code which is
executed on a
mouse-click

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2879

Using the “Text field” element you can produce a dynamic text output. The text output can be
effected via an user input or via the application program.

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert a “Text field” element.

ð The “Properties” view shows the configuration of the element.

2. Below the application add a Text List with the following entries: Textlist_A.

3. In POU PLC_PRG of the application declare the text variable:strTextID : STRING :=
'0';

4. Also declare the variable strTooltipID : STRING := '0';
5. Also declare the variable iText : INT;
6. Configure the property “Dynamic texts è Text List” with 'Textlist_A'.

7. Configure the property “Dynamic texts è Text index” with PLC_PRG.strTextID.
8. Configure the property “Dynamic texts è Tooltip index” with PLC_PRG.strTooltipID.
9. In POU PLC_PRG implement the CASE instruction as shown below.

ð The variables in property “Dynamic Texts” are programmed.

10. Configure the property “Inputconfiguration è OnMouseclick” for Execute ST-Code with
PLC_PRG.iText := (PLC_PRG.iText + 1) MOD 4;
ð For element “Text field” an user input is configured.

11. Build, download and start the application.

ð The application is running. The visualization opens. In the text field the text None
is output. When you as user click on the element, the text changes to Dynamic_
File_A. And the matching tooltip is available: Information A. With each click the
text changes according to the CASE instruction.

Text output:
Dynamic output
using a textlist

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2880

CASE iText OF
0: strTextID := '0';
 strToolTipID := '0';

1: strTextID := '1';
 strToolTipID := '4';

2: strTextID := '2';
 strToolTipID := '5';

3: strTextID := '3';
 strToolTipID := '6';
ELSE
 strTextID := '0';
 strToolTipID := '0';
END_CASE;

In property “Texts è Text” you can define a text in order to get a static text output. A text
in “Texts è Tooltip” will be displayed as tooltip. You can configure the text in a way, that the
content of a variable is additionally output.
You can extend a static text by (exactly) 1 placeholder including a formatting definition, in order
to output the content of a variable at this place at runtime. The variable must be assigned in
property “Text variable”. When the variable value changes in the application code, then at the
same time the output in the visualization changes.

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert an element “Text field”.

ð The “Properties” view shows the element configuration.

2. Configure the property “Texte è Text”: File name: %s
ð The text contains the placeholder %s.

3. In POU PLC_PRG of the application declare a type-conform variable strFileName :
STRING := 'File_A';

4. Configure the property “Text variable” of the text field with PLC_PRG.strFileName.

ð At runtime the variable value will be output instead of the placeholder.

5. Build, download and start the application.

ð The application is running. The visualization opens. The text field element displays the
text: File name: File_A

Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

You can use the “Text field” element in order to output the text given by a variable, or to provide
a place, where the user can give input on the variable.
Additionally you can configure a text input. In this case on an user input an input field in the
element “Text field” will appear. As a precondition you must have configured an user input action
in the property “Inputconfiguration”.
Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

CASE instruc-
tion

Text output:
Configuring a
static + dynamic
text output

Configuring text
input in a text
field

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2881

Precondition: A project containing a visualization is opened.
1. Open the visualization and insert an element “Text field”.

ð The “Properties” view shows the element configuration.

2. Configure the property “Texts è Text”: File name: %s
ð The text contains the placeholder %s

3. Configure the property “Texts è Tooltip”: Storage location: %s
4. In POU PLC_PRG of the application declare a type-conform variable strFileName :

STRING := 'File_A';
5. In POU PLC_PRG of the application declare also the variable strFileDir :

STRING := 'D:/Data';
6. Configure the property “Text variable” of the text field with PLC_PRG.strFileName.

ð At runtime the variable value will be output instead of the placeholder.

7. Configure the property “Tooltip” of the text field with PLC_PRG.strFileDir.

8. Build, download and start the application.

ð The application is running. The visualization opens. The text field element shows the
text File name: File_A. When the mouse cursor is moved above the text field, the
tooltip will be displayed: Storage location : D/Data.

Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The user should be able to enter text in a text field. For this configure an input of type “Write
variable” on a text output variable. This text output variable will store the text input of the user
and will display this text instead of the placeholder (this is %s in the example below). You specify
the text output variable in the property “Text variables è Text variable”.

Precondition: A project containing a visualization is opened.
1. In POU PLC_PRG of the application declare a string variable: strInput : STRING;
2. Open the visualization and insert an element “Text field”.

ð The “Properties” view shows the configuration of the element.

3. In property “Texts è Text” enter Input: %s.

4. In property “Inputconfiguration” for mouse action “OnMouseClick” click on “Configure” to
open the “Input Configuration” dialog box. There choose action “Write a Variable” and
activate option “Use text output variable”. Close with “OK”.

5. In the element property “Text variables è Text variable” assign the text output variable
PLC_PRG.strInput.

Showing text as
a tooltip

Configuring ele-
ment “Text
field” for text
input

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2882

6. Build, download and start the application.

ð The application is running. The visualization opens. The element outputs the text:
Input:. Click in the element to open an input field, where you can enter a string.
After having terminated the input by [Enter], the text will be adopted.

Configure the property “Font variables” in order to animate the display of a text. All base
elements have this property, additionally the table, scrollbar and text field element.
Ä Chapter 6.4.5.10.3 “Animating a text display” on page 2914

Precondition: A project containing a visualization is opened.
1. Open a visualization and insert an element “Label”.

ð The “Properties” view with the pre-set property configuration opens.

2. Configure the property “Texts è Text”: Visualization A.

You can configure the property “State variables è Invisible” in order to hide an element in the
visualization.

Precondition: In the visualization you have configured a text field, which gets visible only,
if a certain application variable gets TRUE. For example in order to show certain instructions or
descriptions only in a certain state of the machine.
1. For the text field element configure the property “Texts è Text” with Error detected:

Do the following....

Configure the property “Text properties è Font color” with “dark red”.
2. In PLC_PRG declare the variable bIsInvisible : BOOL : TRUE; (this is the initial-

ization for the current example; normally the variable should be set to TRUE by the
application program under certain conditions.

3. Configure the property “State variables è Invisible” with PLC_PRG.bIsInvisible.

4. Build, download and start the application.

ð The application is running. The visualization opens and the text field is not visible.
When you set bIsInvisible to TRUE, the textfield will be displayed.

6.4.5.5.6 How to display variable values in the visualization
There are simple to very specialized visualization elements for displaying data from a running
application.
Examples:
● Simple output of variable values: For example, you can configure a purely formatting specifi-

cation for a “Rectangle” element in the “Text” property and the variable whose value is to be
displayed in the element in the “Text variable” property.

● Display of structured variable values (structure, array, function block): You use the “Table”
element and specify an array variable in its configuration in the “Data array” property whose
values are to be displayed in the table. One-dimensional arrays can also be displayed in a
“Histogram”.

Animating the
text display

Configuring the
'Label' element

Making an ele-
ment invisible

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2883

● Display of values by image switching. Example: A specific screen is displayed depending
on the error message that occurs. You do this by configuring an “Image” element with a
variable for the “Bitmap ID variable” property.

● Display a variable value as a bar or with a pointer on a scale: You specify a variable in the
“Value” property of the “Bar Display” element or “Meter” element to display its value as a bar
on a horizontal or circular scale.

● Display of alarms: The alarms configured in the alarm management of the application can
be made visible by means of the “Alarm Table” and “Alarm Banner” elements in the user
interface.

● “Trace” and “Trend”: For graphical recording of variable values over a period of time.
For details, see the descriptions of the element properties.
See also
● Ä Chapter 6.4.5.20.1 “Visualization Elements” on page 2987
● Ä Chapter 6.4.5.5.5 “Using texts” on page 2878
● Ä Chapter 6.4.5.2.4 “Displaying Array Data in a Histogram” on page 2862

6.4.5.5.7 How to Change Variable Values via the Visualization
In addition to displaying values from the controller, a user interface is also used to enter and
change values.
In general, you can configure user input for each element in its “Input configuration” properties.
Moreover, elements have been developed especially for specific input.
Examples:
● A “Button” element (or “Rectangle” element, and so on) that is clicked to open a predefined

dialog visualization for easily specifying a value.
● A “Slider” element for changing the value of a variable by moving visual element parts,

for example with the mouse. In the case of the slider: The element adjusts the value of a
variable, depending on the position of the slider within the slider. You define the value range
of the slider bar by means of the scale start and scale end.

● A switch element (example; “Power Switch”) for setting a Boolean value.
● A “Spin Box” element for incrementing or decrementing the value of a variable in defined

intervals.
● A “Button” element for writing a recipe, executing a specific ST code, writing a specific

variable, and so on (definition in the input configuration).
See also
● Ä Chapter 6.4.5.21.5 “Visualization Elements” on page 3412
● Ä Chapter 6.4.5.6 “Configuring user inputs” on page 2885

6.4.5.5.8 Designing a background
You can design the background of your visualization in color or with an image. To do this, use
the command “Visualization è Background”.
See also
● Ä Chapter 6.4.5.21.2.10 “Command 'Background'” on page 3349
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

In addition, you can use the property “Integrate background” in the dialog
“Properties” of a visualization object to specify whether the background image
should always be displayed in its entirety or whether it should be truncated.

Configuring an
image as a
background

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2884

Requirement: A project with a visualization is open.
1. Open the visualization and select the command “Visualization è Background”.
2. Activate the option “Image” and open the input assistant.
3. Select an image in the dialog “Input Assistant”.

ð The image serves as a background image.

See also
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

Requirement: A project with a visualization is open.
1. Open the visualization and select the command “Visualization è Background”.
2. Activate the option “Color”.
3. Select a style color such as “Element background color” from the selection list.

ð The background of the visualization is colored.

6.4.5.6 Configuring user inputs
6.4.5.6.1 General

User inputs for a visualization are configured in order to operate the visualization.
For this purpose, you configure input events on visualization elements where follow-up actions
are triggered. The combination of user inputs and follow-up actions are defined in the “Input
configuration” of an element. For example, you can select a mouse click on an element as the
input event and opening a dialog box as the input action.
Keyboard events can also be configured that trigger actions in a specific visualization window
when the events occur. You program this kind of input configuration for a visualization in its
“Keyboard configuration” editor.
In addition, keyboard events can be configured that occur in all visualizations programmed in
the application. You configure this kind of input configuration per application below the visualiza-
tion manager in the “Standard keyboard shortcuts” tab.
Input is usually performed with the mouse and keyboard as controlling device. You can also
configure a user operation by means of gestures.
If a visualization device is not equipped with a mouse, then you can activate default keyboard
usage. Then a user can operate the visualization with the keyboard only by navigating with the
arrow keys and triggering events by pressing the [Enter] key.
If a visualization device is not equipped with a keyboard, then you can call a virtual keyboard or
a virtual numeric keypad.

NOTICE!
Configure keyboard events only for keys that the visualization device supports.

Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341

Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Ä Chapter 6.4.5.21.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 3402

Configuring a
colored back-
ground

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2885

1. Event handler of the application. Requirement: The event handler is activated.
2. Events of the default keyboard usage
3. Events of the keyboard usage are configured in the tab “Visualization manager” - “Default

hotkeys”.
4. Events of keyboard usage are configured in the tab “Keyboard configuration” for the

currently visible visualization.

Ä Chapter 6.4.5.6.6 “Capturing user input events” on page 2895 Ä Chapter 6.4.5.21.1 “Key-
board Shortcuts for Default Keyboard Action” on page 3338

Ä “Tab 'Keyboard configuration'” on page 3341 Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard
Configuration'” on page 3341

Ä Chapter 6.4.5.21.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 3402

Ä Chapter 6.4.5.21.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 3402

6.4.5.6.2 Configuring user inputs for visualization elements
All base elements and some common control elements have the “Input configuration” property.
This is where you can configure a user input for an element. For this purpose, you select an
input event and an input action.

Requirement: A project is open with a visualization.
1. Open the visualization and added a “Button” element.

ð The “Properties” view opens for the new button.

2. Configure the property “Text” with Number of clicks: %i.

3. Declare a variable iClicks : INT; in the application in the PLC_PRG POU.

4. Configure the “Text variable” property of the button as PLC_PRG.iClicks.

ð At runtime, its variable value will replace the placeholder in the “Text” property.

5. In the “Input configuration” property, click the “Configure” button in the OnMouseClick
line.

6. Select the Execute ST code action from the list of possible actions and click the
symbol.

ð The action appears in the list of actions to be executed. The blank implementation of
the action appears in the window area to the right of the list.

Processing
order of key-
board events

Configuring
user inputs

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2886

7. Program the action in the editor at “Execute ST code”:
PLC_PRG.iClicks := PLC_PRG.iClicks + 1;

8. Click “OK” to close the dialog box.

ð The user input is configured.

9. Compile, download, and start the application.

ð The application runs. The visualization opens. If the user clicks the button, then the
action is executed, the variable PLC_PRG.iClicks is incremented, and the number
of clicks is printed.

Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

6.4.5.6.3 Configuring gesture recognition
You can execute a visualization on a device that is operated by means of gestures. The
visualization retains its user input configuration for mouse and keyboard operation and also
recognizes gestures and multi-touch events. Gesture events are recognized and interpreted as
mouse events.
For this purpose, activate the “Activate multi-touch” setting in the visualization manager.
Elements of the type “Frame” or “Tab control element” display contents that a user should be
able to move. Therefore, configure their “Scaling type” property with “Fixed and scrollable”.
Gesture recognition for:
● Tapping

A quick tap on the element is interpreted as a mouse click.
● Panning

Pressing, moving, and releasing with one finger in a frame or with a tab control element (in
the window area of the element) will move the contents.

● Multi-finger touch detection
Touching several elements at the same time will input for all elements. These touch events
are interpreted as the respective mouse events.
Example:
Two-hand operation in order to trigger an action with two simultaneous inputs on two dif-
ferent elements.
Virtual mixing console where multiple sliders can be operated at the same time.

In addition, the IGestureEventHandler interface is available in the
VisuElems.VisuElemBase library. You can use this to implement application code that rec-
ognizes gestures and executes follow-up actions.
The following display variants can execute a visualization on a multi-touch device
● CODESYS WebVisu
Ä “Implementing event handling with multi-touch” on page 2888

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2887

Requirement: A project is open with a visualization and a user input configuration. It
contains one button. The visualization device is a display with multi-touch support.
1. Double-click the “Visualization manager” object.

ð The editor opens.

2. Click the “Settings” tab.
3. In the “Additional settings” group, activate the “Activate multi-touch” option.
4. Compile, download, and start the application.

ð The application runs. The visualization opens. When a user touches the display of
the visualization device, the visualization responds. Elements that respond to mouse
events also respond to touch events Several buttons can be pressed at the same
time. Scrollable frames or tab control elements are displayed without scrollbars and
can be moved by panning.
Note: The “Scaling type” property of elements type “Frame” or “Tab control element”
must be set to “Fixed and scrollable”.

Ä Chapter 6.4.5.20.1.6 “Visualization Element 'Frame'” on page 3053

Ä Chapter 6.4.5.20.1.10 “Visualization Element 'Tabs'” on page 3084

Requirement: The device is multi-touch capable
1. Implement and register a function block that receives the gesture events.

ð FUNCTION_BLOCK GesturesHandler IMPLEMENTS
VisuElems.VisuElemBase.IGestureEventHandler2
VisuElems.g_VisuEventManager.SetGestureEventHandler(THIS^);

2. Implement and register a function block that sets the touch areas.

ð FUNCTION_BLOCK RectProvider IMPLEMENTS
VisuElems.VisuElemBase.IApplicationRectangleProvider
VisuElems.g_VisuRectangleProvider := THIS^;

3. Implement actions as application code that are executed when a gesture event occurs

6.4.5.6.4 Configuring text input with the virtual keyboard
A visualization is usually configured so that it calls a virtual keyboard for a text input event when
an input device is not available. For this purpose, the follow-up action “Write variable” is preset
accordingly in the user input: The value “Standard” is selected for the “Input type” setting.

However, you can also configure especially how text is input. For this purpose, more input
types are available in the user input, such as Text input or the listed visualizations. These
visualizations have the visualization type “Numpad/Keypad” and display virtual keyboards or
numeric keypads.
In the “Settings for default text input” setting of the visualization manager you can preset a
keyboard visualization that is called from all visualizations in the application when required. This
is possible without having to customize the user inputs of the visualizations.
Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Using gestures
to control visu-
alizations

Implementing
event handling
with multi-touch

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2888

Requirement: A project is open with a visualization.
1. Declare an input variable in the PLC_PRG program.

ð VAR_INPUT stInput : STRING; VAR_END
2. Add a button to the visualization and select the element.
3. Configure the property “Texts è Text” with Text input: %s.

4. Configure the property “Text variables è Text variable” with PLC_PRG.stInput.

5. Click auf “Configure” in the property “Input configuration è OnMouseClick”.

ð The “Input Configuration” dialog box opens. The selected input event is printed below
the caption.

6. Select the “Write variable” action.
7. Select the visualization Visudialogs.Keypad in “Input type” of the implementation of

the action.

ð The virtual keyboard Visudialogs.Keypad is selected as the input device.

8. Compile, download, and start the application.

ð The visualization opens.

9. Click the button as a visualization user.

ð The virtual keyboard appears and allows text input by means of the mouse.

Configuring text
input especially
for virtual key-
boards

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2889

Requirement: A project is open with a visualization.
1. Declare an input variable in the PLC_PRG program.

ð VAR_INPUT iInput : INT; VAR_END
2. Open the visualization and added a “Rectangle” element.
3. Select the element in the editor.

ð The properties are visible in the “Properties” view.

4. Configure the property “Texts è Text” with Number input: %i.

5. Configure the property “Text variables è Text variable” with PLC_PRG.iInput.

6. In the “Input configuration” property, click the “Configure” button in the OnMouseClick
line.

ð The “Input Configuration” dialog box opens. The selected input event is printed below
the caption.

7. Select the Write variable action from the list of possible actions and click the
symbol.

ð The action appears in the list of actions to be executed. The blank implementation of
the action appears in the window area to the right of the list.

8. Select the following settings:
“Input type” set to VisuDialogs.Numpad.

“Choose variable to edit” set to “Use text output variable”.
“Dialog title” set to 'My virtual numpad'.

9. Click “OK” to close the dialog box.

ð The user input is configured.

Configuring
numeric input
especially for
virtual numeric
keypads

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2890

10. Compile, download, and start the application.

ð The application runs. The visualization opens. When a user clicks the rectangle, the
numeric keypad opens.

Requirement: A project is open with a visualization and a user input configuration. For all
“Write variable” follow-up actions, the value “Default” is selected for the “Input type” setting.
1. Double-click the visualization manager.
2. Click in the default text input in the “Settings” tab (“Default text input” group) and assign

visualizations.

ð These visualizations are defined as default text input. If a display variant does not
have a keyboard, then these visualizations are called without you having to adapt the
user input.

Defining
standard text
input

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2891

6.4.5.6.5 Configuring Keyboard Shortcuts
You can define keyboard shortcuts and assign specific actions to them. At runtime, a visualiza-
tion detects the keyboard input event and executes the action.
There are different locations where you can configure a keyboard input event.
The options include the following:
● Configure keyboard input for a specific element.
● Configure keyboard input for a specific visualization.
● Configure keyboard input that is valid for all visualizations.
● Select the default hotkeys.
If the visualization integrated in CODESYS is executed, then you can deactivate the keyboard
input of the visualization in order to use the keyboard shortcut from CODESYS in this state.

You can define a keyboard shortcut that triggers an action for an element. The ele-
ment has to be visible and operable. For this purpose, the property “Input configuration
è Keyboard shortcuts” is available in the “Properties” view of the visualization editor.

Requirement: A CODESYS project is open with the existing visualizations visEllipse
and visRectangle.

1. Select the application in the device tree and add a visualization named visMain.

ð The visualization editor opens.

2. In the “Visualization Toolbox” view, select and drag the “Frame” element to the editor.

ð The “Configuration of Frame Visualizations” dialog opens.

3. Double-click in succession the visEllipse and visRectangle visualizations in
“Available Visualizations”.

ð The visualizations appear in “Selected Visualizations”.

4. Click “OK” to exit the dialog.

ð The visualization contains a new element type “Frame”. The 2 selected visualizations
appear under its property “References”.
In the editor, the frame shows the visualization with the index 0.

5. Add a button and configure its properties:
Select Rectangle in the property “Texts è Text”.

In the “Input configuration è OnMouseDown” property, select “Toggle frame visualization”
for the visualization visRectangle.

Specify the value R in the property “Input configuration è Keyboard shortcuts è Key”.

ð The button has a user input and a keyboard shortcut.

6. Add a button and configure its properties:
Select Ellipse in the property “Texts è Text”.

In the “Input configuration è OnMouseDown” property, select “Toggle frame visualization”
for the visualization visEllipse.

Specify the value E in the property “Input configuration è Keyboard shortcuts è Key”.

ð The button has a user input and a keyboard shortcut.

Configuring
keyboard short-
cuts for ele-
ments

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2892

7. Click “Online è Login” for the device and start the application.

ð The visualization starts. It has a frame where one of the referenced visualizations
runs. Focus on the visEllipse visualization and press [E]. The visualization
switches the contents in the frame to the visEllipse visualization. When you press
[R], the visualization switches the contents in the frame to the visRectangle visuali-
zation.

Ä Chapter 6.4.5.20.1.6 “Visualization Element 'Frame'” on page 3053

Ä “Input action 'Switch Frame Visualization'” on page 3377

You can define keyboard shortcuts that trigger an input action on a specific visualization. The
“Keyboard Configuration” tab in the editor of the visualization is used for this purpose.

Requirement: A CODESYS project is open with the visualizations visEllipse and
visRectangle.

1. Open the CODESYS TargetVisu object and select visEllipse as the start visualization.

2. Open the visEllipse visualization and click the “Keyboard Configuration” tab.

3. Click “Visualizations è Keyboard Configuration”.

ð The “Keyboard Configuration” tab opens.

4. Select the value C in the “Key” column.

5. Activate the “Press key” option.
6. Select the “Change shown visualization” value in the “Action Type” column.
7. Select visRectangle in the “Action” column.

ð The user input is configured for [C].

8. Open the visRectangle visualization and click the “Keyboard Configuration” tab.

9. Select the value C in the “Key” column.

10. Activate the “Press key” option.
11. Select the “Change shown visualization” value in the “Action Type” column.
12. Select visEllipse in the “Action” column.

ð The user input for [C] is also configured for this visualization.

Configuring
keyboard short-
cuts for a spe-
cific visualiza-
tion

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2893

13. Build the application.
14. Click “Online è Login” for the device and start the application.

ð The visualization starts and displays an ellipse. Focus on the visEllipse visu-
alization and press [C]. The visRectangle visualization is displayed. Focus on
the visualization and press [C] again. Now the visualization is switched again to
visRectangle.

Ä “Tab 'Keyboard configuration'” on page 3341

Ä “Input action 'Change Shown Visualization'” on page 3373

You can define keyboard shortcuts that trigger the same input action for all visualizations of the
application. The “Default Hotkeys” tab in the Visualization Manager is available for this purpose.

Requirement: A project is open with a visualization.
1. Open the visualization.
2. Add a rectangle.
3. Configure the property “Texts è Text” with Keyboard shortcut.

4. Double-click the “GlobalTextList” object.
5. Click in the table, “Add Language”, and then specify de.

ð The language de is configured.

6. Click in the table, “Add Language”, and then specify en.

ð The language en is configured.

7. Configure translations for de and en for the text Keyboard shortcut.

ð Hotkey Keyboard Shortcut Hotkey
8. Open the Visualization Manager and select the “Default Hotkeys” tab.
9. Specify D in the “Key” column.

10. Activate the “Press key” option.
11. Select the “Change language” value in the “Action Type” column.
12. Select the language de in the “Action” column.

ð The keyboard event for [D] is configured.

13. Specify D in the “Key” column.

14. Activate the “Press key” option.
15. Select the “Alt” option.
16. Select the “Change language” value in the “Action Type” column.
17. Select the language en in the “Action” column.

ð The keyboard event for [Alt]+[D] is configured.

Configuring
keyboard short-
cuts for all visu-
alizations in the
application

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2894

18. Compile, download, and start the application.

ð The visualization opens.

19. As the visualization user, press [D].

ð The text is displayed in the language de.

Ä Chapter 6.4.5.21.4.3 “Tab 'Visualization Manager' - 'Default Hotkeys'” on page 3402

Ä “Input action 'Change Language'” on page 3372

When you activate the universal keyboard shortcuts for standard keyboard handling, the user
can operate the visualization without a mouse. Elements that respond to user input can process
a keyboard event instead of a mouse event without adapting its input configuration.

Requirement: A project with a visualization is open.
1. Click the “Visualization Manager” object.
2. Activate the “Activate standard keyboard handling” option.

ð The universal keyboard shortcuts are activated.

3. Download the application to a device and start the application.

ð The visualization starts. Now operation can proceed without the mouse. You can
navigate in the window by means of the [Arrow] and [Tab] keys and press [Enter]
instead of the mouse button.

Ä Chapter 6.4.5.21.1 “Keyboard Shortcuts for Default Keyboard Action” on page 3338

If you execute the visualization as an integrated visualization, then the “Visualization
è Activate Keyboard Usage” command is available in order to deactivate the capturing of
keyboard events. It is actually possible for the same keyboard shortcuts to be defined in the
visualization and in CODESYS
When you activate the command, the visualization executes the configured keyboard events.
When you deactivate the command, CODESYS executes the keyboard events. Capturing key-
board events is then deactivated for the visualization.
Ä Chapter 6.4.5.21.2.4 “Command 'Activate Keyboard Usage'” on page 3343

6.4.5.6.6 Capturing user input events
You can capture user input events in the application. For this purpose, you can implement a
function block that is executed when user events occur.

When the user completes the input of a value (in an input field), an edit control event is closed.
You can capture this event in the application as follows.

1. Create a function block that implements the VisuElems.IEditBoxInputHandler
interface from the VisuElemBase library.

2. Pass the instance to the global event manager
VisuElems.Visu_Globals.g_VisuEventManager by calling the
SetEditBoxEventHandler method.

Activating
standard key-
board handling

Activating and
deactivating
keyboard short-
cuts for inte-
grated visualiza-
tions

Capturing the
writing of varia-
bles

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2895

A visualization has two input fields for iInput_A and rInput_B and one text output element.

The input fields are rectangles that the user is prompted to click in order to input text.
The text output element is a rectangle where the contents of the text variable
PLC_PRG.stInfo are printed. The text variable contains the last input by a user in one of
the input fields and the additional information that was added.

Properties of the rectangle iInput_A
“Texts è Text” iInput_A: %i
“Text variables è Text variable” PLC_PRG.iInput_A

Properties of the rectangle rInput_B
“Texts è Text” iInput_B: %i
“Text variables è Text variable” PLC_PRG.rInput_B

Properties of the rectangle for the text output

“Texts è Text” %s
“Text variables è Text variable” PLC_PRG.stInfo

PROGRAM PLC_PRG
VAR_INPUT
 iInput_A:INT; (* Used in the visualization as user input
variable*)
 rInput_B:REAL; (* Used in the visualization as user input
variable*)
 stInfo : STRING; (* Informs about the user input via the edit

Example

PLC_PRG
implementa-
tion

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2896

control field;
 String gets composed by method 'VariableWritten;
 Result is displayed in the lower rectangle of the
visualization *)
END_VAR
VAR
 inst : POU;
 bFirst : BOOL := TRUE;
END_VAR

IF bFirst THEN
 bFirst := FALSE;

VisuElems.Visu_Globals.g_VisuEventManager.SetEditBoxEventHandler(ins
t);
 (* Call of method VariableWritten *)
END_IF
FUNCTION_BLOCK POU IMPLEMENTS VisuElems.IEditBoxInputHandler
(* no further declarations, no implementation code *)
METHOD VariableWritten : BOOL
(* provides some information always when an edit control field is
closed in the visualization, that is a variable gets written by
user input in one of the upper rectangles *)
VAR_INPUT
 pVar : POINTER TO BYTE;
 varType : VisuElems.Visu_Types;
 iMaxSize : INT;
 pClient : POINTER TO VisuElems.VisuStructClientData;
END_VAR

// String stInfo, which will be displayed in the lower rectangle,
is composed here
PLC_PRG.stInfo := 'Variable written; type: ';
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, INT_TO_STRING(varType));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', adr: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, DWORD_TO_STRING(pVar));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', by: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,
SEL(pClient^.globaldata.clienttype =
VisuElems.Visu_ClientType.Targetvisualization,'other visu',
'targetvisu'));

POU implemen-
tation
Method
VariableWrit
ten assigned
to POU

When the user presses and releases the key, a keyboard event is triggered in the visualization.
You can capture this event in the application as follows.
1. Create a function block that implements VisuElems.IVisuUserEventManager from

the VisuElemBase library.

2. Pass the instance to the global event manager
VisuElems.Visu_Globals.g_VisuEventManager by calling the
SetKeyEventHandler method.

Capturing key-
board events

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2897

A visualization has one text output element. The text output element is a rectangle where
the contents of the text variable PLC_PRG.stInfo are printed. The text variable contains
information about the last key pressed by the user.

Properties of the rectangle for the text output

“Texts è Text” %s
“Text variables è Text variable” PLC_PRG.stInfo

PROGRAM PLC_PRG
VAR_INPUT
 stInfo : STRING;
END_VAR
VAR
 inst : POU;
 bFirst : BOOL := TRUE;
END_VAR

IF bFirst THEN
 bFirst := FALSE;

VisuElems.Visu_Globals.g_VisuEventManager.SetKeyEventHandler(inst);
END_IF
FUNCTION_BLOCK POU IMPLEMENTS VisuElems.IKeyEventHandler
(* no further declarations, no implementation code *)

/// This method will be called after a key event is released.
/// RETURN:
/// TRUE - When the handler has handled this event and it should
not be handled by someone else
/// FALSE - When the event is not handled by this handler
METHOD HandleKeyEvent : BOOL
VAR_INPUT
 /// Event type. The value is true if a key-up event was
released.
 bKeyUpEvent : BOOL;
 /// Key code
 dwKey : DWORD;
 /// Modifier. Possible values:
 /// VISU_KEYMOD_SHIFT : DWORD := 1;
 /// VISU_KEYMOD_ALT : DWORD := 2;
 /// VISU_KEYMOD_CTRL : DWORD := 4;
 dwModifiers : DWORD;
 /// Pointer to the client structure were the event was released
 pClient : POINTER TO VisuStructClientData;
END_VAR
VAR
END_VAR

PLC_PRG.stInfo := 'KeyEvent up: ';
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,
BOOL_TO_STRING(bKeyUpEvent));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', key: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, DWORD_TO_STRING(dwKey));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', modifier: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,
DWORD_TO_STRING(dwModifiers));
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo, ', by: ');
PLC_PRG.stInfo := CONCAT(PLC_PRG.stInfo,

Example

Implementa-
tion of the
PLC_PRG pro-
gram

Implementa-
tion of the POU
function block
Implementa-
tion of the
VariableWrit
ten method of
the POU func-
tion block

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2898

SEL(pClient^.globaldata.clienttype =

VisuElems.Visu_ClientType.Targetvisualization,

 'other visu',
'targetvisu'));

All visualization elements that change the value of a variable by user input call the
IValueChangedListener interface. With this interface, the value changes can be recorded
and then processed programmatically.

1. Implement a function block (example: POU) that implements the
IValueChangedListener interface.
FUNCTION_BLOCK POU IMPLEMENTS VisuElems.IValueChangedListener
ð In the device tree, the “ValueChanged” method is inserted below the function block.

2. In a program (example: “PLC_PRG”), implement the IEC code that registers the interface.
VisuElems.g_itfValueChangedListenerManager.AddValueChangedListene
r(itfValueChangedListener)
ð “PLC_PRG” receives all value changes by means of the “ValueChanged” method.

Now you can record and process the value changes.

6.4.5.7 Setting Up User Management
6.4.5.7.1 General.. 2899
6.4.5.7.2 Creating runtime-based user management initially......................... 2900
6.4.5.7.3 Switch to legacy user management.. 2902
6.4.5.7.4 Creating a group with administrator rights for visualizations........... 2902
6.4.5.7.5 Setting up access control and login operation................................. 2903
6.4.5.7.6 Group-dependent restriction of functionality.................................... 2905

6.4.5.7.1 General
If you want to deploy a web visualization and securely protect it from third-party access, it is
advantageous to set up runtime-based user management for it.
Runtime-based user management makes sure that users will log in securely with current
technology. The credentials are managed using standard web technologies. In addition, user
accounts can be created at runtime via secure channels, user credentials can be managed, and
user permissions can be restricted according to the role of the user.
For this, it is necessary that the visualization user management is coupled with the device user
management. You need to map the groups with their rights in the visualization to the groups
in the device. You configure the user accounts centrally on the “Users and Groups” tab of the
device editor.
If you do not want this because you value independent user management for your visualization
and accept the outdated technology for this, then you can alternatively switch to legacy user
management. This is not recommended if your controller supports runtime-based user manage-
ment.
Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

Ä Chapter 6.4.1.6.5 “Setting up a user management” on page 1825

Recording vari-
able value
changes trig-
gered by input
events

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2899

User management linked to device user management for higher security.

Whenever possible, always use runtime-based user management.

If you want to convert to your existing user management, then open
the “User Management è Groups” tab in the “Visualization Manager” and click
the “Convert to Runtime-Based” button. At this time, the user groups are taken
over. The credentials of the users will be lost because these then have to be set
up in the controller.

The users are configured in the device user management on the “Users and Groups” tab of the
device editor. If you want a user to have access only to a visualization but not to any device,
then assign them a group membership and restrict the group permissions so that they are only
allowed access to a visualization but not to any other device functionality.
Ä Chapter 6.4.5.7.2 “Creating runtime-based user management initially” on page 2900

Ä Chapter 6.4.1.21.2.8.14 “Tab 'Users and Groups'” on page 2450

Deprecated but still available user management.
Legacy user management runs independently of device user management.
In the deprecated visualization user management, you define user groups and visualization
users in the “Visualization Manager”. In the user management dialogs, which request the cre-
dentials at runtime, authorized users log in to their visualization with their group permissions. In
the visualization, elements can have group-dependent permissions and therefore be visible only
to the group, for example.
In a project with several applications, you can configure user management for each application.

NOTICE!
When a visualization user management exists, an unregistered user automati-
cally receives the access rights from the None group.

Ä “Tab 'Groups'” on page 3404

The login operation is always the same for all display variants. This means it is independent of
which user management is set up.
Login operation on the display variants:
● The integrated display ignores the user management functionality and starts with the user

who logged in to the controller using CODESYS.
● When a TargetVisu is started, no user is initially logged in and the operator then has to log in

if this is required by the designed visualization
● When starting a remote TargetVisu, the user from the communication settings of the remote

TargetVisu itself is initially logged in. This can be changed via a new login within the
visualization.

● Web visualizations start with the secure login operation of runtime-based user management

6.4.5.7.2 Creating runtime-based user management initially

Whenever possible, use a runtime version >= 3.5 SP18 Patch 1 and CODESYS
Visualization version >= 4.2.0.0 for a new project with a visualization.

Runtime-Based
User Manage-
ment

Legacy User
Management

Login operation
on the display
variants

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2900

The default groups are “Administrator”, “Service”, and “Operator”.
Requirement: You have inserted a “WebVisu” below the “Visualization Manager”. You want to
create a runtime-based user management with standard groups.
With standard groups
1. Double-click the “Visualization Manager” object in the device tree.
2. Select the “User Management” tab.
3. Click the [Create Runtime Based User Management with Default Groups] button.

ð The “Groups” and “Settings” tabs are displayed on the “User Management” tab.
The “Administrator”, “Service”, and “Operator” groups are configured on
the “Groups” tab.

4. If necessary, to create new user groups, click in the empty field in the “Group
Name” column and specify the name of the new group.

5. Connect the application to the controller and click
the [Upload device groups names] button.

ð The user groups of the device user management are uploaded and are now selectable
in the “Mapping in Runtime Group” column.

6. For the user groups of the visualization of the “Group Name” column, select a group of the
device user management from the list box in the “Mapping in Runtime Group” column to
which the user group of the visualization should be assigned.

ð By assigning the visualization user groups to the device user groups, the visualization
groups get the same permissions on the controller as the respective groups of the
device user management.

The visualization user management is now coupled with the device user management. The
visualization user groups are now mapped to the device user management groups and get their
group rights.
To configure the login operation, see: Ä Chapter 6.4.5.7.5 “Setting up access control and login
operation” on page 2903

First create an empty user management if you want new created groups with self-determined
permissions.
Requirement: You have inserted a WebVisu below the Visualization Manager.
1. Double-click the “Visualization Manager” object in the device tree.
2. Select the “User Management” tab.
3. Click the [Create Runtime Based Empty User Management] button.

ð The “Groups” and “Settings” tabs are displayed.

ð The “Group” tab is open.

4. To create new user groups, click in the empty field in the “Group Name” column and
specify the name of the new group.

5. Connect the application to the controller and click
the [Upload device groups names] button.

ð The user groups of the device user management are uploaded and are now selectable
in the “Mapping in Runtime Group” column.

With standard
groups

Empty
with None group

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2901

6. On the “User Management” tab: For the user groups of the visualization of the “Group
Name” column, select a group of the device user management from the list box in
the “Mapping in Runtime Group” column to which the user group of the visualization
should be assigned.

ð By assigning the visualization user groups to the device user groups, the visualization
groups get the same permissions on the controller as the respective groups of the
device user management.

The newly created user management groups are now coupled with the device user manage-
ment and are mapped to the device user management groups. You get their group permissions.
To configure the login operation, see: Ä Chapter 6.4.5.7.5 “Setting up access control and login
operation” on page 2903

6.4.5.7.3 Switch to legacy user management

Whenever possible, use a runtime version >= 3.5 SP18 Patch 1 and CODESYS
Visualization version >= 4.2.0.0 for a new project with a visualization.

You have initially created a runtime-based user management. Now you want to decouple this
from the device user management and have a separate management only for the visualization
users.
1. In the Visualization Manager, open the “User Management” tab and click the “Groups” tab.
2. Click the [Convert to Legacy] button.

User management is decoupled from device user management and converted to legacy.
The “Users” tab opens.

6.4.5.7.4 Creating a group with administrator rights for visualizations
Only with runtime-based user management.
Configuration of user groups with restricted administrator permissions for the visualiza-
tion.
Typically, operators of the visualization are a separate user group from application developers.
Therefore, the following steps can also be used to configure an administrator for the visualiza-
tion, who has access only to the groups of the visualization.
This configuration is possible with runtime version 3.5.18.10 and higher.
For detailed information about CODESYS device user management and its operation, see: Han-
dling of Device User Management.
Ä Chapter 6.4.1.11.4 “Handling of Device User Management” on page 1971

Requirement: A visualization group (example: VISU_ADMIN) has been assigned to a run-
time group (example: RTS_GRP_RESTR) in the Visualization Manager on the User Man-
agement tab. In the device user management, the User_Restr user has been assigned to
the RTS_GRP_RESTR group. The RTS_GRP_RESTR group has full View permissions for the
controller.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2902

1. n the device user management, on the “Access Rights” tab, grant the “View” permission
for the “UserManagement” object to the “RTS_GRP_RESTR” group. To do this, select
the “UserManagement” object, and in the “Rights” area on the right side, double-click the
“View” field of the “RTS_GRP_RESTR” group. This opens a dialog prompting whether or
not the changed permissions should also be changed for all child objects. Click [No] to
refuse this action. Double-click the field again and click [No] again in the next dialog.

ð The symbol is displayed for the View permission. For all other groups (except
Administrator), the permission should have the symbol.

2. To the “RTS_GRP_RESTR” group, grant the “View” and “Modify” permissions for the
“UserManagement è Users” object.

ð The symbol is displayed for both permissions.

3. To the “RTS_GRP_RESTR” group, grant the “View” and “Modify” permissions for those
objects of the “UserManagement è Groups” object which are relevant for the visualiza-
tion.

ð Access to the groups which are relevant for the visualization is granted to the
RTS_GRP_RESTR group. For the respective objects, the symbol is displayed for
both permissions.

4. For the “RTS_GRP_RESTR” group, deny the “View” permission to the “Administrator”
group. As a result, users of the “RTS_GRP_RESTR” group cannot extend their permis-
sions.
Moreover, select the “UserManagement è Groups è Administrator” object and deny the
“View” permission to the “RTS_GRP_RESTR” group.

ð The symbol is displayed.

ð Now when you are logged in as a user with restricted administrator permissions on the
application, you can create new users or modify existing users for the visualization,
but not for groups with additional permissions on the controller.

6.4.5.7.5 Setting up access control and login operation
In the user management dialogs, you define the login, logout, changing of the user password,
and editing of the user management in the visualization at runtime.
Editing and Selecting User Management Dialogs

NOTICE!
If you create your own dialog as a user management dialog, then you should
use the visualizations from the included library project VisuUserMgmtDialogs
as the basis, because it uses the required interfaces. Your own user manage-
ment dialog is listed then in “Visualization Manager è Settings”, “Settings for
User Management Dialogs”.

For information about the login visualization in runtime-based user manage-
ment, see: “Creating runtime-based user management initially”.

Ä Chapter 6.4.5.7.2 “Creating runtime-based user management initially”
on page 2900

1. If you do not want to configure your own login page, then a preconfigured login page from
a library is automatically used when logging in to the visualization. This visualization is
automatically entered in the editor of the “WebVisu” as the “Login visualization” when the
user administration is created, but it can be changed if necessary.

2. If you want to create your own login page, then follow the steps below:

Creating Login
Pages

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2903

3. Add a “Visualization” object (for example, named "Login_Visu") to the application.
4. In the context menu of this object, click “Properties”. In the properties dialog, open

the “Visualization” tab.
5. In the context menu of this object, click “Properties”. In the properties dialog, open

the “Visualization” tab.
6. Open the "Login_Visu" visualization and design your login page with the input fields for

user name, password, and buttons for logging in and canceling the dialog.
7. To do this, only certain visualization elements are available to you. In these visualization

elements, you can use placeholders to configure the input fields for the user name and
password, as well as the buttons for logging in and canceling the dialog.

8. Compile the application and perform a download to the controller.
When you open the web visualization, the login page which you created for the visualiza-
tion opens. Type in your user name and the password for the controller which you have
stored in the device user management and click the [LOGIN]button.

Requirement: The library project VisuUserMgmtDialogs.library exists in the installation
directory.

1. Click “File è Open Project”.
2. Select the project VisuUserMgmtDialogs.library from the Projects folder of the

installation directory.
3. Click “View è POUs”.

In the “POUs” view, the project is displayed with the visualiza-
tions “UserMgmtChangePassword”, “UserMgmtConfig”, and UserMgmtChangePassword.

4. Double-click a visualization (example: “UserMgmtLogin”).
5. Change the visualization as you like and save the project.
6. Then, reinstall the library and add it to the “Library Manager” of your application.

A user management already exists in your application in the “Visualization Manager” object on
the “User Management” tab.
The “VisuUserManagement” library is in the “Library Manager”.
1. In the device tree, click the “Visualization Manager” object.
2. Select the “Dialog Settings” tab.
3. In “Settings for User Management Dialogs”, select the dialogs for “Login dialog”, “Change

password dialog”, and “Change configuration dialog”.

If no entries can be seen in “Settings for User Management Dialogs” in the
dialog lists, then close the “Visualization Manager” and reopen it.

You configure the visualization buttons for the login, logout, change password, and user man-
agement dialogs as follows:
Requirement: A visualization is open.

1. Drag a “Button” element from the “Visualization Toolbox” view (“Common Controls” cate-
gory) to the visualization.

2. In the “Properties” view, click the “Input configuration” node.

Editing user
management
dialogs

Selecting user
management
dialogs

Customizing the
dialogs of the
user manage-
ment

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2904

3. In the “Input Configuration è OnMouseClick” property, click “Configure”.
4. In the “Input Configuration” dialog, click “User management” and .

ð The following “Dialogs and actions” are listed on the right: “Login, Logout, Change
User Password”, and “Open User Configuration”.

5. elect the dialog or action to assign to the button and click [OK].

ð When the button is clicked at runtime, the selected dialog opens or the selected action
is executed.

If you want to open and edit the user management in the visualization at run-
time, you have to be a member of a group that has P“ermission to Change User
Data”.

6.4.5.7.6 Group-dependent restriction of functionality
Permissions for visualization-elements are not granted to individual users, but to groups with
assigned users.
Requirement: A “Visualization” object is open with at least one inserted visualization element.

1. Click a visualization element in the editor.
2. Click the “Value” field of the “Permissions” element property in the “Properties” view.

ð The “Permissions” dialog opens.

3. Select the permissions that the respective user group should have for the visualization
element.

If the option “Group hierarchy is used” is activated, the groups lower in the
hierarchy cannot be granted more permissions than groups higher in the
hierarchy.

In the “Visualization Element List” of a visualization, the “Permissions” column
shows the element permissions granted to groups.

Ä Chapter 6.4.5.21.2.3 “Command 'Visualization Element List'” on page 3342

In the project below the application, a visualization is stored which has at least one element with
restricted permissions.

1. Open the Visualization Manager and click the “User Management” tab.
2. Click the “List Usage of Groups” button.

ð In “Messages”, all elements with restricted permissions are listed which exist in the
visualizations that are used across the application. This will give you an overview of
functional limitations.

Configuring per-
missions for an
element of the
visualization

Updating
groups and
group permis-
sions

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2905

3. Click the [Update Visualizations/Hotkeys] button.

ð The “Update Visualizations and Hotkeys” dialog opens. Here you can centrally rename
groups, delete groups, or change group permissions. The affected visualization ele-
ments are updated. This means that the “Access Rights” property is updated for each
of the affected elements: There, the group names are removed or renamed or the
permissions are reset.

6.4.5.8 Setting Up Multiple Languages
Texts and tooltip texts for visualizations are managed in text lists and can be displayed in
different languages. To switch a visualization between the available languages, configure a
visualization element with the corresponding input configuration for changing the language.
There are static texts that are managed in “GlobalTextList” (generated automatically) and
dynamic texts from created text lists. A dynamic text can be changed at runtime with a variable
that defines the index of the text list entry. Static texts are fixed labels within a visualization;
dynamic texts are often used for displaying variable values or error messages.
For creating and using text lists, see: Ä Chapter 6.4.1.9.10 “Managing text in text lists”
on page 1891.

You can modify the appearance and formatting of texts and tooltips with the
element properties “Text properties” and “Font variables”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: An empty visualization object is inserted into the project and it is open for editing
in the visualization editor. There is also a “Visualization Manager” object. User management is
not created for the visualization.
The following instructions provide a simplified example:
● By means of two buttons, the user should be able to toggle the visualization texts between

English and German.
● Static texts in the visualization include the labels "State, Machine 01", "State, Machine 02",

"English", and "German". These texts are located in the “GlobalTextList” in English and
German.
Dynamic texts will describe the state of both machines. The texts are provided in the text list
“Status_Texts” in English (en) and German (de).

1. Drag a “Text Field” from the “Visualization Toolbox” view (“Common Controls” category) to
the editor view. Specify the value State, Machine M01 in the properties editor for the
element property “Texts è Text”.

2. Copy the element and change the copy label to State, Machine M02.

3. See also the figure in step 14 for the following steps.
Insert two elements of type “Button” from the “Visualization Toolbox” view (“Common
Controls” category) in the visualization editor. With these elements, the user should be
able to toggle the language of the visualization. Specify the text German or English in
the properties editor for element property “Texts è Text” (4).

4. Double-click and open “GlobalTextList” in the “POUs” view.

ð The texts are entered in the “Standard” (1) column, and the “ID”s 0 and 1 are
assigned automatically as additional information.

Configuring lan-
guage switching
for texts from
text lists

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2906

5. Add the languages “de” and “en” with the texts shown in the following figure.

6. Close the “GlobalTextList”.
7. Add two elements of type “Rectangle” from the “Visualization Toolbox” view (“Basic” cate-

gory) in the visualization editor. The current state of each machine should be displayed.
8. For managing the texts for describing the states, add an object of type “Text List” below

the application. Name the list Status_Texts.

9. Specify the texts shown in the figure for the standard language (1) and the target lan-
guages “en” and “de” in the editor of “Status_Texts”.

10. Close the text list “Status_Texts”.
11. Select the rectangle element for displaying the state of machine M01. Select the

text list Status_Texts from the combo box in the properties editor (2) for the
“Dynamic texts” element property (5). Specify an application variable for “Text index”
that shows the appropriate text index for the state of the machine at runtime. Example:
PLC_PRG.ivar_status_m01.

12. Now configure the user input for both buttons for toggling the language in the visualization.
Select the "German" button. Double-click “Configure” of the property “Input configuration”
(6), “OnMouseClick”.

ð The “Input configuration / OnMouseClick” dialog opens.

13. Select “Change the language” on the left. Click the arrows to accept the setting to the
right. Select “de” in “Language” to the right of the dialog in the input assistance. Click
“OK” to confirm.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2907

14. In the same way, configure the entry for the second button: English: “Text list”:
Status_Texts, “Text index”: 3, “Change the language”: English).

ð The following figure shows the performed properties configurations for the four visuali-
zation elements.

15. When the application is compiled without errors, you can test the visualization in simula-
tion mode. Activate the option “Online è Simulation”. Click “Online è Login”.

ð The visualization appears in the visualization editor view in online mode:

16. Click the “German” button.

ð The language changes to German:

Ä “Input action 'Change Language'” on page 3372

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2908

The font for a visualization element is defined in the properties editor. If a language switch is
provided, you can overwrite this basic font with another font for each language in the visualiza-
tion manager.
Requirement: A visualization is set up with at least one language in addition to the default
language.
Ä Example

1. Double-click and open the “Visualization Manager” object and select the “Font” tab.
2. Double-click the field in the “Font” line for a particular language. Select a font from the

combo box.
3. In the “Font size” line, replace the value 1 with a value greater than 1 (example: 2) in

order to increase the size of the font as defined by the visualization style; or replace it with
a value less than 1 in order to decrease is (example: 0.5).

ð In online mode, the font changes depending on the set language.

Ä Chapter 6.4.5.21.4.6 “Tab 'Visualization Manager' - 'Font'” on page 3407

6.4.5.9 Visualizing alarm management
In CODESYS, the alarm management is a powerful object for creating and managing alarms.
You can group alarms and set the acknowledgement behavior individually. The alarm display in
the visualization can also be customized.
The “Alarm Table” and “Alarm Banner” visualization elements are available for displaying and
processing alarms. The alarm table lists the alarm texts. The alarm banner is a simplified
version of the alarm table. It visualizes a single alarm only. However, by adding scroll elements
you can allow for switching the display from one active alarm to another active alarm.
Ä Chapter 6.4.1.9.20 “Alarm Management” on page 1928

Requirement: In your project, alarms are defined in alarm groups and they are assigned to
an alarm class. The following instructions are based on the example that is described in the
"Configuring alarm management" chapter.
1. Open the visualization editor.
2. Drag the “Alarm Table” element from the “Alarm Manager” group to the visualization

editor.

ð The “Alarm Table” visualization element is visible in the editor.

3. In the “Alarm configuration” / “Alarm groups” property, define the alarm groups that you
want to visualize. Click into the value field.

ð The “Select Alarm Group” dialog opens.

4. Clear the “All” check box and select the “PartsDeficit” alarm group. Add the group to the
selected alarm groups by clicking the button.

5. In the “Alarm configuration” / “Alarm classes” property, define the alarm classes that you
want to visualize. Click into the value field.

ð The “Select Alarm Class” dialog opens.

6. Clear the “All” check box and select the “PartsDeficit” alarm class. Add the alarm class to
the selected alarm classes by clicking the button.

7. Add an additional column. Click the “Columns” / “Create New” button.

ð CODESYS adds the column “[2]” to the properties. The “Symbol” column is added to
the table.

Setting up fonts
for a language

Creating an
alarm table

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2909

8. Select data type “State” for column [2].

ð The default column heading “State” is shown in the table.

9. Name the “Column heading” column "Status".
10. Specify the appearance of the selected table cell. Set the “Selection” / “Selection color” to

“Green”.
11. In the “Control variables” / “Confirm selection” property, specify the variable bQuitAlarm

for confirming messages.
12. Adjust the other properties to your requirements. See the "Alarm table" visualization ele-

ment for a complete description of the properties.

Ä Chapter 6.4.5.20.1.22 “Visualization Element 'Alarm Table'” on page 3166

In CODESYS, predefined buttons are available for controlling the alarms in an alarm table.
Requirement: An “Alarm table” element exists in the visualization.

1. Select the visualization element in the editor.
2. Click “Visualization è Insert elements for acknowledging alarms”.

ð The “Alarm Table Wizard” dialog opens.

3. Click “OK” to accept all settings.

ð Four buttons are added for controlling the alarm table.

Ä Chapter 6.4.5.20.1.22 “Visualization Element 'Alarm Table'” on page 3166

Requirement: In your project, alarms are defined in alarm groups and they are assigned to
an alarm class. The following statement is based on the example that is described in the
"Configuring alarm management" chapter.
The alarm banner displays an active alarm in online mode. If there are multiple active alarms,
filtering takes place by means of the filter criteria set in the alarm banner (newest for filter
criterion "Priority" and most important for filter criterion "Newest"). See the instructions below for
adding scroll elements in order to switch the display between multiple alarms.
1. Open the visualization editor.
2. Drag the “Alarm banner” element from the “Alarm manager” group to the visualization

editor.

ð The “Alarm banner” visualization element is visible in the editor.

3. In the “Alarm configuration” / “Alarm groups” property, define the alarm groups that you
want to visualize. Click into the value field.

ð The “Select Alarm Group” dialog opens.

Inserting ele-
ments for
acknowledging
alarms

Creating an
alarm banner

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2910

4. Clear the “All” check box and select the “PartsDeficit” alarm group. Add the group to the
selected alarm groups by clicking the button.

5. In the “Alarm configuration” / “Alarm classes” property, define the alarm classes that you
want to visualize. Click into the value field.

ð The “Select Alarm Class” dialog opens.

6. Clear the “All” check box and select the “PartsDeficit” alarm class. Add the alarm class to
the selected alarm classes by clicking the button.

7. Set the “Alarm configuration” / “Filter criterion” property to “Newest”.

ð In online mode, the newest alarm message is always shown.

8. Add an additional column. Click the “Columns” / “Create new” button.

ð CODESYS adds the column “[2]” to the properties. The “Symbol” column is added to
the table.

9. Select data type “State” for column [2].

ð The default column heading “State” is shown in the table.

10. In the “Confirmation variable” property, specify the variable bQuitAlarm for confirming
messages.

Ä Chapter 6.4.5.20.1.23 “Visualization Element 'Alarm Banner'” on page 3175

Elements can be added to an alarm banner for switching the display between the individual
active alarms. You can control the scrolling with visu-local variables or application variables.

1. Select the added "Alarm banner" visualization element. Click “Insert Elements for Scrolling
Alarms” in the context menu.

ð The “Alarm Banner Wizard” opens.

2. Select the element type for the scroll elements: “Button” or “Rectangle”.
3. Activate the action(s) for which a control should be inserted: “Scroll to next alarm”, “Scroll

to previous alarm”.
4. Specify a Boolean variable that gets the value TRUE when multiple active alarms are

present. If you have already configured a project variable in the element properties, then
it is also specified here in the wizard. Otherwise CODESYS automatically creates the
visu-local variable “xMultipleAlarmsActive”.

5. In the next step, check the configuration of the element properties of the extended alarm
banner.

6. Select the alarm banner element and look at the section “Handling of multiple active
alarms” in the “Properties” view. You have two options:

7. Option 1: The display should switch automatically. Activate the “Switch automatically”
property.

ð Now, in “Every N seconds” you define the time interval after which the display in the
alarm banner in online mode should switch to the next alarm.

8. Option 2: The display should be controlled by means of the application. Deactivate the
“Switch automatically” property.

ð Switching between the active alarms can be controlled by two variables. By default,
xNext and xPrev are created for scrolling to the next or previous alarm. You can
replace these variables with custom your own defined application variables.

Adding ele-
ments for
scrolling the
active alarms

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2911

Filtering by the contents of a latch variable can be useful when there are a lot of alarm events
displayed. If the latch variable assigned to an alarm in the alarm group definition contains, for
example, the error number or the name of a device instance, then you can filter the alarms in
the visualization by it.
For this purpose, you configure an input option in the alarm visualization for the contents of the
latch variable to be filtered by. For example, insert an input field which writes to the variable
that is specified in the “Alarm configuration” - “Filter by latch 1” - “Filter variable” property of the
configuration of the “Alarm table” element or “Alarm banner” element.
In addition, you configure an input option for the type of filtering. The type determines whether
a numeric value (typed literal, LINT literal) or the string value of the latch variable is used for
filtering. Filtering can also be switched off by means of type setting 0. For example, in the
visualization, insert another input field which writes to the variable that is specified in the “Filter
type” property of the configuration of the alarm table or alarm banner.
For more information, see the "Alarm Filter Latch Example" sample project in the CODESYS
Store.

6.4.5.10 Animating visualization elements
6.4.5.10.1 General.. 2912
6.4.5.10.2 Configuring rotations and offsets... 2912
6.4.5.10.3 Animating a text display.. 2914
6.4.5.10.4 Animating a color display.. 2914

6.4.5.10.1 General
The animation of a visualization element at runtime can serve to visualize value curves in addi-
tion to serving purely visual purposes. Animation is possible through a dynamic configuration of
certain element properties, i.e. by controlling these properties with a variable. See the following
examples of possible animations.

6.4.5.10.2 Configuring rotations and offsets
You can animate a visualization element and have it shifted or rotated at runtime. To do this
you assign variables in its property “Absolute movement” and then program the animation in the
application code.

You can configure an offset of the element by programming the variables in
“Absolute movement è Movement”.

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Rectangle”.

ð The view “Properties” displays the configuration of the element.

2. In the application in the POU PLC_PRG, declare type-compliant variables: diOffsetX :
DINT; and diOffsetY : DINT;

3. Configure the property “Absolute movement è Movement è X” with
PLC_PRG.diOffsetX and “Y” with PLC_PRG.diOffsetY.

4. Implement a shift of the element, for example by means of a modulo division of the value:
diOffsetX := diOffsetX MOD 100;
diOffsetY := diOffsetY MOD 100;

5. Compile, load and start the application.

ð The application runs. The visualization opens. The rectangle moves.

Filter alarm
events by the
contents of the
latch variable

Configuring an
offset

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2912

https://store.codesys.com

When an element rotates, then the center point of the element rotates precisely around its
center. The center is defined in the property “Center”. The center point of an element is calcu-
lated internally. If the center point and center coincide, then there is no rotation.
You can configure a clockwise rotation of the element by increasing the value of the variable
“Absolute movement è Rotation”.

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Rectangle”.

ð The view “Properties” displays the configuration of the element.

2. In the application in the POU PLC_PRG, declare a type-compliant variable:rValue :
REAL;

3. Configure the property “Absolute movement è Rotation” with PLC_PRG.rValue.

4. Implement the clockwise rotation of the element by increasing the value of the variable:
rValue := rValue + 0.1;

5. Compile, load and start the application.

ð The application runs. The visualization opens. The rectangle rotates about the center.
The alignment of the element with respect to the coordinate system is fixed.

When an element performs an inner rotation and rotates, then the center point of the element
rotates precisely around its center. This is the point defined in the property “Center”. The
alignment of the element also rotates relative to the coordinate system. If the center point of the
element and the center coincide, this produces a rotation on the spot.
You can configure a clockwise rotation of the element by increasing the value of the variable
“Absolute movement è Inner rotation”.
If the visualization is In runtime, you can see that the element rotates (also relative to the
coordinate system of the visualization).

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Polygon”, which you form into a pointer.

ð The view “Properties” displays the configuration of the element.

2. Drag the center point of the element to the base of the pointer.
3. In the application in the POU PLC_PRG, declare a type-compliant variable:

rValue : REAL;
4. Configure the property “Absolute movement è Inner rotation” with PLC_PRG.rValue.

5. Implement the clockwise rotation of the element by increasing the value of the variable:
rValue := rValue + 0.1;

Configuring a
rotating element

Configuring a
rotating element

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2913

6. Compile, load and start the application.

ð The application runs. The visualization opens. The pointer rotates about its base.

Ä Chapter 6.4.5.20.1.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”
on page 2988

6.4.5.10.3 Animating a text display
An animation of the text display can be configured in the property “Font variables”. All basic
elements have this property as well as tables, scrollbars and text fields.

Requirement: A project with a visualization is open.
1. Open the visualization and add an element “Rectangle”.

ð The view “Properties” displays the configuration of the element.

2. Configure the property “Texts è Text” with Important:

3. In the application in the POU PLC_PRG, declare a type-compliant variable:

ð iFontHeight : INT;
4. Configure the property “Font variables è Size” with PLC_PRG.iFontHeight.

5. Implement a change of the font size.

ð iFontHeight := iFontHeight + 1) MOD 20;

6. Compile, load and start the application.

ð The application runs. The visualization opens. The rectangle is labelled with
Important. The font size grows from 1 to 20.

See also
● Ä Chapter 6.4.5.20.1.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 2988

6.4.5.10.4 Animating a color display
The colors of an element are specified in the “Colors” properties of the element properties.
There you can select either a predefined style color from the selection list or a color in the color
dialog.
The “Color variables” element property is used for the color animation of the element. If you
pass variables to the properties, then you can program color changes in the application code
or configure a user input that results in a color change. A color constant or color variable in
the code has the data type DWORD and is encoded according to the RGB color space or RGBA
extension.

Example: ani-
mating the font
size

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2914

NOTICE!
The “Activate semi-transparent drawing” option is provided in the Visualization
Manager. This option is enabled by default so that the “Transparency” property
is available for all color definitions. With programmatic color definition, the
leading byte is interpreted as an alpha channel and therefore used as the
transparency value of the color. When the option is cleared, the “Transparency”
property is not available and the leading byte is ignored in color literals.

Color information in the code is specified as DWORD literals. The value is in the RGBA color
space and is usually shown as a hexadecimal number. The value is coded with additive portions
of red, green, and blue. It is appended with the alpha channel which determines the transpar-
ency of the color.

16#<TT><RR><GG><BB>

<TT> : 00 - FF // Transparency in 256 levels
<RR> : 00 - FF // Red in 256 levels
<GG> : 00 - FF // Green in 256 levels
<BB> : 00 - FF // Blue in 256 levels
The graduation value for transparency is 16#FF for opaque and 16#00 for transparent. For
each color portion, one byte is reserved for 256 color graduations 16#FF to 16#00. 16#FF
means 100% color portion and 16#00 means 0% color portion.

<TT> Byte for the transparent graduation of 00-FF
<RR> Byte for the red portion of 00-FF
<GG> Byte for the green portion of 00-FF
<BB> Byte for the blue portion of 00-FF

Table 621: Color literal
16#FF0000FF Blue, opaque
16#FF00FF00 Green, opaque
16#FFFFFF00 Yellow. opaque
16#88888888 Gray, semitransparent
16#88000000 Black, semitransparent
16#FFFF0000 Red, opaque

Example

VAR_GLOBAL CONSTANT
 c_dwBLUE : DWORD := 16#FF0000FF; // Highly opaque
 c_dwGREEN : DWORD := 16#FF00FF00; // Highly opaque
 c_dwYELLOW : DWORD := 16#FFFFFF00; // Highly opaque
 c_dwGREY : DWORD :=16#88888888; // Semitransparent
 c_dwBLACK : DWORD := 16#88000000; // Semitransparent
 c_dwRED: DWORD := 16#FFFF0000; // Highly opaque
END_VAR

Example
Global declara-
tion of color
constants

Color definition
in RGBA color
space

Byte order of a
color literal

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2915

1. Create a standard project in CODESYS.
2. Declare global color constants in the POU tree.

ð
{attribute 'qualified_only'}
VAR_GLOBAL CONSTANT
 gc_dwRed : DWORD := 16#FFFF0000;
 gc_dwGreen: DWORD := 16#FF00FF00;
 gc_dwYellow: DWORD := 16#FFFFFF00;
 gc_dwBlue: DWORD := 16#FF0000FF; // Highly opaque
 gc_dwBlack : DWORD := 16#88000000; // Semitransparent
END_VAR

3. In the device tree, declare local color variables in PLC_PRG.

ð
VAR
 dwFillColor: DWORD := GVL.gc_dwGreen;
 dwFrameColor : DWORD := GVL.gc_dwBlack;
 dwAlarmColor : DWORD := GVL.gc_dwRed;
END_VAR

4. Declare a control variable.

ð bChangeColor : BOOL;
5. Declare an input variable in PLC_PRG.

ð bInput : BOOL;
6. Enable the visualization editor.
7. Drag a “Rectangle” element to the visualization editor.

ð The “Properties” view of the element opens.

8. Configure the properties of the rectangle as follows:
● Property “Color variables”, “Normal state”, “Filling color”: PLC_PRG.dwFillColor
● Property “Color variables”, “Normal state”, “Frame color”: PLC_PRG.dwFrameColor
● Property “Color variables”, “Alarm state”, “Filling color”: PLC_PRG.dwAlarmColor
● Property “Color variables”, “Toggle color”: <toggle/tap variable>
● Property “Input configuration”, “Toggle”, “Variable”: PLC_PRG.bInput

Animating a vis-
ualization ele-
ment in color

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2916

9. Program the variables as follows:

PROGRAM PLC_PRG
VAR
 dwFillColor: DWORD := GVL.gc_dwGreen;
 dwFrameColor : DWORD := GVL.gc_dwBlack;
 dwAlarmColor : DWORD := GVL.gc_dwRed;

 bChangeColor : BOOL;
 bInput : BOOL;
END_VAR

IF bChangeColor = TRUE THEN
 dwFillColor := GVL.gc_dwYellow;
 dwFrameColor := GVL.gc_dwBlue;
ELSE
 dwFillColor:= GVL.gc_dwGreen;
 dwFrameColor := GVL.gc_dwBlack;
END_IF
ð The colors are initialized at runtime. If the variable bChangeColor is then forced to

TRUE, the color display of the rectangle changes. When the rectangle is clicked in the
visualization, the rectangle is displayed in alarm colors.

See also
● Ä Chapter 6.4.5.10 “Animating visualization elements” on page 2912
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398
● Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979
● Ä Chapter 6.4.5.10.3 “Animating a text display” on page 2914

6.4.5.11 Displaying data arrays in tables
6.4.5.11.1 General.. 2917
6.4.5.11.2 Displaying Array Variables in Tables.. 2917
6.4.5.11.3 Configuring and Multiplying Visualization Elements as Templates 2918

6.4.5.11.1 General
A frequently required function of a user interface is the display of data arrays. CODESYS
Visualization provides the element “Table” for this.
In the configuration of the element “Table”, enter an array variable in the property “Data array”.
The array components are displayed in the rows and columns of the table.
A table for displaying data arrays can also be created in the following way. You duplicate a
single element having at least one property that is described by a structured variable. The single
element is configured as a "template" for this and duplicated with a command.

6.4.5.11.2 Displaying Array Variables in Tables
A frequently required function of a user interface is the display of data arrays. CODESYS
Visualization provides the element “Table” for this.
In the configuration of the element “Table”, enter an array variable in the property “Data array”.
The array components are displayed in the rows and columns of the table.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2917

Subsequent instructions describe an example of how an array of a structure is displayed in
a table. As a preparation, create the MYSTRUCT DUT and the declarations in the PLC_PRG
program.

TYPE MYSTRUCT :
 STRUCT
 iNo : INT;
 bOnStock : BOOL;
 strPartNumber : STRING;
 END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 arrStruct : ARRAY[0..6] OF MYSTRUCT;
 iSelectedColumn : INT;
END_VAR

1. Drag the “Table” visualization element to the visualization editor.
2. Assign the array variable arrStruct to the “Data array” property.

ð The structure members are displayed as column headings and the array index as row
headings.

3. Change the “Columns è Column è [0] è Column header” property to an informative
heading (example: Number).

4. Change the heading of column [1] to in stock and column [2] to Part number. Adjust
the column width.

5. Assign a color to the “Selection è Selection color” property.
6. Define the “Selection è Selection type” property as Row selection.

7. In the “Selection è Variable for selected row” property, define the
PLC_PRG.iSelectedColumn variable.

ð The following display results in online mode:

See also
● Ä Chapter 6.4.5.20.1.13 “Visualization Element 'Table'” on page 3106

6.4.5.11.3 Configuring and Multiplying Visualization Elements as Templates
A table can also be created to display data arrays in the following way. You multiply a single
element that has at least one property which is described by a structured variable. To do this,
the single element is configured as a "template" and multiplied by means of a command.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2918

You can use the “Visualization è Multiply Visu Element” command to display array data
in a visualization. The command multiplies a template element to create an element of the
same type for each array component. The layout of the new elements in the visualization is
one-dimensional as a row or column, or two-dimensional as a table.
To do this, drag an applicable element into the visualization editor. Then configure the properties
of the element with array variables and specify the index access placeholder $FIRSTDIM$ as
component access. If you have declared a multidimensional array, then you can use the second
index access placeholder $SECONDDDIM$ for the additional dimension. Configure the remaining
properties as usual with the typical values. The purpose is to create a valid template element.
Then execute the “Multiply Visu Element” command on the template element. Now the dialog
with the same name opens. There you define in detail how many elements should be created
and where they should be located.
After multiplying, the visualization contains as many of the same elements as are indexed
using placeholders. In doing so, the settings in the “Multiply Visu Element” dialog are taken into
consideration. All new elements in the properties that were preset with placeholders have these
replaced with precise indexes. The remaining properties have been applied and copied without
changes.
For example, you can have a layout of nine buttons as 3x3 tables, which are all the same
size or the same color, but vary in the labeling. The labels are declared as a string array (nine
components) and are passed as a value to the “Texts”->“Text” property.
Valid template element:
● Declaration of array variables

Example: asText: ARRAY[1..3, 1..3] OF STRING;
● Element with applicable element type
● Configuration of at least one property of the applicable element with array variables with

index access placeholders
Example: Property “Texts”, “Text” = PLC_PRG.asText[$FIRSTDIM$, $SECONDDIM$]
This is possible for all properties that permit a variable as a value (for example, also
properties from the "Animation" or "Input" categories. To configure multiple properties for an
element with arrays and index access placeholders, all arrays must have the same structure
with the same dimension. The declarations have to be compatible.

● Configuration of properties that do not vary (and are therefore the same for all generated
elements) with the usual values without index access placeholders
Example:
sButtonTip : STRING := 'This element is created by multiplication'
Property “Texts”, “Tooltip” = %s
Property “Text variables”, “Tooltip variable” = sButtonTip

You can still use the placeholder % as usual for the text display of variable
values in the properties in “Texts”.

Visualization elements that can be multiplied:
● “Rectangle”
● “Rounded Rectangle”
● “Ellipse”
● “Line”
● “Polygon”
● “Polyline”
● “Bézier Curve”
● “Image”
● “Frame”
● “Button”
● “Pie”

Applicable visu-
alization ele-
ments

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2919

● “Spin Box”
● “Text Field”
● “Check Box”
● “Image Switcher”
● “Lamp”
● “Dip Switch”
● “Power Switch”
● “Push Switch”
● “Push Switch LED”
● “Rocker Switch”
● “Rotary Switch”

1. Create a new standard project.

ð A CODESYS Control Win V3 is configured as the device. The MainTask calls
PLC_PRG. The implementation language is ST.

2. In PLC_PRG in the program code, declare array variables with basic data type STRING.

ð
PROGRAM PLC_PRG
VAR
 axLampIsOn: ARRAY[1..2,1..3] OF BOOL; // For lamp,
property 'variable' and button, user input
 asButtonText: ARRAY[1..2,1..3] OF STRING := // Output text
for button, property 'text variables''text variable'
 [
 '1A Lamp', '2A Lamp',
 '1B Lamp', '2B Lamp',
 '1C Lamp', '2C Lamp'
];
END_VAR

3. Select the application in the device tree and click “Add Object è Visualization”.
4. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the

dialog.
5. Drag a “Lamp” element from the “Visualization Toolbox” view to the visualization.

Configuring and
multiplying
lamps and but-
tons as tem-
plates

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2920

6. Configure the fixed property values.

7. Double-click the value field of the “Variable” property.

ð The line editor opens.

8. Click .

ð The Input Assistant opens.

9. Select the array variable PLC_PRG.axLampIsOn from the variable tree.

10. Extend the string at the end, for example with "[f".

ð If you have activated SmartCoding (“Options” dialog, “SmartCoding” category, “List
components immediately when typing” option), then the current variable list appears
with the placeholders:

11. Select the placeholder $FIRSTDIM$ for the first dimension and confirm the selection.

12. Extend the string at the end, for example with ",s".

ð The variable list appears again.

13. Select the placeholder $SECONDDIM$ for the second dimension and confirm the selection.

14. Complete the string with a closing bracket.

ð PLC_PRG.axLampIsOn[$FIRSTDIM$, $SECONDDIM$]
The lamp is configured as a template.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2921

15. Click “Visualization è Multiply Visu Element”.

ð The “Multiply Visu Element” dialog opens. The default values are derived from the
array declarations.
“Total number of elements”, “Horizontal” = 2
“Total number of elements”, “Vertical” = 3

16. Declare the distance between the new elements.

ð “Offset between elements”, “Horizontal” = 3
“Offset between elements”, “Vertical” = 3

17. Check the advanced settings.
18. Click “OK” to confirm the selection.

ð The new elements appear in the visualization editor. All properties are configured with
a precise index and the array variables are indexed.

19. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Button” ele-
ment to the visualization editor.

ð The “Properties” view of the element opens.

20. Configure the fixed property values.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2922

21. Configure the value for the “Text variables”->“Text variable” property.

ð PLC_PRG.asButtonText[$FIRSTDIM$, $SECONDDIM$]
22. Configure the value for the “Input configuration”->“Toggle”->“Variable” property.

ð PLC_PRG.axLampIsOn[$FIRSTDIM$, $SECONDDIM$]
The button is configured as a template.

23. Click “Visualization è Multiply Visu Element”.

ð The “Multiply Visu Element” dialog opens. The default values are derived from the
array declarations.
“Total number of elements”, “Horizontal” = 2
“Total number of elements”, “Vertical” = 3

24. Declare the distance between the new elements.

ð “Offset between elements”, “Horizontal” = 3
“Offset between elements”, “Vertical” = 3

25. Check the advanced settings.
26. Click “OK” to confirm the selection.

ð The new elements appear in the visualization editor. All properties are configured with
a precise index and the array variables are indexed.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2923

27. Build, start, and download the application.

ð Visualization at runtime:

You can also configure the template element with array variables that have more than two
dimensions, but you can only assign placeholders to a maximum of two of the dimensions. In
the additional dimensions, the indexes are fixed.

Declaration

PROGRAM PLC_PRG
VAR
 asText: ARRAY[1..2, 1..3, 1..6, 1..2] OF STRING;
END_VAR

Configure the “Text variables”, “Tooltip variable” property for the template element:
PLC_PRG.asText[2, $FIRSTDIM$, $SECONDDIM$, 2]

Example

Array variable
with more than
two dimensions

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2924

You can configure the template element with a one-dimensional array by means of the index
access placeholder $FIRSTDIM$. If the number of new elements to be created is greater than
five, then a tabular layout is preset in the “Multiply Visu Element” dialog. The layout of the new
elements is as quadratic as possible.

PROGRAM PLC_PRG
VAR
 asText: ARRAY[1..100] OF STRING;
END_VAR

The default setting in the “Multiply Visu Element” dialog allows for a layout of 100 new ele-
ments in a 10x10 field.

Example

See also
● Ä Chapter 6.4.5.21.2.11 “Command 'Multiply Visu Element'” on page 3350
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Options for SmartCoding

6.4.5.12 Displaying data curve with trace
6.4.5.12.1 General

With this element, you can integrate a trace graph in the visualization that monitors and displays
variable values permanently. You configure the displayed trace graph in the element properties.
In addition, you can add control elements that control the trace functionality. This is done
manually or by using the “Insert Elements for Controlling Trace” command.

Configurations for the 'Trace' visualization element can be taken from the 'Trace'
object.

Layout of a one-
dimensional
array in a table

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2925

ms-its:codesys.chm::/_cds_dlg_options_smart_code.html

See also
● Ä Chapter 6.4.5.12.2 “Getting started with trace” on page 2926
● Ä Chapter 6.4.5.21.2.15 “Command 'Insert Elements for Controlling Trace'” on page 3358
● Ä Chapter 6.4.1.13.3 “Data Recording with Trace” on page 2007

6.4.5.12.2 Getting started with trace

PROGRAM PLC_PRG
VAR
 iVar : INT;
 rSin : REAL;
 rVar : REAL;
END_VAR

iVar := iVar + 1;
iVar := iVar MOD 33;

rVar := rVar + 0.1;
rSin := 30 * SIN(rVar);
1. In the device tree, select the application and add a new visualization by clicking “Project

è Add Object è Visualization”.

ð The respective visualization editor opens.

2. Add the “Visualization” object to the device tree below “Application”.

ð An empty visualization appears.

3. Open “Toolbox è Special Controls”.
4. Drag the “Trace” element to the visualization editor.

ð The element properties are displayed on the right side.

Create a project
with the fol-
lowing program
PLC_PRG:

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2926

5. Click the symbol in the “Trace” property.

ð The “Trace Configuration” dialog opens.

6. Click “Add Variable” to add an entry to the tree view of the trace configuration and select a
project variable (for example, PLC_PRG.rSin).

7. Click the top node of the trace configuration.

ð The group “Record Settings” is shown on the right.

8. Select the MainTask option for the “Task” setting.

Tip: The trace recording and the corresponding program should be executed in the same
task.

9. Click “OK”.

ð The task configuration is applied.

10. Select the trace element and click “Visualization è Add Elements for Trace Control”

ð The “Trace Wizard” dialog opens. By default, all control elements are activated there.

11. Click “OK” to close the dialog.

ð The control elements are added to the visualization and the control variables are
declared. Then the control elements and the trace element are configured with the
control variables.

12. Download the application to the controller and start it.

The PLC_PRG program is running on the PLC. When you follow the "Getting Started"
instructions, the following interface is displayed:

You can control the trace recording by clicking the buttons.

Record the
sine-shaped
data of the IEC
variable
PLC_PRG.rSin

Example

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2927

See also
● Ä Chapter 6.4.5.21.2.13 “Command 'Configure Trace'” on page 3355
● Ä Chapter 6.4.5.21.3.19 “Dialog 'Display Settings'” on page 3391
● Ä Chapter 6.4.5.20.1.34 “Visualization Element 'Trace'” on page 3240

6.4.5.13 Displaying data curve with trend
6.4.5.13.1 General

A trend visualizes data that is used in the database of a trend recording. In contrast to the trace
element, the trend element is particularly appropriate for long-term data recording.

The visualization of a trend encompasses the Trend element and the control elements. The
three possible control elements can be seen in the illustration.
● Legend ①: Outputs the trend variables with values.
● Time range picker ②: Provides buttons for selecting predefined time ranges.
● Date range picker ③: encompasses control elements for navigation and zooming in the

historical and current data on basis of the set date range.
A cursor is optionally available that enables the reading of a value at a certain time.
You can execute a trend visualization in the following clients:
● Target visualization
● Integrated visualization
See also
● Ä Chapter 6.4.5.13.2 “Getting Started with Trend Visualization” on page 2928
● Ä Chapter 6.4.5.20.1.35 “Visualization Element 'Trend'” on page 3246
● Ä Chapter 6.4.5.20.1.45 “Visualization Element 'Date Range Picker'” on page 3301
● Ä Chapter 6.4.5.20.1.46 “Visualization Element 'Time Range Picker'” on page 3306

6.4.5.13.2 Getting Started with Trend Visualization
When you execute a Trend, it is best to proceed with user guidance and the help of the trend
wizard.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2928

1. Create an empty standard project and program at least one variable into PLC_PRG.

ð PLC_PRG is declared and implemented

2. Add the “Visualization” object to the device tree below “Application”.

ð An empty visualization appears.

3. Open “Toolbox è Special Control”.
4. Drag the “Trend” element to the visualization

ð The “Trend Recording” dialog opens with the “Recording Settings”.

5. Select the task in which the trend recording will be executed.

In general the trend recording runs in the same task as the main program,
i.e. PLC_PRG.

Therefore, select MainTask.

6. Add a trend variable with “Add Variable” and assign an IEC variable from PLC_PRG to the
trend variable.

7. Click “OK” to close “Trend Configuration”.

ð There is a newly created object of the type Trend recording under “Trend Recording
Manager”. The active visualization contains a “Trend” element that is selected.

8. Click “Visualization è Insert Elements for Controlling Trend Elements”.

ð The “Trend Wizard” dialog box opens.

9. By default, all three control elements are activated in the dialog. Click “OK” to close the
dialog box.

ð The active visualization contains a “Trend” with control elements.

10. Set the application containing the trend objects to active.
11. Compile the application with [F11].
12. Click “Online è Login”.
13. Start the application with [F5].

ð The target visualization appears. The visualization contains the trend diagram with the
value curve of the variable. The control elements enable user inputs.

Ä Chapter 6.4.5.13.3 “Programming a Trend Visualization” on page 2931

Ä Chapter 6.4.5.21.2.18 “Command 'Insert Elements for Controlling the Trend'” on page 3360

The following objects are implemented in the project:
● PLC_PRG
● Visualization_Trend1
● VisuWithTrend

Development of
a visualization
with trend

Example: Visu-
alization of the
sinusoidal trend
of an IEC vari-
able.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2929

PLC_PRG runs as part of the application on the controller.

PROGRAM PLC_PRG
VAR
 iVar : INT;
 rSin : REAL;
 rVar : REAL;
END_VAR

iVar := iVar + 1;
iVar := iVar MOD 33;

rVar := rVar + 0.1;
rSin := 30 * SIN(rVar);

PLC_PRG

Visualization_Trend1 is the object that contains the configuration of the trend recording.Visualizatio
n_Trend1

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2930

VisuWithTrend is the object that visualizes the trend.

The visualization contains four elements: one “Trend” and three control elements. The proper-
ties of the trend are defined as follows.

Properties Value
“Trend recording” Visualization_Trend1

“Display cursor”

“Display tool tip”

“Show frame”

“Date Range Picker” Trend1DateRangeSelector

“Time Picker” Trend1TimeSelector

“Legend” Trend1Legend

VisuWithTrend at runtime

VisuWithTren
d

6.4.5.13.3 Programming a Trend Visualization
To display a trend recording in the visualization, you define which application provides which
trend recording. You define the display by means of the “Properties” of the trend element and
the controls used.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2931

The visualization task and the trend recording task generally run under the same application. If
this is not the case, then the application containing the visualization task requires a data source
manager.
1. Select a trend element in the active visualization editor.

ð The properties of the trend element are displayed on the right side.

2. Double-click the value field “Properties è Application”.
3. Use the Input Assistant () to select the application. You can also specify the name of

the application directly.

See also
● Trend Recording
● Data Source Manager

1. Select a trend element in the active visualization editor.
2. Click “Visualization è Insert Elements for Trend Controlling”.

ð The “Trend Wizard” dialog opens.

3. Select the desired control. Examples: “Date Range Picker”, “Time range Range Picker”,
“Legend”. Click “OK” to confirm.

ð The selected controls are inserted for the trend element. You can move them to any
position you like. In the “Properties” of the trend element, the controls are shown
below “Assigned controls”.

See also
● Ä Chapter 6.4.5.21.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 3360

1. Select a trend element in the active visualization editor.

ð The properties of the trend element are displayed on the right side.

2. Click the value field of “Properties è Trend recording”

ð “Select trend recording” is displayed. The trend recordings available application-wide
are listed under “Available trend recordings”.

3. Select a trend record below “Available trend recordings”.
4. Click .

ð The trend recording is located under “Selected trend recording”.

5. Click “OK” to confirm the entry.

ð The selected trend recording is listed in “Values” in “Properties è Trend recording”.

See also
● Trend Recording

Defining the
application and
data source

Adding a con-
trol

Defining the
trend recording
to visualize

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2932

ms-its:codesys.chm::/_cds_obj_trend_recording.htm
ms-its:codesys.chm::/_cds_obj_data_sources_manager.htm
ms-its:codesys.chm::/_cds_obj_trend_recording_task.htm

A control that was added with the help of the “Trend Wizard” cannot be deleted
via the Trend wizard dialog.

1. Select a control of a trend in the active visualization editor.
2. Press [Del] or “Delete” to delete the element.
3. Select the trend in the active visualization editor.
4. Delete the assigned value in “Properties è Assigned controls è <control>”.

NOTICE!
It is absolutely necessary to delete this reference manually. The property
is not deleted automatically by deleting the control.

1. Select a trend in the active visualization editor.
2. Use the “Visualization è Configure Trend Display Settings” command.

ð The “Display Settings” dialog opens.

3. Adapt the settings as needed.

See also
● Ä Chapter 6.4.5.21.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 3360

1. Open “View è Element Properties”.
2. Select a trend element in your visualization.

ð The properties of the trend element are displayed on the right side.

3. Select the “Properties è Show cursor” option and “Show tooltip”.

ð A cursor is drawn in the coordinate system.

4. Select the “Properties è Show tooltip” option.
5. Download the application to the controller and start the application.
6.

If the diagram "runs”, then the date range has been placed in such a way
that its end time is the current time.

Select the date range so that the diagram does not run. If necessary, drag the scroll bar to
an earlier date range.

ð A cursor is available. The tooltip of the cursor informs you of the trend values. For
each trend variable, the legend displays the value at the point in time at which the
cursor is positioned.

Removing a
control

Configuring the
coordinate
system of the
trend diagram

Reading a trend
value at runtime

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2933

You can insert an input element in the visualization which the operator can use to delete the
previous value recording in the trend visualization at runtime. The curve displayed until then is
removed and the display starts over.
1. In the application (example: in the program PLC_PRG), implement the following code:

itfTrendRecording : ITrendRecording;
itfTrendStorageWriter : ITrendStorageWriter;
itfTrendStorageWriter3 : ITrendStorageWriter3;
sTrendRecordingName : STRING := 'TrendRecording';
itfTrendRecording :=
GlobalInstances.g_TrendRecordingManager.FindTrendRecording(ADR(sTr
endRecordingName));
xClearHistoryTrend: BOOL;

IF xClearHistoryTrend THEN
itfTrendRecording :=
GlobalInstances.g_TrendRecordingManager.FindTrendRecording(ADR(sTr
endRecordingName));
IF itfTrendRecording <> 0 THEN
 itfTrendStorageWriter :=
itfTrendRecording.GetTrendStorageWriter();
 IF __QUERYINTERFACE(itfTrendStorageWriter,
itfTrendStorageWriter3) THEN
itfTrendStorageWriter3.ClearHistory();
 END_IF
END_IF

2. In the visualization of the trend recording, add a button for deleting the previous curve.
Configure its “Toggle” property with the variable PLC_PRG.xClearHistoryTrend.

ð When xClearHistoryTrend is set to TRUE, the previously recorded curve is
deleted. The recording immediately starts again.

6.4.5.14 Displaying and Editing Text Files
6.4.5.14.1 General.. 2934
6.4.5.14.2 Configuring the Display of a Text File.. 2934
6.4.5.14.3 Configuring the Editing of a Text File... 2937

6.4.5.14.1 General
With the help of the element “Text Editor” you can display a text file in the user interface and
optionally also enable the user to edit the file.

6.4.5.14.2 Configuring the Display of a Text File
In order to display a text file that is located on the controller, you need not only the element “Text
Editor”, but also control elements for selecting, opening and closing the file. Optionally a text
search function can be set up in the file with further control elements.
Example:

Deleting the
trend recording
history

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2934

1. Drag an element “Text Editor” into the visualization editor.
2. Declare the control variables for the element, for example as global variables in the GVL

object.

ð Refer to the declaration of the control variables for this.

3. For the “Text Editor”, configure the property “Editing mode” with “Read only”.
4. Also configure the property “Control variables”.

Assign the following variables there:
● “Control variables è File è Variable” with g_sFileName
● “Control variables è File è Open” with g_bFileOpen
● “Control variables è File è Close” with g_bFileClose
● “Control variables è File è New è Variable” with g_bFileNew
● “Control variables è File è Save è Variable” with g_bFileSave
● “Control variables è Edit è Variable” with g_sEditSearchFor
● “Control variables è Edit è Find” with g_bEditFind
● “Control variables è Edit è Find next occurrence” with g_bEditFindNext

Configuring the
element “Text
Editor”,
example

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2935

 VAR_GLOBAL
 g_sFileName: STRING := 'Readme.txt';
 g_bFileOpen : BOOL;
 g_bFileClose: BOOL;
 g_bFileNew: BOOL;
 g_bFileSave: BOOL;
 g_sEditSearchFor : STRING;
 g_bEditFind : BOOL;
 g_bEditFindNext : BOOL;

 g_usiErrorHandlingVarForErrorCode: USINT;
 g_bVarForContentChanged : BOOL;
 g_bVarForReadWriteMode: BOOL;
 END_VAR

1. Add an element “Label”.
2. Configure the property “Texts è Text” with File:.

3. Add an element “Rectangle” next to it, in which the user can then enter the file name:
4. Configure the property “Texts è Text” with %s:

5. Configure the property “Texts è Text variable” with g_sFileName.

6. Configure the property “Input configuration è OnMouseclick” with “Write a variable”.
In the dialog “Input Configuration”, select “Text input” as the “Input type”.
Activate the option “Use text output variable”.

ð The rectangle for the input of the file name is configured.

7. Add an element “Button” for opening the file.
8. Configure the property “Texts è Text” with Open:

9. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileOpen as a variable.

ð The button Open is configured.

10. Add a further element “Button” for closing the file.
11. Configure the property “Texts è Text” with Close:

12. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFile as a variable.

ð The button Close is configured.

1. Add an element “Label”.
2. Configure the property “Texts è Text” with Text:.

3. Alongside it, add an element “Rectangle” for the input of the text to be found.
4. Configure the property “Texts è Text” with %s:

5. Configure the property “Texts è Text variable” with g_sEditSearchFor.

6. Configure the property “Input configuration è OnMouseclick” with “Write a variable”.
In the dialog “Input Configuration”, select “Text input” as the “Input type”.
Activate the option “Use text output variable”.

ð The rectangle is configured.

7. Add an element “Button” for starting the search.
8. Configure its property “Texts è Text” with Find.

Declaring the
control varia-
bles

Configuring
control ele-
ments for the
file selection

Control ele-
ments for
searching for a
text.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2936

9. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFind as a variable.

10. Also add the action “Execute ST-Code”.
Program the action with: g_bEditFindNext := FALSE;
ð The button is configured.

11. Add a further element “Button”.
12. Configure the property “Texts è Text” with Find next.

13. Configure the property “Input Configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFind as a variable.

14. Also add the action “Execute ST code”.
Program: g_bEditFindNext := TRUE;
ð The button is configured.

See also
● Ä Chapter 6.4.5.20.1.41 “Visualization Element 'Text Editor'” on page 3274

6.4.5.14.3 Configuring the Editing of a Text File
In order to be able to create a new text file or edit an existing one on the controller with the
“Text Editor” in the user interface, you need not only the element “Text Editor”, but also control
elements for selecting, opening, closing, saving and creating a file.
Example:

1. Drag an element “Text Editor” into the visualization editor.
2. Declare the control variables for the element, for example as global variables in the GVL

object.

ð Refer below to the declaration of the control variables for this.

3. For the “Text Editor”, configure the property “Editing mode” with “Read/Write”.

Configuring the
element “Text
Editor”,
example:

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2937

4. Also configure the property “Control variables”.
Assign the following variables there:
● “Control variables è File è Variable” with g_sFileName
● “Control variables è File è Open” with g_bFileOpen
● “Control variables è File è Close” with g_bFileClose
● “Control variables è File è Save” with g_bFileSave
● “Control variables è File è New” with g_FileNew

 VAR_GLOBAL
 g_sFileName: STRING := 'Readme.txt';
 g_bFileOpen : BOOL;
 g_bFileClose: BOOL;
 g_bFileSave: BOOL;
 g_FileNew: BOOL;
 g_usiErrorHandlingVarForErrorCode: USINT;
 g_bVarForContentChanged : BOOL;
 g_bVarForReadWriteMode: BOOL;
 END_VAR

1. Add an element “Label”.
2. Configure it in the property “Texts è Text” with File:.

3. Add an element “Rectangle” next to it.
4. Configure its property “Texts è Text” with %s.

5. Configure its property “Texts è Text variable” with g_sFileName.

6. Configure the property “Input configuration è OnMouseclick” with “Write a variable”.
In the dialog “Input Configuration”, select “Text input” as the “Input type”.
Activate the option “Use text output variable”.

ð The rectangle for the input of the file name is configured.

7. Add an element “Button”.
8. Configure its property “Texts è Text” with New.

9. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileNew as a variable.

ð The button New is configured.

10. Add a further element “Button”.
11. Configure the property “Texts è Text” with Open:

12. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileOpen as a variable.

ð The button Open is configured.

13. Add a further element “Button”.
14. Configure its property “Texts è Text” with Save.

15. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bFileSave as a variable.

ð The button Save is configured.

16. Add a further element “Button”.
17. Configure its property “Texts è Text” with Close.

Declaring the
control varia-
bles

Configuring
control ele-
ments for file
selection

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2938

18. Configure the property “Input configuration è OnMouseclick” with “Toggle a variable”.
Assign g_bEditFile as a variable.

ð The button Close is configured.

See also
● Ä Chapter 6.4.5.20.1.41 “Visualization Element 'Text Editor'” on page 3274

6.4.5.15 Configuring a variable assignment with unit conversion
A variable that was assigned in a visualization can be linked with a unit conversion. This causes
the variable value to be converted according to a predefined rule and the result is edited in the
visualization.
You have already configured the conversion rules in the editor of an object of the type “Unit
Conversion”.
See also
●

Requirement: A project with a visualization is open. In addition, the application contains
the object UnitConversion with the rule convert_A.

1. Select an element.

ð The view “Properties” opens.

2. When assigning a variable, link the variable iVar_A with a rule of the unit conversion:
convert_A.convert(iVar_A)

3. Compile, load and start the application.

ð The application runs. The visualization opens. The unit conversion is applied.

6.4.5.16 Using recipes in visualization elements
You can manage and use the recipes created in CODESYS by means of a visualization. For this
purpose, the input configuration of a visualization element provides the following commands:
● “Read Recipe”
● “Write Recipe”
● “Load Recipe from File”
● “Save Recipe to File”
● “Create Recipe”
● “Delete Recipe”

See also
● Ä Chapter 6.4.1.13.2.4 “Changing Values with Recipes” on page 2003
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Linking a vari-
able with unit
conversion

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2939

Requirement: The “Visualization” object is added to the project.

1. Create a recipe according to the instructions in the section "Changing Values with Recipes
- Creating Recipes".
Assign the following names:
● Recipe definition: "Recipes"
● Recipes: "Recipe1" and "Recipe2"
● Variables: iValue1 and iValue2
Type in different variable values of both recipes.

2. Open the “Visualization” object in the editor.
3. Drag a “Button” element to the visualization. Label it "Load Recipe 1". You can specify the

text by double-clicking the element or in the “Texts è Text” property.
4. Click the value field of the “Input configuration”: “OnMouseDown” property.

ð The “Input Configuration” dialog box opens.

5. Select “Execute command” in the left of the left side and click the button

ð The configuration of the “Internal command” opens on the right side of the dialog.

6. Select the “Write Recipe” command from the drop-down list.
7. Click the button.

ð The “WriteRecipe” command is added to the list.

8. Specify the first parameter as Recipes and the second parameter as Recipe1.

9. Click “OK” to close the dialog box.
10. Drag a second button to the visualization, name it "Load Recipe 2", and repeat steps 4 to

8. For step 7, specify Recipe2 as the second parameter.

11. Load the program to the controller and start it Click the “Load Recipe 1” and “Load Recipe
2”, and monitor the variables iValue1 and iValue2.

The other recipe commands are assigned to visualization elements as described in this
example. Refer to the help page of the input configuration for a description of the internal
commands.

6.4.5.17 Creating a structured user interface
6.4.5.17.1 General

You can reference visualizations that are available or exist in the project in another visualization
and thus reuse them. You obtain a structured user interface that consists of several visualiza-
tions. In principle you have the following possibilities to reference visualizations.
On the one hand you can display visualizations within a main visualization and toggle between
them. The element “Frame” or “Tabs” serves here as a window area element that defines the
display area for the referenced visualizations.
On the other hand you can configure a user input for a visualization that causes another
visualization to open as a dialog. The requirements for this is that it has the visualization type
“Dialog”. A dialog is used to collect inputs from the user.
In addition, you can declare an interface for a visualization that is to be referenced in order to
vary the display of the visualization at runtime. A visualization is thereby instanced with different
data and executed.

Example:
Loading recipes
by means of vis-
ualization ele-
ments

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2940

See also
● Ä Chapter 6.4.5.20.1.6 “Visualization Element 'Frame'” on page 3053
● Ä Chapter 6.4.5.20.1.10 “Visualization Element 'Tabs'” on page 3084

6.4.5.17.2 Displaying Multiple Visualizations in One Visualization
You can reference other visualizations within a main visualization either in a “Frame” or a “Tabs”
element, and then display them in the window pane of the element.
In the case of the “Frame” element, you can freely program which of the visualizations is
displayed at which time. One option is to use the switch frame variable of the “Frame” element,
which automatically triggers a switch according to its value. You can also program additional
controls which, after user input, trigger input actions that result in switching a visualization.

NOTICE!
Visualizations can be nested at any depth by means of “Frame” elements. In
order to use the “Switch to any visualization” frame selection type without any
problems, a “Frame” must not contain more than 21 referenced visualizations.
For more information, see also the description for the “Input configuration” of an
element: Action “Switch frame visualization”.

Moreover, you can use the “Tabs” to reference visualizations. It is easy and advantageous that
the “Tabs” element provides preconfigured control of the visualization switch.

In CODESYS Forge, you will find the sample project "Visualization Switching".
There you will see a visualization that displays other visualizations in a frame
area one after another at runtime. The visualization switch is controlled either by
the user, programmatically, or via the FrameManager.

See also
● Sample project in CODESYS Forge

In the main visualization, the “Frame” element displays one of the referenced frame visualiza-
tions at runtime. The user can select the “Radio Buttons” element which is displayed in the
frame.

1. Create a new standard project in CODESYS.
2. Select the application in the device tree and click “Add Object è Visualization”.
3. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the

dialog.
4. Select the application in the device tree and click “Add Object è Visualization”.
5. In the “Add Visualization” dialog, specify the name Visu1 and click “Add” to close the

dialog.
6. Select the application in the device tree and click “Add Object è Visualization”.
7. In the “Add Visualization” dialog, specify the name Visu2 and click “Add” to close the

dialog.
8. Select the application in the device tree and click “Add Object è Visualization”.
9. In the “Add Visualization” dialog, specify the name Visu3 and click “Add” to close the

dialog.

ð In addition to the main visualization, there are three more visualization objects.

10. Open the Visu1 object.

Switching frame
visualizations
by means of a
variable
Connecting
frame visualiza-
tions with a
radio buttons
element

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2941

https://forge.codesys.com/prj/codesys-example/home/Home/

11. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Radio Buttons”
element to the visualization editor.

ð The “Properties” view of the element opens.

12. Configure the properties of the rectangle as follows:
● Property “Texts”, “Text” = Visu1
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Light gray”

13. Program the object Visu2 accordingly.

Properties of the rectangle:
● Property “Texts”, “Text” = Visu2
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Gray”

14. Program the object Visu3 accordingly.

Properties of the rectangle:
● Property “Texts”, “Text” = Visu3
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Dark gray”

15. Open the VisuMain object.

16. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Frame” element
to the visualization editor.

ð The “Frame Configuration” dialog opens.

17. In the “Available Visualizations” window area, on the “By Visualization Name” tab, select
the object Visu1. In “Selected Visualizations”, click “Add”.

18. Then select the object Visu2 and click “Add” in “Selected Visualizations”.

19. Then select the object Visu3 and click “Add” in “Selected Visualizations”.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2942

20. Click “OK” to exit the dialog.

ð Now the “Frame” element references the three selected visualizations. The references
(1) are listed in the “References” property in the element properties of the “Frame”
element. In addition to the visualization name, the corresponding index value (2) is
also displayed.

Note: You can open the dialog when you click the “Configure” button in the value field
of the “References” property. See (3). You can influence the index by means of the
visualization order in the “Selected Visualizations” list.

21. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Radio
Buttons” element to the visualization editor.

ð The “Properties” view of the element opens.

22. In the “Radio button settings”, “Radio button”, click the “Create new” button.

ð This element has three switches to select from.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2943

23. Configure the properties of the radio button as follows:
● Property “Radio button settings”, “Areas”, “[0]”, “Text” = Visu1
● Property “Radio button settings”, “Areas”, “[1]”, “Text” = Visu2
● Property “Radio button settings”, “Areas”, “[2]”, “Text” = Visu3

24. In the PLC_PRG program, declare a local variable for the number of the visualization that
is active.

ð
VAR
 iActiveVisu : INT; // Index of visu activated by the user
END_VAR

25. Select the “Radio Buttons” element. In the value field of the “Variable” property, click .
26. In the “Input Assistant” dialog, select the recently declared variable. Then exit the dialog.

ð Property of the “Radio Buttons” element:
● Property “Variable” = PLC_PRG.iActiveVisu

27. Select the “Frame” element. Click in the value field of the “Switch frame variable”,
“Variable” property. Specify the recently declared variable here as well.

ð Property of the “Frame” element:
● Property “Switch frame variable ”, “Variable” = PLC_PRG.iActiveVisu
The control variable of the “Radio Buttons” element is also the switch frame variable
of the “Frame” element. User input for the “Radio Buttons”element switches the frame
visualization.

28. Click “Build è Generate Code”.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2944

29. Click “Online è Login” and start the application.

ð The visualization starts. One of the referenced visualizations is running in the frame.
When you click an unselected option of the “Radio Buttons” element, the visualization
switches the contents in the frame to the desired visualization.

In the example, the switch frame variable is connected to an input variable. Instead, you can
also set the switch frame variable programmatically in the IEC code.

In the main visualization, the “Frame” element displays one of the frame visualizations at
runtime. The user can use buttons to control the display in the frame. The user input triggers the
“Switch frame visualization” input action.

1. Create a new standard project in CODESYS.
2. Select the application in the device tree and click “Add Object è Visualization”.
3. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the

dialog.
4. Select the application in the device tree and click “Add Object è Visualization”.
5. In the “Add Visualization” dialog, specify the name Visu1 and click “Add” to close the

dialog.
6. Select the application in the device tree and click “Add Object è Visualization”.

Switching frame
visualizations
by means of a
follow-up action
Programming a
visualization

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2945

7. In the “Add Visualization” dialog, specify the name Visu2 and click “Add” to close the
dialog.

8. Select the application in the device tree and click “Add Object è Visualization”.
9. In the “Add Visualization” dialog, specify the name Visu3 and click “Add” to close the

dialog.

ð In addition to the main visualization, there are three more visualization objects.

10. Open the Visu1 object.

11. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Rectangle”
element to the visualization editor.

ð The “Properties” view of the element opens.

12. Configure the properties of the rectangle as follows:
● Property “Texts”, “Text” = Visu1
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Light gray”

13. Program the object Visu2 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu2
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Gray”

14. Program the object Visu3 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu3
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Dark gray”

15. Open the VisuMain object.

16. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Frame” element
to the visualization editor.

ð The “Frame Configuration” dialog opens.

17. In the “Available Visualizations” window area, on the “By Visualization Name” tab, select
the object Visu1. In “Selected Visualizations”, click “Add”.

18. Then select the object Visu2 and click “Add” in “Selected Visualizations”.

19. Then select the object Visu3 and click “Add” in “Selected Visualizations”.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2946

20. Click “OK” to exit the dialog.

ð Now the “Frame” element references the three selected visualizations. The references
(1) are listed in the “References” property in the element properties of the “Frame”
element. In addition to the visualization name, the corresponding index value (2) is
also displayed.

Note: You can open the dialog independently when you click the “Configure” button in
the value field of the “References” property. See (3). You can influence the index by
means of the visualization order in the “Selected Visualizations” list.

21. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Button” ele-
ment to the visualization editor.

ð The element is selected and its properties are visible in the “Properties” view.

22. Configure the “Texts”, “Text” property with Visu1.

23. In the “Input configuration”“OnMouseDown” property, click “Configure”.

ð The “Input Configuration” dialog opens.

24. Select the “Switch frame visualization” action and click .

ð The action is displayed in the window on the right.

25. Configure the action:
● Select the “Switch local visualization” option.
● Set the “Visualization selection” to Visu1.
● Click “OK” to exit the dialog.

ð The follow-up action is configured in the “Input configuration” property.

Property “Input configuration”, “OnMouseDown”, “Switch frame visualization” = 0

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2947

26. Drag another “Button” element to the visualization editor. Configure the button accordingly.

ð Properties of the button:
● Property “Texts”, “Text” = Visu2
● Property “Input configuration”, “OnMouseDown”, “Switch frame visualization” = 1

27. Drag another “Button” element to the visualization editor. Configure the button accordingly.

ð Properties of the button:
● Property “Texts”, “Text” = Visu3
● Property “Input configuration”, “OnMouseDown”, “Switch frame visualization” = 2

28. Click “Build è Generate Code”.
29. Click “Online è Login” for the device and start the application.

ð The visualization starts. One of the referenced visualizations is running in the frame.
When you click one of the buttons, the visualization switches the contents in the frame
to the respective visualization.

For the “Tabs”, the navigation of the referenced visualizations is provided automatically. The first
of the referenced visualizations is in the foreground, while the others are hidden behind it. The
user can navigate between them by means of the tabs which are provided automatically.
1. Create a new standard project in CODESYS.
2. Select the application in the device tree and click “Add Object è Visualization”.

Displaying visu-
alizations on a
tabs element
Configuring a
tabs element

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2948

3. In the “Add Visualization” dialog, specify the name VisuMain and click “Add” to close the
dialog.

4. Select the application in the device tree and click “Add Object è Visualization”.
5. In the “Add Visualization” dialog, specify the name Visu1 and click “Add” to close the

dialog.
6. Select the application in the device tree and click “Add Object è Visualization”.
7. In the “Add Visualization” dialog, specify the name Visu2 and click “Add” to close the

dialog.
8. Select the application in the device tree and click “Add Object è Visualization”.
9. In the “Add Visualization” dialog, specify the name Visu3 and click “Add” to close the

dialog.

ð In addition to the main visualization, there are three more visualization objects.

10. Open the Visu1 object.

11. Drag a “Rectangle” element to the visualization editor.

ð The “Properties” view of the element opens.

12. Configure the properties of the rectangle as follows:
● Property “Texts”, “Text” = Visu1
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Light gray”

13. Program the object Visu2 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu2
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Gray”

14. Program the object Visu3 accordingly.

ð Properties of the rectangle:
● Property “Texts”, “Text” = Visu3
● Property “Text properties”, “Font” = “Title”
● Property “Colors”, “Normal state”, “Fill color” = “Dark gray”

15. Open the VisuMain object.

16. In the “Visualization Toolbox”, in the “Basic” category, select and drag the “Frame” element
to the visualization editor.

ð The “Frame Configuration” dialog opens.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2949

17. In the “Available Visualizations” window area, on the “By Visualization Name” tab, select
the object Visu1. In “Selected Visualizations”, click “Add”.

18. Then select the object Visu2 and click “Add” in “Selected Visualizations”.

19. Then select the object Visu3 and click “Add” in “Selected Visualizations”.

20. Click “OK” to exit the dialog.

ð Now the “Tabs” element references the three selected visualizations. The references
(1) are listed in the “References” property in the element properties of the “Frame”
element. In addition to the visualization name, the corresponding index value (2) is
also displayed.

Note: You can open the dialog “Frame Configuration” dialog independently when you
click the “Configure” button in the value field of the “References” property. See (3).
You can influence the index by means of the visualization order in the “Selected
Visualizations” list.

21. In the “Visualization Toolbox”, in the “Common Controls” category, drag the “Tabs” element
to the visualization editor.

ð The “Properties” view of the element opens.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2950

22. Configure the properties of the tab as follows:
● Property “Tab width”: 40
● Property “References”, Visu1, “Header” = Visu1
● Property “References”, Visu2, “Header” = Visu2
● Property “References”, Visu3, “Header” = Visu3

23. Click “Build è Generate Code”.
24. Click “Online è Login” for the device and start the application.

ð The visualization starts. One of the referenced visualizations is running in the “Tabs”
element. Click the tab to switch to the respective visualization.

See also
● Ä “Dialog 'Frame Configuration'” on page 3348
● Ä Chapter 6.4.5.20.1.6 “Visualization Element 'Frame'” on page 3053
● Ä Chapter 6.4.5.20.1.10 “Visualization Element 'Tabs'” on page 3084

6.4.5.17.3 Calling a Visualization with an Interface
You can declare an interface for parameters for a visualization that is to be referenced. The
actual parameters are passed to the interface (similar as in the case of a function block) when
the visualization is called at runtime.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2951

First of all, declare the interface variables in the visualization interface editor. Then configure the
parameters that are transferred to the interface by assigning a data-type-compliant application
variable to each interface variable. The assignment is configured in the “References” property in
the case of a “Frame” or a “Tabs”.
Depending on the display variant, the parameter transfer of local variables (with the VAR
scope) is limited. If you execute the visualization as an integrated visualization, you can only
transfer local variables having a basic data type as parameters. If the visualization is called as
CODESYS TargetVisu or CODESYS WebVisu, then you can also transfer parameters with a
user-defined data type.

If you have configured visualization references and then save a change to the variable dec-
laration for one of these visualizations in an interface editor, then the “Updating the Frame
Parameters” dialog appears automatically. The dialog prompts you to edit the references. A
list of all the visualizations affected is displayed there, so that the parameter transfers can be
reassigned at the changed interface.
When the dialog is closed, the changes are accepted and the elements affected are displayed in
the “References” property.

Requirement: The project contains a visualization and a main visualization. The main
visualization contains an element that the visualization references.
1. Open the visualization.
2. Click “Visualization è Interface Editor”.
3. Declare a variable in the interface editor.

ð The visualization has an interface and the “Updating the Frame Parameters” dialog
appears.

4. Assign a type-compliant transfer parameter to the interface variables in all calls by
entering an application variable in “Value”. Close the dialog.

ð A transfer parameter is assigned at the points where the visualization is to be refer-
enced. These now appear in the main visualization in the “References” property.

User-controlled
update of the
transfer parame-
ters

Calling visuali-
zation with
interface
(VAR_IN_OUT)

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2952

The visPie visualization contains an animated, colored pie. The visMain main visualization
calls the visPie visualization multiple times in a “Tabs” control. Color information, angle
information, and label are transferred via the pieToDisplay interface variable. The pies vary
at runtime.
Visualization visPie:

Table 622: Properties of the “Pie” element:
“Variable for begin” pieToDisplay.iStart
“Variable for end” pieToDisplay.iEnd
“Texts è Text” %s

“Text variables è Text variable” pieToDisplay.sLabel
“Color variable è Normal state” pieToDisplay.dwColor

VAR_IN_OUT
 pieToDisplay : DATAPIE;
END_VAR

Main visualization visMain:

Table 623: Properties of the “Tabs” element:
“References”

“visPie”

“Heading” A
pieToDisplay PLC_PRG.pieA
“visPie”

“Heading” B
pieToDisplay PLC_PRG.pieB
“visPie”

“Heading” C
pieToDisplay PLC_PRG.pieC

Example

Interface of the
visualization
visPie:

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2953

TYPE DATAPIE : // Parameter type used in visPie
STRUCT
 dwColor : DWORD; // Color data
 iStart : INT; // Angle data
 iEnd : INT;
 sLabel : STRING;
END_STRUCT
END_TYPE

{attribute 'qualified_only'}
VAR_GLOBAL CONSTANT
 c_dwBLUE : DWORD := 16#FF0000FF; // Highly opaque
 c_dwGREEN : DWORD := 16#FF00FF00; // Highly opaque
 c_dwYELLOW : DWORD := 16#FFFFFF00; // Highly opaque
 c_dwGREY : DWORD :=16#88888888; // Semitransparent
 c_dwBLACK : DWORD := 16#88000000; // Semitransparent
 c_dwRED: DWORD := 16#FFFF0000; // Highly opaque
END_VAR

PROGRAM PLC_PRG
VAR
 iInit: BOOL := TRUE;

 pieA : DATAPIE; // Used as argument when visPie is called
 pieB : DATAPIE;
 pieC : DATAPIE;

 iDegree : INT; // Variable center angle for the pie element
used for animation
END_VAR

IF iInit = TRUE THEN
 pieA.dwColor := GVL.c_dwBLUE;
 pieA.iStart := 0;
 pieA.sLabel := 'Blue';

 pieB.dwColor := GVL.c_dwGREEN;
 pieB.iStart := 22;
 pieB.sLabel := 'Green';

 pieC.dwColor := GVL.c_dwYELLOW;
 pieC.iStart := 45;
 pieC.sLabel := 'Yellow';

 iInit := FALSE;
END_IF

iDegree := (iDegree + 1) MOD 360;

pieA.iEnd := iDegree;
pieB.iEnd := iDegree;
pieC.iEnd := iDegree;

Main visualization visMain at runtime:

DATAPIE
(STRUCT)

GVL

PLC_PRG

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2954

In order to obtain and output the instance name of a transfer parameter, you can
implement an interface variable (data type STRING) with the pragma {attribute
'parameterstringof'} in the VAR_INPUT scope.

The project contains a visualization and a main visualization. The main visualization
contains elements that the visualization references.
1. Open the visualization.
2. Click “Visualization è Interface Editor”.
3. Declare an interface variable (VAR_IN_OUT).

ð pieToDisplay : DATAPIE;
4. In the interface editor, declare a variable (VAR_INPUT) with attribute {attribute

'parameterstringof'}.

ð {attribute 'parameterstringof' := 'pieToDisplay'}
sNameToDisplay : STRING;

5. Save the changes.

ð The “Updating the Frame Parameters” dialog does not open.

6. Insert a “Text Field” element.
7. In the “Texts”, “Text” property, assign an output text to the text field.

ð Visualization of %s
8. In the “Text variables”“Text variable” property, assign the interface variable to the text field.

ð sNameToDisplay
visPie has a heading.

Printing the
instance name
of a transfer
parameter

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2955

The visPie visualization consists of one pie until now. The visMain main visualization calls
visPie in a “Tabs” control three times with different transfer parameters.

The visPie is extended with a text field that outputs the name of the parameters actually
passed to the visualization. For this, the interface of visPie is extended with a string variable
that contains the instance name of the specified transfer parameter. At runtime, each pie is
overwritten.

Table 624: Properties of the “Text field” element:
“Texts”, “Text” Visualization of %s
“Text variables”, “Text variable” sNameToDisplay

VAR_INPUT
 {attribute 'parameterstringof' := 'pieToDisplay'}
 sNameToDisplay : STRING;
END_VAR
VAR_IN_OUT
 pieToDisplay : DATAPIE;
END_VAR

Main visualization visMain at runtime:

Example

Interface of the
'visPie' visuali-
zation:

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2956

See also
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.20.1.6 “Visualization Element 'Frame'” on page 3053
● Ä Chapter 6.4.5.20.1.10 “Visualization Element 'Tabs'” on page 3084
● Ä Chapter 6.4.5.21.3.3 “Dialog 'Update Frame Parameters'” on page 3367

6.4.5.17.4 Calling a dialog in a visualization
You can configure a user input for a visualization that causes a referenced visualization to open
as a dialog. For example, a user clicks on a button, whereupon a dialog opens requesting the
input of values. A dialog is used to collect user inputs and, if it is modal, it can lead to inputs
outside the dialog being blocked.
Only visualizations with the visualization type “Dialog” can be opened as dialog. The visualiza-
tion type is configured in the dialog “Properties” of a visualization object.

Requirement: The project contains a main visualization and a dialog.
1. Configure a user input for the main visualization with the action “OpenDialog” for the

dialog.

ð The opening of the dialog is configured.

2. Configure a user input for an element of the dialog with the action “CloseDialog”.
Hint: in the case of non-modal dialogs you can also configure the user input for closing
outside the dialog.

ð The closing of the dialog is configured.

You can also use dialogs from the library instead of self-made dialogs. For
example, if the library VisuDialogs is integrated in the project, you can
use the dialogs VisuDialogs.Login or VisuDialogs.FileOpenSave con-
tained in it.

See also
● Ä Chapter 6.4.5.6 “Configuring user inputs” on page 2885
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

1. Select the object in the view “Devices”, open the context menu and select the command
“Properties”.

2. Select the tab “Visualization”.
3. Activate the option “Dialog” and close the dialog with “OK”.

ð The visualization has the visualization type “Dialog” and can be called as such.

When calling a dialog, a user normally clicks on a button, whereupon a dialog opens requesting
an input.
In the following example, a dialog representing a calendar enables a date to be entered.

Basic proce-
dure:

Configuring a
visualization
object as a
dialog

Configuring a
dialog call

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2957

Requirement: The project contains the visualizations visMain and dlgCalender.

1. Set the visualization type of dlgCalender to Dialog.

2. Drag a rectangle into the visualization visMain.

3. Configure the property “Texts è Text” with the text Due Date: %t[yyyy-MM-dd].

Configure the property “Text variables è Text variable” with PLC_PRG.dateDue.

4. Drag a button into the visualization.
5. Configure the property “Texts è Text” with the text Open dialog.

Configure the property “Input configuration è OnMouseClick” for the action “Open Dialog”
with dlgCalender.

ð The user input for the opening of the dialog is configured.

6. Double-click on the dialog dlgCalender.

7. Drag the element “Date picker” into the visualization editor.
8. Configure the property “Texts è Text” with Due Date: %t[yyyy-MM-dd].

Configure the property “Variable” with PLC_PRG.dateCalender.

ð The element is configured.

9. Drag a button into the visualization editor.
10. Configure the property “Texts è Text” with OK:

11. Configure the property “Input configuration è OnMouseClick”for the action “Close
Dialog ”with dlgCalender, Result: OK.

12. Configure a further property “Input configuration è OnMouseClick” for the action “Execute
ST-Code” with PLC_PRG.dateDue := PLC_PRG.dateCalendar;.

ð The user input for the closing of the dialog is configured.

13. Drag a further button into the visualization editor.
14. Configure the property “Texts è Text” with Cancel:

15. Configure the property “Input configuration è OnMouseClick” for the action “Close
Dialog ”with dlgCalender, Result: Cancel.

ð The user input for the cancellation of the dialog is configured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2958

17. Compile, load and start the application.

 PROGRAM PLC_PRG
 VAR
 dateDue : DATE := DATE#2000-01-01;
 dateCalendar : DATE;
 END_VAR

Normally a dialog appears only on the display variant on which the user has executed the
triggering event.
However, you can configure the opening of the dialog in such a way that the dialog appears
simultaneously on all active display variants configured under the visualization manager. This
way, for example, an input request can appear simultaneously on all display variants although a
user only entered something on the CODESYS TargetVisu.
If a user closes the dialog on a CODESYS TargetVisu display variant, it will be closed on all
display variants.

Variable decla-
ration:

Opening a
dialog globally

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2959

You can open and close a global dialog with the functions OpenDialog3 and CloseDialog2
from the library VisuElems.

In the application code you can implement the access to a dialog that is managed in the dialog
manager. The dialog manager automatically instances and manages all visualizations of the
type “Dialog”. The access takes place via the internal visualization manager.
First of all, implement the access to the dialog manager by calling the GetDialogManager()
method of the internal visualization manager. You can then use the methods of the dialog
manager to program the program sequence of a dialog.
In the following example a button is configured so that it opens the preconfigured dialog Login
when clicked on. The user can enter a name and a password in the dialog. The dialog Login is
contained in the library VisuDialogs. You can also call a self-made dialog in the same way.

Requirement: The library VisuDialogs is integrated in the project.

1. Insert a new visualization visMain under the application.

ð The visualization editor opens.

2. Drag a button into the visualization editor.
3. Enter in its property “Text”Login.

ð The button is labelled.

4. Click on “Configure ”in the property “Input configuration è OnMouseDown”.
5. Select the input action “Execute ST-Code” and click on .
6. Enter the following function call in the ST editor: OpenLoginDialog(pClientData);

ð The main visualization contains a button. If a user clicks on the button, the dialog
Login opens and the function OpenLoginDialog() is called.

7. Click on “Configure ”in the property “Input configuration è OnDialogClosed”.
8. Select the input action “Execute ST-Code” and click on .
9. Enter the following function call in the ST editor:

OnLoginDialogClosed(pClientData);
ð If a user closes the dialog, the function OnLoginDialogClosed() is called.

 FUNCTION OpenLoginDialog : BOOL
 VAR_INPUT
 pClientData : POINTER TO VisuStructClientData;
 END_VAR

 VAR
 dialogMan : IDialogManager;

Implementing
an application
access to a
dialog

Implementing
an application
access to the
dialog Login
from the library
VisuDialogs:

Implementation
of the function
OpenLogin-
Dialog():

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2960

 loginDialog : IVisualisationDialog;
 pLoginInfo : POINTER TO Login_VISU_STRUCT; //
Login_VISU_STRUCT contains the parameters defined in the interface of
visualization "Login".
 result : Visu_DialogResult;
 stTitle : STRING := 'Login ...';
 stPasswordLabelText: STRING;
 stUserLabelText: STRING;
 stUsername: STRING;
 END_VAR

 dialogMan := g_VisuManager.GetDialogManager(); // The
DialogManager is provided via the implicitly available VisuManager
 IF dialogMan <> 0 AND pClientData <> 0 THEN
 loginDialog :=
dialogMan.GetDialog('VisuDialogs.Login'); // Dialog to be opened is
specified
 IF loginDialog <> 0 THEN
 pLoginInfo :=
dialogMan.GetClientInterface(loginDialog, pClientData);
 IF pLoginInfo <> 0 THEN // In the following the
parameters of the login dialog in the Login_VISU_STRUCT will be read
 pLoginInfo^.stTitle := stTitle;
 pLoginInfo^.stPasswordLabelTxt := stPasswordLabelText;
 pLoginInfo^.stUserLabelTxt := stUserLabelText;
 dialogMan.OpenDialog(loginDialog, pClientData, TRUE,
0);
 END_IF
 END_IF
 END_IF

OnLoginDialogClosed() defines the reaction to the closing of a dialog.
 FUNCTION OnLoginDialogClosed : BOOL
 VAR_INPUT
 pClientData : POINTER TO VisuStructClientData;
 END_VAR

 VAR
 dialogMan : IDialogManager;
 loginDialog : IVisualisationDialog;
 pLoginInfo : POINTER TO Login_VISU_STRUCT;
 result : Visu_DialogResult;
 stPassword: STRING;
 stUsername: STRING;
 END_VAR

 dialogMan := g_VisuManager.GetDialogManager(); // The
DialogManager is provided via the implicitly available VisuManager
 IF dialogMan <> 0 AND pVisuClient <> 0 THEN
 loginDialog :=
dialogMan.GetDialog('VisuDialogs.Login'); // Gets the login dialog
 IF loginDialog <> 0 THEN
 result := loginDialog.GetResult(); // Gets the result
(OK, Cancel) of the dialog
 IF result = Visu_DialogResult.OK THEN
 loginDialog.SetResult(Visu_DialogResult.None); //
Reset to default (none)
 pLoginInfo :=
dialogMan.GetClientInterface(loginDialog, pVisuClient); // Structure
Login_VISU_STRUCT gets read;
 // In the following the structure parameters can be
set
 IF pLoginInfo <> 0 THEN
 stPassword :=

Implementation
of the function
OnLoginDialog
Closed():

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2961

pLoginInfo^.stPasswordpLoginInfo^.stPassword := ''; // Reset the
passwword
 stUsername := pLoginInfo^.stUsername;
 END_IF
 ELSIF result = Visu_DialogResult.Cancel THEN
 loginDialog.SetResult(Visu_DialogResult.None); //
React on 'Cancel'
 ELSE
 // nothing to do
 END_IF
 END_IF
 END_IF

See also
● Ä Chapter 6.4.5.20.3 “Methods of the Dialog Manager” on page 3335

6.4.5.17.5 Calling a Dialog with an Interface
You can define an interface for a visualization that is called as a dialog.
Create a visualization for this with visualization type “Dialog” and declare an interface for the
dialog. The reference the visualization in a primary visualization by means of a user input and
transfer the parameters to the interface.
If you call the visualization as an integrated visualization, then the parameter that are trans-
ferred must be variables of a basic data type. If the visualization is called as CODESYS
TargetVisu or CODESYS WebVisu, then the parameters can have user-defined data types as
well.
See also
● Ä “Scopes” on page 3340
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

1. Set the visualization types of the visualization to dialog.
2. Declare variables in the interface editor of the dialog.

ð The dialog has an interface. You can transfer parameters when calling the dialog.

3. Configure the elements of the dialog and use the interface variables.
4. Select an element in another visualization (usually the main visualization) for configuring

how the dialog opens.
5. Click “Configure” in the property “Input configuration è OnMouseDown”.

ð The “Input Configuration” dialog box opens.

6. Select “Open dialog” in the list of selected input actions.
7. Select one from the “Dialog” drop-down list.

ð If the selected dialog has an interface, then the interface variables are listed below.

8. Assign a transfer parameter to the interface variables in the “Value” column.
9. Select the result for which the parameters were updated in the list “Update” “and”

“Parameter in case of results”.
10. Activate the option “Open dialog modal”. Click “OK” to close the dialog box.

ð The dialog opening is configured.

Main procedure

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2962

Executing a dialog several times at the same time requires multiple instances
of the dialog. These must have already been downloaded to the visualization
device when downloading the application. For this purpose, set the number of
instances to download in the visualization manager (“Visualizations” tab).

See also
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370
● Ä Chapter 6.4.5.17.5 “Calling a Dialog with an Interface” on page 2962

the following application calls the “Change User Level” dialog and prompts the user to select a
level and specify a password. If the password agrees, then the “OK” button is enabled. Then the
user can close the dialog. The input of the level is also applied.

Example

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2963

VAR_INPUT
 sTitle: STRING; // titel of the dialog box
 sItfLevel0: STRING; //password level 0
 sItfLevel1: STRING; //password level 1
 sItfLevel2: STRING; //password level 2
 sItfLevel3: STRING; //password level 3
 sItfLevel4: STRING; //password level 4
 sItfLevel5: STRING; //password level 5
 sItfLevel6: STRING; //password level 6
 sItfLevel7: STRING; //password level 7
END_VAR
VAR_IN_OUT
 iItfLevel: INT; // user input: level
 sItfPwd: STRING; //user input: password
END_VAR

Table 625: Element list of the visChangeUserLevel dialog box:
Type Name Element properties Description
#0
Image

Backg
round

“Static ID”:
VisuDialogs.ImagePoolDial
ogs.Login

The property assigns the image of
a blank dialog with a gray back-
ground and a blank blue caption
bar to the element. The image
is included in the “VisuDialogs”
library.

#1
Box

Title “Texts è Text”: %s Output with placeholder for text
variable

“Text variables è Text variable”:
sItfTitle

Assignment of interface variable
sItfTitle for which a parameter
is transferred at call time.

#2
Radio
Butto
ns

Input
level

“Variable”: iItfLevel Assignment of interface variable
iItfLevel for which a parameter
is transferred at call time. Includes
the user input at runtime.

“Number of columns”: 4

Dialog
visChangeUse
rLevel:

Declaration of
the interface of
dialog
visChangeUse
rLevel:

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2964

Type Name Element properties Description
“Radio button order”: “Left to right” Display

“Radio button settings
è Radio button è Areas”: [0] bis
[7]“”
“[<n>] è Text”: <n>

Label of eight radio buttons with
numbers from 0 to 7

#3
Text
Field

Input
passw
ord

“Texts è Text”: %s Output with placeholder for text
variable

“Text variables è Text variable”:
sItfPwd

Assignment of interface variable
sItfPwd for which a parameter
is transferred at call time. Includes
the user input at runtime.

“Input configuration
è OnMouseDown
è Write variable”:
Variable:,InputType:Edit,
Use text output
variable : TRUE

In the “Input configuration” dialog,
“Text input” is selected for the
“Input type” drop-down list and the
option “Use text output variable” is
activated.

#4
Text
Field

Label
for
level

“Texts è Text”: Level: Label

#5
Text
Field

Label
for
passw
ord

“Texts è Text”: Password Label

#6
Butto
n

OK “Texts è Text”: OK Label

“Colors è Color”: Element base
color
“Colors è Alarm color”: Alarm
fill color

Configuration of the display in
state-dependent colors. You can
switch between colors.

“Color variables è Toggle color”:
sItfPwd <> MUX(iItfLevel,
sItfLevel0, sItfLevel1,
sItfLevel2, sItfLevel3,
sItfLevel4, sItfLevel5,
sItfLevel6, sItfLevel7);

If the password and the user input
do not agree, then the expression
is TRUE. Then the button is dis-
played in the alarm color.

“State variables
è Deactivate inputs”:
sItfPwd <> MUX(iItfLevel,
sItfLevel0, sItfLevel1,
sItfLevel2, sItfLevel3,
sItfLevel4, sItfLevel5,
sItfLevel6, sItfLevel7);

If the password and the user input
do not agree, then the expression
is TRUE. The button is deactivated.

If the password agrees, then the
button is enabled.

“Input configuration
è OnMouseDown
è Close dialog”:
Close Dialog:
visChangeUserLevel,
Result : OK

If a user clicks the “OK” button,
then the visChangeUserLevel
dialog is closed and the parame-
ters are updated.

#7
Butto
n

Cance
l

“Texts è Text”: Cancel Label

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2965

Type Name Element properties Description
“Colors è Color”: Element base
color

Display

“Input configuration
è OnMouseDown
è Close dialog”:
Close Dialog:
visChangeUserLevel,
Result : Cancel

If a user clicks the “Cancel” button,
then the visChangeUserLevel
dialog is closed.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2966

Table 626: Element list of the visMain visualization:
Type Name Element properties Description
#5 Text Field Button for

change user
level

“Texts è Text”: %s Output with place-
holder

“Text variables
è Text variable”:
PLC_PRG.iLevel

Assignment of the
PLC_PRG.iLevel
variables to the pla-
ceholder. Includes
the level number.

#6 Button Title “Texts è Text”:
Change user
level

“Input configuration
è OnMouseDown
è Open dialog”:
Open Dialog:
visChangeUserLe
vel

If a user clicks the
Change user
level button, then
the
visChangeUserLe
vel dialog opens
with the parameter
list stored here.
Tip: Click “Configure”
to view the stored
configuration in the
“Input Configuration”
dialog (input action
“Open dialog”).

Table 627: Configuration of the call of dialog visChangeUserLevel:
Parameter Type Value Description
The parameter list is stored in the “Input Configuration” dialog (input action “Open
dialog”).
sItfTitle STRING 'ChangeUse user

level'
Transfer of a string
for the title.

sItfLevel0 STRING 'pwd0' Transfer of a string
as password for
Level0.

sItfLevel1 STRING 'pwd1' Transfer of a string
as password for
Level1.

sItfLevel2 STRING 'pwd2' Transfer of a string
as password for
Level2.

Main visualiza-
tion visMain:

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2967

Parameter Type Value Description
sItfLevel3 STRING 'pwd3' Transfer of a string

as password for
Level3.

sItfLevel4 STRING 'pwd4' Transfer of a string
as password for
Level4.

sItfLevel5 STRING 'pwd5' Transfer of a string
as password for
Level5.

sItfLevel6 STRING 'pwd6' Transfer of a string
as password for
Level6.

sItfLevel7 STRING 'pwd7' Transfer of a string
as password for
Level7.

iItfLevel INT PLC_PRG.iLevel Transfer of a vari-
able for the level
specified by the user.

sItfPwd STRING PLC_PRG.sPwd Transfer of a vari-
able for the pass-
word specified by the
user.

Table 628: List “Update” and “Parameter in case of result”
“Value” Description
“OK” activated

“Open in dialog mode” activated Input outside of the dialog is not possible.

PROGRAM PLC_PRG
VAR
 iLevel: INT;
 sPwd : STRING;
END_VAR

Application
code PLC_PRG:

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2968

After clicking the button, the dialog opens and permits input. If the specified text agrees with
the stored text, then “OK” is enabled:

After clicking “OK”, the selection is applied.

Visualization at
runtime

The example shows the procedure for multiple return values. However, the
password can be returned more easily with a local variable in the dialog.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2969

The variables declared in the interface of a visualization are available automatically as structure
variables. They are identified by <Name of visualization>_VISU_STRUCT. Therefore, you
can access the interface variables of visualizations that appear as a dialog. Normally you use
the structure in the application code of a function that is called by a user input.

To pass a complex data structure, you can flag an interface variable of type VAR_IN_OUT with
the pragma attribute VAR_IN_OUT_AS_POINTER and pass a pointer or reference to it as a
parameter.
1. Declare the user data object (DUT).

2. In the interface editor of a dialog, declare an interface variable (VAR_IN_OUT) as a
reference to the data object by assigning the attribute 'VAR_IN_OUT_AS_POINTER' to
the variable.

3. Program the user interface: use the dialog in a visualization or assign the dialog in the
input configuration of a visualization element. Then access to the referenced data is
possible.

Accessing
parameters pro-
grammatically

Passing
pointers as
parameters

Procedure for
using refer-
ences

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2970

FUNCTION_BLOCK ControlFB
VAR
 bOk : BOOL := TRUE;
 nCounter : INT;
 nValue : INT;
END_VAR
nCounter := nCounter + 1;

Declaration of an interface variable with VAR_IN_OUT_AS_POINTER

Example:
Using an inter-
face with the
pragma
'VAR_IN_OUT_
AS_POINTER'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2971

User interface: dialog opens:

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2972

See also
● Ä Chapter 6.4.5.20.4 “Attribute 'VAR_IN_OUT_AS_POINTER'” on page 3337

6.4.5.18 Configuring and executing display variants
6.4.5.18.1 General

You can select from different variants for displaying your visualization created in CODESYS. An
advantage is that you can have not only one, but multiple display variants running at the same
time. During this time, the contents of the visualization are the same for all variants. This also
applies to the integrated visualization: when the visualization editor is open in CODESYS, the
visualization is also displayed there with the same active contents.
The following object types are available:
● “TargetVisu”

The display as a variant of CODESYS TargetVisu is possible one time. You can insert an
object of this type below the Visualization Manager.

● “WebVisu”
The display as a variant of CODESYS WebVisu is possible any number of times. You can
insert any number of objects.

● “Remote TargetVisu”
The display as a variant of CODESYS TargetVisu is possible any number of times. You can
insert any number of objects.

When you insert a variant below the Visualization Manager, the task configuration is extended
by the visualization task VISU_TASK (the flow unit of the visualizations). The task is automati-
cally deleted when no more objects exist below the Visualization Manager or the objects below
are excluded from compiling. You can set this in the “Properties” dialog of an object, on the
“Compile” tab.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2973

If no object is inserted below the Visualization Manager, then the visualization
created there is displayed automatically as an integrated visualization when the
application starts.

If an error or an exception occurs in a visualization at runtime, the execution of the visualization
is stopped without stopping the execution of the application. An error screen appears informing
you of this. In addition, the error screen (usually) enables you to restart the visualization. This
exception handling takes place from visualization profile CODESYS V3.5 SP7, compiler version
3.5.7.0 and a runtime system from version 3.5.7.0.

Select the command “Stop Execution at Handled Exceptions” in order to investigate the cause
of the occurrence of exceptions and the error position.
See also
● Ä Chapter 6.4.1.21.3.7.19 “Command 'Stop Execution on Handled Exceptions'”

on page 2639

In order to programmatically identify a display variant, the VisuFbClientTagDataHelper
library module from the VisuElemBase library is available to you. The library
itself is referenced in VisuElems. The library module is typically called with
VisuElems.VisuFbClientTagDataHelper.

Further information on this library module can be found in its documentation in the library
manager.
See also
● Ä Chapter 6.4.1.9.9 “Using Library POUs” on page 1890

6.4.5.18.2 Executing as CODESYS WebVisu

NOTICE!
Recommendations for data security
In order to minimize the risk of breaches of data security, we recommend the
following organizational and technical measures for the system on which your
applications run:
As far as possible, avoid exposing the PLC and control networks to open
networks and the Internet. For protection, use additional data-link layers such
as a VPN for remote access and install firewall mechanisms. Limit access to
authorized persons, change any existing standard passwords during the initial
commissioning and continue to change them regularly.
If you nevertheless wish to publish your web visualization, it is urgently recom-
mended that you provide it at least with simple password protection in order
to prevent anyone accessing your control functionality over the Internet. (See
an example in the project SimpleWebvisuLogin.project, which is provided
with the standard installation of the development system).
Use the latest versions of the gateway server and the web server.

You can execute a visualization as CODESYS WebVisu.

Exception han-
dling at runtime

Identifying dis-
play variants

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2974

The requirement for this is that the runtime system contains a web server with WebVisu support.
This enables communication between target system and web browser. The web server on the
target system is started as soon as an application with WebVisu configuration is started and
runs until all applications with WebVisu are ended. The device can then display visualizations in
connected HTML5-capable web browsers.
The web-based display variant of the CODESYS Visualization enables remote access to a plant
as well as its remote monitoring, service and diagnosis over the Internet. A web browser com-
municates by Java Script (optionally with SSL encryption) with the web server in the controller
and displays the visualization by means of HTML5. This technology is supported by virtually all
browsers and is thus also available on terminal devices with iOS or Android.

An executable visualization visMain exists in the project.

1. Select the object “Visualization manager” and select the command “Add object”.
2. Select the object “WebVisu” and enter the name WebVisu_A.

ð There is a new object in the device tree underneath the object “Visualization
Manager”. The associated editor opens.
The visualization task VISU_TASK is automatically added under the task configura-
tion.

3. Select the visualization visMain in the “Start Visualization”.

4. In “Name of .htm file”, enter the name webvisuA.

5. Click on “Show used visualizations” and check whether the selected visualization is acti-
vated for a download to the associated device.

ð The visualization is configured. The settings under “Scaling options” determine the
window size and the scaling.

6. Start a suitable runtime system with web server and WebVisu support.
Configure the communication settings for your system.

ð The runtime system runs.

7. Compile, load and start the application.

ð The application and the web server run.

8. Start a web browser with the following address: http://localhost:8080/
webvisuA.htm
ð The page is displayed and you can see the data of the application and operate the

application.

See also
● Ä Chapter 6.4.5.21.4.7 “Object 'TargetVisu'” on page 3408

Configuring and
starting display
variants

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2975

Requirement: A visualization with WebVisu is started.
1. Start a current browser with JavaScript and support of HTML5-Canvas, e.g. Firefox,

Chrome, IE>=9.
2. Enter the following address in the web browser:

http://localhost:8080/webvisu.htm
Formal: http://<IP address of webserver>:<port of webserver>/<name
of HTM-file>
<name of HTM-file> is the HTML start page of the visualization defined in the object
“WebVisu”.

ð The page is displayed and you can see the data of the application and operate the
application.

In order to be able to identify a WebVisu with the help of the library block
VisuFbClientTagDataHelper, the WebVisu needs a name. In order to be able
to specifically address it in the application, expand the URL call by the parameter
ClientName=<Name>.

Example: http://localhost:8080/webvisu.htm?ClientName=VisClientxy.

See also
● Ä Chapter 6.4.5.21.4.8 “Object 'WebVisu'” on page 3409

6.4.5.18.3 Executing as an Integrated Visualization
You can execute the visualization as an integrated visualization. In this case a display variant of
the visualization runs on the development system without the visualization code being loaded
to the controller.
Use the integrated visualization for the testing and diagnosis of your application, or for the
service and commissioning of a plant.
The requirement for this is that there are no objects under the visualization manager. Alter-
natively, any objects located there can be excluded from compilation. You can configure an
individual object accordingly in its dialog “Properties” on the tab “Compile”.
See also
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

A visualization project is open.
1. Remove all objects from underneath the visualization manager or exclude the objects from

compilation.

ð The VISU_TASK has been removed from under the task configuration.

2. Load the application to the controller.

ð Now no visualization code will be transferred on loading the application.

Calling a page
in the web
server

Identifying Web-
Visu

Configuring and
starting display
variants

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2976

3. Start the application.

ð The visualization in the visualization editor is being executed. You can operate your
application.

Use the command “Activate keyboard usage” in order to toggle between the
keyboard usage of the integrated visualization and the keyboard usage of
CODESYS.

See also
● Ä Chapter 6.4.5.21.2.4 “Command 'Activate Keyboard Usage'” on page 3343
● Ä Chapter 6.4.5.21.1 “Keyboard Shortcuts for Default Keyboard Action” on page 3338

Numerical variable values, which are output within a text in an integrated visualization, are
displayed according to the current display format. You can select the display format with the
command “Debug è Display”.
See also
● Ä Chapter 6.4.1.21.3.8.24 “Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'”

on page 2654

A variable value that is transferred via the data server is not output. The integrated visualization
only outputs the initialization or the last transferred value.
The integrated visualization thus only enables a passive observation of the application.

VAR_INPUT variables behave like integrated visualizations such as VAR_IN_OUT variables
during execution.

Only the following expressions, which are also used in the monitoring mechanism of the devel-
opment system, are supported in an integrated visualization.
Variable access:
● Example: PLC_PRG.myPou.nCounter
Array access:
● Access to an array of scalar data types, where a variable is used as an index

Example: a[i]
● Access to an array of complex data types (structure, function block, array), where a variable

is used as an index
Example: a[i].x

● Access to a multidimensional array of all kinds of data types with one or more variable
indices
Example: a[i, 1, j].x

● Access to an array with constant index
Example: a[3]

● Accesses like those described above in which simple operators are used for the calculations
inside the index brackets.
Example: a[i+3]

● Nested combinations of the complex expressions listed above
Example: a[i + 4 * j].aInner[j * 3].x

Operators in index calculations:
● +, -, *, /, MOD

Restrictions in
the variable
output

Data server
restrictions

Restrictions in
variable types

Restrictions in
expressions and
monitoring

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2977

Pointer monitoring:
● Example: p^.x
Methods and function calls are not supported with the exception of the following:
● Standard string functions
● Type conversion functions

Example: INT_TO_DWORD
● Operators such as SEL, MIN, etc.

When the input action “Execute ST-Code” is called, only a list of assignments is supported.
If a list of assignments is used, the value of the left-hand side is not assigned until the next
cycle. Processing in the next row immediately afterwards is not possible.

 PLC_PRG.n := 20 * PLC_PRG.m; // Don't use this!
 IF PLC_PRG.n < MAX_COUNT THEN
 PLC_PRG.n := PLC_PRG.n + 1;
 END_IF
 //Use the following!
 PLC_PRG.n := MIN(MAX_COUNT, PLC_PRG.n + 1);

Example

No interface (INTERFACE) may be declared in the interface editor of a visualization.

6.4.5.18.4 Configure File Transfer Mode
When downloading, usually files required by the visualization for displaying, are transmitted to
the respective display unit. These are especially image files or text list files.
Alternatively, you can configure,that the visualization accesses local files. So no files are trans-
ferred with a download
The following configuration is required to allow the visualization access to local files:
● The file paths for image files or text files lists are relative.
● The link type for image files is “Link to file”.

Requirement: You have opened a visualization project with a image pool.
1. Open the image pool.
2. Select for each image under “Link Type” the setting “Link to file”.

ð The image is linked.

3. Select the command “Project è Project Setting” and select the category “Visualization”.
4. Insert in tab “General” in “Image files” the local paths of the image files with relative path

names.

ð Example: .\;.\images\
Note: When no path is specifiet, the setting in dialog box “Options”, category
“Visualization”, tab “File Options” setting “Image files” is usesd.

5. Open the visualization manager.
6. Activate under “Extended settings” the option “Visible”.

Restrictions in
the input action
“Execute ST-
Code”

Restrictions in
the interface of
a visualization

Using local vis-
ualization files

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2978

7. Activate under “File Transfer Mode” the option “Use local visualization files”.

ð When downloading, no files are transferred. When displaying the visualization, the
local files are used.

See also
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468
● Ä Chapter 6.4.5.21.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 3387
● Ä Chapter 6.4.5.21.3.9 “Dialog Box 'Options' - 'Visualization'” on page 3384

6.4.5.19 Applying Visualization Styles
6.4.5.19.1 General

A visualization style is a collection of colors, fonts, images, and any values that are defined as
style properties. When designing a visualization element, you can use these style properties
only. The you have a uniform, style-dependent appearance.
An element that applies style colors and style fonts behaves according to the selected style
design in each selected style. In this way, a style property, such as Element basic color,
can be blue In one style and gray in another style. In contrast, if the color of an element has a
fixed value, this color is fixed even when the style is switched.
All applicable styles are consistent because they define a fixed set of style properties. There-
fore, you can switch smoothly between styles in order to customize your visualization. You can
preview a style to get an impression of how it behaves.
CODESYS provides different styles, for example the styles Flat style and White Style.

These provided styles are installed in the visualization style repository.
The selected style that applies to all visualizations in the application is set in the “Visualization
Manager” object (“Settings” tab, “Style Settings” group, “Selected style”). In addition, the
“Properties” view provides its style properties when designing an element. For each element,
you can assign these styles instead of fixed values.
The style is applied to all visualizations that are below an application. The settings of the
“Options - Visualization Styles” dialog are also considered for a library visualization or a visuali-
zation in the POUs view.
See also
● l Ä Chapter 6.4.5.21.3.11 “Dialog 'Project Environment' - 'Visualization Styles'”

on page 3386
● Ä Chapter 6.4.5.21.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 3382
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

The set style includes style properties. These are provided in the “Properties” view of an
element in the drop-down list of the “Value” column. It is checked which style properties are
appropriate for which property. For example, only style properties with color definitions are
available for a color assignment.

A style can have directly defined visualization element properties. If this style is
used in the project, then these properties are not configurable anymore.

Requirement: A project is open with a visualization.
1. Double-click the visualization.
2. Select an element.

Designing visu-
alization ele-
ments with style
properties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2979

3. Choose “View è Element Properties”.
4. Click in the input field of a color in the window “Properties” (category “Colors”).

ð The list box opens with style properties. The style colors are based on the currently
selected style.

5. Select a style property.

ð The visualization shows the element according to the style.

A visualization uses the style CompanyStyle8, which defines the colors CompanyRed,
CompanyBlue, and CompanyGreen. An element is selected in the visualization. You can
configure the element in the “Properties” view. By clicking into the value field of the “Color”
property, you receive a drop-down list with the entries CompanyRed, CompanyBlue, and
CompanyGreen.

Example

When setting a style in the visualization manager, all complete styles in the repository are
available for selection. It does not matter and it is not evident if a style have been derived from
another style.
You can preview a style to get an impression of how it behaves.
How a visualization implements a style at runtime also depends on the display variant. For
example, if a font that is defined in the style is not available, the display variant shows the
visualization with a preset font.

Requirement: A project is open with a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click in the input field of “Selected style” (“Settings” tab, “Style Settings” group).

ð All styles that are installed in the repository are listed.

3. Mouse over a style.

ð A preview of how the style is displayed appears in a new window.

4. Select a style.

ð The style is applied. The preview in “Style Settings” shows the new setting.

5. Double-click a visualization.

ð The visualization appears in the new style.

Requirement: A project is open with a visualization.
1. Click “Project è Project Environment”, “Visualization Styles” tab.

ð CODESYS lists all new versions of the currently used styles.

2. Click “Set All to Newest”.

ð The style is updated. Visualizations and their elements apply the new style.

6.4.5.19.2 Editing visualization styles in the visualization style editor
A style is an XML file with the file extension *.visustyle.xml. It contains a specific set of
style properties. CODESYS checks the style properties in the consistency check.

Switching visu-
alization styles

Updating ver-
sions

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2980

You can create a new style or customize an existing style. The visualization style editor is
available for this.
If you customize a style, then a new style is created as a hierarchy of styles. A hierarchy con-
sists of at least two styles based on each other. The nesting depth is unrestricted. A hierarchy
is identified simply with its top derived style. You can derive multiple different styles from one
base style by extending the styles by differing style properties. This save memory and therefore
should be your preferred method.
A base style does not have to be consistent for itself. Instead, you must identify it as an
incomplete style. Only the top derived style must be consistent.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2981

In a partial style, you can combine any style properties to form efficient hierarchies without
having to worry about consistency. For example, you can collect all image references into one
partial style. Then you derive the style and define more style properties for colors. This style is
also incomplete. You derive the style again and define more style properties for its fonts. The
top style is now completely.

● (1): CompanyImg is a partial style defining image references.
● (2): CompanyColor is a partial, derived style based on CompanyImg and also defines

colors.
● (3): PetrolStyle is a complete, derived style based on CompanyColor and also

defines a special color.
● (4): The hierarchy of styles comprises PetrolStyle, CompanyColor, and

CompanyImg.

Style
Petrostyle

Example of a
style hierarchy

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2982

In the visualization style editor, you can open a style, define its style properties, and localize its
name. If the style is consistent, then you can install it in the visualization style repository. The
editor is not integrated in CODESYS. However, you can start the editor in CODESYS.

A style property is an entry for a specific color, a specific font, or a specific image reference.
If this name contains a dash, then the Visualization Style Editor can sort the style properties by
the prefixed terms before the dash and display them in a hierarchy. Otherwise the names can
be sorted in alphabetical order or sequential order or in sequential order (as saved in the XML
file). CODESYS displays the style properties in the order of names actually saved in the XML
file for the style.
Example: Element-Alarm-Fill-Color

See also
● Ä Chapter 6.4.5.22.3 “Editor 'Visualization Style Editor'” on page 3750

1. Double-click the “Visualization Manager” object.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).
3. Click “Open Style Editor” from the drop-down list.

ð The “Visualization Style Editor” opens.

Choose “Visualization Styles Editor” from the CODESYS install folder in the Start menu. If
you have a standard installation, then this link is located in CODESYS (the program folder
for CODESYS).

ð The visualization style editor opens.

This is the recommended way to create a style that combines existing style
properties with new ones.

Requirement: CODESYS is open with a project containing a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).

ð A list of commands opens.

3. Choose “Create and Edit Derived Style”.

ð The visualization style editor starts and the “Create a New Visualization Style” dialog
box opens.

4. Type a name.

Names for style
properties

Starting the
editor in
CODESYS

Starting the
editor inde-
pendent of
CODESYS

Deriving visuali-
zation styles

Starting the
editor in
CODESYS and
deriving styles

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2983

5. Select a directory.
6. Select a base style. The default style is set in CODESYS. You can also select a style from

the repository.

ð The new style appears in the visualization style editor. The style properties from the
base style are displayed yellow.

7. Add a new style property or modify an existing value.
8. Provide a version for the style and click “File è Save and Install”.

ð The style is installed in the repository. The memory requirement is low because only
the style property added in step 7 is saved.

Requirement: CODESYS is open with a project containing a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).

ð A list of commands opens.

3. Choose “Copy and Edit Style”.

ð The visualization style editor starts and the “Open Existing Style as a Copy” dialog box
opens.

4. Select which style should be copied (“Style”).
5. Type a directory in "Destination" and click “OK”.

ð The new style appears in the visualization style editor. All style properties are identical
to those in the copied style.

6. Type a name.
7. Add a new style property or modify the value of an existing style property.
8. Provide a version for the style and click “File è Save and Install”.

ð The style is installed in the repository and the style properties are identical to the
added style property, except for the style property added in step 8. The memory
requirement is high because the common style properties are defined in both styles.

Requirement: CODESYS is open with a project containing a visualization.
1. Double-click the “Visualization Manager” object in the device tree.

ð The editor opens.

2. Click the symbol (“Settings” tab, “Style Settings” group).

ð A list of commands opens.

3. Click “Open Style Editor”.

ð The visualization style editor opens.

4. Click “File è New Style”.

ð The “Create a New Visualization Style” dialog box opens.

5. Type a name. Specify a base style.

Copying visuali-
zation styles

Creating new
visualization
styles

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2984

6. Specify a directory and click “OK” to close the dialog box.

ð The new style appears in the visualization style editor.

7. Add a new style property.
8. Provide a version for the style and click “File è Save and Install”.

ð The style is installed in the Visualization Styles Repository with the version number.

Using the visualization style editor, you can edit a style to save and install as a new version.

Requirement: The visualization style editor is open with a style.
1. Select a style property and click “Styles è New Style (Afterwards)” in the “Style

Properties” tab.

ð A new style property is added.

2. In the “General” tab, type a new version number in the “Version” setting.
3. Choose “File è Save and Install”.

ð The changes are saved and the style is installed in the repository as the new version.

You can assign a language-dependent name to a style property. CODESYS displays a style
property by its localized name, depending on the language settings in category “International
Settings” (menu “Tools è Options”).

Requirement: The visualization style editor is open with a style.
1. Translate the name of the style property into the localized language in the “Localization”

tab.
2. Provide a version for the file in the “General” tab.
3. Choose “Save and Install”.

ð The edited style is installed in the repository currently selected in CODESYS.

4. Update the style.
5. Set the language settings in CODESYS to the localized language.
6. Open a visualization and select an element. The style settings in its properties are dis-

played in the localized language.

6.4.5.19.3 Managing visualization styles in repositories
The styles that are listed in CODESYS in the drop-down lists of different dialogs and editors are
all checked for consistency and installed in the visualization style repository. For derived styles,
the hierarchy is checked completely and all styles of the hierarchy are installed. The repository
is a version control system within the development system.
You can open a style as write-protected from the visualization style repository in the visuali-
zation style editor. The “Save” and “Save and Install” commands are not available there for
read-only files. However, you can derive it as the basis for a new style or as a copy.
See also
● Ä Chapter 6.4.5.21.2.20 “Command 'Visualization Style Repository'” on page 3363
● Ä Chapter 6.4.5.22.3 “Editor 'Visualization Style Editor'” on page 3750

Adding a style
property

Localizing style
properties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2985

1. Click “Tools è Visualization Style Repository”.

ð The “Visualization Styles” dialog box opens.

2. Select the “System” repository in the drop-down list of “Storage location”.

ð All versions of the installed styles are listed in “Installed Visualization Styles”.

3. Click on the “Install” button.

ð The “Select Visualization style(s)” dialog box opens.

4. Select a style file and click “Open” to close the dialog box.

ð The style is installed in the “System” repository. It appears now in the tree view below
“Installed Visualization Styles”.

1. Click “Tools è Visualization Style Repository”.

ð The “Visualization Styles” dialog box opens.

2. Select a repository in the drop-down list of “Storage location”.

ð All versions of the installed styles are listed in “Installed Visualization Styles”.

3. Select a style there.
4. Click the “Uninstall” button.

ð The “Select Visualization Style(s)” dialog box opens.

1. Click “Tools è Visualization Style Repository”.

ð The “Visualization Styles” dialog box opens.

2. Click on the “Edit Locations” button.

ð The dialog makes it possible to manage other repositories.

6.4.5.20 Reference, Programming
6.4.5.20.1 Visualization Elements.. 2987
6.4.5.20.2 Placeholders with Format Definition in the Output Text................. 3329
6.4.5.20.3 Methods of the Dialog Manager.. 3335
6.4.5.20.4 Attribute 'VAR_IN_OUT_AS_POINTER'.. 3337
6.4.5.20.5 Attribute 'parameterstringof'... 3338

Installing styles
to repositories

Uninstalling
styles

Managing repo-
sitories

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2986

6.4.5.20.1 Visualization Elements
6.4.5.20.1.1 Visualization Element 'Rectangle', 'Rounded Rectangle', 'El-

lipse'... 2988
6.4.5.20.1.2 Visualization Element 'Line'.. 3000
6.4.5.20.1.3 Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'.......... 3012
6.4.5.20.1.4 Visualization Element 'Pie'.. 3025
6.4.5.20.1.5 Visualization Element 'Image'... 3038
6.4.5.20.1.6 Visualization Element 'Frame'.. 3053
6.4.5.20.1.7 Visualization Element 'Label'.. 3068
6.4.5.20.1.8 Visualization Element 'Combo Box, Integer'............................... 3072
6.4.5.20.1.9 Visualization Element 'Combo Box, Array'................................. 3079
6.4.5.20.1.10 Visualization Element 'Tabs'... 3084
6.4.5.20.1.11 Visualization Element 'Button'... 3089
6.4.5.20.1.12 Visualization Element 'Group Box'.. 3101
6.4.5.20.1.13 Visualization Element 'Table'.. 3106
6.4.5.20.1.14 Visualization Element 'Text Field'.. 3113
6.4.5.20.1.15 Visualization Element 'Scroll Bar'... 3125
6.4.5.20.1.16 Visualization Element 'Slider'.. 3134
6.4.5.20.1.17 Visualization Element 'Spin Box'.. 3140
6.4.5.20.1.18 Visualization Element 'Invisible Input'....................................... 3147
6.4.5.20.1.19 Visualization Element 'Progress Bar'.. 3152
6.4.5.20.1.20 Visualization Element 'Check Box'... 3156
6.4.5.20.1.21 Visualization Element 'Radio Buttons'...................................... 3161
6.4.5.20.1.22 Visualization Element 'Alarm Table'.. 3166
6.4.5.20.1.23 Visualization Element 'Alarm Banner'....................................... 3175
6.4.5.20.1.24 Visualization Element 'Bar Display'.. 3181
6.4.5.20.1.25 Visualization Element 'Meter 90°'... 3187
6.4.5.20.1.26 Visualization Element 'Meter 180°'... 3194
6.4.5.20.1.27 Visualization Element 'Meter'.. 3201
6.4.5.20.1.28 Visualization Element 'Potentiometer'...................................... 3208
6.4.5.20.1.29 Visualization Element 'Histogram'.. 3216
6.4.5.20.1.30 Visualization Element 'Image Switcher'.................................... 3221
6.4.5.20.1.31 Visualization Element 'Lamp'.. 3226
6.4.5.20.1.32 Visualization Element 'Dip Switch', 'Power Switch', 'Push

Switch', 'Push Switch LED', 'Rocker Switch'............................. 3231
6.4.5.20.1.33 Visualization Element 'Rotary Switch'....................................... 3235
6.4.5.20.1.34 Visualization Element 'Trace'.. 3240
6.4.5.20.1.35 Visualization Element 'Trend'.. 3246
6.4.5.20.1.36 Visualization Element 'Legend'... 3254
6.4.5.20.1.37 Visualization Element 'ActiveX'... 3258
6.4.5.20.1.38 Visualization Element 'Web Browser'....................................... 3262
6.4.5.20.1.39 Visualization Element 'Busy Symbol, Cube'............................. 3266
6.4.5.20.1.40 Visualization Element 'Busy Symbol, Flower'........................... 3270
6.4.5.20.1.41 Visualization Element 'Text Editor'.. 3274
6.4.5.20.1.42 Visualization Element 'Path3D'... 3279
6.4.5.20.1.43 Visualization Element 'Control Panel'....................................... 3282
6.4.5.20.1.44 Visualization Element 'Cartesian XY Chart'.............................. 3296
6.4.5.20.1.45 Visualization Element 'Date Range Picker'............................... 3301
6.4.5.20.1.46 Visualization Element 'Time Range Picker'.............................. 3306
6.4.5.20.1.47 Visualization Element 'Date Picker'.. 3311
6.4.5.20.1.48 Visualization Element 'Analog Clock'.. 3317

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2987

6.4.5.20.1.49 Visualization Element 'Date/Time Picker'................................. 3324

Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
Symbol:

Category: “Basic”

The “Rectangle”, “Rounded Rectangle”, and “Ellipse” are the same type of element. They can
be converted into another element type by changing the “Element type” property.

“Element name” Optional
Example: Werkstueck_3
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rectangle”, “Rounded Rectangle”, “Ellipse”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2988

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Visible only when “Rounded Rectangle” is selected in the “Type of element” property.

“Radius” Rounding of the corners.
“From style”

“Relative to the element size”

“Explicit”: Allows for specifying a custom value in the “Value” setting.

“Value” Radius of the rounded corners (in pixels)
Example: 5
Requirement: “Explicit” is selected in the “Radius” setting.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Radius setting

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2989

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3051

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2990

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 2993
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2991

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2992

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 2991

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2993

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 2990
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2994

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2995

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 2991

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2996

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3002

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2997

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US2998

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 2999

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Line'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3000

Category: “Basic”

The element draws a simple line.

“Element name” Optional.
Example: Separator_Header
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Line”

The following properties define the position and length of the element in the visualization
window. These are based on the Cartesian coordinate system. The origin is located at the upper
left corner of the window. The positive horizontal x-axis runs to the right. The positive vertical
y-axis runs downwards.

“Dots” “[0]”: Coordinates of the starting point
“[1]”: Coordinate of the end point

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.
Example:

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3001

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color of the line in normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color of the line in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3051

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3002

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3005
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3003

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3004

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement point[0]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the starting
point of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

“Movement point[1]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the end point
of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

See also
● Ä “Element property 'Absolute movement'” on page 3003

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3003
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3005

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3006

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3003

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3007

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” ● Variable (DWORD) for the color
Example: PLC_PRG.dwColor

● Color literal
Example of gray and opaque: 16#FF888888

Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable in the alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3008

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

Dynamic definition of the weight of a line element using a variable.

“Integer value ” Variable (integer data type). Defines the line weight of the element (in pixels).
This overwrites the fixed value that is defined in “Appearance è Line weight”.
Note: The value 0 codes the same as 1 and sets the line weight to one pixel.

“Integer value ” Variable (integer data type). Defines the appearance of the line at runtime.
● 1: Solid
● 2: Dashes
● 3: Dots
● 4: Dash Dot
● 5: Dash Dot Dot
● 6: Invisible: The line is not drawn.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Line width
variable'

Element prop-
erty 'Line style
variable'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3009

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3010

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3011

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3012

Category: “Basic”

The “Polygon”, “Polyline”, and “Bézier Curve” are the same element type. They can be con-
verted into another type by changing the “Element type” property.
Elements can be dragged to the editor. The element is then drawn with five points: [0] to [4].
Other positions are added as follows: Move the mouse pointer over a corner point; the mouse
pointer changes shape. Now if you press and hold [Ctrl] and click the left mouse button, another
point is created. You can delete a point by pressing and holding [Shift]+[Ctrl] and click the
selected point.
As an alternative, you can select the element in the toolbox area and in the editor click multiple
times. At the same time, a connecting line is drawn from one point to the other. End by
double-clicking the element or right-clicking it one time.

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Werkstueck_1

“Type of element” ● “Polygon”
● “Polyline”
● “Bézier Curve”

The following properties define the position of the corner points in the visualization window.
These are based on the Cartesian coordinate system. The origin is located at the upper left
corner of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis
runs downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3013

“Dots” [0]..[n]: Coordinates of the corner points
Specified in pixels

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3014

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3051

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3015

See also
● Ä “Element property 'Text variables'” on page 3018
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3016

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3017

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

“Array of points” Variable (POINTER TO). Points to an array of the structure
VisuElems.VisuStructPoint. The elements iX and iY of
VisuStructPoint contain the xy-coordinates of a point The current number of
array elements implicitly contains the variable in the property “Number of points”.
The variable that is assigned to the property “Number of points” contains the
number of array elements and therefore the number of corner points.
Example: pPoints : POINTER TO ARRAY[0..100] OF
VisuElems.VisuStructPoint;

“Number of points” Variable (integer data type): Contains the number of array elements and there-
fore the number of corner points for displaying the element.
Example: PLC_PRG.iNumberOfPoints := 24;
In the example, the element has 24 points. This definition is necessary because
the individual points are defined by a pointer and this does not allow control over
the number of points.
Note: In this way, it is possible to adapt the display of the element dynamically by
updating the number of corner points.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3015
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Dynamic
points'

Element prop-
erty 'Text varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3018

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3019

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3016

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3020

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3021

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3043

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3022

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3023

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3024

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Pie'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3025

Category: “Basic”

The element draws a pie of any angle.

“Element name” Example: Error_rate_part_1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Pie”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3026

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Begin” Start angle of the pie. If you also define a variable
for the start, then the start angle is calculated from
the sum of the values for “Begin” and “Variable for
begin”.

Example:
● “Begin”: 330
● “End”: 90

“End” End angle of the pie. If you also define a variable
for the end, then the end angle is calculated from
the sum of the values for “End” and “Variable for
end”.
The pie is drawn clockwise from the start angle to
the end angle.

“Variable for begin” The start of the sector is defined dynamically by a variable.

“Variable for end” The end of the sector is defined dynamically by a variable.

“Only show circle
line”

: The pie is drawn without the radius line or filling color.

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3027

“X” Display of the center coordinates. You cannot modify these values here in the
properties.
If the Pie is selected in the editor, then the center of the Pie (as well as the
center of the enveloping box) is visualized with the symbol . Moreover, the
element is decorated with a position, begin, and end boxes that you can move.

The center coordinates change when you move the center symbol in the
editor. This also changes the size of the Pie so that the position box retains its
position and the center remains in the middle of the element.

“Y”

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3028

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3051

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3031
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3029

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (integer data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (integer data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3030

“Interior rotation” Variable (integer data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
If a static angle of rotation is specified in “Position
è Angle”, then the static angle of rotation and the
angle of rotation are added.

You can link the variables to a unit conversion.

The “X”, “Y”, and “Interior rotation” properties are supported by the "Client
Animation" functionality.

See also
●

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3029
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Text varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3031

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3032

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3029

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3033

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3034

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3043

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3035

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3036

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3037

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Image'
Symbol:

Category: “Basic”

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3038

The element adds an image to the visualization. The displayed image is managed in the image
pool and referenced in the visualization element by means of a static ID. You can also change
the displayed image dynamically by using a variable instead of the static ID.

With the “Background” command, you can define a background for the entire
visualization.

Directories that contain the images for use in visualizations can be defined in
the project settings (category “Visualization”).

“Element name” Example: Status bar
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Image”

“Static ID” Identifier of the image file for a static assignment
ID of the image file on, as it is defined in the corresponding image pool. If
the image is not included in the global image pool in the POU view, then the
instance path must be specified. Then the name of the image pool is preceded
to make the entry unique. Example: imagepool2.button_image.

When a new ID is specified, a file selection dialog opens. The selected file is
saved to the “GlobalImagePool”.
See also: Help for the “Image Pool” object.

“Show frame” : The image file is displayed with a frame.

“Clipping” Requirement: The “Scaling type” property is “Fixed”.

: Only part of the visualization is displayed that fits in the element frame.

“Transparent” : The image pixels that have the “Transparent color” are displayed as trans-
parent.

“Transparent color” Effective only if the “Transparent” option is activated.

The button opens the color selection dialog. This is where you select the
transparent color.

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3039

“Scaling type” Definition of how an image fits in the element frame.
● “Isotropic”: The entire image is displayed in the element frame, either larger

or smaller. As a result, the proportion of height and width are retained.
If the alignment of the elements to each other should also be retained
within a scaled frame element, then note the following. Unwanted horizontal
or vertical offsets can be prevented by setting the properties “Horizontal
alignment” and “Vertical alignment” to “Centered”. The alignment of the ele-
ments is retained and there are no resulting horizontal or vertical offsets.
Example: A lamp is centered above a switch. The lamp should remain in the
horizontally centered position, even if the frame is resized.

● “Anisotropic”: The image resizes automatically to the dimensions of the ele-
ment frame, filling the entire element frame. As a result, the proportions are
not retained.

● “Fixed”: The image retains its original size, even if the element frame is
resized. Note also that the “Clipping” option is selected.
For each reassignment of an image ID, the element size is adapted automat-
ically to the image size.

“Horizontal alignment” Horizontal alignment of the element within the element frame:
● “Left”
● “Centered”
● “Right”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the horizontal
alignment.
Example: PLC_PRG.eHorizontalAlignment

“Vertical alignment” Vertical alignment of the element within the element frame:
● “Top”
● “Centered”
● “Bottom”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the vertical align-
ment.
Example: PLC_PRG.eVerticalAlignment

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3040

A valid declaration is required for the variables used as an example in the table above.

TYPE VisuElemBase.VisuEnumHorizontalAlignment
 LEFT
 HCENTER
 RIGHT
END_TYPE

TYPE VisuElemBase.VisuEnumVerticalAlignment
 DOWN
 VCENTER
 BOTTOM
END_TYPE

PROGRAM PLC_PRG
VAR
 eHorizontalAlignment :
VisuElemBase.VisuEnumHorizontalAlignment :=
VisuElemBase.VisuEnumHorizontalAlignment.HCENTER;
 eVerticalAlignment : VisuElemBase.VisuEnumVerticalAlignment :=
VisuElemBase.VisuEnumVerticalAlignment.VCENTER;
END_VAR

Example
Enumeration

Declaration

See also
● Object 'Image Pool'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3041

ms-its:codesys.chm::/_cds_obj_image_pool.htm

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the frame
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the frame in alarm state
Requirement: “Show frame” property is activated.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3042

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3051

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3046
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3043

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 6.4.5.21.5.5 “Visualization Element 'Image'” on page 3463
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468

You can use this element property for animating a series of image files.

“Bitmap version” Variable (integer data type). Contains the version of the image.
If the variable changes, then the visualization re-reads the image referenced in
the “Image ID” property and displays it.
The visualization displays animations when the image file on the controller is
updated continuously, thus incrementing the version variable. The application
must be programmed for this.
Possible applications
● Displaying graphics that are generated by the application
● Displaying images that are refreshed by a camera

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Image ID
variable'

Element prop-
erty 'Dynamic
image'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3044

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3045

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3016

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3046

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3043
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3047

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3048

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3044

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3049

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3050

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3043

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3051

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: A user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: A user clicks down on the element only.

“OnMouseEnter” Input event: A user drags the mouse pointer to the element.

“OnMouseLeave” Input event: A user drags the mouse pointer away from the element.

“OnMouseMove” Input event: A user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3052

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered.

“Key” Key pressed for input action.
Example: [T]

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Project Settings - Visualization
● Ä Chapter 6.4.5.21.2.10 “Command 'Background'” on page 3349
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Frame'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3053

ms-its:codesys.chm::/_cds_dlg_project_settings_visualization.htm

Category: “Basic”

The element serves as a frame in which to display one or more already existing visualizations.
You get a structured user interface. The size of the frame can be fixed or scaled. The display
area of the referenced visualization then adapts itself to the frame size.

“Element name” Example: refVisUserInfo
“Type of element” “Frame”

“Clipping” : Fixed size. Only that part of the referenced visualization that fits inside the
frame is displayed.
Requirement: The “Scaling type” property is “Fixed”.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area. The gap prevents the
referenced visualization from touching any adjacent elements.

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

The properties contain variables for the position of the scrollboxes in the scrollbars. You can
then edit the data of the scrollbox position in the application.

Element proper-
ties

Element proper-
ties 'Scrollbar
settings'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3054

Requirement: the property “Scaling type” is “fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also as array). Contains the position of the horizontal
or vertical scrollbox. The array contains the position for every display variant. If
the visualization runs on several display variants, then the position changes are
decoupled from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
The variable is declared as an array in the example.
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indexes the current display variant.

“Scroll position variable
vertical”

You can combine the variables with a unit conversion.

See also
● Unit conversion

“Deactivation of the
background character”

: The background is drawn. The non-animated element of the referenced visu-
alization is drawn as a background bitmap in order to optimize the performance
of the visualization.
Consequence: Elements can be displayed in an unexpected order at runtime.
For example, an animated element can push itself behind the Frame at runtime.

: Background character is deactivated in order to avoid the behavior described
above.

Contains the currently configured visualization references as a subnode

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

Element prop-
erty 'Referen-
ces'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3055

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä “Input action 'Switch Frame Visualization'” on page 3377

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the colors.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3056

“Color” Color of the frame

: Selection list with style colors appears

: Standard dialog “Color” opens for selecting a color.
Please note: the normal state is when the boolean variable in the property
“Color variables è Toggle color” is not defined or its value is FALSE.

“Alarm color” Color with which the element is filled during the alarm state.
Please note: Alarm state is when the value of the boolean variable in the prop-
erty “Color variables è Toggle color” is FALSE.

“Transparency” Integer number (value range from 255 to 0). Specifies the transparency of the
associated color.
255: The color is opaque.

0: The color is fully transparent.

Please note: If the color is a style color and already contains a transparency
value, then this property is write-protected.

See also
● Ä Chapter 6.4.5.5.4 “Assigning a color” on page 2876

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3064

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3057

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3060
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3058

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

Element prop-
erty 'Relative
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3059

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3016

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3057
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3060

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3061

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3058

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3062

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3063

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3057

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The variables control the element behavior dynamically.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3064

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3065

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3066

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3067

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Visualization Element 'Label'
Symbol:

Category: “Common Controls”

The element is used to label visualizations.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Header_Parameter

“Type of element” “Label”

The property requires a character string.
This text is entered automatically into the GlobalTextList text list and can be localized there.

“Text” Character string (without single straight quotation marks)
Example: Main page

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Texts'

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3068

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3069

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3070

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3071

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Combo Box, Integer'
Symbol:

Category: “Common Controls”

The element shows values as a list box. When the user clicks an entry, the ID of the entry is
written to an integer variable. The entries in the list box can be from a list and contain images
from an image pool.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3072

“Element name” Example: List of product numbers
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Combo Box, Integer”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3073

“Variable” At runtime, the text list ID of the list entry that the user clicks is saved at runtime.
If only one image pool is displayed, then the image ID is saved.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIDComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
“Text List” Displayed as a combo box. Every text list entry becomes a combo box entry.

Note: A maximum of 32766 entries can be displayed.
Transfer value
● Text list identifier as string

Example: 'TextList_A'
Note: The IDs of the text list have to be within the range of values of DWORD
or DINT.

● Blank
– When an enumeration variable with text list support is specified in the

“Variable” property
– When only one image pool is displayed

“Image Pool” Displayed as a combo box. Every image in the image pool becomes a combo
box entry.
Example: 'ImagePool_A'

See also
● Enumerations
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

Displayed list that expands when a visualization user clicks into the element.

“Number of rows setting” ● “From style”:
● “Explicit”: Then the “Number of visible rows” property appears below it.

“Number of visible rows” Number of visible lines of the combo box drop-down list defined here
● Integer literal

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iNumberOfVisibleRows
Note: The property is available when the “Number of rows setting” property is set
to “Explicit”.

“Row height” ● “From style”:
● Literal

Example: 20
“Height of image” Image height (in pixels) of the image displayed in the drop-down list entry

● “From style”:
● Integer literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

Element prop-
erty 'Settings of
the list'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3074

ms-its:codesys.chm::/_cds_datatype_enum.htm

“Width of image” Image width (in pixels) of the image displayed in the drop-down list entry
● “From style”:
● Literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Offset of image” Makes the images in the selection list appear offset (in pixels) from the left
margin. An offset of 0 means that the images are displayed directly on the
margin.
● “From style”:
● Literal

Example: 4
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Scrollbar size” Size of the scrollbar (in pixels). The scrollbar is displayed when more entries are
specified in the drop-down list than in “Number of visible rows”.
Default: 20

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Limit valuerange” Limits the text list to one subrange. This subrange is displayed by the combo
box.
Requirement: A value is specified in the “Text list” property.

: Only the subrange that is defined by the “Minimum value” “Maximum value”
properties is displayed as a drop-down list.

“Minimum value” ID of the text list entry from which a combo box entry is displayed
● Literal (ANY_NUM)

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iFirstEntry

Element prop-
erty 'Texts'

Element prop-
erty 'Value
range'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3075

“Maximum value” ID of the text list entry up to which combo box entries are displayed
● Literal (ANY_NUM)

Example: 10
● Variable (integer data type)

Example: PLC_PRG.iLastEntry
“Filter missing textentries” : Text list is refreshed and any unused texts (IDs) are removed.

Requirement: A value is specified in the “Text list” property.

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3076

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3077

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3078

Visualization Element 'Combo Box, Array'
Symbol:

Category: “Common Controls”

The element shows values of an array as a list box. When the visualization user clicks an entry,
the array index of the entry is written to an integer variable.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: List_Product_Number

“Type of element” “Combo Box, Array”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3079

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” The array index of the list entry that the user clicks is saved at runtime.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIndexComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
Note: Value range of the enumeration value that lies within the DWORD or
DINT value range

“Data array” Displayed as a combo box. Every array component becomes a combo box entry.
Property value
● Array variable (ARRAY[...] OF)

Example: PLC_PRG.astrCombobox
Declaration: astrCombobox : ARRAY[0..4] OF STRING :=
['First', 'Second', 'Third', 'Fourth'];

See also
● Enumerations
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

The "Combo box – Array" element visualizes an array variable or structure variable in a tabular
view. The index of array elements or structure members is shown in a column or row. Two-
dimensional arrays or structure arrays are shown in several columns. You specify the visualized
variable in the “Data array” property. If a variable is assigned there, then you can specify the
display of the table columns where the array elements are shown. You can customize each
column that is assigned to an index [<n>].

“Columns”

● [<n>]
Due to the structure of the variable that is defined in “Data array”, CODESYS
determines the number of columns and defines them with the index <n>.
Example: StringTable : ARRAY [0..2, 0..4] OF STRING :=
['BMW','Audi','Mercedes','VW','Fiat',
'150','150','150','150','100','blue','gray','silver','blue'
,'red'];: three columns are formed [0], [1] and [2].

“Max. array index” Optional. Variable (integer data type) or value. Defines up to which array index
the data is displayed.

“Row height” Height of the rows (in pixels).

“Number visible rows” Optional. If the array is larger than the number of visible rows, then a scrollbar is
included.

“Scrollbar size” Width of the vertical scrollbar (in pixels).

Element prop-
erty 'Columns'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3080

ms-its:codesys.chm::/_cds_datatype_enum.htm

Table 629: “Element property 'Columns: Column [<n>]'”
“Width” Column width (in pixels).

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or user-defined image pools. The image IDs are shown in the cells of
the table as defined in the image pool.

“Image configuration”

“Fill mode” ● “Fill cell”
The image resizes to the dimensions of the cell without fixing the height/
width ratio.

● “Centered”
The image is centered in the cell and retains its proportions (height-width
ratio).

“Transparency” : The color that is specified in “Transparent color” is displayed as transparent.

“Transparent color” When the “Transparent” property is enabled, the color specified here is not
displayed. Pixels with this color are transparent.

“Text alignment in column” ● “Left”
● “Centered”
● “Right”

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Font” Example: “Default”

: The “Font” dialog opens.

: List box with style fonts

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3081

“Font color” Example: “Black”

: The “Color” dialog opens.

: List box with style colors

“Transparency” Integer (value range from 0 to 255). This determines the transparency of the
respective color.
255: The color is opaque.

0: The color is completely transparent.

Note: If the color is a style color and already has a transparency value, then this
property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3082

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3083

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Tabs'
Symbol:

Category: “Common Controls”

The element displays selected visualizations in tabs. The tabs can be used by means of the tab
header without having to configure an input configuration. A visualization user switches between
visualizations by clicking the tab header.

“Element name” Example: Assembly A
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Tabs”

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3084

“Tab width” Width of the tab (in pixels). If there is not space for all tab headers, then a scroll
bar is added.
Example: 30

“Tab height” Height of the tab (in pixels)
● Integer literal

Example: 15
● “From style”

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

“Deactivate background
drawing”

: The non-animated elements of the referenced visualization are displayed as
background images in order to optimize the performance of the visualization.
Result: At runtime, the elements can be displayed in any order, for example
when an element moves behind the frame at runtime.

: Deactivates the background display in order to prevent the behavior
described above
The property is not available for the following settings:
● The “Scaling type” property is set to “Fixed and scrollable”
● The client animation functionality is enabled.

The properties include variables for the position of the scroll boxes in the scroll bars. You can
process the data for the scroll box position in the application.

Requirement: The “Scaling type” property is “Fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also array). Includes the position of the horizontal or
vertical scroll box. The array contains the position for each display variant. If the
visualization is running on multiple display variants, then the position changes
are disconnected from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
In this example, the variable is declared as an array:
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indicates the current display variant.

“Scroll position variable,
vertical”

Element prop-
erty 'Scroll bar
settings'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3085

See also
● Unit conversion

“References” Clicking “Configure” opens the “Frame Configuration” dialog. You can select an
existing visualization there.
Selected visualization references are shown in the properties.
Selected visualization references are listed here as subordinate properties.

Name pf the visualization refer-
ence (example: PLC_PRG.S1)

“Heading” Tab caption (example: Panel)

“Image ID” Image ID in the theme <image pool name>.<ID>
Example: Imagepool_A.1 for the image with ID 1 in Imagepool_A

Interface parameter of the visu-
alization reference
Example: iX

If the visualization has an interface, then their parameters are displayed here as
subordinate properties.
Variable (data type conforms to data type of the interface parameter). Includes
the initialization value for the instantiation of the visualization.

See also
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

Element prop-
erty 'Referen-
ces'

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3086

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (integer data type). Specifies the index of the active visualization.
Example: PLC_PRG.uiActiveVisuID.

Tip: The “Frame Configuration” dialog box includes a list of selected visualiza-
tions. The visualizations are ordered automatically in numeric order in the list.

See also
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Switch
frame variable'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3087

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3088

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Button'
Symbol:

Category: “Common Controls”

The element triggers an action, such as setting a variable.

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3089

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Voltage_on

“Type of element” “Button”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3090

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Static ID” Reference to an image in an image pool of the format <name of image
pool>.<image ID> (example: image_pool.GreenButton).

If the image is from the “GlobalImagePool”, then you can omit the name of the
image pool because CODESYS always searches this pool first.

: The “Input Assistant” dialog box opens and lists all available image pools
and images in the entire project.

“Scale type” Behavior of the image when resizing the button.
● “Isotropic”: The image retains its proportions. The ratio of height to width is

retained, even if you change the height or width of the button separately.
● “Anisotropic”: The image resizes to the dimensions of the button.
● “Fixed”: The image retains its original size, even if you change the size of the

button.

“Transparency” The visualization displays the image with the transparency color that is selected
in “Transparency color”.

“Transparency color” Color that is transparent in the image (example: “White”). if the image back-
ground that is reference by “Static ID” is white, then this background is displayed
transparent. Clicking opens a color selection dialog.
Requirement: The “Transparency” option is activated.

“Horizontal alignment” Horizontal alignment of the image
● “Left”
● “Centered”
● “Right”

“Vertical alignment” Vertical alignment of the image
● “Top”
● “Centered”
● “Bottom”

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.

Element prop-
erty 'Image'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3091

CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3094
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3092

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

Element prop-
erty 'Relative
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3093

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3016

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3091
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3094

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3095

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3092

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3096

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3097

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

“Digital variable” At runtime, the property controls whether the Button is displayed as pressed or
not.
Values:
● FALSE: The Button is displayed as not pressed.
● TRUE: The Button is displayed as pressed.

Argument passed to the property:
● Placeholder for the user input variable to couple the representation of the

Button with the input variable.
– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

Note: Specify a variable for the mouse events “Tap” or “Toggle” in the input
configuration of the Button. Only then is the placeholder set. If you configure
a variable in both “Toggle” and “Tap”, then the variable specified in “Tap” is
used.
Hint: Click the symbol to insert the placeholder “<toggle/tap variable>”.
When you activate the “Inputconfiguration”, “Tap FALSE” property, then the
“<NOT toggle/tap variable>” placeholder is displayed.

● Instance path of a project variable (BOOL)
Example: prgA.xButtonState
Note: Implement a value assignment in the code for the variable specified
here.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Button
state variable'

Element prop-
erty 'Image ID
variable'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3098

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 6.4.5.20.1.5 “Visualization Element 'Image'” on page 3038
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3099

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3100

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Group Box'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3101

Category: “Common Controls”

The element provides a visual grouping of visualization elements. The group box can have
multiple levels of nesting.

You can also use drag&drop to add elements to a “Group Box”. To do this, drag
the element to the window area of the “Group Box”. The appearance of the
cursor changes (a small plus sign is displayed). When you click the [Shift] key at
the same time, the element is not added.

You can remove elements from the “Group Box” by dragging them out of the
window area.

“Element name” Example: Parameter axis 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Group Box”

“Clipping” : Elements that protrude beyond the size of the group box are clipped.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3102

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3103

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3104

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3105

Visualization Element 'Table'
Symbol:

Category: “Common Controls”

The element displays data that can be represented as an array in a table. Therefore, the data
type of the visualizing variable can be 1) a one-dimensional array, 2) a maximum two-dimen-
sional array, 3) an array of an array, 4) an array of structures, or 5) an array of a function block.

“Element name” Example: Data set component 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Table

“Data array” Array whose data is visualized as a table
Variable (ARRAY) whose data type determines the number of columns and rows
in the table
Array types
● One-dimensional array: The table has one column.
● Two-dimensional array: The second dimension determines the number of

columns.
● Array of an array: The number of array elements of the back array deter-

mines the number of columns.
● Array of a structure: The number of structure members determines the

number of columns.
● Array of a function block: The number of local variables determines the

number of columns.
Example: PLC_PRG.aiTable
Declaration: aiTable : ARRAY[0..3, 0..4] OF INT := [4(1, 2, 3,
4, 5)];
Hint: If the declaration of the array changes, then the table can be refreshed by
placing the cursor in the data array value field and pressing the [Enter] key.

“Max. array index” Top index limit for the displayed table. Limits the number of displayed rows. The
index begins at 0.
● Variable (integer data type)

Example: PLC_PRG.iUpperIndexBoundToDisplay
● Integer literal

Example: 4 is displayed as 5 in the row of the table.

See also
● Data Type 'ARRAY'

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3106

ms-its:codesys.chm::/_cds_datatype_array.htm

The “Table” element shows the values of a variable in a tabular view. The array elements of
structure members are shown in a column or in a row. Two-dimensional arrays or arrays of a
structure are shown in multiple columns. The visualized variable is defined in the “Data array”
property. When a variable is assigned there, you can specify the display of the Table columns
where the array elements are shown. An individual configuration is possible for each column
that is assigned to an index [<n>].

“Show row header” : The row header is visible.
Example: For an array, the index of the array element is displayed in the header.

“Show column header” : The column label is visible.

“Row height” Height of the rows (in pixels)

“Row header width” Width of the row label

“Scroll bar size ” Size of the scroll bar (in pixels)

Table 630: “Element property 'Columns: Column [<n>]'”
“Column header” By default, the name of the array or structure is applied as the heading with

the index or structure member for the column. If an array of a function block
has been selected for “Data array”, then the name of the array is applied to the
column header with the local variables of the function block that belong to the
column.
The column label can be changed here by specifying a new title.

“Width” Column width (in pixels)

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or custom image pools. The image IDs are shown in the cells of the
Table as they are defined in the image pool.

“Image configuration”

“Fill mode” ● Fill cell: The image resizes to the dimensions of the cell without fixing
the height/width ratio.

● Centered: The image is centered in the cell and retains its proportions
(height/width ratio).

“Transparency” : The color which is specified in “Transparent color” is displayed as trans-
parent.

“Transparent color” This color is displayed as transparent.
Requirement: The “Transparency” property is activated.

“Text alignment of header” Alignment of the column header:
● Left
● Centered
● Right

“Use template” : Another visualization element (type “Rectangle”, “Rounded Rectangle”, or
“Ellipse”) is inserted into each line of this Table column. The properties list is
extended automatically with the properties of this element in “Template”.

“Text alignment of the headline
from the template”

Requirement: The “Use template” property is activated.

: When activated, the settings for font (size) and alignment in the inserted
template are also applied to the column header.

“Template” Requirement: The “Use template” property is activated.
The properties of all elements assigned to the column are listed in “Template”.
They can be modified there as described in “Rectangle”, “Rounded Rectangle”,
and “Ellipse”.

Element prop-
erty 'Columns'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3107

See also
● Ä Chapter 6.4.5.20.1.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 2988

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3108

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables enable dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog box.

“Size” Variable (integer data type). Contains the font size (in pixels).
Example: PLC_PRG.iFontHeight := 16;.

The selection of font sizes corresponds to the default “Font” dialog box.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3109

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Charset” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog box.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3116

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3110

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3111

The “Invisible” property is supported by the "Client Animation" functionality.

“Background color on
selection”

Fill color of the selected row.

“Selection font color” Font color of the selected row.

“Selection type” Selection when clicking the table row.
● No selection: No selection
● Cell selection: The clicked cell only.
● Row selection: Row of the clicked cell.
● Column selection: Column of the clicked cell.
● Row and column selection: Row and column of the clicked cell.

“Frame around selected cells” : A frame is drawn around the selected cells.

“Variable for selected column” Variable (INT). Contains the array index of the “Column” of the selected cell. If
the data array points to a structure, then the structure components are indexed,
starting at 0.
Warning: This index represents the correct position in the array only if no col-
umns have been removed from the table in the display.

“Variable for selected row” Variable (INT). Contains the array index of the “Row” of the selected cell.

“Variable for valid column
selection”

Variable (BOOL).
TRUE: The “Variable for selected column” variable contains a valid value.

“Variable for valid row
selection”

Variable (BOOL).
TRUE: The “Variable for selected row” variable contains a valid value.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Selection'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3112

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.11.2 “Displaying Array Variables in Tables” on page 2917
● Data Type 'ARRAY'

Visualization Element 'Text Field'
Symbol:

Category: “Common Controls”

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3113

ms-its:codesys.chm::/_cds_datatype_array.htm

The element is used for the following purposes:
● Static output of text. The contents of a variable can be part of the text.
● Showing a tooltip. The text is managed as static text and can also be defined so that the

contents of a variable are also displayed.
● Dynamic output of text. Texts of a text list are displayed dynamically.
● Input of text. For example, a user can input a number or a text literal.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Element name” Optional
Example: FileName_A
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Text Field”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3114

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3064

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3115

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3116
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3116

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3115
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3117

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3118

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3116

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3119

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3120

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The variables allow for controlling the caret position and the selection of the text.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Selection
and caret con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3121

“Caret position” Variable (integer data type). Contains the position of the cursor.

“Selection start” Variable (integer data type). Contains the position of the first selected character.
Example: PLC_PRG.iSelStart

“Selection end” Variable (integer data type). Contains the position of the last selected character.
Example: PLC_PRG.iSelEnd

“All selected” Variable (BOOL). Toggles the selection of the entered text.
TRUE: The text in the text field is selected.

FALSE: The selection starts with the value in “Selection start” and ends with
“Selection end”.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3122

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3123

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3124

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Scroll Bar'
Symbol:

Category: “Common Controls”

The element sets the value of a variable, depending on the position of the scroll bar.

“Element name” Example: Speed Conveyor Belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Scroll Bar”

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Value” Variable as type integer that includes the position of the scroll bar.

“Minimum value” Smallest value of the scroll bar (fixed value or variable).

“Maximum value” Largest value of the scroll bar (fixed value or variable).

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3125

“Page size” Page size
● As a fixed value, for example 10
● As a variable of data type integer
Requirement: Visible when the “Move to click” property is not selected.

“Move to click” Behavior of the scroll bar at visualization runtime when it is clicked:

: The scrollbar moves to the clicked position.

: The scrollbar moves to one “Page size” in the direction of the click.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The property defines the representation of scaling and direction of travel.

Element prop-
erty 'Position'

Element prop-
erty 'Bar'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3126

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the Scroll Bar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Colors'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3127

See also
● Ä “Element property 'Text variables'” on page 3128
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3127
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3128

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3129

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3116

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3130

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3131

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3132

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3133

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Slider'
Symbol:

Category: “Common Controls”

The element changes the value of a variable, depending on the position of the slider within the
slider bar. You define the value range of the slider bar by means of the scale start and scale
end.

“Element name” Example: Speed controller conveyor belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Slider”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3134

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.rSlider
When executed, the variable assigns a value that corresponds to the position of
the slider in the bar.

“Page size” Page size
● As a fixed value, for example 10
● As an IEC variable of data type integer
Requirement: The “Move to click” element property is not selected.

“Move to click” Behavior of the slider at visualization runtime when it is clicked:

: The slider moves to the clicked position.

: The slider moves to the value (defined in the “Page size” element property) in
the direction of the click.

“Show scale” : The element has a visible scale.
Note: This option is available for the “Slider” only.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3135

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two tick marks on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between two dashes on the fine scale. You can hide the fine scale by
setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 5;
END_VAR

“Scale format (C Syntax)” Formatting of the scale label (example: %d %s)

Note: This property is available for the Slider only.

“Scale proportion” Size of the scale (in %) of the total size

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3136

The property defines the representation of scaling and direction of travel.

“Diagram type” The drop-down list varies depending on the alignment of the diagram.
Horizontal
● “Top”: Scale is above the slider.
● “Bottom”: Scale is below the slider.
● “Top and bottom”: Two scales frame the slider above and below.
Vertical
● Left: Scale is left of the slider.
● Right: Scale is right of the slider.
● Left and right: Two scales frame the slider on the left and the right.

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the scrollbar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Bar'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3137

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3138

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3139

Visualization Element 'Spin Box'
Symbol:

Category: “Common Controls”

The element increments or decrements the value of a variable in defined intervals.

“Element name” Example: Speed controller conveyor belt
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Spin Box”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3140

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.iTemp

“Number format” Format of the value in printf syntax
Example: %d, %5.2f

“Interval” Interval used for modification of the value

“Minimum value” Lower limit of the output value
● fixed value
● Variable (INT)

“Maximum value” Upper limit of the output value
● fixed value
● Variable (INT)

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Value
range'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3141

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Color varia-
bles'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3142

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3143

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The input configuration refers to the text area of the element only, not the two
buttons.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3144

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: The user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: The user clicks down on the element only.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the options “Tap FALSE” and “Tap on
enter if captured”.

“Variable” Variable (BOOL). Contains the information whether a mouse click event exists.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts while the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3145

“Shift” When a mouse click event occurs, the variable here is described in the applica-
tion. When the mouse click event ends, its value is toggled with the “Toggle on
up if captured” option.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Tip: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3146

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Invisible Input'
Symbol:

Category: “Common Controls”

This element is displayed in the editor with a dashed line which is not visible in online mode.
You define the behavior of the el in the input configuration.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Unsichtbare_Eingabe_1

“Type of element” “Invisible Input”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3147

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3148

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3149

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3150

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3151

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Progress Bar'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3152

Category: “Common Controls”

The element displays the value of a variable as a progress bar.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Progress_Data_Transfer

“Type of element” “Progress Bar”

“Text ID” ID of the global text list
Requirement: Text is configured in the property “Texts è Text”.

“Variable” Variable (numeric data type). Represents the length of the progress bar.

“Minimum value”
Value range of the variable

“Maximum value”

“Style” ● “Blocks”
● “Bar”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3153

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Text” String label for the element.
Example: Zoom

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3154

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3155

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Check Box'
Symbol:

Category: “Common Controls”

The element is used for setting and resetting a Boolean variable. The set state is identified by a
check mark.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3156

“Element name” Example: signal_tone_for_parts_deficit
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Check Box”

“Text ID” ID for the text in the “GlobalTextList”

Example: 22
The text ID cannot be changed. As soon as you specify and save a text in
“Texts” - “Text”, CODESYS automatically creates an entry in the “GlobalTextList”
and displays the ID here.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3157

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable of type BOOL
Example: “PLC_PRG.xIsTrue”

“Frame size” Distance of the element to the edge
Example: “From style”

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3158

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3159

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3160

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Radio Buttons'
Symbol:

Category: “Common Controls”

The element provides a series of radios buttons with an unlimited number of options.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3161

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Morning Shift

“Type of element” “Radio Buttons”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (integer data type) that gives the index of the radio button that the
visualization user has activated
Example: PLC_PRG.iNrOfActivatedRadioButton

“Number of columns” Definition of the number of list boxes displayed in a row
Example: 2

“Radio button order” “Left to right”: The radio buttons are aligned by rows until the number of columns
is reached.
“Top to bottom”: The radio buttons are aligned row by columns until the number
of columns is reached.

“Frame size” Defines the distance from the list boxes to the edge (in pixels).

“Row height” Height of the row (in pixels) Modifying the height of the row also changes the
size of the list box.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3162

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3163

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3164

The “Invisible” property is supported by the "Client Animation" functionality.

“Radio button”

● “Areas”
– “[<n>]”

“Create new”: Clicking this button creates a new selection button in
the editor and lists an additional area in the properties editor.
For each radio button, an area is visible that records the settings.
● [<n>]

– “[<n>]”: This number indicates the area. Clicking “Delete”
will delete the associated radio button with its settings
“Text”, “Tooltip”, and “Line spacing (in pixels)”.

Areas: [<n>]

“Text” The button name is specified here. Default value: “Radio_button”

“Tooltip” Text is specified here that is displayed in a tooltip.

“Line spacing (in pixels)” The distance (in pixels) to the upper button can be specified here.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'Radio
button settings'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3165

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Alarm Table'
Symbol:

Category: “Alarm Manager”

The element displays alarms in a list. In the element properties, you specify which information
is shown. You define the appearance of the element and the variables that control the element
behavior.

In online mode, you can sort an alarm table by a specific column – even in the
classic view. Click into the column header. A small triangle indicates the current
sort order (ascending, descending). Clicking the symbol reverses the order.

Sorting inside the column depends on the type of the contained information.
The "Priority" column is sorted numerically, and the "Message" and "Class"
columns alphabetically. The "Value" and "Latch" columns may contain different
value types. In this case, sorting is first by type (blank, Boolean, numeric value,
character string) and then either numerically or alphabetically depending on the
type.

If an alarm history has been created, then you can programmatically delete it at
runtime. The recording starts again from the time of deletion. See the help page
for "Visualizing Alarm Management".

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3166

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Table”

“Data source” Selection of the device and the application where the data to be visualized and
the alarms are generated
● Remote data source which accesses a remote device, accesses a remote

application, and then transfers the data to the alarm configuration
Example: DataSource_A
Below the (now visible) “Application” property, the remote application is dis-
played as configured in the data source.
Example: App_A
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

● Local application below which the alarm configuration is located
Example: “<local application>”

See also
● Object 'Data Source'

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element prop-
erty 'Alarm con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3167

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 6.4.5.21.3.17 “Dialog 'Selected Alarm Group'” on page 3390
● Ä Chapter 6.4.5.21.3.16 “Dialog 'Selected Alarm Class'” on page 3389

“Show row header” : Display of the row number at the beginning of the row.

“Show column header” : Display of the column heading as defined in “Column heading”.

“Row height” Height of the table rows (in pixels).

“Row header width” Width of the line header (in pixels).

Element prop-
erty 'General
table configura-
tion'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3168

“Scrollbar size” Width of the scrollbar when it runs vertically. Width of the scrollbar when it runs
horizontally. Specified in pixels

“Automatic line break for alarm
message”

: The message text is truncated at the end of the line.

: The message text is truncated at the end of the column, if the text is too long.

By default, columns [0] and [1] are configured: “Time stamp” and “Message text”. You can
create more columns by clicking the “Create new”, and remove columns by clicking “Delete”.
Animations (dynamic text, font variables), text, and tooltip are not supported.

“Column header” The standard header is set and changed here by specifying a new text.

“Use text alignment in title” : The text in the column header is aligned according to the current definition in
“Text alignment”.

: The text in the column header is centered.

“Width” Width of the column (in pixels).

“Data type” Notice about time stamps: For use in a TargetVisu or WebVisu, you can
control the date and time format with the help of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Define the information to be displayed in the column.
● “Symbol”
● “Time stamp”: Date and time of the last status change of the alarm.
● “Time stamp active”: Date and time of the last activation of the alarm.
● “Time stamp inactive”: Date and time of the last deactivation of the alarm.
● “Time stamp acknowledge”: Date and time of the last acknowledgment.
● “Value”: Current value of the printout
● “Message text”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the text in this column
● “Left”
● “Centered”
● “Right”

“Color settings” ● “Activate color settings”: Boolean variable for activating and deactivating the
color settings defined here. Example: PLC_PRG.bColorSettings

● “Cell fill color”:
– “Color variable”: Variable for the cell fill color, example: dwCellColor

(hexadecimal color definition: 16#TTRRGGBB)
– “Use color also for column header”: : The color defined via “Color

variable” is used in the column header as well.
● “Text color”:

– “Color variable”: Variable for the definition of the text color in the column,
example: dwTextColor (hexadecimal color definition: 16#TTRRGGBB)

– “Use color also for column header”: : The color defined via “Color
variable” is used in the column header as well.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Element prop-
erty 'Columns:
Column [<n>]'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3169

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3170

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Selection color” Fill color of the selected row

“Selection font color” Font color of the selected row

“Frame around selected cells” : A frame is drawn around the selected cells at runtime.

“Variable for selected alarm
group”

Name of the affected alarm group; type: STRING, WSTRING

“Variable for selected alarm ID” Alarm ID of the affected alarm group; type: STRING, WSTRING
“Variable for selected line” Index of the selected alarm line (0-based). The index can be read and written;

integer data type

“Variable for valid selection” TRUE: An alarm line is selected.
FALSE: The selection is invalid. For example, for an empty alarm table or when
an alarm is not selected yet.

“Variable for selected alarm
information”

Information about the selected alarm. Type AlarmSelectionInfo
For easy usage, the function block AlarmSelectionInfoDefault is pro-
vided. This FB fills the structure with the memory for 10 messages and 10 latch
variables.
Example: myAlarmSelectionInfoDefault.AlarmSelectionInfo
The following information is available:
● sAlarmgroup
● uialarmID
● timeStampActive
● timeStampInactive
● timeStampAcknowledge
● timeStampLast
● paLatchVariables
● iLatchVariablesCount
● papwsAlarmMessages
● dwAlarmMessageTextBufferSize
● iAlarmMessagesCount
● iSelectionChangedCounter

Element prop-
erty 'Selection'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3171

Boolean variables are defined here for executing specific actions in the table can be executed at
runtime.

“Acknowledge selected” Variable (BOOL)

Example: PLC_PRG.bAckSelectedAlarms
If the assigned variable is TRUE, then the selected alarm is acknowledged.

“Acknowledge all visible” Variable (BOOL)

Example: PLC_PRG.bAckVisibleAlarms
If the assigned variable is TRUE, then all alarms are acknowledged that are
visible in the alarm table.

“History” Variable (BOOL)

Example: PLC_PRG.bShowHistory
If the assigned variable is TRUE, then the history alarms are displayed in addition
to the active alarms. In the classic view, the same sort options apply as in normal
mode.
Note: Acknowledgment is not possible in this view.

“Freeze scroll position” Variable (BOOL)

Example: PLC_PRG.bFreezeScrollPosition
If the assigned variable is TRUE, then the scroll position set in the “History” view
is retained, even if a new alarm is active. If not, then the scroll position jumps to
the first table row (the newest alarm).

“Count alarms” Variable (integer data type)
Example: PLC_PRG.iNumberOfAlarms.

Number of alarms that are currently displayed in the alarm table. Defined by the
alarm table.

“Count visible rows” Variable (integer data type)
Example: PLC_PRG.iNumberVisibleLines
Number of alarms that can be displayed on one page of the alarm table. Defined
by the alarm table.

“Current scroll index” Variable (integer data type)
Example: PLC_PRG.iScrollIndex
The index of the first visible row if the alarm table (0-based). The variable can be
read and written.

“Current column sorting” Variable (integer data type)
Example: PLC_PRG.iColSort
The variable contains a value of the enumeration "VisuElemsAlarm.VisuEnumA-
larmDataType". This value determines the column that sorts the alarm table.

“Variable for sorting direction” Variable (BOOL)
Example: PLC_PRG.xSortAscending
The variable determines the sort order for the entries in the alarm table (TRUE:
ascending; FALSE: descending).

You can also use the “Insert Elements for Acknowledging Alarms” command to
define buttons with predefined control variables.

Element prop-
erty 'Control
variables'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3172

See also
● Ä Chapter 6.4.5.21.2.23 “Command 'Add Elements for Alarm Acknowledgement'”

on page 3365

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3173

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3174

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Alarm Banner'
Symbol:

Category: “Alarm Manager”

The element is a simplified version of the alarm table. It visualizes a single alarm only. In the
element properties, you specify which information is shown. You define the appearance of the
element and the variables that control the element behavior.

The alarm banner displays active alarms only. If the alarm is acknowledged,
then it disappears from the alarm banner.

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Banner”

“Data source” If you intend to use a remote alarm configuration, then you have to specify the
name of the remote application here. If you do not specify anything, the alarm
configuration will be located locally.

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element proper-
ties

Element prop-
erty 'Alarm con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3175

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 6.4.5.21.3.17 “Dialog 'Selected Alarm Group'” on page 3390
● Ä Chapter 6.4.5.21.3.16 “Dialog 'Selected Alarm Class'” on page 3389

By default, columns [0] and [1] are preconfigured: “Time stamp” and “Message text”. You create
more columns by clicking “Create new”. You remove columns by clicking “Delete”.
Animations (dynamic text, font variables), texts, and tooltips are not supported.

Element prop-
erty 'Columns:
Column [<n>]'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3176

“Width” Width of the column (in pixels)

“Type of data” About time stamps: When used in a TargetVisu or WebVisu, you can con-
trol the date and time format by means of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Here you define the information to be displayed in the column.
● “Bitmap”
● “Time stamp”: Date and time of the last status change of the alarm
● “Time stamp active”: Date and time of the last activation of the alarm
● “Time stamp inactive”: Date and time of the last deactivation of the alarm
● “Time stamp acknowledge”: Date and time of the last acknowledgement
● “Value”: Actual value of the expression
● “Message”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the contents in the column
● “Left”
● “Centered”
● “Right”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3177

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Acknowledge variable” A rising edge of this variable acknowledges the alarm.

“Automatic switch” : The display in the alarm banner is
switched automatically according to the time
to the next alarm as configured in “Every N
second”.

“Every N second” Time period until the next switching. Available
only if “Automatic switch” is selected.

“Next alarm” Variable for switching to the next alarm. Avail-
able only if “Automatic switch” is not selected.

“Previous alarm” Variable for switching to the previous alarm.
Available only if “Automatic switch” is not
selected.

“Multiple alarms active” Variable that has the value TRUE if multiple
alarms are active.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Handling of mul-
tiple active
alarms

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3178

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3179

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3180

Visualization Element 'Bar Display'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Element name” Example: GenElemInst_2
“Type of element” “Bar Display”

“Value” Variable (numeric data type)
The value of the variable is displayed as a bar length.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3181

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3182

“Background color” Drop-down list with background colors
Note: This property depends on the style. For example, there are no heterochro-
matic background images for “FlatStyle” and “Whitestyle”.

“Own image” ● “image”: Image ID of the background image. You select the background
image from an image pool by clicking the symbol.
Info: If you specify the “<default>” value or select the image from the
“Default” category in the input assistant, then the original element back-
ground image is used.

● “Transparent color”: Color of pixels that are displayed as transparent.
Selection from drop-down list or input assistant.

“Optimized drawing” : The background image is drawn one time. If there is a change in the fore-
ground, then only the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Note: Deactivating this option is sensible only in certain exceptional cases.

“Diagram type” Position of the scale
● “Scale besides bar”
● “Scale in bar”
● “Bar in scale”
● “No scale”

“Orientation” Orientation depending on the ratio of width to height of the Bar Display:
● “Horizontal”
● “Vertical”

“Running direction” Direction the values are increased.
Drop-down list for “Orientation Horizontal”:
● “Left to right”
● “Right to left”

Drop-down list for “Orientation Vertical”:
● “Bottom to top”
● “Top to bottom”

“Optimum size for bar” : The bar width requires the majority of the element surface.
Note: This property depends on the style. It is not provided for “FlatStyle” or
“WhiteStyle”.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Bar'

Element prop-
erty 'Scale'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3183

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3184

“Scale line width” Specified in pixels.
Example: 3

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Scale in 3D” : Tick marks are displayed with slight 3D shadowing.
Note: This property depends on the style. Not available for “FlatStyle”.

“Element frame” : A frame is drawn around the element.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Horizontal offset” Distance from the scale (bar) to the horizontal element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“Vertical offset” Distance from the scale (bar) to the vertical element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“ Horizontal scaling” Horizontal division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

“Vertical scaling” Vertical division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3185

“Graph color” Color of the bar

“Bar background” : The background of the bar is black.

: The background of the bar is white.

“Frame color” Color that the frames are drawn.

“Switch whole color” : The total color of the bar is switched to the color of the color area of the
current value.

“Use gradient color for bar” : Bar is displayed with a gradient.

“Color range markers” The color areas can be separated from each other inside the bar with a vertical
mark.
● “No markers”: No display.
● “Marker forwards”: The color of the vertical mark corresponds to the color of

the previous color area.
● “Marker backwards”: The color of the vertical mark corresponds to the color

of the next color area.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” Start value of the color area

“End of area” End value of the color area

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3186

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Meter 90°'
Symbol:

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3187

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 90°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3188

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3189

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3190

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3191

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3192

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3193

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872“”

Visualization Element 'Meter 180°'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable on a scale. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 180°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3194

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3195

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3196

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3197

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3198

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3199

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3200

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Meter'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter”

“Value” Variable (numeric data type).
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3201

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3202

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the scale start and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the pointer instrument and the
horizontal axis

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3203

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3204

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3205

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3206

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3207

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Potentiometer'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable as a setting on the potentiometer. A visualization
user can modify the value by dragging the pointer to another position.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Element name” Example: GenElemInst_1
“Type of element” “Potentiometer”

“Variable” Variable (numeric data type). Contains the position of the pointer for the potenti-
ometer.
A visualization user can modify the value by dragging the pointer to another
position.

Element prop-
erty 'Access
rights'

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3208

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3209

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the left edge of the element and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the element and the horizontal axis

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3210

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3211

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3212

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3213

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3214

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3215

Visualization Element 'Histogram'
Symbol:

Category: “Measurement Controls”

The element displays the data of a one-dimensional array as a histogram. You can define
specific colors for certain value ranges.
See also
● Ä Chapter 6.4.5.2.4 “Displaying Array Data in a Histogram” on page 2862

“Element name” Example: GenElemInst_35
“Type of element” “Histogram”

“Data array” One-dimensional array with data displayed in this histogram.
Example: PLC_PRG.arr1

“Use subrange” : Only part of the array is displayed in the histogram.

“Start index” First array index with a displayed value.
Requirement: “Use subrange” is activated.

“End index” Last array index with a displayed value.
Requirement: “Use subrange” is activated.

“Display type” ● “Bars”: Data is displayed as bars.
● “Lines”: Data is displayed as lines.
● “Curve”: Interpolation of data into a curve.

“Line width” Specified in pixels
Requirement: “Curve” is selected as the “Display type”.

“Show horizontal lines” : Horizontal lines are drawn on the main scale.
Note: Not all visualization styles have this property. This element property is not
available for visualization styles that have striped backgrounds (example: “Flat
style”).

“Relative bar width” Integer value between 1 and 100
● 1: The bars are drawn as lines.
● 100: The entire width of the histogram is filled with the bars.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Subrange
of array'

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3216

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3217

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Base line” Value of the main scale where the horizontal base line of the Histogram is
located.
The drawing of the bar starts at the base line.

A valid declaration is required for the variables used as an example in the table above.

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
 iScaleEnd : INT := 120;
 iMainScale : INT := 20;
 iSubScale : INT := 5;
END_VAR

Example

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” Optional value that defines the maximum width of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” Optional value that defines the maximum height of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3218

“Graph color” Color of the bar in normal state.
Note: The normal state is in effect when the current value of the array compo-
nent does not fulfill the alarm condition.

“Alarm value” Threshold for the alarm

“Alarm condition” If the current value of the array component fulfills the alarm condition, then the
alarm condition is set.
● “Less”: The current value is less than the “Alarm value”
● “More”: The current value is greater than the “Alarm value”

“Alarm color” Color of the bar in alarm state.

“Use color areas” : The color areas defined in this element are used.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” The start value on the “Scale” of the Histogram where the color area begins.

“End of area” The end value on the “Scale” of the Histogram where the color area ends.

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3219

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3220

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Image Switcher'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element displays one of three referenced images. Mouse actions change the displayed
image. The images are defined in the “Image settings” element properties. The effects of mouse
clicks are defined in the “Element behavior” property.

Element prop-
erty 'Access
rights'

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3221

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: ImageSwitcher_1

“Type of element” “Image Switcher”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL).

The value of the variable changes according to user input and it is independent
of the “Element behavior” element property.

“Image "on"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value TRUE.

“Image "off"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value FALSE.

“Image "clicked"” Image ID from an image pool. The image is selected using the input assistant.
In runtime mode, the visualization displays the referenced image when the ele-
ment is clicked (and the mouse button is held down).
Requirement: The “Element behavior” is “Image toggler”.

Element prop-
erty 'Position'

Image settings

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3222

“Transparency” : The “Transparent color” is selected.

“Transparent color” The image pixels that have the transparent color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with color names opens.

“Scaling type” Defines how an image fits in the element frame.
● “Fixed”: The original size of the image is retained, regardless of the dimen-

sions of the element.
● “Isotropic”: The entire image is shown in the element frame, either larger or

smaller. As a result, the proportion of height and width are retained.
● “Anisotropic”: The image resizes automatically to the dimensions of the ele-

ment frame, filling the entire element frame. As a result, the proportions are
not retained.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click switches the image.
● “Image tapper”: While a visualization user holds down the mouse button, the

image of the “Image on” property is displayed. At the same time, the value
TRUE is assigned to the “Variable” property.

“Tap FALSE” : While the mouse button is pressed, the image of the “Image” property is
displayed and the “Variable” property gets the value FALSE instead of the value
TRUE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3223

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3224

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3225

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Lamp'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element shows the value of a variable, and the element is displayed as illuminated or not.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3226

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Lamp_green

“Type of element” “Lamp”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL).

The variable value is displayed as a lamp that goes on (TRUE) or off (FALSE).

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3227

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3228

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3229

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3230

Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
Symbols:

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Depending on the element: “Dip Switch”, “Power Switch”, “Push Switch”, “Push
Switch LED”, or “Rocker Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL)

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3231

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Tap FALSE” : The value TRUE is assigned to the “Variable” property instead of the value
FALSE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Image settings

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3232

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3233

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3234

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Rotary Switch'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3235

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rotary Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL).

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3236

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Orientation” ● “At top”: The rotary switch turns from the top right to the top left.
● “At side”: The rotary switch turns from the top right to the bottom right.

“Color change” : The element changes in color when “ Variable” is TRUE.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3237

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3238

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3239

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Trace'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3240

Category: “Special Controls”

The element displays the graphical curve of variable values. In addition, variables can be
configured to control the view.
See also
● Ä Chapter 6.4.5.12 “Displaying data curve with trace” on page 2925
● Ä “Dialog box 'Trace Configuration'” on page 3355

“Element name” Example: Velocity
“Data Source” Location where the trace data is buffered.

:
● “<local application>”: The trace record is listed below the local application.

The visualization that contains the trace is located below this application.
When the application is downloaded, the trace configuration is downloaded
to the local device. During execution, the data is stored locally in the trace
buffer.

● “ <data source name>”: Data source that identifies the remote device where
the trace record is created.
When the local application is downloaded with the visualization, the trace
configuration is downloaded to the remote device. During execution, the
trace buffer is filled, and the trace data is transferred and then displayed in
the local visualization as HMI.
Example: DataSoure_PLC_A
Note: The trace buffer is filled only if the remote application is being exe-
cuted. The data recording is started when the local visualization is started.

“Application” Application where data was recorded.

: Lists all applications that are present below the data source.
Requirement: A remote data source (not “<local application>”) is referenced in
the “Data source” property.

“Type of element” “Trace”

“Trace” “ <name of trace configuration>”: Opens the “Trace Configuration” dialog
where you can modify the trace configuration.

See also
● Ä “Dialog box 'Trace Configuration'” on page 3355
● Data Source Manager

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3241

ms-its:codesys.chm::/_cds_obj_data_sources_manager.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Show cursor” : A cursor (vertical line) is displayed at the mouse position. The trigger and
variable values where the cursor points are displayed as a tooltip.

“Overwrite existing trace on
PLC”

: If a trace with the same name is on the PLC, then it is overwritten at down-
load with the configuration that is defined here.

“Number format” Number format of values in the tooltip in printf syntax (example: %d, %5.2f).

The control variables are assigned automatically when you click “Insert elements for controlling
Trace”.

Element prop-
erty 'Control
variables'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3242

“Reset Trigger” Variable (BOOL).

Standard control variable: bResetTrigger
TRUE: Resets the triggering. After the action is executed, the variable is set
automatically to FALSE.

“Start Trace” Variable (BOOL).

Standard control variable: bStart
TRUE: Starts the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Stop Trace” Variable (BOOL).

Standard control variable: bStop
TRUE: Stops the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Save Trace to a file”

“Save Trace” Variable (BOOL).

Standard control variable: bStore
TRUE: Saves the current trace configuration and the data that is stored in the
development system to a file. When the action is ended, the variable is set
automatically to FALSE.

“File name” Variable (STRING) that contains the file name of the file to be saved.

Standard control variable: sStoreFilename
“Load trace from file”

“Load Trace” Variable (BOOL).

Standard control variable: bRestore
TRUE: Reads the file specified below and loads its contents into the trace editor.
The file contains a trace configuration and possibly also trace data. To do this,
the stored trace configuration must match the application where the trace config-
uration is located. When the action is ended, the variable is set automatically to
FALSE.

Note: A trace configuration can be loaded from a file only under special cir-
cumstances. The file must have been created with exactly the same (running)
application with which it will then be loaded. The consequence of changing the
running application (for example by downloading again) is that a file which was
previously created from the application cannot no longer be read into the appli-
cation. Even external manual changes to the file can cause this. You should edit
only those configuration settings that have an effect on displaying the variables.
If you change variable definitions directly in the file (for example by replacing
variable x with v y), then the file cannot be loaded.

“File name” Variable (STRING) that contains the file name of the file to be read.

Standard variable: sRestoreFilename

See also
● Ä Chapter 6.4.5.21.2.15 “Command 'Insert Elements for Controlling Trace'” on page 3358

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3243

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3244

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3245

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Trend'
Symbol:

Category: “Special Controls”

The element displays the curve of variable values as a trend diagram. The trend diagram is
suitable for representing a long-term data curve because the data is read from a trend recording
and hence from a database. Moreover, you can run the “Trend” element together with the “Date
Range Picker”, “Legend”, and “Time Range Picker” operating elements so that the user can
navigate conveniently in the diagram.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3246

You can programmatically delete the recorded trend curve at runtime. The
recording starts again from the time of deletion. See the help page for "Pro-
gramming a Trend Visualization".

“Element name” Example: Velocity
“Data source” Data source for the connection via the device and the application to the “Trend

Recording” object where the trend data that you want to show was saved.
If the “Trend Recording” object is on the local device, then it is sufficient when
you specify the respective application. If the trend recording is on a remote
device, then you need to specify the data source connection to this device.

● “ <local application>”
The “Trend Recording” object is located on the local device in the local
application.

● <device name> . <application name>
Example: Device_A.App_A
The “Trend Recording” object is located on the local device Device_A below
the application App_A.

● <data source name>
Example: DataSource_B
The “Trend Recording” object is located on a remote device that is
connected via the data source DataSource_B. Below the (now visible)
“Application” property, the remote application is displayed as configured in
the data source.
Example: App_B
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

“Type of element” “Trend”

“Trend recording” : Trend recording whose data is displayed as a diagram
The trend recording is located on the device specified in the “Data source”
property.

“Display Mode” : Opens the “Display Settings” dialog.

See also
● Ä Chapter 6.4.5.13 “Displaying data curve with trend” on page 2928
● Ä Chapter 6.4.5.21.2.12 “Command 'Configure Display Settings of Trend'” on page 3353
● Object 'Data Source'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3247

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3248

“Show cursor” : A cursor (black triangle with vertical line) is shown in the trend diagram.
Behavior at runtime: As soon as the graph is drawn, the user can move the
cursor along the time axis in order to mark a specific time. Then the variable
value belonging to the cursor position is displayed in the legend above the
graph.

“Show tooltip” Requirement: “Show cursor” is activated.

: A tooltip opens at the cursor.
Behavior at runtime: The variable value belonging to the cursor position is dis-
played as a tooltip.

“Show frame” : The trend diagram is drawn with a frame.

“Number format” Format specification in printf syntax, which determines how the values are dis-
played in the tooltip and in the legend
Example: %d (integer variable) or %5.2f (floating-point number)

The time stored in the trend recording are in the UTC time zone. If the time
is displayed in the trend of the visualization element, then the time stamps are
converted to the local time zone of the operating system of the PLC.

Change the time zone in the operating system if the times in the trend diagram
are not in the zone that you need.

Element prop-
erty 'Tick mark
labels'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3249

“Time stamps” X-value of the trend diagram
● “Absolute time stamps”

The absolute time with date and time is displayed at each tick mark on the
time axis.
Example: 03/18/2016 12h30m50s

● “Relative time stamps”
The time period from the start of the recording (=0) is displayed at each tick
mark.
Example: 5m30s

“Draw labels on two lines” : The time stamps are displayed on two lines (for example, the date is dis-
played on the first line and the time on the second line).

: The time stamp is displayed on one line. Example: 2019-11-01-12:30:50.

“ Omit irrelevant information in
timestamps”

: The time stamps are displayed in a truncated form (without insignificant
information). For example, the date is displayed at the first tick mark, and only
the time is displayed at the following tick marks. The “Internationalization (format
strings)” property is not visible and is ignored.

: The time stamps are displayed with all information. This takes into considera-
tion the “Internationalization (format strings)” property which contains the format
specification for the date and time display.

“Internationalization (format
strings)”

Format specification for the date and time display of the time stamp (when it is
displayed in full)
Note: The property is visible only if the “Omit irrelevant information in
timestamps” option is not selected.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3250

“Date” Format string that returns the date display according to the defined format. The
operating system locale is used as the default setting.
Defined format strings for the date:
● Year: yyyy, yy, y
● Month: MM, M
● Day: dd, d
● Recommended separator: - . /
Example:
yyyy-MM-d displays 2019-10-25
yyyy-MM-dd displays 2019-10-25
dd.MM.yyyy displays 25.10.2019
dd/MM/yyyy displays 25/10/2019

“Time” Format string that returns the time (or time of day) display according to the
defined format. The operating system locale is used as the default setting.
Defined format strings for the time:
● 24-hour time definition: HH, H
● 12-hour time definition: hh, h
● AM/PM for 12-hour time definition: tt
● Minutes: mm, m
● Seconds: ss, s
● Milliseconds: ms
● Microseconds: us
● Recommended separator: : or space character

Example:
HH:mm:ss:ms displays 15:30:59:123
h:mm:ss tt displays 3:30:59 PM

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

These elements are created automatically when the control elements are added with the com-
mand “Insert elements for controlling Trend”.

“Date Range Picker” Control element for changing the date and time of the displayed data sets.
With , all elements are provided that have implemented the interface
IDateRangeSelector. By default, instances of the “Date Range Picker” visu-
alization element are available.

“Time Range Picker” Control element for changing the time of the displayed data sets. With , all
elements are provided that have implemented the interface ITimeSelector.
By default, instances of the “Time Range Picker” visualization element are avail-
able.

“Legend” Control element for displaying a legend for the graphs. With , all elements are
provided that have implemented the interface ILegendDisplayer.

See also
● Ä Chapter 6.4.5.21.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 3360

Element prop-
erty 'Assigned
control ele-
ments'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3251

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3252

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3253

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.13 “Displaying data curve with trend” on page 2928
● Ä Chapter 6.4.5.13.2 “Getting Started with Trend Visualization” on page 2928
● Ä Chapter 6.4.5.13.3 “Programming a Trend Visualization” on page 2931
● Object 'Trend Recording'

Visualization Element 'Legend'
Symbol:

Category: “Special Controls”

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3254

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

The element is used as a legend for another element (for example, a trend). The legend is
assigned in the properties of the other element.
See also
● Ä Chapter 6.4.5.13 “Displaying data curve with trend” on page 2928

“Element name” Example: LegendOfTrendA
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Legend”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3255

You can also change the values by dragging the symbols () to other positions
in the editor.

“Orientation” Orientation of the element. The value is configured in the assigned element.
● “Horizontal”
● “Vertical”

“Attached element instance” Example: Element_A
“Show frame” : The element is displayed with frames.

“Number format” The format of the value in printf syntax (example: %d, %5.2f)

Defines how many variables can be displayed at a maximum and is calculated from the row and column number.

“Max. number of rows” Example: 3
“Max. number of columns” Example: 2

The property affects the text configured in the associated element.

“Text format” “Default”: The text will be cut and displayed in only the part that fits into the
visualization element.
“Linebreak”: The text will be wrapped in rows.
“Ellipsis”: The text is cut and ellipsis ... are added to indicate that something is
missing.

“Font” Font of the text. The entries of the selection list are defined in the visualization
style.

“Font color” Text color, for example Grey. The entries of the selection list are defined in the
visualization style.

“Transparency” Transparency value (255 to 0), which defines the transparency of the corre-
sponding color.
Example: 255: The color is opaque. 0: The color is fully transparent.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element Prop-
erty 'Layout'

Element Prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3256

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3257

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'ActiveX'
Symbol:

Category: “Special Controls”

The element is used to link an existing ActiveX control in the visualization. You can configure
the method calls and their parameters in the element properties of the “ActiveX” element.

Element prop-
erty 'Access
rights'

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3258

“Element name” Example: GenElemInst_1
“Type of element” “ActiveX”

“Element” Installed ActiveX component that is linked to the visualization.
Hint: To avoid typing errors, select the required ActiveX component by means of
the Input Assistant.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3259

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3260

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These method calls are executed during initialization. They are executed in the first cycle only.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with parameters for the method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in every cycle. They are executed in the refresh rate of the
visualization.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” for a method call and its parameters.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in the refresh rate of the visualization. You define the call
condition in the property “Methods è [<number>] è Call condition”.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with a call condition and parameters for the
method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Call condition”: Variable (BOOL). A rising edge of this variable triggers the

call of this method.
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Initial calls'

Element prop-
erty 'Cyclic
calls'

Element prop-
erty 'Conditional
calls'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3261

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Web Browser'
Symbol:

Category: “Special Controls”

The element shows a website, PDF file, or video that has a URL.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3262

NOTICE!
The display options of the “Web Browser” element depend on the operating
system and the display variant of the visualization.

Requirement: The software components of the web browser are available in the runtime and
configured accordingly (example: videos to be shown on Linux).
See also
● Ä Chapter 6.4.5.2.6 “Displaying Web Contents” on page 2865

“Element name” Example: GenElemInst_59
“Type of element” “Web Browser”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3263

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3264

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

“URL” URL of the web page that is displayed in the visualization.
● Variable (STRING or WSTRING)

Example: PLC_PRG.stURL
● Literal in single straight quotation marks

Example: 'http://de.wikipedia.org'
“Show” Variable (BOOL).

Example: PLC_PRG.bSetURL
Controls the display of the “Web browser” element.
If the variable contains a rising edge, then the visualization calls the web page
given in “URL” and displays its contents in the 'Web browser' visualization ele-
ment.

“Back” Variable (BOOL).

Example: PLC_PRG.bGoBack
Controls the back navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

“Forward” Variable (BOOL).

Example: PLC_PRG.bGoForward
Controls the forward navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Control
variables'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3265

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Busy Symbol, Cube'
Symbol:

Category: “Special Controls”

At runtime, this element indicates automatically that the runtime is busy or waiting for data.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3266

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Cube”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3267

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3268

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3269

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Busy Symbol, Flower'
Symbol:

Category: “Special Controls”

The element indicates that the system is busy or waiting for data.

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Flower”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3270

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Frame color”

“Fill color”

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3292

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3271

“Symbol color” Selection of a color for the flower symbol.

“Line” Stroke width of the lines (in pixels).

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3272

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3273

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Text Editor'
Symbol:

Category: “Special Controls”

The element shows the contents of text files that are saved on the controller. Files can be
encoded in ASCII or Unicode formats.
A visualization user can also edit the text.

“Element name” Example: GenElemInst_1
“Type of element” “Text Editor”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3274

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Font name” Non-proportional font used by the visualization to display the contents of the file
Example: “Courier New”

“Size” Font size
Example: 12

Table 631: Element property “Control variables --> File”
“Variable” Variable (STRING). Contains the file names and optionally the location of the file.

It is located in the file system of the controller.
Example: PLC_PRG.strFile: STRING := '/Documentation/
Info.txt';

“Open” Variable (BOOL). Controls opening the file which is defined in the “Variable”
property
Example: bOpen: BOOL;
TRUE: The file is opened.

“Close” Variable (BOOL). Controls closing the file which is defined in the “Variable” prop-
erty
Example: bClose: BOOL;
TRUE: The file is closed.

“Save” Variable (BOOL). Controls saving the file which is defined in the “Variable” prop-
erty
Example: bStore: BOOL;
TRUE: The file is saved.

“New” Variable (BOOL). Controls creating a new file. The name is defined in the
“Variable” property.
Example: bCreate: BOOL;
TRUE: A file is created and opened.

Element prop-
erty 'Font'

Element prop-
erty 'Control
variables'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3275

Table 632: Element property “Control variables --> Edit ”
“Variable” Variable (STRING). Contains the string to search for in the file

Example: strFind: STRING := 'abc';
“Find” Variable (BOOL). Controls executing the search for the string in the “Variable”

property
Example: bFind: BOOL;
TRUE: The search is performed. The variable is automatically reset to FALSE.

“Find next” Variable (BOOL). Controls the location to begin the search in the file

Example: bFindNext: BOOL;
TRUE: The search begins at the last search result location.

FALSE: The search begins at the beginning of the file.

Table 633: Element property “Control variables --> Cursor position”
“Line” Variable (integer data type). Contains the line of the cursor

Example: iRowCursor: INT;
“Column” Variable (integer data type). Contains the column of the cursor

Example: iColumnCursor: INT;
“Position” Output variable (integer data type). Shows the absolute cursor position in the

text.
Example: iPosCursor: INT;

“Set cursor” Variable (BOOL). Controls the setting of the cursor at a specific location

Example: iSetCursor: INT;
TRUE: The cursor is moved. The new position is defined in the “Line” and
“Column” properties.
FALSE: The “Line”, “Column”, and “Position” properties contain the actual
values.
Note: The variable is used as the control variable for an input event triggered
by a visualization user.

Table 634: Element property “Control variables --> Selection”
“Start position” Output variable (integer data type). Shows the absolute position for starting the

text selection
Example: iPosSelection: INT;

“End position” Output variable (integer data type). Shows the absolute position for ending the
text selection.
Example: iPosEndSelection: INT;

“Start line number” Output variable (integer data type). Shows the line where the text selection
begins
Example: iRowSelection: INT;

“Start column index” Output variable (integer data type). Shows the column where the text selection
begins
Example: iColumnSelection: INT;

“End line number” Output variable (integer data type). Shows the line where the text selection ends
Example: iRowEndSelection: INT;

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3276

“End column index” Output variable (integer data type). Shows the column where the text selection
ends
Example: iColumnEndSelection: INT;

“Line to select” Variable (integer data type). Contains the line number that is selected
Note: The selection is controlled by the variables in the “Trigger selection” prop-
erty.

“Set selection” Variable (BOOL). Controls the selection of a line.

Example: bSetSelection: BOOL;
TRUE: The line from the “Line to select” property is selected and highlighted in
the Text Editor.
if the line is not in the current text segment of the Text Editor, then the text
segment is moved to this line.
Note: The variable is used as the control variable for an input event triggered
by a visualization user. The control variable is not reset automatically. You are
responsible for this to occur in the visualization.

Table 635: Element property “Control variables --> Error handling”
“Variable for error code” Variable (integer data type). Contains the error code when an error occurs

Example: iError: INT;
The error codes are declared in GVL_ErrorCodes in the
VisuElemTextEditor library. To display the error text, the
VisuFctTextEditorGetErrorText() function of the library must be called.

“Variable for content changed” Variable (BOOL). Shows whether the contents have changed

Example: bIsContentEdited: BOOL;
TRUE: The contents of the Text Editor have changed.

“Variable for access mode” Variable (BOOL). Controls the access privileges to the file

Example: bIsReadOnly: BOOL;
TRUE: A visualization user has read-only permission. At runtime, the file contents
are highlighted in gray in the Text Editor.
FALSE: A visualization user has read/write permission.

Note: The variable overwrites the setting in the “Editor mode” property.

“Maximum line length” Maximum number of characters per line

“Editor mode” ● “Read-only”: A visualization user has read-only permissions to the file. At
runtime, the file contents are highlighted in gray in the text editor.

● “Read/write”: A visualization user has read-write permissions.

Element prop-
erty 'New files'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3277

“Encoding” Character encoding of the new file:
● “ASCII”
● “Unicode (Little endian)”
● “Unicode (Big endian)”

“New line character sequence” End of line character of the new file:
● “CR/LF”: Normal for Windows systems
● “LF”: Normal for UNIX systems
Please note: When a visualization user opens an existing file, the end-of-line
character of the file is detected and used automatically.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3278

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Path3D'
Symbol:

Category: “Special Controls”

The “Path3D” visualization element graphically displays the curves of two independent records
as a 3D path. It is specially designed for use with Motion Solution CNC in order to display
the trajectory of a machine tool or a robot. The programmed path (path) and the path actually
traveled (track) is displayed.
Although the visualization element is designed for use with Motion Solution CNC, it can also be
used to display any other record. In this case the application has to provide the path data. The
sample application 3D Path Generator, which is available in CODESYS Forge, shows how
these data can be generated.
If the element is used together with SoftMotion CNC, then function blocks from the library
SM3_CNC_Visu help to generate the data from the path and track. These function blocks are
used by the sample project CNC_File_3DPath, which is stored in the installation directory of
CODESYS.
● SMC_PathCopier
● SMC_PathCopierCompleteQueue
● SMC_PathCopierFile
● SMC_PositionTracker
A description of the function blocks can be found in the Library Manager in the library
SM3_CNC_Visu.

The element does not work with the CODESYS HMI display variant.

See also
● CNC Example 6: Using Path3D with SoftMotion CNC
● Sample project in CODESYS Forge

“Element name” Example: GenElemInst_1
“Type of element” “Path3D”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3279

ms-its:codesys_softmotion.chm::/_sm_example_cnc_6.htm
https://forge.codesys.com/prj/codesys-example/home/Home/

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Path data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

The data structure describes a path or track through a certain number of points.
The points are determined and buffered by the application. The track typically
displays the last n positions, so that only a certain part of them is ever displayed
at any one time. VisuStruct3DTrack.pProjection is a variable that is
set by the visualization element and contains information about the path/track
projection. It can be read (only) by the application. In addition, the methods
Projection.Apply or .ApplyV can be used in order to see whether the
transformed position lies inside or outside the visualization display area, which is
defined by Projection.ElementRect.

“Path color” Color of the path drawn

“Path line width” Path line width in pixels, e.g.: "2"

“Style of boundary points” Display of the points between two successive objects in the path
● End points are not displayed
● End points are marked with a circle
● End points are marked with a cross
● End points are marked with a plus

The track data are structured in exactly the same way as the path data: VisuStruct3DTrack

“Track data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

“Track color” Color of the track drawn

“Track line width” Track line width in pixels, e.g.: "2"

Path description

Track descrip-
tion

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3280

The camera position for the 3D mode is controlled with a reference to the external data struc-
ture. This structure allows the following operations:
● Shifting to the left/to the right/upwards/downwards
● Rotation around the X/Y/Z axis
● Resetting of the view at X/Y, Y/Z or Z/X level, so that the path and the track are completely

visible.

“Control data
(VisuStruct3DControl)”

Variable of the type VisuStruct3DControl, which is declared in the IEC
code. Example: PLC_PRG.pc.vs3dc.

A description of the structure can be found in the library manager in the library
VisuElem3DPath.

The values can be set via the application itself or via the visualization element
“ControlPanel”. The library VisuElem3DPath contains ready-to-use visualiza-
tion frames that provide a possible user interface for these data.

“Coordinate system” : The coordinate system is displayed

“Grid” : Grid lines are displayed

“Grid color” Color of the grid lines

Individual parts of the path can be visually highlighted. This is typically used to mark the already
processed part of a track with a different color. Each point in the path is given a unique ID,
which in the case of a CNC editor is linked with the object ID on which the point lies. This ID
("highlight ID") can be specified via the application so that dynamic elements/parts of the track
can be highlighted.

Highlight mode Select one of the following highlight modes:
● Only the element whose ID corresponds to the value of the variable is high-

lighted.
● All elements whose ID (linked with the object ID in the case of a CNC editor)

is smaller than or equal to the value in Variable are highlighted.

Variable Project variable that specifies the ID of an element. Example:
PLC_PRG.iVarElementID. This "highlight ID" is taken into account for the
setting of the highlight mode. The variable must be set in the IEC application.

Highlight color

“Frame line width” Width of the frame around the element, in pixels, for example: "1"

“Frame line style” Select one of these style types for the frame line:
● Solid
● Dashes
● Dots
● Dash Dot
● Dash Dot Dot
● Hollow

Camera control

Additional
aspects

Highlighting

Element look

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3281

“Transparent background” : The background of the element is displayed transparently.

: The background of the element is displayed in the defined background color.

“Background color”

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Control Panel'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3282

Category: “Special Controls”

This visualization element is used in connection with the “Path3D” visualization element. It is
used for changing the position and orientation to the CNC path shown with “Path3D”.
See also
● Ä Chapter 6.4.5.20.1.42 “Visualization Element 'Path3D'” on page 3279

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Camera_Path_1

“Type of element” “Frame”

“Clipping” : If you have set the “Scaling type” to “Fixed”, then only that part of the
visualization is displayed that fits in the frame.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area.
The resulting gap prevents the referenced visualization from touching any
adjacent elements.

“Scaling type” Describes how the frame reacts when the visualization is resized:
● “Isotropic”: The frame retains its proportions. This allows the ratio of height to

width to be preserved, even if the height and width of the visualization have
been changed separately.

● “Anisotropic”: The frame depends on the size of the visualization, so that
height and width of the referenced visualization can be changed separately.

● “Fixed”: The original size of the frame is retained, regardless of the visualiza-
tion size. If you have also selected the “Clipping” option, then only the fitting
part is displayed.

● “Fixed and scrollable”: The referenced visualization is displayed without
scaling. If the value is greater than the window area of the frame, then
scrollbars are added to the frame. To set the position of the scroll bar with
a variable, use the “Scroll position variable horizontal” or “Scroll position
variable vertical” property.

“Deactivation of the
background drawing”

: To optimize the performance of the visualization, the non-animated elements
of the frame element are drawn as a background bitmap. This could result in the
elements not being displayed in the expected order.

: Deactivation of the background drawing. This can prevent the behavior
described above.

Contains the currently configured visualization references as a subnode

Element proper-
ties

Element prop-
erty 'Referen-
ces'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3283

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

See also
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä “Input action 'Switch Frame Visualization'” on page 3377

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3284

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

“Frame color” Example: “Black”

“Fill color” Example: “Light gray”

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369
●

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3285

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3292

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3289
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3286

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3287

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3319

Element prop-
erty 'Relative
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3288

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3286
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3289

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3290

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3286

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3291

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3285

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3292

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3293

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3294

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3295

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Cartesian XY Chart'
Symbol:

Category: “Special Controls”

The element displays the curve of array values graphically as a line or bar chart in the Cartesian
coordinate system. The chart can display multiple curves at one time.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3296

NOTICE!
Constraint
The element can be used with controller with V3.5 SP11 and higher.

in CODESYS Forge, you will find a sample project for using “Cartesian XY
Chart” elements in visualizations.

See also
● Sample project in CODESYS Forge

“Element name” Example: Velocity chart
“Type of element” “Cartesian XY Chart”

“Cartesian XY Chart” XYChart: Opens the “XY Chart Configuration” dialog. This is where the chart
is configured.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for defining the look of the element.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Element
look'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3297

https://forge.codesys.com/prj/codesys-example/home/Home/

“Border line width” Value (in pixels)
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Border line style” property must be set to the
option “Invisible”.

“Border line style” ● “Solid”
● “Dash”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “Invisible”

“Frame line color” ● Style color from the list box. Example: Black
● Fixed value that is selected in the color dialog. Example: 0; 0; 0

“Font” Example: “Default”

: Opens the “Font” dialog.

: List box with style fonts

Table 636: “Zoom”
 Zooming the displayed curve is done by means of the mouse, or the pinch

gesture on a multitouch device. It also applies to all axes.
At runtime when “Enable” is TRUE, you can draw a box with the mouse by
holding down the left mouse button. When you release the mouse button, the
display zooms in on the box and the curve is magnified. To zoom in and out
on a multitouch device, move two fingers together or away from each other,
respectively.
Zooming and panning can work together.

“Enable” Variable (BOOL) that enables or disables zooming.

TRUE: Enables zooming

Example: PLC_PRG.xZoomEnable
“Home” Variable (BOOL)

Rising edge: Reset the displayed curve to the initial state after the display has
changed due to zooming.
Example: PLC_PRG.xZoomHome

Element prop-
erty 'Axis font'

Element prop-
erty 'Control
variables'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3298

“Undo” Variable (BOOL)

Rising edge: Reset the displayed curve to the previous position after the display
has changed due to zooming.
Example: PLC_PRG.xZoomUndo

“Is zoomed” Variable (BOOL) that indicates whether or not the displayed curve was modified
due to zooming.
TRUE: Curve setting was zoomed.

Example: PLC_PRG.xIsZoomed

Table 637: “Pan”
 Panning the displayed curve is done by means of the mouse or the pinch ges-

ture on a multitouch device. It also applies to all axes.
At runtime if “Enable” is TRUE, then you can drag the displayed curve to another
position by holding down the left mouse button. To pan the displayed curve on a
multitouch device, drag it with one finger to another position.

“Enable” Variable (BOOL) to enable or disable panning.

TRUE: Enables panning

Example: PLC_PRG.xPanEnable
“Home” Variable (BOOL)

Rising edge: Reset the displayed curve to the initial position after the display has
changed due to panning.
Example: PLC_PRG.xPanHome

“Is panned” Variable (BOOL) whose state indicates whether or not the displayed curve was
modified due to zooming.
TRUE: Curve setting was panned.

Example: PLC_PRG.xIsPanned

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3299

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3300

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Date Range Picker'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3301

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time range of a saved data set.
The element is used with the “Trend” visualization element.

“Element name” Example: DateTrend1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Date Range Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3302

You can also change the values by dragging the symbols () to other positions
in the editor.

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” The element can be assigned to a “Trend” visualization element. As a result, the
time range of the trend element can be changed. The available visual elements
are selected with the help of the Input Assistant ().

“Two-line labelling” : The time stamps are displayed in two lines. The date is displayed in the first
line and the time is displayed in the second line.

: Time stamp is displayed in one line. The date and time can also be displayed
in one line depending on the formatting.

“ Omit irrelevant information in
time stamp”

: The time stamp has a shorter form. For example, the date is displayed only
for the first tick mark, and only the time for the following tick marks. The settings
in “Internationalization (format strings)” are ignored for this setting.

: All information is displayed for all time stamps.

“Internationalization (format
strings)”

Only active when the parameter “Omit irrelevant information in timestamps” is
deactivated.

“Date” Definition of the date format. The default setting is taken from the Windows
control panel.

“Time” Definition of the time format. The default setting is taken from the Windows
control panel.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Tick mark
labels'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3303

“Jump to the largest possible
time stamp”

: An additional button () is displayed for jumping to the last time stamp.

“Jump to the smallest possible
time stamp”

: An additional button () is displayed for jumping to the first time stamp.

“Zoom out” : An additional button () is displayed for setting the current min./max. range
to the maximum range. The selected range is left.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Additional
buttons'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3304

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3305

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Time Range Picker'
Symbol:

Category: “Date/Time Controls”

The element provides configurable buttons for setting the time range of a trend display to a
defined time. In the process the end time of the previous display is left unchanged and the start
time is adapted.

Element prop-
erty 'Access
rights'

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3306

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: TimeRangeTemperature

“Type of element” “Time range picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Orientation” Specifies whether the time picker element is aligned horizontally or vertically in
the editor.
Hint: Change the width to height ratio of the element in the editor.

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” Assignment to the element that processes the time picker
The element can be assigned for example to a “Trend” visualization element.
Then the time range of the trend element can be changed. The available visual
elements are selected with the help of the input assistance ().
Example: GenElemInst_1

“Text” String label for the element.
Example: Zoom

Element prop-
erty 'Position'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3307

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

In “Times”, the buttons that the element provides at runtime are defined and configured in an
array.

“Provide "All" selection” :Time Range Picker bar extended by "All" button. The diagram represents a
time interval that covers all time stamps.

“Times” : Adds another button to the Time Range Picker bar and increases the array
by one entry. An additional index is present in the property “Times è Times
è Times è [<new>]”. “Time” is located under this index. The configuration of
the button is to be entered there.

“Times”

● “ [Index]”

with index Î {0, 1, 2,...}

Array of all buttons in the time selection bar. Index corresponds to the number of
buttons.

: The associated button is removed from the Time Range Picker bar. The
configuration entry is deleted from the “Times” property list.

“ [Index]”

● “Time”

: Time interval in standardized notation. Example: 3M for 3 months; 30m for 30
minutes. If a time interval is indicated in the field, then the button is labelled with
it. If a user clicks on the button at runtime, the command is executed to switch
the diagram to this time interval. The default is empty.

“Time” Displays which time is currently selected.
Variable (STRING)

Example: PLC_PRG.strSelcetedTime
“"All" selected” Displays the state of the "All" button

Variable (BOOL)
Example: PLC_PRG.AllTimesAreSelected

Element prop-
erty 'Text prop-
erties'

Property 'Times'

Element prop-
erty 'Control
variables'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3308

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3309

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3310

Visualization Element 'Date Picker'
Symbol:

Category: “Date/Time Controls”

The element is a calendar that displays the current date. A user can click a day to select a date,
which is saved to a variable. In addition, it can customize the time interval that the calendar
displays. Clicking the calendar header changes the year. Clicking the arrows in the calendar
header changes the month.

The element contains language-dependent texts that are managed in the System text list.
This deals with the names of the month and the days of the week written out completely or
abbreviated. When the date picker is added to a visualization, CODESYS generates the text
list automatically below the POU view. The IDs correspond to the standard text and therefore
English terms. The text list makes it possible to translate these texts.

System text list

ID Default
Apr Apr
April April

Example

See also
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

“Element name” Example: DueDateCalendar
“Type of element” “Date Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Language-
dependent texts
of the element

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3311

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Input variable (DATE). Contains the date that a user selects in the calendar.

Example: PLC_PRG.dtDueDate
“Design” ● “From style”: All settings are preconfigured according to the style.

● “Explicit”: The “Design settings” property is available. You can customize the
calendar here.

Requirement: This property is visible only if the “Design” property is set to “Explicit”.
The values of the property can be predefined in the style. Then they are available in the
drop-down list.

Table 638: “Header of Date Picker”
Design of the header

“Font” Style font or user-defined font

Style color or user-defined color“Font color”

“Arrows”

“Arrow color” Style color or user-defined color

“Color of printed arrow”

“Background”

Element prop-
erty 'Center'

Design settings

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3312

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

Table 639: Design of the main display area
Design of the main display
area

“Today” Design of today

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and which background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color. Used if “Yes” is selected in “Draw background”.

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Selected day” Design of the selected day

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color

“Show frame” “From style”: The style defines whether and how a background is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Current month” Design of the current month

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3313

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Other months” Design of the previous and subsequent months

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Display other month” Design of the previous and subsequent months

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Day of week heading” Design of the heading with the days of the week

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The background is filled with the style color “From style”. The style
defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3314

“Display separator line” “From style”: The style defines whether and how a separator line is drawn.
“Yes”: Display with the following properties.
“No”: A separator line is not displayed.

“Color of the separator line” Used if “Yes” is selected in “Display separator line”.

“Width of separator line”

“Background” Design of the calendar days

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Fill color” property and
framed in the “Frame color”.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

“Frame color”

“Rows” Number of month calendars per row (preset: 1)

“Columns” Number of month calendars per column (preset: 1)

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Display
type'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3315

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3316

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Analog Clock'
Symbol:

Category: “Date/Time Controls”

The element is a clock that displays the current time of day. The clock can also display a
random time.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3317

“Element name” Example: GenElemInst_1
“Type of element” “Analog Clock”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Time Dis-
play'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3318

“Use system time” : The system time of the PLC is displayed.

“Variable” Variable (time data type TOD, TIME_OF_DAY). This receives the time of day that
is not the system time.
Example: PLC_PRG.todTimeTokio
Requirement: The “Use system time” property is not activated.

See also
● Ä Chapter 6.4.1.20.5.6 “Data Type 'TIME'” on page 2237

“Design” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Settings” property is available. Here you can customize the

analog clock.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3319

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

Requirement: The “Property” is “Explicit”. Only then is the “Clock Settings” category visible.

Table 640: “Background”
“Background color” Color variants of the default background image

● “Yellow”
● “Red”
● “Blue”
● “Green”
● “Black”

“Own background” Background display with the specific “Image”. Replaces the default background
image.

Element prop-
erty 'Settings'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3320

“Image” Image from an image pool or library
Example: myImagepool.myImage

“Transparency color” The transparent color in the image representation.
Example: “White”. The white parts of the image are transparent.

“Use background color” : The image background is displayed using the color defined in the
“Background color” property.
Requirement: No image reference is given in the “Image” property.

“Background color” Style color or color
Requirement: “Use background color” is activated.

Table 641: “Hands”
“Hand style” Example: “Thin arrow”

“Color hour hand” Style color or color for the hands

“Color minute hand”

“Color second hand”

Table 642: “Lines”
“Lines style” Clock face graduation

● “None”
● “Line”: Graduation lines by hour
● “Hours and minutes”: Graduation lines by hours and minutes
● “Dots”: Graduation dots by hour

“Color” Color of the clock face graduation

“Line width” Line weight of the clock face graduation

“Scale in 3D” : Representation of the clock face with 3D effect

Table 643: “Numerics”
“Style of numerics” Digits on the clock face

● “None”
● “Quarter”
● “All”

“Font” Font for displaying the digits

“Font color” Font for displaying the digits

Table 644: “Center point”
“Color” Color of the center of the clock

Table 645: “Positioning”
“Usage of” ● “Default style values”: Presetting of the style values

● “Individual settings”: User-defined settings in the subordinate “Positioning”
property.

“Positioning” Requirement: Visible when the “Usage or” property is set to “Individual settings”.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3321

“Numerics movement” Value (in pixels) for shifting the digits.
Example: 80

“Line movement” Value (in pixels) for shifting the hour lines.
Example: 100

“Hands scaling” Factor for scaling the length of the hour hand. You can customize the exact
position of the hour hand relative to the background image.
Example: 100

“Scaling type” Defines the scaling of the height and width of the element.
● “Anisotropic”: The background image is scaled to the size of the element The

height and width are scaled independently of each other.
● “Isotropic”: The background image is scaled to the size of the element,

retaining its proportion. The proportion of height and width is fixed.

“Optimized drawing” : The background image is drawn one time. When the hour hand moves, only
the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Hint: Disable this option only for extreme exceptions.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3322

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3323

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Date/Time Picker'
Symbol:

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time. The value can be changed
by means of the arrow keys on the keyboard. The date can be selected from a calendar.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: StartDateAndTime

“Type of element” “Date/Time Picker”

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3324

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3325

“Variable” Variable (DATE, DT, TIME, LTIME, TOD)

The value of the value of the variable is displayed and modified by means of the
element.
The data type automatically determines the displayed value units:
● TIME: Day, hour, minute, and second (by default, milliseconds are not dis-

played)
● DATE: Year, month, and day
● DT: Year, month, day, hour, minute, and second
● TOD: Hour, minute, and second (by default, milliseconds are not displayed)
● LTIME: Day, hour, minute, and second (by default, milliseconds, microsec-

onds, and nanoseconds are not displayed)

“Format string” The format can restrict the output to individual values.
Example for LTIME: Format: HH:mm:ss.ms.us.ns --> displayed:
08:15:12.780.150.360 LTIME restricted: format: HH:mm --> displayed: 08:15

Example for DATE: Format: yyyy/MM/dd --> displayed: 2015/12/17 .

Basically, all usual formats available for %t are also supported.

“Design date time picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Design date picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Positioning date picker” ● “Dynamic”: The calendar is adapted and positioned automatically.
● “Manual”: The “Position settings” property is available. You can customize

the calendar here.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3326

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3327

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3328

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

6.4.5.20.2 Placeholders with Format Definition in the Output Text
A character string which is output in the visualization can include the placeholder % for a
variable. At runtime, the placeholder is replaced by the actual value of the variable in the
defined format. The data type in the format definition and of the variable have to be identical. A
character string can contain a maximum of one placeholder.
Character strings for output are listed in the “Text” property. The assigned variable is listed in the
“Text variable” property.
See also
● Integer Data Types
● REAL/LREAL Data Type
● Time Data Types

%d
%i

Output of variable (integer
data type) as decimal
number

Code: iCounter : INT := 12;
Property “Text”: Value: %i
Property “Text variable”: PLC_PRG.iCounter
Output: Value: 12

%b Output of variable (integer
data type) as binary
number

Code: byCode : BYTE := 255;
Property “Text”: Coding: %b
Property “Text variable”: PLC_PRG.byCode
Output: Coding: 11111111

%o Output of variable (integer
data type) as unsigned
octal number without a pre-
ceding zero

Code: byCode : BYTE := 8#377;
Property “Text”: Coding: %o
Property “Text variable”: PLC_PRG.byCode
Output: Coding: 377

%x Output of variable (integer
data type with max. 32
bits) as unsigned hexadec-
imal number without a pre-
ceding "0x"

Code: dwCode : INT := 16#FFFFFFFF;
Property “Text”: Coding: %x
Property “Text variable”: PLC_PRG.dwCode
Output: Coding: ffffffff

%llX
%012llX

Output of 64-bit variable
(LWORD, LINT, ULINT) as
hexadecimal number.
Note: llx means "long
long hexadecimal"

Code: lwCode : LWORD :=
16#4FFF_3FFF_2FFF_1FFF;
Property “Text”: Coding: %llx
Property “Text variable”: PLC_PRG.lwCode
Output: Coding: 4fff3fff2fff1fff

%u Output of variable (integer
data type) as unsigned
decimal number

Code: uiNumber : UINT := 1234;
Property “Text”: Number: %u
Property “Text variable”: PLC_PRG.uiNumber
Output: Number: 1234

For the output
of integers

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3329

ms-its:codesys.chm::/_cds_datatype_integer.htm
ms-its:codesys.chm::/_cds_datatype_real.htm
ms-its:codesys.chm::/_cds_datatype_time.htm

Floating-point numbers have the data type REAL or LREAL.

%f In decimal form with dec-
imal point in format 1.6

Code: rWeight : REAL :=
1.123456789;
Property “Text”: Weight: %f
Property “Text variable”: PLC_PRG.rWeight
Output: Weight: 1.123456

%<alignment><
minimum
width>.<accur
acy>f

As decimal number in
user-defined format
● <alignment>: - or +,

optional
-: Left-aligned
+: Right-aligned

● <minimum width>:
Number of places to
the left of the decimal
point

● <accuracy>: Number
of places to the right of
the decimal point

Code: rWeight : REAL := 12.1
Property “Text”: Weight: %2.3f
Property “Text variable”: PLC_PRG.rWeight
Output: Weight: 12.100

%e Output of floating-point
number (REAL or LREAL)
in exponential notation of
base 10

Code: rValue : REAL :=
1.234567%e-003;
Property “Text”: Value: %E
Property “Text variable”: PLC_PRG.rValue
Output: Value: 1.23E-6

%E Code: rValue : REAL :=
1.234567%e-003;
Property “Text”: Value: %e
Property “Text variable”: PLC_PRG.rValue
Output: Value: 1.23e-6

%c Output of single character
in ASCII character set

Code: bChar := 16#41;
Property “Text”: Key: %c
Property “Text variable”: PLC_PRG.bChar
Output: Key: A

%s Output of character string Code: strName := 'Paul Smith';
Property “Text”: Name: %s
Property “Text variable”: PLC_PRG.strName
Output: Name: Paul Smith

For the output
of floating-point
numbers

For the output
of text

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3330

%% Output of percent sign in
character string

Property “Text”: Valid until 90%%
Output: Valid until 90%
Code: iPercentage : INT := 80;
Property “Text”: Valid until %d%%.
Property “Text variable”:
PLC_PRG.iPercentage := 80;
Output: Valid until 80%

If the output text in the element “Text” property contains the placeholder "%t", then a date and/or
time is output. If a variable is not specified in the “Text variable” property, then the system time
is output; otherwise it is the value of the variable.
By default, the names of the days and months are displayed in English. If localized texts are
used, then the text list System has to be supplemented. This text list is created automatically in
the “POUs” view when the placeholder %t is used. The English terms have to be used as the ID
here. The localization can be done for both the abbreviated names and full names.
Time data types include LTIME, TIME, TIME_OF_DAY, TOD, DATE, DATE_AND_TIME, and DT.

Compatibility Notice
In order to get the usual display, in V3.5 SP17 and higher, as a rule three
digits are used for the output of fractions of a second (ms/µs/ns). Example:
In %t[dd-HH:mm:ss:ms], ms is specified with three digits for the millisec-
onds. For this purpose, the two-digit ms number is prepended with a zero.
If a two-digit output is desired (like before V3.5 SP17), then a special com-
piler define has to be set in the compiler properties of the application:
VISU_MILLISEC_NOLEADING_ZERO.

Date and time formats
%t[yyyy] Year with century Code: dateBy : DATE :=

DATE#2020-1-1;
Property “Text”: By the year %t[yyyy]
Property “Text variable”: PLC_PRG.dateBy
Output: By the year 2020

%t[yy] Year without century (00–
99)

Code: dateSince : DATE :=
DATE#2000-1-1;
Property “Text”: Since: %t[yy]
Property “Text variable”:
PLC_PRG.dateSince
Output: Since: 00

%t[y] Year without century (0–
99)

Code: dateSince : DATE :=
DATE#2000-1-1;
Property “Text”: Since: %t[y]
Property “Text variable”:
PLC_PRG.dateSince
Output: Since: 0

For the output
of the percent
sign

For the output
of the date and
time

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3331

%t[MMMM] Month as full name Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”: Month: %t[MMMM]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: January

%t[MMM] Month as abbreviated
name

Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”:: Month: %t[MMM]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: Jan

%t[MM] Month as number (01–12) Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”:: Month: %t[MM]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: 01

%t[M] Month as number (1–12) Code: dateMonth : DATE :=
DATE#2016-1-1;
Property “Text”:: Month: %t[M]
Property “Text variable”:
PLC_PRG.dateMonth
Output: Month: 1

%t[ddddd] Day of week as number

(1=Monday – 7=Sunday)
Code: iDay : INT := 7;
Property “Text”:: Day: %t[ddddd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: 7

%t[dddd] Day of week as full name Code: iDay : INT := 7;
Property “Text”:: Day: %t[dddd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: Sunday

%t[ddd] Day of week as abbrevi-
ated name

Code: iDay : INT := 7;
Property “Text”:: Day: %t[ddd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: Sun

%t[dd] Day of month as number
(01–31)

Code: iDay : INT := 1;
Property “Text”:: Day: %t[dd]
Property “Text variable”: PLC_PRG.iDay
Output: Day: 01

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3332

%t[d] Day of month as number
(1–31)

Code: iDay : INT := 1;
Property “Text”:: Day: %t[d]
Property “Text variable”: PLC_PRG.iDay
Output: Day: 1

%t[jjj] Day of year as number
(001–366)

Code: dateOfNoReturn : DATE :=
DATE#2016-09-01;
Property “Text”:: Day of no return:
%t[jjj]
Property “Text variable”:
PLC_PRG.dateOfNoReturn
Output: Day of no return: 245

%t[HH] Hour in 24-hour format

(00–23)
Code: todEnd : TOD :=
TIME_OF_DAY#17:0:0;
Property “Text”: Ends at: %t[HH]:00
Property “Text variable”: PLC_PRG.todEnd
Output: Ends at 17:00

%t[hh] Hour in 12-hour format
(01–12)

Code: todEnd : TOD :=
TIME_OF_DAY#17:0:0;
Property “Text”: Ends at: %t[hh]
o'clock
Property “Text variable”: PLC_PRG.todEnd
Output: Ends at: 05 o'clock

%t[mm] Minutes with leading zero

(00–59)
Code: tPeriod : TIME := T#5M;
Property “Text”: Period: %t[mm]m
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 05m

%t[m] Minutes without leading
zero (0–59)

Code: tPeriod : TIME := T#5m;
Property “Text”: Period: %t[m 'm']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 5 m

%t[ss] Seconds with leading zero
(00–59)

Code: tPeriod : TIME := T#5m3s;
Property “Text”: Period: %t[mm'm'ss's']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 05m03s

%t[s] Seconds without leading
zero (0–59)

Code: tPeriod : TIME := T#5m3s;
Property “Text”: Period: %t[m'm' s's']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 5m 3s

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3333

%t[ms] Milliseconds without
leading zero (0–999)

Code: tPeriod : TIME := T#500ms;
Property “Text”: Period: %t[ms 'ms']
Property “Text variable”: PLC_PRG.tPeriod
Output: Period: 500 ms

%t[us] Only for LTIME variables:
microsecond definition (0–
999)

Code: ltPeriod :LTIME :=
LTIME#1000D23H44M12S34MS2US44NS;
Property “Text”: 'Period':
%t[dd.HH.m.s.ms.us.ns]
Property “Text variable”: PLC_PRG.ltPeriod
Output: Period:
1000.23.44.12.34.2.44
Hint: Overflow is permitted in the greatest time
unit of a definition.

%t[ns] Only for LTIME variables:
nanosecond definition (0–
999)

%t[t] If the value is a time < 12h,

then A is output; otherwise
P is output.

Code: tClosed : TOD :=
TOD#17:17:17.17;
Property “Text”: Closed at %t[hh:mm t]
Property “Text variable”: PLC_PRG.tClosed
Output: Closed at 05:17 P

%t[tt] If the value is a time < 12h,
then AM is output; other-
wise PM is output.

Code: tClosed : TOD :=
TOD#17:17:17.17;
Property “Text”: Closed at %t[hh:mm tt]
Property “Text variable”: PLC_PRG.tClosed
Output: Closed at 05:17 PM

%t[' '] If character strings should

be output which corre-
spond to a format defini-
tion, then these have to
be represented in single
straight quotation marks.

TIME and LTIME values can be specified with integer values or with decimal places:

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3334

%t[<f><n>] A number (<n>) which
defines the number of dec-
imal places of the time
value follows the letters
which define the time unit
(<f>).
As a result, the hours,
minutes, and seconds (for
TIME values) and also
the microseconds and
nanoseconds (for LTIME
values) can be specified or
displayed as values with
decimal places.
Note: Even if a decimal
number is not desired for
the input or display, at least
the number "0" has to be
specified to allow for frac-
tional input.

Examples of the formating
%t[hh4] or %t[HH4]: The time can be speci-
fied/displayed with a hour definition of four
decimal places.
%t[mm2] or %t[m2]: The time can be
specified/displayed with a minute definition
of four decimal places. Then for a value
of t#1h20m15s, this leads to the following
output: 80.25.

%t[ss0]: The time can be specified/dis-
played with a second definition without dec-
imal places.

The format definitions can be represented in a series.
%t[HH:mm:ss:m
s]

Output of the time Code: dwTime : DWORD := 4294967295;
Property “Text”: Time: %t[HH:mm:ss:ms]
Property “Text variable”: PLC_PRG.dwTime
Output: Time: 23:59:59:999

%t[yyyy-MM-dd
dddd]

Output of the date and day
of the week

Code: dateSet : DATE :=
DATE#2016-02-12;
Property “Text”: Date: %t[yyyy-MM-dd
dddd]
Property “Text variable”: PLC_PRG.dateSet
Output: Date: 2016-02-12 Friday

See also
● Time Data Types

6.4.5.20.3 Methods of the Dialog Manager
Visualizations that are a “Dialog” visualization type and are used to prompt an input are instanti-
ated automatically and managed by the internal dialog manager.
In the application, the dialog manager can be accessed via the also internal Visualization
Manager by calling the method GetDialogManager.

The dialog manager is provided with the following methods for handling a dialog.

NOTICE!
You can program the method calls in function blocks or functions which are
themselves called from the visualization by the action Execute ST Code.

Moreover, you can program the method calls in the application code. Make sure
that the call runs in VISU_TASK. If this is not the case, then the behavior is
undefined.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3335

ms-its:codesys.chm::/_cds_datatype_time.htm

Returns the instance (IVisualisationDialog) of the dialog whose name is passed.

Table 646: Inputs (VAR_INPUT)
Name Data Type Description
stName STRING Name of the dialog

Table 647: Outputs (VAR_OUTPUT)
Name Data Type Description
GetDialog VisuElems.IVisual

isationDialog
Instance (IVisualisationDialog) of the dialog

Returns a pointer to the dialog structure.

Respective dialog data held for each display variant.

Table 648: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Name of the visualization

pClient POINTER TO
VisuElems.IVisual
isationDialogVisu
StructClientData

Pointer to the display variant

Table 649: Outputs (VAR_OUTPUT)
Name Data Type Description
GetClientInterfac
e

Example: POINTER TO
Login_VISU_STRUCT

Pointer to the dialog structure

Opens the dialog of the client.

Next to it, there is the extended method 'OpenDialog(number)'.

Table 650: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Name of the visualization

pClient POINTER TO
VisuElems.VisuStr
uctClientData

Method 'GetDia-
log'

Method 'Get-
ClientInterface'

Method 'Open-
Dialog'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3336

Name Data Type Description
bModal BOOL
pRect POINTER TO

Table 651: Outputs (VAR_OUTPUT)
Name Data Type Description
OpenDialog

Closes the dialog of the client.

Table 652: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Dialog object as received by GetDialog

pClient POINTER TO
VisuElems.VisuStr
uctClientData

Table 653: Outputs (VAR_OUTPUT)
Name Data Type Description
CloseDialog

Closes the dialog of the client. Extension of the method CloseDialog.

Table 654: Inputs (VAR_INPUT)
Name Data Type Description
dialog VisuElems.IVisual

isationDialog
Dialog object as received by GetDialog

pClient POINTER TO
VisuElems.VisuStr
uctClientData

DialogFlags DWORD Specification of possible options for closing the dialogs. Only
the values 0 (behavior as for CloseDialog) and 16#40 are
relevant in the case that a dialog should be closed on all
connected clients.

Table 655: Outputs (VAR_OUTPUT)
Name Data Type Description
CloseDialog2

6.4.5.20.4 Attribute 'VAR_IN_OUT_AS_POINTER'
Function: The pragma {attribute 'VAR_IN_OUT_AS_POINTER'} allows for the passing of
a reference to a data object to the interface variable of a visualization.

Method 'Close-
Dialog'

Method 'Close-
Dialog2'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3337

Requirement: The referenced visualization must be used as a dialog.
Syntax:
{attribute 'VAR_IN_OUT_AS_POINTER'}

NOTICE!
Uppercase and lowercase characters must be maintained.

VAR_IN_OUT
 {attribute 'VAR_IN_OUT_AS_POINTER'}
 itfController : ControlFB;
END_VAR
See also
● Ä Chapter 6.4.5.17.5 “Calling a Dialog with an Interface” on page 2962
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340

6.4.5.20.5 Attribute 'parameterstringof'
The pragma {attribute 'parameterstringof'} allows that the instance name of the
specified parameter is made accessible for the referenced visualization. An interface variable
(STRING) will contain the instance name of the specified parameter. The interface variable is
visible within the referenced visualization and can for example be used in a text output.
Syntax:
{attribute 'parameterstringof' := '<variable>'}

VAR_INPUT
 {attribute 'parameterstringof' := 'iftDut_A'}
 sItfNameDut_A: STRING;
END_VAR
VAR_IN_OUT
 iftDut_A : DUT_A;
END_VAR
See also
● Ä Chapter 6.4.5.17.3 “Calling a Visualization with an Interface” on page 2951
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340

6.4.5.21 Reference, user interface
6.4.5.21.1 Keyboard Shortcuts for Default Keyboard Action.......................... 3338
6.4.5.21.2 Commands.. 3339
6.4.5.21.3 Dialog Boxes... 3366
6.4.5.21.4 Objects.. 3393
6.4.5.21.5 Visualization Elements.. 3412

6.4.5.21.1 Keyboard Shortcuts for Default Keyboard Action
Requirement: The “Activate default keyboard handling” option is activated in the “Visualization
Manager” object.

Example: Decla-
ration of an
interface

Example: decla-
ration of a inter-
face

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3338

The keyboard shortcuts for default keyboard action make it possible for users to operate the vis-
ualization with the keyboard only. Elements that respond to user input can process a keyboard
event instead of a mouse event. You do not have to change their input configuration for this
purpose. The universal keyboard shortcuts are supported by all devices and are available on all
display variants when needed.

Keyboard shortcuts
[Tab] Focus jumps to the next element.

The next element that responds to a configured or preconfigured user input receives the
focus. The order of elements corresponds to the order that the elements were added to the
editor.
If the focused element is a table, then the upper left cell in the table is the next focus. After
that, each next cell until all cells have been focused. It also applies here that only cells that
require input are focused.
If the focused element is a frame, then an element of the referenced visualization is set
next in focus in the frame. After that, each next element until all elements have been
focused. It also applies here that only elements that require input are focused.

[Shift]+[Tab] Focus jumps to the previous element.
The element is focused that is before the currently focused element in the added order.
Therefore, the order is the opposite as for “Tab”.

[Arrow] The focus jumps to the element that is in the direction as indicated by the arrow.

[Input] The visualization detects the input at the focused element and triggers the input action.

6.4.5.21.2 Commands
6.4.5.21.2.1 Command 'Interface Editor'.. 3340
6.4.5.21.2.2 Command 'Keyboard Configuration'... 3341
6.4.5.21.2.3 Command 'Visualization Element List'.. 3342
6.4.5.21.2.4 Command 'Activate Keyboard Usage'.. 3343
6.4.5.21.2.5 Command 'Order'... 3344
6.4.5.21.2.6 Command 'Alignment'... 3344
6.4.5.21.2.7 Command 'Group'... 3347
6.4.5.21.2.8 Command 'Ungroup'... 3348
6.4.5.21.2.9 Command 'Frame Selection'.. 3348
6.4.5.21.2.10 Command 'Background'... 3349
6.4.5.21.2.11 Command 'Multiply Visu Element'.. 3350
6.4.5.21.2.12 Command 'Configure Display Settings of Trend'...................... 3353
6.4.5.21.2.13 Command 'Configure Trace'... 3355
6.4.5.21.2.14 Command 'Export Trace Configuration'.................................... 3357
6.4.5.21.2.15 Command 'Insert Elements for Controlling Trace'.................... 3358
6.4.5.21.2.16 Command 'Configure Display Settings of Trend'...................... 3359
6.4.5.21.2.17 Command 'Edit Trend Recording'... 3360
6.4.5.21.2.18 Command 'Insert Elements for Controlling the Trend'.............. 3360
6.4.5.21.2.19 Command 'Visualization Element Repository'.......................... 3361
6.4.5.21.2.20 Command 'Visualization Style Repository'............................... 3363
6.4.5.21.2.21 Command 'Add Visual Element'... 3364
6.4.5.21.2.22 Command 'Select None'... 3365
6.4.5.21.2.23 Command 'Add Elements for Alarm Acknowledgement'.......... 3365

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3339

Command 'Interface Editor'
Symbol: ; keyboard shortcut: [Alt]+[F6].
Function: The command opens and closes the “Interface Editor” tab above the visualization
editor.
Call: Menu bar: “Visualization è Interface Editor” Also by clicking on the small down arrow at
the top of the visualization editor

Symbol:
The tab contains an editor for the declaration of interface variables. The editor behaves in a
similar way to the declaration editor of a function block, however interface variables are not
initialized.

<scope>
 ({attribute '<attribute name>' (:= '<expression>')? })?
 <identifier> : <data type>;
END_VAR

<scope> : VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT
// (...)? : Optional

VAR_INPUT
 {attribute 'parameterstringof'}
 sIdentifier : STRING; // String for instance name
 iCounter : INT;
END_VAR
VAR_IN_OUT
 {attribute 'VAR_IN_OUT_AS_POINTER'}
 fbController: FB_Controller;
END_VAR

Example
Declaration in
the interface
editor

Possible scopes for interfaces of visualizations or dialogs

 VAR_IN_OUT ● When transferring a structure
When the visualization is instanced, it gets a reference to the current applica-
tion data.

● When transferring a control variable, if the variable is written to when a user
input is made. Only then can the visualization write to it.

Note: In the case of dialogs, the data is written back only when the dialog is
closed.
Hint: We strongly recommend that you use this scope so that the return of values
is possible. Moreover, no data needs to be copied.

VAR_IN_OUT
Pragma {attribute
'VAR_IN_OUT_AS_POINTER'
}

When transferring a pointer to a data object
In contrast to the VAR_IN_OUT scope (without an attribute), the variable
changes are effective immediately and not just when the dialog is closed.
Note: Use this scope only if the visualization implements a Dialog.

Tab 'Interface
Editor'

Syntax

Scopes

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3340

 VAR_INPUT When transferring data that will only be read
Note:
● If the visualization is executed as an integrated visualization, then only input

variables of a basic data type (scalar type) are permitted to be transferred.
● If the visualization is executed as a CODESYS TargetVisu or a CODESYS

WebVisu, then input variables of any data type (including POUs) can also be
transferred.

 VAR_INPUT
Pragma {attribute
'parameterstringof'}

When transferring a variable (data type STRING) for the instance name of the
transfer parameter specified in the attribute

See also
● Ä Chapter 6.4.1.9.4 “Declaration of Variables ” on page 1847
● Ä Chapter 6.4.1.20.1.2 “Declaration Editor” on page 2047
● Ä Chapter 6.4.5.17.3 “Calling a Visualization with an Interface” on page 2951
● Ä Chapter 6.4.5.17.5 “Calling a Dialog with an Interface” on page 2962
● Ä Chapter 6.4.5.20.5 “Attribute 'parameterstringof'” on page 3338
● Ä Chapter 6.4.5.20.4 “Attribute 'VAR_IN_OUT_AS_POINTER'” on page 3337

Command 'Keyboard Configuration'
Symbol: ; keyboard shortcut: [Alt]+[F6].
Function: This command opens and closes the “Keyboard Configuration” tab above the visuali-
zation editor.
Call: Menu bar: “Visualization”.
Requirement: A visualization is open and active in the visualization editor.
See also
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

Symbol:
This tab contains a list of keyboard shortcuts with an editing option.
A keyboard shortcut can refer specifically to an element. Then the configuration appears here
and in the “Input configuration” property of the associated element.
A keyboard shortcut can also have several configurations. If a keyboard shortcut has multiple
keyboard configurations, then its input actions are executed in the order listed here.
Keyboard shortcuts of the default keyboard action are not listed here.

“Key” Key that a keyboard configuration is defined. Example: [M]

Note: You can combine the key with [Ctrl], [Alt], and/or [Shift].

“Key down” : The input action is executed when the user presses the key.

: The input action is executed when the user releases the key.
Double-click: Drop-down list of all keys.
Note: If the input action should be executed for both pressing the key (KeyDown)
and releasing the key (KeyUp), then you must define a keyboard configuration
for both input actions.

“Shift” : The input event is triggered for [Shift]+[key].

Tab 'Keyboard
configuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3341

“Ctrl” : The input event is triggered for [Ctrl]+[key].

“Alt” : The input event is triggered for [Alt]+[key].

“Action type” input action
Double-click: Drop-down list of input actions.
Tip: For a description of input actions, refer to the “Input configuration” dialog
box.

“Action” Configuration of the input action that was selected next.
Double-click: A dialog box opens that varies according to the input action. It
allows the user-prompted customization of the settings.
Tip: For a description of dialog boxes, refer to the “Input configuration” dialog
box. The input action is configured in the same way here.

“Element ID” ID of the visualization element where the user can execute the key event. The ID
is relevant only if the event is also assigned to an element.
Tip: The assignment of ID to element name is listed in the “Element list”.

“Access rights” Access privileges of the action per user group
Requirement: The visualization has a user management.

Clicking the symbol on the right of the list moves the selected row one line down.

Clicking the symbol on the right of the list moves the selected row one line up.

Blank line Allows adding a new keyboard configuration.

See also
● Ä Chapter 6.4.5.21.2.3 “Command 'Visualization Element List'” on page 3342
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Command 'Visualization Element List'
Symbol:
Function: The command opens the “Visualization Element List” tab for the current visualization.
It is displayed in the upper part of the visualization editor.
Call: Menu bar: “Visualization”

Requirement: A visualization is open in the editor.

This view contains a list of the visualization elements in the open visualization. Grouped
elements are displayed in a tree structure and have their own order within the group (other
hierarchy level).
The current selection in the list is always synchronized with the selection in the main window of
the editor.
The order in the element list from top to bottom describes the order of the elements on the
display layers of the visualization from back to front. When you insert elements consecutively,
they are arranged starting from the back (position 0) on one layer forward. When you use the
commands in the menu “Visualization è Order” to move an element from front to back in the
editor window, the element list refreshes accordingly.

Tab 'Visualiza-
tion Element
List'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3342

“Type” Element type and symbol, as used in the “Visualization Toolbox” view, as well as
the element number that specifies the display layer. #0 = layer furthest back.

“X”, Position of the upper left corner of the element (0,0 = upper left corner of the
visualization area).“Y”

“Width” Dimensions of the element (in pixels).

“Height”

“ID” Internally assigned element identifier

“Name” Element name as defined in “Properties è Element name”.

“Access Rights” The lock symbol indicates the restricted behavior of an element for some user
groups.

“Tab Order” Position within the order in which you can jump from element to element in the
editor by means of the tab key when the default keyboard usage is activated.
The activation is done in the visualization manager, on the settings tab. Note that
elements within a group or group box have their own order (different hierarchy
level).
The tab order initially corresponds to the order in which the elements are
arranged on the layers from back to front (“Type” above). To change the position
in the order for an element, you can specify a different number directly in the
table field. You can also use the “Move to Position” context menu command to
open a dialog for specifying a new position.
Bold fonts indicate changed position specifications.
By removing the displayed value, you exclude the element from the selection
using tab or arrow keys.
You can use the “Reset to Default” context menu command to reset a changed
position to the original position. This can be done simultaneously for a multise-
lection of elements when they do not belong to different hierarchy levels (group-
ings).

See also
● Ä Chapter 6.4.5.21.4.1.1 “Visualization Editor” on page 3393
● Ä Chapter 6.4.5.21.2.5 “Command 'Order'” on page 3344
● Ä “Moving the visualization element forward and back” on page 2875

Command 'Activate Keyboard Usage'
Symbol:
Function: This command activates and deactivates the keyboard usage when a visualization is
executed in online mode (integrated in CODESYS).
Call: Menu bar: “Visualization”; context menu.
Requirement: A visualization is open.
When this command is active, the visualization executes the keyboard events that you specified
as a visualization user.
When the command is inactive, CODESYS executes the keyboard events that you specify.
See also
● Ä Chapter 6.4.5.6.5 “Configuring Keyboard Shortcuts” on page 2892

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3343

Command 'Order'
Function: The command makes further commands available. They are for specifying the order
of the elements in levels, since elements in the rear levels are concealed by those in the front
levels.
Call: Menu “Visualization”, context menu
Requirement: The visualization elements are positioned behind one another.
See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Symbol:
Function: The command positions the selected visualization element in the front level. The
element becomes completely visible.
Call: Menu “Visualization è Order”, context menu

Symbol:
Function: The command positions the selected visualization element one level further forwards.
Call: Menu “Visualization è Order”, context menu

Symbol:
Function: The command positions the selected visualization element in the back level.
Call: Menu “Visualization è Order”, context menu

Symbol:
Function: The command positions the selected visualization element one level further back-
wards.
Call: Menu “Visualization è Order”, context menu

Command 'Alignment'
Function: the command makes further commands available. It is used for the alignment of
visualization elements in the window area of the visualization.
Call: Menu “Visualization”, context menu
See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Symbol:
Function: the command aligns the selected visualization elements along a line through the
left-hand edge of the element that is positioned furthest left.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements along a line through the
upper edge of the element that is positioned highest.

Command
'Bring to Front'

Command
'Bring One to
Front'

Command 'Send
to Back'

Command 'Send
One to Back'

Command 'Align
Left'

Command 'Align
Top'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3344

Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements along a line through the
right-hand edge of the element that is positioned furthest right.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements along a line through the
lower edge of the element that is positioned lowest.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: the command aligns the selected visualization elements to their common vertical
center.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements to their common horizontal
center.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the elements posi-
tioned furthest left and furthest right retain their position and the elements between them are
positioned with the same horizontal spacing.
Call: Menu “Visualization è Alignment”, context menu
Requirement: 3 or more elements are selected. The first element is blue, while the other
elements are displayed in grey.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a larger horizontal spacing. The
spacing increases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:

Command 'Align
Right'

Command 'Align
Bottom'

Command 'Align
Vertical Center'

Command 'Align
Horizontal Cen-
ter'

Command 'Make
Horizontal
Spacing Equal'

Command 'In-
crease Hori-
zontal Spacing'

Command 'De-
crease Hori-
zontal Spacing'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3345

Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a smaller horizontal spacing. The
spacing decreases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with no horizontal spacing between
them.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the uppermost and
lowermost elements retain their position and the elements between them are positioned with the
same vertical spacing.
Call: Menu “Visualization”, context menu
Requirement: 3 or more elements are selected. The first element is blue, while the other
elements are displayed in grey.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a larger vertical spacing. The
spacing increases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with a smaller vertical spacing. The
spacing decreases by 1 pixel each time.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command aligns the selected visualization elements so that the blue element
retains its position and the other elements are positioned with no horizontal spacing between
them.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

Symbol:
Function: The command makes the width of the selected visualization elements the same as
the width of the blue selected element.
Call: Menu “Visualization è Alignment”, context menu

Command 'Re-
move Horizontal
Spacing'

Command 'Make
Vertical Spacing
Equal'

Command 'In-
crease Vertical
Spacing'

Command 'De-
crease Vertical
Spacing'

Command 'Re-
move Vertical
Spacing'

Command 'Make
Same Width'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3346

Requirement: Several elements are selected. The first element is blue, while the other ele-
ments are displayed in grey.

The command does not work with lines or polygons.

Symbol:
Function: The command makes the height of the selected visualization elements the same as
the height of the blue selected element.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected. The first element is blue, while the other ele-
ments are displayed in grey.

The command does not work with lines or polygons.

Symbol:
Function: The command makes the size of the selected visualization elements the same as the
size of the blue selected element.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected. The first element is blue, while the other ele-
ments are displayed in grey.

The command does not work with lines or polygons.

Symbol:
Function: The command aligns the size and position of the selected visualization elements to
the grid.
Call: Menu “Visualization è Alignment”, context menu
Requirement: Several elements are selected.

The command does not work with lines or polygons.

Command 'Group'
Symbol:
Function: The command groups the selected visualization elements and displays them as one.
Call: Menu “Visualization”, context menu

Command 'Make
Same Height'

Command 'Make
Same Size'

Command 'Size
to Grid'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3347

Requirement: At least 2 elements are selected.
To select more elements you can drag a window around the desired elements with the mouse.
Alternatively you can click on the desired elements while keeping the [Shift] key pressed.
To select all elements you can open the context menu of the visualization editor and choose the
“Select All” command.

You can also drag and drop elements to a group. For that, press the [Shift]
key while dragging the element to the group. Meanwhile the cursor changes its
appearance (display a small plus sign).

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874
● Ä Chapter 6.4.5.21.2.8 “Command 'Ungroup'” on page 3348
● Ä Chapter 6.4.5.21.2.22 “Command 'Select None'” on page 3365

Command 'Ungroup'
Symbol:
Function: The command ungroups elements again.
Call: Menu “Visualization”, context menu
Requirement: A grouping is selected.
See also
● Ä Chapter 6.4.5.21.2.7 “Command 'Group'” on page 3347

Command 'Frame Selection'
Function: The command opens the “Frame Configuration” dialog.
Call:
● Menu bar: “Visualization”
● Click the “Configure” button in the “References” property.
Requirement: A “Frame” element or “Tabs” element is selected in the editor. The “Element
Properties” view is open.

The dialog allows you to select one or more of all available visualizations. The selected visuali-
zations are displayed at runtime in the window area of the “Frame” element or “Tabs” element.

NOTICE!
Visualizations can be nested at any depth by means of “Frame” elements. In
order to use the “Switch to any visualization” frame selection type without any
problems, a “Frame” must not contain more than 21 referenced visualizations.
For more information, see also the description for the “Input configuration” of an
element: Action “Switch frame visualization”.

Dialog 'Frame
Configuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3348

Table 656: “Available Visualizations”
“By Visualization Name” The list of available visualizations of the project and libraries is sorted alphabeti-

cally.

“By Type or Instance” The list of available visualizations of the project and libraries is sorted by type or
instance.

Input field for a filter If a filter text is specified, then only those visualizations whose names contain
the filter text are listed.

Project with project visualizations below it

Library with project visualizations below it

Table 657: “Selected Visualizations”
 “Add” Click the symbol to add a visualization to the list of selected visualizations.

Requirement: This is selected in “Available Visualizations”.
Hint: To add a visualization, double-click a visualization in “Available
Visualizations”.

“Delete” Click the symbol to delete a visualization from the list.
Requirement: This is selected in “Selected Visualizations”.

The visualizations are automatically numerically indexed via the order in the list. The top visualization has the
index 0. The next visualization has the index 1 and so on.

Note: A “Frame” and a “Tabs” element use the variables specified in the index of the “Switch frame variable”
property.

 “Move Up” Click the symbol to move a visualization up in the list.
Requirement: This is selected in “Selected Visualizations”.

 “Move Down” Click the symbol to move a visualization down in the list.
Requirement: This is selected in “Selected Visualizations”.

See also
● Ä Chapter 6.4.5.21.5.6 “Visualization Element 'Frame'” on page 3478
● Ä Chapter 6.4.5.21.5.10 “Visualization Element 'Tabs'” on page 3509
● Ä “Element property 'Switch frame variable'” on page 3292

Command 'Background'
Symbol:
Function: The dialog “Background” opens. You can define here whether the background of the
visualization is colored or displayed with an image.
Call: Menu “Visualization”, context menu
See also
● Ä Chapter 6.4.5.5.8 “Designing a background” on page 2884

Table 658: “Color Settings”
“Use Color” : Background in color

Color defined as a style color or as a fixed value.

Dialog 'Back-
ground'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3349

Table 659: “Image Setting”
“Use Image” : Display of a background image

Reference to an image from an image pool in the project, formally specified as
an instance path: <Name of the image pool>.<ID>
Example:
● ImagePool_A.Factory
● ImagePool_B.ID_B

Command 'Multiply Visu Element'
Symbol:
Function: The command opens the “Multiply Visu Element” dialog, which contains a configu-
ration derived from the template element and the array declaration. You can rearrange the
elements here, as well as their quantity and the index access to the array data. When you exit
the dialog, a field of similar elements is created from the template element. In the properties
of the new elements, array variables are now configured with precise array indexes. These
new elements are those in which you have configured an array variable with index access
placeholders in the template.
Call: Menu bar: “Visualization”; context menu
Requirement: The visualization is active and a configured template element is selected.

Table 660: Tab “Basic Settings”
“Total number of elements” The total number is determined by the index range of the placeholders, including

the setting on the “Advanced Settings” tab. The layout of the elements can be
one-dimensional (as a column or row) or two-dimensional (as a table field).

“Horizontal” Number of elements per row
Default: Number of array components (index range) of the placeholder
$FIRSTDIM$
Example for array: axLampIsOn: ARRAY[0..4] OF BOOL; = 5

“Vertical” Number of rows required for the layout of all elements
Default
● When using index access placeholder $FIRSTDIM$:

If the index range of the placeholder is less than five, then the layout of
elements is horizontal. If the index range is greater than five, then the layout
the elements is quadratic whenever possible.

● When using index access placeholders $FIRSTDIM$ and $SECONDDIM$:
The number of horizontal elements is equal to the number of index ranges
specified by the placeholder $FIRSTDIM$. The number of vertical elements
is equal to the number of index ranges specified by the placeholder
$SECONDDIM$.

“Offset between elements” Distance between the new elements; affects the positions of the new elements
● “ 0 ”: The frames of the elements overlap by one pixel.
● “1 ”: The elements touch.
● “<n> ”: A distance of n-1 pixel is visible between the elements.

“Horizontal” Distance between the elements within a row (in pixels)
Example: 2 for a distance of one pixel

Dialog 'Multiply
Visu Element'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3350

“Vertical” Distance between the elements within the columns (in pixels)
Example for a distance of three pixels: 4

“Arrangement of elements” Origin from which the new elements are positioned and arranged
If “Vertical” or “Horizontal” <> 1
● “From top left”
● “From top right”
● “From bottom left”
● “From bottom right”

If “Horizontal” or “Vertical” = 1
● “From top”
● “From bottom”

“Orientation” Determines the layout of the elements in the field (row by row, or column by
column)
● “Line by line”
● “Column by column”

“Preview” Displays the set layout and orientation of the elements as an arrow

Table 661: Tab “Advanced Settings”
“Array access” Based on the template element, the precise index for accessing the array vari-

able is calculated for each new element. The calculation is based on the array
index limits as specified in the array declaration. The settings are also taken into
account here.

“1st dimension” Calculation guideline for the index of the first dimension that replaces
$FIRSTDIM$
The first new element gets the value specified below in “Start index” in the first
dimension. The other elements each get an index incremented by “Increment”
until an index is calculated for all elements.
Example
● “Start index”: 1
● “Increment”: 1

“2nd dimension” Calculation guideline for the index of the second dimension that replaces
$SECONDDIM$
The first new element gets the value specified below in “Start index” in the
second dimension. The other elements each get an index incremented by
“Increment”.
Example
● “Start index”: 1
● “Increment”: 1

“OK” First, it is validated whether the calculated indices are in the index range of the
array variable. If so, then the elements that match the template element are
created and arranged as a field (row, column, or table). The placeholder indexes
are replaced by the calculated indexes.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3351

VAR
asTexts_Example: ARRAY[1..2,1..2] OF STRING :=
 [
 '1A Text', '2A Text',
 '1B Text', '2B Text'
];
 asToolTips_Example: ARRAY[1..2,1..2] OF STRING :=
 [
 '1A Tooltip', '2A Tooltip',
 '1B Tooltip', '2B Tooltip'
];

 axUserInput_Example: ARRAY[1..2,1..2] OF BOOL;
END_VAR

Visualization with template element and its property configuration

Table 662: Dialog 'Multiply Visu Element'
Tab “Basic Settings”

“Total number of elements”

“Horizontal” 2
“Vertical” 2

Example
Declaration of
array variables

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3352

“Offset between elements”

“Horizontal” 2
“Vertical” 2

“Arrangement of elements” “From top left”

“Orientation” “Line by line”

Tab “Advanced Settings”

“Array access”

“1st dimension”

“Start index” 1
“Increment” 1
“2nd dimension”

“Start index” 1
“Increment” 1

Visualization at runtime:

See also
● Ä Chapter 6.4.5.11.3 “Configuring and Multiplying Visualization Elements as Templates”

on page 2918

Command 'Configure Display Settings of Trend'
Symbol:
Function: When you execute this command in “Visualization” or in the context menu, the “Edit
Display Settings” dialog opens.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3353

Call:
● Menu bar: “Visualization”
● Context menu of a “Trend” element in the visualization editor
● Property “Diagram”

Requirement: A trend is selected in the active visualization editor.

“Grid” : Trend diagram with grid lines in the X-direction in the selected color

“Font” Font for the axis label

Table 663: “Display mode”
● “Auto”: : The visualization scales automatically.

● “ Fixed” : Fixed range from “Minimum” to “Maximum”

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Grid” : Trend diagram with grid lines in the Y-direction in the selected color

“Description” : Text for labeling the Y-axis (for example, DC/mA)

Table 664: “Tick marks”
“Fixed spacing” : Axis scale with tick marks for “Distance” and “Subdivisions”

“Distance” Distance between the tick marks (example: 2)

“Subdivisions” Number of subdivisions between tick marks (example: 4)

“Font” Font for the axis label

Table 665: “Background”
“From visualization style” Background color as defined in the visualization style

“Draw background” Background color which is selected in the lower input field

“No background” Trend diagram with transparent background

Background color of the trend
diagram

Requirement: “Draw background” is activated.

Tab “X Axis”

Tab “Y axis”

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3354

“Reset” Resets the settings to the default settings

“Use as default” Saves the settings as default

“Add Y-axis” Extends the trend diagram by one Y-axis
Result: The “Trend Recording” editor contains an extended selection of Y-axes in
the “Additional axes” option of the “Variable Settings”.

“Delete Y-axis” Deletes the Y-axis of the visible tab.

See also
● Ä Chapter 6.4.5.21.2.16 “Command 'Configure Display Settings of Trend'” on page 3359
● Editor 'Trend Recording'

Command 'Configure Trace'
Symbol:
Function: This command opens the “Trace Configuration” dialog box.
Call: Context menu of the visualization element; “Trace” property of the visualization element.
Requirement: An element of type “Trace” is open in the editor.

The tree view shows the trace configuration and allows navigation.
The top entry contains the trace name. When this entry is selected, the “Record Settings” group
appears in the adjacent view.
An entry is located here for each variable that data was recorded continuously. When a variable
is selected, the “Variable Settings” group appears in the adjacent view.

“Add variable” Adds a new entry to the trace configuration.
Result: A blank configuration appears next to the new variable under “Variable
Settings”. You configure the variable there.

“Delete variable” Removes the selected variable.

A trigger can be configured in the trace only.

“Task” Task where data was recorded.

“Record condition” Recording condition for which the application records data in runtime mode:
Variable (BOOL)

“Comment” Example: Acquiring data only when all conditions are true.
“Resolution” Measure for the time stamp that is recorded per data set.

● “ms”: Time stamp (in milliseconds).
● “µs”: Time stamp (in microseconds) for a task cycle time of 1 ms or less

“Automatic restart” : Recording starts automatically as soon as the trace has been started one
time and then the controller was restarted. The trace configuration and the con-
tents of the trace buffer are saved persistently to a file on the target system.
Format: .trace.csv

“Display” The “Edit Appearance” dialog box opens.

Dialog box
'Trace Configu-
ration'

'Recording Set-
tings'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3355

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

“Advanced” The “Advanced Trace Settings” dialog box opens.

“Copy from Trace” The “Copy Settings from Trace Instance” dialog box opens. If you have already
created an existing trace configuration from a trace object, then you can copy the
configuration data to the visualization element. To do this, select the respective
object.

See also
● Ä Chapter 6.4.5.21.3.19 “Dialog 'Display Settings'” on page 3391
● Ä Chapter 6.4.5.21.3.18 “Dialog 'Advanced Trace Settings'” on page 3391
● Ä Chapter 6.4.5.20.1.34 “Visualization Element 'Trace'” on page 3240

“Variable” Variable for recorded value.
● Variable (valid data type)
● property
● Reference
● Contents of the pointer
● Array element (base type with valid data type)
● Enumeration (base type with valid data type)
Valid data types are all standard types, except STRING, WSTRING, and ARRAY.

“Parameters” Parameter whose value is acquired.

: Input assistance lists ale valid parameters of the PLC.

Enables toggling between “Variable” and “Parameter”

“Attached axis” Y-axis of the trace diagram for the “Variable”.

: Selection of the standard y-axis and the additional configured y-axes
Note: The additional configured y-axes are configured in the “Edit Display
Settings” dialog box.

“Display variable name” : The trace graphs are displayed in tooltip with their variable names.
If a text is also specified in “Description”, then the text is displayed first with the
variable names in parentheses.
Example: Sensor A (PLC_PRG.iSensor_A)
If “Description” does not contain any text, then the “Display Variable Name”
property is activated automatically. Then only the name is displayed (example:
PLC_PRG.iSensor_A).

: The trace graphs are displayed in tooltip without their variable names. Only
the text in “Description” is displayed.

“Description” Text for the tooltip. It is displayed when a visualization user moves the cursor in
the trace diagram.
Example: Sensor A
The text is also entered into the “GlobalTextList” object and can be translated
there.

“Color” Color of the graph in the diagram.

“Line type” Representation of the graph as a line chart
● “Line”: Values are linked to form a line.
● “Step”: Values are linked in the form of steps.
● “None”: Values are not linked.

'Variable Set-
tings'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3356

“Line width” In pixels
Example: 1

“Line style” The display of the line is solid, dash, dot, dash-dot, or dash-dot-dot.

“Dot type” Representation of the graph as a scatter chart. This configuration entry with the
“Line type” determines the appearance of the graph.
● “Dot”: Each value as a dot.
● “Cross”: Each value as a cross.
● “None”

Note: For “Dot” or “Cross”, a paint buffer overflow can result from many recorded
variables.

“Warning at minimum” : When below the lower limit, the visualization shows the trace graphs in the
alert color.

“Critical lower limit” Minimum Value
Example: 10.

“Color” Warning color on falling below the limit

“Warning at maximum” : When above the upper limit, the visualization shows the trace graphs in the
alert color.

“Critical upper limit” Maximum value
Example: 90

“Color” Warning color on exceeding the limit

“Dynamic appearance options”

“Variable for visibility” Variable (BOOL) or as bit access. This controls the visibility of the variables in the
trace diagram.
● TRUE: Visible
● FALSE: Invisible

See also
● Ä Chapter 6.4.5.21.2.13 “Command 'Configure Trace'” on page 3355

Command 'Export Trace Configuration'
Function: This command opens the “Export Trace Configuration” dialog box.
Call: context menu (right-click) the upper node in the tree view of the trace configuration.
Requirement: The dialog box “Trace Configuration” is active and the name of the trace configu-
ration is selected in the tree view (example: Visu_Trace1).

This dialog is used for saving the trace configuration to a text file that can be read by the
runtime system.

“File name” Name of text file to be created.

“File type” “Trace file (*.trace)”: Format that the runtime system component CmpTraceMgr
expects for reading.

Dialog box 'Ex-
port Trace Con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3357

See also
● Ä Chapter 6.4.5.21.2.13 “Command 'Configure Trace'” on page 3355

Command 'Insert Elements for Controlling Trace'
Symbol:
Function: The command opens the “Trace Wizard” dialog. In this dialog, you select predefined
visualization elements for controlling the trace recording. These elements are then inserted as
configured into the visualization editor.
Call: Menu bar: “Visualization”; context menu of the trace element.
Requirement: The view is active and a trace element is selected.

“Control variable” Corresponds to the “Control variables” property that is available in the element
properties of the trace element.

: The control element for this trace control variable is created in the visualiza-
tion editor.

“Variable” Project variables that are assigned to the control element below the “Input
configuration” property. In addition, the project variables are declared as local
variables in the visualization when needed (in the interface editor).
This list corresponds to the assignments that are defined in the element proper-
ties of the trace element. If nothing is configured in the properties of the trace
element (no project variables assigned as control variables), then a pre-alloca-
tion is offered with default variable names.

“Type of element to insert” For a Boolean variable, this element can be inserted as a button or rectangle.
For a string variable, a rectangle or a text field is provided.

“OK” At the closing of the dialog, the selected control elements are inserted into
the visualization editor and (when needed) its control variables are created as
local variables of the visualization. They are declared in the interface editor and
they are used by the control element (property “Input configuration è Toggle
è Variable”) and by the trace element (“Control variables” property). The control
element writes to the variable and the trace element reads the variable.

VAR
 bResetTrigger : BOOL;
 bStart : BOOL;
 bStop : BOOL;
 bStore : BOOL;
 sStoreFilename : STRING;
 bRestore : BOOL;
 sRestoreFilename : STRING;
END_VAR

Example
Standard con-
trol variables:

See also
● Ä Chapter 6.4.5.12.2 “Getting started with trace” on page 2926

Dialog 'Trace
wizard'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3358

Command 'Configure Display Settings of Trend'
Symbol:
Function: When you execute this command in “Visualization” or in the context menu, the “Edit
Display Settings” dialog opens.
Call:
● Menu bar: “Visualization”
● Context menu of a “Trend” element in the visualization editor
● Property “Diagram”

Requirement: A trend is selected in the active visualization editor.

“Grid” : Trend diagram with grid lines in the X-direction in the selected color

“Font” Font for the axis label

Table 666: “Display mode”
● “Auto”: : The visualization scales automatically.

● “ Fixed” : Fixed range from “Minimum” to “Maximum”

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Grid” : Trend diagram with grid lines in the Y-direction in the selected color

“Description” : Text for labeling the Y-axis (for example, DC/mA)

Table 667: “Tick marks”
“Fixed spacing” : Axis scale with tick marks for “Distance” and “Subdivisions”

“Distance” Distance between the tick marks (example: 2)

“Subdivisions” Number of subdivisions between tick marks (example: 4)

“Font” Font for the axis label

Table 668: “Background”
“From visualization style” Background color as defined in the visualization style

“Draw background” Background color which is selected in the lower input field

Tab “X Axis”

Tab “Y axis”

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3359

“No background” Trend diagram with transparent background

Background color of the trend
diagram

Requirement: “Draw background” is activated.

“Reset” Resets the settings to the default settings

“Use as default” Saves the settings as default

“Add Y-axis” Extends the trend diagram by one Y-axis
Result: The “Trend Recording” editor contains an extended selection of Y-axes in
the “Additional axes” option of the “Variable Settings”.

“Delete Y-axis” Deletes the Y-axis of the visible tab.

See also
● Ä Chapter 6.4.5.21.2.12 “Command 'Configure Display Settings of Trend'” on page 3353
● Editor 'Trend Recording'

Command 'Edit Trend Recording'
Symbol:
Function: This command opens the “Trend Recording” object.
Call:
● Menu bar: “Visualization”
● Context menu of a “Trend” element in the visualization editor
● Property “Trend recording”

Requirement: An element of type “Trend recording” is selected in the visualization editor.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.1.21.2.33 “Object 'Trend Recording'” on page 2545

Command 'Insert Elements for Controlling the Trend'
Symbol:
Function: When you execute this command in “Visualization”, the “Trend Wizard” dialog box
opens.
Call: Menu bar: “Visualization”; context menu of a “Trend” element in the visualization editor.
Requirement: A trend is selected in the active visualization editor.

Each row of the table contains a control element that can assigned to the trend. The ele-
ments are placed in the visualization next to the trend. The control elements are saved in the
“Assigned control elements” property and can be modified there.

Dialog 'Trend
wizard'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3360

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

“Attached control element” : The associated element is available in the visualization and connected with
the trend via the property “Assigned Visu element”. The element is inserted into
the visualization.

: Deactivating the option does not cause the element to be deleted from the
visualization.

“Position” Position of the control element in relation to the trend.

“Type of element to insert” Drop-down list with the installed types of the control element

“Instance name” Instance name of the control element

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Command 'Visualization Element Repository'
Symbol:
Function: This command opens the “Visualization Element Repository” dialog box opens for
editing the storage location and visualization profile.
Call: Menu bar: “Tools”.
Requirement: No project is open.

The visualization element repository is used for creating a visualization profile or
visualization extension. This is necessary when developing you own visualiza-
tion elements with the CODESYS VisuElement Toolkit. The CODESYS VisuEle-
ment Toolkit is required for this with a valid license. Users who do not wish to
create their own visualization elements can use this dialog to find out which
elements are included in which visualization profile. A reconfiguration of the
storage location for a repository is also important only for element developers.

NOTICE!
1. Only an empty directory can be selected as a new storage location for a
repository.
2. The "System" repository cannot be modified. This is indicated by the entry in
italics in the repository list.

Currently only a single version of an element can be installed.

Table 669: Editing the repository
“Location” Storage location for the repository in the file system. The drop-down list contains

the configured repositories for visualization elements.

“Edit locations” Opens the “Edit Repositories” dialog box for modifying the repository currently
selected in “Location” or for creating a new repository.

Dialog box 'Vi-
sualization Ele-
ment Reposi-
tory'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3361

Table 670: “Profile or extension selection”
A profile is a collection of visualization elements in a specific version. These elements originate from one or more
libraries. They are available in the toolbox of the visualization editor when the profile is used in the project. You
can use an extension to add a specific selection of elements to an existing profile.
Creating and editing a profile is possible only if the CODESYS VisuElement Toolkit is installed. In this case, the
buttons on the right side of the dialog box can be used.

“Create or update profile” You can configure a new profile in the dialog or modify an existing one. Then,
the “New”, “Copy”, and “Delete” buttons are operable, as well as the “Installed
Elements” and “Available Elements” views.

“Create or update extension” In the dialog, you can configure an extension for the selected profile. Another
drop-down list “Extension” appears with all currently available extensions.
To configure a new extension, use the “New” or “Copy” buttons (see below).
In both cases, the “Specify Visualization Extension” dialog box opens for you
to define a new extension. In this dialog box, the “Name”, “Company”, and
“Version” of the extension are displayed. Version syntax: Sequence of numbers
and points with a number at the end.

“Profile” Currently selected profile. The drop-down list provides all profiles available in the
repository set above.

“Extension” The extension that is currently selected for the specified profile. The drop-down
list provides all extensions available for the profile.

“New” Pressing the button opens the “Specify Name of Visualization Profile” dialog or
the “Specify Visualization Extension” dialog. Specify a unique name for the new
profile, or for an extension also the company name and the version. CODESYS
automatically enters the previously used name, appended with "_0".

The “Installed elements” list is empty.

“Copy” Pressing the button opens the “Specify Name of Visualization Profile” dialog or
the “Specify Visualization Extension” dialog (see above: “New”).
The elements of the selected profile are accepted and they appear in the
“Installed elements” view.

“Delete” The currently set profile or the extension is deleted, and then the drop-down list
is removed.

Table 671: “Installed Elements”
“Name, Vendor, Library” Elements that are assigned to the selected profile.

“Uninstall” All elements currently selected in the list are uninstalled and removed from the
“Available Elements” list.

“Update code” The list is refreshed with any changes in the implementation code of the library
POUs.

“Update all” The list is refreshed with any changes in the implementation code and in the
interfaces (declaration part) of the library POUs.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3362

Table 672: “Available Elements”
“Name”

“Library”

“Vendor”

“Version”

“Repositories”

“Profiles”

Elements that are available in the system and can be installed into the current
profile or extension. The selection depends on the installed element libraries and
element packages.
The tree structure displays the libraries with the contained elements below them.
Elements display in green are already installed for the specified profile or exten-
sion. “Profiles” shows the elements installed for the profiles.

“Install element” The elements selected in the list are added to the “Installed Elements” view.
Existing elements are overwritten.

“Install library” The “Library Repository” dialog box opens where another library can be installed
in order to accept its elements in the “Available Elements” view.

“Note current library versions
only”

: When refreshing the list, only the most current version of the library is
searched, not all libraries.

“Overwrite profiles without
prompting”

: For actions that change the profile, the usual prompt does not appear for
confirming the change.

“Storage location, Name” For managing the visualization elements, one or more repositories can be used.
All currently defined storage locations are listed here with file path and name.
The order from top to bottom is also the search order for the visualization ele-
ments.
File path and name of the storage location selected previously in the “Repository
for Visualization Elements” dialog.
Note: A storage location "System" is always defined automatically, which cannot
be modified or deleted.

“Add”

“Edit”

Opens the “Storage Location for Repository” dialog for creating a new storage
location or for editing the current storage location.
Specify: “Storage location” (file path of an empty directory) and “Name”. The
name is symbolic (example: "Elements category 1").

“Remove” Deletes the repository currently selected in the repository list.

“Move Up, Move Down” Moves the entries within the list. Note: The repositories are searched from top to
bottom.

Command 'Visualization Style Repository'
Symbol:
Function: This command opens the “Visualization Styles” dialog box. It makes it possible to edit
visualization style repositories.
Call: Menu bar: “Tools”.
See also
● Ä Chapter 6.4.5.19.3 “Managing visualization styles in repositories” on page 2985

Dialog box 'Edit
Repositories'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3363

“Storage location” Name of the currently selected repository Preset: “System”

: Lists the repositories installed in the development system.

“(...)” Storage location of the repository
Example: (C:\ProgramData\CODESYS\Visualization Styles)

“Edit locations” The “Edit Repository Locations” dialog box opens.

Table 673: “Installed Visualization Styles”
“Company” When a company name is specified here, the tree view is filtered and only the

styles of the selected company are listed.
Preset: “(All companies)”. It is not filtered.

: Lists all companies that are specified in the styles.

Windows with styles Tree view of all versions of the installed visualization styles in the selected
repository

“Display localized names” : The style name is localized and displayed in the language that is set in
CODESYS.

: The style is display as the source name.

“Install” The “Select Visualization Style(s)” dialog box opens.

“Uninstall” The selected style version is removed from the repository.

“Preview” The windows closes. A preview is displayed of the selected style in the selected
version. Specific elements are displayed in the style.

Table 674: “Repositories (elements are searched in that order)”
“Location” Storage location of the configured repository on the development system

Example: C:\ProgramData\CODESYS\Visualization Styles
“Name” Preset: System
“Add” The “Repository Locations” dialog box opens. It makes it possible to manage

other repositories.“Edit”

“Remove”

“Move Up” The order in the list of repositories is adapted. It defines the processing order
when searching for elements.“Move Down”

Command 'Add Visual Element'
Function: The command opens a menu containing all available visualization elements as menu
items.
Requirement: You have configured the command in the dialog box “Customize” in a way that
you have a call in a (any) menu.

Dialog Box 'Vi-
sualization
Styles'

Dialog box 'Edit
Repository
Locations'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3364

When you select an element in the menu, the element is added in the visualization editor in the
upper left corner.
See also
● Ä Chapter 6.4.5.5.2 “Select Element” on page 2873
● Ä Chapter 6.4.1.21.3.9.16 “Command 'Customize'” on page 2667

Command 'Select None'
Function: The command cancels at once any selection in the current visualization editor.
Requirement: You have configured the command in the dialog box “Customize” in a way that
you have a call in a (any) menu.
See also
● Ä Chapter 6.4.5.5.2 “Select Element” on page 2873
● Ä Chapter 6.4.5.21.2.7 “Command 'Group'” on page 3347
● Ä Chapter 6.4.1.21.3.9.16 “Command 'Customize'” on page 2667

Command 'Add Elements for Alarm Acknowledgement'
Symbol:
Function: This command adds buttons automatically to the visualization for acknowledging
alarms. It opens an assistant for inserting controls below the table.
Call: Menu bar: “Visualization”; context menu of visualization element "Alarm table"
Requirement: An "Alarm table" visualization element is selected.

“Type of element(s) to insert” ● “Button”
● “Rectangle”

“ Action” : A button or a rectangle with the selected function is added to the visualiza-
tion.

“Variable” If you have already specified a variable for an action, then this is displayed here
in the “Variable” column. If you have not defined a variable yet, then a local
visualization variable is created automatically.

See also
● Ä Chapter 6.4.5.21.5.22 “Visualization Element 'Alarm Table'” on page 3591

Dialog box
'Alarm Table
Wizard'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3365

6.4.5.21.3 Dialog Boxes
6.4.5.21.3.1 Dialog 'Access Rights'.. 3366
6.4.5.21.3.2 Dialog 'Add Visualization'... 3367
6.4.5.21.3.3 Dialog 'Update Frame Parameters'.. 3367
6.4.5.21.3.4 Dialog 'Configure Categories and Items'.................................... 3368
6.4.5.21.3.5 Dialog 'Gradient Editor'... 3369
6.4.5.21.3.6 Dialog 'Input Configuration'... 3370
6.4.5.21.3.7 Dialog 'Options' - 'Visualization Styles'....................................... 3382
6.4.5.21.3.8 Dialog 'Options' - 'Visualization User Management'................... 3383
6.4.5.21.3.9 Dialog Box 'Options' - 'Visualization'... 3384
6.4.5.21.3.10 Dialog 'Project Environment' - 'Visualization Profile'................. 3385
6.4.5.21.3.11 Dialog 'Project Environment' - 'Visualization Styles'................. 3386
6.4.5.21.3.12 Dialog 'Project Environment' – 'Visualization Symbols'............ 3386
6.4.5.21.3.13 Dialog 'Project Settings' - 'Visualization'................................... 3387
6.4.5.21.3.14 Dialog ‘Project Settings’ - ‘Visualization Profile’....................... 3388
6.4.5.21.3.15 Dialog 'Properties' of Visualization Objects.............................. 3388
6.4.5.21.3.16 Dialog 'Selected Alarm Class'... 3389
6.4.5.21.3.17 Dialog 'Selected Alarm Group'.. 3390
6.4.5.21.3.18 Dialog 'Advanced Trace Settings'... 3391
6.4.5.21.3.19 Dialog 'Display Settings'... 3391

Dialog 'Access Rights'
Function: This dialog defines the permissions of user groups for a visualization element.
Call: Click in the “Value” field of the “Access Rights” element property of a visualization element.
Requirement: A visualization element is selected in a visualization element and the “Properties”
is open.

“User Groups” Groups that were configured in the “Visualization Manager” (tab
“User Management è Groups”).

“Operable” : The visualization element is available with full functionality.

“Only Visible” : The visualization element is visible only and does not provide any function-
ality.

“Invisible” : The visualization element is not displayed.

“Group hierarchy is used” Display whether the option “Use group hierarchy” is activated in the
“Visualization Manager” (tab “User Management è Settings”).
A group of a higher hierarchy cannot have fewer permissions for an element
than an element of a lower hierarchy.

If no user is logged in, then the permissions apply for the visualization elements
that are configured for the user group “None”. If the permissions for a visualiza-
tion element is restricted, then the group “None” should be granted the lowest
permissions.

See also
● Ä Chapter 6.4.5.21.4.5 “Tab 'Visualization manager' - 'User management'” on page 3403

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3366

Dialog 'Add Visualization'
Function: The dialog is used to create a new object of type “Visualization”.
Call: Menu bar: “Project è Add Object è Visualization”; context menu of an application
Requirement: An application is selected in the device tree.

“Name” Name of the visualization
Example: Visu_A

The following settings are displayed only when you add a “Visualization” object to the project for the first time.

“Symbol library” List of all installed symbol libraries

“Assigned” : Symbol library is selected
Hint: CODESYS manages this setting in the project settings.

“Add” CODESYS creates a new visualization, assigns the selected symbol libraries to
the project, and lists them in the “Visualization Toolbox” view.

See also
● Ä Chapter 6.4.5.5.2 “Select Element” on page 2873
● Dialog 'Project Settings' - 'Visualization'
● Command 'Add Object'

Dialog 'Update Frame Parameters'
Function: The dialog requests you, after changing an interface in the visualization references
concerned, to re-assign the variables for the parameter transfer.
Call: The dialog appears automatically.
Requirement: You have changed the interface of a visualization, for example by adding
an additional variable. After that, you have clicked either “File è Save Project” or “Build
è Generate Code”, or opened a visualization.

“Parameter” Hierarchical structure of the interface parameters as a tree view

Top node of the visualization hierarchy with the name of the visualization. This
contains an element of type “Frame” or “Tabs”.

Name of the element (“Frame” or “Tabs” type)

Name of the referenced visualization

“(Recent)” Interface of the referenced visualization with the new parameters
You can edit the parameter transfer here.

“(Previous)” Interface of the referenced visualization with the previously valid parameters.
You cannot edit the parameter transfer, but you can use it as a template.

 <name> Variable for the parameter transfer (VAR_INPUT scope)

 <name> Variable for the parameter transfer (VAR_IN_OUT scope)

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3367

ms-its:codesys.chm::/_cds_dlg_project_settings_visualization.htm
ms-its:codesys.chm::/_cds_cmd_add_object.htm

“Type” Data type of the variable
Example: INT

“Value” Variable that is transferred as a parameter and with whose value the visualiza-
tion is initialized during instantiation.
Example: PLC_PRG.iVisNr
If the variable lies under the current interface, which is marked in the tree view
with “(Current)”, then you can edit the parameter transfer.
● Click in the field to open the input field.
● Double-click in the field to open the Input Assistant.
● Accept the settings by copying assignments in the “Value” column and

pasting them into another cell. Use the “Copy” and “Paste” links to do this.

“Copy” Link for copying an assignment from the “Value” column.
Requirement: An assignment is selected.

“Paste” Link for inserting an assignment
Requirement: You have copied an assignment.

“OK” Click the button to close the dialog and confirm the changes made under
“(Recent)”.
Result: The assignment is entered in the “References” property and on the
“Interface Editor” tab.

See also
● Ä Chapter 6.4.5.21.5.6 “Visualization Element 'Frame'” on page 3478
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340

Dialog 'Configure Categories and Items'
Function: The dialog is used to manage the categories in a tree view. The assigned elements
are listed below a category. You can create custom categories and edit the assignment to the
visualization elements. The name of the category is displayed in the “Visualization Toolbox” view
as a label of the button to open the element selection.

Call: Click the symbol in the “Visualization Toolbox” view.
See also
● Ä Chapter 6.4.5.5.2 “Select Element” on page 2873
● Ä Chapter 6.4.5.21.4.1.2 “View 'Visualization Toolbox'” on page 3394

Tree view

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3368

“Category” Tree view

● “<name>”: Default category
● “<name>”: Custom category

Example: “Favorite”

Lists the assigned visualization elements. To remove a selected visualization
element, click the [Del] key.
Hint: The assignment is created in the “Visualization Toolbox” view with the help
of the context menu of a selected element.

“Active” : A button for the category is visible in the “Visualization Toolbox” view.

The “Add Category” dialog opens.

 or [Del] The category selected in the tree view is removed. After you click “OK” to close
the dialog, the button is also removed from the “Visualization Toolbox” view.

Call: Click the symbol in the “Configure Categories and Items” dialog.

“Name” Name of the category
Example: tagA

“Description” Example: Tagged with A

Dialog 'Gradient Editor'
Function: The dialog is for setting the color gradient of visualization elements. If you define two
colors, the color graduates between them. If you only select 1 color, the color graduates within
this color through its brightness. The detailed settings are for a special specification of the initial
position and the angle of the color gradient.
Call: Click in the value field of the property “Gradient settings”

Requirement: You have selected a visualization element in the editor that has the property
“Gradient settings”.

“Gradient type” ● “Linear”
● “Radial”
● “Axial”: The color gradient runs along an axis, with the colors extending

perpendicular to the axis on both sides.

“Color 1” First color of the gradient.

“Color 2” Second color of the gradient.

“Transparency” Transparency of the associated color. Permissible values: Integers in the range
of values from 255 to 0. 255: The color is opaque. 0: The color is fully trans-
parent.

“Standard linear” Requirement: “Linear” color gradient.
Standard direction of the linear color gradient.

“Standard radial” Requirement: “Radial” color gradient.
Standard setting.

Toolbar

Dialog 'Add Cat-
egory'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3369

“Standard axial” Requirement: “Axial” color gradient.
Direction of the color gradient

“Angle (degrees)”: Requirement: “Linear” or “Axial” color gradient.

“Center X (%):” Requirement: “Radial” color gradient.
X-position of the center point (0 – 100%)

“Center Y (%):” Requirement: “Radial” color gradient.
Y-position of the center point (0 – 100%)

“Use one color” Color gradient between “Color 1” and the same color with a different brightness.

“Brightness” Requirement: The option “Use one color” is selected.
Setting from 0 (black) to 100 (white)

“Use two colors” Color gradient between the two selected colors “Color 1” and “Color 2”.

See also
● Ä Chapter 6.4.5.5.4 “Assigning a color” on page 2876
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Dialog 'Input Configuration'
Symbol:
Function: The dialog is used to assign input actions to specific input events. It also includes
specific settings for the selected input action.
Call: In the “Input configuration” property, click “Configure”.
Requirement: An element is selected in the editor.

“Dialogs and actions” Configures which one of the possible user management dialogs or which action
follows the input event
Note: The dialog used at runtime is configured in the “Dialog Settings” tab of the
Visualization Manager.
See also
● “ Login dialog”
● “Change password dialog”
● “Change configuration dialog”

Default: Dialogs from the VisuUserManagement library

“Login” The login prompt opens.
Default: VisuUserManagement.VUM_Login in “Login dialog”

“Logout” The current user is logged out.

“Change User Password” The dialog for changing the password opens.
Default: VisuUserManagement.VUM_ChangePassword in “Change password
dialog”

“Open User Configuration” The dialog opens for changing the configuration.
Default: VisuUserManagement.VUM_UserManagement in “Change
configuration dialog”

Input action
'User Manage-
ment'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3370

See also
● Ä Chapter 6.4.5.7 “Setting Up User Management” on page 2899
● Ä “Tab 'Visualization manager' – 'Settings'” on page 3398

“Dialog” The visualization of type “Dialog” that will be closed.

: List box with all “Dialog” type visualizations available in the project.
Example:
Default dialogs of the VisuDialogs library, which is usually integrated in the
project.
● FileOpenSave
● Keypad
● Login
● Numpad
● NumpadExtended
● TextinputWithLimits
Note: The setting in the object property (“Visualization” tab) of a visualization
determines whether or not a visualization can be used as a dialog.

“Result” Return value for closing the dialog.
Note: If there are more input actions after closing, then they configured in the
“Input configuration è OnDialogClosed” property of the element.

“None” : No return value

“OK” : The set return value is returned. The return value refers to the button in
the dialog. The value OK is returned for the OK button. The value Cancel is
returned for the cancel button.“Cancel”

“Abort”

“Retry”

“Ignore”

“Yes”

“No”

See also
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388

“Dialog” Visualization (type “Dialog”). The dialog opens.

: List box with all dialogs available in the project.
Note: The “VisuDialogs” library provides visualizations (type “Dialog”).
● VisuDialogs.FileOpenSave
● VisuDialogs.Login

Input action
'Close Dialog'

Input action
'Open Dialog'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3371

Transfer parameters of the dialog

“Parameter” Interface parameter as declared in the interface editor of the visualization
Example: filelistProvider

“Type” Data type of the parameter as declared in the interface editor of the visualization.
Example: VISU_FBFILELISTPROVIDER

“Value” Variable (data type corresponds to the data type of the parameter). The value of
the variable is read when the dialog opens and passed to the parameter.
Example: PLC_PRG.fileListProvider // Instance of function
block VisuDialogs.Visu_FbFileListProvider

: The input assistance offers all variables available in the entire project.

Here the return value of the dialog is activated for which the Var_OUTPUT variable and VAR_IN_OUT variable are
written. The dialog closes afterwards.

“Update” “and”
“parameter in case of result”

Note: The parameters are updated before the dialog is closed. Until then, the
values are stored temporarily. They are stored as a copy, not as a reference.

“None” : No return value

“OK” : Defines the return value for which the transfer parameter is written
“Cancel”

“Abort”

“Retry”

“Ignore”

“Yes”

“No”

“Open dialog modal” : Only the dialog processes user inputs. The remaining visualizations are
blocked to user input.

“Position to open”

“Centered” The dialog opens in the center of the visualization.

“Position” The dialog opens at the position defined by “X” and “Y”.

“X” Position (in pixels) or variable (integer data type)

“Y” Position (in pixels) or variable (integer data type)

See also
● Ä Chapter 6.4.5.17.4 “Calling a dialog in a visualization” on page 2957

“Language” Language to be switched
Example: en

: The input assistance offers all languages available in the project.

Input action
'Change Lan-
guage'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3372

Table 675: “Zoom to visualization”
Visualization that is shown at the user input

“Assign” Visualization that is selected from all available visualizations in the project or
libraries.
Example: visMain

“Assign expression” Variable (STRING) that contains the name of the visualization

Example: PLC_PRG.strVisu for the following application code: strVisu:
STRING := 'visMain';

The order in which visualizations are displayed by user inputs is saved internally. The following options use this
information.

“Previous shown visualization” : Visualization that has already been shown before the current one
Requirement: A visualization switch has already occurred.

“Next shown visualization” : Visualization that is next in the call order after the current one.
Requirement: A visualization switch has already occurred which was called by
“Previous shown visualization”.

Commands are listed here with transfer parameters that the visualization processes when an
input event occurs.

“Configure commands”

● “Execute program on the plc”
● “Execute program on client”
● “Print”
● “Navigate to URL (WebVisu)”
● “Create Recipe”
● “Read Recipe”
● “Write Recipe”
● “Write Recipe in File”
● “Load Recipe from File”
● “Delete Recipe ”

Click to add the selected command to the lower command list.

The command in “Configure commands” is added to the list.

The command is removed.
Requirement: A command is selected.

The order in the list defines the order of execution.

The selected command is moved down one position in the list.

The selected command is moved up one position in the list.

Input action
'Change Shown
Visualization'

Input action 'Ex-
ecute Com-
mand'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3373

Table 676: Command “Execute program on the plc”
“Command” “1st parameter” “2nd parameter”
ExecutePlcProgram 'C:\programs\notepad.exe' 'Notes_A.txt'
EXE file that is executed on
the controller
The program is executed
on the PLC and therefore
it must not be interactive or
have any user interfaces.
It is possible, for example,
for a program to copy a file.

Program name with directory as
STRING in single straight quotation
marks

Arguments of the program
as STRING in single straight
quotation marks
Example: Name of the file
that the program opens

Table 677: Command “Execute program on client”
“Command” “1st parameter” “2nd parameter”
ExecuteClientProgram 'C:\programs\notepad.exe' 'Notes_A.txt'
EXE file that is executed on
the display variant. Excep-
tion: WebVisu.
The program is executed
within the context of the dis-
play variant. After this, the
program may be interactive
and have a user interface.

Program name with directory as
STRING in single straight quotation
marks

Arguments of the program
as STRING in single straight
quotation marks
Example: Name of the file
that the program opens

NOTICE!
If the visualization is displayed as a CODESYS WebVisu, then no program
(EXE file) can be started.

Table 678: Command “Navigate to URL (WebVisu) ”
“Command” “1st parameter” “2nd parameter”
NavigateURL 'http://en.wikipedia.org'

PLC_PRG.stURL
'replace'

The visualization navigates
to the web page of the
URL.
Requirement: The visuali-
zation is executed as a
CODESYS WebVisu.

URL
● As a literal in single straight

quotation marks
● As a variable (STRING)

If a parameter is not speci-
fied, then the web page is
displayed in a new window
or a new tab.
If 'replace' is specified,
then the CODESYS Web-
Visu is replaced by the web
page.

Table 679: Command “Read Recipe”
“Command” “1st parameter” “2nd parameter”
ReadRecipe 'RecipeDefinitionForModule

s'
'RecipeModuleA'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3374

 Name of the recipe definition
● As a literal
● As a variable (STRING)

Name of the recipe
● As a literal
● As a variable (STRING)

At visualization runtime, the controller reads the actual values from the variables of the recipe
definition and writes them to the specified recipe. The values are saved implicitly (to a file on
the controller) and shown in the recipe definition in the Recipe Manager of CODESYS. In other
words, the recipe that is managed in CODESYS is updated with values from the controller.

Table 680: Command “Write Recipe”
“Command” “1st parameter” “2nd parameter”
WriteRecipe PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the recipe (from
the recipe definition)
● As a literal
● As a variable (STRING)

At visualization runtime, the values of the recipe are written to the variables on the controller
as they are in the Recipe Manager.

Table 681: Command “Save Recipe in File”
“Command” “1st parameter” “2nd parameter”
SaveRecipeAs PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the affected recipe
that is updated and saved
to a file
● As a literal
● As a variable (STRING)
Optional parameter: If you
do not specify a transfer
parameter here, then the
values from the recipe vari-
ables are saved only the file
that is specified later. The
implicit recipe files are not
updated.

At visualization runtime, the “Save Recipe as” dialog opens and prompts the user for
a file name and a storage location on the controller. The file name must not be
<recipe>.<recipe definition>. The file extension is .txtrecipe.

The user can then save the file that includes the actual values from the recipe variables.
If a transfer parameter is not specified in the 2nd parameter, then the file is saved without
changing an implicit recipe file. If a transfer parameter is given in the 2nd parameter, then the
implicit recipe file is also updated.
Note: If the “Save recipe changes to recipe files automatically” option is selected in the
“Recipe Manager - General” tab, then the recipe definition in CODESYS and the implicit recipe
files are kept the same automatically.
Note: Implicit (automatically generated) recipe files exist on the controller with names in the
following syntax: <recipe>.<recipe definition>.txtrecipe. These are typically used
in the application as a buffer when reading and writing recipe variables.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3375

Table 682: Command “Load Recipe from File”
“Command” “1st parameter” “2nd parameter”
LoadRecipeFrom PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the affected recipe
● As a literal
● As a variable (STRING)

At visualization runtime, the “Load Recipe” dialog opens. It provides the visualization user
with a file list that is located in the file system of the controller and filters by the extension
txtrecipe. The selected file is downloaded. Then the recipes from the file are written to the
implicit files and read to the given recipe in the recipe definition of the Recipe Manager.
Requirement: The file was created with the SaveRecipeAs command.

Table 683: Command “Create Recipe”
“Command” “1st parameter” “2nd parameter”
CreateRecipe PLC_PRG.stRecipeDef PLC_PRG.stRecipe_New
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the new recipe
● As a literal
● As a variable (STRING)

At visualization runtime, a new recipe is created in the given recipe definition.

Table 684: Command “Delete Recipe”
“Command” “1st parameter” “2nd parameter”
DeleteRecipe PLC_PRG.stRecipeDef PLC_PRG.stRecipe
 Name of the affected recipe defini-

tion
● As a literal
● As a variable (STRING)

Name of the recipe
● As a literal
● As a variable (STRING)

At visualization runtime, the specified recipe is deleted from the recipe definition.

Table 685: Command “Print”
“Command” “1st parameter” “2nd parameter”
Print Optional: File name for the vis-

ualization screen to be printed
(example: 'Start screen')

A second parameter cannot
be specified for the Print
command.

The default “Printer” dialog opens while the visualization is running. In the dialog, you select
a printer and configure additional print settings. When you confirm the dialog, the currently
displayed visualization screen is printed.
Note: The command can be executed in the TargetVisu only.

See also
● Changing Values with Recipes
● Object 'Recipe Definition'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3376

ms-its:codesys.chm::/_cds_using_recipes.htm
ms-its:codesys.chm::/_cds_obj_recipe_definition.htm

When the input event occurs, the display switches to another visualization within one frame.

“Frame selection type”

“Switch local visualization” The “Frame Selection” group is visible.

“Switch to any visualization” The “Frame and visualization selection” group is visible.

Requirement: “Switch local visualization” is selected.

“Frame selection” List of all frames that contain the active visualization. The referenced visualiza-
tions are listed below each frame, as determined in the “References” property of
the respective frame.
Example:

“Assign selection” The selection in the “Frame selection” input field is accepted. Then it appears in
the “Selected frame” and “Selected visualization” settings.
Requirement: A visualization is selected in the “Frame selection” input field.

“Selected Frame” Name of the frame to be switched to
Example: MainArea
Hint: Use the “Assign selection” command for changing the setting here.

“Selected Visu” Name of the switched visualization.
Example: visMainArea
Hint: Use the “Assign selection” command for changing the setting here.

Requirement: The “Switch to any visualization” option is selected.

“Frame and visualization
selection”

Contains the frame to be switched to

“Assign” Frame to be switched to (with complete path). The index determines the visuali-
zation.
Example: visMain.frameA.visB.frameB
The path is specified in the following syntax: <visualization
name>.<frame name> { <visualization name>.<frame name> }
Caution: Visualizations can be nested at any depth by means of frame elements.
In order to use the “Switch to any visualization” frame selection type without any
problems, a frame must not contain more than 21 referenced visualizations.

Input action
'Switch Frame
Visualization'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3377

“Assign expression” Variable (STRING). Contains the path of the frame to be switched to

Example: strFrane: STRING := 'visMain.frameA.visB.frameB';
“Index to select” Index that determines which of the referenced visualizations is displayed

● As an integer
● As a variable (integer data type)

Example :PLC_PRG.iIndex
Note: The referenced visualizations of a frame are indexed automatically
according to their order.

Requirement: The project contains visualizations that form a structure.
See also
● Ä “Dialog 'Frame Configuration'” on page 3348

The configuration of the input action defines how a visualization user specifies a value and to
which variable the value is written.

Check all inputs for there validity. Be sure that only values within the range can
be added to a numeric field. Depending on the datatype of the input value, the
limitations can be different.

“Input type”

How the input is prompted.

“Default”: An input field also opens, or if necessary a virtual keyboard (when the display
variant does not have a physical keyboard).
Note: The default option for text input at runtime is set in the Visualization
Manager: “Dialog Settings” tab, “Settings for Default Text Input”.

“Text input” An input field appears. You use the keyboard to specify a number or a text.
Requirement: The display variant has a keyboard as input device.

“Text input with limits” An input field appears. You use the keyboard to specify a number or a text. The
field also shows the range of values for the input. When a limit is passed, the
input value is displayed in red.
Requirement: The display variant has a keyboard as input device.

“VisuDialogs.Keypad” A virtual keyboard opens. You use it to specify a number or a text.

“VisuDialogs.Numpad” A virtual keyboard opens. You use it to specify a number.

“VisuDialogs.NumpadExtended
”

A virtual keyboard opens. You use it to specify a number. Hexadecimal and
exponential notation are also permitted here.

“Choose variable to edit”

“Use text output variable” : The input value is written to the text output variable of the element. This is
the variable that is assigned in the “Text variable è Text” property.

“Use another variable” : Variable where the input value is written.
Example: PLC_PRG.iVariable

“Initial display format” Placeholder with format definition. It defines the output format for the variable
value and the input limits.
Example: %2.3f for displaying the value as a decimal fraction.

Input action
'Write Variable'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3378

“Min” Minimum value of the input limit. If a user specifies a lesser value, then it is not
accepted.
● As a fixed value
● As a variable (data type corresponds to selected variable)

“Max” Maximum value of the input limit. If a user specifies a greater value, then it is not
accepted.
● As a fixed value
● As a variable (data type corresponds to selected variable)

“Dialog title” Text displayed in the title bar of the dialog. Optional.
● As a fixed string

Example: Insert value
● As a variable (STRING)

Example: PLC_PRG.stTitle : STRING := 'Insert value';

“Password field” : Unseen text input. *** is shown instead of the input text.

Table 686: “Position to open input dialog”
“Use global setting (from the
Visualization Manager)”

: This option is applies only for use in a TargetVisu or WebVisu. The settings
are used which are available in the “Dialog Settings” tab of the Visualization
Manager.

“Centered” : The dialog opens in the center of the visualization window.

“Position” : The dialog opens in the visualization at the position defined here.
“X”, “Y”: Variable or explicit number (in pixels) for the definition of the upper left
corner of the dialog in the coordinate system of the visualization window.
You can use the placeholders ElementRectangle.ptTopLeft.iX and .iY
ElementRectangle.ptBottomRight.iY. It is replaced at runtime by the
coordinates of the calling element.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Tab 'Visualization manager' – 'Settings'” on page 3398

Input field Editor for code as Structured Text

“Variable” Variable (BOOL). It toggles between TRUE and FALSE for an input event.

Example: PLC_PRG.bSwitch

With the “File Transfer” input action, a file can be transferred from an operating variant (target or
web visualization) to the PLC as well as to and from the PLC. This works either by means of a
file transfer (“Type”: “File”) or streaming (“Type”: “Streaming”).

Input action 'Ex-
ecute ST Code'

Input action
'Toggle Variable'

Input action 'File
Transfer'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3379

The action has the effect that a file selection dialog is displayed in the visualization at runtime.
There the visualization user can select a file which will be transferred either to or from the PLC:
For a transfer from a PLC to the visualization, the “Save File” dialog opens. For the transfer from
the visualization to the PLC, the “Open File” dialog opens.
“Transfer”

“Direction” Direction of file transfer

“From PLC to Visualization” The object specified in “File name” or “Streaming instance name” is transferred
from the PLC to the visualization.
The “Save File” file selection dialog is displayed in the visualization at runtime.

“From Visualization to PLC” The file specified by the visualization user is transferred to the PLC and saved in
the file path specified in “File name” or “Streaming instance name”.
The “Open File” file selection dialog is displayed in the visualization at runtime.

“Type” Determines how the file is transferred
● Transfer type “File”: By file transfer
● Transfer type “Streaming”: By streaming

“Type” “File”

The data transfer is done by file transfer.

“File name” File path (type STRING) which describes the file in the file system

● Variable
Example: strTransferFile: STRING;

● Literal with relative path
Example: '/Recipes/Recipe_1.txt' saves the file in the directory
Recipes.

● Literal with placeholder $PLCLOGIC$
PlcLogic is the default resolution for the directory placeholder
$PLCLOGIC$.
Example: '$$PLCLOGIC$$/test.txt' saves the file in the directory
PlcLogic.
Example: '$$PLCLOGIC$$/MyData/test.txt' saves the file in the direc-
tory PlcLogic/MyData.

● Literal with placeholder $VISU$
visu is the default resolution for the placeholder $VISU$.
Example: '$$VISU$$/test.txt' save the file in the subdirectory
PlcLogic/visu. Alternatively, 'visu/test.txt' can also be specified.

● Literal with absolute path
Example: 'E:\temp\test.txt'
Note: These kinds of file paths are not always supported.

Note: If a user specifies the file path in the visualization by means of a
“Text Field” element, the masking character $ must not be included: $VISU$/
dummy.txt
Note: In the case that the file path is specified by the user, it should be checked
by the application in order to prevent files from being read or overwritten acci-
dentally.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3380

“Type” “Streaming”

The data transfer is done by streaming.

“Streaming instance name” Instance path (type IVisuStreamWriter or IVisuStreamReader) which
describes the object in the file system of the controller
Type IVisuStreamReader for transfer direction “From PLC to Visualization”

Type IVisuStreamWriter for transfer direction “From Visualization to PLC”

“Control flags” Note: The variable is evaluated only for transfer direction “From Visualization to
PLC”.
Variable (type DWORD)

Determines how the object (file or instance object) is handled on the file system
of the PLC. Two flags are provided for this with which the variable can be set.
● Flag 1:

VisuElems.VisuEnumFileTransferControlFlags.UseOriginalFi
leName

● Flag 2:
VisuElems.VisuEnumFileTransferControlFlags.ConfirmFileOv
erwriteInPlc

Options
● No flag set:

The user selects a file which is saved in the path specified in “File name” or
“Streaming instance name”.

● Flag 1 is set:
The path, which is specified by the user at visualization runtime, is applied
and used as the path in the PLC file system.

● Both flags are set:
The path is also checked. If an object already exists in the path specified
on the client side, then a message prompt is displayed in the visualization.
There the visualization user can confirm that the file will be overwritten.

Example: dwControlFlag

The transfer direction is “From Visualization to PLC” (write).
Example: A new recipe file Recipes/Recipe_2021.txt has been created in the visualiza-
tion device. The visualization user selects this file and wants to save the file on the PLC under
the same name. Because the control flags are set accordingly, a message window opens and
the visualization user can confirm that the file will be overwritten.

PROGRAM PLC_PRG
VAR
 xVisuToggle : BOOL;
 dwControlFlag : DWORD:=
VisuElems.VisuEnumFileTransferControlFlags.UseOriginalFileName +
VisuElems.VisuEnumFileTransferControlFlags.ConfirmFileOverwriteInPlc
;
 strFileName: STRING := '/Recipes/Recipe_new.txt';
END_VAR

Example

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3381

Table 687: “Status Variables”
“Transfer active” Boolean variable (optional)

TRUE: The transfer is in progress.

“Transfer successful” Boolean variable (optional)
TRUE: The transfer has completed successfully.

“Error code” ● 0: No errors
● 1: Unspecified error
● 2: Cancellation of file dialog
● 3: Other file transfer in progress
● 4: Error during file transfer
● 5: Cancellation by timeout
● 6: File read error – The file is not available or cannot be read.
● 7: No device support for file transfer

Possible causes:
– CODESYS WebVisu: File transfer is not possible by default.
– Communication with a controller of a version < 3.5.11: Functionality not

implemented.
– Communication with a controller of a version >= 3.5.11: File transfer not

activated (device description).
Note: In this case, contact the CODESYS support team.

Dialog 'Options' - 'Visualization Styles'
Symbol:
Function: This dialog is used for configuring the display of library visualizations and visualiza-
tions in the POUs view in the visualization editor. In addition, it is used for configuring the tab
“Visualization Manager” - “Settings” (group “Style Settings”).
Call: Menu bar: “Tools è Options” (“Visualization Styles” category).
These settings are not applied at visualization runtime. In runtime mode, only the settings of the
visualization manager are available in the “Settings” tab.
See also
● Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979

These settings are applied for library visualizations and for visualizations in the POUs view.

“Use no visualization style” : Display without using style properties. Elements are displayed as defined by
presets.

“Use the following visualization
style”

: Style with style properties used for displaying visualizations.

'Style Configu-
ration for Libra-
ries and Global
Visualizations'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3382

“Derive visualization style
automatically”

: Display with the style that was selected in the application in the visualization
manager (when possible). Therefore, the display is derived from this style.
It is actually possible for this to cause an incorrect display. Then the fallback
solution is used.

“Fallback if no visualization
style could be derived ”

Another style that is applied after the selected style. Then a style property is
assigned from the style specified here. This is done for element properties that
could not be assigned style properties.
Requirement: The selected style causes a device-specific, deficient display on
the display variant.

The drop-down list of “Selected style” can be configured in the visualization manager (“Settings” tab, “Style
settings” group).

“Display all versions” : All other styles of the repository, including the selected style, are listed for
selection, but only in the latest version. If newer versions are installed for the
selected style, then these are also listed.

: All installed styles in all installed versions are available for selection.

“Last used: <style, version,
vendor>”

Style that is selected automatically when you add a new visualization application.
Note: It is actually possible that a display variant is displayed another way
depending on the device despite this setting.“Preset: <style, version,

vendor>”

“<style, version, vendor>”

Dialog 'Options' - 'Visualization User Management'
Symbol:
Function: The options define the use of visualization user management for global visualizations
in the “POUs” view and for visualizations that are linked from libraries.
Call: Menu bar: “Tools”.
Requirement: A visualization user management exists.

Table 688: “User Management Configuration for Libraries and Global Visualizations”
“Do not use visualization user
management”

The affected visualizations behave as when no user management is configured.

“Use the following visualization
user group list”

● You can edit the list.
● The list is created in the “Visualization manager” (“User management
è Groups”) by clicking “Export groups for global visualizations”.

“ Derive visualization user
management automatically”

The affected visualizations use the user management configuration of the visual-
ization manager selected here.
The drop-down list shows all visualization managers of the project.
If this is not possible, then the user groups are used from the option “Use the
following user group list for the visualization”.

'Style Selection'

'Style for New
Visualization
Managers'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3383

The user management for a visualization in the “Devices” view is configured in
the “Visualization Manager” (tab “User Management”).

See also
● Ä Chapter 6.4.5.21.4.5 “Tab 'Visualization manager' - 'User management'” on page 3403

Dialog Box 'Options' - 'Visualization'
Symbol:
Function: The dialog serves for the configuration of the visualization editor and during runtime it
serves the configuration of the Integrated Visualization.
Call: Main menu “Tools è Options”, category “Visualization”

These settings will not be applied for the following visualization clients:
CODESYS TargetVisu, CODESYS WebVisu.

Table 689: “Presentation options (visualization editor in the programming system)”
“Fixed” The visualization maintains its original size

“Isotropic” The visualization maintains its proportions

“Anisotropic” The visualization adapts to the size of the visualization window

“Antialiased Drawing” : The visualization is drawn with the help of antialiasing methods. This applies
while you are editing and also when the visualization is running as Diagnosis
Visualization.

Table 690: “Editing options”
“Link to toggle/tap variable
when appropriate”

: The placeholder “<toggle/tap variable>” in the visualization element proper-
ties is enabled.
Effect: If you drag an element having the property “Color variable
è Toggle color” in the visualization editor, this property will be configured with
the placeholder “<toggle/tap variable>”.
The following elements are affected: “Button”, “Frame”, “Image”, “Line”, “Pie”,
“Polygon”, “Rectangle”, “Text field”, “Scrollbar”.

See also
● Ä Chapter 6.4.5.21.5.11 “Visualization Element 'Button'” on page 3514
● Ä Chapter 6.4.5.21.5.6 “Visualization Element 'Frame'” on page 3478
● Ä Chapter 6.4.5.21.5.5 “Visualization Element 'Image'” on page 3463
● Ä Chapter 6.4.5.21.5.2 “Visualization Element 'Line'” on page 3425
● Ä Chapter 6.4.5.21.5.4 “Visualization Element 'Pie'” on page 3450
● Ä Chapter 6.4.5.21.5.3 “Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'”

on page 3437
● Ä Chapter 6.4.5.21.5.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 3413
● Ä Chapter 6.4.5.21.5.14 “Visualization Element 'Text Field'” on page 3538
● Ä Chapter 6.4.5.21.5.15 “Visualization Element 'Scroll Bar'” on page 3550

Tab 'General'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3384

“Visible” : The visualization editor contains a grid. The spacing of the grid lines is
defined by “Size”.

“Active” : The visualization elements get aligned to the grid, defined by “Size”, even
if the grid lines are not visible. When you insert or move an element, its center
will be positioned on the grid. When you modify the size of an element, you can
move the position markers onto grid lines only. Elements already available in a
visualization, will not be aligned automatically, until you change their position.

“Size” Spacing of the grid lines in pixel.

“Text list files for textual
"IntelliSense”

File name and path of a file of type .csv. The file contains texts in the format of
a text list.
The file entries will be available when using the function "List Components" as
input assistance.
Note: You can create this file as an export file of the global text list. For this
purpose use the command “Import/Export Text Lists”.

“Visualization Directories”

“Text list files” Storage path for text lists.
Note: This setting will be used in CODESYS only if no storage path for “Text list
files” is defined in the “Project Settings”, category“Visualization”.

“Image files” Storage path for image files. Multiple paths get separated by semicolons.
CODESYS uses this path for example when exporting or importing image files.
Note: This setting will be used in CODESYS only if no storage path for “Image
files” is defined in the “Project Settings”, category“Visualization”.

See also
● Ä Chapter 6.4.1.9.10 “Managing text in text lists” on page 1891
● Ä Chapter 6.4.1.21.3.21.6 “Command 'Import/Export Text Lists'” on page 2729

See also
● Ä Chapter 6.4.5.21.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 3387
● Ä Chapter 6.4.5.21.4.7 “Object 'TargetVisu'” on page 3408

Dialog 'Project Environment' - 'Visualization Profile'
Function: The dialog displays the current visualization profile of the project. The profile can be
updated here.
Call: Main menu “Project è Project Environment”, Tab “Visualization Profile”.

“Current visualization profile in
project”

The currently set visualization profile of the opened project.

“Recommended, newest
profile”

The newest profile

“Action”

“Do not update” The visualization profile of the project remains unchanged.

Tab 'Grid'

Tab 'File
options'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3385

“Update to x.x.x.x” CODESYS updates the project to the chosen visualization profile.

“Check for updates when
loading this project”

: CODESYS checks for new profiles when the project is opened. If there are
updates available an update dialog opens automatically.

: No check of the profile when loading the project. The update dialogs do not
open automatically any longer.

“Set All to Newest” CODESYS updates the profile.

Dialog 'Project Environment' - 'Visualization Styles'
Function: The dialog displays the currently used visualization style of the project. The visualiza-
tion style can be updated here.
Call: Main menu “Project è Project Environment”, tab “Visualization Styles”

“For the following visualization styles currently in use, newer versions are available:”

“Visualization Styles” Version of the currently set visualization style of the opened project.

“Current” Current version of the visualization style, for example 3.5.6.0
“Recommended” Recommenden version of the visualization style, for example 3.5.7.0
“Action”

“Do not update” The visualization style of the project remains unchanged.

“Update to x.x.x.x” CODESYS updates the project to the version of the chosen visualization style.

“ Check for updates when
loading the project”

: CODESYS checks for new versions when the project is opened. If there are
updates available an update dialog opens automatically.

: No check of the version. The update dialogs do not open automatically any
longer.

“Set All to Newest” CODESYS updates the version.

See also
● Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979

Dialog 'Project Environment' – 'Visualization Symbols'
Function: The dialog lists installed symbol libraries and allows for you to assign symbol libraries
to a project.
Call: Menu bar: “Project è Project Environment”, “Visualization Symbols” tab
Requirement: The open project contains a visualization and has been saved with a compiler
version < 3.5.7.0. CODESYS recognizes symbol libraries in compiler version 3.5.7.0 and
higher.

“Symbol library” List of all installed symbol libraries

“Active” : Symbol library is selected for the project. CODESYS provides its symbols in
the “Visualization Toolbox” view.

: Symbol library has been previously installed only in the library repository.

See also
● Ä Chapter 6.4.5.5.2 “Select Element” on page 2873

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3386

Dialog 'Project Settings' - 'Visualization'
Symbol:
Function: The dialog is used to configure the project-wide settings for objects of type
“Visualization”.
Call: Menu bar: “Project è Project Settings”, “Visualization” category
Requirement: A project is open.

Table 691: “Visualization Directories”
“Text list files” Directory which contains text lists that are available in the project to configure

texts for different languages. CODESYS uses the directory, for example to
import or export text lists.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

“Image files” Directory which contains image files that are available in the project. Multiple
folders are separated with a semicolon. CODESYS uses the directory, for
example to import or export image files.

After clicking , the “Select Directory” dialog opens which allows for the selec-
tion of a directory in the file system.

Table 692: “Advanced”
“Activate property handling in
all element properties”

: You can also configure a visualization element with a property in those
of its properties in which you select an IEC variable. Then CODESYS creates
additional code for the property handling when a visualization is compiled.
Requirement: Its IEC code contains at least an object of type “Interface property”
(a property).

Requirement: “Visible” is selected.

See also
● Object 'Property'

Table 693: “Visualization Symbol Libraries”
“Symbol libraries” List of all installed symbol libraries

Example: VisuSymbols
“Assigned” : Symbol library is selected in the project and CODESYS makes it available in

the “Visualization ToolBox” view of a visualization.

: Symbol library is installed in the library repository, but CODESYS does not
make it available in the “Visualization ToolBox” view of a visualization.

See also
● Ä Chapter 6.4.5.21.3.2 “Dialog 'Add Visualization'” on page 3367

Tab 'General'

Tab 'Symbol
Libraries'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3387

ms-its:codesys.chm::/_cds_obj_property.htm

Dialog ‘Project Settings’ - ‘Visualization Profile’
Symbol:
Function: The dialog box enables the setting of the visualization profile.
Call: Menu “Project è Project Settings”, category “Visualization Profile”

Requirement: A project is open.

Table 694: “Visualization Profile”
“Specific profile” Profile that CODESYS uses in the project and that determines the visualization

elements that are available in the project.
The selection list contains all the profiles installed so far.

Dialog 'Properties' of Visualization Objects
Function: This dialog is used for configuring object-dependent properties.
Call: Menu bar: “View”; context menu of the visualization object in the “Devices” view or “
POUs” view.

“Name ” Example: visMain
“Object type ” visualization

“Open with ” visualization

See also
● Ä Chapter 6.4.1.21.4.11.2 “Dialog Box 'Properties' - 'Common'” on page 2753

This tab is used for defining which user group can execute which actions on the object.
See also
● Ä Chapter 6.4.1.21.4.11.7 “Dialog 'Properties' - 'Access Control'” on page 2757

This tab assigns a visualization type to a visualization.
In addition, it includes settings for window size that are used at runtime.

Tab 'General'

Tab 'Access
Control'

Tab 'Visualiza-
tion'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3388

Table 695: “Use visualization as”
“Visualization” Visualization type for an ordinary or referenced visualization. Preset.

“Dialog ” Visualization type for a visualization that opens as a dialog in its own window for
an input event. The input action for this is “Open dialog”. The “Close dialog” input
action closes the window.
Tip: A dialog usually includes an “OK” button or “Cancel” button at the bottom
edge for confirming or rejecting user input, and for closing the dialog. A simple
dialog or a dialog prompt includes only a question or information and buttons for
closing the dialog with either “Yes” or “No”. A dialog is part of a user interface.
While a dialog is open, the rest of the user interface is usually disabled.

“Numpad / keypad / dialog for
input configuration”

Visualization type for a visualization that displays a virtual numeric keypad or a
virtual keyboard. It appears when the user is prompted to specify text. The input
action for this is “Write variable”.
Note: The interface of this visualization must also conform with the interfaces
for the standard visualizations for the numeric keypad or that keyboard that
provides the VisuDialogs library: Numpad, Keypad, NumpadExtended, or
TextinputwithLimits.

Tip: The VisuDialogs library contains templates for virtual keyboards or
numeric keypads.

“Dialog is opaque” : The screen area that is covered by the dialog is not refreshed. This has a
positive effect on the character and input performance.
Use this option when your drawn dialog is rectangular and opaque, containing no
transparent parts.

“Use automatic detected
visualization size”

: The size is determined so that all visualization elements are enclosed.

“Include background image” : All elements and the background image are completely visible.

: All elements are visible, but a larger background image is truncated.

“Use specified visualization
size”

: The values “Height” and “Width” define the window size of the visualization
(in pixels).

“Internal” : The visualization is internal. It is used exclusively as an internal module of a
complete visualization in a library.
When editing as a library project while the project is open in CODESYS, an
internal visualization is handled like all visualizations. The internal visualization
appears in drop-down lists. Or in the visualization manager (“Visualizations” tab).
The internal visualizations that include a linked library are not visible to you.

See also
● Ä “Dialog 'Frame Configuration'” on page 3348

This tab includes options for compiling the object.
See also
● Ä Chapter 6.4.1.21.4.11.5 “Dialog 'Properties' - 'Build'” on page 2755

Dialog 'Selected Alarm Class'
Function: In this dialog box, you define the alarm classes that are considered for the alarm
table or alarm banner.

Tab 'Build'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3389

Call: Property “Alarm configuration” / “Alarm classes” of the alarm table or alarm banner visuali-
zation element.
Requirement: An alarm table visualization element or alarm banner visualization element is
added to the visualization.

“Available Alarm Classes” Shows all alarm classes created in the project.

“Selected Alarm Classes” The alarm classes in this column are displayed in the alarm table.

“All” : All alarm classes are listed in an alarm table.

Moves all available alarm classes to the “Selected Alarm Classes” column.

Moves the selected alarm classes to the “Selected Alarm Classes” column.

Removes the selected alarm classes from the “Selected Alarm Classes” column.

Removes all selected alarm classes from the “Selected Alarm Classes” column.

See also
● Ä Chapter 6.4.5.21.5.22 “Visualization Element 'Alarm Table'” on page 3591
● Ä Chapter 6.4.5.21.5.22 “Visualization Element 'Alarm Table'” on page 3591
● Ä Chapter 6.4.5.9 “Visualizing alarm management” on page 2909

Dialog 'Selected Alarm Group'
Function: In this dialog box, you define the alarm groups that are considered for the alarm table
or alarm banner.
Call: Property “Alarm configuration” / “Alarm groups” of the alarm table or alarm banner visuali-
zation element.
Requirement: An alarm table visualization element or alarm banner visualization element is
added to the visualization.

“Available Alarm Groups” Shows all alarm groups created in the project.

“Selected Alarm Groups” The alarm groups in this column are displayed in the alarm table.

“All” : All alarm groups are listed in an alarm table.

Moves all available alarm groups to the “Selected Alarm Groups” column.

Moves the selected alarm groups to the “Selected Alarm Groups” column.

Removes the selected alarm groups from the “Selected Alarm Groups” column.

Removes all alarm groups from the “Selected Alarm Groups” column.

See also
● Ä Chapter 6.4.5.21.5.22 “Visualization Element 'Alarm Table'” on page 3591
● Ä Chapter 6.4.5.21.5.22 “Visualization Element 'Alarm Table'” on page 3591
● Ä Chapter 6.4.5.9 “Visualizing alarm management” on page 2909

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3390

Dialog 'Advanced Trace Settings'
Function: The recording rate of the “Trace” visualization element is configured in this dialog
box.
Call
● Properties: “Trace” , “Advanced”
● Context menu: “Configure trace”, “Advanced”

Requirement: A trace is selected in the active visualization editor.

Table 696
“Measurement in every nth
cycle”

The task where the trace is running is the basis for the measurement. The
measurement interval is a multiple of the trace task according to the selected
value. The measurement interval is displayed on the right side.

“Buffer size (samples)”. The number of measurements is calculated according to the time range of the
x-axis.

See also
● Ä Chapter 6.4.5.21.2.13 “Command 'Configure Trace'” on page 3355

Dialog 'Display Settings'
Function: The dialog includes the configuration for the display settings of the trace diagram (for
both the X-axis and Y-axis) and provides a preview in the trace diagram.
Call: “Display” button in “Trace Configuration” dialog.

“Add Y-Axis” Extends the trace diagram by one Y-axis.
Result: The “Trace Configuration” dialog contains an extended selection of Y-
axes in the “Additional axes” option of the variable settings.

“Delete Y-axis” Deletes the Y-axis with the visible tab.

“Display Mode” Scaling

● “Auto”: : CODESYS Scales automatically.
● “Fixed length”: : CODESYS displays a segment of constant “Length”.
● “Fixed”: : CODESYS displays a segment from “Minimum” to “Maximum”.

“Minimum” Initial value of the segment. Requirement: The “Display Mode” is “Fixed”.

“Maximum” End value of the segment. Requirement: The “Display Mode” is “Fixed”.

“Length” Constant length of the segment.

“Grid” : Diagram with vertical grid lines. Select the line color from the list box of
colors.

Table 697: “Tick marks”
“Fixed spacing” : CODESYS draws tick marks with “Distance” and “Subdivisions”.

“Distance” Distance between tick marks

“Subdivisions” Number of subdivisions between two tick marks

Tab 'X-axis'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3391

“Font” Font for the X-axis

“Display Mode” Scaling

● “Auto”: : CODESYS Scales automatically.
● “Fixed”: : CODESYS displays a segment from “Minimum” to “Maximum”.

“Minimum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the initial value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 20,PLC_PRG.iLimit_Min, GVL.c_iLimit_Min
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Min : INT := 20

“Maximum” Literal, variable (integer data type), or constant variable (integer data type). It
contains the end value of the segment. Requirement: The “Display Mode” is
“Fixed”.
Examples: 80,PLC_PRG.iLimit_Max, GVL.c_iLimit_Max
Note: The variable has to have an initial value. This is important for the offline
display and the scaling subdivision. Example: iLimit_Max : INT := 80

“Grid” : Diagram with a grid line. Select the line color from the list box of colors.

“Label” : The description is displayed on the axis.

Table 698: “Tick marks”
“Fixed spacing” : CODESYS draws tick marks with “Distance” and “Subdivisions”.

“Distance” Distance between tick marks

“Subdivisions” Number of subdivisions between two tick marks

“Font” Font for the Y-axis

Tab 'Y-Axis'

Preview of the
trace diagram

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3392

“Background color” ● “No background”: Transparent display without background color.
● “Draw background”: Background color according to selection below.
● “From visualization style”: Background color as defined in the visualization

style.

“Reset” CODESYS resets all settings to the defaults.

“Use as default” CODESYS saves the settings as default

6.4.5.21.4 Objects
6.4.5.21.4.1 Object 'Visualization' and visualization editor............................. 3393
6.4.5.21.4.2 Object 'Visualization manager'... 3398
6.4.5.21.4.3 Tab 'Visualization Manager' - 'Default Hotkeys'.......................... 3402
6.4.5.21.4.4 Tab 'Visualization manager' – 'Visualizations'............................. 3402
6.4.5.21.4.5 Tab 'Visualization manager' - 'User management'...................... 3403
6.4.5.21.4.6 Tab 'Visualization Manager' - 'Font'.. 3407
6.4.5.21.4.7 Object 'TargetVisu'.. 3408
6.4.5.21.4.8 Object 'WebVisu'.. 3409

Object 'Visualization' and visualization editor
Symbol:
The object represents a single visualization. You can insert a visualization under an application
or, so that it is available project-wide, under the root node of the view “Devices” or directly in the
view “POUs”. You can open the visualization editor for editing by double-clicking on the object
entry in the device tree or in the view POUs.
See also
● Ä Chapter 6.4.5.21.3.15 “Dialog 'Properties' of Visualization Objects” on page 3388
● Ä Chapter 6.4.5.21.4.1.1 “Visualization Editor” on page 3393

Visualization Editor
The visualization editor opens when you double-click a visualization object.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3393

● (1) Graphical editor: Here you create the visualization from the visualization elements which
are provided in the visualization toolbox view.

● (2) View “Visualization Toolbox”: available visualization elements
● (3) View “Properties”: Configuration editor for the visualization element currently selected in

the editor area
● (4) Menu “Visualization”: Commands for working in the visualization editor
The “Visualization” menu contains, for example, commands for opening additional editors.
● (5) “Interface Editor”: Declaration of variables which can be used to parameterize references

of the visualization.
● (6) “Hotkeys Configuration”: Definition of keyboard shortcuts for inputs on the visualization in

online mode.
● (7) “Element List”: List of all elements used in the visualization; possibility to change their

position on the Z-axis.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.6.5 “Configuring Keyboard Shortcuts” on page 2892
● Ä Chapter 6.4.5.17.3 “Calling a Visualization with an Interface” on page 2951
● Ä Chapter 6.4.5.21.4.1.2 “View 'Visualization Toolbox'” on page 3394
● Ä Chapter 6.4.5.21.4.1.3 “View 'Properties' of a visualization element” on page 3396
● Ä Chapter 6.4.5.21.2 “Commands” on page 3339
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.2.3 “Command 'Visualization Element List'” on page 3342

View 'Visualization Toolbox'
Symbol:
Function: The view provides the elements that can be used in the editor. The individual ele-
ments are assigned with specific categories. There is a button for each category. The elements
of selected categories are displayed with thumbnails which can be dragged into the editor. In
addition to the standard categories, you can also define your own categories. You can resize the
thumbnails with the slider or perform a full-text search of element names.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3394

Call: Menu bar: “View è ”

Requirement: A visualization is active.

● (1) “Visualization Toolbox” view
● (2) Toolbar with commands
● (3): Buttons fro selecting element categories
● (4) Selection of individual visualization elements
● (5) Controls
See also
● Command 'Toolbox'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3395

ms-its:codesys.chm::/_cds_cmd_tools.htm

Symbol: Only one button can be selected.

Symbol: Multiple buttons can be selected.

Symbol: The “Configure Categories and Items” dialog opens.

See also
● Ä Chapter 6.4.5.21.3.4 “Dialog 'Configure Categories and Items'” on page 3368

A button is displayed for each defined element category. A selected button is displayed in green.

[Shift] + click a button Changes the selection of the category and the selection type (single or multiple
selection possible)

Right-click a button The context menu opens.

Table 699: Context menu of a button
“Hide Category” Removes the button. Then the category is removed from view.

“Enable Category” The button turns green and the category is enabled, irrespective of the selection
type.

“Disable Category” The button turns gray and the category is disabled, irrespective of the selection
type.

See also
● Ä Chapter 6.4.5.5.2 “Select Element” on page 2873
● Ä Chapter 6.4.5.21.3.4 “Dialog 'Configure Categories and Items'” on page 3368
● Command 'Toolbox'

The visualization elements are displayed as thumbnails and labeled with names. The selection
depends on the search query in or on the chosen buttons.

Slider To resize of the thumbnails.

 with input field For a full-text search by element name of all available elements

“<number> items” Number of visualization element items that are currently displayed as a result of
the selected buttons and the search query in .

View 'Properties' of a visualization element
Symbol:
Function: This view is used for configuring the element properties of the selected visualization
element.
Call: Menu bar: “View è Element Properties”

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Toolbar with
commands

Buttons for
selecting ele-
ment categories

Selection of vis-
ualization ele-
ments

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3396

ms-its:codesys.chm::/_cds_cmd_tools.htm

Table 700: “Filters”
“All categories” List of all element properties

“Default” List of the most frequently used element properties

“Simple” List of certain basic element properties, such as “Texts”, “Colors”, and “Input
configuration”

“Animation” List of element properties for animation with variables

“Colors” List of element properties for designing with color

“Texts” List of element properties for designing with text

“Input” List of element properties for configuring user input

Table 701: “Sort”
“Sort by type” : Element properties are sorted by the original order of categories.

“Sort by name” : Element properties are sorted in alphabetical order.

Table 702: “Order”
“Sort ascending” : The properties are sorted from A to Z.

“Sort descending” : The properties are sorted from Z to A.

“Expert” : The table includes all properties. The menu command “Filter
è Show all categories” is enabled at the same time.

Column “Property” Element properties of the selected element

Column “Value” The assigned value is applied in the editor view.

Double-click in the “Value”
column

A line editor, drop-down list, or dialog opens for editing the value.

 opens the “Input Assistant” dialog for help, for example when assigning
variables or image references.Single-click for a selected field

[Blank] for a selected field

A style selected in the visualization manager can include single, predefined
element properties. As a result, these do not appear in this view because a
fixed value is already assigned to them. They do not have to be configured
anymore.

Visualizations can be configured with device-specific restrictions that block the
availability of element properties.

Menu bar

Element proper-
ties display in a
table

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3397

Device-specific restrictions :
● Elements with restricted availability
● Fonts with restricted availability
● Colors with restricted display
● Image formats with restricted display
● Maximum number of visualization elements
● Maximum number of visualizations below the device

Object 'Visualization manager'
Symbol:
The visualization manager manages the configuration settings for all display variants of the
visualizations of the current application.
The object is automatically inserted when a visualization object is inserted below the application.
On a double-click the configuration dialog opens with several tabs.

If the device employed supports display variants of the visualization, the
visualization manager automatically brings along the corresponding objects
(CODESYS WebVisu, CODESYS TargetVisu).

If the device employed supports CODESYS TargetVisu, the visualization man-
ager automatically brings along the corresponding object CODESYS Target-
Visu.

See also
● Ä Chapter 6.4.5.18 “Configuring and executing display variants” on page 2973
● Ä Chapter 6.4.5.21.4.7 “Object 'TargetVisu'” on page 3408
● Ä Chapter 6.4.5.21.4.8 “Object 'WebVisu'” on page 3409

Symbol:
Function: the tab contains settings for all visualizations that are available application-wide.

“Use unicode strings” : The visualization codes character strings as Unicode.

“Use CurrentVisu variable” : the application knows and uses the global variable
VisuElems.CurrentVisu of the type STRING. It contains the name of the
currently active visualization at the runtime of the application. The application
can read from the variable in order to obtain the name of the currently active vis-
ualization. The application can cause a visualization change by a write access.
Requirement: the application contains a visualization that calls further visualiza-
tions.
Example
● Variable assignment: VisuElems.CurrentVisu:=strVisuName;
● Visualization name assignment: VisuElems.CurrentVisu:='visu1';

Tab 'Visualiza-
tion manager' –
'Settings'

'General set-
tings'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3398

The “Visualization Style Editor” enables new styles to be generated, checked
and installed in the visualization styles repository.

“Selected style” ● Style from the visualization styles repository that every visualization in the
application uses, for example “Flat Style”.

● “<None>”: The visualization displays its elements without style or according
to the internal default. A standard dialog appears instead of a selection list
for selection in the element properties “Color” und “Font”.

Opens a selection list with styles that are installed in the visualization styles
repository.

“Display all versions (for
experts only)”

: The selection list contains only the latest version of each selected style and
all other styles. If a newer version of the selected style is installed it is also
displayed.

: The selection list contains all versions of all installed styles.

Button Opens a selection list with commands for the use of the “Visualization Styles
Editor”.

“Open Style Editor” The “Visualization Styles Editor” opens.

“Create and edit derived style” The “Visualization Styles Editor” opens with the dialog “Create a new
visualization style”. The dialog contains the settings for the first configuration
step.
Requirement: a style is selected in “Selected style”.

“Copy and edit the selected
style”

The “Visualization Style Editor” opens with the dialog “Open existing style as a
copy”. The dialog contains the settings for the first configuration step.
Requirement: a style is selected in “Selected style”.

“Preview” The elements displayed represent the style specified in “Selected style”.

See also
● Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979
● Ä Chapter 6.4.5.19.3 “Managing visualization styles in repositories” on page 2985
● Ä Chapter 6.4.5.22.1 “Dialog 'Create a New Visualization Style'” on page 3749
● Ä Chapter 6.4.5.22.2 “Dialog 'Open Existing Style as a Copy'” on page 3749
● Ä Chapter 6.4.5.21.3.7 “Dialog 'Options' - 'Visualization Styles'” on page 3382

“Selected language” Language used by the display variants at the start of a visualization.

For an element with standard text input, a dialog that supports the input appears at runtime. You
can specify which dialog appears.

'Style settings'

'Language set-
tings'

'Settings for
default text
input'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3399

“Numpad” Dialog that calls the visualization if a user activates the input field for
a number at runtime. The dialog represents a numeric keypad. Default:
“VisuDialogs.Numpad”

“Keypad” Dialog that calls the visualization if a user activates the input field for a text at
runtime. The dialog represents a keyboard. Preset: “VisuDialogs.Keypad”

“Use text input with limits” Requirement: CODESYS TargetVisu or CODESYS WebVisu are configured as
display variants and the “standard text input” is “keyboard”. The visualization
then supports input via keyboard at runtime. The input thus generally takes place
via an input field.

: Instead of the input field you can call a dialog that displays the value range
for inputs with a limited value range.
Default:“VisuDialogs.TextinputWithLimits”. This dialog displays the value range
and doesn't accept any value outside these limits.

See also
● Ä Chapter 6.4.5.21.4.7 “Object 'TargetVisu'” on page 3408
● Ä Chapter 6.4.5.21.4.8 “Object 'WebVisu'” on page 3409

You can configure your visualization with a user management. To do this, configure an input to an element that
causes a user management dialog to appear. The VisuUserManagement library contains ready-to-use dialog
visualizations for this purpose. The library is located in the installation directory, for example in C:\Program
Files (x86)\3S CODESYS\CODESYS\Projects\Visu\Dialogs\VisuUserMgmtDialogs.library.

You can also use other visualizations as user management dialogs. To do that you have to change the defaults
here.

“Login dialog” User management dialog that enables logging in; typically a request to enter a
username and a password. It appears upon an input event on an element that
executes as a consequential action “User management”, action “Login”.
Preset: VisuUserManagement.VUM_Login

“Change password dialog” User management dialog that enables a password to be changed; typically
a request to enter the current password and a new one. It appears upon
an input event on an element that executes as a consequential action “User
management”, action “Change user password”.
Preset: VisuUserManagement.ChangePassword

“Change configuration dialog” User management dialog that enables a configuration change of the user man-
agement, i.e. typically a display of the current user configuration and a possibility
to change it. It appears upon an input event on an element that executes as a
consequential action “User management”, action “Open user configuration”.
Preset: VisuUserManagement.VUM_UserManagement

See also
● Ä Chapter 6.4.5.7 “Setting Up User Management” on page 2899
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

'Settings for
user manage-
ment dialogs'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3400

“Activate multitouch handling” : At runtime the visualization expects user inputs via gestures and touch
events.
Elements concerned
● Elements with input configuration
● Element of the type “Frame”
● Component of the type “Tab control”

“Activate semi-transparent
drawing”

: The visualization draws the elements in a semi-transparent color.
To do this you can additionally specify a graduation value for the transparency
when defining a color. The transparency is defined in the “Transparency” prop-
erty.
The leading byte is evaluated in color variables.
Preset: Activated. Requirement: you create a new visualization and the display
variants can paint semi-transparently.

“Activate standard keyboard
handling”

● [Tab]
● [Shift] + [Tab]
● [Input]
● [Up arrow]
● [Down arrow]
● [Right arrow]
● [Left arrow]

See also
● Ä Chapter 6.4.5.5.4 “Assigning a color” on page 2876
● Ä Chapter 6.4.5.21.1 “Keyboard Shortcuts for Default Keyboard Action” on page 3338

Table 703: “Memory settings”
“Size of memory for
visualization”

Memory size in bytes allocated by the visualization at runtime. Preset: “400000”

“Size of the paintbuffer (per
client)”

Memory size in bytes allocated by the visualization per display variant and used
for painting actions. Preset: “50000”

Table 704: “File transfer mode”
“Transfer visualization files to
the PLC”

: When downloading the application from the visualization directories to the
controller, CODESYS copies image files and text list files that the visualization
references. A CODESYS TargetVisu needs the files on the PLC and similarly the
dialogs that support a numerical input or a keyboard input.

Use local visualization files : The visualization uses image files and text list files from local directories
Note: In order to achieve that the visualization can access the files stored locally,
it is necessary thatthat the file paths are relative. The paths are given in dialog
box “Project è Project settings” in tab “Visualization”.
Note: It is also necessary that the link type of a image is “Link to file”. The link
type is specified in the image pool.

See also
● Ä Chapter 6.4.5.18.4 “Configure File Transfer Mode” on page 2978
● Ä Chapter 6.4.5.21.3.13 “Dialog 'Project Settings' - 'Visualization'” on page 3387

'Additional set-
tings'

'Extended set-
tings'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3401

● Ä Chapter 6.4.5.21.3.9 “Dialog Box 'Options' - 'Visualization'” on page 3384
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468

Display variant denotes the type of visualization, for example WebVisu, Tar-
getVisu. A visualization client is a currently connected display medium. Thus,
several browsers (clients) can be connected in parallel for the display variant
WebVisu.

Table 705: “Client settings”
“Maximum number of
visualization clients”

Limits the number of visualization clients that are executed at the same time.
If you configure the elements so that they vary depending on the display var-
iant, then you have to limit the number of display variants. A visualization is
given an ID at runtime that identifies the display variant and then processes
data accordingly. CODESYS can the query the ID using the system variable
CURRENTCLIENTID and thus obtains the information as to which of the running
variants is concerned.
Example: arr[CURRENTCLIENTID].dwColor
Requirement: VisuGlobalClientManager library is integrated in the project.

Tip: You can find in the CODESYS store. example "Global Client Manager"

“Transfer both svg images and
converted images”

This option is visible only if both a WebVisu and a TargetVisu exist. It concerns
images in svg format only.
The option is available if the device description for the controller of the Target-
Visu does not support the svg (full) format.

: The images are transmitted in the png or bmp formats (for TargetVisu) and
additionally in svg format (for WebVisu).

Not all settings are available with an integrated CODESYS visualization.

Tab 'Visualization Manager' - 'Default Hotkeys'
Symbol:
The tab includes a list of configured keyboard shortcuts that are valid for all visualizations avail-
able throughout the application. Therefore, the tab is the central location for defining keyboard
shortcuts for all visualizations that are below an application.
Keyboard shortcuts of the default keyboard action are not listed here.
The tab is similar to the “Keyboard Configuration” tab and provides the same editing options.
See also
● Ä “Tab 'Keyboard configuration'” on page 3341

Tab 'Visualization manager' – 'Visualizations'
Symbol:

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3402

Function: The tab lists all visualizations that are available project-wide and enables an assign-
ment of the visualizations for the loading behaviour, depending on the display variants.

“Standard behaviour” : The visualizations of the application and the actually referenced visualiza-
tions are automatically loaded to the target system. The activated checkboxes
show which one that is.

: The loading behaviour is explicitly defined for each visualization.
Hint: use the explicit selection if you reference visualizations indirectly via IEC
variables.

“Visualizations” The list contains all created visualizations from the device tree and the POU
view.

“Dialogs” The list contains all the referenceable visualizations that are available via the
libraries of the library management.

Only those visualizations selected here using checkboxes are loaded.

“Remote target visualization,
target visualization, web
visualization,”

The column settings affect the loading behaviour for the display variants “remote
target visualization”, “target visualization” and “web visualization”.

Tab 'Visualization manager' - 'User management'
Symbol:
The “User management” tab is used for creating and configuring the user management for
visualizations and their users and groups.

If a user management has not been configured yet, then the following buttons are available:

“Create empty user
management”

The user management opens. The “None” group is created.

“Create user management with
default groups and users”

The user management opens. The following groups and users are created:
● “Admin” group with “Admin” user
● “Service” group with “Service” user
● “Operator” group “Operator” user
● “None” group

Table 706: “Choose between local and remote user management”
Requirement: The project includes several devices with a visualization user management.

“Use local user management” The user management of this visualization manager is used for the visualization.

“Use remote user
management”

Drop-down list with all devices of the project that have their own visualization
user management.

Tab 'Flags'

Project with
multiple visuali-
zation user
managements

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3403

Even if there are no display variants of the visualization in the application, it may be required
that the visualization user management is located on the controller. This is the case, for
example, when HMIs connect to the controller.

Requirement: The visualization does not have any display variants. This means that the objects “Web
visualization”, “Target visualization”, or “Remote target visualization” are inserted below the visualization manager.

“Group name” When you click the node, all users are listed that belong to the group.

“Automatic logout” : The “Logout time” input field is active and editable.

“Logout time” Input field for integer value
Drop-down list for time unit “Min”, “Sec”, or “Hr”

“Permission to change user
data”

: The group is granted permission to edit user data when the visualization is in
online mode.

“Description” The text is visible in the development system only. It is not downloaded to the
controller.

“ID” Unique ID for each group. Assigned automatically by the system.

Add a new group In the last row of the table, click in the “Group name” field and specify the name
for the new group.

Delete a group Select a group and press [Del]. The “None” group cannot be deleted.

Table 707: Buttons
“Update visualizations /
hotkeys”

Opens the “Update visualizations and hotkeys” dialog box.
Update, if groups were changed at a time when visualizations or keyboard short-
cuts already had restricted permissions.

“List usage of groups” List of visualizations and keyboard shortcuts with restricted permissions.
The list is displayed in the “Messages” view.

“Export groups for global
visualizations”

The defined group names are transmitted to “Tools è Options
è Visualization user management”. They are then listed in “Use the following
user group list for the visualization”. The list can be changed there as well.

“Delete complete user
management”

The user management is deleted and the start view is shown with the following
buttons:
“Create empty user management” and
“Create user management with default groups and users”.

“Export user management” The drop-down list opens.
● “Before V3.5 SP6”
● “V3.5 SP6 and later”

A standard dialog opens for saving the user management as a CSV file with any
name in any directory.

Visualization
user manage-
ment on the
controller for a
visualization
without a dis-
play variant

Tab 'Groups'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3404

“Import user management” A standard dialog opens for importing a user management. the user manage-
ment must be a CSV file.

, Moves the selected group one line up/down, thus changing the hierarchy of the
group.
A group of a higher hierarchy cannot have fewer permissions for an element
than a group of a lower hierarchy.

Table 708: Dialog box “Update visualizations and hotkeys”
This dialog updates only visualization elements and keyboard shortcuts with configured permissions.

“Add new group” Drop-down list with all new created groups of this user management.
Requirement: A new user group was created.

“Setting for new group” ● “new group in visualization / hotkey will get the right like group”: Drop-down
list with all existing groups of this user management

● “new group should get the following right”
– “for visualization elements”: Drop-down list with the permissions:

“Operable”, “Only visible”, and “Invisible”.
– “for hotkeys”: Drop-down list with the permissions: “Operable”, “Not

operable”.

“Delete not existing groups” If no affected visualization elements or keyboard shortcuts are found for
updating, then this is displayed as a message in the “Messages” view
(“Visualization” category).“Rename groups”

“Update” Updates the permissions of the affected visualization elements and keyboard
shortcuts

“Login name” Name for the user to log in to the visualization at runtime.
This name is unique.

“Full name” This name may exist more than one time in the user management.

“ Password” Encrypted by CODESYS. By default, the “Login name” is displayed here.
If you click the “Password” field of a selected line, then the “Change password”
dialog box opens.

“User group” Group(s) that the user belongs to.
Clicking the “User group” field of a selected user opens the dialog box “User
groups the user belongs to”.
● “Groups”
● “Assigned”: : The user is assigned to this group.

“Deactivate” : The user is deactivated.

“Description” Descriptive text is available in the development system only and is not down-
loaded to the controller.

Table 709: Buttons
“Upload user from device” The data of the user management is uploaded from the controller.

If user data is already configured. then it is overwritten.

“Download user to device” The data of the user management is downloaded to the controller.
The existing user management on the controller is overwritten.

Tab 'User'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3405

“Export user management” The drop-down list opens.
● “Before V3.5 SP6”
● “V3.5 SP6 and later”

A standard dialog opens for saving the user management as a CSV file with any
name in any directory.

“Import user management” A standard dialog opens for selecting the user management (in CSV format)
from the file system.

“Settings for download of user data”

“Download user data on every
login”

The data of the user management is downloaded to the controller at login.
Existing data is overwritten.

“Never download user data on
login”

The data of the user management is never downloaded to the controller, even if
it changes.

“Allow decision on every
download”

A “Warning” dialog box opens for you to accept or refuse the download.

“Access rights for elements”

“Use group hierarchy” : The permissions can be granted to the group hierarchy of the “Groups” tab
only.
The group in the first line of the “Group” list is the highest in the hierarchy.
A group of a higher hierarchy cannot have fewer permissions for an element
than a group of a lower hierarchy.

“Logout behavior”

“Change to start visualization
at logout”

: Switches at logout to the visualization that is configured as the “Start
visualization” in the respective display variant.

The data for user management is saved to a CSV file in the following format:
● User groups: ID;group name; automatic logoff TRUE/FALSE;logoff

time;unit logoff time;permission to change user date TRUE/FALSE
● Users: login name;full name;password encrypt TRUE/

FALSE;password;group ID;user deactivated TRUE/FALSE
Use this format when you want to edit data for user management by means of any tool. If
you set password encrypt to FALSE, then an unencrypted password can be used. In the
example, the unencrypted password Yellow was specified for the user Hugo. If you import
the CSV file with the command “Import user management”, then the password is encrypted
automatically.

Tab 'Settings'

CSV file with the
data for user
management

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3406

V1.0.0.1
Usergroups:
1;Admin;TRUE;1;Minute;TRUE
3;Operator;FALSE;1;Minute;FALSE
7;Service;FALSE;1;Minute;FALSE
0;None;FALSE;1;Minute;FALSE
4;Early and late shift;FALSE;1;Minute;FALSE
2;Early shift;TRUE;1;Minute;FALSE
6;Late shift;FALSE;1;Minute;FALSE
User:
Service;Service;TRUE;C08298D42A35732CFFB7DF43771B7607;2;FALSE
Operator;Operator;TRUE;3D94AB9540B025B07773DE7037F19837;3;FALSE
John;Blue;TRUE;62ED5DE29E5DD4164A01F3AF1B81EFA0;4;FALSE
Paul;White;TRUE;01E2CBD4AE5442D9EACE33669549A3CC;2;FALSE
Hugo;Green;FALSE;Yellow;6;FALSE

Example

Tab 'Visualization Manager' - 'Font'
Symbol:
Function: This tab provides settings for adapting the font and font size in the visualization
according to the language. The settings apply to all visualizations of the application, including
the visualization manager.

Table 710: “Language Specific Font Settings”
“Language” Language used in the project. A column is created for each language. All text

lists, including those from integrated libraries, are scanned for this.

“Font” Font used by the visualization depending on the language.

“Size factor” The factor affects the type size of all texts in the visualization.
Preset: 1
If the factor is smaller than 1, this leads to a reduction of the type size. If the
factor is 1, all texts are displayed unchanged as defined in “Properties”.

Red highlighting of a cell The highlighted language is no longer present in the text lists of the project or the
libraries.
This highlighting is not available in runtime mode.

Context menu of a selected table row

“Delete Language” The associated column is removed. This is advisable above all if settings in the
column are highlighted in red.

“Copy Language Settings” All settings in the column are copied to the clipboard.

“Paste Language Settings” All settings in the column are overwritten with the values from the clipboard.

Table 711: “General Font Settings”
“Automatic decrease of font
size”

: If the text to be displayed does not fit in the text field in the set format, then
the font size is decreased automatically until the text fits completely in the text
field.
Tip: This prevents a text from being truncated when changing to a language
that needs more space. The requirement is that a font is available which has a
sufficiently small font.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3407

See also
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

Object 'TargetVisu'
Symbol:
Function: The object is used for configuring CODESYS TargetVisu in order to display the
visualization directly on the controller of an integrated or connected panel.
Requirement: The CODESYS control runtime environment is equipped with the CODESYS
TargetVisu component. The object itself is inserted below the visualization manager.
CODESYS TargetVisu can be executed on different platforms, from embedded controllers to
powerful PC-based systems on different operating systems. Therefore, it can be run on Win-
dows, Windows Embedded CE, Linux, QNX, or VxWorks. A ready-made adaptation to the
graphics interface of the systems is available on these operating systems. An adaptation is
required for embedded controllers or other operating systems. In addition, there are device
manufacturers that integrate visualizations into external applications by means of ActiveX con-
trols.

“Start Visualization” Name of the visualization where the start is displayed as CODESYS TargetVisu.
Hint: Use input assistance for selecting another visualization.

“Update rate (ms)” Refresh rate (in milliseconds) in the visualization
Example: 200

“Show used visualizations” The link opens the “Visualizations” tab in the “Visualization manager” editor.
The tab provides information of the visualizations loaded on the display variants.

See also
● Ä Chapter 6.4.5.21.4.4 “Tab 'Visualization manager' – 'Visualizations'” on page 3402

Table 712: “Scaling Options”
“Fixed” : Fixed size of the visualization (original size).

“Isotropic”: : The size of the visualization is adapted to the dimensions of the display
device, retaining the proportions of the visualization.

“Anisotropic”: : The size of the visualization is adjusted to the size of the display device, for
example a screen.

“Use scaling options for
dialogs”

 The dialogs, also for keypad and numpad, are scaled like the visualization
(drawn with the same scaling factor). This is an advantage when a dialog was
created to match the visualization because then they are scaled together.

“Use automatically detected
client size”

: The visualization fills the screen of the display device completely.

“Use specified client size” : The values in “Client height” and “Client width” are used for the size of the
visualization. The visualization fills this screen area only.

“Client height” Height of the visualization (in pixels).

“Client width” Width of the visualization (in pixels).

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3408

Table 713: “Presentation Options”
“Antialiased drawing” : Antialiasing is used in the visualization editor for drawing a visualization as a

TargetVisu and a TargetVisu variant.
Hint: If a horizontal or vertical line is drawn blurry on a specific visualization
platform, then this can be corrected by an offset of 0.5px in the direction of the
line thickness (see element property “Absolute movement”, option “Use REAL
values”). Requirement: The platform in use supports using REAL coordinates.

Table 714: “Default Text Input”
“Input with”

“Touchscreen” Text input on the display variant with touchscreen. The keypad or numpad dialog
opens.

“Keyboard” Text input on the display variant with an ordinary keyboard or a virtual keyboard
(on Linux for example)

Effect:
When you configure a user input for default text input, select an input configuration for input action “Write
variable”, and configure the “Input type” as “Default”, then the settings are used here.

See also
● Ä Chapter 6.4.5.6 “Configuring user inputs” on page 2885
● Ä “Input action 'Write Variable'” on page 3378

Object 'WebVisu'
Symbol:
Function: The object is used to configure the web-based display variant for remote display
of the visualization of the controller in a web browser. This allows for remote access, remote
monitoring, as well as service and diagnostics of an application over the Internet.
Requirement: The object is inserted below the Visualization Manager, and the target system
has a web server with CODESYS WebVisu support. The web server allows for the communica-
tion between the target system and the web browser.
See also
● Ä Chapter 6.4.5.18.2 “Executing as CODESYS WebVisu” on page 2974

“Start Visualization” Name of the visualization where the start is displayed as CODESYS WebVisu.
Hint: Use the Input Assistant to select another visualization.

“Name of the .htm file” Base URL of the web page. The URL is also specified as the address in the web
browser.
Example: http://localhost:8080/webvisu.htm
Note: If you use a BeagleBone Black as a visualization device, then you have
to note that a BeagleBone Black uses port 9090 for its web server. A valid IP
address is as follows: http://192.168.7.2:9090/webvisu.htm

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3409

“Use as default page” : The page specified in “Name of .htm file” is preset as the default page.
Now this page will always open when a user specified in the web browser
the IP address and port of the web server that is running on the controller:
http://<IP address web server>:<port web server>.

Example: http://localhost:8080
Notice: Even if you have created multiple web visualizations, you can activate
this option for exactly one web page only and therefore preset only one page as
the default page.

“Update rate (ms)” Refresh rate (in milliseconds) in the web browser

“Default communication buffer
size”

Default size for communication buffer (in bytes). Defines the maximum available
memory for data transfer between the web client and the web server.
Example: 50000

“Show Used Visualizations” The link opens the “Visualizations” tab in the “Visualization Manager” editor.
The tab provides information about the visualizations downloaded to the display
variants.

See also
● Ä Chapter 6.4.5.21.4.4 “Tab 'Visualization manager' – 'Visualizations'” on page 3402
● Ä Chapter 6.4.5.18.2 “Executing as CODESYS WebVisu” on page 2974

Table 715: “Scaling Options”
“Fixed” : Fixed size of the visualization. The values used are “Client height” and “Client

width”.

“Isotropic” : The size of the visualization is adapted to the dimensions of the web browser,
retaining the proportions of the visualization.

“Anisotropic” : The size of the visualization is adapted to the web browser.

“Use scaling options for
dialogs”

 The dialogs (also for keypad and numpad) are scaled as the visualization
(drawn with the same scaling factor). This is an advantage when a dialog was
created to match the visualization because then they are scaled together.

“Client height” Height of the visualization (in pixels).

“Client width” Width of the visualization (in pixels).

Table 716: “Presentation Options”
“Antialiased drawing” : Antialiasing is used when drawing the visualization in the web browser.

Table 717: “Input handing options”
“Standard text input with” ● “Touchscreen”: Text input on the WebVisu with touchscreen. The keypad or

numpad dialog opens.
● “Keyboard”: Text input on the WebVisu with an ordinary keyboard or a virtual

keyboard (on Android OS for example)
Effect:
When you configure a user input for default text input, select an input configura-
tion for input action “Write Variable”, and configure the “Input type” as “Default”,
then the settings are used here.

“Treat touch as mouse actions” : On devices with a touchscreen, gestures are treated as mouse actions. This
option is required, for example, to operate a slider or scrollbar on a touch device.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3410

See also
● Ä Chapter 6.4.5.6 “Configuring user inputs” on page 2885
● Ä “Input action 'Write Variable'” on page 3378

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3411

6.4.5.21.5 Visualization Elements
6.4.5.21.5.1 Visualization Element 'Rectangle', 'Rounded Rectangle', 'El-

lipse'... 3413
6.4.5.21.5.2 Visualization Element 'Line'.. 3425
6.4.5.21.5.3 Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'.......... 3437
6.4.5.21.5.4 Visualization Element 'Pie'.. 3450
6.4.5.21.5.5 Visualization Element 'Image'... 3463
6.4.5.21.5.6 Visualization Element 'Frame'.. 3478
6.4.5.21.5.7 Visualization Element 'Label'.. 3493
6.4.5.21.5.8 Visualization Element 'Combo Box, Array'................................. 3497
6.4.5.21.5.9 Visualization Element 'Combo Box, Integer'............................... 3503
6.4.5.21.5.10 Visualization Element 'Tabs'... 3509
6.4.5.21.5.11 Visualization Element 'Button'... 3514
6.4.5.21.5.12 Visualization Element 'Group Box'.. 3526
6.4.5.21.5.13 Visualization Element 'Table'.. 3531
6.4.5.21.5.14 Visualization Element 'Text Field'... 3538
6.4.5.21.5.15 Visualization Element 'Scroll Bar'... 3550
6.4.5.21.5.16 Visualization Element 'Slider'.. 3559
6.4.5.21.5.17 Visualization Element 'Spin Box'.. 3565
6.4.5.21.5.18 Visualization Element 'Invisible Input'....................................... 3572
6.4.5.21.5.19 Visualization Element 'Check Box'... 3577
6.4.5.21.5.20 Visualization Element 'Progress Bar'.. 3582
6.4.5.21.5.21 Visualization Element 'Radio Buttons'...................................... 3586
6.4.5.21.5.22 Visualization Element 'Alarm Table'.. 3591
6.4.5.21.5.23 Visualization Element 'Alarm Banner'....................................... 3600
6.4.5.21.5.24 Visualization Element 'Bar Display'.. 3606
6.4.5.21.5.25 Visualization Element 'Meter 90°'... 3612
6.4.5.21.5.26 Visualization Element 'Meter 180°'... 3619
6.4.5.21.5.27 Visualization Element 'Meter'.. 3626
6.4.5.21.5.28 Visualization Element 'Potentiometer'...................................... 3633
6.4.5.21.5.29 Visualization Element 'Histogram'.. 3641
6.4.5.21.5.30 Visualization Element 'Image Switcher'.................................... 3646
6.4.5.21.5.31 Visualization Element 'Lamp'.. 3651
6.4.5.21.5.32 Visualization Element 'Dip Switch', 'Power Switch', 'Push

Switch', 'Push Switch LED', 'Rocker Switch'............................. 3656
6.4.5.21.5.33 Visualization Element 'Rotary Switch'....................................... 3660
6.4.5.21.5.34 Visualization Element 'Trace'.. 3665
6.4.5.21.5.35 Visualization Element 'Trend'.. 3671
6.4.5.21.5.36 Visualization Element 'Legend'... 3679
6.4.5.21.5.37 Visualization Element 'ActiveX'... 3683
6.4.5.21.5.38 Visualization Element 'Web Browser'....................................... 3687
6.4.5.21.5.39 Visualization Element 'Busy Symbol, Cube'............................. 3691
6.4.5.21.5.40 Visualization Element 'Busy Symbol, Flower'........................... 3695
6.4.5.21.5.41 Visualization Element 'Text Editor'.. 3699
6.4.5.21.5.42 Visualization Element 'Path3D'... 3704
6.4.5.21.5.43 Visualization Element 'Control Panel'....................................... 3707
6.4.5.21.5.44 Visualization Element 'Date Range Picker'............................... 3721
6.4.5.21.5.45 Visualization Element 'Time Range Picker'.............................. 3726
6.4.5.21.5.46 Visualization Element 'Date Picker'.. 3730
6.4.5.21.5.47 Visualization Element 'Analog Clock'.. 3737

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3412

6.4.5.21.5.48 Visualization Element 'Date/Time Picker'................................. 3744

Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
Symbol:

Category: “Basic”

The “Rectangle”, “Rounded Rectangle”, and “Ellipse” are the same type of element. They can
be converted into another element type by changing the “Element type” property.

“Element name” Optional
Example: Werkstueck_3
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rectangle”, “Rounded Rectangle”, “Ellipse”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3413

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Visible only when “Rounded Rectangle” is selected in the “Type of element” property.

“Radius” Rounding of the corners.
“From style”

“Relative to the element size”

“Explicit”: Allows for specifying a custom value in the “Value” setting.

“Value” Radius of the rounded corners (in pixels)
Example: 5
Requirement: “Explicit” is selected in the “Radius” setting.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Radius setting

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3414

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3476

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3415

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3418
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3416

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3417

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3416

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3418

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3415
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3419

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3420

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3416

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3421

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3427

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3422

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3423

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3424

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Line'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3425

Category: “Basic”

The element draws a simple line.

“Element name” Optional.
Example: Separator_Header
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Line”

The following properties define the position and length of the element in the visualization
window. These are based on the Cartesian coordinate system. The origin is located at the upper
left corner of the window. The positive horizontal x-axis runs to the right. The positive vertical
y-axis runs downwards.

“Dots” “[0]”: Coordinates of the starting point
“[1]”: Coordinate of the end point

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.
Example:

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3426

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color of the line in normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color of the line in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3476

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3427

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3430
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3428

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3429

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement point[0]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the starting
point of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

“Movement point[1]”

● “X”
● “Y”

Variable (numeric data type). It contains the number (in pixels) that the end point
of the line is moved.
Incrementing the X value moves the element to the right.
Incrementing the Y value moves the element to the down.

See also
● Ä “Element property 'Absolute movement'” on page 3428

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3428
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3430

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3431

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3428

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3432

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” ● Variable (DWORD) for the color
Example: PLC_PRG.dwColor

● Color literal
Example of gray and opaque: 16#FF888888

Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable in the alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3433

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

Dynamic definition of the weight of a line element using a variable.

“Integer value ” Variable (integer data type). Defines the line weight of the element (in pixels).
This overwrites the fixed value that is defined in “Appearance è Line weight”.
Note: The value 0 codes the same as 1 and sets the line weight to one pixel.

“Integer value ” Variable (integer data type). Defines the appearance of the line at runtime.
● 1: Solid
● 2: Dashes
● 3: Dots
● 4: Dash Dot
● 5: Dash Dot Dot
● 6: Invisible: The line is not drawn.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Line width
variable'

Element prop-
erty 'Line style
variable'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3434

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3435

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3436

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3437

Category: “Basic”

The “Polygon”, “Polyline”, and “Bézier Curve” are the same element type. They can be con-
verted into another type by changing the “Element type” property.
Elements can be dragged to the editor. The element is then drawn with five points: [0] to [4].
Other positions are added as follows: Move the mouse pointer over a corner point; the mouse
pointer changes shape. Now if you press and hold [Ctrl] and click the left mouse button, another
point is created. You can delete a point by pressing and holding [Shift]+[Ctrl] and click the
selected point.
As an alternative, you can select the element in the toolbox area and in the editor click multiple
times. At the same time, a connecting line is drawn from one point to the other. End by
double-clicking the element or right-clicking it one time.

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Werkstueck_1

“Type of element” ● “Polygon”
● “Polyline”
● “Bézier Curve”

The following properties define the position of the corner points in the visualization window.
These are based on the Cartesian coordinate system. The origin is located at the upper left
corner of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis
runs downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3438

“Dots” [0]..[n]: Coordinates of the corner points
Specified in pixels

You can also change the values by dragging the box symbols () to other
positions in the editor.

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3439

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3476

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3440

See also
● Ä “Element property 'Text variables'” on page 3443
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3441

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3442

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

“Array of points” Variable (POINTER TO). Points to an array of the structure
VisuElems.VisuStructPoint. The elements iX and iY of
VisuStructPoint contain the xy-coordinates of a point The current number of
array elements implicitly contains the variable in the property “Number of points”.
The variable that is assigned to the property “Number of points” contains the
number of array elements and therefore the number of corner points.
Example: pPoints : POINTER TO ARRAY[0..100] OF
VisuElems.VisuStructPoint;

“Number of points” Variable (integer data type): Contains the number of array elements and there-
fore the number of corner points for displaying the element.
Example: PLC_PRG.iNumberOfPoints := 24;
In the example, the element has 24 points. This definition is necessary because
the individual points are defined by a pointer and this does not allow control over
the number of points.
Note: In this way, it is possible to adapt the display of the element dynamically by
updating the number of corner points.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3440
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Dynamic
points'

Element prop-
erty 'Text varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3443

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3444

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3441

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3445

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3446

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3468

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3447

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3448

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3449

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Pie'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3450

Category: “Basic”

The element draws a pie of any angle.

“Element name” Example: Error_rate_part_1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Pie”

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3451

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Begin” Start angle of the pie. If you also define a variable
for the start, then the start angle is calculated from
the sum of the values for “Begin” and “Variable for
begin”.

Example:
● “Begin”: 330
● “End”: 90

“End” End angle of the pie. If you also define a variable
for the end, then the end angle is calculated from
the sum of the values for “End” and “Variable for
end”.
The pie is drawn clockwise from the start angle to
the end angle.

“Variable for begin” The start of the sector is defined dynamically by a variable.

“Variable for end” The end of the sector is defined dynamically by a variable.

“Only show circle
line”

: The pie is drawn without the radius line or filling color.

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3452

“X” Display of the center coordinates. You cannot modify these values here in the
properties.
If the Pie is selected in the editor, then the center of the Pie (as well as the
center of the enveloping box) is visualized with the symbol . Moreover, the
element is decorated with a position, begin, and end boxes that you can move.

The center coordinates change when you move the center symbol in the
editor. This also changes the size of the Pie so that the position box retains its
position and the center remains in the middle of the element.

“Y”

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

“Use gradient color” : The element is displayed with a gradient of two colors.

“Gradient setting” The “Gradient editor” dialog box opens.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3453

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3476

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3456
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3454

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (integer data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (integer data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3455

“Interior rotation” Variable (integer data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
If a static angle of rotation is specified in “Position
è Angle”, then the static angle of rotation and the
angle of rotation are added.

You can link the variables to a unit conversion.

The “X”, “Y”, and “Interior rotation” properties are supported by the "Client
Animation" functionality.

See also
●

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3454
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Text varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3456

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3457

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3454

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3458

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3459

The properties contain IEC variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).

“Fill attributes” Variable (DWORD). Controls whether the fill color of the element is visible.
● Variable value = 0: Filled
● Variable value > 0: Invisible; no fill color

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible; no line

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3468

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3460

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3461

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3462

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Image'
Symbol:

Category: “Basic”

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3463

The element adds an image to the visualization. The displayed image is managed in the image
pool and referenced in the visualization element by means of a static ID. You can also change
the displayed image dynamically by using a variable instead of the static ID.

With the “Background” command, you can define a background for the entire
visualization.

Directories that contain the images for use in visualizations can be defined in
the project settings (category “Visualization”).

“Element name” Example: Status bar
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Image”

“Static ID” Identifier of the image file for a static assignment
ID of the image file on, as it is defined in the corresponding image pool. If
the image is not included in the global image pool in the POU view, then the
instance path must be specified. Then the name of the image pool is preceded
to make the entry unique. Example: imagepool2.button_image.

When a new ID is specified, a file selection dialog opens. The selected file is
saved to the “GlobalImagePool”.
See also: Help for the “Image Pool” object.

“Show frame” : The image file is displayed with a frame.

“Clipping” Requirement: The “Scaling type” property is “Fixed”.

: Only part of the visualization is displayed that fits in the element frame.

“Transparent” : The image pixels that have the “Transparent color” are displayed as trans-
parent.

“Transparent color” Effective only if the “Transparent” option is activated.

The button opens the color selection dialog. This is where you select the
transparent color.

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3464

“Scaling type” Definition of how an image fits in the element frame.
● “Isotropic”: The entire image is displayed in the element frame, either larger

or smaller. As a result, the proportion of height and width are retained.
If the alignment of the elements to each other should also be retained
within a scaled frame element, then note the following. Unwanted horizontal
or vertical offsets can be prevented by setting the properties “Horizontal
alignment” and “Vertical alignment” to “Centered”. The alignment of the ele-
ments is retained and there are no resulting horizontal or vertical offsets.
Example: A lamp is centered above a switch. The lamp should remain in the
horizontally centered position, even if the frame is resized.

● “Anisotropic”: The image resizes automatically to the dimensions of the ele-
ment frame, filling the entire element frame. As a result, the proportions are
not retained.

● “Fixed”: The image retains its original size, even if the element frame is
resized. Note also that the “Clipping” option is selected.
For each reassignment of an image ID, the element size is adapted automat-
ically to the image size.

“Horizontal alignment” Horizontal alignment of the element within the element frame:
● “Left”
● “Centered”
● “Right”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the horizontal
alignment.
Example: PLC_PRG.eHorizontalAlignment

“Vertical alignment” Vertical alignment of the element within the element frame:
● “Top”
● “Centered”
● “Bottom”

Requirement: The scaling type of the image is “Isotropic” or “Fixed”.
Note: If the visualization is referenced, then the horizontal alignment takes effect
within the frame position.

: The “Variable” property is shown below this.

“Variable” Enumeration variable (ENUM
VisuElemBase.VisuEnumVerticalAlignment). Contains the vertical align-
ment.
Example: PLC_PRG.eVerticalAlignment

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3465

A valid declaration is required for the variables used as an example in the table above.

TYPE VisuElemBase.VisuEnumHorizontalAlignment
 LEFT
 HCENTER
 RIGHT
END_TYPE

TYPE VisuElemBase.VisuEnumVerticalAlignment
 DOWN
 VCENTER
 BOTTOM
END_TYPE

PROGRAM PLC_PRG
VAR
 eHorizontalAlignment :
VisuElemBase.VisuEnumHorizontalAlignment :=
VisuElemBase.VisuEnumHorizontalAlignment.HCENTER;
 eVerticalAlignment : VisuElemBase.VisuEnumVerticalAlignment :=
VisuElemBase.VisuEnumVerticalAlignment.VCENTER;
END_VAR

Example
Enumeration

Declaration

See also
● Object 'Image Pool'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3466

ms-its:codesys.chm::/_cds_obj_image_pool.htm

“Angle” Static angle of rotation (in degrees).
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the frame
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the frame in alarm state
Requirement: “Show frame” property is activated.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3467

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3476

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3471
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3468

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 6.4.5.20.1.5 “Visualization Element 'Image'” on page 3038
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468

You can use this element property for animating a series of image files.

“Bitmap version” Variable (integer data type). Contains the version of the image.
If the variable changes, then the visualization re-reads the image referenced in
the “Image ID” property and displays it.
The visualization displays animations when the image file on the controller is
updated continuously, thus incrementing the version variable. The application
must be programmed for this.
Possible applications
● Displaying graphics that are generated by the application
● Displaying images that are refreshed by a camera

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Image ID
variable'

Element prop-
erty 'Dynamic
image'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3469

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3470

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3441

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

Element prop-
erty 'Relative
movement'

Element prop-
erty 'Text varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3471

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3468
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3472

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3473

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3469

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3474

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3475

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3468

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3476

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: A user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: A user clicks down on the element only.

“OnMouseEnter” Input event: A user drags the mouse pointer to the element.

“OnMouseLeave” Input event: A user drags the mouse pointer away from the element.

“OnMouseMove” Input event: A user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3477

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered.

“Key” Key pressed for input action.
Example: [T]

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Project Settings - Visualization
● Ä Chapter 6.4.5.21.2.10 “Command 'Background'” on page 3349
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Frame'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3478

ms-its:codesys.chm::/_cds_dlg_project_settings_visualization.htm

Category: “Basic”

The element serves as a frame in which to display one or more already existing visualizations.
You get a structured user interface. The size of the frame can be fixed or scaled. The display
area of the referenced visualization then adapts itself to the frame size.

“Element name” Example: refVisUserInfo
“Type of element” “Frame”

“Clipping” : Fixed size. Only that part of the referenced visualization that fits inside the
frame is displayed.
Requirement: The “Scaling type” property is “Fixed”.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area. The gap prevents the
referenced visualization from touching any adjacent elements.

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

The properties contain variables for the position of the scrollboxes in the scrollbars. You can
then edit the data of the scrollbox position in the application.

Element proper-
ties

Element proper-
ties 'Scrollbar
settings'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3479

Requirement: the property “Scaling type” is “fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also as array). Contains the position of the horizontal
or vertical scrollbox. The array contains the position for every display variant. If
the visualization runs on several display variants, then the position changes are
decoupled from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
The variable is declared as an array in the example.
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indexes the current display variant.

“Scroll position variable
vertical”

You can combine the variables with a unit conversion.

See also
● Unit conversion

“Deactivation of the
background character”

: The background is drawn. The non-animated element of the referenced visu-
alization is drawn as a background bitmap in order to optimize the performance
of the visualization.
Consequence: Elements can be displayed in an unexpected order at runtime.
For example, an animated element can push itself behind the Frame at runtime.

: Background character is deactivated in order to avoid the behavior described
above.

Contains the currently configured visualization references as a subnode

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

Element prop-
erty 'Referen-
ces'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3480

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä “Input action 'Switch Frame Visualization'” on page 3377

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the colors.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3481

“Color” Color of the frame

: Selection list with style colors appears

: Standard dialog “Color” opens for selecting a color.
Please note: the normal state is when the boolean variable in the property
“Color variables è Toggle color” is not defined or its value is FALSE.

“Alarm color” Color with which the element is filled during the alarm state.
Please note: Alarm state is when the value of the boolean variable in the prop-
erty “Color variables è Toggle color” is FALSE.

“Transparency” Integer number (value range from 255 to 0). Specifies the transparency of the
associated color.
255: The color is opaque.

0: The color is fully transparent.

Please note: If the color is a style color and already contains a transparency
value, then this property is write-protected.

See also
● Ä Chapter 6.4.5.5.4 “Assigning a color” on page 2876

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3489

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3482

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3485
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3483

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

Element prop-
erty 'Relative
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3484

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3441

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3482
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3485

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3486

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3483

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3487

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3488

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3482

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The variables control the element behavior dynamically.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3489

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3490

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3491

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3492

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Visualization Element 'Label'
Symbol:

Category: “Common Controls”

The element is used to label visualizations.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Header_Parameter

“Type of element” “Label”

The property requires a character string.
This text is entered automatically into the GlobalTextList text list and can be localized there.

“Text” Character string (without single straight quotation marks)
Example: Main page

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Texts'

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3493

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3494

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3495

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3496

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Combo Box, Array'
Symbol:

Category: “Common Controls”

The element shows values of an array as a list box. When the visualization user clicks an entry,
the array index of the entry is written to an integer variable.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3497

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: List_Product_Number

“Type of element” “Combo Box, Array”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3498

“Variable” The array index of the list entry that the user clicks is saved at runtime.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIndexComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
Note: Value range of the enumeration value that lies within the DWORD or
DINT value range

“Data array” Displayed as a combo box. Every array component becomes a combo box entry.
Property value
● Array variable (ARRAY[...] OF)

Example: PLC_PRG.astrCombobox
Declaration: astrCombobox : ARRAY[0..4] OF STRING :=
['First', 'Second', 'Third', 'Fourth'];

See also
● Enumerations
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

The "Combo box – Array" element visualizes an array variable or structure variable in a tabular
view. The index of array elements or structure members is shown in a column or row. Two-
dimensional arrays or structure arrays are shown in several columns. You specify the visualized
variable in the “Data array” property. If a variable is assigned there, then you can specify the
display of the table columns where the array elements are shown. You can customize each
column that is assigned to an index [<n>].

“Columns”

● [<n>]
Due to the structure of the variable that is defined in “Data array”, CODESYS
determines the number of columns and defines them with the index <n>.
Example: StringTable : ARRAY [0..2, 0..4] OF STRING :=
['BMW','Audi','Mercedes','VW','Fiat',
'150','150','150','150','100','blue','gray','silver','blue'
,'red'];: three columns are formed [0], [1] and [2].

“Max. array index” Optional. Variable (integer data type) or value. Defines up to which array index
the data is displayed.

“Row height” Height of the rows (in pixels).

“Number visible rows” Optional. If the array is larger than the number of visible rows, then a scrollbar is
included.

“Scrollbar size” Width of the vertical scrollbar (in pixels).

Table 718: “Element property 'Columns: Column [<n>]'”
“Width” Column width (in pixels).

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or user-defined image pools. The image IDs are shown in the cells of
the table as defined in the image pool.

“Image configuration”

Element prop-
erty 'Columns'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3499

ms-its:codesys.chm::/_cds_datatype_enum.htm

“Fill mode” ● “Fill cell”
The image resizes to the dimensions of the cell without fixing the height/
width ratio.

● “Centered”
The image is centered in the cell and retains its proportions (height-width
ratio).

“Transparency” : The color that is specified in “Transparent color” is displayed as transparent.

“Transparent color” When the “Transparent” property is enabled, the color specified here is not
displayed. Pixels with this color are transparent.

“Text alignment in column” ● “Left”
● “Centered”
● “Right”

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Font” Example: “Default”

: The “Font” dialog opens.

: List box with style fonts

“Font color” Example: “Black”

: The “Color” dialog opens.

: List box with style colors

“Transparency” Integer (value range from 0 to 255). This determines the transparency of the
respective color.
255: The color is opaque.

0: The color is completely transparent.

Note: If the color is a style color and already has a transparency value, then this
property is write-protected.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3500

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3501

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3502

Visualization Element 'Combo Box, Integer'
Symbol:

Category: “Common Controls”

The element shows values as a list box. When the user clicks an entry, the ID of the entry is
written to an integer variable. The entries in the list box can be from a list and contain images
from an image pool.

“Element name” Example: List of product numbers
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Combo Box, Integer”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3503

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” At runtime, the text list ID of the list entry that the user clicks is saved at runtime.
If only one image pool is displayed, then the image ID is saved.
Property value
● Variable (integer data type)

Example: PLC_PRG.iIDComboboxEntry
● Enumeration variable with text list support

Example: PLC_PRG.eMyCombobox<COMBO>
“Text List” Displayed as a combo box. Every text list entry becomes a combo box entry.

Note: A maximum of 32766 entries can be displayed.
Transfer value
● Text list identifier as string

Example: 'TextList_A'
Note: The IDs of the text list have to be within the range of values of DWORD
or DINT.

● Blank
– When an enumeration variable with text list support is specified in the

“Variable” property
– When only one image pool is displayed

“Image Pool” Displayed as a combo box. Every image in the image pool becomes a combo
box entry.
Example: 'ImagePool_A'

See also
● Enumerations
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

Displayed list that expands when a visualization user clicks into the element.

“Number of rows setting” ● “From style”:
● “Explicit”: Then the “Number of visible rows” property appears below it.

“Number of visible rows” Number of visible lines of the combo box drop-down list defined here
● Integer literal

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iNumberOfVisibleRows
Note: The property is available when the “Number of rows setting” property is set
to “Explicit”.

Element prop-
erty 'Settings of
the list'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3504

ms-its:codesys.chm::/_cds_datatype_enum.htm

“Row height” ● “From style”:
● Literal

Example: 20
“Height of image” Image height (in pixels) of the image displayed in the drop-down list entry

● “From style”:
● Integer literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Width of image” Image width (in pixels) of the image displayed in the drop-down list entry
● “From style”:
● Literal

Example: 30
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Offset of image” Makes the images in the selection list appear offset (in pixels) from the left
margin. An offset of 0 means that the images are displayed directly on the
margin.
● “From style”:
● Literal

Example: 4
Note: Images are displayed only when a value is specified in the “Image pool”
property.

“Scrollbar size” Size of the scrollbar (in pixels). The scrollbar is displayed when more entries are
specified in the drop-down list than in “Number of visible rows”.
Default: 20

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element in runtime mode
Example: Products of customer A
Hint: The text is accepted automatically into the “GlobalTextList” text list and can
be localized there.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'Texts'

Element prop-
erty 'Value
range'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3505

“Limit valuerange” Limits the text list to one subrange. This subrange is displayed by the combo
box.
Requirement: A value is specified in the “Text list” property.

: Only the subrange that is defined by the “Minimum value” “Maximum value”
properties is displayed as a drop-down list.

“Minimum value” ID of the text list entry from which a combo box entry is displayed
● Literal (ANY_NUM)

Example: 5
● Variable (integer data type)

Example: PLC_PRG.iFirstEntry
“Maximum value” ID of the text list entry up to which combo box entries are displayed

● Literal (ANY_NUM)
Example: 10

● Variable (integer data type)
Example: PLC_PRG.iLastEntry

“Filter missing textentries” : Text list is refreshed and any unused texts (IDs) are removed.
Requirement: A value is specified in the “Text list” property.

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3506

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3507

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3508

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Tabs'
Symbol:

Category: “Common Controls”

The element displays selected visualizations in tabs. The tabs can be used by means of the tab
header without having to configure an input configuration. A visualization user switches between
visualizations by clicking the tab header.

“Element name” Example: Assembly A
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Tabs”

“Tab width” Width of the tab (in pixels). If there is not space for all tab headers, then a scroll
bar is added.
Example: 30

“Tab height” Height of the tab (in pixels)
● Integer literal

Example: 15
● “From style”

“Scaling type” The method with which the height and width of the referenced visualization are
scaled.
● “Isotropic”: The visualization is scaled to the size of the element. The visuali-

zation retains its proportions with a fixed height/width ratio.
● “Anisotropic”: The visualization is scaled to the size of the element. The

height and width are adapted to the element independently of each other.
● “Fixed”: the visualization is displayed in its original size without taking into

account the size of the element.
● “Fixed and scrollable”: The visualization is displayed fixed in the element. If it

is larger than the element, the element will be provided with scrollbars.
Please note: assign variables to the properties “Scroll position variable
horizontal” or “Scroll position variable vertical”. You can then edit the data
of the scrollbar position in the application.

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3509

“Deactivate background
drawing”

: The non-animated elements of the referenced visualization are displayed as
background images in order to optimize the performance of the visualization.
Result: At runtime, the elements can be displayed in any order, for example
when an element moves behind the frame at runtime.

: Deactivates the background display in order to prevent the behavior
described above
The property is not available for the following settings:
● The “Scaling type” property is set to “Fixed and scrollable”
● The client animation functionality is enabled.

The properties include variables for the position of the scroll boxes in the scroll bars. You can
process the data for the scroll box position in the application.

Requirement: The “Scaling type” property is “Fixed and scrollable”.

“Scroll position variable
horizontal”

Variable (integer data type, also array). Includes the position of the horizontal or
vertical scroll box. The array contains the position for each display variant. If the
visualization is running on multiple display variants, then the position changes
are disconnected from each other.
Example:
PLC_PRG.iScrollHor[CURRENTCLIENTID]
PLC_PRG.iScrollVer[CURRENTCLIENTID]
In this example, the variable is declared as an array:
iScrollHor: ARRAY[0..20] OF INT;
iScrollVer: ARRAY[0..20] OF INT;
CURRENTCLIENTID indicates the current display variant.

“Scroll position variable,
vertical”

See also
● Unit conversion

“References” Clicking “Configure” opens the “Frame Configuration” dialog. You can select an
existing visualization there.
Selected visualization references are shown in the properties.
Selected visualization references are listed here as subordinate properties.

Name pf the visualization refer-
ence (example: PLC_PRG.S1)

“Heading” Tab caption (example: Panel)

“Image ID” Image ID in the theme <image pool name>.<ID>
Example: Imagepool_A.1 for the image with ID 1 in Imagepool_A

Interface parameter of the visu-
alization reference
Example: iX

If the visualization has an interface, then their parameters are displayed here as
subordinate properties.
Variable (data type conforms to data type of the interface parameter). Includes
the initialization value for the instantiation of the visualization.

Element prop-
erty 'Scroll bar
settings'

Element prop-
erty 'Referen-
ces'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3510

ms-its:codesys.chm::/_cds_unit_conversion.htm

See also
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Switch
frame variable'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3511

“Variable” Variable (integer data type). Specifies the index of the active visualization.
Example: PLC_PRG.uiActiveVisuID.

Tip: The “Frame Configuration” dialog box includes a list of selected visualiza-
tions. The visualizations are ordered automatically in numeric order in the list.

See also
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3512

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3513

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Button'
Symbol:

Category: “Common Controls”

The element triggers an action, such as setting a variable.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Voltage_on

“Type of element” “Button”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3514

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3515

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Static ID” Reference to an image in an image pool of the format <name of image
pool>.<image ID> (example: image_pool.GreenButton).

If the image is from the “GlobalImagePool”, then you can omit the name of the
image pool because CODESYS always searches this pool first.

: The “Input Assistant” dialog box opens and lists all available image pools
and images in the entire project.

“Scale type” Behavior of the image when resizing the button.
● “Isotropic”: The image retains its proportions. The ratio of height to width is

retained, even if you change the height or width of the button separately.
● “Anisotropic”: The image resizes to the dimensions of the button.
● “Fixed”: The image retains its original size, even if you change the size of the

button.

“Transparency” The visualization displays the image with the transparency color that is selected
in “Transparency color”.

“Transparency color” Color that is transparent in the image (example: “White”). if the image back-
ground that is reference by “Static ID” is white, then this background is displayed
transparent. Clicking opens a color selection dialog.
Requirement: The “Transparency” option is activated.

“Horizontal alignment” Horizontal alignment of the image
● “Left”
● “Centered”
● “Right”

“Vertical alignment” Vertical alignment of the image
● “Top”
● “Centered”
● “Bottom”

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Image'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3516

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3519
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3517

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

Element prop-
erty 'Relative
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3518

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3441

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3516
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3519

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3520

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3517

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3521

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Color” Color variable for the Frame
● Variable (DWORD) for the color

Example: PLC_PRG.dwColor
● Color literal

Example of gray and opaque: 16#FF888888
Requirement: “Show Frame” property is activated.
Please note that the normal state is in effect if the expression in the
“Colorvariables è Toggle color” property is not defined or it has
the value FALSE.

“Alarm color” Color variable for the Frame in alarm state
● Variable (DWORD) for the alarm color

Example: PLC_PRG.dwAlarmColor
● Color literal

Example of red and opaque: 16#FFFF0000
Please note that the alarm state is in effect if the expression in the
“Colorvariables è Toggle color” property has the value TRUE.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3522

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

“Digital variable” At runtime, the property controls whether the Button is displayed as pressed or
not.
Values:
● FALSE: The Button is displayed as not pressed.
● TRUE: The Button is displayed as pressed.

Argument passed to the property:
● Placeholder for the user input variable to couple the representation of the

Button with the input variable.
– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

Note: Specify a variable for the mouse events “Tap” or “Toggle” in the input
configuration of the Button. Only then is the placeholder set. If you configure
a variable in both “Toggle” and “Tap”, then the variable specified in “Tap” is
used.
Hint: Click the symbol to insert the placeholder “<toggle/tap variable>”.
When you activate the “Inputconfiguration”, “Tap FALSE” property, then the
“<NOT toggle/tap variable>” placeholder is displayed.

● Instance path of a project variable (BOOL)
Example: prgA.xButtonState
Note: Implement a value assignment in the code for the variable specified
here.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Button
state variable'

Element prop-
erty 'Image ID
variable'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3523

“Image ID” Variable (STRING). Contains the image ID. The contents of the string corre-
sponds to the description of the “Static ID” property.
Example: PLC_PRG.stImageID := 'ImagePool_A.Image3';

See also
● Ä Chapter 6.4.5.21.5.5 “Visualization Element 'Image'” on page 3463
● Ä Chapter 6.4.1.21.2.15 “Object 'Image Pool'” on page 2468

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3524

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3525

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Group Box'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3526

Category: “Common Controls”

The element provides a visual grouping of visualization elements. The group box can have
multiple levels of nesting.

You can also use drag&drop to add elements to a “Group Box”. To do this, drag
the element to the window area of the “Group Box”. The appearance of the
cursor changes (a small plus sign is displayed). When you click the [Shift] key at
the same time, the element is not added.

You can remove elements from the “Group Box” by dragging them out of the
window area.

“Element name” Example: Parameter axis 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Group Box”

“Clipping” : Elements that protrude beyond the size of the group box are clipped.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3527

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3528

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3529

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3530

Visualization Element 'Table'
Symbol:

Category: “Common Controls”

The element displays data that can be represented as an array in a table. Therefore, the data
type of the visualizing variable can be 1) a one-dimensional array, 2) a maximum two-dimen-
sional array, 3) an array of an array, 4) an array of structures, or 5) an array of a function block.

“Element name” Example: Data set component 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Table

“Data array” Array whose data is visualized as a table
Variable (ARRAY) whose data type determines the number of columns and rows
in the table
Array types
● One-dimensional array: The table has one column.
● Two-dimensional array: The second dimension determines the number of

columns.
● Array of an array: The number of array elements of the back array deter-

mines the number of columns.
● Array of a structure: The number of structure members determines the

number of columns.
● Array of a function block: The number of local variables determines the

number of columns.
Example: PLC_PRG.aiTable
Declaration: aiTable : ARRAY[0..3, 0..4] OF INT := [4(1, 2, 3,
4, 5)];
Hint: If the declaration of the array changes, then the table can be refreshed by
placing the cursor in the data array value field and pressing the [Enter] key.

“Max. array index” Top index limit for the displayed table. Limits the number of displayed rows. The
index begins at 0.
● Variable (integer data type)

Example: PLC_PRG.iUpperIndexBoundToDisplay
● Integer literal

Example: 4 is displayed as 5 in the row of the table.

See also
● Data Type 'ARRAY'

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3531

ms-its:codesys.chm::/_cds_datatype_array.htm

The “Table” element shows the values of a variable in a tabular view. The array elements of
structure members are shown in a column or in a row. Two-dimensional arrays or arrays of a
structure are shown in multiple columns. The visualized variable is defined in the “Data array”
property. When a variable is assigned there, you can specify the display of the Table columns
where the array elements are shown. An individual configuration is possible for each column
that is assigned to an index [<n>].

“Show row header” : The row header is visible.
Example: For an array, the index of the array element is displayed in the header.

“Show column header” : The column label is visible.

“Row height” Height of the rows (in pixels)

“Row header width” Width of the row label

“Scroll bar size ” Size of the scroll bar (in pixels)

Table 719: “Element property 'Columns: Column [<n>]'”
“Column header” By default, the name of the array or structure is applied as the heading with

the index or structure member for the column. If an array of a function block
has been selected for “Data array”, then the name of the array is applied to the
column header with the local variables of the function block that belong to the
column.
The column label can be changed here by specifying a new title.

“Width” Column width (in pixels)

“Image column” : Images can be displayed in the column. Images are used from the global
image pool or custom image pools. The image IDs are shown in the cells of the
Table as they are defined in the image pool.

“Image configuration”

“Fill mode” ● Fill cell: The image resizes to the dimensions of the cell without fixing
the height/width ratio.

● Centered: The image is centered in the cell and retains its proportions
(height/width ratio).

“Transparency” : The color which is specified in “Transparent color” is displayed as trans-
parent.

“Transparent color” This color is displayed as transparent.
Requirement: The “Transparency” property is activated.

“Text alignment of header” Alignment of the column header:
● Left
● Centered
● Right

“Use template” : Another visualization element (type “Rectangle”, “Rounded Rectangle”, or
“Ellipse”) is inserted into each line of this Table column. The properties list is
extended automatically with the properties of this element in “Template”.

“Text alignment of the headline
from the template”

Requirement: The “Use template” property is activated.

: When activated, the settings for font (size) and alignment in the inserted
template are also applied to the column header.

“Template” Requirement: The “Use template” property is activated.
The properties of all elements assigned to the column are listed in “Template”.
They can be modified there as described in “Rectangle”, “Rounded Rectangle”,
and “Ellipse”.

Element prop-
erty 'Columns'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3532

See also
● Ä Chapter 6.4.5.21.5.1 “Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'”

on page 3413

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3533

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables enable dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog box.

“Size” Variable (integer data type). Contains the font size (in pixels).
Example: PLC_PRG.iFontHeight := 16;.

The selection of font sizes corresponds to the default “Font” dialog box.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3534

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Charset” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog box.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3541

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3535

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3536

The “Invisible” property is supported by the "Client Animation" functionality.

“Background color on
selection”

Fill color of the selected row.

“Selection font color” Font color of the selected row.

“Selection type” Selection when clicking the table row.
● No selection: No selection
● Cell selection: The clicked cell only.
● Row selection: Row of the clicked cell.
● Column selection: Column of the clicked cell.
● Row and column selection: Row and column of the clicked cell.

“Frame around selected cells” : A frame is drawn around the selected cells.

“Variable for selected column” Variable (INT). Contains the array index of the “Column” of the selected cell. If
the data array points to a structure, then the structure components are indexed,
starting at 0.
Warning: This index represents the correct position in the array only if no col-
umns have been removed from the table in the display.

“Variable for selected row” Variable (INT). Contains the array index of the “Row” of the selected cell.

“Variable for valid column
selection”

Variable (BOOL).
TRUE: The “Variable for selected column” variable contains a valid value.

“Variable for valid row
selection”

Variable (BOOL).
TRUE: The “Variable for selected row” variable contains a valid value.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'Selection'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3537

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.11.2 “Displaying Array Variables in Tables” on page 2917
● Data Type 'ARRAY'

Visualization Element 'Text Field'
Symbol:

Category: “Common Controls”

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3538

ms-its:codesys.chm::/_cds_datatype_array.htm

The element is used for the following purposes:
● Static output of text. The contents of a variable can be part of the text.
● Showing a tooltip. The text is managed as static text and can also be defined so that the

contents of a variable are also displayed.
● Dynamic output of text. Texts of a text list are displayed dynamically.
● Input of text. For example, a user can input a number or a text literal.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Element name” Optional
Example: FileName_A
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Text Field”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Normal state” The normal state is in effect if the variable in “Color variables è Toggle color” is
not defined or it has the value FALSE.

“Frame color” Frame and fill color for the corresponding state of the variable.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3539

“Fill color”

“Transparency” Transparency value (0 to 255) for defining the transparency of the selected color.
Example: 255: The color is opaque. 0: The color is completely transparent.

“Alarm state” The alarm state is in effect if the variable in “Color variables è Toggle color” has
the value TRUE.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3489

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

Element prop-
erty 'Appear-
ance'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3540

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3541
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3541

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3540
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3542

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3543

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3541

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3544

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3545

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The variables allow for controlling the caret position and the selection of the text.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Selection
and caret con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3546

“Caret position” Variable (integer data type). Contains the position of the cursor.

“Selection start” Variable (integer data type). Contains the position of the first selected character.
Example: PLC_PRG.iSelStart

“Selection end” Variable (integer data type). Contains the position of the last selected character.
Example: PLC_PRG.iSelEnd

“All selected” Variable (BOOL). Toggles the selection of the entered text.
TRUE: The text in the text field is selected.

FALSE: The selection starts with the value in “Selection start” and ends with
“Selection end”.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3547

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3548

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3549

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Scroll Bar'
Symbol:

Category: “Common Controls”

The element sets the value of a variable, depending on the position of the scroll bar.

“Element name” Example: Speed Conveyor Belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Scroll Bar”

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Value” Variable as type integer that includes the position of the scroll bar.

“Minimum value” Smallest value of the scroll bar (fixed value or variable).

“Maximum value” Largest value of the scroll bar (fixed value or variable).

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3550

“Page size” Page size
● As a fixed value, for example 10
● As a variable of data type integer
Requirement: Visible when the “Move to click” property is not selected.

“Move to click” Behavior of the scroll bar at visualization runtime when it is clicked:

: The scrollbar moves to the clicked position.

: The scrollbar moves to one “Page size” in the direction of the click.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The property defines the representation of scaling and direction of travel.

Element prop-
erty 'Position'

Element prop-
erty 'Bar'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3551

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the Scroll Bar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

Element prop-
erty 'Colors'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3552

See also
● Ä “Element property 'Text variables'” on page 3553
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3552
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Text varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3553

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3554

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3541

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

Element prop-
erty 'Color varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3555

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3556

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3557

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3558

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Slider'
Symbol:

Category: “Common Controls”

The element changes the value of a variable, depending on the position of the slider within the
slider bar. You define the value range of the slider bar by means of the scale start and scale
end.

“Element name” Example: Speed controller conveyor belt 1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Slider”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3559

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.rSlider
When executed, the variable assigns a value that corresponds to the position of
the slider in the bar.

“Page size” Page size
● As a fixed value, for example 10
● As an IEC variable of data type integer
Requirement: The “Move to click” element property is not selected.

“Move to click” Behavior of the slider at visualization runtime when it is clicked:

: The slider moves to the clicked position.

: The slider moves to the value (defined in the “Page size” element property) in
the direction of the click.

“Show scale” : The element has a visible scale.
Note: This option is available for the “Slider” only.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3560

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two tick marks on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between two dashes on the fine scale. You can hide the fine scale by
setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 5;
END_VAR

“Scale format (C Syntax)” Formatting of the scale label (example: %d %s)

Note: This property is available for the Slider only.

“Scale proportion” Size of the scale (in %) of the total size

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3561

The property defines the representation of scaling and direction of travel.

“Diagram type” The drop-down list varies depending on the alignment of the diagram.
Horizontal
● “Top”: Scale is above the slider.
● “Bottom”: Scale is below the slider.
● “Top and bottom”: Two scales frame the slider above and below.
Vertical
● Left: Scale is left of the slider.
● Right: Scale is right of the slider.
● Left and right: Two scales frame the slider on the left and the right.

“Orientation” Alignment of the slider; defined by the ratio of width to height.
● “Horizontal”
● “Vertical”

You can modify the alignment in the visualization editor by using the pointing
device to adjust the width and height of the scrollbar.

“Running direction” The drop-down list varies depending on the alignment of the slider.
Horizontal
● “Left to right”: Scale starts at the left.
● “Right to left”: Scale starts at the right.
Vertical
● “Bottom to top”: Scale starts at the bottom.
● “Top to bottom”: Scale starts at the top.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Bar'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3562

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3563

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3564

Visualization Element 'Spin Box'
Symbol:

Category: “Common Controls”

The element increments or decrements the value of a variable in defined intervals.

“Element name” Example: Speed controller conveyor belt
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Spin Box”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3565

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable (numeric data type)
Example: PLC_PRG.iTemp

“Number format” Format of the value in printf syntax
Example: %d, %5.2f

“Interval” Interval used for modification of the value

“Minimum value” Lower limit of the output value
● fixed value
● Variable (INT)

“Maximum value” Upper limit of the output value
● fixed value
● Variable (INT)

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Value
range'

Element prop-
erty 'Text prop-
erties'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3566

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assigning the property:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element prop-
erty 'Color varia-
bles'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3567

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3568

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
User input is a user event from the perspective of the element.

The input configuration refers to the text area of the element only, not the two
buttons.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3569

The “Configure” button opens the “Input configuration” dialog box for creating or modifying a user input configura-
tion.
A configuration contains one or more input actions for the respective input event. Existing input actions are
displayed below it.

Example: “Execute ST code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog box.

“OnMouseClick” Input event: The user clicks the element completely. The mouse button is clicked
and released.

“OnMouseDown” Input event: The user clicks down on the element only.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input event: The user releases the mouse button over the element area.

See also
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the options “Tap FALSE” and “Tap on
enter if captured”.

“Variable” Variable (BOOL). Contains the information whether a mouse click event exists.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts while the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3570

“Shift” When a mouse click event occurs, the variable here is described in the applica-
tion. When the mouse click event ends, its value is toggled with the “Toggle on
up if captured” option.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Tip: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

“Hotkeys” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Event(s)”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Event(s)” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed in the “Keyboard configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3571

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Invisible Input'
Symbol:

Category: “Common Controls”

This element is displayed in the editor with a dashed line which is not visible in online mode.
You define the behavior of the el in the input configuration.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Unsichtbare_Eingabe_1

“Type of element” “Invisible Input”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3572

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3573

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3574

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3575

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3576

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Check Box'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3577

Category: “Common Controls”

The element is used for setting and resetting a Boolean variable. The set state is identified by a
check mark.

“Element name” Example: signal_tone_for_parts_deficit
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Check Box”

“Text ID” ID for the text in the “GlobalTextList”

Example: 22
The text ID cannot be changed. As soon as you specify and save a text in
“Texts” - “Text”, CODESYS automatically creates an entry in the “GlobalTextList”
and displays the ID here.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3578

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Variable of type BOOL
Example: “PLC_PRG.xIsTrue”

“Frame size” Distance of the element to the edge
Example: “From style”

The properties contains character strings for labeling the element.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element.
Example: Axis 1.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Parameters of Axis 1.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3579

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3580

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3581

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Progress Bar'
Symbol:

Category: “Common Controls”

The element displays the value of a variable as a progress bar.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3582

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Progress_Data_Transfer

“Type of element” “Progress Bar”

“Text ID” ID of the global text list
Requirement: Text is configured in the property “Texts è Text”.

“Variable” Variable (numeric data type). Represents the length of the progress bar.

“Minimum value”
Value range of the variable

“Maximum value”

“Style” ● “Blocks”
● “Bar”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3583

You can also change the values by dragging the symbols () to other positions
in the editor.

“Text” String label for the element.
Example: Zoom

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3584

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3585

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Radio Buttons'
Symbol:

Category: “Common Controls”

The element provides a series of radios buttons with an unlimited number of options.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3586

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Morning Shift

“Type of element” “Radio Buttons”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (integer data type) that gives the index of the radio button that the
visualization user has activated
Example: PLC_PRG.iNrOfActivatedRadioButton

“Number of columns” Definition of the number of list boxes displayed in a row
Example: 2

“Radio button order” “Left to right”: The radio buttons are aligned by rows until the number of columns
is reached.
“Top to bottom”: The radio buttons are aligned row by columns until the number
of columns is reached.

“Frame size” Defines the distance from the list boxes to the edge (in pixels).

“Row height” Height of the row (in pixels) Modifying the height of the row also changes the
size of the list box.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3587

The properties contain fixed values for the text properties.

“Usage of” ● “Default style values”: The values of the visualization style are used.
● “Individual settings”: The "Individual text properties" property group is shown

The values can be customized here.

“Individual text properties”

Requirement: The “Individual settings” text property is defined.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3588

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3589

The “Invisible” property is supported by the "Client Animation" functionality.

“Radio button”

● “Areas”
– “[<n>]”

“Create new”: Clicking this button creates a new selection button in
the editor and lists an additional area in the properties editor.
For each radio button, an area is visible that records the settings.
● [<n>]

– “[<n>]”: This number indicates the area. Clicking “Delete”
will delete the associated radio button with its settings
“Text”, “Tooltip”, and “Line spacing (in pixels)”.

Areas: [<n>]

“Text” The button name is specified here. Default value: “Radio_button”

“Tooltip” Text is specified here that is displayed in a tooltip.

“Line spacing (in pixels)” The distance (in pixels) to the upper button can be specified here.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'Radio
button settings'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3590

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Alarm Table'
Symbol:

Category: “Alarm Manager”

The element displays alarms in a list. In the element properties, you specify which information
is shown. You define the appearance of the element and the variables that control the element
behavior.

In online mode, you can sort an alarm table by a specific column – even in the
classic view. Click into the column header. A small triangle indicates the current
sort order (ascending, descending). Clicking the symbol reverses the order.

Sorting inside the column depends on the type of the contained information.
The "Priority" column is sorted numerically, and the "Message" and "Class"
columns alphabetically. The "Value" and "Latch" columns may contain different
value types. In this case, sorting is first by type (blank, Boolean, numeric value,
character string) and then either numerically or alphabetically depending on the
type.

If an alarm history has been created, then you can programmatically delete it at
runtime. The recording starts again from the time of deletion. See the help page
for "Visualizing Alarm Management".

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3591

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Table”

“Data source” Selection of the device and the application where the data to be visualized and
the alarms are generated
● Remote data source which accesses a remote device, accesses a remote

application, and then transfers the data to the alarm configuration
Example: DataSource_A
Below the (now visible) “Application” property, the remote application is dis-
played as configured in the data source.
Example: App_A
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

● Local application below which the alarm configuration is located
Example: “<local application>”

See also
● Object 'Data Source'

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element prop-
erty 'Alarm con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3592

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 6.4.5.21.3.17 “Dialog 'Selected Alarm Group'” on page 3390
● Ä Chapter 6.4.5.21.3.16 “Dialog 'Selected Alarm Class'” on page 3389

“Show row header” : Display of the row number at the beginning of the row.

“Show column header” : Display of the column heading as defined in “Column heading”.

“Row height” Height of the table rows (in pixels).

“Row header width” Width of the line header (in pixels).

Element prop-
erty 'General
table configura-
tion'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3593

“Scrollbar size” Width of the scrollbar when it runs vertically. Width of the scrollbar when it runs
horizontally. Specified in pixels

“Automatic line break for alarm
message”

: The message text is truncated at the end of the line.

: The message text is truncated at the end of the column, if the text is too long.

By default, columns [0] and [1] are configured: “Time stamp” and “Message text”. You can
create more columns by clicking the “Create new”, and remove columns by clicking “Delete”.
Animations (dynamic text, font variables), text, and tooltip are not supported.

“Column header” The standard header is set and changed here by specifying a new text.

“Use text alignment in title” : The text in the column header is aligned according to the current definition in
“Text alignment”.

: The text in the column header is centered.

“Width” Width of the column (in pixels).

“Data type” Notice about time stamps: For use in a TargetVisu or WebVisu, you can
control the date and time format with the help of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Define the information to be displayed in the column.
● “Symbol”
● “Time stamp”: Date and time of the last status change of the alarm.
● “Time stamp active”: Date and time of the last activation of the alarm.
● “Time stamp inactive”: Date and time of the last deactivation of the alarm.
● “Time stamp acknowledge”: Date and time of the last acknowledgment.
● “Value”: Current value of the printout
● “Message text”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the text in this column
● “Left”
● “Centered”
● “Right”

“Color settings” ● “Activate color settings”: Boolean variable for activating and deactivating the
color settings defined here. Example: PLC_PRG.bColorSettings

● “Cell fill color”:
– “Color variable”: Variable for the cell fill color, example: dwCellColor

(hexadecimal color definition: 16#TTRRGGBB)
– “Use color also for column header”: : The color defined via “Color

variable” is used in the column header as well.
● “Text color”:

– “Color variable”: Variable for the definition of the text color in the column,
example: dwTextColor (hexadecimal color definition: 16#TTRRGGBB)

– “Use color also for column header”: : The color defined via “Color
variable” is used in the column header as well.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

Element prop-
erty 'Columns:
Column [<n>]'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3594

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3595

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Selection color” Fill color of the selected row

“Selection font color” Font color of the selected row

“Frame around selected cells” : A frame is drawn around the selected cells at runtime.

“Variable for selected alarm
group”

Name of the affected alarm group; type: STRING, WSTRING

“Variable for selected alarm ID” Alarm ID of the affected alarm group; type: STRING, WSTRING
“Variable for selected line” Index of the selected alarm line (0-based). The index can be read and written;

integer data type

“Variable for valid selection” TRUE: An alarm line is selected.
FALSE: The selection is invalid. For example, for an empty alarm table or when
an alarm is not selected yet.

“Variable for selected alarm
information”

Information about the selected alarm. Type AlarmSelectionInfo
For easy usage, the function block AlarmSelectionInfoDefault is pro-
vided. This FB fills the structure with the memory for 10 messages and 10 latch
variables.
Example: myAlarmSelectionInfoDefault.AlarmSelectionInfo
The following information is available:
● sAlarmgroup
● uialarmID
● timeStampActive
● timeStampInactive
● timeStampAcknowledge
● timeStampLast
● paLatchVariables
● iLatchVariablesCount
● papwsAlarmMessages
● dwAlarmMessageTextBufferSize
● iAlarmMessagesCount
● iSelectionChangedCounter

Element prop-
erty 'Selection'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3596

Boolean variables are defined here for executing specific actions in the table can be executed at
runtime.

“Acknowledge selected” Variable (BOOL)

Example: PLC_PRG.bAckSelectedAlarms
If the assigned variable is TRUE, then the selected alarm is acknowledged.

“Acknowledge all visible” Variable (BOOL)

Example: PLC_PRG.bAckVisibleAlarms
If the assigned variable is TRUE, then all alarms are acknowledged that are
visible in the alarm table.

“History” Variable (BOOL)

Example: PLC_PRG.bShowHistory
If the assigned variable is TRUE, then the history alarms are displayed in addition
to the active alarms. In the classic view, the same sort options apply as in normal
mode.
Note: Acknowledgment is not possible in this view.

“Freeze scroll position” Variable (BOOL)

Example: PLC_PRG.bFreezeScrollPosition
If the assigned variable is TRUE, then the scroll position set in the “History” view
is retained, even if a new alarm is active. If not, then the scroll position jumps to
the first table row (the newest alarm).

“Count alarms” Variable (integer data type)
Example: PLC_PRG.iNumberOfAlarms.

Number of alarms that are currently displayed in the alarm table. Defined by the
alarm table.

“Count visible rows” Variable (integer data type)
Example: PLC_PRG.iNumberVisibleLines
Number of alarms that can be displayed on one page of the alarm table. Defined
by the alarm table.

“Current scroll index” Variable (integer data type)
Example: PLC_PRG.iScrollIndex
The index of the first visible row if the alarm table (0-based). The variable can be
read and written.

“Current column sorting” Variable (integer data type)
Example: PLC_PRG.iColSort
The variable contains a value of the enumeration "VisuElemsAlarm.VisuEnumA-
larmDataType". This value determines the column that sorts the alarm table.

“Variable for sorting direction” Variable (BOOL)
Example: PLC_PRG.xSortAscending
The variable determines the sort order for the entries in the alarm table (TRUE:
ascending; FALSE: descending).

You can also use the “Insert Elements for Acknowledging Alarms” command to
define buttons with predefined control variables.

Element prop-
erty 'Control
variables'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3597

See also
● Ä Chapter 6.4.5.21.2.23 “Command 'Add Elements for Alarm Acknowledgement'”

on page 3365

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3598

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3599

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Alarm Banner'
Symbol:

Category: “Alarm Manager”

The element is a simplified version of the alarm table. It visualizes a single alarm only. In the
element properties, you specify which information is shown. You define the appearance of the
element and the variables that control the element behavior.

The alarm banner displays active alarms only. If the alarm is acknowledged,
then it disappears from the alarm banner.

“Element name” Example: GenElemInst_1
“Type of element” “Alarm Banner”

“Data source” If you intend to use a remote alarm configuration, then you have to specify the
name of the remote application here. If you do not specify anything, the alarm
configuration will be located locally.

“Alarm groups” Opens the “Select Alarm Group” dialog where you define the alarm groups that
you want to display.

“Priority from” Least priority for alarm display. (0 to 255).

“Priority to” Greatest priority for alarm display. (0 to 255).

“Alarm classes” Opens the “Select Class Group” dialog where you define the alarm classes that
you want to display.

“Filter criterion” For the “Alarm Banner” element only
● “Most important”: The alarm with the highest priority (lowest value) is dis-

played.
● “Newest”: The most recent alarm is displayed.

Element proper-
ties

Element prop-
erty 'Alarm con-
figuration'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3600

“Filter by latch 1” The generated alarms (previous and current) can be filtered by the contents of
“Latch variable 1”, which is specified in the configuration of the alarm group. In
“Filter type”, you define whether or not the filtering is performed by a string value
or a numerical value.
● “Filter variable”: Indicates what the alarms are filtered by. Possible entries:

Application variable of data type STRING or WSTRING, or a literal value
directly. Examples:PLC_PRG.strFilterVariable, 'STRING'.

● “Filter type”: Integer value that determines by which criteria the latch variable
value is used for filtering. Possible entries: Numerical variable from the appli-
cation (example: PLC_PRG.diFilterType, or a value directly (example:
2).
Possible values:
– 0: No filtering
– 1: Filter by alarms whose latch variable 1 contains the string specified in

“Filter variable”. Example: The filter variable contains 'Error 1' which
is the latch variable 1 of different alarms of type STRING and has the
value 'Error 1' ->. Only these alarms are displayed.

– 2: Filter by alarms whose latch variable 1 contains the typed literal speci-
fied in “Filter variable” according to IEC 61131-3. Examples: T#1h2s,
DINT#15, REAL#1.5, FALSE

– 3: Filter by alarms whose latch variable 1 contains the LINT literal
value specified in “Filter variable”. Therefore, the value of the latch
variables has to be in the range of 9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

– All other values: The behavior is not defined and can change in the
future.

“Filter by time range” The generated alarms (remote, historical, local) can be displayed for a specified
time range. You use the “Filter type” to define whether filtering by time range is
enabled or disabled.
● “Filter variable, from”: Variable of data type DT or DATE_AND_TIME

(example: PLC_PRG.filterTimeFrom) for the start time that the alarms
are displayed.

● “Filter variable, to”: Variable of data type DT or DATE_AND_TIME (example:
PLC_PRG.filterTimeTo) for the end time that the alarms are displayed.

● “Filter type”: Variable of integer data type that determines whether “Filter by
time range” is enabled or disabled.
Possible values:
– 1: Filtering is enabled
– 0: Filtering is disabled

See also
● Ä Chapter 6.4.5.21.3.17 “Dialog 'Selected Alarm Group'” on page 3390
● Ä Chapter 6.4.5.21.3.16 “Dialog 'Selected Alarm Class'” on page 3389

By default, columns [0] and [1] are preconfigured: “Time stamp” and “Message text”. You create
more columns by clicking “Create new”. You remove columns by clicking “Delete”.
Animations (dynamic text, font variables), texts, and tooltips are not supported.

Element prop-
erty 'Columns:
Column [<n>]'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3601

“Width” Width of the column (in pixels)

“Type of data” About time stamps: When used in a TargetVisu or WebVisu, you can con-
trol the date and time format by means of the global string variables
from the library Alarmmanager.library: AlarmGlobals.g_sDateFormat
(example: AlarmGlobals.g_sDateFormat := 'MM.yyyy')
and AlarmGlobals.g_sTimeFormat (example:
AlarmGlobals.g_sTimeFormat := 'HH:mm').

Here you define the information to be displayed in the column.
● “Bitmap”
● “Time stamp”: Date and time of the last status change of the alarm
● “Time stamp active”: Date and time of the last activation of the alarm
● “Time stamp inactive”: Date and time of the last deactivation of the alarm
● “Time stamp acknowledge”: Date and time of the last acknowledgement
● “Value”: Actual value of the expression
● “Message”: Output of the message text
● “Priority”: Alarm priority
● “Class”: Alarm class
● “State”: Alarm state
● “Latch Variable <n>”: Value of the selected latch variables

“Text alignment” Alignment of the contents in the column
● “Left”
● “Centered”
● “Right”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3602

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

“Acknowledge variable” A rising edge of this variable acknowledges the alarm.

“Automatic switch” : The display in the alarm banner is
switched automatically according to the time
to the next alarm as configured in “Every N
second”.

“Every N second” Time period until the next switching. Available
only if “Automatic switch” is selected.

“Next alarm” Variable for switching to the next alarm. Avail-
able only if “Automatic switch” is not selected.

“Previous alarm” Variable for switching to the previous alarm.
Available only if “Automatic switch” is not
selected.

“Multiple alarms active” Variable that has the value TRUE if multiple
alarms are active.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Center'

Element prop-
erty 'Text prop-
erties'

Handling of mul-
tiple active
alarms

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3603

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3604

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3605

Visualization Element 'Bar Display'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Element name” Example: GenElemInst_2
“Type of element” “Bar Display”

“Value” Variable (numeric data type)
The value of the variable is displayed as a bar length.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3606

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3607

“Background color” Drop-down list with background colors
Note: This property depends on the style. For example, there are no heterochro-
matic background images for “FlatStyle” and “Whitestyle”.

“Own image” ● “image”: Image ID of the background image. You select the background
image from an image pool by clicking the symbol.
Info: If you specify the “<default>” value or select the image from the
“Default” category in the input assistant, then the original element back-
ground image is used.

● “Transparent color”: Color of pixels that are displayed as transparent.
Selection from drop-down list or input assistant.

“Optimized drawing” : The background image is drawn one time. If there is a change in the fore-
ground, then only the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Note: Deactivating this option is sensible only in certain exceptional cases.

“Diagram type” Position of the scale
● “Scale besides bar”
● “Scale in bar”
● “Bar in scale”
● “No scale”

“Orientation” Orientation depending on the ratio of width to height of the Bar Display:
● “Horizontal”
● “Vertical”

“Running direction” Direction the values are increased.
Drop-down list for “Orientation Horizontal”:
● “Left to right”
● “Right to left”

Drop-down list for “Orientation Vertical”:
● “Bottom to top”
● “Top to bottom”

“Optimum size for bar” : The bar width requires the majority of the element surface.
Note: This property depends on the style. It is not provided for “FlatStyle” or
“WhiteStyle”.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Bar'

Element prop-
erty 'Scale'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3608

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3609

“Scale line width” Specified in pixels.
Example: 3

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Scale in 3D” : Tick marks are displayed with slight 3D shadowing.
Note: This property depends on the style. Not available for “FlatStyle”.

“Element frame” : A frame is drawn around the element.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Horizontal offset” Distance from the scale (bar) to the horizontal element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“Vertical offset” Distance from the scale (bar) to the vertical element frame
Specified in pixels.
Used for achieving the exact position relative to the background image.

“ Horizontal scaling” Horizontal division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

“Vertical scaling” Vertical division of the scale
Specified in pixels.
Used for achieving the exact positioning relative to the background image.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3610

“Graph color” Color of the bar

“Bar background” : The background of the bar is black.

: The background of the bar is white.

“Frame color” Color that the frames are drawn.

“Switch whole color” : The total color of the bar is switched to the color of the color area of the
current value.

“Use gradient color for bar” : Bar is displayed with a gradient.

“Color range markers” The color areas can be separated from each other inside the bar with a vertical
mark.
● “No markers”: No display.
● “Marker forwards”: The color of the vertical mark corresponds to the color of

the previous color area.
● “Marker backwards”: The color of the vertical mark corresponds to the color

of the next color area.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” Start value of the color area

“End of area” End value of the color area

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3611

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Meter 90°'
Symbol:

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3612

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 90°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3613

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3614

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3615

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3616

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3617

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3618

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872“”

Visualization Element 'Meter 180°'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable on a scale. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter 180°”

“Value” Variable (numeric data type)
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3619

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3620

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Angle range” Drop-down list for the alignment of the element

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3621

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3622

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3623

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3624

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3625

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Meter'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable. The needle is positioned according to the value of
the assigned variable. A meter is used to represent a tachometer, for example.

“Element name” Example: GenElemInst_1
“Type of element” “Meter”

“Value” Variable (numeric data type).
The variable value determines the pointer direction of the element.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element prop-
erty 'Access
rights'

Element proper-
ties

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3626

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3627

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the scale start and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the pointer instrument and the
horizontal axis

“Additional arrow” : An additional arrow is shown inside the scale.

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3628

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3629

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3630

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3631

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3632

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Potentiometer'
Symbol:

Category: “Measurement Controls”

The element displays the value of a variable as a setting on the potentiometer. A visualization
user can modify the value by dragging the pointer to another position.
See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

“Element name” Example: GenElemInst_1
“Type of element” “Potentiometer”

“Variable” Variable (numeric data type). Contains the position of the pointer for the potenti-
ometer.
A visualization user can modify the value by dragging the pointer to another
position.

Element prop-
erty 'Access
rights'

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3633

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3634

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Image color” List box containing background colors

“Own image” ● “Image”: ID of the background image.
You select the background image from an image pool by clicking .
Info: If you specify the value “<default>” or select the image from the
“Default” category in the Input Assistant, then the original element back-
ground image is used.

● “Transparency color”: Selection from list box or Input Assistant.

“Hand style” Drop-down list with different arrow types

“Color” ● : The “Color” dialog box opens.
● : Drop-down list with color names

“Arrow start” Angle (in degrees) between the left edge of the element and the horizontal axis

“Arrow end” Angle (in degrees) between the right edge of the element and the horizontal axis

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Arrow'

Element prop-
erty 'Scale'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3635

“Sub scale position” ● “Outside”: The subscale is displayed on the outer scale ring. (“Frame
outside”)

● “Inside”: The subscale is displayed on the inner scale ring. (“Frame inside”)

“Scale type” Type of scale
● “Lines”
● “Dots”
● “Squares”

“Scale start” Least value of the scale and the lower limit of the value range for the element
Example: 0

: The “Variable” property is displayed in the line below this.

“Variable” Variable (integer data type). Contains the scale start
Example: PLC_PRG.iScaleStart
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
END_VAR

“Scale end” Greatest value of the scale and the upper limit of the value range for the element
Example: 100

: The “Variable” property is shown below this.

“Variable” Variable (integer data type). Contains the scale end
Example: PLC_PRG.iScaleEnd
Declaration:

PROGRAM PLC_PRG
VAR
 iScaleEnd : INT := 120;
END_VAR

“Main scale” Distance between two values on the main scale
Example: 10

: The “Variable” property is shown below.

“Variable” Variable (integer data type) Contains the distance between two values on the
main scale
Example: PLC_PRG.iMainScale
Declaration:

PROGRAM PLC_PRG
VAR
 iMainScale : INT := 20;
END_VAR

“Sub scale” Distance between two values on the fine scale
You can hide the fine scale by setting the value to 0.

Example: 2
: The “Variable” property is shown below this.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3636

“Variable” Variable (integer data type) Contains the distance between two values on the
fine scale
Example: PLC_PRG.iSubScale
Declaration:

PROGRAM PLC_PRG
VAR
 iSubScale : INT := 5;
END_VAR

“Scale line width” Specified in pixels
Example: 3

“Scale color” Color of scale lines

● : The “Color” dialog opens.
● : A list box with style colors opens.

“Scale in 3D” : Scale lines are displayed with soft 3D shadowing.
Note: This property is not displayed in “FlatStyle”.

“Show scale” : The scale is displayed.

“Frame inside” : A frame is drawn at the inner end of the scale.

“Frame outside” : A frame is drawn at the outer end of the scale.

“Label” Selection list
● “Outside”: Scale values are placed outside of the scale.
● “Inside”: Scale values are placed inside of the scale.

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” (optional) Value that redefines the maximum width of the scale label. The correct
value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” (optional) Value that redefines the maximum height of the scale label. The cor-
rect value is normally set automatically.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Element prop-
erty 'Positio-
ning'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3637

“Usage of” ● “Preset style values”: Values from the current style
● “User-defined settings”: The subnode “Positioning” appears.

“Positioning”

Requirement: “User-defined settings” is selected as “Usage of”.
The displayed positioning settings depend on the type of needle instrument and Potentiometer, and partially on
whether a custom background image is selected. The following settings are used for achieving the exact position
relative to the background image.

“Needle movement” Length of the needle (in pixels)

“Scale movement” Distance from the tick marks to the center (in pixels)
Requirement: A customer image is selected as “Background”.

“Scale length” Length of the tick marks (in pixels)
Requirement: A customer image is selected as “Background”.

“Label offset”: Distance from the labels to the tick marks (in pixels)

“Unit offset”: Distance of the unit text “Label è Unit” from the upper scale edge (in pixels)

“Origin offset” Offset of the element (in pixels)
Requirement: For the elements “Meter 180°” and “Meter 90°”, this property is
displayed only if a custom image is selected as “Background”.

“Color areas”

“Durable color areas” : All color areas are visible, regardless of the current value.

: Only the color area is visible that includes the current value.

“Use colors for scale” : Colors in the color area are used only for the scale and frame.

“Color areas”

“Create new” A new color area is added to the “Elements” view.

“ Delete” The color area is removed from the list and the list is refreshed.

“Begin of area” Start value of the color area
Example: 20

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the start value.
Example: PLC_PRG.iColorAreaStart0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaStart0 : INT := 80;
END_VAR

“End of area” End value of the color area
Example: 120

: The property “Variable” is shown below.

Element prop-
erty 'Colors'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3638

“Variable” Variable (integer data type). Contains the end value.
Example: iColorAreaEnd0
Declaration:

PROGRAM PLC_PRG
VAR
 iColorAreaEnd0 : INT := 100;
END_VAR

“Color” Color that is used for displaying the area.

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3639

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3640

Visualization Element 'Histogram'
Symbol:

Category: “Measurement Controls”

The element displays the data of a one-dimensional array as a histogram. You can define
specific colors for certain value ranges.
See also
● Ä Chapter 6.4.5.2.4 “Displaying Array Data in a Histogram” on page 2862

“Element name” Example: GenElemInst_35
“Type of element” “Histogram”

“Data array” One-dimensional array with data displayed in this histogram.
Example: PLC_PRG.arr1

“Use subrange” : Only part of the array is displayed in the histogram.

“Start index” First array index with a displayed value.
Requirement: “Use subrange” is activated.

“End index” Last array index with a displayed value.
Requirement: “Use subrange” is activated.

“Display type” ● “Bars”: Data is displayed as bars.
● “Lines”: Data is displayed as lines.
● “Curve”: Interpolation of data into a curve.

“Line width” Specified in pixels
Requirement: “Curve” is selected as the “Display type”.

“Show horizontal lines” : Horizontal lines are drawn on the main scale.
Note: Not all visualization styles have this property. This element property is not
available for visualization styles that have striped backgrounds (example: “Flat
style”).

“Relative bar width” Integer value between 1 and 100
● 1: The bars are drawn as lines.
● 100: The entire width of the histogram is filled with the bars.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Subrange
of array'

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3641

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Scale start” Least value of the scale and the lower limit of the value range for the element.
Example: 0

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale start.
Example: PLC_PRG.iScaleStart

“Scale end” Greatest value of the scale and the upper limit of the value range for the ele-
ment.
Example: 100

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the scale end.
Example: PLC_PRG.iScaleEnd

Element prop-
erty 'Center'

Element prop-
erty 'Scale'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3642

“Main scale” Distance between 2 values on the rough scale.
Example: 10

: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the distance.
Example: PLC_PRG.iMainScale

“Subscale” Distance between 2 values on the fine scale.
You can hide the fine scale by setting the value to 0.

Example: 2
: The property “Variable” is shown below.

“Variable” Variable (integer data type). Contains the spacing.
Example: PLC_PRG.iSubScale

“Scale color” Color of scale lines

● :
The “Color” dialog box opens.

● : A drop-down list with color names opens.

“Base line” Value of the main scale where the horizontal base line of the Histogram is
located.
The drawing of the bar starts at the base line.

A valid declaration is required for the variables used as an example in the table above.

PROGRAM PLC_PRG
VAR
 iScaleStart : INT := 0;
 iScaleEnd : INT := 120;
 iMainScale : INT := 20;
 iSubScale : INT := 5;
END_VAR

Example

“Unit” Text that is displayed in the element.
Example: Units displayed in m/s.

“Font” Font for labels (example: scale numbering).

Selection from the drop-down list or by clicking the “” button.

“ Scale format (C Syntax)” Values scaled in "printf" syntax
Examples: %d, %5.2f

“Max. text width of labels” Optional value that defines the maximum width of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Text height of labels” Optional value that defines the maximum height of the scale label.
Note: Change this value only if the automatic adjustment does not yield the
expected result.

“Font color” Selection from the drop-down list or by clicking the button.

Element prop-
erty 'Label'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3643

“Graph color” Color of the bar in normal state.
Note: The normal state is in effect when the current value of the array compo-
nent does not fulfill the alarm condition.

“Alarm value” Threshold for the alarm

“Alarm condition” If the current value of the array component fulfills the alarm condition, then the
alarm condition is set.
● “Less”: The current value is less than the “Alarm value”
● “More”: The current value is greater than the “Alarm value”

“Alarm color” Color of the bar in alarm state.

“Use color areas” : The color areas defined in this element are used.

“Color areas”

“Create new” A new color area is added.

“ Delete” The color area is removed from the list.

“Begin of area” The start value on the “Scale” of the Histogram where the color area begins.

“End of area” The end value on the “Scale” of the Histogram where the color area ends.

“Color” Color that is used for displaying the area.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Colors'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3644

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3645

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Image Switcher'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element displays one of three referenced images. Mouse actions change the displayed
image. The images are defined in the “Image settings” element properties. The effects of mouse
clicks are defined in the “Element behavior” property.

Element prop-
erty 'Access
rights'

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3646

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: ImageSwitcher_1

“Type of element” “Image Switcher”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL).

The value of the variable changes according to user input and it is independent
of the “Element behavior” element property.

“Image "on"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value TRUE.

“Image "off"” Image ID from an image pool. The image can be selected using the input assis-
tant.
The image is used if the variable of the “Variable” property has the value FALSE.

“Image "clicked"” Image ID from an image pool. The image is selected using the input assistant.
In runtime mode, the visualization displays the referenced image when the ele-
ment is clicked (and the mouse button is held down).
Requirement: The “Element behavior” is “Image toggler”.

Element prop-
erty 'Position'

Image settings

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3647

“Transparency” : The “Transparent color” is selected.

“Transparent color” The image pixels that have the transparent color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with color names opens.

“Scaling type” Defines how an image fits in the element frame.
● “Fixed”: The original size of the image is retained, regardless of the dimen-

sions of the element.
● “Isotropic”: The entire image is shown in the element frame, either larger or

smaller. As a result, the proportion of height and width are retained.
● “Anisotropic”: The image resizes automatically to the dimensions of the ele-

ment frame, filling the entire element frame. As a result, the proportions are
not retained.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click switches the image.
● “Image tapper”: While a visualization user holds down the mouse button, the

image of the “Image on” property is displayed. At the same time, the value
TRUE is assigned to the “Variable” property.

“Tap FALSE” : While the mouse button is pressed, the image of the “Image” property is
displayed and the “Variable” property gets the value FALSE instead of the value
TRUE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3648

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3649

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3650

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Lamp'
Symbol:

Category: “Lamps/Switches/Bitmaps”

The element shows the value of a variable, and the element is displayed as illuminated or not.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3651

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Lamp_green

“Type of element” “Lamp”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL).

The variable value is displayed as a lamp that goes on (TRUE) or off (FALSE).

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3652

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3653

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3654

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3655

Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
Symbols:

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” Depending on the element: “Dip Switch”, “Power Switch”, “Push Switch”, “Push
Switch LED”, or “Rocker Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL)

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3656

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Tap FALSE” : The value TRUE is assigned to the “Variable” property instead of the value
FALSE, and back.

Requirement: “Image tapper” is selected in the “Element behavior” property.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Image settings

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3657

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3658

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3659

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Rotary Switch'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3660

Category: “Lamps/Switches/Bitmaps”

The element assigns a value to a Boolean variable. The switch position "on" the value TRUE to
the variable, and the switch position "off" assigns the value FALSE. Use the mouse to change
the switch position.

“Element name” Example: Operating_Switch
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Rotary Switch”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Variable” Variable (BOOL).

The value of the variables TRUE and FALSE indicates the switch position on/off.

Element proper-
ties

Element prop-
erty 'Position'

Image settings

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3661

“Transparency” : The “Transparent color” property is selected.

“Transparent color” Pixels in this color are displayed as transparent.
Requirement: “Transparency” is activated.

● The “Color” dialog box opens.
● : A drop-down list with style colors opens.

“Scaling type” Reaction of the element when the dimension of the “Frame” element is changed:
● “Isotropic”: The height and width of the image are resized proportionally to

the “Frame”.
Please note: To retain the alignment of elements also within a scaled
“Frame” element, define the “Horizontal alignment” or “Vertical alignment”
explicitly with “Centered”.

● “Anisotropic”: The image fills the entire “Frame” regardless of its proportions.

“Horizontal alignment” Horizontal alignment of the image within the element frame or element
● Left
● Centered
● Right
Requirement: “Scaling type” is “Isotropic”.

“Vertical alignment” Vertical alignment of the image within the element frame or element
● Top
● Centered
● Bottom
Requirement: “Scaling type” is “Isotropic”.

“Element behavior” ● “Image toggler”: Every mouse click changes the switch and the “ Variable”
value.

● “Image tapper”: The switch is "on" and the “Variable” value is TRUE while the
mouse button is pressed.

“Orientation” ● “At top”: The rotary switch turns from the top right to the top left.
● “At side”: The rotary switch turns from the top right to the bottom right.

“Color change” : The element changes in color when “ Variable” is TRUE.

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Center'

Element prop-
erty 'Texts'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3662

“Tooltip” String display as tooltip for the element
Example: Valid access.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3663

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3664

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

“Image” Drop-down list with background colors
Depends on the visualization style

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Trace'
Symbol:

Element prop-
erty 'Back-
ground'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3665

Category: “Special Controls”

The element displays the graphical curve of variable values. In addition, variables can be
configured to control the view.
See also
● Ä Chapter 6.4.5.12 “Displaying data curve with trace” on page 2925
● Ä “Dialog box 'Trace Configuration'” on page 3355

“Element name” Example: Velocity
“Data Source” Location where the trace data is buffered.

:
● “<local application>”: The trace record is listed below the local application.

The visualization that contains the trace is located below this application.
When the application is downloaded, the trace configuration is downloaded
to the local device. During execution, the data is stored locally in the trace
buffer.

● “ <data source name>”: Data source that identifies the remote device where
the trace record is created.
When the local application is downloaded with the visualization, the trace
configuration is downloaded to the remote device. During execution, the
trace buffer is filled, and the trace data is transferred and then displayed in
the local visualization as HMI.
Example: DataSoure_PLC_A
Note: The trace buffer is filled only if the remote application is being exe-
cuted. The data recording is started when the local visualization is started.

“Application” Application where data was recorded.

: Lists all applications that are present below the data source.
Requirement: A remote data source (not “<local application>”) is referenced in
the “Data source” property.

“Type of element” “Trace”

“Trace” “ <name of trace configuration>”: Opens the “Trace Configuration” dialog
where you can modify the trace configuration.

See also
● Ä “Dialog box 'Trace Configuration'” on page 3355
● Data Source Manager

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3666

ms-its:codesys.chm::/_cds_obj_data_sources_manager.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Show cursor” : A cursor (vertical line) is displayed at the mouse position. The trigger and
variable values where the cursor points are displayed as a tooltip.

“Overwrite existing trace on
PLC”

: If a trace with the same name is on the PLC, then it is overwritten at down-
load with the configuration that is defined here.

“Number format” Number format of values in the tooltip in printf syntax (example: %d, %5.2f).

The control variables are assigned automatically when you click “Insert elements for controlling
Trace”.

Element prop-
erty 'Control
variables'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3667

“Reset Trigger” Variable (BOOL).

Standard control variable: bResetTrigger
TRUE: Resets the triggering. After the action is executed, the variable is set
automatically to FALSE.

“Start Trace” Variable (BOOL).

Standard control variable: bStart
TRUE: Starts the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Stop Trace” Variable (BOOL).

Standard control variable: bStop
TRUE: Stops the Trace. After the action is executed, the variable is set automati-
cally to FALSE.

“Save Trace to a file”

“Save Trace” Variable (BOOL).

Standard control variable: bStore
TRUE: Saves the current trace configuration and the data that is stored in the
development system to a file. When the action is ended, the variable is set
automatically to FALSE.

“File name” Variable (STRING) that contains the file name of the file to be saved.

Standard control variable: sStoreFilename
“Load trace from file”

“Load Trace” Variable (BOOL).

Standard control variable: bRestore
TRUE: Reads the file specified below and loads its contents into the trace editor.
The file contains a trace configuration and possibly also trace data. To do this,
the stored trace configuration must match the application where the trace config-
uration is located. When the action is ended, the variable is set automatically to
FALSE.

Note: A trace configuration can be loaded from a file only under special cir-
cumstances. The file must have been created with exactly the same (running)
application with which it will then be loaded. The consequence of changing the
running application (for example by downloading again) is that a file which was
previously created from the application cannot no longer be read into the appli-
cation. Even external manual changes to the file can cause this. You should edit
only those configuration settings that have an effect on displaying the variables.
If you change variable definitions directly in the file (for example by replacing
variable x with v y), then the file cannot be loaded.

“File name” Variable (STRING) that contains the file name of the file to be read.

Standard variable: sRestoreFilename

See also
● Ä Chapter 6.4.5.21.2.15 “Command 'Insert Elements for Controlling Trace'” on page 3358

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3668

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3669

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3670

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Trend'
Symbol:

Category: “Special Controls”

The element displays the curve of variable values as a trend diagram. The trend diagram is
suitable for representing a long-term data curve because the data is read from a trend recording
and hence from a database. Moreover, you can run the “Trend” element together with the “Date
Range Picker”, “Legend”, and “Time Range Picker” operating elements so that the user can
navigate conveniently in the diagram.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3671

You can programmatically delete the recorded trend curve at runtime. The
recording starts again from the time of deletion. See the help page for "Pro-
gramming a Trend Visualization".

“Element name” Example: Velocity
“Data source” Data source for the connection via the device and the application to the “Trend

Recording” object where the trend data that you want to show was saved.
If the “Trend Recording” object is on the local device, then it is sufficient when
you specify the respective application. If the trend recording is on a remote
device, then you need to specify the data source connection to this device.

● “ <local application>”
The “Trend Recording” object is located on the local device in the local
application.

● <device name> . <application name>
Example: Device_A.App_A
The “Trend Recording” object is located on the local device Device_A below
the application App_A.

● <data source name>
Example: DataSource_B
The “Trend Recording” object is located on a remote device that is
connected via the data source DataSource_B. Below the (now visible)
“Application” property, the remote application is displayed as configured in
the data source.
Example: App_B
Note: If the data source is accessed symbolically by means of a symbol file
(CODESYS symbolic), then the required symbol file and the corresponding
project have to be saved in the same folder.

“Type of element” “Trend”

“Trend recording” : Trend recording whose data is displayed as a diagram
The trend recording is located on the device specified in the “Data source”
property.

“Display Mode” : Opens the “Display Settings” dialog.

See also
● Ä Chapter 6.4.5.13 “Displaying data curve with trend” on page 2928
● Ä Chapter 6.4.5.21.2.16 “Command 'Configure Display Settings of Trend'” on page 3359
● Object 'Data Source'

The position defines the location and size of the element in the visualization window. This is
based on the Cartesian coordinate system. The origin is located at the upper left corner of
the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3672

ms-its:codesys.chm::/_cds_obj_data_source_communication.htm

“X” The x-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Y” The y-coordinate of the upper left corner of the element
Specified in pixels
Example: 10

“Width” Specified in pixels
Example: 150

“Height” Specified in pixels
Example: 30

 Tip: You can change the values in “X”, “Y”, “Width”, and “Height” by dragging the
corresponding symbols to another position in the editor.

“Angle” Static angle of rotation (in degrees)
Example: 35
The element is displayed rotated in the editor. The point of rotation is the center
of the element. A positive value rotates clockwise.
Tip: You can change the value in the editor by focusing the element to the
handle. When the cursor is displayed as a rotating arrow , you can rotate the
element about its center as a handle.

(1): Handle
Note: If a dynamic angle of rotation is also configured in the property
“Absolute movement è Internal rotation”, then the static and dynamic angles
of rotation are added in runtime mode. The static angle of rotation acts as an
offset.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3673

“Show cursor” : A cursor (black triangle with vertical line) is shown in the trend diagram.
Behavior at runtime: As soon as the graph is drawn, the user can move the
cursor along the time axis in order to mark a specific time. Then the variable
value belonging to the cursor position is displayed in the legend above the
graph.

“Show tooltip” Requirement: “Show cursor” is activated.

: A tooltip opens at the cursor.
Behavior at runtime: The variable value belonging to the cursor position is dis-
played as a tooltip.

“Show frame” : The trend diagram is drawn with a frame.

“Number format” Format specification in printf syntax, which determines how the values are dis-
played in the tooltip and in the legend
Example: %d (integer variable) or %5.2f (floating-point number)

The time stored in the trend recording are in the UTC time zone. If the time
is displayed in the trend of the visualization element, then the time stamps are
converted to the local time zone of the operating system of the PLC.

Change the time zone in the operating system if the times in the trend diagram
are not in the zone that you need.

Element prop-
erty 'Tick mark
labels'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3674

“Time stamps” X-value of the trend diagram
● “Absolute time stamps”

The absolute time with date and time is displayed at each tick mark on the
time axis.
Example: 03/18/2016 12h30m50s

● “Relative time stamps”
The time period from the start of the recording (=0) is displayed at each tick
mark.
Example: 5m30s

“Draw labels on two lines” : The time stamps are displayed on two lines (for example, the date is dis-
played on the first line and the time on the second line).

: The time stamp is displayed on one line. Example: 2019-11-01-12:30:50.

“ Omit irrelevant information in
timestamps”

: The time stamps are displayed in a truncated form (without insignificant
information). For example, the date is displayed at the first tick mark, and only
the time is displayed at the following tick marks. The “Internationalization (format
strings)” property is not visible and is ignored.

: The time stamps are displayed with all information. This takes into considera-
tion the “Internationalization (format strings)” property which contains the format
specification for the date and time display.

“Internationalization (format
strings)”

Format specification for the date and time display of the time stamp (when it is
displayed in full)
Note: The property is visible only if the “Omit irrelevant information in
timestamps” option is not selected.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3675

“Date” Format string that returns the date display according to the defined format. The
operating system locale is used as the default setting.
Defined format strings for the date:
● Year: yyyy, yy, y
● Month: MM, M
● Day: dd, d
● Recommended separator: - . /
Example:
yyyy-MM-d displays 2019-10-25
yyyy-MM-dd displays 2019-10-25
dd.MM.yyyy displays 25.10.2019
dd/MM/yyyy displays 25/10/2019

“Time” Format string that returns the time (or time of day) display according to the
defined format. The operating system locale is used as the default setting.
Defined format strings for the time:
● 24-hour time definition: HH, H
● 12-hour time definition: hh, h
● AM/PM for 12-hour time definition: tt
● Minutes: mm, m
● Seconds: ss, s
● Milliseconds: ms
● Microseconds: us
● Recommended separator: : or space character

Example:
HH:mm:ss:ms displays 15:30:59:123
h:mm:ss tt displays 3:30:59 PM

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

These elements are created automatically when the control elements are added with the com-
mand “Insert elements for controlling Trend”.

“Date Range Picker” Control element for changing the date and time of the displayed data sets.
With , all elements are provided that have implemented the interface
IDateRangeSelector. By default, instances of the “Date Range Picker” visu-
alization element are available.

“Time Range Picker” Control element for changing the time of the displayed data sets. With , all
elements are provided that have implemented the interface ITimeSelector.
By default, instances of the “Time Range Picker” visualization element are avail-
able.

“Legend” Control element for displaying a legend for the graphs. With , all elements are
provided that have implemented the interface ILegendDisplayer.

See also
● Ä Chapter 6.4.5.21.2.18 “Command 'Insert Elements for Controlling the Trend'”

on page 3360

Element prop-
erty 'Assigned
control ele-
ments'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3676

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3677

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3678

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.13 “Displaying data curve with trend” on page 2928
● Ä Chapter 6.4.5.13.2 “Getting Started with Trend Visualization” on page 2928
● Ä Chapter 6.4.5.13.3 “Programming a Trend Visualization” on page 2931
● Object 'Trend Recording'

Visualization Element 'Legend'
Symbol:

Category: “Special Controls”

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3679

ms-its:codesys.chm::/_cds_obj_trend_recording.htm

The element is used as a legend for another element (for example, a trend). The legend is
assigned in the properties of the other element.
See also
● Ä Chapter 6.4.5.13 “Displaying data curve with trend” on page 2928

“Element name” Example: LegendOfTrendA
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Legend”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3680

You can also change the values by dragging the symbols () to other positions
in the editor.

“Orientation” Orientation of the element. The value is configured in the assigned element.
● “Horizontal”
● “Vertical”

“Attached element instance” Example: Element_A
“Show frame” : The element is displayed with frames.

“Number format” The format of the value in printf syntax (example: %d, %5.2f)

Defines how many variables can be displayed at a maximum and is calculated from the row and column number.

“Max. number of rows” Example: 3
“Max. number of columns” Example: 2

The property affects the text configured in the associated element.

“Text format” “Default”: The text will be cut and displayed in only the part that fits into the
visualization element.
“Linebreak”: The text will be wrapped in rows.
“Ellipsis”: The text is cut and ellipsis ... are added to indicate that something is
missing.

“Font” Font of the text. The entries of the selection list are defined in the visualization
style.

“Font color” Text color, for example Grey. The entries of the selection list are defined in the
visualization style.

“Transparency” Transparency value (255 to 0), which defines the transparency of the corre-
sponding color.
Example: 255: The color is opaque. 0: The color is fully transparent.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

Element Prop-
erty 'Layout'

Element Prop-
erty 'Text prop-
erties'

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3681

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3682

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'ActiveX'
Symbol:

Category: “Special Controls”

The element is used to link an existing ActiveX control in the visualization. You can configure
the method calls and their parameters in the element properties of the “ActiveX” element.

Element prop-
erty 'Access
rights'

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3683

“Element name” Example: GenElemInst_1
“Type of element” “ActiveX”

“Element” Installed ActiveX component that is linked to the visualization.
Hint: To avoid typing errors, select the required ActiveX component by means of
the Input Assistant.

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3684

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3685

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These method calls are executed during initialization. They are executed in the first cycle only.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with parameters for the method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in every cycle. They are executed in the refresh rate of the
visualization.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” for a method call and its parameters.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

These method calls are executed in the refresh rate of the visualization. You define the call
condition in the property “Methods è [<number>] è Call condition”.

“Method calls ” Button '“Create new”'
Creates a subnode below “Methods” with a call condition and parameters for the
method call.

“Methods” “[<number>]”

● “Method”: Name of the method
● “Call condition”: Variable (BOOL). A rising edge of this variable triggers the

call of this method.
● “Parameter”: Parameter passed at the method call
● “Result parameter”: Optional variable for the return value of the method

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Initial calls'

Element prop-
erty 'Cyclic
calls'

Element prop-
erty 'Conditional
calls'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3686

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Web Browser'
Symbol:

Category: “Special Controls”

The element shows a website, PDF file, or video that has a URL.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3687

NOTICE!
The display options of the “Web Browser” element depend on the operating
system and the display variant of the visualization.

Requirement: The software components of the web browser are available in the runtime and
configured accordingly (example: videos to be shown on Linux).
See also
● Ä Chapter 6.4.5.2.6 “Displaying Web Contents” on page 2865

“Element name” Example: GenElemInst_59
“Type of element” “Web Browser”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3688

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3689

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

“URL” URL of the web page that is displayed in the visualization.
● Variable (STRING or WSTRING)

Example: PLC_PRG.stURL
● Literal in single straight quotation marks

Example: 'http://de.wikipedia.org'
“Show” Variable (BOOL).

Example: PLC_PRG.bSetURL
Controls the display of the “Web browser” element.
If the variable contains a rising edge, then the visualization calls the web page
given in “URL” and displays its contents in the 'Web browser' visualization ele-
ment.

“Back” Variable (BOOL).

Example: PLC_PRG.bGoBack
Controls the back navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

“Forward” Variable (BOOL).

Example: PLC_PRG.bGoForward
Controls the forward navigation in the “Web browser”. If the variable has a rising
edge, then the visualization displays the contents of the previously displayed
page.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Control
variables'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3690

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Busy Symbol, Cube'
Symbol:

Category: “Special Controls”

At runtime, this element indicates automatically that the runtime is busy or waiting for data.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3691

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Cube”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3692

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3693

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3694

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Busy Symbol, Flower'
Symbol:

Category: “Special Controls”

The element indicates that the system is busy or waiting for data.

“Element name” Example: Data_Transfer
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Busy Symbol, Flower”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3695

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Frame color”

“Fill color”

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of 1 pixel. If no line should
be displayed, then the “Line style” property must be set to the option “Invisible”.

“Fill attributes” The way in which the element is filled.
● “Filled”:The element is filled with the color from property “Colors è Fill color”.
● “Invisible”: The fill color is invisible.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values here are overwritten.

See also
● Ä “ Element property 'Appearance variables'” on page 3717

Element prop-
erty 'Center'

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3696

“Symbol color” Selection of a color for the flower symbol.

“Line” Stroke width of the lines (in pixels).

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3697

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3698

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Text Editor'
Symbol:

Category: “Special Controls”

The element shows the contents of text files that are saved on the controller. Files can be
encoded in ASCII or Unicode formats.
A visualization user can also edit the text.

“Element name” Example: GenElemInst_1
“Type of element” “Text Editor”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3699

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Font name” Non-proportional font used by the visualization to display the contents of the file
Example: “Courier New”

“Size” Font size
Example: 12

Table 720: Element property “Control variables --> File”
“Variable” Variable (STRING). Contains the file names and optionally the location of the file.

It is located in the file system of the controller.
Example: PLC_PRG.strFile: STRING := '/Documentation/
Info.txt';

“Open” Variable (BOOL). Controls opening the file which is defined in the “Variable”
property
Example: bOpen: BOOL;
TRUE: The file is opened.

“Close” Variable (BOOL). Controls closing the file which is defined in the “Variable” prop-
erty
Example: bClose: BOOL;
TRUE: The file is closed.

“Save” Variable (BOOL). Controls saving the file which is defined in the “Variable” prop-
erty
Example: bStore: BOOL;
TRUE: The file is saved.

“New” Variable (BOOL). Controls creating a new file. The name is defined in the
“Variable” property.
Example: bCreate: BOOL;
TRUE: A file is created and opened.

Element prop-
erty 'Font'

Element prop-
erty 'Control
variables'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3700

Table 721: Element property “Control variables --> Edit ”
“Variable” Variable (STRING). Contains the string to search for in the file

Example: strFind: STRING := 'abc';
“Find” Variable (BOOL). Controls executing the search for the string in the “Variable”

property
Example: bFind: BOOL;
TRUE: The search is performed. The variable is automatically reset to FALSE.

“Find next” Variable (BOOL). Controls the location to begin the search in the file

Example: bFindNext: BOOL;
TRUE: The search begins at the last search result location.

FALSE: The search begins at the beginning of the file.

Table 722: Element property “Control variables --> Cursor position”
“Line” Variable (integer data type). Contains the line of the cursor

Example: iRowCursor: INT;
“Column” Variable (integer data type). Contains the column of the cursor

Example: iColumnCursor: INT;
“Position” Output variable (integer data type). Shows the absolute cursor position in the

text.
Example: iPosCursor: INT;

“Set cursor” Variable (BOOL). Controls the setting of the cursor at a specific location

Example: iSetCursor: INT;
TRUE: The cursor is moved. The new position is defined in the “Line” and
“Column” properties.
FALSE: The “Line”, “Column”, and “Position” properties contain the actual
values.
Note: The variable is used as the control variable for an input event triggered
by a visualization user.

Table 723: Element property “Control variables --> Selection”
“Start position” Output variable (integer data type). Shows the absolute position for starting the

text selection
Example: iPosSelection: INT;

“End position” Output variable (integer data type). Shows the absolute position for ending the
text selection.
Example: iPosEndSelection: INT;

“Start line number” Output variable (integer data type). Shows the line where the text selection
begins
Example: iRowSelection: INT;

“Start column index” Output variable (integer data type). Shows the column where the text selection
begins
Example: iColumnSelection: INT;

“End line number” Output variable (integer data type). Shows the line where the text selection ends
Example: iRowEndSelection: INT;

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3701

“End column index” Output variable (integer data type). Shows the column where the text selection
ends
Example: iColumnEndSelection: INT;

“Line to select” Variable (integer data type). Contains the line number that is selected
Note: The selection is controlled by the variables in the “Trigger selection” prop-
erty.

“Set selection” Variable (BOOL). Controls the selection of a line.

Example: bSetSelection: BOOL;
TRUE: The line from the “Line to select” property is selected and highlighted in
the Text Editor.
if the line is not in the current text segment of the Text Editor, then the text
segment is moved to this line.
Note: The variable is used as the control variable for an input event triggered
by a visualization user. The control variable is not reset automatically. You are
responsible for this to occur in the visualization.

Table 724: Element property “Control variables --> Error handling”
“Variable for error code” Variable (integer data type). Contains the error code when an error occurs

Example: iError: INT;
The error codes are declared in GVL_ErrorCodes in the
VisuElemTextEditor library. To display the error text, the
VisuFctTextEditorGetErrorText() function of the library must be called.

“Variable for content changed” Variable (BOOL). Shows whether the contents have changed

Example: bIsContentEdited: BOOL;
TRUE: The contents of the Text Editor have changed.

“Variable for access mode” Variable (BOOL). Controls the access privileges to the file

Example: bIsReadOnly: BOOL;
TRUE: A visualization user has read-only permission. At runtime, the file contents
are highlighted in gray in the Text Editor.
FALSE: A visualization user has read/write permission.

Note: The variable overwrites the setting in the “Editor mode” property.

“Maximum line length” Maximum number of characters per line

“Editor mode” ● “Read-only”: A visualization user has read-only permissions to the file. At
runtime, the file contents are highlighted in gray in the text editor.

● “Read/write”: A visualization user has read-write permissions.

Element prop-
erty 'New files'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3702

“Encoding” Character encoding of the new file:
● “ASCII”
● “Unicode (Little endian)”
● “Unicode (Big endian)”

“New line character sequence” End of line character of the new file:
● “CR/LF”: Normal for Windows systems
● “LF”: Normal for UNIX systems
Please note: When a visualization user opens an existing file, the end-of-line
character of the file is detected and used automatically.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3703

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Path3D'
Symbol:

Category: “Special Controls”

The “Path3D” visualization element graphically displays the curves of two independent records
as a 3D path. It is specially designed for use with Motion Solution CNC in order to display
the trajectory of a machine tool or a robot. The programmed path (path) and the path actually
traveled (track) is displayed.
Although the visualization element is designed for use with Motion Solution CNC, it can also be
used to display any other record. In this case the application has to provide the path data. The
sample application 3D Path Generator, which is available in CODESYS Forge, shows how
these data can be generated.
If the element is used together with SoftMotion CNC, then function blocks from the library
SM3_CNC_Visu help to generate the data from the path and track. These function blocks are
used by the sample project CNC_File_3DPath, which is stored in the installation directory of
CODESYS.
● SMC_PathCopier
● SMC_PathCopierCompleteQueue
● SMC_PathCopierFile
● SMC_PositionTracker
A description of the function blocks can be found in the Library Manager in the library
SM3_CNC_Visu.

The element does not work with the CODESYS HMI display variant.

See also
● CNC Example 6: Using Path3D with SoftMotion CNC
● Sample project in CODESYS Forge

“Element name” Example: GenElemInst_1
“Type of element” “Path3D”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3704

ms-its:codesys_softmotion.chm::/_sm_example_cnc_6.htm
https://forge.codesys.com/prj/codesys-example/home/Home/

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Path data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

The data structure describes a path or track through a certain number of points.
The points are determined and buffered by the application. The track typically
displays the last n positions, so that only a certain part of them is ever displayed
at any one time. VisuStruct3DTrack.pProjection is a variable that is
set by the visualization element and contains information about the path/track
projection. It can be read (only) by the application. In addition, the methods
Projection.Apply or .ApplyV can be used in order to see whether the
transformed position lies inside or outside the visualization display area, which is
defined by Projection.ElementRect.

“Path color” Color of the path drawn

“Path line width” Path line width in pixels, e.g.: "2"

“Style of boundary points” Display of the points between two successive objects in the path
● End points are not displayed
● End points are marked with a circle
● End points are marked with a cross
● End points are marked with a plus

The track data are structured in exactly the same way as the path data: VisuStruct3DTrack

“Track data
(VisuStruct3DTrack)”

Variable of the type VisuStruct3DTrack, which is declared in the IEC code.
Example: PLC_PRG.pc.vs3dt. A description of the structure can be found in
the library manager in the library VisuElem3DPath.library.

“Track color” Color of the track drawn

“Track line width” Track line width in pixels, e.g.: "2"

Path description

Track descrip-
tion

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3705

The camera position for the 3D mode is controlled with a reference to the external data struc-
ture. This structure allows the following operations:
● Shifting to the left/to the right/upwards/downwards
● Rotation around the X/Y/Z axis
● Resetting of the view at X/Y, Y/Z or Z/X level, so that the path and the track are completely

visible.

“Control data
(VisuStruct3DControl)”

Variable of the type VisuStruct3DControl, which is declared in the IEC
code. Example: PLC_PRG.pc.vs3dc.

A description of the structure can be found in the library manager in the library
VisuElem3DPath.

The values can be set via the application itself or via the visualization element
“ControlPanel”. The library VisuElem3DPath contains ready-to-use visualiza-
tion frames that provide a possible user interface for these data.

“Coordinate system” : The coordinate system is displayed

“Grid” : Grid lines are displayed

“Grid color” Color of the grid lines

Individual parts of the path can be visually highlighted. This is typically used to mark the already
processed part of a track with a different color. Each point in the path is given a unique ID,
which in the case of a CNC editor is linked with the object ID on which the point lies. This ID
("highlight ID") can be specified via the application so that dynamic elements/parts of the track
can be highlighted.

Highlight mode Select one of the following highlight modes:
● Only the element whose ID corresponds to the value of the variable is high-

lighted.
● All elements whose ID (linked with the object ID in the case of a CNC editor)

is smaller than or equal to the value in Variable are highlighted.

Variable Project variable that specifies the ID of an element. Example:
PLC_PRG.iVarElementID. This "highlight ID" is taken into account for the
setting of the highlight mode. The variable must be set in the IEC application.

Highlight color

“Frame line width” Width of the frame around the element, in pixels, for example: "1"

“Frame line style” Select one of these style types for the frame line:
● Solid
● Dashes
● Dots
● Dash Dot
● Dash Dot Dot
● Hollow

Camera control

Additional
aspects

Highlighting

Element look

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3706

“Transparent background” : The background of the element is displayed transparently.

: The background of the element is displayed in the defined background color.

“Background color”

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Control Panel'
Symbol:

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3707

Category: “Special Controls”

This visualization element is used in connection with the “Path3D” visualization element. It is
used for changing the position and orientation to the CNC path shown with “Path3D”.
See also
● Ä Chapter 6.4.5.21.5.42 “Visualization Element 'Path3D'” on page 3704

“Element name” Optional.
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: Camera_Path_1

“Type of element” “Frame”

“Clipping” : If you have set the “Scaling type” to “Fixed”, then only that part of the
visualization is displayed that fits in the frame.

“Show frame” Displays the frame
● “No frame”: The displayed area of the frame does not have borders.
● “Frame”: The displayed area of the frame has borders.
● “No frame with offset”: The displayed area of the frame does not have a

border and the displayed area of the referenced visualization is reduced
inwards by one pixel as compared to the frame area.
The resulting gap prevents the referenced visualization from touching any
adjacent elements.

“Scaling type” Describes how the frame reacts when the visualization is resized:
● “Isotropic”: The frame retains its proportions. This allows the ratio of height to

width to be preserved, even if the height and width of the visualization have
been changed separately.

● “Anisotropic”: The frame depends on the size of the visualization, so that
height and width of the referenced visualization can be changed separately.

● “Fixed”: The original size of the frame is retained, regardless of the visualiza-
tion size. If you have also selected the “Clipping” option, then only the fitting
part is displayed.

● “Fixed and scrollable”: The referenced visualization is displayed without
scaling. If the value is greater than the window area of the frame, then
scrollbars are added to the frame. To set the position of the scroll bar with
a variable, use the “Scroll position variable horizontal” or “Scroll position
variable vertical” property.

“Deactivation of the
background drawing”

: To optimize the performance of the visualization, the non-animated elements
of the frame element are drawn as a background bitmap. This could result in the
elements not being displayed in the expected order.

: Deactivation of the background drawing. This can prevent the behavior
described above.

Contains the currently configured visualization references as a subnode

Element proper-
ties

Element prop-
erty 'Referen-
ces'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3708

“References” Clicking “Configure” opens the “Frame Configuration” dialog. This is used to
manage the referenced visualizations.
Caution: Visualizations can be nested at any depth by means of Frame ele-
ments. In order to use the “Switch to any visualization” Frame selection type
without any problems, a Frame must not contain more than 21 referenced
visualizations. For more information, see also the description for the “Input
configuration” of an element: Action “Switch Frame visualization”.

List of the currently referenced
visualizations

Visualizations that have a button also have this displayed as a subnode. Each
interface variable is listed with the currently assigned transfer parameters.
Example:
vis_FormA
● iDataToDisplay_1 : PLC_PRG.iVar1
● iDataToDisplay_2 : PLC_PRG.iVar2
Hint: You can change the assignment of the variables to an interface variable
here and edit the value field. Or click the “Configure” button instead.

See also
● Ä Chapter 6.4.5.21.2.1 “Command 'Interface Editor'” on page 3340
● Ä Chapter 6.4.5.17 “Creating a structured user interface” on page 2940
● Ä “Input action 'Switch Frame Visualization'” on page 3377

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3709

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

The properties contain fixed values for setting colors.

“Color” Color for the element in its normal state.
Please note that the normal state is in effect if the expression in the
“Color variables è Toggle color” property is not defined or it has the value
FALSE.

“Alarm color” Color for the element in alarm state.
Please note that the alarm state is in effect if the expression in the
“Color variables è Toggle color” property has the value TRUE.

“Transparency” Value (0 to 255) for defining the transparency of the selected color.
Example 255: The color is opaque. 0: The color is completely transparent.

“Use gradient color” : The element is displayed with a color gradient.

“Gradient setting” The “Color gradient editor” dialog box opens.

“Frame color” Example: “Black”

“Fill color” Example: “Light gray”

See also
● Ä Chapter 6.4.5.21.3.5 “Dialog 'Gradient Editor'” on page 3369
●

The properties contain fixed values for setting the look of the element.

“Line width” Value in pixels
Example: 2
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Type of line representation
● “Solid”
● “Dashes”
● “Dots”
● “Dash Dot”
● “Dash Dot Dot”
● “not visible”

Element prop-
erty 'Colors'

Element prop-
erty 'Appear-
ance'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3710

You can assign variables in the “Appearance variables” property for controlling
the appearance dynamically. The fixed values are defined here.

See also
● Ä “ Element property 'Appearance variables'” on page 3717

The properties contains character strings for labeling the element. The character string can also
contain a placeholder with a format definition. In runtime mode, the placeholder is replaced by
the current value in the specified format.
CODESYS accepts the specified texts automatically into the “GlobalTextList” text list. Therefore,
these texts can be localized.

“Text” Character string (without single straight quotation marks) for the labeling the
element. Add a line break by pressing the keyboard shortcut [Ctrl] + [Enter].
Example: Accesses: %i
The variable that contains the current value for the placeholder is specified in the
property “Text variable è Text”.

“Tooltip” Character string (without single straight quotation marks) that is displayed as the
tooltip of an element.
Example: Number of valid accesses.

The variable that contains the current value for the placeholder is specified in the
property “Text variable è Tooltip”.

See also
● Ä “Element property 'Text variables'” on page 3714
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Text format” Definition for displaying texts that are too long
● “Default”: The long text is truncated.
● “Line break”: The text is split into parts.
● “Ellipsis”: The visible text ends with "..." indicating that it is not complete.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3711

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3712

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The properties contains variables for moving the element. The reference point is the position of
the element (“Position” property). The shape of the element can change.

“Movement top-left”

“X” Variable (integer data type). It contains the number (in pixels) that the left edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaX

“Y” Variable (integer data type). It contains the number (in pixels) that the top edge
is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaY

“Movement bottom-right”

“X” Variable (integer data type). It contains the number (in pixels) that the right edge
is moved horizontally. Incrementing the value moves the element to the right.
Example: PLC_PRG.iDeltaWidth

“Y” Variable (integer data type). It contains the number (in pixels) that the bottom
edge is moved vertically. Incrementing the value moves the element to the down.
Example: PLC_PRG.iDeltaHeight

See also
● Ä “Element property 'Absolute movement'” on page 3739

Element prop-
erty 'Relative
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3713

These properties are variables with contents that replace a format definition.

“Text variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccesses
Note: The format definition is part of the text in the property “Texts è Text”.
Note: If you specify a variable of type enumeration with text list support, then
the name of the enumeration data type is added automatically in angle brackets
after the variable name. Example: PLC_PRG.enVar <enumeration name>.
Then the symbolic value of the enumeration component is printed instead of the
numeric value when text is printed. Refer to the help page for the enumerations.

“Tooltip variable” Variable (data type compliant with the format definition). It contains what is
printed instead of the format definition.
Example: PLC_PRG.iAccessesInTooltip
Note: The format definition is part of the text in the property “Texts è Tooltip”.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329
● Ä “Element property 'Texts'” on page 3711
● Ä Chapter 6.4.1.20.5.18 “Enumerations” on page 2263

Dynamic texts are variably indexed texts of a text list. At runtime, the text is displayed that is
currently indexed in the variable.

“Text list” Variable (string) or name of the text list as a fixed string in single straight quota-
tion marks.
Example: 'Errorlist'

: Drop-down list with the dialogs available in the text lists.

“Text index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '1'
● As a variable (STRING) for dynamically controlling the text output.

Example: strTextID
Sample assignment: PLC_PRG.strTextID := '1';

“Tooltip index” Text list ID. This refers to the desired output text.
● As fixed string with the ID in single straight quotation marks.

Example: '2'
● As a variable (STRING) for dynamically controlling the text output.

Example: strToolTipID
Sample assignment: PLC_PRG.strToolTipID := '2';

See also
● Ä Chapter 6.4.1.21.2.28 “Object 'Text List'” on page 2532

The variables allow for dynamic control of the text display.

Element prop-
erty 'Text varia-
bles'

Element prop-
erty 'Dynamic
texts'

Element prop-
erty 'Font varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3714

“Font name” Variable (STRING). Includes the font of the text.

Example: PLC_PRG.stFontVar := 'Arial';
The selection of fonts corresponds to the default “Font” dialog.

“Size” Variable (numeric data type). Contains the font size (in pixels or points). The
applied unit is specified in brackets after the variable name.
● <pt>: Points (default)

Example: PLC_PRG.iFontHeight <pt>
Code: iFontHeight : INT := 12;

● <px> : Pixels
Example: PLC_PRG.iFontHeight <px>
Code: iFontHeight : INT := 19;

If you click in the value field, a drop-down list opens on the right for setting the
unit.
Hint: The font size is specified in points (example: Arial 12). Use points when the
variable font size should match a font, for example if a font is set in the property
“Text property è Font”.

“Flags” Variable (DWORD). Contains the flags for displaying fonts.

Flags:
● 1: Italics
● 2: Bold
● 4: Underline
● 8: Strikethrough

Note: You can combine the font displays by adding the coding of the flags. For
example, a bold and underlined text: PLC_PRG.dwFontType := 6;

“Character set” Variable (DWORD). Contains a character set number for the font.

The selection of character set numbers corresponds to the “Script” setting of the
standard “Font” dialog.

“Color” Variable (DWORD). Includes the color of the text.

Example: PLC_PRG.dwColorFont:= 16#FF000000;
“Flags for text alignment” Variable (integer data type). Contains the coding for text alignment.

Example: PLC_PRG.dwTextAlignment.

Coding:
● 0: Top left
● 1: Horizontal center
● 2: Right
● 4: Vertical center
● 8: Bottom

Note: You can combine the text alignments by adding the coding of the flags. For
example, a vertical and horizontal centered text: PLC_PRG.dwFontType :=
5;

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3715

Fixed values for displaying texts are set in “Text properties”.

See also
● Ä “Element property 'Text properties'” on page 3711

The Element property is used as an interface for project variables to dynamically control colors
at runtime.

“Toggle color” The property controls the toggled color at runtime.
Value assignment:
● FALSE: The element is displayed with the color specified in the

“Color” property.
● TRUE: The element is displayed with the color specified in the

“Alarm color” property.
Assignment options:
● Placeholder for the user input variable

– “<toggle/tap variable>”
– “<NOT toggle/tap variable>”

The color change is not controlled by its own variable, but by a
user input variable.
Note: Specify a variable for the mouse events “Tap” or “Toggle”
in the input configuration of the element. Only then is the pla-
ceholder set. If you configure a variable in both “Toggle” and
“Tap”, then the variable specified in “Tap” is used.
Hint: Click the symbol to insert the placeholder “<toggle/tap
variable>”. When you activate the “Inputconfiguration”, “Tap
FALSE” property, then the “<NOT toggle/tap variable>” place-
holder is displayed.

● Instance path of a project variable (BOOL)
Example: PLC_PRG.xColorIsToggeled
Note: In the code, declare and implement the variable specified
here. Its value assignment determines when the color changes.

“Normal state”

“Alarm state”

The properties listed below control the color depending on the
state. The normal state is in effect if the variable in “Color
variables”, “Toggle color” is not defined or it has the value FALSE.
The alarm state is in effect if the variable in “Colorvariables”,
“Toggle color” has the value TRUE.

“Frame color” Assignment options:
● Variable (DWORD) for the frame color

Example: PLC_PRG.dwBorderColor
● Color literal

Example of green and opaque: 16#FF00FF00
“Filling color” Assignment options:

● Variable (DWORD) for the fill color
Example: PLC_PRG.dwFillColor

● Color literal
Example of gray and opaque: 16#FF888888

Element prop-
erty 'Color varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3716

The transparency part of the color value is evaluated only if the “Activate semi-
transparent drawing” option of the visualization manager is selected.

Select the “Advanced” option in the toolbar of the properties view. Then all
element properties are visible.

See also
● Ä Chapter 6.4.5.10.4 “Animating a color display” on page 2914

The properties contain variables for controlling the appearance of the element dynamically.

“Line width” Variable (integer data type). Contains the line weight (in pixels).
Note: The values 0 and 1 both result in a line weight of one pixel. If no line
should be displayed, then the “Line style” property must be set to the option
“Invisible”.

“Line style” Variable (DWORD). Controls the line style.
Coding:
● 0: Solid line
● 1: Dashed line
● 2: Dotted line
● 3: Line type "Dash Dot"
● 3: Line type "Dash Dot Dot"
● 8: Invisible: The line is not drawn.

Fixed values can be set in the “Appearance” property. These values can be
overwritten by dynamic variables at runtime.

See also
● Ä “Element property 'Appearance'” on page 3710

The variable controls the switching of the referenced visualizations. This variable indexes one
of the referenced frame visualizations and this is displayed in the frame. When the value of the
variable changes, it switches to the recently indexed visualization.

Element prop-
erty 'Appear-
ance variables'

Element prop-
erty 'Switch
frame variable'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3717

“Variable” ● Variable (integer data type) that contains the index of the active visualization
Example: PLC_PRG.uiIndexVisu
Hint: The “Frame Configuration” dialog includes a list of referenced visualiza-
tions. The visualizations are automatically numerically indexed via the order
in the list.
Note: This variant of switching usually affects all connected display variants.

● Array element (integer data type) for index access via CURRENTCLIENTID
Example: PLC_PRG.aIndexVisu[CURRENTCLIENTID]
Note: This variant of switching applies to the current client only, and there-
fore only on one display variant. That is the display variant where the value
change was triggered (for example, by means of user input).

See also
● Ä Chapter 6.4.5.21.2.9 “Command 'Frame Selection'” on page 3348

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3718

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

The properties contain the configurations for the user input when using the mouse or keyboard.
A user input defines an event and one or more actions that are executed when an event occurs.

The “Configure” button opens the “Input Configuration” dialog. There you can create or edit user inputs.
Configured user inputs are listed below the events. They each include the action that is triggered and the setting
in short form.

Example: “Execute ST Code”: PLC_PRG.i_x := 0;
“OnDialogClosed” Input event: The user closes the dialog.

“OnMouseClick” Input event: The user clicks the mouse button completely in the element area.
The mouse button is clicked and released.

“OnMouseDown” Input event: The user clicks down on the mouse button.

“OnMouseEnter” Input event: The user drags the mouse pointer to the element.

“OnMouseLeave” Input event: The user drags the mouse pointer away from the element.

Element prop-
erty 'Input con-
figuration'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3719

“OnMouseMove” Input event: The user moves the mouse pointer over the element area.

“OnMouseUp” Input events:
● The user releases the mouse button within the element area. It is irrelevant

whether the user has previously pressed the mouse button inside or outside
the element area.

● The user presses the mouse button within the element area, leaves the
element area, and then releases the mouse button.

Note: This CODESYS-specific triggering behavior guarantees that actions for
key elements are completed. A key element starts an action for “OnMouseDown”
and ends the action for “OnMouseUp”.
Example: A visualization user presses the mouse button within the element area
of the key element and then moves the cursor position so that it lies outside the
element area. The action is ended anyway because “OnMouseUp” is triggered.

“Tap” When a mouse click event occurs, the variable defined in “Variable” is described
in the application. The coding depends on the “Tap FALSE” and “Tap on enter if
captured” options.

“Variable” Variable (BOOL) that is set on mouse click event.

Example: PLC_PRG.bIsTapped
TRUE: A mouse click event exists. It lasts as long as the user presses the mouse
button over the element. It ends when the button is released.
FALSE: A mouse click event does not exist.

Requirement: The “Tap FALSE” option is not activated.

“Tap FALSE” : The mouse click event leads to a complementary value in “Variable”.
TRUE: A mouse click event does not exist.

FALSE: While the mouse click event exists.

“Tap on enter if captured” : During user input, it is also taken into consideration whether the mouse
pointer is dragged within the element area or not while the mouse button is
pressed.
TRUE: While the mouse click event exists and the mouse pointer is moved over
the element area.
FALSE: A mouse click event does not exist. Or the user moves the mouse
pointer outside of the element area while the mouse button is pressed.
The value is TRUE again as soon as the user moves the pointer back to the
element area. The mouse is then captured.

“Toggle” With the onset of a mouse click event, the variable is set; when the mouse click
event is completed, the variable is reset.

“Variable” Variable (BOOL). Its value toggled when the mouse click event is ended. This is
when the user releases the mouse button while the mouse pointer is over the
element area.
If the user releases the mouse button while the mouse pointer is outside of the
element area, then the mouse click event is not ended and the value is not
toggled.
Hint: The user can cancel a started toggle input by dragging the mouse pointer
out of the element area.

“Toggle on up if captured” : The value toggles regardless of where the mouse pointer is when the mouse
button is released. The mouse is then captured.

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3720

“Hotkey” Keyboard shortcut on the element for triggering specific input actions.
When the keyboard shortcut event occurs, the input actions in the “Events”
property are triggered. In this way, it is not the input action itself that leads to this
input action, but the mouse input action.

“Key” Key pressed for input action.
Example: [T]

Note: The following properties appear when a key is selected.

“Events” ● “None”
● “Mouse down”: Pressing the key triggers the input actions that are configured

in the “OnMouseDown” property.
● “Mouse up”: Releasing the key triggers the input actions that are configured

in the “OnMouseUp” property.
● “Mouse down/up”: Pressing and releasing the key triggers the input actions

that are configured in the “OnMouseDown” property and the “OnMouseUp”
property.

“Shift” : Combination with the Shift key
Example: [Shift]+[T].

“Control” : Combination with the Ctrl key
Example: [Ctrl]+[T].

“Alt” : Combination with the Alt key
Example: [Alt]+[T].

All keyboard shortcuts and their actions that are configured in the visualization
are listed on the “Keyboard Configuration” tab.

See also
● Ä Chapter 6.4.5.21.2.2 “Command 'Keyboard Configuration'” on page 3341
● Ä Chapter 6.4.5.21.3.6 “Dialog 'Input Configuration'” on page 3370

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Date Range Picker'
Symbol:

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time range of a saved data set.
The element is used with the “Trend” visualization element.

Element proper-
ties

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3721

“Element name” Example: DateTrend1
Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.

“Type of element” “Date Range Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3722

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” The element can be assigned to a “Trend” visualization element. As a result, the
time range of the trend element can be changed. The available visual elements
are selected with the help of the Input Assistant ().

“Two-line labelling” : The time stamps are displayed in two lines. The date is displayed in the first
line and the time is displayed in the second line.

: Time stamp is displayed in one line. The date and time can also be displayed
in one line depending on the formatting.

“ Omit irrelevant information in
time stamp”

: The time stamp has a shorter form. For example, the date is displayed only
for the first tick mark, and only the time for the following tick marks. The settings
in “Internationalization (format strings)” are ignored for this setting.

: All information is displayed for all time stamps.

“Internationalization (format
strings)”

Only active when the parameter “Omit irrelevant information in timestamps” is
deactivated.

“Date” Definition of the date format. The default setting is taken from the Windows
control panel.

“Time” Definition of the time format. The default setting is taken from the Windows
control panel.

The properties contain fixed values for the text properties.

“Horizontal alignment” Horizontal alignment of the text within the element.

“Vertical alignment” Vertical alignment of the text within the element.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

Element prop-
erty 'Tick mark
labels'

Element prop-
erty 'Text prop-
erties'

Element prop-
erty 'Additional
buttons'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3723

“Jump to the largest possible
time stamp”

: An additional button () is displayed for jumping to the last time stamp.

“Jump to the smallest possible
time stamp”

: An additional button () is displayed for jumping to the first time stamp.

“Zoom out” : An additional button () is displayed for setting the current min./max. range
to the maximum range. The selected range is left.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3724

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

Element prop-
erty 'State varia-
bles'

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3725

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Time Range Picker'
Symbol:

Category: “Date/Time Controls”

The element provides configurable buttons for setting the time range of a trend display to a
defined time. In the process the end time of the previous display is left unchanged and the start
time is adapted.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: TimeRangeTemperature

“Type of element” “Time range picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

Element proper-
ties

Element prop-
erty 'Position'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3726

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

“Orientation” Specifies whether the time picker element is aligned horizontally or vertically in
the editor.
Hint: Change the width to height ratio of the element in the editor.

“Show frame” : The visualization element is drawn with a frame.

“Resolution” Resolution saved for the time stamp: “Millisecond” or “Microsecond”

“Attached element instance” Assignment to the element that processes the time picker
The element can be assigned for example to a “Trend” visualization element.
Then the time range of the trend element can be changed. The available visual
elements are selected with the help of the input assistance ().
Example: GenElemInst_1

“Text” String label for the element.
Example: Zoom

The properties contain fixed values for the text properties.

“Font” Example: “Default”

: The “Font” dialog box opens.

: Drop-down list with style fonts.

“Font color” Example: “Black”

: The “Color” dialog box opens.

: Drop-down list with style colors.

“Transparency” Whole number (value range from 0 to 255). This determines the transparency of
the respective color.
Example: 255: The color is opaque.

0: The color is completely transparent.

Please note: If the color is a style color and already has a transparency value,
then this property is write-protected.

In “Times”, the buttons that the element provides at runtime are defined and configured in an
array.

Element prop-
erty 'Texts'

Element prop-
erty 'Text prop-
erties'

Property 'Times'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3727

“Provide "All" selection” :Time Range Picker bar extended by "All" button. The diagram represents a
time interval that covers all time stamps.

“Times” : Adds another button to the Time Range Picker bar and increases the array
by one entry. An additional index is present in the property “Times è Times
è Times è [<new>]”. “Time” is located under this index. The configuration of
the button is to be entered there.

“Times”

● “ [Index]”

with index Î {0, 1, 2,...}

Array of all buttons in the time selection bar. Index corresponds to the number of
buttons.

: The associated button is removed from the Time Range Picker bar. The
configuration entry is deleted from the “Times” property list.

“ [Index]”

● “Time”

: Time interval in standardized notation. Example: 3M for 3 months; 30m for 30
minutes. If a time interval is indicated in the field, then the button is labelled with
it. If a user clicks on the button at runtime, the command is executed to switch
the diagram to this time interval. The default is empty.

“Time” Displays which time is currently selected.
Variable (STRING)

Example: PLC_PRG.strSelcetedTime
“"All" selected” Displays the state of the "All" button

Variable (BOOL)
Example: PLC_PRG.AllTimesAreSelected

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Control
variables'

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3728

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3729

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

Visualization Element 'Date Picker'
Symbol:

Category: “Date/Time Controls”

The element is a calendar that displays the current date. A user can click a day to select a date,
which is saved to a variable. In addition, it can customize the time interval that the calendar
displays. Clicking the calendar header changes the year. Clicking the arrows in the calendar
header changes the month.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3730

The element contains language-dependent texts that are managed in the System text list.
This deals with the names of the month and the days of the week written out completely or
abbreviated. When the date picker is added to a visualization, CODESYS generates the text
list automatically below the POU view. The IDs correspond to the standard text and therefore
English terms. The text list makes it possible to translate these texts.

System text list

ID Default
Apr Apr
April April

Example

See also
● Ä Chapter 6.4.5.8 “Setting Up Multiple Languages” on page 2906

“Element name” Example: DueDateCalendar
“Type of element” “Date Picker”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

Language-
dependent texts
of the element

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3731

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

“Variable” Input variable (DATE). Contains the date that a user selects in the calendar.

Example: PLC_PRG.dtDueDate
“Design” ● “From style”: All settings are preconfigured according to the style.

● “Explicit”: The “Design settings” property is available. You can customize the
calendar here.

Requirement: This property is visible only if the “Design” property is set to “Explicit”.
The values of the property can be predefined in the style. Then they are available in the
drop-down list.

Table 725: “Header of Date Picker”
Design of the header

“Font” Style font or user-defined font

Style color or user-defined color“Font color”

“Arrows”

“Arrow color” Style color or user-defined color

“Color of printed arrow”

“Background”

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

Table 726: Design of the main display area
Design of the main display
area

“Today” Design of today

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and which background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color. Used if “Yes” is selected in “Draw background”.

Design settings

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3732

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Selected day” Design of the selected day

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color” Style color or user-defined color

“Show frame” “From style”: The style defines whether and how a background is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Current month” Design of the current month

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Other months” Design of the previous and subsequent months

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Display other month” Design of the previous and subsequent months

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3733

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Day of week heading” Design of the heading with the days of the week

“Font” Style font or user-defined font

“Font color” Style color or user-defined color

“Draw background” “From style”: The background is filled with the style color “From style”. The style
defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Background color” property.
“No”: The background is not filled with a color.

“Background color”

“Show frame” “From style”: The style defines whether and how a frame is drawn.
“Yes”: The frame is displayed with the following properties.
“No”: A frame is not displayed.

“Frame color” Used if “Yes” is selected in “Show frame”.

“Rectangle type”

“Line width”

“Display separator line” “From style”: The style defines whether and how a separator line is drawn.
“Yes”: Display with the following properties.
“No”: A separator line is not displayed.

“Color of the separator line” Used if “Yes” is selected in “Display separator line”.

“Width of separator line”

“Background” Design of the calendar days

“Draw background” “From style”: The style defines whether and how a background is drawn.
“Yes”: The background is filled with the color in the “Fill color” property and
framed in the “Frame color”.
“No”: The background is not filled with a color.

“Fill color” Style color or user-defined color

“Frame color”

Element prop-
erty 'Display
type'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3734

“Rows” Number of month calendars per row (preset: 1)

“Columns” Number of month calendars per column (preset: 1)

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3735

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3736

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Analog Clock'
Symbol:

Category: “Date/Time Controls”

The element is a clock that displays the current time of day. The clock can also display a
random time.

Element prop-
erty 'Access
rights'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3737

“Element name” Example: GenElemInst_1
“Type of element” “Analog Clock”

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element proper-
ties

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Element prop-
erty 'Time Dis-
play'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3738

“Use system time” : The system time of the PLC is displayed.

“Variable” Variable (time data type TOD, TIME_OF_DAY). This receives the time of day that
is not the system time.
Example: PLC_PRG.todTimeTokio
Requirement: The “Use system time” property is not activated.

See also
● Ä Chapter 6.4.1.20.5.6 “Data Type 'TIME'” on page 2237

“Design” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Settings” property is available. Here you can customize the

analog clock.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

Element prop-
erty 'Absolute
movement'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3739

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

“Use REAL values” Note: Only available if the device supports the use
of REAL coordinates.

: The properties of the absolute movement are
interpreted as REAL values. The values are not
rounded.
The option allows for the individual fine-tuning of
drawing the element, for example for the visualiza-
tion of a smoother rotation.
Hint: If a horizontal or vertical line is drawn blurry
on a specific visualization platform, then this can
be corrected by an offset of 0.5px in the direction
of the line thickness.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

Requirement: The “Property” is “Explicit”. Only then is the “Clock Settings” category visible.

Table 727: “Background”
“Background color” Color variants of the default background image

● “Yellow”
● “Red”
● “Blue”
● “Green”
● “Black”

“Own background” Background display with the specific “Image”. Replaces the default background
image.

Element prop-
erty 'Settings'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3740

“Image” Image from an image pool or library
Example: myImagepool.myImage

“Transparency color” The transparent color in the image representation.
Example: “White”. The white parts of the image are transparent.

“Use background color” : The image background is displayed using the color defined in the
“Background color” property.
Requirement: No image reference is given in the “Image” property.

“Background color” Style color or color
Requirement: “Use background color” is activated.

Table 728: “Hands”
“Hand style” Example: “Thin arrow”

“Color hour hand” Style color or color for the hands

“Color minute hand”

“Color second hand”

Table 729: “Lines”
“Lines style” Clock face graduation

● “None”
● “Line”: Graduation lines by hour
● “Hours and minutes”: Graduation lines by hours and minutes
● “Dots”: Graduation dots by hour

“Color” Color of the clock face graduation

“Line width” Line weight of the clock face graduation

“Scale in 3D” : Representation of the clock face with 3D effect

Table 730: “Numerics”
“Style of numerics” Digits on the clock face

● “None”
● “Quarter”
● “All”

“Font” Font for displaying the digits

“Font color” Font for displaying the digits

Table 731: “Center point”
“Color” Color of the center of the clock

Table 732: “Positioning”
“Usage of” ● “Default style values”: Presetting of the style values

● “Individual settings”: User-defined settings in the subordinate “Positioning”
property.

“Positioning” Requirement: Visible when the “Usage or” property is set to “Individual settings”.

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3741

“Numerics movement” Value (in pixels) for shifting the digits.
Example: 80

“Line movement” Value (in pixels) for shifting the hour lines.
Example: 100

“Hands scaling” Factor for scaling the length of the hour hand. You can customize the exact
position of the hour hand relative to the background image.
Example: 100

“Scaling type” Defines the scaling of the height and width of the element.
● “Anisotropic”: The background image is scaled to the size of the element The

height and width are scaled independently of each other.
● “Isotropic”: The background image is scaled to the size of the element,

retaining its proportion. The proportion of height and width is fixed.

“Optimized drawing” : The background image is drawn one time. When the hour hand moves, only
the affected part of the image is redrawn.

: The background image is redrawn in cycles.
Hint: Disable this option only for extreme exceptions.

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3742

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
“Position è Angle” property, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The “X”, “Y”, “Rotation”, and “Interior rotation” properties are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3743

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

See also
● Ä Chapter 6.4.5.5 “Designing a visualization with elements” on page 2872

Visualization Element 'Date/Time Picker'
Symbol:

Category: “Date/Time Controls”

The element provides the capability of selecting the date and time. The value can be changed
by means of the arrow keys on the keyboard. The date can be selected from a calendar.

“Element name” Optional
Hint: Assign individual names for elements so that they are found faster in the
element list.
Example: StartDateAndTime

“Type of element” “Date/Time Picker”

Element proper-
ties

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3744

The position defines the location and size of the element in the visualization window. These
are based on the Cartesian coordinate system. The origin is located at the upper left corner
of the window. The positive horizontal x-axis runs to the right. The positive vertical y-axis runs
downwards.

“X” X coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Y” Y coordinate of the upper left corner of the element
Specified in pixels.
Example: 10.

“Width” Specified in pixels.
Example: 150

“Height” Specified in pixels.
Example: 30

You can also change the values by dragging the box symbols () to other
positions in the editor.

See also
● Ä Chapter 6.4.5.5.3 “Positioning the Element, Adapting Size and Layer” on page 2874

The properties contain fixed values for the coordinates of the point of rotation. This point of
rotation is shown as the symbol. The point is used as the center for rotating and scaling.

“X” X-coordinate of the point of rotation

“Y” Y-coordinate of the point of rotation

You can also change the values by dragging the symbols () to other positions
in the editor.

Element prop-
erty 'Position'

Element prop-
erty 'Center'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3745

“Variable” Variable (DATE, DT, TIME, LTIME, TOD)

The value of the value of the variable is displayed and modified by means of the
element.
The data type automatically determines the displayed value units:
● TIME: Day, hour, minute, and second (by default, milliseconds are not dis-

played)
● DATE: Year, month, and day
● DT: Year, month, day, hour, minute, and second
● TOD: Hour, minute, and second (by default, milliseconds are not displayed)
● LTIME: Day, hour, minute, and second (by default, milliseconds, microsec-

onds, and nanoseconds are not displayed)

“Format string” The format can restrict the output to individual values.
Example for LTIME: Format: HH:mm:ss.ms.us.ns --> displayed:
08:15:12.780.150.360 LTIME restricted: format: HH:mm --> displayed: 08:15

Example for DATE: Format: yyyy/MM/dd --> displayed: 2015/12/17 .

Basically, all usual formats available for %t are also supported.

“Design date time picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Design date picker” ● “From style”: All settings are preconfigured according to the style.
● “Explicit”: The “Design settings” property is available. You can customize the

calendar here.

“Positioning date picker” ● “Dynamic”: The calendar is adapted and positioned automatically.
● “Manual”: The “Position settings” property is available. You can customize

the calendar here.

See also
● Ä Chapter 6.4.5.20.2 “Placeholders with Format Definition in the Output Text” on page 3329

The properties contain IEC variables for controlling the position of the element dynamically. The
reference point is the upper left corner of the element. In runtime mode, the entire element is
moved.

“Movement”

“X” Variable (numeric data type). Defines the X position (in pixels).
Example: PLC_PRG.iPos_X.

Increasing this value in runtime mode moves the element to the right.

“Y” Variable (numeric data type). Defines the Y position (in pixels).
Example: PLC_PRG.iPos_Y.

Increasing this value in runtime mode moves the element downwards.

Element prop-
erty 'Absolute
movement'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3746

“Rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle1.

The midpoint of the element rotates at the “Center”
point. This rotation point is shown as the
symbol.
In runtime mode, the alignment of the element
remains the same with respect to the coordinate
system of the visualization. Increasing the value
rotates the element to the right.

“Scaling” Variable (integer data type). Causes centric stretching.
Example: PLC_PRG.iScaling.

The reference point is the “Center” property.
The value 1 shrinks the element by a factor of 0.001. The value 1000 returns the element
to its original size.

“Interior rotation” Variable (numeric data type). Defines the angle of
rotation (in degrees).
Example: PLC_PRG.iAngle2.

In runtime mode, the element rotates about the
point of rotation specified in “Center” according to
the value of the variable. In addition, the alignment
of the element rotates according to the coordinate
system of the visualization. Increasing the value in
the code rotates clockwise.
The rotation point is shown as the symbol.
Note: If a static angle of rotation is specified in the
property “Position è Angle”, then the static angle
of rotation is added to the variable angle of rotation
(offset) when the visualization is executed.

You can link the variables to a unit conversion.

The properties “X”, “Y”, “Rotation”, and “Interior rotation” are supported by the
"Client Animation" functionality.

See also
●

The variables control the element behavior dynamically.Element prop-
erty 'State varia-
bles'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3747

“Invisible” Variable (BOOL). Toggles the visibility of the element.

TRUE: The element is not visible at runtime.

Example: bIsVisible with VAR bIsVisible : BOOL := FALSE;
END_VAR

“Deactivate inputs” Variable (BOOL). Toggles the operability of the element.

TRUE: User inputs do not have any effect in runtime more. The element is shown
as deactivated.

The “Invisible” property is supported by the "Client Animation" functionality.

These properties are available only when you have selected the “Support client animations and
overlay of native elements” option in the Visualization Manager.

“Animation duration” Defines the duration (in milliseconds) in which the element runs an animation
● Variable (integer value)

Example: Menu.tContent with VAR tContent : INT := 500;
END_VAR

● Integer literal
Example: 500

Animatable properties
● “Absolute movement”, “Movement”, “X”, “Y”
● “Absolute movement”, “Rotation”
● “Absolute movement”, “Interior rotation”
● “Absolute movement”, “Exterior rotation”

The animated movement is executed when at least one value of an animatable
property has changed. The movement then executed is not jerky, but is smooth
within the specified animation duration. The visualization element travels to the
specified position while rotating dynamically. The transitions are smooth.

“Move to foreground” Moves the visualization element to the foreground
Variable (BOOL)

Example: bIsInForeground with VAR bIsInForeground : BOOL :=
FALSE; END_VAR
TRUE: At runtime, the visualization element is displayed in the foreground.

FALSE: At runtime, the visualization element is displayed in the layer where it
was inserted in the visualization editor.

Requirement: User management is set up for the visualization.

“Access rights” Opens the “Access rights” dialog. There you can edit the access privileges for
the element.
Status messages:
● “Not set. Full rights.”: Access rights for all user groups : “operable”
● “Rights are set: Limited rights”: Access is restricted for at least one group.

Element prop-
erty 'Access
rights'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3748

See also
● Ä Chapter 6.4.5.21.3.1 “Dialog 'Access Rights'” on page 3366

6.4.5.22 Reference, visualization style editor
6.4.5.22.1 Dialog 'Create a New Visualization Style'...................................... 3749
6.4.5.22.2 Dialog 'Open Existing Style as a Copy'... 3749
6.4.5.22.3 Editor 'Visualization Style Editor'... 3750

6.4.5.22.1 Dialog 'Create a New Visualization Style'
Symbol:
Function: The dialog prompts you to specify data for a new created style file.
Call:
● In CODESYS:

In the “Visualization Manager” object (tab “Settings”, group “Style Settings”):
Clicking opens a drop-down list. Click “Create and Edit Derived Style”.

● In the visualization style editor:
Menu bar: “File è New Style”

“Name” Name of the new style.
Example: Style_CI

“Storage location” Working directory for style editing

“Base style” Style to base the new style on The drop-down list includes all styles that are
installed in the repository.
“<none>”: The new style does not derive itself from an existing style.

“Visualization profile” The profile is intended for informational purposes. For example, you find ele-
ments that are not preconfigured with special style entries, and information from
the profile. In addition, CODESYS checks in the profile whether a required style
is missing.
Example: CODESYS V3.5 SP9

Click “OK” The new style is created and opened for editing in the visualization style editor.
It already includes all required style entries and the localization in German (lan-
guage column de).

See also
● Ä Chapter 6.4.5.22.3 “Editor 'Visualization Style Editor'” on page 3750
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398
● Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979

6.4.5.22.2 Dialog 'Open Existing Style as a Copy'
Function: This dialog prompts you to specify data for copying a style file.
Call:
● In CODESYS:

In the editor of the “Visualization Manager” object (tab “Settings”, group “Style Settings”,
click for a drop-down list). Click “Copy and Edit Style”.

● In the visualization style editor:
Menu bar: “File è Open as Copy”

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3749

“Style” Style to be copied.
Example: Basic Style, 3.5.9.0
Note: You can also select a style from the repository.

“Destination” Working directory for style editing

“OK” A copy of the style is created and opened for editing in the visualization style
editor.

See also
● Ä Chapter 6.4.5.19 “Applying Visualization Styles” on page 2979
● Ä Chapter 6.4.5.22.3 “Editor 'Visualization Style Editor'” on page 3750
● Ä Chapter 6.4.5.21.4.2 “Object 'Visualization manager'” on page 3398

6.4.5.22.3 Editor 'Visualization Style Editor'
Symbol:
Function: The editor is used for creating, deriving, editing, and localizing visualization styles. In
addition, it makes it possible to check and install a style or a hierarchy of styles.
Call:
● In CODESYS:

In the “Visualization Manager” object (tab “Settings”, group “Style Settings”, click for a
drop-down list). Click “Open Style Editor”.

● Start menu > CODESYS installation folder > 'CODESYS' > 'Visualization Style Editor'

 “New style” The “Create a New Visualization Style” dialog box opens.

 “Open” The “Open Dialog” dialog box opens.
This dialog prompts you to select a style file (format .visustyle.xml) to be
opened and edited.

 “Open as copy” The “Open Existing Style as Dialog” dialog box opens.
This dialog prompts you to select a style that is copied, saved to the target
location, and opened for editing.

“Close” Closes the style open in the editor.

 “Save” Saves the changes of the open style.

“Save As” The “Select Visualization Style(s)” dialog box opens.
This dialog prompts you to select a file to save the current settings.

 “Save and Install” Saves the open visualization style and installs it to the visualization style reposi-
tory.

“Recently opened files” Lists the files for selection that were last opened.

“Abort” Closes the visualization style editor.

See also
● Ä Chapter 6.4.5.22.1 “Dialog 'Create a New Visualization Style'” on page 3749

The commands affect the contents of the “Style Properties” tab.

Menu 'File'

Menu 'Styles'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3750

 “New Entry (as Child) ” Creates another style entry as a child of the selected style property.

 “New Entry (Afterwards)” Creates a new style entry in the list after the selected style property.

 “Move Down” Moves the selected style entry down.
Requirement: Sort order is flat.

 “Move Up” Moves the selected style entry up.
Requirement: Sort order is flat.

 “Sort Order” Toggles between three sort orders:
● Flat structure and alphabetical order
● Flat structure and order according to the position of the entry in the XML

style file
This position also determines the position of the property in CODESYS. The
property appears, for example, in the “Properties” view below the “Values”
column in the drop-down list for style properties.

● Hierarchical structure of entries
Requirement: The names of the style properties contain at least one dash.

 “Check” The settings of the style properties are checked for consistency errors. This
check is also performed when saving the style.

The commands affect the contents of the “Localization” tab.

 “Add Language” The dialog box “Add New Language” opens. The dialog prompts you to specify
data for creating a new language column.

 “Remove Selected
Language”

Removes the columns of the selected cell.

“Rename Selected Language” The “Rename Language” dialog box opens. The dialog is used for renaming the
column that defines the selected cell and removes all previous translations.

Table 733: Dialog box “Add New Language”
“Name” Name of the new language as a language code according to ISO 639-1.

Examples: de, en, es, it, fr, ja
“Copy from existing” All existing language columns are available for selection. The selected language

is copied with all entered translations.
“<do not copy text>”: The new language receives a blank translation column.

This tab contains the general metadata of the open style file and allows it to be edited.

Table 734: “Identification”
“Company” Example: Xy-z GmbH

Tip: In the installed styles, CODESYS can filter by the company names specified
here.

“Name” Example: Style_A
“ Version” User-defined version number

Example: 1.1.1.1

Menu 'Localiza-
tion'

Tab 'General'

Configuration and programming

Programming with CODESYS > CODESYS Visualization

2024/01/05 3ADR010583, 1, en_US 3751

Table 735: “General Settings”
“Base style” Name and version of the style that the open style is based on.

Tip: The derived style properties from the base style are highlighted in yellow in
the “Style Properties” tab.

“Partial style (usable only as
base for other visualization
styles)”

: The style is identified as incomplete. Therefore, it can be used for other
styles as a base style only.
Example: Style only with color definitions that derive this to many other styles.
Note: CODESYS does not check for consistency errors of an incomplete style for
itself.

: The style is identified as complete.

“From” The “Select Base Style” dialog box opens. This dialog prompts you to select a
style file that is saved to the file system (and not does not have to be installed).
The file is used as a base style.

Table 736: “Informational”
“Visualization profile” The profile is intended for informational purposes. For example, you find ele-

ments that are not preconfigured with special style entries, and information from
the profile. In addition, CODESYS checks in the profile whether a required style
is missing.

This tab lists the names of the style properties with the associated values and makes it possible
to edit it, even by means of the commands in the “Styles” menu.
The style properties can be defined for colors, fonts, images, and any values.
The style properties defined in a base style are derived and highlighted in yellow.

“Name” Name of the style property.
If the name contains a dash, then the Visualization Style Editor can sort the style
properties by the prefixed terms before the dash and display them in a hierarchy.
A name can contain more than one dash.

“Value” Value that is assigned to the style property.

“Type” Data type of the style property; selected from a drop-down list.
Note: This is possible and necessary only for specific style properties with a data
type that is not implicitly defined.

“Attribute” “hide”: The associated style property is not listed in the drop-down lists in
CODESYS.

“Used by” Visualization element that can be configured with this style property. Can be
edited.

Comment Example: Special setting for Bar Display. Optional.

Double-click a cell. An input field opens for editing.

[Del] Removes the selected row.

This tab makes it possible to translate the names of the style properties into other languages.

Tab 'Style Prop-
erties'

Tab 'Localiza-
tion'

Configuration and programming
Programming with CODESYS > CODESYS Visualization

2024/01/053ADR010583, 1, en_US3752

“Name” Lists the name of the style properties as they are defined in the “Style
Properties” tab.

“<language>” Identification of the language name (as language code according to ISO 639-1)
in which the style property name should be translated.

Double-click a cell. An input field opens for editing.

6.4.6 CODESYS Visualization Support
With CODESYS Visualization Support, you get the functionality to collect and manage images in
image pools and texts in text lists. For image pools, the focus is on the most optimal storage of
image files. For text lists, the focus is on the localization of the texts.

6.4.6.1 Using an Image Pool
An image pool is a table of image files where an entry for each image is listed with the image ID,
file name, thumbnail, and link type. At this central location, you add an image to your project or
application and can further edit the image entry. At the location in the code where an image is
accessed, the image ID can then be briefly specified instead of the file name of the image. The
centrally stored images are accessed primarily in visualizations.

We recommend that you reduce the size of image files as much as possible
before integrating them. This will optimize the loading time of the visualization in
every visualization type: TargetVisu, WebVisu, and development system.

You can create any number of image pools in the project in order to sort and categorize the
images thematically.
You can create image pools in the POU pool so that they are available globally in all applica-
tions. If necessary, it is located there next to the GlobalImagePool image pool, which is
created automatically.
In a library project, you can use the object properties of an image pool to convert it into a symbol
library for the visualization.

6.4.6.1.1 Creating an image pool
1. In the device tree, select the “Application” object.

Click “Project → Add Object → Image Pool”.

ð The “Add Image Pool” dialog opens.

2. Type a name for the image pool (for example, "Images1") and click “Add”.

ð The Ä image poolis added to the device tree.

3. Select the “ImagePool” object and click “Project → Edit Object” to open it.
4. Double-click the field in the “ID” column and assign an appropriate ID (for example,

"Icon1").

Alternatively, you could also click Ä Add Image File to add new images to the list.
5. Double-click the field in the “File Name” column. Click the button.

ð The “Select Image” dialog opens.

6. Click the button and then select the image file.

ð A thumbnail of the image file is displayed in the field of the column “Image”. The name
of the file is displayed in the “File name” field.

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3753

The image file can be references only by the name Images1.Icon1.

6.4.6.1.2 Implementing access to an image
At locations in the application where an image should to be accessed, the image ID can
be briefly specified. This is especially the case with visualizations. There you can configure
elements which can display images with the image ID (qualified with <name of image
pool>.<image ID>).
Elements with static image display:
● Ä Image

visualization element: “Static ID” property
● Ä Button

visualization element: “Static ID” property
● Ä Chapter 6.4.5.21.5.30 “Visualization Element 'Image Switcher'” on page 3646

visualization element: “Image on”, “Image off”, and “Image clicked” properties
● Cartesian XY Chart visualization element: Configuration of the background in the

Dialog: XY Chart Configuration dialog
If an element should dynamically display multiple images one after the other, then a string
variable is specified for it, not the image ID itself. The variable is set programmatically (in
IEC code) to change the image IDs. In this way, a dynamic image display in the visualization
element is achieved.
Elements with dynamic image display:
● “Image” visualization element: “Image ID variable” property
● “Button” visualization element: “Image ID variable” property

6.4.6.1.3 Tab: Build
The tab contains options for compiling the object.

6.4.6.1.4 Running the HMI application
1. Click the symbol.

ð The application is compiled.

2. Click the symbol.

ð The application is downloaded to HMI device.

3. Click the start symbol.

ð The HMI application is executed. The visualization starts. The actual value from the
controller is output.

You can operate the visualization using the keyboard, mouse, or gestures.

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3754

http:///CODESYS Visualization/_visu_dlg_xy_chart_configuration.html

6.4.6.1.5 For experts
When accepting the remote adapter by means of the “Copy to Project” command, the
I/O dimensions with which the adapter responded are set for the first "exclusive owner"
connection. In order to log all of the detected assembly instances after scanning, the def-
inition IODRVETHERNETIP_PRINT_SCAN_RESULT must be set. By default, it is scanned
by the instance ID 100–199. This can be adapted by means of the library parameters
ParamScanStartOfInstanceAssem and ParamScanLastOfInstanceAssem from the
library IoDrvEtherNetIP Library. This might be necessary, for example to scan in another
manufacturer-specific range (assembly instance ID ranges).

6.4.6.1.6 Configuring a visualization background with an image
You can set an image in the background definition of a visualization. You can define the image
by the name of the image pool plus the file name, as described above for a visualization
element.
For more information, see: Command: Ä Background

6.4.6.1.7 Labeling an Image Element with Static Text
Requirement: A project with a visualization is open. You have an image file for a stop

symbol.
1. Below the application, insert an “ImagePool” object named ImagePool_A.

2. Add an image with the Stop ID to ImagePool_A.

3. Open the visualization and drag an “Image” element to the editor.

ð The Input Assistant opens. ImagePool_A is listed on the Category tab.

4. Select the Stop image and click “OK” to close the dialog.

5. Configure its “Text” property: ImagePool_A, Stop
6. Configure the “Text properties è Horizontal alignment” property: Links.

7. Configure the “Text properties è Vertical alignment” property: Bottom.

6.4.6.2 Using a Text List
A text list is a table of text entries which lists an entry with a text ID, the default text, and its
translations into other languages for each text used in the project. At this central location, you
can add a new text or further edit an existing text entry.
The centrally stored texts are accessed primarily by visualizations. The text list is the basis for
localization, selecting a language, and changes languages in visualizations.

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3755

You can specify the texts in Unicode format so that all languages and characters are possible.
You can translate the default texts and add more languages when needed.
Moreover, you can export text lists and then translate the texts outside of the current project.
For more information, see:
● Ä Exporting a text list
● Ä Importing files with text list entries

6.4.6.2.1 Output of dynamic text by a variable
Besides the automatically created global text list, there are also custom text lists.
If an element should dynamically display multiple texts one after the other, then a string variable
is specified for it, not the text ID itself. The variable is then set programmatically (in IEC code) to
change the text IDs. In this way, a dynamic text display in the visualization element is achieved.
In custom text lists, you can translate the default texts and add more languages when needed. If
language switching is implemented for visualizations, then the translation is displayed at runtime
for the configured text.
Elements which can dynamically display the text referenced under the “Dynamic texts” property:
● Ä Image visualization element
● Ä Frame visualization element
● Ä Pie visualization element
● Ä Polygon, Polyline, and Bézier Curve visualization elements
● Ä Rectangle visualization element
● Ä Button visualization element
● Ä Scroll Bar visualization element
● Ä Table visualization element
● Ä Text Field visualization element

1. All texts about a topic (such as error handling) are listed in a text list.

ð

2. The “Text Field” visualization element is configured for dynamic display:

Example

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3756

3. A case distinction is implemented in the application code where the text for error han-
dling is displayed depending on the error.

ð For this purpose, a text ID from the ErrorHandling text list is assigned to the
strHandlingID variable depending on the iError error.
// Text list name
strErrorHandling := 'ErrorHandling';
//Assigning text ID
CASE iError OF
 2: strHandlingID := 'ID_2';
 3: strHandlingID := 'ID_3';
 4: strHandlingID := 'ID_3';
ELSE strHandlingID := 'ID_1';
END_CASE;

6.4.6.2.2 Managing Languages and Translations
Adding a language and translating text

Requirement: A project is open with a text list or global text.
1. In the device tree or POU view, double-click an object of type “TextList” or

“GlobalTextList”.

ð The “Text List” menu is shown in the menu bar and the text list opens in the editor.

2. Click “Text List è Add Language”.
3. Specify a name for the language (example: en-US). Click “OK” to exit the dialog.

ð A column is displayed with the heading en-US.

4. Type in the translation of the source text into the column.

You can use the “Rename Language” command in the context menu of the text
list to correct the name of a language in the table.

Exporting a text list
Requirement: A project is open with a text list or global text.

1. Double-click the “GlobalTextList” object or a “TextList” object type.

ð The object opens.

2. Click “Text List è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. At “Choose export file”, click and select the directory and file name.
Example: Text_lists_exported

4. Select the “Export” option.
5. Click “OK” to close the “Import/Export” dialog.

ð CODESYS exports to a file the text list entries of all text lists of the project. The table
contains a column with the text list names.

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3757

Contents of the Text_lists_exported file
TextList Id Default en_US
Text_list_A A Information A Infrrmaiton A_en
Text_list_A B Information B: OK Information B_en: OK
Text_list_A C Information C Information C_en
Text_list_A D Informaiton D Information D_en
Text_list_A E Information E Infromation E_en
Text_list_A F Information F Information F_en
AlarmGroup 2 Warnung 2
AlarmGroup 1 Warnung 1
GlobalTextList Infomation B Information B_en
GlobalTextList Information A Information A_en
GlobalTextList Umschalten Switch
GlobalTextList Zähler: %i Counter : %i

Example

Preparing the Exported File for the Input Assistant
Requirement: A file is created (example: Text_lists_exported) by means of the

“Import/Export Text Lists” command. It contains the texts of the text lists of the project.
1. Click “Tools è Options”, “Visualization” category, “File Options” tab.
2. In “Text file for textual "List components"”, click and select a file (example:

Text_lists_exported). Click “OK” to exit the dialog.

ð When you specify a static text in the “Texts” property for an element in a visualization,
CODESYS offers the source text of the file as input assistance when typing in the first
letter.

Importing files with text list entries
A file to be imported has the .csv format. The first line is a header (example: TextList Id
Default en_US). The other lines contain text list entries. You get this kind of file by exporting
the text lists of the project to a file. There you can edit the text list entries and then import the file
outside of CODESYS. When importing, CODESYS handles the text list entries differently for the
GlobalTextList and for dynamic text lists.
GlobalTextList
● CODESYS does not create new text list entries for an unknown ID.
● CODESYS ignores changes that affect the ID or the source text.
● CODESYS accepts changes in the translations.
Text List
● For a new ID, CODESYS supplements the corresponding text list with a text list entry.
● For an existing ID which does not match in the source text, the source text of the text list is

overwritten with the source text of the file.
● CODESYS accepts changes in the translations.

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3758

Requirement: A project is open with a text list or global text.
1. Double-click the “GlobalTextList” object or a “TextList” object type.

ð The object opens.

2. Click “Text List è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. In the “Choose file to compare or to import” input field, click and select the directory
and file.
Example: Text_lists_corrected.csv

4. Select the “Import” option.
5. Click “OK” to exit the dialog.

ð CODESYS imports the text list entries of the file into the respective text lists.

Contents of the file Text_lists_corrected.csv
TextList Id Default en_US
Text_list_A A Information A Information A2_en
Text_list_A B Information B: OK Information B_en: OK
Text_list_A C Information C Information C_en
Text_list_A D Information D Information D_en
Text_list_A E Information E Information E_en
Text_list_A F Information F Information F_en
Text_list_A G Information G Information G_en
AlarmGroup 2 Warnung 2
AlarmGroup 1 Warnung 1
GlobalTextList Information B Information B_en
GlobalTextList Information A Information A_en
GlobalTextList Umschalten Switch
GlobalTextList Zähler: %i Counter : %i

These contents are applied to the text lists with the same name in the project.

Example

For more information, see: Ä Import/Export Text Lists

Comparing text lists with a file and exporting differences
Requirement: A project is open with a text list or global text.

1. Double-click the “GlobalTextList” object or a “TextList” object type.

ð The object opens.

2. In the context menu, click “Text List è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. In the “Choose file to compare or to import” input field, click and select the directory
and file name of the comparison file (example: Text_lists_corrected.csv).

4. For “Choose export file”, click and select the directory and file which contains the
comparison result.

5. Select the “Export only text differences” option.
6. Click “OK” to exit the dialog.

ð CODESYS reads the import file and compares the text list entries that have the same
ID. If they do not match, then CODESYS writes the text list entries of the text list to the
export file.
For the global text list, CODESYS compares the translations of the same source texts.
If they do not match, then CODESYS writes the text list entries to the export file.

Importing a file

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3759

6.4.6.2.3 Using static text in GlobalTextList
The global text list is the central location for texts that are displayed in the visualization.
When you configure a text for the first time in visualization element, CODESYS creates the
global text list. CODESYS fills in the table as you create more texts. Therefore, the table
includes all texts automatically that you create in the project visualizations. CODESYS assigns
incremental IDs as integers, beginning at 0.
You can check, update, and align the global text list with the static texts of the visualization. You
cannot edit the source text or the ID directly in the table. However, you can replace a source
text with another source text by creating and importing a replacement file. Menu commands are
provided for this purpose.

Configuring visualization elements with static text
A text in a “GlobalTextList” can contain a format definition.

Requirement: A project with a visualization is open. The “GlobalTextList” object contains
the texts that are defined in the project visualizations.
1. Double-click the visualization.

ð The editor opens.

2. Select an element with the “Text” property (example: “Text Field”).
3. Type in some text in the “Text” property (example: Static Information A).

ð CODESYS adds the text to the global text list in the POU view.

Checking GlobalTextList
Requirement: A project with a visualization is open. The “GlobalTextList” object contains

the texts that are defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The table opens with the static texts.

2. Click “Text List è Visualization Text IDs”.

ð CODESYS reports when a source text of the text list does not match the static text
that is identified by the ID. The source text in the global text list and the text in the
visualization with the same ID do not match.

Updating IDs in GlobalTextList
Requirement: A project with a visualization is open. The “GlobalTextList” object contains

the texts that are defined in the project visualizations.
1. In the POU tree, double-click the “GlobalTextList” object.

ð The list opens with the text list entries.

2. Click “Text List è Update Visualization Text IDs”.

ð CODESYS adds text to the global text list when a text in the “Static Text” property
does not match the source text in the project visualizations.

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3760

Removing GlobalTextList and creating current IDs again
Requirement: A project with a visualization is open. The “GlobalTextList” object contains

the texts that are defined in the project visualizations.
1. Right-click the “GlobalTextList” object in the POUs tree and select the “Delete” command.

ð The object is removed.

2. Open a visualization.
3. Click “Visualization è Create Global Text List”.

ð In the POU view, a new “GlobalTextList” object is created. The global text list contains
the static text from the existing project visualizations.

Removing IDs from GlobalTextList
Requirement: A project with a visualization is open. The “GlobalTextList” object contains

the texts that were defined in the project visualizations.
1. Double-click the “GlobalTextList” object in the POUs tree.

ð The table opens with the texts.

2. Click “Text List è Remove Unused Text List Entries”.

ð CODESYS removes the text list entries with IDs not referenced in the project visuali-
zations.

Editing GlobalTextList with a replacement file
A replacement file has the CSV format. The first row is a header: defaultold defaultnew
REPLACE. The following rows contain the old source texts, the new source texts, and then the
REPLACE command. Tabs, commas, and semicolons are permitted separators. A combination
of separator characters in a file is not permitted.
Example (tab as separator character)
defaultalt defaultneu REPLACE
Information A Information A1 REPLACE
When you import a replacement file, CODESYS processes the replacement file row by row and
performs the specified replacements in the “GlobalTextList”. In addition, CODESYS replaces
the previous text with the replacement text in the visualizations. If the replacement text already
exists as static text, then CODESYS recognizes this and harmonizes the static text and leaves
only one text list entry.

Requirement: A project is open with a text list or global text.
1. Double-click the “GlobalTextList” object.

ð The object opens.

2. Click “Text List è Import/Export Text Lists”.

ð The “Import/Export” dialog opens.

3. At the “Choose file to compare or to import” input field, click and select the directory
and file (example: ReplaceGlobalTextList.csv).

4. Select the “Import replacement file” option.
5. Click “OK” to exit the dialog.

ð The texts in the text lists and the visualizations are replaced.

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3761

The global text list contains the following source texts:
GlobalTextList Counter: %i
GlobalTextList Zähler: %i
GlobalTextList Information A
GlobalTextList Information a
GlobalTextList Information Aa
GlobalTextList Umschalten

The replacement file contains the following replacements:
defaultalt defaultneu REPLACE
Counter: %i Counter2: %i REPLACE
Zähler: %i Counter2: %i REPLACE
Information A Information A2 REPLACE
Information a Information A2 REPLACE
Information Aa Information A2 REPLACE
Umschalten Switch2 REPLACE

CODESYS detects duplicate text list entries and removes them. Afterwards, the global text list
contains the following source texts:

The texts in the visualization have been replaced.

Example

6.4.6.2.4 Creating Text in Text Lists and Displaying Dynamically
You can create and translate texts in a text list for dynamic texts in order to display them
dynamically in a visualization or in the alarm management. The object of type “Text list” can
be located globally in the POU view or below an application in the device tree. It contains a
table with text list entries that you can edit and extend. A text list entry consists of an ID for
identification, the output text, and its translation. You can add new text list entries to a text list.
Menu commands are provided for this purpose.

Creating text lists for dynamic text display
Requirement: A project with a visualization is open.
1. Select an application in the POU view or device tree and click “Project è Add Object”.
2. Select “Text List”.

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3762

3. Type a name (example: Text_List_A). Click “Add” to exit the dialog.

ð A Ä Text List type object is created.

4. Click below the “Default” column and open the input field. Type a text (example:
Information).

ð The source text is created. It is used as a key in the table and as a source text for
translations.

5. Type any string in the “ID” column (example: A).

ð A text list entry is defined with source text and ID. When you configure the
“Dynamic texts” property of an element in a visualization, you can select the text list
Text_List_A and assign the ID A.

6. Double-click in the blank line at the end of the table below “Default” and type in more text
list entries.

ð

Dynamically Displaying a Text
In a visualization, you can configure the dynamic output of texts which were created in a text list
by configuring the “Dynamic texts” property of an element. You can directly assign a text list and
an ID, as well as IEC variables, where you set the values programmatically.

Requirement: A project with visualization is open and a text list is in the device tree.
1. Open the text list (example: Text_List_A).

2. Double-click the visualization.

ð The editor opens.

3. Drag an element (example: “Rectangle”) to the visualization.
4. Configure its “Dynamic texts” property by selecting one in the “Text list” property (example:

'Text_List_A') and add an ID from the text list into the “Text index” (example: 'A').
Pay attention to the single straight quotation marks. You can also assign an IEC
variable of type STRING for the text list name and ID.

ð The IEC variables allow for programmatic access to the texts of the text lists.

5. Build the application, download it to the controller, and start it.

ð The visualization shows the text from the text list in the text field: Information A.

6.4.6.2.5 Displaying a text dynamically
You can define a text in “Texts è Text” in order to display it statically. A text in “Texts è Tooltip”
is shown as a tooltip. You can configure the text in such a way that the contents of a variable
are displayed with it.

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3763

You can expand a static text by exactly one placeholder with a formatting specification in
order to display the contents of a variable at this location at runtime. The variable which you
have assigned in the “Text variable” property is displayed. When the variable changes in the
application code, its display in the visualization changes at the same time.

Requirement: A project with a visualization is open.
1. Open the visualization and add a “Text Field” element.

ð The “Properties” view shows the configuration of the element.

2. Configure the “Texts è Text” property with File name: %s.

ð The text contains the %s placeholder.

3. In the application in the PLC_PRG POU, declare a type-compliant variable
strFileName : STRING := 'File_A';

4. Configure the “Text variable” property of the button with PLC_PRG.strFileName.

ð The contents of the variable will be displayed instead of the placeholder at runtime.

5. Compile, download, and start the application.

ð The application runs. The visualization opens. The element displays the text: File
name: File_A

A text entered in the “Texts → Text” or “Texts → Tooltip” visualization property is automati-
cally entered in GlobalTextList under POUs. There you can translate the text into other
languages.
For more information see: Ä Using static text in GlobalTextList

6.4.6.3 Reference
6.4.6.3.1 Objects
Object: ImagePool

The “ImagePool” object contains a table with image ID assignments.
For more information, see: Ä Using an Image Pool

“ID” ID of the image
You reference this ID, for example in the visualization of the image.

“File name” File path of the image file

When you click the button for more settings, the “Select Image” dialog opens.

“Image” Show a thumbnail of the image

“Link Type” Opens the “Select Image” dialog
In the dialog, you define the type of link.

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3764

Dialog: Select Image

“Image
file”

Name and directory of the image file (example: "C:\Program Files\images\logo.bmp")
In CODESYS, the following image formats are supported: BMP, EMF, GIF, ICO, JPG,
PNG, SVG, and TIFF. Note that a controller might not support all formats.
Whether or not you can use images formatted as scalable vector graphics (*.svg)
depends on the operating system. Any necessary information is located in the device
description of the hardware vendor.
Hint: It is recommended to use only images in SVG format where the aspect ratio of
width to height corresponds to the aspect ratio of the view box value. Otherwise an
unexpected display might result.

Table 737: File Handling
“Remember the
link”

Only the link is saved. This automatically updates a change to the image file
in the image pool.
You need to make sure that the path of the image file does not change.
When saving the project as a project archive, the image file is embedded
into the project archive.

“Remember the
link and embed
into project”

The image in the image pool is copied, but the link information is retained.
This makes it possible to detect changes to the image file so that, if neces-
sary, an update of the image can be made in the image pool.
The behavior is controlled with the options in the next table.
Note: Embedded image files increase the memory requirement of the
project.

“Embed into
project”

The image is added to the image pool.
If the image file is changed again afterwards, then it is not updated in the
project. For libraries, you need to embed the image into the project.
Note: Embedded image files increase the memory requirement of the
project.

Table 738: Change Tracking
These options are available only if you have
selected the “Remember the link and embed
into project” option as described above.

“Reload the file automatically” The image file is automatically updated in the
project without any prompts.

“Prompt whether to reload the file” If the image file has changed, then you may be
prompted whether or not the image file should
be updated.

“Do nothing” The image file in the image pool is not updated.

Object: GlobalTextList
Symbol:
The object is used to manage and translate texts which are composed as static text in visualiza-
tions in the project. The object contains a table with these texts. When you compose a text in
a visualization in an element in the “Texts” property, CODESYS automatically adds a line in the
table. You can only edit existing text here, not compose any new text.
For more information, see: Ä Using a Text List, Ä Text List

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3765

Moreover, CODESYS provides the following commands in order to consolidate the
“GlobalTextList”:
● “Check Visualization Text IDs”
● “Update Visualization Text IDs”
● “Remove Unused Text List Entries”

The object is located in the POU view and exists at most one time.

“ID” Unique identifier of the text

“Default” Source text as string with one formatting specification at the most
(example: Information A: %i options)

If a translation is not provided below a language column, then the
default text is used.
Double-click in the field to edit the text.

You can add as many lan-
guage columns to the table
as you want. A language
column is named with
a language code which
you already specified when
creating the column with
the “Insert Language” com-
mand.

“<language code>” Name of the language as a language code (example: en-US)

This column contains the translation of the text that is made in
“Default”.
When the language code is selected as a language in the Visuali-
zation Manager, a visualization displays the translation when it is
run. A running visualization can toggle between languages at the
request of a user.
Double-click in the field to edit the text.

Object: Text List
Symbol:
The object is used to create, manage, and translate texts. It contains a table with texts where
you can add new texts. You can select a text which you have composed here can be selected in
a visualization in the “Dynamic texts” property of an element. In runtime mode, the visualization
displays this text dynamically in the selected language.
For more information, see: Ä Using a Text List

When the object is assigned to an alarm group and is located below the “Alarm Configuration”
object, CODESYS adds the texts of the alarm group to the table. You can also add texts.

“ID” Unique identifier of the text

“Default” Source text as string (example: Information A: %i
options). Use the [Ctrl] + [Enter] shortcut to add a line break.

Double-click in the field to edit the text.

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3766

You can add as many
language columns to the
table as you want. A lan-
guage column is named
with a language code which
you already specified when
creating the column with
the “Insert Language” com-
mand.

“<language code>” Name of the language as a language code. Example: en-US.
This column contains the translation of the text which is com-
posed in “Default”. Under the condition that the language code
is selected as the language in the Visualization Manager, a visu-
alization displays the translated text in runtime mode. If a transla-
tion has not been composed, then CODESYS uses the text in
“Default”. A visualization in runtime mode can also change the
language if requested by a user.

Blank line Edit the line to add your own text.

6.4.6.3.2 Menu Commands
Image Pool
Command: Insert Image

Symbol:
Function: The command inserts a new line into an image pool.
Call: “Image Pool” menu; context menu
Requirements: An image pool is active and a line is selected in the image pool.
For more information, see: Ä Using an Image Pool

Text List
Command: Add Language

Symbol:
Function: Another language column is added to the text list.
Call: “Text List” menu; context menu
Requirement: A text list or global text list is open and active.
In the “Choose Language” dialog, specify a language abbreviation for the new language
(example: “en-US”). This language code is then inserted as a column heading.

Command: Create Global Text List
Symbol:
Function: The GlobalTextList global text list is created in the “POUs” view.

Call: “Visualization” menu; context menu
Requirement: A visualization is open.
For more information, see: Ä GlobalTextList

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3767

Command: Export All Unicode .txt Text List Files
Symbol:
Function: All text lists of the project are exported.
Call: “Text List” menu; context menu
Requirements:
● A text list or global text list is open and active.
● The visualization encodes the characters of the texts into Unicode.

– The “Use unicode strings” option is selected in the Visualization Manager.
– The VISU_USEWSTRING compiler statement of the application is set. To check this,

select the “Properties” command in the context menu. Then click the “Build” tab.
VISU_USEWSTRING is specified in the input field for “Compiler definitions”.

At this time, a simple text file (.txt format) is created for each text list. The name of the text
list is used as the file name. The directory where the files are exported is defined in “Project
è Project Settings è Visualization”, on the “General” tab, in “Text list files”.
A controller can read and use this format. You can copy the file to a controller, for example, and
configure a setting in the Visualization Manager so that the text lists are not transferred again
when the application is downloaded.
For more information, see: Ä Using a Text List

Command: Insert Text
Symbol:
Function: A new line is inserted above the selected line in the text list. Below “Default”, an input
field opens where you specify the output text.
Call: “Text List” menu; context menu
Requirement: A text list (not a “GlobalTextList”) is open and active. A field is selected in the
table.

Command: Import/Export Text Lists
Symbol:
Function: The command exports an active text list, imports a file, or aligns a text list with a file.
The file is in CSV format. The “Import/Export” dialog provides options for this.
Call: “Text List” menu; context menu
Requirement: A text list or global text list is open and active.

Dialog: Import/Export

“Choose file to
compare or to import”

File which is read

: Opens the “Choose Text List File” dialog for you to select a file

“Choose export file” File to which is written

: Opens the “Choose Text List File” dialog where you can select a
file and directory

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3768

Table 739: “Import/Export Type”
“Import” Requirement: A file is selected in “Choose file to compare or to import”.

The file can contain text list entries for both the global text list and text lists.
Global text list
● The file is read. Then the text list entries are compared for the same source

text and the differences in the translations are accepted. If necessary, the
translations are overwritten in the project.

Text lists
● The file is read. Then the text list entries are compared for the same IDs

and the differences in the source text and translations are accepted into the
project. If necessary, the text list entries in the project are overwritten.

● If the file contains a new ID, then the text list entry is imported into the text
list of the project and the text list is added.

“Import
replacement
file”

Requirement: A replacement file is selected in “Choose file to compare or to
import”.
The replacement file contains replacements for the global text list.
The replacement file is processed row by row and the specified replacements
are performed in the global text list.
The structure of the replacement file is described in the " Ä Using static text in
GlobalText- List" chapter.

“Export” Requirement: The file which will be written to is selected in “Select export file”.
All texts from all text lists of the current project are exported. All languages
available in the project are inserted as columns in the export file. The file can
be used for the external translation of the language-dependent texts.

“Export only
text
differences”

Requirement: An import file is selected for the comparison in “Choose file to
compare or to import”, and an export file to be written to is selected in “Select
export file”.
The import file is read and the lines of the active text list are compared with it.
When lines match, they are ignored.
When lines differ, the line is written to the export file. Translations from the text
list are accepted if necessary. The translations from the import file are accepted
and overwritten if necessary.

“Use
qualified
path”

: Text lists are exported and imported with full and qualified path name.
Example: Device.Application.TextList
As a result, text lists are found uniquely, even if they occur multiple times in the
project with the same name.

For more information, see: Ä Using a Text List

Command: Remove Language
Symbol:
Function: The selected language column is removed from the text list.
Call: “Text List” menu; context menu
Requirement: A text list or global text list is open and active. A field is selected in the language
column which you want to remove.
For more information, see: Ä Using a Text List

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3769

Command: Rename Language
Symbol:
Function: A dialog opens for specifying a new name for a language which is displayed in the
text list as a column heading.
Call: “Text List” menu; context menu
Requirement: A text list or global text list is open and active. A field is selected in the language
column which you want to rename.
For more information, see: Ä Using a Text List

Command: Remove Unused Text List Entries
Symbol:
Function: The command checks whether or not a text list entry in the project is used as a static
text. If this is the case, then the text list entry is removed from the text list.
Call: “Text List” menu; context menu
Requirement: The “GlobalTextList” is open and active. A field is selected in the table.
For more information, see: Ä Using a Text List

Command: Check Visualization Text IDs
Symbol:
Function: The command checks whether or not the ID of a text list entry in the project is correct
and reports the result.
Call: “Text List” menu; context menu
Requirement: The “GlobalTextList” is open and active. A field is selected in the table.
If the check determines that the global text list and the static texts of the visualizations do not
match, then the reason for this may be that the global text list is or was write-protected. The
requirement for this is that you have configured a user management in the project.
For more information, see: Ä Using a Text List

Command: Update Visualization Text Ids
Symbol:
Function: The command updates all inconsistent IDs in a static text list.
Call: “Text List” menu; context menu
Requirement: The “GlobalTextList” is open and active. A field is selected in the table. The
object is write-protected.
If the check determines that the global text list and the static texts of the visualizations do not
match, then the reason for this may be that the global text list is or was write-protected. The
requirement for this is that you have configured a user management in the project.
For more information, see: Ä Using a Text List

Command: Remove text list support
Symbol:
Function: The text list support from the selected enumeration object is removed.

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3770

Call: Context menu of an object of an enumeration with text list support ()
Text list support allows for the localization of the enumeration component identifier and the
display of the symbolic component value in a text display of a visualization.

Command: Add text list support
Symbol:
Function: A text list support is added to the selected DUT object of type Enumeration.

Call: Context menu of a standard DUT object of type Enumeration ()

Text list support allows for the localization of the enumeration component identifier and the
display of the symbolic component value in a text display of a visualization.

6.4.6.3.3 Dialogs
Dialog: Properties – Image Pool

Function: The basic properties of the selected image pool are set here.
Call: “View è Properties” command of an “ImagePool” object; context menu of an “ImagePool”
object

“Download only
used images”

: Instead of loading all images from the image pool, only the images
which are actually used in the application are downloaded to the con-
troller.

“Download by
visualization”

: The image pool is downloaded with the visualization to the controller.

“Internal” : The image pool is not provided in the “ToolBox” view. You cannot
drag these images to the visualization.

Table 740: “Symbol Library Settings”
“Mark library as
symbol library”

Identifies the image pool as a symbol library for use in a visualization
The symbol library gets the VisuSymbolLibrary = TRUE key as a file
property in the project information. The VisuElements library is automat-
ically inserted as a placeholder library in the “POUs” pool of the Library
Manager.
Requirement: A library project is open.
The symbol libraries installed in the repository under “Project Settings”,
“Visualization” category, “Symbol Libraries” tab are displayed.

“Text list for
symbol
translation”

Select the text list from the list box which contains the translated texts for the
image pool.

For more information, see: Ä Using an Image Pool and Ä Using a Text List

Dialog: Properties – Text List
Function: The basic properties of the selected text list are set here.
Call: “View è Properties” command of a “Text List” object; context menu of a “Text List” object

Configuration and programming

Programming with CODESYS > CODESYS Visualization Support

2024/01/05 3ADR010583, 1, en_US 3771

“Download by
visualization”

: The text list is downloaded with the visualization to the controller.

“Internal” :The text list can be used only in a library. It is not available in an
ordinary CODESYS project.

For more information, see: Ä Using a Text List

Configuration and programming
Programming with CODESYS > CODESYS Visualization Support

2024/01/053ADR010583, 1, en_US3772

6.5 Libraries and solutions
6.5.1 Information on libraries

AC500 V3 library handling with CODESYS V3 is different from the library handling with
CODESYS V2. In AC500 V3 a coexistence of library versions in the library manager is
possible and users can change a version within the project. How to install a new library
and how to choose a library version in the project is described in the application note
Add New Library Version To an AC500 V3 Project.

When upgrading Automation Builder or an existing project, new AC500 V2 system libraries are
installed automatically. Older library versions will be removed as coexistence of a new library
version and an older library version is not possible. Check the available library version in the
Library Manager.

Usually, when upgrading Automation Builder or an existing project, new AC500
V2 system libraries are installed automatically and older library versions are
removed.

As an exception, for the CANopen device CM598-CN both library versions
are available in the Library Manager due to compatibility reasons. However,
coexistence of a new library version and an older library version is not possible.
In order to avoid compile errors remove the older library version.

Ä Chapter 6.3.7 “Converting an AC500 V2 project to an AC500 V3 project” on page 1799

Part of the system libraries are the group of CMP libraries, i.e. the App library, IEC task library
and the log library. How to use CMP libraries is described in an application example.

Target change from AC500 V2 to AC500 V3
After a target change from AC500 V2 to AC500 V3 the customer libraries have to be converted
manually using the Library Converter Ä Chapter 6.3.1.3 “Later change-over of a target system”
on page 1414.
Some Standard CODESYS libraries are automatically converted during the target change.

● Description for the use of and information about selected libraries.
● Reference for function blocks, functions, structures etc.
Ä Chapter 6.5.14 “Reference, function blocks” on page 4086

6.5.2 Reference to CODESYS (V3)
Note that CODESYS V3 libraries are used.
Ä Chapter 6.4.1.17.3 “Information for Library Developers” on page 2035

6.5.3 Library Manager functionality
6.5.3.1 General

The Library Manager contains descriptions of libraries and function blocks.
In the Automation Builder the Library Manager is located under the node “Application”.

System libraries

Customer libra-
ries

Documentation
for libraries

Configuration and programming

Libraries and solutions > Library Manager functionality

2024/01/05 3ADR010583, 1, en_US 3773

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010479&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011166&LanguageCode=en&DocumentPartId=&Action=Launch

The Library Manager offers a wide array of functionality for the user.

Use cases and how to handle the function blocks of a certain library
is described in sample projects. After the respective library has been
installed the corresponding sample projects are available in the default path
AutomationBuilder Examples. If the default path is inaccessible, click “Help
è Project examples” in the Automation Builder menu.

With the help of the StringUtils library, strings in the AC500 PLC application can be handled
and modified. How to use the available functions is demonstrated in the application example
StringUtils library.

6.5.3.2 Search for libraries and add libraries
In the Library Manager the search function allows you to quickly find any library, user defined
library or function.

StringUtils
library

Configuration and programming
Libraries and solutions > Library Manager functionality

2024/01/053ADR010583, 1, en_US3774

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010740&LanguageCode=en&DocumentPartId=&Action=Launch

1. Select “Add Library”.

ð The Add Library Window opens and a list of all available libararies is displayed.

Libraries in folder “ABB - AC500” are created by ABB and tested in combination with
Automation Builder.
We recommend to use libraries of subfolder “Use Cases” for your project.
Libaries in subfolder “Intern” are necessary for internal procedures.
All 3S libraries distributed with Automation Builder are required by ABB libraries and
have been tested in combination with AC500 and Automation Builder. Additional 3S
libaries that are not distributed with Automation Builder can easily be added. There are
no known major issues with using them, however, be aware that they are not tested by
ABB.

2. Enter the name of the library or function you are searching for.
3. Choose the library you want to add.

6.5.3.3 View embedded documentation of all libraries
In the Library Manager you can view embedded documentation of any ABB and 3S libraries.
Precondition: Library must be available in Library Manager.
Ä Chapter 6.5.3.2 “Search for libraries and add libraries” on page 3774

Configuration and programming

Libraries and solutions > Library Manager functionality

2024/01/05 3ADR010583, 1, en_US 3775

1. Select a library.

ð The contents of the library are shown.

2. From the contents select an object.

ð The corresponding documentation is opened.

6.5.3.4 Access version history
The Library Manager allows you to access the version history of ABB libraries.
The version history is not available for non ABB libraries.

Configuration and programming
Libraries and solutions > Library Manager functionality

2024/01/053ADR010583, 1, en_US3776

1. Select a library.

ð The contents of the library are shown.

2. Select “history”.

ð The version history is shown.

6.5.3.5 Download missing libraries
The Library Manager allows you to automatically download missing 3S libraries from the project
that are not available from the library repository.

1. Select “Download missing libraries”.

ð The 'Download missing libraries' window is opened.

2. Select which libraries you want to download.

Configuration and programming

Libraries and solutions > Library Manager functionality

2024/01/05 3ADR010583, 1, en_US 3777

6.5.4 ACS/DCS drives libraries
6.5.4.1 Introduction
6.5.4.1.1 Scope of the document

The purpose of system technology document is to give an overview and explain the overall
concepts of the Drives library in V3. The library contains function blocks to establish communi-
cation, to control the ABB ACS / DCS drives from AC500 V3 PLCs.

6.5.4.1.2 Safety instructions and preconditions to use drives library
The user has to read the following instructions and documents before using the libraries:
● All pertinent state, regional, and local safety regulations must be observed when installing

and using this product. When functions or devices are used for applications with technical
safety requirements, the relevant instructions must be followed.

● Read the complete safety instructions of the user's manuals for the devices you are using,
before installation and commissioning.

● Read all safety instructions of the AC500 PLC. See System description AC500 in the online
help in Automation Builder.

● Read the user information of the devices and functions you are using, see online help in
Automation Builder.

● Installation and commissioning of the drive(s) is not part of this document nor the online
help of Automation Builder. Installation and commissioning of the drive(s) must be done
according to the related drives manuals and safety instructions.

The library package has been released for the software and firmware versions listed in the
readme file of the package only.
In no event will ABB or its representatives be liable for loss of data, profits, revenue or conse-
quential, incidental or other damage that may result from the use of other versions of product,
software or firmware versions. The error-free operation of the Drives V3 Library with other
devices, software or firmware versions should be possible but cannot be guaranteed and may
need adaptations e.g. of example programs.
The user must follow all applicable safety instructions and the guidelines mentioned in the user
documents of the ABB products.
Read the complete safety instructions for the AC500 before installation and commissioning.

CAUTION!
Generally, the user in all applications is fully and alone responsible for checking
all functions carefully, especially for safe and reliable operation.

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

6.5.4.1.3 Comparison of V2 and V3 drives library
The below table compares the FBs in the V2 library package and corresponding adapted FBs in
the V3 library package.
The V2 package (PS553-Drives) has different library files for each protocol and the same is
replaced with a single library in V3 (ABB_Drives_AC500).

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3778

PS553-Drives Library package (V2) PS5605-Drives Library package (V3)
Library Name Function Block Library Function Block
ACSDrives-
Base_AC500_V2

ACS3XX_DRIVES_CTRL_
BASIC

Not supported – use DrvControlModbusACS

ACS_DRIVES_CTRL_EN
G

ABB_Drives_AC500 DrvControlModbusEng

ACS_DRIVES_CTRL_STA
NDARD

DrvControlModbusACS

ACS_DRIVES_CTRL_STA
NDARD_GEN

DrvControlACS

ACS_MOD_READ_N_PR
M

DrvModbusRead

ACS_MOD_WRITE_N_PR
M

DrvModbusWrite

ACS_REF_SCALING DrvScaling

ACSDrivesCom-
ModRTU_AC500_V20

ACS3XX_COM_MOD_RT
U

Not supported

ACS_COM_MOD_RTU ABB_Drives_AC500 DrvModbusRtu

ACS_COM_MOD_RTU_E
NHANCED

DrvModbusRtu

ACS_COM_MOD_RTU_G
EN

ABB_ModbusRtu_AC500 ModRtuToken

ACS_COM_MOD_RTU_G
EN_READ_N_PRM

ModRtuRead

ACS_COM_MOD_RTU_G
EN_WRITE_N_PRM

ModRtuWrite

 ModRtuReadWrite23

ACSDrivesCom-
ModTCP_AC500_V22

ACS_COM_MOD_TCP ABB_Drives_AC500 DrvModbusTcp

ACS_COM_MOD_TCP_E
NHANCED

DrvModbusTcp

ACSDrivesCom-
ModTCP_Ext_AC500_V24

ACS_COM_MOD_TCPx ABB_Drives_AC500 DrvModbusTcp

ACS_COM_MOD_TCPx_E
NHANCED

DrvModbusTcp

DCSDrives_AC500_V24 DCS_DRIVES_CTRL ABB_Drives_AC500 DrvControlModbusDCS

DCS_DRIVES_CTRL_GE
N

DrvControlDCS

ACSDrives-
ComPN_AC500_V24

ACS_PN_WRITE_N_PRM
_DPV1

ABB_Drives_AC500 DrvPnWrite

ACS_PN_READ_N_PRM_
DPV1

DrvPnRead

ACSDrives-
ComPB_AC500_V24

ACS_PB_READ_N_PRM_
DPV1

Will be supported in next Release

ACS_PB_WRITE_N_PRM
_DPV1

ACS_COM_PB Not supported

ACS_COM_PB_PZD

ACS_PB_READ_PRM_DP
V0

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3779

PS553-Drives Library package (V2) PS5605-Drives Library package (V3)
Library Name Function Block Library Function Block

ACS_PB_WRITE_PRM_D
PV0

 ABB_Drives_AC500 DrvModbusReadWrite23

 ABB_Drives_AC500 DrvModbusRtuBroadcast

 ABB_Drives_AC500 DrvControlCANCiA402

6.5.4.1.4 PLCs and drives: communication and control
General

This document will briefly explain about communication settings between PLCs with drives, how
to control the drives from PLC using the control function blocks.
Each input and output of the function blocks are explained in the integrated documentation in
the library.
This library is released for the following products:
● AC500 V3 CPU
● ABB Drives:

– ACS380, ACS480, ACS580, ACH580, ACQ580, ACSM1, ACS880, DCS550, DCS800,
DCS880. Other drives may still work, but are not tested.

– To use the control blocks the Communication Profile must be “ABB Drives Profile” or
“ABB Drives Profile enhanced”

● Fieldbus Adapters: FENA-01, FENA-11, FENA-21, FSCA-01, FCAN-01, FECA-01,
RETA-01, RETA-02, RCAN-01, FPNO-21, FMBT-21.
Fieldbus adapter support is dependent on the drive and for more details refer the corre-
sponding drive manual.

Drives Library in V3 will support following protocols for the communication:
● Modbus TCP (onboard ETH1 and ETH2 ports)
● Modbus RTU (onboard COM1 port)
● PROFINET (using communication module CM579-PNIO)
● EtherCAT (using communication module CM579-ETHCAT)
● CANopen (onboard CAN port)

Modbus TCP
Preconditions

The following hardware components must be available:
● AC500 V3 PLC with ETH option. Configure onboard ETH1 or ETH2 for Modbus TCP.
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FENA-01 or FENA-11 or FENA-21 or FMBT-21
– DCS550 and DCS800: RETA-01

● RJ45 Ethernet cable

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3780

ACS drives

Fig. 274: FB - Overview of Modbus TCP connection with ACS drives

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block ‘DrvModbusTcp’. Ä Chapter 6.5.4.4.1.8 “DrvModbusTcp” on page 3805
● DrvModbusTcp
● Control function block in AC500 program:

Use function block ‘DrvControlModbusACS’. Ä Chapter 6.5.4.4.1.4 “DrvControlModbu-
sACS” on page 3801

● Scaling of the speed or torque (optional):
Use function block ‘DrvScaling’. Ä Chapter 6.5.4.4.1.1 “DrvScaling” on page 3796

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB Drives enhanced
● Communication function block in AC500 program:

Use the function block ‘DrvModbusTcp’ with input EnhancedProfile = TRUE. Ä Chapter
6.5.4.4.1.8 “DrvModbusTcp” on page 3805

● DrvModbusTcp
● Control function block in AC500 program:

Use function block ‘DrvControlModbusACS’. Ä Chapter 6.5.4.4.1.4 “DrvControlModbu-
sACS” on page 3801

● Scaling of the speed or torque (optional): Use function block ‘DrvScaling’. Ä Chapter
6.5.4.4.1.1 “DrvScaling” on page 3796

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3781

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block ‘DrvModbusRead’. Ä Chapter 6.5.4.4.1.6 “DrvModbusRead”
on page 3804

● Write the values:
Use the function block ‘DrvModbusWrite’. Ä Chapter 6.5.4.4.1.7 “DrvModbusWrite”
on page 3805

● Read Write the values:
Use the function block ‘DrvModbusReadWrite23’. Ä Chapter 6.5.4.4.1.11 “DrvModbusRead-
Write23” on page 3825

DCS drives

Fig. 275: FB - Overview of Modbus TCP connection with DCS drives

To exchange only status word, actual speed, control word and speed reference:
● Communication function block in AC500 program:

Use function block “DrvModbusTcp”. Ä Chapter 6.5.4.4.1.8 “DrvModbusTcp” on page 3805
● “DrvModbusTcp”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 6.5.4.4.1.5 “DrvControlMod-
busDCS” on page 3803

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 6.5.4.4.1.1 “DrvScaling” on page 3796

DCS550 and
DCS800 drives

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3782

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 6.5.4.4.1.6 “DrvModbusRead”
on page 3804

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 6.5.4.4.1.7 “DrvModbusWrite”
on page 3805

● Read write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 6.5.4.4.1.11 “DrvModbus-
ReadWrite23” on page 3825

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block “DrvModbusTcp”. Ä Chapter 6.5.4.4.1.8 “DrvModbusTcp” on page 3805
● “DrvModbusTcp”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 6.5.4.4.1.5 “DrvControlMod-
busDCS” on page 3803

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 6.5.4.4.1.1 “DrvScaling” on page 3796

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB drives enhanced
● Communication function block in AC500 program:

Use the function block “DrvModbusTcp” with input EnhancedProfile = TRUE. Ä Chapter
6.5.4.4.1.8 “DrvModbusTcp” on page 3805

● “DrvModbusTcp”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 6.5.4.4.1.5 “DrvControlMod-
busDCS” on page 3803

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
6.5.4.4.1.1 “DrvScaling” on page 3796

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 6.5.4.4.1.6 “DrvModbusRead”
on page 3804

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 6.5.4.4.1.7 “DrvModbusWrite”
on page 3805

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 6.5.4.4.1.11 “DrvModbus-
ReadWrite23” on page 3825

DCS880 drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3783

Modbus RTU
Preconditions

The following hardware components must be available:
● AC500 V3 PLC. Configure onboard COM1 for the Modbus RTU communication.
● Drive with

– ACS Drives and DCS880: Embedded fieldbus or FSCA-01
– DCS550 and DCS800: Embedded fieldbus or RMBA-01
– Twisted pair serial cable

ACS drives

Fig. 276: FB - Overview of Modbus RTU connection with ACS drives

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block “DrvModbusRtu”. Ä Chapter 6.5.4.4.1.9 “DrvModbusRtu” on page 3812
● DrvModbusRtu
● Control function block in AC500 program:

Use function block “DrvControlModbusACS” . Ä Chapter 6.5.4.4.1.4 “DrvControlModbu-
sACS” on page 3801

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 6.5.4.4.1.1 “DrvScaling” on page 3796

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3784

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB Drives enhanced
● Communication function block in AC500 program:

Use the function block “DrvModbusRtu”. Ä Chapter 6.5.4.4.1.9 “DrvModbusRtu”
on page 3812

● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusACS”. Ä Chapter 6.5.4.4.1.4 “DrvControlModbu-
sACS” on page 3801

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
6.5.4.4.1.1 “DrvScaling” on page 3796

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 6.5.4.4.1.6 “DrvModbusRead”
on page 3804

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 6.5.4.4.1.7 “DrvModbusWrite”
on page 3805

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 6.5.4.4.1.11 “DrvModbus-
ReadWrite23” on page 3825

DCS drives

Fig. 277: FB - Overview of Modbus RTU connection with DCS drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3785

To exchange only status word, actual speed, control word and speed reference:
● Communication function block in AC500 program:

Use function block “DrvModbusRtu”. Ä Chapter 6.5.4.4.1.9 “DrvModbusRtu” on page 3812
● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 6.5.4.4.1.5 “DrvControlMod-
busDCS” on page 3803

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 6.5.4.4.1.1 “DrvScaling” on page 3796

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 6.5.4.4.1.6 “DrvModbusRead”
on page 3804

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 6.5.4.4.1.7 “DrvModbusWrite”
on page 3805

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 6.5.4.4.1.11 “DrvModbus-
ReadWrite23” on page 3825

To exchange only status word, actual speed, control word and speed reference:
● Communication profile in drive parameters: ABB Drives classic
● Communication function block in AC500 program:

Use function block “DrvModbusRtu”. Ä Chapter 6.5.4.4.1.9 “DrvModbusRtu” on page 3812
● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 6.5.4.4.1.5 “DrvControlMod-
busDCS” on page 3803

● Scaling of the speed or torque (optional):
Use function block “DrvScaling”. Ä Chapter 6.5.4.4.1.1 “DrvScaling” on page 3796

To exchange status word, actual value1 (speed), actual value2 (torque), control word,
reference1 (speed), reference value2 (torque) and up to 12 more values read from drive and
up to 12 more values write to the drive:
● Communication profile in drive parameters: ABB Drives enhanced
● Communication function block in AC500 program:

Use the function block “DrvModbusRtu”. Ä Chapter 6.5.4.4.1.9 “DrvModbusRtu”
on page 3812

● “DrvModbusRtu”
● Control function block in AC500 program:

Use function block “DrvControlModbusDCS”. Ä Chapter 6.5.4.4.1.5 “DrvControlMod-
busDCS” on page 3803

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
6.5.4.4.1.1 “DrvScaling” on page 3796

DCS550 and
DCS800 drives

DCS880 drives

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3786

To exchange more than above mentioned values use additionally the following blocks:
● Read the values:

Use the function block “DrvModbusRead”. Ä Chapter 6.5.4.4.1.6 “DrvModbusRead”
on page 3804

● Write the values:
Use the function block “DrvModbusWrite”. Ä Chapter 6.5.4.4.1.7 “DrvModbusWrite”
on page 3805

● Read Write the values:
Use the function block “DrvModbusReadWrite23”. Ä Chapter 6.5.4.4.1.11 “DrvModbus-
ReadWrite23” on page 3825

PROFINET
Preconditions

The following hardware components must be available:
● AC500 V3 PLC with CM579-PNIO (PROFINET Master communication module)
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FENA-01 or FENA-11 or FENA-21
– DCS550 and DCS800: RETA-02

● RJ45 Ethernet cable

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 ® Drive: Control word and reference value 1 (speed) and optional reference value 2

(torque).

The following function blocks can be configured in the AC500 program.
● Communication profile: ABB Drives Profile
● Control block:

– ACS Drives: Use function block ‘DrvControlACS’. Ä Chapter 6.5.4.4.1.2 “DrvContro-
lACS” on page 3797.

– DCS Drives: Use function block ‘DrvControlDCS’. Ä Chapter 6.5.4.4.1.3 “DrvCon-
trolDCS” on page 3799.

● Scaling of the speed or torque (optional): Use function block ‘DrvScaling’. Ä Chapter
6.5.4.4.1.1 “DrvScaling” on page 3796.

● PROFINET read function block. Ä Chapter 6.5.4.4.1.14 “DrvPNRead” on page 3829
● PROFINET write function block. Ä Chapter 6.5.4.4.1.15 “DrvPnWrite” on page 3830

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3787

ACS drives

Fig. 278: FB - Overview of PROFINET connection with ACS drives

DCS drives

Fig. 279: FB - Overview of PROFINET connection with DCS drives

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3788

EtherCAT
Preconditions

The following hardware components must be available:
● AC500 V3 PLC with CM579-ETHCAT (EtherCAT Master communication module)
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FECA-01
– DCS550 and DCS800: RECA-01

● RJ45 Ethernet cable

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 ® Drive: Control word and reference value 1 (speed) and optional reference value 2

(torque).

A direct Ethernet cable from CM579-ETHCAT to FECA-01 module is
recommended, connection through switch is not recommended since it will slow
down the connectivity. Also, the drives need to be connected in the same
sequence as they are added in the Automation Builder when multiple drives are
connected.

The following function blocks can be configured in the AC500 program.
● Communication profile: ABB Drives Profile
● Control block:

– ACS Drives: Use function block “DrvControlACS”. Ä Chapter 6.5.4.4.1.2 “DrvContro-
lACS” on page 3797

– DCS Drives: Use function block “DrvControlDCS”. Ä Chapter 6.5.4.4.1.3 “DrvCon-
trolDCS” on page 3799

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
6.5.4.4.1.1 “DrvScaling” on page 3796

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3789

ACS drives

Fig. 280: FB - Overview of EtherCAT connection with ACS drives

DCS drives

Fig. 281: FB - Overview of EtherCAT connection with DCS drives

CANopen
Preconditions

The following hardware components must be available:
● AC500 V3 PLC. Configure onboard CAN port for CANopen communication.
● Drive with fieldbus adapter module

– ACS Drives and DCS880: FCAN-01
– DCS550 and DCS800: RCAN-01

● CANopen communication cable with 120 Ω resistor.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3790

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual value 1 (speed) and optional actual value 2

(torque).
● AC500 ® Drive: Control word and reference value 1 (speed) and optional reference value 2

(torque).

The following function blocks can be configured in the AC500 program.
● Communication profile: ABB Drives Profile
● Control block:

– ACS Drives: Use function block “DrvControlACS”. Ä Chapter 6.5.4.4.1.2 “DrvContro-
lACS” on page 3797

– DCS Drives: Use function block “DrvControlDCS”. Ä Chapter 6.5.4.4.1.3 “DrvCon-
trolDCS” on page 3799

● Scaling of the speed or torque (optional): Use function block “DrvScaling”. Ä Chapter
6.5.4.4.1.1 “DrvScaling” on page 3796

ACS drives

Fig. 282: FB - Overview of CANopen connection with ACS drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3791

DCS drives

Fig. 283: FB - Overview of CANopen connection with DCS drives

CANopen with CAN CiA402 Profile for generic Drives
Preconditions

The following hardware components must be available:
● AC500 V3 PLC. Configure onboard CAN port for CANopen communication.
● Any drive with CAN fieldbus adapter module and CAN CiA402 profile.
● CANopen communication cable with 120 Ω resistor.

The following values should be mapped in the fieldbus configuration of the drive and the
configuration of AC500. These settings must be done in the Automation Builder hardware
configuration.
● Drive ® AC500: Status word and actual speed.
● AC500 ® Drive: Control word and reference speed.

The following function blocks can be configured in the AC500 program.
● Communication profile: CANopen device profile CiA402
● Control block: Use function block “DrvControlCANCiA402”. Ä Chapter 6.5.4.4.1.13

“DrvControlCANCiA402” on page 3828

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3792

General drives with CAN CiA402 interface

Fig. 284: FB - Overview of CANopen CiA402 with any drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3793

6.5.4.1.5 Compatibility
To check the compatibility of the drives and their communication modules please refer to the
following table, it shows the tested combinations.

Communi-
cation

PLC communication
modules

Drive fieldbus adapter module Drive

PLC com-
munica-

tion
module

Firmware
version

FBA FBA
comm sw
ver

FBA appl
sw ver

Drive Firmware
version

Drive
rating ID

Modbus
RTU -
Classic

Onboard FSCA-01 1.63 ACS580 1.70.4.0
(CCON-11)

ACS580-0
1-12A6-4

 Embed-
ded

 ACS380 2.04.0.3 ACS380-0
4-
XX-01A8-4

 Embedded ACS480 2.06.255.5 ACS480-0
4-02A7-4

Modbus
RTU –
Enhanced

Onboard FSCA-01 1.63 ACS880 2.8.2 ACS880-0
1-04A0-3

Modbus
TCP

Onboard
ETH1 /
ETH2

 RETA-01 1.30 3.05 DCS800 3.7

Modbus
TCP -
Enhanced

Onboard
ETH1 /
ETH2

 FENA-21 3.20 ACH580 2.06.0.2 ACH580-0
1-02A6-4

PROFINE
T

CM579-
PNIO

2.8.6.21 FENA-21 3.20 ACS880 2.82 ACS880-0
1-04A0-3

FENA-21 3.20 ACSM1 UMFI2000
(N2020)

ACSM1-03
A0-4

EtherCAT CM579-
ETHCAT

4.4.3.21 FECA-01 1.31 ACQ580 2.05.0.4 ACQ580-0
1-02A6-4

CANopen
(ABB Pro-
file)

Onboard FCAN-01 1.16 ACSM1 UMFI2000
(N2020)

ACSM1-03
A0-4

CANopen
(CiA402)

Onboard FCAN-01 1.16 ACS380 2.04.0.3 ACS380-0
4-
XX-01A8-4

6.5.4.2 Installation
The library is part of the Automation Builder 2.2. or higher. Use the Library manager to add the
library into project.
For more details on the package, refer to the release notes of the latest Automation Builder.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3794

6.5.4.3 Hardware and software requirement

Hardware Software
AC500 V3 PLCs:
PM5630-2ETH,
PM5650-2ETH,
PM5670-2ETH and
PM5675-2ETH
AC500 V3 eCO:
PM5012-x-ETH
PM5032-x-ETH
PM5052-x-ETH and
PM5072-T-2ETH

PM5082-T-2ETH *)

Automation Builder 2.2. or higher

ABB drive:
ACS380, ACS480, ACS580, ACH580,
ACQ580,
ACS880, ACSM1, DCS550, DCS800,
DCS880.
(Other drives may work, but are not tested.)

Drive Composer Pro,
Drive Studio,
Drive Window or
Drive Window Light

Fieldbus adapter module:
FSCA-01, RMBA-01
FENA-01 / FENA-11 / FENA-21, RETA-01,
FPNO-21, FMBT-21
FECA-01, RETA-02
FCAN-01, RCAN-01
(Other fieldbus adapter modules may work,
but are not tested.)

Remarks:
*): from ≥ AB 2.6.1 and CPU FW ≥ 3.6.2

Before adding a drive to the device tree, the correct device description file has
to be installed into Automation Builder’s device repository. For ABB drives the
corresponding device descriptions are available for download from our webside.
For ABB drives connected via CANopen or EtherCAT there is also the
option to generate the device descriptions via Drive Composer Pro (“Tools
è EDS Export”).

Drive configuration tool and fieldbus adapter module support is dependent on
the drive used, for the compatible tool details refer to the drive manual.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3795

https://library.abb.com/r?cid=9AAC113393&dkg=dkg_software

6.5.4.4 Description of the library
6.5.4.4.1 Function blocks
DrvScaling

Fig. 285: DrvScaling

DrvScaling function block is used to scale the speed or torque reference to the drive based on
the maximum values defined.
Function block “DrvScaling” can be used to scale the variables from fieldbus equivalent values
to values used in the program. Fieldbus variables are given in fieldbus equivalent values as
INT values. With the scaling a conversion from INT (fieldbus) to REAL (program) and vice
versa is performed. Reference1 and Actual Value1 (speed) are mostly given in the range of
-20000 ... +20000. Reference2 and Actual Value2 (torque) are mostly given in the range of
0 ... +10000.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3796

DrvControlACS

This function block can be used to control ACS drives with ABB drives profile using direct
input of status word (SW) from drive via any supported fieldbus communication like PROFINET,
EtherCAT, CANopen.
Control word (CW) will be built by the function block according to the ABB drives profile state
machine. Output CW has to be send to the drive via any fieldbus communication supported.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3797

Drive Parameter ACS380/ ACS480/
ACS580/ ACH580/
ACQ580/ ACS880

ACSM1 Comment

EXT1 COMMANDS 20.01 = Fieldbus A 10.01 = FBA Fieldbus interface as
source for start and stop

EXT1 / EXT2 SEL 19.11 = MCW Bit11 (06.01) 34.01 = P02.12 bit 15 Fieldbus interface as
source to switch to EXT2
control place

REF1 SELECT 22.11 = FBA ref1 24.01 = FBA ref1 Fieldbus interface as
source to speed reference

FAULT RESET SELECT 31.11 = P06.01 bit 7 10.08 = P02.12 bit 8 Fieldbus interface as
source for fault reset

PROFILE 51.02 = Drives Classic /
Enhanced

51.02 = Drives Classic /
Enhanced

Control profile to ABB
Drives profile classic or
enhanced

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3798

DrvControlDCS

This function block can be used to control DCS drives with ABB drives profile using direct
input of status word (SW) from drive via any supported fieldbus communication like PROFINET,
EtherCAT, CANopen.
Control word (CW) will be built by the function block according to the ABB drives profile state
machine. Output CW must be sent to the drive via any fieldbus communication supported.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3799

Drive Parameter DCS550 DCS800 DCS880 Comment
EXT1 COMMANDS 10.01 = Main Ctrl

Word
10.01 = Main Ctrl
Word

20.01 = Main Ctrl
Word

Fieldbus interface as
source for start and
stop

EXT1 / EXT2 SEL 10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux)
MCW: Bit11
11.12 (Ref2Mux)
Invert 11.02

10.07 (HandAuto)
MCW: Bit11
11.02 (Ref1Mux)
MCW: Bit11
11.12 (Ref2Mux)
Invert 11.02

19.11 = MCW Bit11
(06.01)

Fieldbus interface as
source to switch to
EXT2 control place

REF1 SELECT 11.03 =
SpeedRef2301

11.03 =
SpeedRef2301

22.11 = FBA ref1 Fieldbus interface as
source to speed
reference

FAULT RESET
SELECT

NA NA NA Fieldbus interface as
source for fault reset

PROFILE NA NA 51.02 = Drives
Classic / Enhanced

Control profile to
ABB Drives profile
classic or enhanced

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3800

DrvControlModbusACS

This function block can be used to control ACS drives with ABB Drives profile or ABB Drives
enhanced profile using Modbus communication block like DrvModbusTcp or DrvModbusRtu.
Status Word (SW) is read from drive through Modbus communication block using “DriveData”
interface. Ä Chapter 6.5.4.4.3 “Structure: DrvDataType” on page 3831

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3801

Control Word (CW) will be built by the function block according to the ABB drives profile
state machine. CW will be sent via DriveData and the used communication block to the drive.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

The function block should be used for ACS drives using ABB drive (Classic/
Enhanced) profile for Modbus protocol only. The data transfer to the ACS drive
is realized via the “IN_OUT” variable DriveData, which must be connected to
“DrvModbusTcp” or “DrvModbusRtu” function block.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3802

DrvControlModbusDCS

This function block can be used to control DCS drives with ABB Drives profile using Modbus
communication block like “DrvModbusTcp” or “DrvModbusRtu”.
Status Word (SW) is read from drive through Modbus communication block using DriveData
interface. Ä Chapter 6.5.4.4.3 “Structure: DrvDataType” on page 3831

Control Word (CW) will be built by the function block according to the ABB drives profile
state machine. CW will be sent via DriveData and the used communication block to the drive.
Function block provides standard start/stop signals to control the drive and standard diagnosis
signals are read from the drive.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3803

The function block should be used for DCS drives using ABB drive profile for
Modbus protocol only. The data transfer to the DCS drive is realized via the
“IN_OUT” variable DriveData, which must be connected to “DrvModbusTcp” or
“DrvModbusRtu” function block.

DrvModbusRead

The function block 'DrvModbusRead' reads one or more parameters / values of the drive. The
number of data to be read is specified at the input 'Nvar'. The first parameter number is
specified at the input 'PrmNum'. All parameters must be accessible from consecutive Modbus
registers in the drive. The values of the parameters are stored in the PLC memory area, defined
at the input 'Data'.
The values in the PLC memory area are updated when the read job was performed without
error. This is indicated by JobDone = TRUE and ModMastErrorAct = FALSE.
If the Modbus job was finished with an error, the output ModMastErrorAct is set for one
cycle. The Error ID returned by the Modbus job is shown at the output ModMastErrorIDLast.
The output ModMastErrorIDLast will show that last Error ID until the input Enable is set from
TRUE to FALSE.
As long as the Enable = TRUE a new read job is requested automatically one cycle after the
further read job was terminated. The Modbus job is started from the Communication Block
which is connected to the same 'DriveData' variable. It uses the Modbus function code 03
(read n words). The drive (Modbus device) from which the parameter is read is specified
at this Communication Block. The Communication Blocks are available from the library e.g.
DrvModbusTcp or DrvModbusRtu.
The function block is activated (Enable = TRUE) or deactivated (Enable = FALSE) via input
Enable. If the block is active, the current values are available at the outputs. To start a new read
job the input Enable must be set to TRUE. If the input values are valid, a request to perform a
Modbus job is send to the Communication Block via the 'DriveData' variable. If at least 1 input is
invalid, no job is generated, and the error is displayed at the outputs Error and ErrorID instead.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3804

DrvModbusWrite

Function block 'DrvModbusWrite' writes 'n' parameters to the drive. The number of parameters
to be written must be available in the PLC memory area, defined at the input Data. The write job
has been performed without error if JobDone = TRUE and ModMastErrorAct = FALSE.
If the Modbus job was finished with an error, the output ModMastErrorAct is set for one cycle.
The Error ID returned by the Modbus job is shown at the output ModMastErrorIDLast. The
output ModMastErrorIDLast will show that last Error ID until the input Execute is set from
TRUE to FALSE.
To start a new write job the input Execute must be set from FALSE to TRUE (edge sensitive).
The Modbus job is started from the Communication Block which is connected to the
same DriveData variable. It uses the Modbus function code 16 (write n words). The drive
(Modbus device) to which the parameter is written is specified at the Communication Block.

Drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.

Please see drive manuals for the parameter details.

DrvModbusTcp
Introduction

Function block DrvModbusTcp controls the Modbus TCP communication to ACS/DCS drives
and provides the basic values (CW, Ref1, Ref2, SW, Act1, Act2) which are used for the basic
control of drives with ABB Drives Profile or ABB Drives Enhanced Profile.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3805

ABB drives classic profile
With input parameter EnhancedProfile = FALSE, the function block works for ABB Drives
Classic Profile.

The function block continuously reads data from the drive starting at Modbus register 400004.
So at least the Status Word (SW), Actual Value 1 (Speed Reference), Actual Value 2
(Actual Value 2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.StatusWord, DriveData.ActValue1 and
DriveData.ActValue2.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400004 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)

DriveData.wSta-
tusWord

Enable = TRUE

400005 Actual Value 1 Actual Value 1 Actual Value 1 DriveData.iAct-
Value1

Enable = TRUE

400006 Actual Value 2 Actual Value 2 Actual Value 2 DriveData.iAct-
Value2

Enable = TRUE

To write the Control Word (CW), Reference Value 1 (Speed Reference) or
Reference Value 2 (Reference Value 2) from the DriveData variable (DriveData.ControlWord,
DriveData.Reference1, DriveData.Reference2) to the drive, the input EnableWrite has to be
TRUE (default).
If the input SteadyWrite = TRUE (default = FALSE) these values are written steadily.
If the input SteadyWrite = FALSE (default) these values are only written if there was a change
on any of those values.
These 3 values are written to the ACS drive starting at Modbus register 400001.
The function block checks if there are changes of the Control Word (wControlWord),
Reference Value 1 (iRefValue1) or Reference Value 2 (iRefValue2) on the DriveData variable. If
there is a change a write job is requested to send these 3 values to the ACS/DCS drive starting
at Modbus register 400001.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Reading status
information
from drives

Writing control
word and
reference value
to drives

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3806

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

ABB drives enhanced profile
With input parameter EnhancedProfile = TRUE, the function block works for ABB Drives
Enhanced Profile.

The function block continuously reads data from the drive starting at Modbus register 400051.
So at least the Status Word (SW), Actual Value 1 (Speed Reference), Actual Value 2
(Actual Value 2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.StatusWord, DriveData.ActValue1 and
DriveData.ActValue2.
Apart from these three parameters there is also an option to read 12 additional drive
parameters.
Using the input NvarRead the function block can be configured to read between 0 and 12
parameters from the drive. All read data is then written to the array at the ReadValue
output array. Configuration in ACS drive is depending on configured parameters in group
FBA DATA IN.

Reading status
information
from drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3807

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400051 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)

DriveData.wSta-
tusWord

Enable = TRUE

400052 Actual Value 1 Actual Value 1 Actual Value 1 DriveData.iAct-
Value1

Enable = TRUE

400053 Actual Value 2 Actual Value 2 Actual Value 2 DriveData.iAct-
Value2

Enable = TRUE

400054 FBA Data IN 1 FBA Data IN 1 FBA Data IN 1 ReadValues[1] Enable = TRUE
NVarRead >= 1

400055 FBA Data IN 2 FBA Data IN 2 FBA Data IN 2 ReadValues[2] Enable = TRUE
NVarRead >= 2

...

400064 FBA Data IN 11 FBA Data IN 11 FBA Data IN 11 ReadValues[11] Enable = TRUE
NVarRead >= 11

400065 FBA Data IN 12 FBA Data IN 12 FBA Data IN 12 ReadValues[12] Enable = TRUE
NVarRead >= 12

If 32-bit parameters are mapped to DATA IN,

– The following field in DATA IN must be left open (= 0)
– The word order of the High-Word (HW) and Low-Word (LW) can be

configured in the drive.
(using FENA-X1: Par. 51.22)

– To retrieve the original 32-bit value from the drive in AC500 the HW and LW
from ReadValues fields must be recombined in the program.

Function block DATA IN has to be configured in drive in the following groups see also
FENA-x1 manual.

Drive Parameter Group
ACS355
ACS380, ACS480, ACS580, ACH580,
ACQ580, ACS880, ACSM1

54.01 ... 54.10
52.01 ... 52.12 52.01 ... 52.12 if installed as
adapter A

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3808

To write the Control Word (CW), Reference Value 1 (Speed Reference) or
Reference Value 2 (Reference Value 2) from the DriveData variable (DriveData.ControlWord,
DriveData.Reference1, DriveData.Reference2) to the drive, the input EnableWrite has to be
TRUE (default).
If the input SteadyWrite = TRUE (default = FALSE) these values are written steadily.
If the input SteadyWrite = FALSE (default) these values are only written if there was a change
on any of those values.
These 3 values are written to the ACS drive starting at Modbus register 400001.
Apart from these three there parameters there is also an option to write 12 additional drive
parameters.
Using the input NvarWrite the function block can be configured to write between 0 and 12
parameters to the drive. The necessary values must be present in the array connected to
WriteValues input. Configuration in ACS drive is depending on configured parameters in group
FBA DATA OUT.

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FENA-01/ 11/21
FMBT-21

RETA-01 FENA-01/11/21
FMBT-21

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

400004 FBA Data OUT 1 FBA Data OUT 1 FBA Data OUT 1 WriteValues[1] Enable = TRUE
NVarWrite >= 1

400005 FBA Data OUT 2 FBA Data OUT 2 FBA Data OUT 2 WriteValues[2] Enable = TRUE
NVarWrite >= 2

...

400014 FBA Data OUT
11

FBA Data OUT
11

FBA Data OUT
11

WriteValues[11] Enable = TRUE
NVarWrite >= 11

400015 FBA Data OUT
12

FBA Data OUT
12

FBA Data OUT
12

WriteValues[12] Enable = TRUE
NVarWrite >= 12

If a Modbus TCP job tries to access a register in the drive which has no valid
mapping information then job is aborted with an error.

Therefore, the drive parameters in FBA DATA IN group and FBA DATA OUT
must be configured according to the used ‘NvarRead’ and ‘NvarWrite’ input
number respectively.

Writing control
word and
reference value
to drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3809

If 32-bit parameters are mapped to DATA OUT,

– The next/following field in DATA OUT must be left open (= 0)
– The word order of the High-Word (HW) and Low-Word (LW) can be

configured in the drive.
(using FENA-X1: Par. 51.22)

– To retrieve the original 32-bit value from the drive in AC500 the HW and LW
from WriteValues fields must be recombined in the program.

ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.

Please see also drive manuals which parameter must be set.

For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880 –
Par 96.07 = 1

For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

Diagnosis
If a Modbus TCP job tries to access a register in the drive which has no valid mapping
information the job is aborted with an error.
The output ModMastErrorAct reflects that an actual error occurred. This output is only TRUE
for one cycle. At that cycle the output ModMastErrorIDLast reflects the actual ErrorID from the
ModTcpMast job. The ModMastErrorIDLast will keep this Error ID until a new rising edge of the
Enable is given.

However, there are internal diagnosis variables available, which are not shown at any output,
but can be accessed from the function block instance.
These additional diagnosis variables can be accessed by opening the function block instance or
through the block visualization “VisuDrvModbusTcp”.
● iWriteErrCnt: number of errors in write jobs since Enable = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.
● iReadErrCnt: number of errors in read jobs since Enable = TRUE.
● wLastReadErno: holds the error number of the last executed read job.
● iReadWriteErrCnt: number of errors in read write jobs since Enable = TRUE.
● wLastReadWriteErno: holds the error number of the last executed read write job.

If the user changes drive profile while drive is online with PLC, function block
outputs may give wrong indication.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3810

Drive parameter settings

Settings in the drive
according to AC500
configuration

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
ACSM1

DCS550,
DCS800

DCS880

Communication module FENA-01 /11/21
FMBT-21

RETA-01 FENA- 01/11/21
FMBT-21

Fieldbus activation =
EXT FBA / ENABLE

50.01 98.02 50.01

FBA A Comm loss func 50.02 30.35 50.02

Comm Rate = Auto (0) 51.03 51.02 51.03

IP configuration = Static IP 51.04 51.03 51.04

IP address1 … IP
address2

51.05 … 51.08 51.04 … 51.07 51.05 … 51.08

Subnet CIDR = 24
(eg: 255.255.255.0)

51.09 51.08 ... 51.11 51.09

Gateway Address
(normally = 0.0.0.0)

51.10 … 51.13 51.12 … 51.15 51.10 … 51.13

Protocol / Profile =
MB/TCP ABB E or
MB/TCP ABB C

51.02 51.16 51.02

Word order for
32-bit parameter

51.22 No 32-bit access 51.22

Modbus timeout.
Depending on timeout
mode. Value in 100 ms

51.20 51.17 51.20

Modbus timeout mode:
If input “SteadyWrite” is
false set to “Any message“
If input “SteadyWrite” is
true can also be set to
“Control RW“

51.21 51.21

Refresh settings in drive 51.27 51.27 51.27

– Please refer the respective drive / fieldbus module manual for the parameter
settings if the drive setting is not mentioned in above table.

– For RETA-01/-02 IP address could also be set via hardware Dip-Switches.
If any switch is set (192.168.0.xxx) with xxx = Dip-Switches setting

– ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.
Please see also drive manuals which parameter must be set.
For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880
– Par 96.07 = 1
For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3811

DrvModbusRtu
Introduction

Function block DrvModbusRtu controls the Modbus RTU communication to ACS/DCS drives
and is used for the basic control of drives with ABB Drives Profile or ABB Drives Enhanced
Profile.

ABB drives classic profile
With input parameter EnhancedProfile = FALSE, the function block works for ABB Drives
Classic Profile.

The function block continuously reads data from the drive starting at Modbus register 400004.
So at least the Status Word (wStatusWord), Actual Value 1 (iActValue1), Actual Value 2
(iActValue2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.wStatusWord, DriveData.iActValue1 and
DriveData.iActValue2.
With input NvarRead the function block can be configured to read in the same job between
0 ... 24 data more from the drive. These additional data are written to the array at the
‘ReadValues’ output. These data must be configured in the drive and are only accessible if
the embedded Modbus is used.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Reading status
information
from drives

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3812

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880,DCS880

Communication
module

FSCA-01 RMBA-01 Embedded
fieldbus

400004 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)
58.104 = 4

DriveData.wSta-
tusWord

Enable = TRUE

400005 Actual Value 1 Actual Value 1 Actual Value 1
58.105 = 5

DriveData.iAct-
Value1

Enable = TRUE

400006 Actual Value 2 Actual Value 2 Actual Value 2
58.106 = 6

DriveData.iAct-
Value2

Enable = TRUE

400007 - - 58.107 DATA I/O
7

ReadValues[1] Enable = TRUE

400008 - - 58.108 DATA I/O
8

ReadValues[2] Enable = TRUE

...

400014 - - 58.114 DATA I/O
14

ReadValues[8] Enable = TRUE

...

400024 - - 58.124 DATA I/O
24

ReadValues[18] Enable = TRUE

More details on the limits for the data read and write is explained in Ä Chapter
6.5.4.5 “Limits for the data read and write between AC500 and drives”
on page 3832. The value is dependent on the Drive used.

The function block checks if there are changes of the Control Word (wControlWord),
Reference Value 1 (iRefValue1) or Reference Value 2 (iRefValue2) on the DriveData variable. If
there is a change a write job is requested to send these 3 values to the ACS/DCS drive starting
at Modbus register 400001.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Writing control
word and
reference value
to drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3813

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880,
ACSM1DCS880
DCS880

DCS550,
DCS800

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880DCS880

Communication
module

FSCA-01 RMBA-01 Embedded
fieldbus

400004 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)
58.101 = 1

DriveData.wCon-
trolWord

Enable = TRUE

400005 Reference Value
1

Reference Value
1

Reference Value
1
58.102 = 2

DriveData.iRe-
fValue1

Enable = TRUE

400006 Reference Value
2

Reference Value
2

Reference Value
2
58.103 = 3

DriveData.iRe-
fValue2

Enable = TRUE

More details on the limits for the data read and write is explained in Ä Chapter
6.5.4.5 “Limits for the data read and write between AC500 and drives”
on page 3832. The value is dependent on the Drive used.

ABB drives enhanced profile
With input parameter EnhancedProfile = TRUE, the function block works for ABB Drives
Enhanced Profile.
The ABB Drives Profile Enhanced communication profile provides register mapped access to
the Control, Status, Reference and Actual Values of the ABB Drives Profile Enhanced. The
mapping of the registers has been enhanced to allow additional writing of up to 12 control and
reading of up to 12 additional status parameters in a single Modbus job.

The function block continuously reads data from the drive starting at Modbus register 400051.
So at least the Status Word (wStatusWord), Actual Value 1 (iActValue1), Actual Value 2
(iActValue2) are continuously read from the drive and written to the DriveData variable.
These values are stored in DriveData.wStatusWord, DriveData.iActValue1 and
DriveData.iActValue2.
Apart from these three parameters there is also an option to read 12 additional drive parameters
in the same job.
Using the input NvarRead the function block can be configured to read between 1 and 12 more
parameters from the drive. All read data is then written to the array at the ReadValues output.
Configuration in ACS drive is depending on configured parameters in group FBA DATA IN.
The following table shows the performed Modbus read job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Reading status
information
from drives

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3814

Modbus register
address in drive

Mapping configuration in drive Written in
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1

DCS550,
DCS800

DCS880

Communication
module

FSCA-01 RMBA-01 FSCA-01

400051 Status Word
(SW)

Status Word
(SW)

Status Word
(SW)

DriveData.wSta-
tusWord

Enable = TRUE

400052 Actual Value 1 Actual Value 1 Actual Value 1 DriveData.iAct-
Value1

Enable = TRUE

400053 Actual Value 2 Actual Value 2 Actual Value 2 DriveData.iAct-
Value2

Enable = TRUE

400054 FBA Data IN 1 FBA Data IN 1 FBA Data IN 1 ReadValues[1] Enable = TRUE
NVarRead >= 1

400055 FBA Data IN 2 FBA Data IN 2 FBA Data IN 2 ReadValues[2] Enable = TRUE
NVarRead >= 2

...

400064 FBA Data IN 11 FBA Data IN 11 FBA Data IN 11 ReadValues[11] Enable = TRUE
NVarRead >= 11

400065 FBA Data IN 12 FBA Data IN 12 FBA Data IN 12 ReadValues[12] Enable = TRUE
NVarRead >= 12

The function block checks if there are changes in any of the following values since last write job:
● Control Word (wControlWord),
● Reference Value 1 (iRefValue1),
● Reference Value 2 (iRefValue2) on the DriveData variable,
● values in the input array WriteValues – WriteValues[1..NvarWrite].
If there is a change a write job is requested to send the 3 control values and the values
in WriteValues array (WriteValues[1..NvarWrite]) to the ACS/DCS drive starting at Modbus
register 400001. Configuration in ACS drive is depending on configured parameters in group
FBA DATA OUT.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Writing control
word and
reference value
to drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3815

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1
DCS880

DCS550,
DCS800

DCS880

Communication
module

FSCA-01 RMBA-01 FSCA-01

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

400004 FBA Data OUT 1 FBA Data OUT 1 FBA Data OUT 1 WriteValues[1] Enable = TRUE
NVarWrite >= 1

400005 FBA Data OUT 2 FBA Data OUT 2 FBA Data OUT 2 WriteValues[2] Enable = TRUE
NVarWrite >= 2

...

400014 FBA Data OUT
11

FBA Data OUT
11

FBA Data OUT
11

WriteValues[11] Enable = TRUE
NVarWrite >= 11

400015 FBA Data OUT
12

FBA Data OUT
12

FBA Data OUT
12

WriteValues[12] Enable = TRUE
NVarWrite >= 12

Reconnection pause
When one or more drives in the Modbus RTU lines are offline, all the other drives have to wait
for the TimeOut to elapse until a line token is assigned to next drive. Reconnection pause input
helps in skipping the drives which are offline from the next Modbus job and execute Modbus job
operations only for the drives which are online.
“ReconnectPause” is time in seconds before next retry to connect after a timeout was detected.
Timeout is detected with ModMastErrorIDLast = 16#120 (ERR_TIMEOUT).
This feature can be used with the DrvModbusRtu function block in both ABB Drives Profile and
ABB Drives Enhanced Profile. User must configure the reconnect pause input value using the
input variable “ReconnectPause”.
For the generic RTU block ModRtuToken (part of AC500_ModbusRtu library), also the value for
the reconnect pause must be configured at input variable “ReconnectPause”.

Diagnosis
The output ErrorID which reflects an actual error number is only valid for one cycle if output
Error is set to TRUE. To capture this error number an external function must be programmed.
The output ModMastErrorAct reflects that an actual error occurred. This output is only TRUE
for one cycle. At that cycle the output ModMastErrorIDLast reflects the actual ErrorID from the
ModRtuMast job. The ModMastErrorIDLast will keep this error ID until a new rising edge of the
Enable input is given.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3816

However, there are internal diagnosis variables available, which are not shown at any output,
but can be accessed from the function block instance.
These additional diagnosis variables can be accessed by opening the function block instance or
through the block visualization “VisuDrvModbusRTU”.
● iWriteErrCnt: number of errors in write jobs since Enable = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.
● iReadErrCnt: number of errors in read jobs since Enable = TRUE.
● wLastReadErno: holds the error number of the last executed read job.
● iReadWriteErrCnt: number of errors in read write jobs since Enable = TRUE.
● wLastReadWriteErno: holds the error number of the last executed read write job.

If several drives are used, for each drive a communication function block such
as DrvModbusRtu must be programmed. Also, every other generic Modbus
server device on the same Modbus RTU line must be programmed with its
own ModRtuToken function block. All those communication function blocks
of one Modbus RTU line must be linked together via one variable of type
ModRtuTokenType, connected to the InOut LineToken. Via this variable the
Modbus token is passed to the next drive/device, so only one drive/device at a
time is communicating with the PLC.

ModRtuToken function block and ModRtuTokenType structure are part of
AC500_ModbusRtu library. Kindly refer the same.

If the user changes drive profile while drive is online with PLC, function block
outputs may give wrong indication.

If a Modbus RTU job tries to access a register in the drive which has no valid
mapping information then the job is aborted with an error.

Therefore, the drive parameters in FBA DATA IN group and FBA DATA OUT
must be configured according to the used ‘NvarRead’ and ‘NvarWrite’ input
number respectively.

Modbus RTU using Embedded Fieldbus:
When embedded fieldbus is used for the Modbus RTU communication, user
can read maximum of 24 parameters (based on the limitation in drive) from
the DATA I/O parameters in the embedded fieldbus parameter group. These
parameters can only be used for reading operation and cannot be configured to
write data.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3817

Drive parameter settings

Settings in the drive
according to AC500
configuration

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
ACSM1, DCS880

DCS550,
DCS800

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
DCS880

Communication module FSCA-01 RMBA-01 Embedded fieldbus

Fieldbus activation =
EXT FBA / ENABLE

50.01 98.02 58.01

FBA A Comm loss func 50.02 30.35 50.02

Slave number 51.03 51.02 58.03

Transmission rate 51.04 51.03 58.04

Parity 51.05 51.05 58.05

Protocol / Profile = ABB
Classic/ABB Enhanced

51.02 51.16 51.02

Word order for
32-bit parameter

51.22 No 32-bit access 51.22

Mapping of control word,
Mod-bus reg 400001

Fix Fix 58.101

Mapping of refer-
ence value 1,
Modbus reg 400002

Fix Fix 58.102

Mapping of refer-
ence value 2,
Modbus reg 400003

Fix Fix 58.103

Mapping of status word,
Modbus reg 400004

Fix Fix 58.104

Mapping of actual value 1,
Modbus reg 400005

Fix Fix 58.105

Mapping of actual value 2,
Modbus reg 400006

Fix Fix 58.106

Timeout mode = None (0)
or Any Message (1),
but not Ctrl write (2)
as these values are only
written after changes

51.07 58.15

Modbus timeout.
Depending on timeout
mode. Value in 100 ms

 58.17 58.16

Refresh settings in drive 51.27 51.27 58.06

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3818

– Please refer the respective drive / fieldbus module manual for the parameter
settings if the drive setting is not mentioned in above table.

– ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
“PARAMETER SAVE” must be set.
Please see also drive manuals which parameter must be set.
For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880
– Par 96.07 = 1
For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3819

DrvModbusRtuBroadcast
Introduction

Function block DrvModbusRtuBroadcast is a communication block which sends the broadcast
messages via the Modbus RTU communication to all ACS/DCS drives and other Modbus
devices connected to the same Modbus RTU line (physical line). The function block can be
used with all drives with either ABB Drives Profile or ABB Drives Enhanced Profile but not a mix
of both profiles.
As the broadcast job will be received by all devices on the same physical Modbus line it´s highly
recommended to use this block only in case there are no other Modbus devices connected to
this line and all drives use the same profile.
This function block does not perform any Modbus read operation, hence it does not read any
values such as status word, actual value 1 and actual value 2 etc., from any of the drive.
This function block should not be used along with 'DrvModbusRead' and 'DrvModbusRead-
Write23' function blocks. They will be ignored showing an error. This function block should
be only used independently or in combination with 'DrvModbusWrite' function block for broad-
casting write operation.
A successful broadcast message for writing control word, reference values and additional
mapped parameters (only in case of Enhanced Profile) is indicated by JobDone = TRUE and
ModMastErrorAct = FALSE. A next broadcast job for writing these values can once again
started with a fresh rising edge at ‘SendCtrlValues’ input.
Apart from sending control values and up to 12 additional values from WriteValues array (only in
case of ABB Drives Enhanced Profile) a normal Modbus write function block “DrvModbusWrite”
can be used to send broadcast write messages to specific address on all drives connected to
the Modbus RTU line. The requests to process broadcast write Modbus jobs is transferred via
the DriveData structure at the InOut variable DriveData which can be connected to multiple
instances of write function block 'DrvModbusWrite'.
After each successful broadcast write job a fixed pause of 250 ms is implemented before any
other Modbus job within the same line will be started.

ABB drives classic profile
With input parameter EnhancedProfile = FALSE, the function block works for ABB Drives
Classic Profile.

A rising edge from FALSE to TRUE at input 'SendCtrlValues' starts sending broadcast message
with Control Word and Reference Values to all the drives starting at Modbus register 400001.
Following control values: Control Word (wControlWord), Reference Value 1 (iRefValue1) or
Reference Value 2 (iRefValue2) are taken from DriveData variable for sending broadcast
message.
The following table shows the performed Modbus write job and the needed mapping in the drive
as well as the area where the data is stored in the AC500.

Writing control
word and
reference value
to drives

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3820

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function block
and input
SendCtrlvalues

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880,
ACSM1DCS880
DCS880

DCS550,
DCS800

ACS380,
ACS480,
ACS580,
ACH580,
ACQ580,
ACS880DCS880
DCS880

Communication
module

FSCA-01 RMBA-01 Embedded
fieldbus

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)
58.101 = 1

DriveData.wCon-
trolWord

Enable = TRUE
and Rising Edge
at
SendCtrlvalues

400002 Reference Value
1

Reference Value
1

Reference Value
1
58.102 = 2

DriveData.iRe-
fValue1

Enable = TRUE
and Rising Edge
at
SendCtrlvalues

400003 Reference Value
2

Reference Value
2

Reference Value
2
58.103 = 3

DriveData.iRe-
fValue2

Enable = TRUE
and Rising Edge
at
SendCtrlvalues

ABB drives enhanced profile
With input parameter EnhancedProfile = TRUE, the function block works for ABB Drives
Enhanced Profile.
With the ABB Drives Profile Enhanced profile, along with 3 control values Control Word ,
Reference Value 1, Reference Value 2 , up to 12 additional values can be sent as broadcast
message in a single Modbus job.

A rising edge from FALSE to TRUE at input 'SendCtrlValues' starts sending broadcast message
with Control Word and reference values to all the drives starting at Modbus register 400001.
Following control values: Control Word (wControlWord), Reference Value 1 (iRefValue1) or
Reference Value 2 (iRefValue2) from DriveData along with values in the input array WriteValues
– WriteValues[1..NvarWrite] are taken for sending broadcast message.
For the additional 12 values the configuration in ACS drive is depending on configured
parameters in group FBA DATA OUT.
The following table shows the performed Modbus broadcast write job and the needed mapping
in the drive as well as the area where the data is taken from the AC500.

Writing control
word and
reference values
to drives

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3821

Modbus register
address in drive

Mapping configuration in drive Written from
AC500

Condition at
function blockACS380,

ACS480,
ACS580,
ACH580,
ACQ580,
ACS880, ACSM1
DCS880

DCS550,
DCS800

DCS880

Communication
module

FSCA-01 RMBA-01 FSCA-01

400001 Control Word
(CW)

Control Word
(CW)

Control Word
(CW)

DriveData.wCon-
trolWord

Enable = TRUE

400002 Reference Value
1

Reference Value
1

Reference Value
1

DriveData.iRe-
fValue1

Enable = TRUE

400003 Reference Value
2

Reference Value
2

Reference Value
2

DriveData.iRe-
fValue2

Enable = TRUE

400004 FBA Data OUT 1 FBA Data OUT 1 FBA Data OUT 1 WriteValues[1] Enable = TRUE
NVarWrite >= 1

400005 FBA Data OUT 2 FBA Data OUT 2 FBA Data OUT 2 WriteValues[2] Enable = TRUE
NVarWrite >= 2

...

400014 FBA Data OUT
11

FBA Data OUT
11

FBA Data OUT
11

WriteValues[11] Enable = TRUE
NVarWrite >= 11

400015 FBA Data OUT
12

FBA Data OUT
12

FBA Data OUT
12

WriteValues[12] Enable = TRUE
NVarWrite >= 12

Diagnosis
The output ErrorID which reflects an actual error number is only valid for one cycle if output
Error is set to TRUE. To capture this error number an external function must be programmed.
The output ModMastErrorAct reflects an actual error occurred in Modbus job. This output is only
TRUE for one cycle. At that cycle the output ModMastErrorIDLast reflects the actual ErrorID
from the ModRtuMast job. The ModMastErrorIDLast will keep this error ID until a new rising
edge of the Enable input is given.

However, there are internal diagnosis variables available, which are not shown at any output,
but can be accessed from the function block instance.
These additional diagnosis variables can be accessed by opening the function block instance or
through the block visualization “VisuDrvModbusRTUBroadcast”.
● iWriteErrCnt: number of errors in write jobs since Enable = TRUE.
● wLastWriteErno: holds the error number of the last executed write job.

For all drives, which are connected to same Modbus RTU line, one instance of
broadcast block DrvModbusRtuBroadcast is enough and it must be connected
to same LineToken of DrvModbusRtu function blocks which are used for
communication between PLC and each drive on Modbus RTU line. All those
communication function blocks of one Modbus RTU line must be linked together
via one variable of type ModRtuTokenType, connected to the InOut LineToken.
Via this variable the Modbus token is passed to the next drive / device, so only
one drive / device at a time is communicating with the PLC.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3822

All the drives should be configured either in Classic Profile or Enhanced
Profile and accordingly the function block DrvModbusRtuBroadcast should be
parameterized. Mix of profile with few drives in Classic and few drives in
Enhanced should not be used when using DrvModbusRtuBroadcast block,
if using such configuration along with DrvModbusRtuBroadcast may lead to
incorrect operation.

If the user changes drive profile while drive is online with PLC, function block
outputs may give wrong indication.

The Modbus RTU broadcast job is sent to all devices on the same physical
Modbus RTU line.

Therefore, if other Modbus devices than ACS / DCS drives are connected
to the same line using the ModRtuToken communication block it´s highly
recommended not to use the DrvModbusRtuBroadcast function block.

This might only be used, if the user is aware about the behavior of the
connected devices if they receive the Modbus broadcast job.

If a Modbus RTU broadcast job is sent to access a register in the drive which
has no valid mapping information then Modbus broadcast job is not aborted but
will just send out the broadcast message without any error in the function block.
This broadcast message is ignored by drives which have no valid mapping
information.

Therefore, the drive parameters in FBA DATA OUT have to be configured
according to the used ‘NvarWrite’ input number respectively.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3823

Drive parameter settings

Settings in the drive
according to AC500
configuration

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
ACSM1, DCS880

DCS550,
DCS800

ACS380, ACS480,
ACS580, ACH580,
ACQ580, ACS880,
DCS880

Communication module FSCA-01 RMBA-01 Embedded fieldbus

Fieldbus activation =
Modbus / RS-485 comm

50.01 98.02 58.01

FBA A Comm loss func 50.02 30.35 50.02

Slave number 51.03 51.02 58.03

Transmission rate 51.04 51.03 58.04

Parity 51.05 51.05 58.05

Protocol / Profile =
ABB Classic / ABB Enhanced

51.02 51.16

Mapping of control word,
Modbus reg 400001

Fix Fix 58.101

Mapping of refer-
ence value 1,
Modbus reg 400002

Fix Fix 58.102

Mapping of refer-
ence value 2,
Modbus reg 400003

Fix Fix 58.103

Mapping of status word,
Modbus reg 400004

Fix Fix 58.104

Mapping of actual value 1,
Modbus reg 400005

Fix Fix 58.105

Mapping of actual value 2,
Modbus reg 400006

Fix Fix 58.106

Timeout mode = None (0)
or Any Message (1),
but not Ctrl write (2)
as these values are only
written after changes

51.07 58.15

Modbus timeout.
Depending on timeout
mode. Value in 100 ms

 58.17 58.16

Refresh settings in drive 51.27 51.27 58.06

– Please refer the respective drive / fieldbus module manual for the parameter
settings if the drive setting is not mentioned in above table.

– ACS drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.
Please see also drive manuals which parameter must be set.
For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880
– Par 96.07 = 1
For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3824

DrvModbusReadWrite23

The function block 'DrvModbusReadWrite23' reads and writes one or more parameters of
the drive via DriveData connected to Modbus TCP / Modbus RTU communication blocks
with Modbus function code FCT = 23. This function block internally calls DrvModbusWrite
to execute ReadWrite job with FCT = 23, used along with the internal structure for Fct23,
DrvModFct23Type.
The number of parameters to be read is specified at the input 'NvarRead'. The first address for
read operation is specified at the input 'PrmNumRead'. The values of the data are stored in the
PLC memory area, defined at the input 'DataRead'.
The number of parameters to be written is specified at the input 'NvarWrite'. The first address
for write operation is specified at the input 'PrmNumWrite'. The values of the data that should be
written must be stored in the PLC memory area, defined at the input 'DataWrite'.
To start a new ReadWrite job the input Execute must be set from FALSE to TRUE
(edge sensitive). The Modbus job is started from the communication block DrvModbusTcp or
DrvModbusRtu which is connected to the same DriveData variable. It uses the Modbus function
code 23 (Read and write n words). The drive (Modbus device) to which the parameter is written
is specified at the Communication Block.
The values in the PLC memory area are updated when the ReadWrite job was performed
without error. The ReadWrite job has been performed without error if JobDone = TRUE and
ModMastErrorAct = FALSE.
If the Modbus job was finished with an error, the output ModMastErrorAct is set for one cycle.
The Error ID returned by the Modbus job is shown at the output ModMastErrorIDLast. The
output ModMastErrorIDLast will show that last Error ID until the input Execute is set from
TRUE to FALSE.
After termination of this job, even if it was not successful, a next ReadWrite job can once again
only be started with a rising edge at 'Execute' input.

Drive parameters are only saved temporarily, if changed via fieldbus.
To make these changes permanent in the drive the special parameter
"PARAMETER SAVE" must be set.

Please see drive manuals for the parameter details.

For ACS380, ACS480, ACS580, ACH580, ACQ580, ACS880 and DCS880 –
Par 96.07 = 1

For ACSM1, DCS800 and DCS550 – Par 16.06 = 1

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3825

DrvControlModbusEng

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3826

The function block “DrvControlModbusEng” is designed for user specific control of the drive by
setting the control word (CW) by the user itself in the program.
Therefore, the user should have a detailed knowledge of the ABB drives profile handling.
The reference and actual values must be given in fieldbus equivalent , e.g. range
-20000 ... +20000.
Inputs “RefValue1”, “RefValue2” and the generated control word are written to the “DriveData”
variable which transfers these values to a communication function block, e.g. “DrvModbusRtu”,
“DrvModbusTcp” or “DrvModbusRtuBroadcast” communication function block writes to the drive.
In the same way “ActValue1”, “ActValue2” and the status word are transferred from the com-
munication function block to the “DrvControlModbusEng” block, where they are written to the
outputs.
The control word can be generated in 2 ways.
First way is to set the single bits of the control word separately at the inputs “Off1”, “Off2” ...
“ControlWordB15” while the input “UseControlWord” = FALSE.
Second way is to set the input “UseControlWord” = TRUE and write the control word as a whole
word directly to the input control word. The generated control word is written to the “DriveData”
variable and for diagnosis purpose also available at output “UsedControlWord”.
The input and output names of the bits in control word and status word reflect the functions
used with ABB Drive Profile. So the block should be used with ABB Drives Profil setting in the
drive.

The function block does not execute any functionality expect data transfer to
and from the “DriveData” variable. There is no special drive parameter setting
necessary to use this block.

The programmer using this block should have a detailed understanding of how
to set the control word according to the status word and the description of the
used drive.

For standard speed and torque control application it is recommended to use the
“DrvControlModbusACS” instead.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3827

DrvControlCANCiA402

The function block “DrvControlCANCiA402” is used for the control of ABB ACS Drive or non-
ABB drives from AC500 using CANCiA402 Profile . The CANopen CiA402 function block and
visualization from the library can also be used for the 3rd party drives which comply to the
CANopen CiA402 Profile.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3828

DrvPNRead

Function block “DrvPnRead” reads maximum 37 parameters from the drive in a single DPV1
query. The number of parameters to be read is specified at the input Nvar.
Parameters to read from the drive are specified at the Data input. “DrvPbPnPrmDpv1DataType”
structure must be declared to a variable and connected to Data input using ADR. This structure
contains the group, index, which must be given to the variable. Read parameter type and values
are stored in the same variable.
“DrvPdPrmDpv1DataType” structure has the following array elements:
Ä Chapter 6.5.4.4.4 “Structure: DrvPdPrmDpv1DataType” on page 3832

● “abyPrmGroup”: Array of 37 WORD for specifying parameter group.
● “abyPrmIndex”: Array of 37 WORD for specifying parameter index.
● “abyPrmType”: Array of 37 DRV_PDRIVE_PRM_TYPE. READ parameter data type will be

available here. For details refer to DRV_PDRIVE_PRM_TYPE. If a type is set here at the
start, it can be compared with the type read from the drive if the compare input is TRUE.

● “adwPrmValue”: Array of 37 DWORD. Read parameter value will be available here. If a
value is set at the start, it can be compared with the value read from the drive if the compare
input is TRUE.

Read errors:
If the drive rejects to read a specific parameter, it returns the error code DRV_ERROR_PRM
(16#44) in the corresponding abyPrmType element and a more specific error value in the
corresponding adwPrmValue element.
The number of elements with errors from the drive are given at the output “NumPrmErrors”. The
output “PrmErrCmpValues” gives an array, which contains the more specific error values in the
elements (index). This can be used to quickly identify the erroneous elements.
Compare input:
As the “DrvPnWrite” function block does not return an error in case a parameter in the drive
could not be written correctly it is recommended to verify the writing.
This can be done with the call of this function block “DrvPnRead” if the same parameters, types
and values are connected to the DATA input (use the same struct as for the writing), and the
input “Compare” is set to TRUE.
Then the types and values of the connected struct are copied at the rising edge of execute
inputs and compared with the returned types and values from the drive.
In case of a difference this is set into the corresponding element of the output
array “PrmErrCmpValues” with the possible three error codes DRV_CMP_DIFF_TYPE,
DRV_CMP_DIFF_VALUE or DRV_CMP_DIFF_TYPE_AND_VALUE.
Mode input:
● Mode = 16#00 => Read direct variables and parameters via an Fxxx module, e.g. FENA-21

or FPNO-21. Group and Index have to be used as in the “Data.awPrmGroup” and
“Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#01 => Read direct variables and parameters via an Rxxx module, e.g. RETA-21
for ACS800 or DCS500. Group and Index have to be used as in the “Data.awPrmGroup”
and “Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#1x => to be used to access “PROFIDrive” parameters with Attribute = 16#10
(Value) and Number of Elements = x.

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3829

● Mode = 16#2x => to be used to access “PROFIDrive” parameters with Attribute = 16#20
(Description) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

● Mode = 16#3x => to be used to access PROFIDrive parameters with Attribute = 16#30
(Text) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

For “PROFIDrive” parameters using Mode = 16#1x, 16#2x or 16#3x the Number of Elements =
x is used for all the parameters in the Data array.

DrvPnWrite

Function block “DrvPnRead” reads maximum 37 parameters from the drive in a single DPV1
query. The number of parameters to be written is specified at the input Nvar.
Another limit while using the “DrvPnWrite” function block is, it can process only up to 240-byte
data in one request or 37 drive parameters whichever is lower. If the write data length is more
than 240 bytes, the function block generates an error code WRITE_PACKAGE_SIZE_TOO_LONG
16#0004. At the output “PackageSize” the precalculated size of the request is shown.
Parameters to write to the drive are specified at the data input. “DrvPdPrmDpv1DataType”
structure must be declared to a variable and connected to data input using ADR.
“DrvPdPrmDpv1DataType” structure has the following array elements:
Ä Chapter 6.5.4.4.4 “Structure: DrvPdPrmDpv1DataType” on page 3832

● “abyPrmGroup”: Array of 37 WORD for specifying parameter group.
● “abyPrmIndex”: Array of 37 WORD for specifying parameter index.
● “abyPrmType”: Array of 37 DRV_PDRIVE_PRM_TYPE for specifying parameter type, refer

the respective drives manual for parameter data type and enter the respective enumeration.
For details about enumeration refer DRV_PDRIVE_PRM_TYPE in the library.

● “adwPrmValue”: Array of 37 DWORD for specifying parameter value that should be written.
The values in the structure area are updated when the write job was performed without error.
This is indicated by Done=TRUE.
Mode input:
● Mode = 16#00 => Write direct variables and parameters via an Fxxx module, e.g. FENA-21

or FPNO-21. Group and Index have to be used as in the “Data.awPrmGroup” and
“Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#01 => Write direct variables and parameters via an Rxxx module, e.g. RETA-21
for ACS800 or DCS500. Group and Index have to be used as in the “Data.awPrmGroup”
and “Data.awPrmIndex” array. (Number of Elements in the PN Data block is set to 16#01)

● Mode = 16#1x => to be used to access “PROFIDrive” parameters with Attribute = 16#10
(Value) and Number of Elements = x.

● Mode = 16#2x => to be used to access “PROFIDrive” parameters with Attribute = 16#20
(Description) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

● Mode = 16#3x => to be used to access PROFIDrive parameters with Attribute = 16#30
(Text) and Number of Elements = x. (Not supported with Fxxx or Rxxx modules)

For “PROFIDrive” parameters using Mode = 16#1x, 16#2x or 16#3x the Number of Elements =
x is used for ALL the parameters in the Data array.

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3830

6.5.4.4.2 Function: DrvModPara32Bit

Creates the Modbus address for 32-bit parameters of the ACSxxx drives.
To access 32-bit parameters in ACSxxx drives using Modbus a special address calculation must
be performed.
This block calculates the 6-digit address out of the 5-digit address used for 16-bit parameters.
Input is the 5-digit address: GGii, where GG = parameter group and ii = the index.
E.g. Par 12.02 ➨ address = 1202.
Output is the calculated address for 32-bit parameters according to the following rule:
DrvModPara32Bit = 20000 + (200 * GG) + (2 * ii) e.g. Par. 14.54 ➨ output = 22908
This output can be connected directly to the input "PrmNum" of one of the blocks
DrvModbusRead or DrvModbusWrite or inputs “PrmNumRead” and “PrmNumWrite” of the block
DrvModbusReadWrite23.

6.5.4.4.3 Structure: DrvDataType
Structure DrvDataType is used for the DriveData variable to exchange the data for one drive.
Structure DrvDataType is used for the DriveData variable which must be connected to all
function blocks related to the same drive.
Besides the element “sName” all variables should not be written by the user directly. They are
read and written within the function blocks. The DrvDataType contains some more internal,
invisible variables which are used for internal functionality and not meant for user access.
The following table shows the visible variables of DrvDataType.

Variable Data Type Default value Description
wStatusWord WORD 0 Actual status word from drive

iActValue1 INT 0 Actual value1 from drive – mostly equal speed

iActValue2 INT 0 Actual value2 from drive – mapping is made in drive
configuration

wControlWord WORD 0 Control word to drive

iRefValue1 INT 0 Reference value1 to drive – mostly speed reference

iRefValue2 INT 0 Reference value2 to drive – mapping is made in drive
configuration

xOnline BOOL FALSE Connection established – set in Modbus communication
function block after successful reading and writing one
Modbus job

xCtrlBlockUsedf BOOL FALSE A control block is used to generate the control word,
ref1 and ref2 values

sName STRING ‘Default
Drive Name’

Name for drive, which can be set by user directly to
DriveData variable

Configuration and programming

Libraries and solutions > ACS/DCS drives libraries

2024/01/05 3ADR010583, 1, en_US 3831

6.5.4.4.4 Structure: DrvPdPrmDpv1DataType
Structure “DrvPdPrmDpv1DataType” is required to exchange the data between AC500 and
drives using the PROFINET communication. “DrvPdPrmDpv1DataType” structure must be
declared to a variable and connected to data input using ADR in the “DrvPnRead” or
“DrvPnWrite” function blocks.

Variable Data Type Default value Description
awPrmGroup ARRAY [1..37]

OF WORD
[37(0)] ABB drive Group number from where the parameter to

read or write - Profidrive Parameter Index.

awPrmIndex ARRAY [1..37]
OF WORD

[37(0)] ABB drive index number from where the parameter to
read or write - Profidrive Parameter Subindex.

abyPrmType ARRAY [1..37]
OFDRV_PDRI
VE_PRM_TYP
E

[37(DRV_EMP
TY_PRM)]

Parameter Type in array. While using read block it will
act as an output (and input at start of block with Com-
pare=TRUE). While using write block it will act as an
input.

adwPrmValue ARRAY [1..37]
OF DWORD

[37(0)] Parameter Value in array. While using read block it will
act as an output (and input at start of block with Com-
pare=TRUE). While using write block it will act as an
input.

6.5.4.5 Limits for the data read and write between AC500 and drives
The below table defines the limits for the reading of data from the drive and limits for writing
data to drives from AC500 with cyclic data exchange.
If fieldbus adapter Plug (FBA) is used, then parameter group FBA DATA IN (e.g. 52) and group
FBA DATA OUT (e.g. 53) is accessed in the drive. For the embedded fieldbus (EFB) parameters
are used in EFB group (e.g. 58).
According to the table below, limits are defined for the variables ‘NVarRead’, ‘NVarWrite’ in
DrvModbusRtu and DrvModbusTcp blocks.

Drive Fieldbus Adapter (FBA) Embedded Fieldbus
(EFB)

 Data In (Group 52) Data Out (Group 53) Data I/O (group 58)
Configurable as input
or output.

ACS380 12 12 14

ACS480 12 12 14

ACS580 12 12 14

ACQ580 12 12 14

ACH580 12 12 14

ACS880 12 12 24

ACSM1 12 12 Not supported

DCS550

DCS800

DCS880 12 12 24

Configuration and programming
Libraries and solutions > ACS/DCS drives libraries

2024/01/053ADR010583, 1, en_US3832

6.5.5 Application libraries
Application libraries can be used in AC500 V3 PLCs. The requirements for the use of the
function blocks of the application libraries and information and prerequisites for the general
handling of application libraries are described in the application examples:

In order to be able to use the PLC as a client for web services, the HTTP function block library
can be used. Setup and use of the HTTP library are described in the application example
AC500 Webservices - HTTP Function Block Library.

With the help of the MySQL function block library, MySQL databases can be used to store and
access AC500 V3 data. Setup and use are described in an application example.

With the help of the MSSQL function block library, MSSQL databases can be used to store and
access AC500 V3 data. Setup and use are described in an application example.

6.5.6 BACnet-BC
6.5.6.1 Introduction to BACnet

BACnet is a standardized data communication protocol for Building Automation and Control
networks as defined in the ANSI/ASHRAE standard 135 and ISO 16484-5.
The advantage is interoperability between devices of different vendors.
The BACnet protocol defines services to allow communication between devices. Examples
include 'Who is', 'I am', 'Who has' and 'I have' for device and object search and identification,
“Read Property” and “Write Property” for the exchange of data, up to more complex services for
alarm and event management, scheduling and trending.
The BACnet protocol defines a number of object types on which the services operate. Each
object is characterized by its properties.
The BACnet objects are combined in a BACnet device. A BACnet device represents the func-
tionality of a physical device.
More background information and introduction can be found here:
http://www.bacnet.org

http://www.bacnet.org/Bibliography

6.5.6.2 AC500 and BACnet
A BACnet device can be described by its “BACnet Interoperability Building Blocks” (BIBB)s,
which are needed to establish services. They are grouped in different areas:
● “Data Sharing” (DS)
● “Alarm and Event Management”(AE)
● “Scheduling” (SCHED)
● “Trending” (T)
● “Device and Network Management” (DM)
“Data Sharing” for example contains two BIBBs which are needed for the “Service Read
Property”:
● Client side: DS-RP-A (Data Sharing - Read Property - A)
● Server side: DS-RP-B (Data Sharing - Read Property - B)
The BACnet standard defines profiles by the minimum required BIBBs, see table below.
“BACnet Simple Sensor” (B-SS) is the simplest one, only containing one BIBB. More complex
devices contain more BIBBs (from right to left).

HTTP library

MySQL library

MSSQL library

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3833

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010259&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010476&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010519&LanguageCode=en&DocumentPartId=&Action=Launch
http://www.bacnet.org/Overview/index.html
http://www.bacnet.org/Bibliography/ES-7-96/ES-7-96.htm

The AC500 V2 supports BIBBs qualifying it as “BACnet Application Specific Controller” (B-
ASC), by installing the BACnet B-ASC library.
AC500 V3 supports many more BIBBs qualifying it as “BACnet Building Controller” (B-BC),
which contains a server (all BIBBs ending with -B) and a client (all BIBBs ending with -A). In
fact, the AC500 contains some more BIBBs. All BIBBs under B-BC in the table above, plus:

DS-COV-A, -B (Change of Value-A, -B)
DS-COVP-A, -B (Change of Value of Properties-A, -B)
AE-N-E-B (Alarm and Event-Notification External-B)
AE-ASUM-B (Alarm and Event-Alarm Summary-B)
SCHED-I-B (Scheduling-Internal-B)
T-VMT-E-B (Viewing and Modifying Trends External-B)
DM-TS-B (Time Synchronization-B)
DM-UTC-B (UTC Time Synchronization-B)
DM-MTS-A (Manual Time Synchronization-A)
DM-LM-B (List Manipulation-B)
DM-OCD-B (Object Creation and Deletion-B)
NM-BBMDC-B (BBMD Configuration-B)
...

A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-
AC500_V3.pdf. Direction: Help/Project examples/Examples.
The figure below shows a typical application for an AC500 V3, acting as B-BC.

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3834

A drive with several actuators and sensors is acting as B-ASC, for example providing a temper-
ature value as “Analog Input” (AI) object on the MS/TP network.
Ä Chapter 6.5.6.3.2 “Supported BACnet networks ” on page 3835

AC500 B-BC as client can read this temperature value, perform some processing (scaling, limit
check) and on the server side provide the processed value as “Analog Value” (AV) object and
as “Trend” object on the IP network. Higher level clients like BACnet Operator Workstation
(B-OWS) can access the processed objects “Analog Value” and “Trend” for supervision.
The following chapters describe the possible applications and how to configure an AC500 V3 as
B-BC.

6.5.6.3 AC500 V3 as BACnet Building Controller (B-BC)
6.5.6.3.1 General

The BACnet integration into CODESYS implements the ANSI/ASHRAE standard 135-2012
(ISO 16484-5) protocol revision 14 and is based on the AMEV AS-A and AS-B standards.
Integration allows access to the properties of BACnet objects and the configuration parameters
of a BACnet device by means of an IEC application. You can program a dynamic BACnet
configuration and have access to the BACnet functions in the BACnet network by reading and
writing BACnet object properties.

6.5.6.3.2 Supported BACnet networks
BACnet can run on different local area network types. The AC500 B-BC supports the following
ones:
● MS/TP (Master Slave / Token Passing), based on serial RS-485
● BACnet IP, based on Ethernet / UDP / IP

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3835

Different networks can be combined to one common “BACnet internetwork”. The figure above
shows an example of some BACnet devices in one “BACnet internetwork”. Each device has
a device ID (10 to 15) which must be unique on application level. Services on application
level (e.g. read or write request) are working with these device IDs and need no addressing
information of the lower levels.
The example “BACnet internetwork” consists of different BACnet networks:
● BACnet MS/TP network connecting device 10, 11 and 12
● BACnet IP network (UDP port 47808), consisting of one IP subnets with IP range

192.168.0.x, connecting device 12, 13 and 14
● BACnet IP network (UDP port 47809), consisting of one IP subnet with IP range

192.168.2.x, connecting device 14 and 15
Addressing in a BACnet network is done through datalinks which must have a unique BACnet
MAC address (which is different to an Ethernet MAC address).
● In a MS/TP network the BACnet MAC address is just one octet (1, 2, 3 in the example).
Ä Chapter 6.5.6.3.5.5 “Configuration of datalinks ” on page 3844

● In an IP network the BACnet MAC address is the combination of the IP address and the
UDP port number (for example 192.168.0.130.47808 for device 13). The following 16 UDP
ports are reserved for BACnet: BAC0 (=47808 decimal) to BACF.
Ä Chapter 6.5.6.3.5.5 “Configuration of datalinks ” on page 3844

To form a common “BACnet internetwork” the single BACnet networks must be combined by
BACnet routers. AC500 can act as a BACnet router between BACnet MS/TP and IP networks
(device 12 in the figure above) or between two different BACnet IP networks (device 14).
Two IP subnets using the same UDP ports can be combined to one BACnet IP network with an
internet router.

The problem is that internet routers block local broadcast messages, which are required for
BACnet communication. This can be solved by “Broadcast Management Devices” (BBDM).
AC500 V3 can be configured as BBDM. In the figure above the devices 12 and 14 should be
configured as BBDM in order to enable the BACnet communication across the internet router.
An alternative is to configure AC500 V3 as foreign BACnet device if an IP subnet contains no
BBDM device to pass broadcast messages over internet routers.
Configuring the AC500 as BBDM or foreign device is described in Ä Chapter 6.5.6.3.5.5 “Con-
figuration of datalinks ” on page 3844.

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3836

6.5.6.3.3 Supported objects and properties
Communication with BACnet is done through objects and properties.
The AC500 B-BC server of the figure below is represented as a BACnet device object with “ID
12”. The device contains more objects like the Analog Input object, representing the input of a
temperature measurement device. An object contains several properties, like “ID, Description,
Present Value, Unit” etc.
Further possible objects of an AC500 B-BC are:
● “Binary Input” for example from connected to a switch
● “Analog / Binary Output” for actuators
● “Analog / Binary Values” for local variables
● “Calender”
● “Schedule”
● “Trend Log”
● ...
● A list with all details can be found in the Automation Builder pdf document ABB-B-BC-PICS-

AC500_V3.pdf. Help/Project examples/.

Fig. 286: BACnet objects, properties, services and BIBBs

6.5.6.3.4 Supported BIBBs and services
While objects and properties describe which data are communicated, the communication itself
is done with services between clients and servers. A certain service can only be executed if
client and server have the related BIBBs. The Fig. 286 BACnet objects, properties, services and
BIBBs shows a simple “Service Read Property” which is possible because the client on the right
supports DS-RP-A and the server on the left supports DS-RP-B. The service is executed in two
steps:
1. The client initiates a confirmed request “Read Property”, asking for the present value of

the “Analog Input” of object with “ID 1010”.
2. The server answers with an acknowledge, sending the present value which is 21,89°C in

the example.

A list of all supported BIBBs and services of AC500 V3 is given in the Automation Builder pdf
document ABB-B-BC-PICS-AC500_V3.pdf. Help/Project examples/Examples.

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3837

6.5.6.3.5 BACnet configuration in Automation Builder
General

To act as a BACnet server or client, the AC500 must be configured accordingly. The figure
below shows the basic configuration of a BACnet server (left) and a BACnet server with client
functionality (right). It is also possible to have server and client functionality in parallel.

Following objects need to be created:
1 “BACnet Server” root object. This is the root object for the server functionality, as well as for

the client functionality. It is mandatory, even if only client functionality is required. Ä Chapter
6.5.6.3.5.2 “Configuration of BACnet server root object ” on page 3838

2 BACnet server objects, for example “BACnet Analog Input” Temperature. The properties
of the objects must be controlled (written or read) by the PLC logic. Ä Chapter 6.5.6.3.5.3
“Adding BACnet server objects” on page 3840

3 BACnet client objects, represented by a different symbol. For example, “BACnet Client
Read Property”. The functionality of the client objects must be programmed in the PLC logic.
Inserting the client objects below the server is optional. It is also possible to instantiate
the objects only in a PLC logic. Ä Chapter 6.5.6.3.5.4 “Adding BACnet client functionality”
on page 3841

4 Datalink for the physical layer. This object links the physical interface (Ethernet IP or serial
MS/TP) to the “BACnet Server” object. In the example above the IP address of ETH1 is
automatically retrieved by inserting the “BACnet IP datalink” below the ETH1 port. Ä “Con-
figuration of an IP datalink” on page 3845. For MS/TP refer to Ä “Configuration of an MS/TP
datalink” on page 3844.

Configuration of BACnet server root object
1. Create an empty project with an AC500 V3 CPU type and call it fpr example “Device_12”.
2. Insert a “BACnet Server” object below the interfaces object in the device tree.

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3838

3. Set the device InstanceNumber in the “BACnet Parameters” of the “BACnet Server”,
e.g. to 12 and the InstanceName to Device_12 (according to Fig. 286 BACnet objects,
properties, services and BIBBs).

4. Add a datalink, IP or MS/TP. In the example an IP datalink is inserted below ETH1. Default
parameters are sufficient if only one datalink is used.
Ä “Configuration of an IP datalink” on page 3845

5. Build the project, download to the PLC and set it to [RUN]. The status of the “BACnet
Server” should be green (running). If not, please ensure that you have installed the
runtime license BACnet Protocol B-BC Runtime, verifiable by right-click on the PLC node
and select [Show license information] from the runtime licensing menu. The project is
scanned for required licenses. If you are logged in to a PLC, then the licenses available on
the PLC are displayed. A missing required license is highlighted.
Ä Chapter 6.3.2.2.2 “PLC runtime licensing” on page 1446

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3839

6. Start any BACnet client to find the server, for example Inneasoft BACnet Explorer.

Adding BACnet server objects
Goal is to publish an analog value as BACnet server object. This example is according to
Fig. 286 BACnet objects, properties, services and BIBBs, left part containing a temperature
value.
1. Configure a “BACnet Server” root object according to Ä Chapter 6.5.6.3.5.2 “Configura-

tion of BACnet server root object ” on page 3838.
2. Add a “BACnet Analog Input” object below the “BACnet Server”.

3. Rename it to Temperature, adjust the parameters: InstanceNumber: 1010,
Description: Temperature, Units: UNIT_DEGREES_C.

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3840

4. The present value of the objects Temperature needs to be fed with the value from the
real temperature device. Alternatively, a simple PLC program can simulate this value.

5. Download the program and observe the temperature value in the BACnet client.

Adding BACnet client functionality
Goal is to configure a second AC500 controller as BACnet client which reads an analog value
from a server. This example is according to Fig. 286 BACnet objects, properties, services and
BIBBs, right part.
1. Add a new controller and configure a “BACnet Server” root object according to Ä Chapter

6.5.6.3.5.2 “Configuration of BACnet server root object ” on page 3838.
2. Set InstanceNumber to 14 and InstanceName to Device 14.

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3841

3. In addition to BACnet objects, BACnet clients can also be inserted as devices under a
“BACnet Server”. Add a “BACnet Client Read Property” below the “BACnet Server” node.

4. The created object “BACnet Client Read Property” generates a function block instance
which can be used to program the client read functionality. The figure below shows a
simple example.
In line 1-5 of the code part the function block is called with the following parameter:
● Device ID of the server to read from (12) Ä Chapter 6.5.6.3.3 “Supported objects and

properties ” on page 3837
● Object ID of the object to read from (1010 for the “Analog Input”)
● Object type (“Analog Input”)
● Property to read (“present value”)
● triggerRead to start the read operation

When the user (or another program part) sets the variable triggerRead from FALSE to
TRUE the edge triggered function block BACnet_Client_Read_Property starts opera-
tion and sends the read request to the server device. After receiving the reply from the
Server, the output .xDone gets TRUE (line 8) and the temperature value can be read from
the output .result (line 14).

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3842

5. Download this program to another AC500 V3 controller, which is in the same IP network
as the server. Set it to run and read the temperature value by setting triggerRead to
TRUE. In online mode the read temperature value can be observed in line 14.

Unlike BACnet objects, a BACnet client does not require a complex (static) configuration, thus a
client function block can be used without creating a BACnet client as device.

There is no BACnet_Client_Read_Property object created below the “BACnet Server”.
Instead a function block BACnet_Client_Read_Property must be declared in the PRG
(line 6 in the declaration) and initially "connected" to its “BACnet Server” in IEC-code via
RegisterToServer(), and thus get activated (line 2 in the code) Ä Chapter 6.5.14 “Refer-
ence, function blocks” on page 4086.

Alternative con-
figuration

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3843

Configuration of datalinks
For communication with other BACnet devices AC500 provides two different possibilities:
MS/TP and IP.
Ä Chapter 6.5.6.3.2 “Supported BACnet networks ” on page 3835

For a non-routing device one MS/TP or IP datalink must be configured.
If more than one datalink is configured, routing between the datalinks is automatically enabled.

● Add the “BACnet MS/TP COM” object below the COM port.

In fact the empty COM port is replaced by the “BACnet MS/TP COM”. By that the COM port is
configured as RS-485 with fixed settings for MS/TP: No parity, 8 data bits, 1 stop bits.
● Below the “BACnet MS/TP COM” port object an “BACnet MS/TP datalink” is inserted auto-

matically which can be configured according to the requirements.

Configuration of
an MS/TP data-
link

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3844

● NetworkNumber: Use the default value 1 if no routing is required. For routing, use a unique
network number in one controller.

● ConnectionType: Use the default value Master if no routing is required. For routing, use
“Master – answering always postponed”.

● Baudrate can be set according to requirements in the range of from 9600 to 38400 bits/s,
higher values (57600 and 115200 bits/s) are not recommended.

● DatalayerAddress: This is the MAC address as described in Ä Chapter 6.5.6.3.2 “Sup-
ported BACnet networks ” on page 3835. The MAC address must be unique in the MS/TP
network.

● For all other parameters the default values are recommended for typical applications.

● Add a “BACnet_IP_datalink” object below the Ethernet port ETH1 or ETH2.

● NetworkNumber: Use the default value if no routing is required. For routing, use a unique
network number in one controller.

● UPDport: Use the default value (47808 decimal) in the normal case. Range is possible
from BAC0 (= 47808 decimal) to BACF. UDPport + IP address form the MAC address
of the IP datalink as described in Ä Chapter 6.5.6.3.2 “Supported BACnet networks ”
on page 3835. The IP address cannot be specified here. It is automatically taken from the
parent Ethernet node (ETH1 or ETH2); its IP address is set in the communication settings of
the CPU node, “Device_14” in the example.

● ForeignDevice and BBMD: Special configuration is only needed if an internet router is
located between two BACnet devices.
Ä Chapter 6.5.6.3.2 “Supported BACnet networks ” on page 3835
AC500 can be configured as ForeignDevice or BBMD, but not the combination of both. An
example for BBDM can be found in the example folder.

Routing enables the combination of different BACnet networks to one common “BACnet
internetwork”.
Ä Chapter 6.5.6.3.2 “Supported BACnet networks ” on page 3835

BACnet devices from different BACnet networks can communicate with each other.
If more than one datalink is configured in one CPU, routing between the different networks
is automatically enabled. It must only be ensured that the network number is unique in one
controller.
Ä Chapter 6.5.6.3.2 “Supported BACnet networks ” on page 3835

For MS/TP the ConnectionType must be set to “Master – answering always postponed”. An
example for routing can be found in the example folder.

Time syncronisation
The BACnet clients expect to receive the local time. Currently the AC500 V3 does not distin-
guish between UTC time and local time and its time zone is set to 0. This will be improved in
the near future. In the meantime, it is recommended to store the local time (green color in the
following figure) in the AC500 as a workaround.

Configuration of
an IP datalink

Configuration of
Routing

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3845

Using this workaround, the following time sync mechanisms can be used:
● Set local time from Automation Builder Tab “PLC Shell”:

Set the time by the command “time hh:mm:ss"

● Read the local time from the Automation Builder Tab “Statistics”:
“Current PLC Date and time” shows the PLC time as local time without conversion, if the tab
“Show PLC time in UTC” is enabled.

For storing the local time in AC500, do not use the button [Set PLC to PC Time]
(Tab “Statistics”), since this is always converting from local time to UTC time.

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3846

● BACnet clients can read local or UTC time, both requests will deliver the same (local) time
information, since the timezone is 0.

● If an SNTP time sync is required (for example with a Meinberg clock), UTC times are
exchanged. For conversion of UTC to local time in AC500 a proprietary STNP client must be
programmed.
Please contact the PLC support for more information.

6.5.6.3.6 Package content
General

The BACnet package PS5607-BACnet-BC can be installed with the Installation Manager and
contains the following components:
● BACnet runtime component, part of AC500 firmware.
● Automation Builder package: CODESYS BACnet

– BACnet plug-in component
– Device descriptions for “BACnet Server”, BACnet objects, BACnet client and datalinks
– Libraries: BACnet, BACnetDefaultImpl and CmpBACnet.
Ä Chapter 6.5.6.3.6.2 “BACnet libraries” on page 3847

● Example folder
– Examples and example documentation
Ä Chapter 6.5.6.3.6.3 “Application examples” on page 3848

– Datasheet and FAQ
BACnet Protocol Implementation Conformance Statement (PICS), acting as a data-
sheet, describing all BACnet objects, services and communication capabilities.
BACnet Conformance Certificate
FAQ – Frequently Asked Questions, including AC500 specific information, performance
and limit

BACnet libraries
The IEC library CmpBACnet represents the integration of the BACnet stack into a CODESYS
IEC environment and provides the BACnet data types as well as the BACstack methods.
The sole use of the IEC library CmpBACnet (without the BACnet and BACnetDefaultImpl
libraries) would result in complex and lengthy IEC application code.
The BACnet library simplifies BACnet application development considerably as compared to the
sole use of CmpBACnet, especially in the following areas:

● Starting and stopping the BACnet stack
● Using BACnet server objects and their properties
● Triggering asynchronous requests (mainly client service requests) and processing the

request transaction
● Processing of callbacks from the BACnet stack (see IBACnetEventConsumer) and distrib-

uting the callbacks to multiple receivers in the application
Furthermore, the BACnet library provides a plug-in mechanism (BACnetServerPlugin) for
extending certain aspects of the BACnet library. BACnetServerPlugin is the basis for the
BACnetDefaultImpl library.

The BACnetDefaultImpl library is used for the additional simplification of BACnet application
development. The BACnet standard ASHRAE 135 leaves some aspects of the practical use of
BACnet open. The most notable examples include the following:
● Persistence of server objects
● Storage and persistence of Trend Log, Trend Log Multiple, and Event Log entries
● Update of the date/time information of the device object

Example folder

Configuration and programming

Libraries and solutions > BACnet-BC

2024/01/05 3ADR010583, 1, en_US 3847

The IEC library BACnet is intended as a layer over the IEC library CmpBACnet. However, the
layer does not hide the library because this would require the BACnet library to have "facade"
functions for CmpBACnet functions. These facade functions would result in larger application
code and increased runtime requirements. This is difficult for the PLC to accept. For this reason,
it is necessary to know when elements from the BACnet library or CmpBACnet library are to be
used.
General rules:
● Starting and stopping the BACnet stack

Always use BACnetServer.StartBACnetStack and
BACnetServer.StopBACnetStack or AutoStart. Never directly use the corresponding
functions of the CmpBACnet library, such as CmpBACnet.BACnetServerInit.

● Using BACnet server objects and their properties
Always use the specified function blocks in IEC-lib-BACnet, such as BACnetAnalogValue.
Never directly use the corresponding functions of the BACnet library, such as
CmpBACnet.BACnetStorePropertyInstance.

● Triggering of asynchronous requests
Always use the specified client function blocks of the BACnet library, such as
BACnetClientReadProperty. Never directly use the corresponding functions of the
CmpBACnet library, such as CmpBACnet.BACnetReadProperty. All functions of the
CmpBACnet library that require a BACnetAsyncTransactionToken belong to this cate-
gory and should never be used directly.

● Processing of callbacks from the BACnet stack and distributing the callbacks to multiple
receivers in the application
Always use IBACnetEventConsumer and BACnetServer.RegisterHook/
UnregisterHook/RegisterCallback/UnregisterCallback. Never directly use the
corresponding functions of the CmpBACnet library, such as CmpBACnet.BACnetSetHook
or CmpBACnet.BACnetSetCallback.

When is it appropriate and safe to directly call the functions of the CmpBACnet library?

Basically, it is only necessary to call functions of CmpBACnet directly when a corresponding
functionality is not provided in the BACnet library. Check the BACnet library first before trying
to use CmpBACnet directly. It is possible to use blocking functions in CmpBACnet, such as
BACnet*CbCompletion, BACnetIam(Ex), or BACnetIHave(Ex), BACnetUnconf*.

Most often, you will use BACnet*CbCompletion to implement your specific
IBACnetEventConsumer.BACnetEventCallbacks. But first check whether or not the
BACnetDefaultImpl library already contains an appropriate standard implementation.

Application examples
● AC500_V3_BACnet_B-BC_Example_ABxxx.project including simple read and write

operations between client and server.
– Use case 1: AC500 as BACnet client, read and write (with priority)
– Use case 2: AC500 as “BACnet Server”, publish the analog value

● AC500_V3_BACnet_B-BC_Example_Routing_ABxxx.project
● Examples from 3S, including

– Read and write operations with more options, notification class, calendar, scheduler, etc.
– Device discovery
– BBMD
– Persistence
– Logging
– Routing

Configuration and programming
Libraries and solutions > BACnet-BC

2024/01/053ADR010583, 1, en_US3848

6.5.7 CAA library guidelines
With the help of the CAA library, different use cases for dealing with AC500 PLCs can be pro-
grammed. Function block descriptions for the CAA library can be found in the Library Manager.
The guidelines for the CAA libraries correspond to the general guidelines for library develop-
ment. For a detailed description see help chapter Guidelines for Library Development.

By using the CSV read function, information from CSV or other formatted DAT files can be read
into Structured Text. This use case is described in an application example.

Procedures how to handle files with the CAA library in order to write, read and append files are
given in an application example.

6.5.8 Data Logger Library
6.5.8.1 Overview

The AC500 “Data Logger Library” package (PS5609-Log) contains the:
● “DataLogger” and “DataLoggerEco” library (licensed)
● “Multilogger” library (technology preview, documentation in the examples folder)

The data logging function block library (“DataLogger” and “DataLoggerEco”) contains 5 function
blocks for the purpose of advanced time-stamped data logging for different use cases.
In the most challenging use case, it also can be called buffering:
The AC500 application program generates or receives data which are normally transmitted
to a telecontrol system for storage (historian databases) and further processing or displaying
to the end user (SCADA, reporting). Typically, these may be remote applications like water-
or oil-pumping or electrification stations or solar power plants. The connection between these
remote stations with an AC500 and a central SCADA/telecontrol station is not always stable
(mobile or wired internet) or only sporadically connected. Sporadically connected can be by
intention, e.g. to save communication costs or open ports/connections to be used with a control
station only in a limited way. Still owners or even authorities often require gapless data for
compliance/prove of correct operation, billing or other purposes.
● Then the data logging function blocks buffer or store data in case of a broken or intention-

ally interrupted connection between AC500 and the telecontrol system and automatically
retrieves and resends the data once online again and/or requested, while already newer
data has to be buffered in parallel.

Fig. 287: Overview

1 AC500 application (remote substation)
2 Telecontrol (control station)

Configuration and programming

Libraries and solutions > Data Logger Library

2024/01/05 3ADR010583, 1, en_US 3849

ms-its:LibDevSummary.chm::/guidelines.html
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010477&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010565&LanguageCode=en&DocumentPartId=&Action=Launch

● The “Data Logger Library” can be also used as an event recorder. In this special mode data
is continuously recorded in a ring buffer which can be read out after a certain event x (e.g.
outage) in order to analyze the values especially before but also after the event x.
OR

● Data can be logged only (and on command transferred to the FTP area to be analyzed
offline or taken out via the memory card).

The following figure gives an overview of the described interaction of the data logging function
blocks. There is always an input function block (“Logxx_Input”) needed which transfers the input
data into data sets with timestamp for use by the data logger (“LogHandling”). An output func-
tion block (Logxx_Output) receives the current or retrieved data from the data logger in case of
communication or further processing. The input function blocks “Logxx_Input”, the function block
“LogHandling” and the output function blocks “Logxx_Output” communicate via SRAM FIFOin
and FIFOout areas in the memory. The SRAM FIFOin is power-fail-safe intermediate buffer
and help in decoupling time wise and speeding up the necessary write/read operations on the
logging file structures significantly. These read/write operations on the files are done in blocks of
data sets, enabling a comparably fast interaction with the otherwise slow file system.

Fig. 288: Overview function blocks

Each data logger application requires the main function block “LogHandling”, one of the input
function blocks to provide data to be logged and one output function block to retrieve the data
and send the data to telecontrol (SCADA).
As input and output function blocks 2 different types exist:
● For data logging of an interrupted IEC 60870 communication, the function blocks

“LogIec60870_Input” and “LogIec60870_Output” are provided. The IEC 60870 data logging
function blocks support the IEC data types and work internally with the standard AC500 IEC
60870 library. The IEC data logging output function block does not need special handling or
control/inputs.

● For other types of general data “LogGeneric_Input” and “LogGeneric_Output” are provided.
The generic data logging function blocks support an even larger variety of data types. The
generic output function block needs to be handshake with for each data set, in order to
retrieve the data from the data logging files. Therefore the generic function blocks can also
be used to integrate the data logging into any other protocol, e.g. Modbus.

The function block “LogHandling” ensures that also several consecutive and fast interruptions
can be handled without losing data. While the log file is replayed, arriving new data is stored in
the SRAM FIFOin and added to the data logging files in parallel (File FIFO) if the SRAM FIFOin
becomes full (during that short time the log file replay is paused). Nevertheless any data send to
a control station via a communication is always with the oldest data first (FIFO = "First In First
Out").

Configuration and programming
Libraries and solutions > Data Logger Library

2024/01/053ADR010583, 1, en_US3850

As for normal Ethernet default setting it takes up to 30 seconds before a communication break
is detected (e.g. with TCP/IP protocols the following has to be done):
● The data rate at which data might have to be buffered in case of a communication break has

to be estimated and possibly minimized, especially the threshold option has to be checked
carefully if used. A worst case test is advised with the application if in doubt.

● Ping mechanism should be used in the substation. This is done in the example program for
the IEC logger. With this ping the interruption is detected much faster e.g. here after 1-2
seconds (can be configured in the example program - the configurable “SecureReadTime”
must be considered in this context. This ensures that the time delay - before a loss of
connection is detected and is compensated).

As the SRAM FIFO has to store data during this time its size limits the data rate. The SRAM
FIFO size is 160 data sets (or 60 data sets on AC500-eCo). If data rate is too high, FIFO
will overflow. The maximum data rate is depending on the CPU type, storage media (memory
card/flash disk) and cycle time configured, and must be determined by trial and error if high.
The data rates for storing only without this detection can be much higher and depends on the
CPU and memory type chosen. The data is always logged in directly readable csv format.
Ä Chapter 6.5.8.6 “CSV file formats” on page 3856

Depending on the input function block and data type, the log file contains only one or up to 32
data variables per timestamped data set. The data logging files can be configured (up to 65k
data sets per file, up to 999 consecutive log files, file name extension).

6.5.8.2 Operating modes
This chapter describes the different operating modes of the data logging and their behavior.
● Mode 0/1: Buffer and disposal in chronologic order.

– Mode 0: Limited storage (keeps oldest, but stops if full).
– Mode 1: Endless (ring buffer) operation modes (deletes oldest).

● Mode 2: Buffer and disposal via FTP, Log file(s) copied to FTP server area for further use.
● Mode 3: Events recorder, logs data before and after an event.

Fig. 289: Overview Mode 0/1

Mode 0/1 is for buffering the values from the AC500 application in case of a broken or intention-
ally interrupted connection between AC500 and telecontrol. In the normal state 1 the values are
directly sent from the FIFOin (input values from application) to FIFOout (telecontrol connection).
As soon as the connection is interrupted, the data logging changes to working state 2. The
values are sent to the file FIFO instead. When the file FIFO is full, the data logging is stopped
(Mode 0) or the oldest data will be overwritten (Mode 1 = ringbuffer). When the connection
is established again and the “ReleaseHistory” pin is triggered, the data logging changes to
working state 3. It cares for disposal of the values in chronological order. The buffered values

Mode 0/1: Buffer
and disposal in
chronologic
order

Configuration and programming

Libraries and solutions > Data Logger Library

2024/01/05 3ADR010583, 1, en_US 3851

are written to FIFOout (working state 3a). This may take some time during which new values
are coming from the application and stored into FIFOin. Before the FIFOin overflows the data
logging switches to working state 3b and buffers the new values. After that it can continue with
working state 3a. Only if the File FIFO is empty (all files deleted) the data logging changes back
to normal state 1.
The advantage of Mode 0/1 is that all values (directly and buffered) are sent to telecontrol in
strictly chronological order which is expected by most control stations (SCADA systems/histor-
ians).
If a historical value is sent to the SCADA after a current value has already been sent, the
historical value is normally rejected by the SCADA.
As it takes up to 30 seconds before a communication break is detected (e.g. with TCP/IP
protocols by the AC500 hardware/firmware), the data rate at which data should be logged in
case of a communication break has to be calculated and limited. It therefore makes sense to
use PING to detect a possible interruption in the connection. This enables an earlier detection of
the connectionless state.

Fig. 290: Overview Mode 2

Mode 2 is also used for buffering the values from AC500 application in case of a broken
connection between AC500 and telecontrol. State 1 and state 2 are similar to Mode 0/1. The
difference is the disposal. When the connection is established again the data logging changes
directly back to state 1 and the input values in FIFOin are directly sent to FIFOout (telecontrol
connection). The buffered values in File FIFO are internally moved from disk 1 to disk 2 which
can then be accessed or used by FTP (client or server). This move action can also be triggered
by the command “MoveFile”, or when file 1 is full. The advantage of Mode 2 is the immediate
availability of the latest and all current values after an outage.

Use data logging for permanent logging
To use data logging for normal, permanent logging, set Mode = 2 and make
input “BreakConnect” = “TRUE” or “Connected” = “FALSE”.

Mode 2: Buffer
and disposal via
FTP

Configuration and programming
Libraries and solutions > Data Logger Library

2024/01/053ADR010583, 1, en_US3852

Fig. 291: Overview Mode 3

Mode 3 is used to record data values around an event, before and after the event X, e.g.
outage of a part of the plant. The values are continuously recorded into the File FIFO file system
independent of the connection status to telecontrol. If the File FIFO is full the oldest values are
overwritten (ring buffer). Thus the file FIFO always contains the values from the past period n,
which is depending on the number of values per second and on the size of the File FIFO. When
a certain event x occurs, the command “MoveFile” can be given directly or after the period m.
With the command “MoveFile” the values in File FIFO are internally moved from disk1 to disk 2
and can be read out by an FTP action (client or server) when required.

Fig. 292: The buffered values represent the time before the event (n-m) and after the event (m).

The advantage of Mode 3 is that the values from the time period before the event (n-m) and
after the event (m) are recorded and can help to reconstruct the cause and effect of the event.

6.5.8.3 Technical details

Parameter Value
IEC 60870-5-104 protocol inte-
grated in data logging, IEC data
types

SinglePoint SP1/16, DoublePoint DP, IntegratedTotal
IT1/16, MeasurementValue ME1/16

Generic logging to file(s); AC500
data types

BIN, BYTE, INT, UINT, DINT, UDINT, REAL

Trigger Cyclic, event, tolerance

Mode 3: Events
recorder

Configuration and programming

Libraries and solutions > Data Logger Library

2024/01/05 3ADR010583, 1, en_US 3853

Parameter Value
File format CSV, including local timestamp. Generic logging with

separate ID (max. 8 characters), IEC logging with IEC
addresses.
Timestamped data sets contain 1-16 values (IEC)
depending on type logged. Generic contain different
number of values, depending on type logged.
BINARY: max. 58
BYTE: max. 88
INT: max. 50
UINT: max. 58
DINT: max. 29
UDINT: max. 31
REAL: max. 27

Data logging target Flash disk, userdisk or memory card, power fail input for
memory card (from UPS)

Data logging file sizes and storage
depth

FIFO storage in file system, data logging depth only
limited by memory size

Configurable file FIFO Number of files (max. 999); number of data sets per file
(max. 65535)

Internal SRAM FIFO size 160 data sets (Standard AC500 PLC)
Maximum 60 data sets (AC500-eCo PLC)

Block write mode into files Up to 50 data sets/second per max. 88 values

Operation modes Mode 0: Buffer and disposal in chronologic order limited
storage (keeps oldest, but stops if full)
Mode 1: Buffer and disposal in chronologic order end-
less (ring buffer) operation modes (deletes oldest)
Mode 2: Buffer and disposal via FTP, log file(s) copied to
FTP server area for further use
Mode 3: Events recorder, logs data before and after an
event.

Supported software/firmware V3.4 or higher

Current restrictions One data logger per PLC
One IEC 60870 connection only: While log file is
replayed, no other current information via IEC available
Usable solutions:
● Delay replay of log file after connection returned to

allow a “general inquiry”
● Use of Mode 2

Logging capacity:
● Data set: One data set always has 400 bytes.
● FIFOin: Has a maximum capacity of 161 data sets (a 400 bytes = 64400 bytes).
● FIFOout: Has a maximum capacity of 161 data sets (a 400 bytes = 64400 bytes).
● File: One file store up to 65535 data records, which are copied block by block from the

FIFOin in case of a communication lost.
● A maximum of 999 files can be saved.
In purely mathematical terms, that would be 999 files * 65535 data sets * 400 bytes/data set =
26,187,786,000 bytes = 26 GB.

Configuration and programming
Libraries and solutions > Data Logger Library

2024/01/053ADR010583, 1, en_US3854

Since neither the flash disk nor the usable memory card have such a capacity, the user has to
find a sensible compromise. The flash disk as a storage medium is fail-safe, i.e. in the event of
a sudden power failure, data in the possibly currently open file is reconstructed when the power
is restored. This is not the case with a memory card. There the file is destroyed. It is therefore
advantageous if such a variant is operated with a power supply that keeps the PLC alive for at
least a few seconds after the supply voltage failure (“Input ExternalPower” on the “LogHandling”
function block).
Time synchronization:
Currently the AC500 V3 does not distinguish between UTC time and local time and its time zone
is set to 0. This will be improved in near future. In the meantime, it is recommended to store the
local time in the AC500 as a workaround.
Ä Chapter 6.5.6.3.5.6 “Time syncronisation” on page 3845

6.5.8.4 File names
File names are renamed according to storing time with an accuracy of 100 ms. The files are
renamed from “filename.csv” to a file name with timestamp and with or without file extension,
according to input “Disk2Extension” is applicable only in Mode 2.

02281448.593 = February 28th, 2:48pm (14:48), 59s, 300msFile name with
timestamp

02281448.csv = February 28th, 2:48pm (14:48)File name with
timestamp and
file extension

6.5.8.5 Preconditions

CAUTION!
To avoid failure in processing of the function blocks.
– The function blocks LOGxxxxxx_Input, LogHandling and

LOGxxxxxx_Output must be executed in the same task.

The “Data Logger Library” is supported in standard AC500 V3 PLCs, use the
library “ABB_Datalogger_AC500”.

The “Data Logger Library” can be used with AC500-eCo V3 – PM50x2-T-2ETH
using the library “ABB_DataloggerEco_AC500”.

● CPU firmware must be V 3.4.0 or higher.
● Use memory card from ABB with sufficient free space, at least 1.5 x file size as configured

(file size is depending on input “MaxNumDatasetFile” from “LogHandling” function block).
● Maximum number of files (input of “LogHandling”) is limited to 999. ABB memory card is

formatted with FAT by default.
Ä Chapter 5.2.9 “Storage devices” on page 1332

Configuration and programming

Libraries and solutions > Data Logger Library

2024/01/05 3ADR010583, 1, en_US 3855

Runtime License:
● To use the “Data Logger Library”, runtime license must be activated in the PLC. Runtime

license is separate for standard AC500 and AC500-eCo V3 PLC.
If using the:
– “ABB_Datalogger_AC500” library with standard PLC, use the PS5609-Log runtime

license.
– “ABB_DataloggerEco_AC500” library with AC500-eCo V3 (PM50x2-T-2ETH), use the

PS5609-Log-e runtime license (AC500-eCo library will not run on AC500 Standard), but
PS5609-log license can also be used on AC500-eCo library).

6.5.8.6 CSV file formats

Fig. 293: Explanation of the csv file structure

One data set consists of:
ID (8 any char) + TimeStamp + msec + Datatype (num) + Datatype (txt) + Length (following
data) + max 32 data

Parameter Value
ID = ID of LogGeneric_Input (max 8 any characters)

DataType = DataType of LogGeneric_Input (1…7)

Length = Length of LogGeneric_Input (max 88)
BINARY (58); BYTE (88); INT (50); UINT (58); DINT (29); UDINT (31);
REAL (27)

Fig. 294: File opened directly with Excel

Example

Fig. 295: Explanation of the csv file structure

Generic data
logging

IEC 60870 data
logging

Configuration and programming
Libraries and solutions > Data Logger Library

2024/01/053ADR010583, 1, en_US3856

Table 741: One data set consists of the following parameters
Parameter Description
IecType = IecType of LogIec60870_Input (1…7)

Slot/Con/Idx/NoDP = Pin group of LogIec60870_Input (1…7)

Quality_Bits(Byte) = IV/NT/SB/BL/CA/CY/QOV (packed in 1 byte) of
LogIec60870_Input (1…7)

Quality (SQ) = SQ of LOG_IEC60870_INPUT (1…7)

GADU = Calculated internally, from Automation Builder configurator
(Gadu1+Gadu2)

IAD3/2/1(n) = Calculated internally, for every datapoint separately, from
Automation Builder configurator (IAD1+IAD2+IAD3)

n = 1 or 16, in case of DP is n=2

VAR(n) = Variable

IEC type Values Meaning
SP1 - SinglePoint 1

SP16 - SinglePoint 16

DP - DoublePoint

IT1 - IntegratedTotal 1

IT16 - IntegratedTotal 16

ME1 - MeasurementValue 1

ME16 - MeasurementValue 16

Quality_Bits(Byte): Quality.0: = IV; Quality with quality invalid

 Quality.1: = NT; Quality not topical

 Quality.2: = SB; Quality substituted

 Quality.3: = BL; Quality blocked

 Quality.4: = CA; Quality with quality carry

 Quality.5: = CY; Quality with quality counter
adjusted

 Quality.6: = QOV; Quality Overflow Quality

 Quality.7: = Reserve; (*Reserve - Quality*)

Quality SQ(Byte) SQ Quality sequence number
(Range: 0 to 31)

Fig. 296: File opened directly with Excel

Example

6.5.8.7 Comparison V2 and V3 Data Logger Library package
List of differences between V2 and V3 “Data Logger Library”.

Configuration and programming

Libraries and solutions > Data Logger Library

2024/01/05 3ADR010583, 1, en_US 3857

Feature V2 data logger V3 data logger
Package Part of PS563-Water PS5609-Log

Supported in AC500-eCo
PLCs

No Yes (PM50x2-T-2ETH)

Buffer size 160 data sets AC500 – 160 data sets
AC500-eCo – Maximum 60
data sets (default 50)

Storage area Memory card, flash disk Memory card, flash disk, user-
disk

While updating the library from V2 to V3 platform some of the inputs and output names are
adapted in the function blocks. List of adapted names as below, not mentioned variables
remains unchanged.

Function block Variable type V2 name V3 name
LogGeneric_Input Output RDY InExecution

 Output OV Overflow

 Output DONE Busy

 Output NUMBER_OV NumberOverflow

LogGeneric_Output Input SENT PickedUp

 Output WORD_ARRAY UintArray

 Output DWORD_ARRAY UdintArray

 Output - Busy

LogHandling Input RESET CleanAll

 Input QUIT

 Input DISK1 NameDisk1

 Input DISK2 NameDisk2

 Input DISK2_EXTENTION Disk2Extension

 Input MAX_DS_IN_FILE MaxNumDatasetFile

 Output DONE Busy

 Output RDY -

 Output OV Overflow

 Output ENUM_ERROR FileError

 Output FILE_NEXTWRITE FileNextWritePosition

 Output FILE_NEXTREAD FileNextReadPosition

 Output USED_FILES NumberUsedFiles

 Output NUMBER_DIRECT_S
ENDS

NumberDirectSend-
Datasets

 Output WRITE-
TIME_DB_IN_FILE

WriteTimeDatablock-
sInFile

 Output READ-
TIME_DB_FROM_FIL
E

ReadTimeDatablocks-
FromFile

Configuration and programming
Libraries and solutions > Data Logger Library

2024/01/053ADR010583, 1, en_US3858

Function block Variable type V2 name V3 name
 Output MAXWRITE-

TIME_DB_IN_FILE
MaxWriteTimeData-
blocksInFile

 Output MAXREAD-
TIME_DB_FROM_FIL
E

MaxReadTimeData-
blocksFromFile

 Output POSSIBLE_SECURE-
READ_DS

PossibleSecureRead-
Datasets

LogIec60870_Input Output RDY InExecution

 Output OV Overflow

 Output DONE Busy

 Output NUMBER_OV NumberOverflow

LogIec60870_Output Input - Timeout

 Input - Busy

 Input - ErrorNumberIEC

In all 5 function blocks, all the “INOUT” variables in V2 are changed as
“VAR_INPUT” variable in V3.

6.5.8.8 Examples

Example projects for the libraries can be found in the example folder: “Help
è Project examples” in the Automation Builder menu.

Prerequisite: Install the related library package with “Automation Builder
è Tools è Installation Manager” - [Modify].

6.5.9 High Availability Modbus TCP
6.5.9.1 HA-Modbus TCP - System technology
6.5.9.1.1 The AC500 High Availability system

The AC500 High Availability system is designed for the demand of automation systems that
require a higher availability, which is realized by redundant devices and communications.
The redundancy concept reduces the risk of losing production due to failure of parts of the
automation system and thereby minimizes scheduled idle times.
For instance, control can be taken over by the secondary station automatically if the primary
station fails.
AC500 High Availability system implements redundancy based on standard AC500 PLCs:
● PLC
● Field communication
● SCADA communication

General differences in high availability / redundancy systems are in which way and how fast the
switchover between redundancies happens.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3859

● Cold standby: A replacement system is there but not up and running - Process has (to
allow) to completely stop for switchover – e.g. outputs may go to zero.

● Warm standby: Both CPU may be running (= warm) but e.g. communication need to be
started/stopped for switch-over - Process needs to tolerate longer freeze times e.g. on
outputs - e.g. several seconds.

● AC500 High Availability systems are "hot-standby":
– Redundant CPUs and all communications are always up and running (hot)
– Continuous failure detection in both CPU´s and mutual exchange of status
– Continuous synchronization of critical/historical data from primary to secondary
– Automatic switch-over in very short time in case of any failure in primary CPU

Fig. 297: Principle AC500 HA-Modbus TCP architecture example based on Ethernet redun-
dancy

Details of AC500 HA operation along the figure above:

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3860

● PLC redundancy: The two PLCs (A and B) are running in parallel and calculating and
reading.
One is “primary” = active, which means also writing data to field devices.
The other one is “secondary” (= stand-by), also calculating but only reading data from field
and receiving synchronization (or short = sync) data from the primary.

● Synchronisation data are critical internal variables with e.g. historical content, which will be
transmitted from primary to secondary CPU over the sync connection, so that secondary
always has the latest data and can take over immediately. Automatically synced are the
historic data of the special HA library function blocks (like counters, timers, integral control-
lers, …), additional Data e.g. of events and diagnosis can be synced by the user with sync
blocks. The sync connection also transmits a “lifecom1” signal (back and forth) containing
diagnosis data of each CPU, so that both CPU know the status of the other CPU. If secon-
dary CPU receives no “lifecom1” anymore it assumes that primary CPU has a failure and
takes over primary status. If the sync connection is broken both CPUs would try to adopt
primary status, therefore, a parallel separate connection “lifecom2” is used to differential a
“sync link” failure from an “other PLC” failure. The “lifecom2” should be routed via a different
physical communication path than the data sync/lifecom1, e.g. the Field or SCADA network.

● The field I/O connection is performed via the Ethernet protocol ModbusTCP - connecting
the CI52x devices (CI521 or CI522) Ä Chapter 5.2.6.5.1 “CI521-MODTCP” on page 1070
Ä Chapter 5.2.6.5.2 “CI522-MODTCP” on page 1111.

For high availability/redundancy of the field or SCADA network, proven Ethernet network redun-
dancy mechanisms are used. (In AC500 this is assumed to be realized by at least 2 (to avoid a
single point of failure) external, managed switches), which has the advantage to be able to use
AC500 HA with any faster redundancy mechanism / protocol.
● For the I/O communication with CI52x modules two variants exist (see online help: PLC

Automation with V2 CPUs ➔ PLC integration ➔ Device specifications ➔ Communication
interface modules (S500) ➔ Modbus XY)
For smaller systems, the CI52x modules can be directly daisy chained (as in previous figure
above) if MRP (Media Redundancy Protocol) or DLR (Device Level Ring) is used. Ci52x are
not actively participating in ring recovery however, a special FW allows fast ring detection
and very short freeze times. Larger systems with e.g. many IO and clusters typically anyway
connect to the network via a dedicated managed switch.

● SCADA connection is redundant by nature of the two Ethernet ports and can be extended
with further redundancy level as well by managed switches. SCADA itself can also switch
the primary PLC to ensure communication to the active PLC in case of a simple connection
and a connection failure. If the redundancy mechanism of the OPC DA server is not used,
SCADA level itself must be able to handle and differentiate primary and secondary PLC and
IP addresses based on the HA-status bits. For CP600 a script exists to do the same for
Modbus or AC500 communication protocol.

In most PLC applications the critical components to fail are, beneath PLC, typically the power
supply or communication components such as wires or switches. Therefore a SPOF (Single
Point Of Failure) has to be avoided by adding redundant devices or redundancy functions
wherever a failure likelihood is high and failures are not tolerable.
HA core functionality typically can tolerate only a single failure in the different levels. Then, a
repair of the failed part is highly advised to achieve and ensure redundancy again. As shown
in the above figure, the I/O-network cabling already provides a second independent redundancy
layer e.g. for cable failure by its redundancy mechanism (e.g. ring), which can keep up commu-
nication without switching the PLCs: There a second failure in the PLC level could be tolerated
as long as both connecting, managed switched still work, but it is highly advised to repair
immediately anyway.

The AC500 High Availability system itself only takes care of the first fault. For
example, in case of a second fault the primary PLC remains primary PLC
until the second fault occurs. This results in no further switchovers (manual
switchovers included).

Due to the efficient data sync mechanism, which allows data sync over normal and shared
ethernet networks, with a well-planned communication network, the PLCs can operate geo-
graphically separated (by many 10th of kilometers). So even in catastrophic events with full
mechanical destruction still one PLC will be available to control the process or infrastructure.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3861

The secondary PLC or single CI52x modules can be exchanged in a running system without
interruption of the primary PLC or the process. (Check document in “Examples” directory of
Automation Builder if HA package was installed.)

In order to achieve high availability, the CODESYS application must be enhanced with HA
function blocks, from the HA-Modbus TCP library and the CI52x library. If the bulk data manager
tool (BDM) is used for configuring the System and I/O modules - this is done automatically
for the basic initial configuration step by code creation resulting in a prepared user specific
“template” application (see below).
● HA-Modbus TCP library contains HA control and HA utility function blocks

– HA control function blocks manage the core HA functionality by collecting diagnosis and
switching if necessary.

– HA utility function blocks provide standard functions in the application program with
internal sync for integral data e.g. timers, counters, PI control.

● CI52x library contains a function block to configure and communicate to the communication
interface modules and ensures that only the primary PLC writes to the outputs. The inputs
are read by both PLCs.

● For both PLCs the same application must be used/downloaded.

For configuration of the CI52x Modbus TCPs, a separate Bulk Data Manager tool (BDM) is
provided. Especially in larger systems usage of BDM is recommended to comfortably engineer
HA and create CI52x related configuration and variable data in one place:
● Configuration and parameters of the used I/O modules
● Program code creation for variable naming, configuration, communication and all basic HA

functionality
The BDM tool can serve SCADA programming and documentation as well in an efficient
manner.

6.5.9.1.2 Hardware, requirements and options overview
Introduction

Two same type AC500 PLCs are required as central hardware components. Each PLC is
equipped with at least two Ethernet ports at a processor module or at a communication module.
The two PLCs, called PLC A and PLC B, are linked by Ethernet to exchange and synchronize
information (Sync). Connections to the AC500 peripheral field devices (I/O) are performed via
Ethernet as well.
Ä Further information on which CPU type and library to be used.

The following table gives an overview of the different High Availability variants possible with
AC500.
The figures are indicative, depend on chosen architectures, system size, network and CPU/
communication modules used.

Libraries

Bulk data man-
ager tool (BDM)

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3862

Table 742: Overview of AC500 HA systems and options
Library version HA-CS31 HA-Modbus TCP

CPU version V2 CPUs V2 CPUs V3 CPUs

I/O communication Parallel
serial

Ethernet Ethernet

CPUs PM573 - 595 PM57
3

PM59
1

PM595 PM5630 PM5650 PM5670

Parallel serial I/O network based on Ethernet and ext.edundancy
mechanism

Max. system size
CI52x 1, 6)

3 - 50 2) 3 < 25 /
50

< 60 /
92

< 30 < 50 < 120

I/O modules CI590: S500 CI52x: S500 and S500-eCo usable 4)

Switch-
over

times

CPU 25 -120 ms 3) Typically < 50 ms ~6)

Field 15 - 120 ms
3)

Depends mainly on network size, redundancy mecha-
nism of external switches 7)

SCADA connectivity OPC DA,
IEC60870,

…

OPC DA, IEC60870, … OPC DA, OPC UA, IEC60870,
…

Interfaces Several
CS31 and
Ethernet

Several ETH ports, via
CM597

Several ETH ports 5)

(+ 1 CAN Interface)

Sync UDP UDP UDP

Lifecom1 - UDP UDP

Lifecom2 - Modbus TCP Modbus TCP / CAN

Overview of AC500
HA system

1) Number of CI52x recommendation based on performance or max. number of sockets.
For more details of Modbus clients supported in AC500 V3 PLCs refer to 'Ethernet protocols
and ports for AC500 V3' Ä Chapter 6.8.2.6.1.2.4 “Limitation of connections per protocol”
on page 4484.
2) Limited by CPU performance, number of CM574 modules number of CS31 clients and
process data limits.
3) Depends on system size and CPU type.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3863

4) For details on certain S500-eCo modules not supported, see the Automation Builder release
notes, Appendix 1.
5) 2ETH onboard ports - port extensions via CM5640-2ETH: 2 separate ETH ports/communica-
tion module for separate networks (no additional sockets or coprocessing, not switched, all ports
in different subnets).
6) Based on HA bits switchover, depending on failure case.
Ä Chapter 6.5.9.1.3.2 “Use case descriptions” on page 3870 Ä Chapter 6.5.9.1.5.3 “Task
configuration recommendations for HA system” on page 3884
7) Field network: If CI52x are used with their 2 ports as part of a ring: In the moment of a network
switchover single telegrams may be destroyed: - for V2 ETH onboard: Standard TCP delays
repeats by 500 ms - for V3 CPUs onboard/CM5640 or V2 CPU using CM597: A special HA-FW
ensures fast repeats of typ. ~50ms (settable).

CPU choice, system size and performance indications
The diagrams below indicate the example choices of AC500 CPU's (horizontal axes) based
on the number of communication interface CI-remote I/O clusters (Communication Interface
modules; numbers see legend) used in a system and resulting application cycle times (vertical
axes).
Further details can be found in 'Task configuration recommendations for HA system' Ä Chapter
6.5.9.1.5.3 “Task configuration recommendations for HA system” on page 3884. The values in
below graphs base on the assumption to use max. 50-60% as CPU loading by the bare fast IO
communication and HA functionality. So the application load would come on top and cycle times
(especially HA, Modbus) need to be relaxed (made higher) compared to below indication.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3864

Fig. 298: Indication of AC500 CPU's performance (horizontal axes) based on the number of
communication interface CI-remote I/O clusters (Communication Interface modules; numbers
see legend) used in a system and resulting application cycle times (vertical axes).

Example: If you need a system supporting min. 25 CI at application cycle time around 120 ms,
suitable options based on above graph would be V2 PLCs - PM592 or PM595 and V3 PLCs –
PM5650 or PM5670. The main parameter in the application cycle determination is the amount of
overall Sync data, which is assumed 160 bytes per CI for the smaller systems, up to 250 bytes
per CI for the larger ones. Sync data of the project of in total more than ~1200 byte necessitates
several HA cycles to transfer within one application cycle.
If CM5640-2ETH port extender is used for the CI network, slightly lower performance/longer
cycle time needs has to be expected.
The V2 or V3 PLCs types, also differ in available interfaces, protocols supported and memory
size.
CI521-MODTCP or CI522-MODTCP can be used as peripheral devices which communicate via
the Modbus TCP protocol with the PLCs. The HA-Modbus TCP library supports currently up
to 120 CI52x, depending on the CPU type as listed in table 'Overview of AC500 HA systems
and options' Ä Further information on page 3863. Each CI52x supports up to a maximum of
10 S500-I/O modules. Nevertheless the standard Modbus TCP communication of the HA library
transfers only 120 words per cycle: Therefore please check if for your module configuration
matches: In case of many analog IO modules with high-density - like 16 channel AI523/AO523
or modules with fast counters - this limit might be surpassed by roughly 5-6 such modules
(to help calculate exactly, there is an Excel sheet provided in the HA “Examples” subfolder of
Automation Builder once installed).
For more details of Modbus clients supported in AC500 V3 PLCs refer to 'Ethernet protocols
and ports for AC500 V3' Ä Chapter 6.8.2.6.1.2.4 “Limitation of connections per protocol”
on page 4484.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3865

Local I/O on a CPU can only signal/interact for diagnosis or service with/from
this CPU. This local I/O is connected only to this CPU - cannot work with other
CPU in case of this CPU failure.

Hardware connections

Fig. 299: AC500 HA and SCADA connection

SCADA/ Engineering connection is done using ETH ports of both PLCs (or their communication
module ETH modules) and one or several managed Ethernet switches depending on the redun-
dancy requirements in the SCADA levels.
● HA communication between PLC A and PLC B must be done via two physical connections

between PLC A and PLC B in order to distinguish a “sync link” failure from another PLC
failure:
– Sync (including “lifecom1”) over Ethernet
– “Lifecom2”

over Ethernet (Modbus TCP): Can also be combined with Field or SCADA network
over CAN (only possible with AC500 V3 CPU)
(For V3 CPUs: - “Lifecom2” and sync should be directly on the CPU onboard ports,
- while for CI and SCADA network the use of CM5640 is possible to be in separate
networks).

● Field devices (CI52x modules) will be connected via Ethernet switches, forming a redundant
network (if requested) Ä Chapter 6.5.9.1.5.4 “Field I/O network topologies” on page 3886.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3866

The following table shows possible combinations of connections for different CPU types. There
must be at least two physical connections. The availability can be increased with a third physical
connection, e.g. CM597 for AC500 V2 CPUs, CAN or CM5640-ETH for AC500 V3 CPUs.

For V3 CPU´s with CM5640-2ETH, following as of Automation Builder 2.6.1 new port options
are available for SCADA and field connection.

1 ETH1 (orange)
2 ETH2 (green)
3 CAN (light blue, applicable only in V3)
11 CM597 communication module at slot1 (grey)

X (Dark Blue), Y (Yellow): For CM5640-2ETH: Any one of the both ETH ports can be used.
V3 ETH interface internal numbering for each port of CPU and CM5640-2ETH communication
module (ETH1, ETH2).

Port print of
device

CPU onboard Communica-
tion module
1

Communica-
tion module
2

Communica-
tion module
3

Communica-
tion module
4

ETH1 1 3 5 7 9

ETH2 2 4 6 8 10

The dotted box above indicates the example which is used in the next chapters.

“Lifecom2” connection =”3”: when selected as 3-> means using CAN. It has no
relation with communication module 1 ETH1 : 3 port.

At present all the CI modules in the ring must be connected either on onboard
ETH or only one port of the CM5640.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3867

The numbers in the figure above define the slot on which the connection is made. Last line # of
physical connections define how many physical interfaces are used or connected between the
PLCs.
It is also possible to realize an HA system without a communication interface CI module
Ä Chapter 6.5.9.1.6.1.2 “Configuration without communication interface modules to establish
redundancy” on page 3890.

Hardware Example
HA hardware example using CM5640 for field and SCADA connection: Both ports of the CPU
available for the two sync connections.

Fig. 300: Physical connection example: 2 ETH CPUs combining sync data / “lifefcom2” with
SCADA / Field I/O network

Support of I/O modules (S500/S500-eCo) depends on the version of the library
package. See the version details of the library in the Automation Builder release
notes.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3868

6.5.9.1.3 Functionality
Failures and use cases

The AC500 High Availability system performs a switch-over whenever the primary PLC is
powered off, crashed or stopped or if the primary PLC loses fieldbus communication (cut of ETH
or defect MRP switch) while the secondary PLC still has connection.
In the following figure the different use cases and reaction times are outlined.

Fig. 301: HA use cases – failures, assuming PLC A is primary and “lifecom2” over field network

The below use case table with reaction and diagnosis messages are based on the setup where
Sync is via SCADA network, “lifecom2” over field network and PLC A is primary.

Case Use case Reaction Diagnosis message
on
*)

1 Primary PLC is powered off,
crashed or stopped.

Switchover to secondary
PLC. CI52x outputs are
frozen during switchover
period.

Secondary

2 Secondary PLC is powered
off, crashed or stopped.

No switchover, process con-
tinues.

Primary

3 Primary PLC loses con-
nection to fieldbus CI52x
modules while secondary
PLC still has a connection.

Switchover to the secon-
dary PLC. CI52x outputs
are frozen during switchover
period.

Primary

4 Secondary PLC loses con-
nection to one or more CI52x
modules.

No switchover, process con-
tinues.

Secondary

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3869

Case Use case Reaction Diagnosis message
on
*)

5 CI52x module is stopped/
powered off.

No switchover, process con-
tinues.

Primary and secon-
dary

6 Connection lost in Field
Ethernet network.

Depending on Ethernet net-
work structure, and redun-
dancy mechanisms used a
reconfiguration time exists.

Lifecom2 lost and CI
module lost errors will
be generated in pri-
mary and secondary.

7 Sync and/ or “lifecom2” are
broken.

No switchover, process con-
tinues.

Primary and secon-
dary

8 Primary PLC loses connec-
tion to SCADA.

SCADA is responsible to
detect and to switch over.

-

9 Secondary PLC loses con-
nection to SCADA.

SCADA is responsible to
detect and to switch over.

-

10 SCADA is broken SCADA is responsible to
detect and to switch over.

-

11 Manual switchover by the
user.

Switchover to the secon-
dary PLC. CI52x outputs
are frozen during switchover
period.

-

*) Diagnosis description, see function block description.

Use case descriptions
The below cases explain the behavior of the system during different use cases.
Basic diagnosis information is provided for each case Ä Chapter 6.5.9.1.8 “Diagnosis”
on page 3895.

Case 1 a): Pri-
mary PLC is
powered off or
crashes

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3870

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary PLC.

Comment CI52x outputs are frozen during switchover
period.

Diagnosis message on function block Primary PLC is powered off.
Secondary PLC: control block output Runtime
Error = 16#001E and xHaModPrimary = TRUE

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary PLC.

Comment CI52x outputs are frozen during switchover
period.

Diagnosis message on function block Primary PLC is stopped.
Secondary PLC: control block output Runtime
Error = 16#0016 and xHaModPrimary = TRUE

If “lifecom2” is lost and the PLC is in STOP mode RUNTIME ERROR will not
be TRUE. This is because Modbus is still responding even if PLC is in STOP
mode.

Case 1 b): Pri-
mary PLC is
stopped

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3871

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#001E and xHaModPrimary = TRUE
Secondary PLC is stopped.

Case 2 a): Sec-
ondary PLC is
powered off or
crashes

Case 2 b): Sec-
ondary PLC
stop

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3872

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0016 and xHaModPrimary = TRUE
Secondary PLC is stopped.

If “lifecom2” is lost and the PLC is in STOP mode RUNTIME ERROR will not
be TRUE. This is because Modbus is still responding even if PLC is in STOP
mode.

Reaction Switchover to secondary PLC. The communi-
cation interface modules are updated by the
new primary.

Comment CI52x outputs are frozen during the switch-
over period.

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0094 and xHaModPrimary =
FALSE
Secondary PLC: control block output Runtime
Error = 16#0015 and xHaModPrimary = TRUE

Case 3: Primary
PLC loses con-
nection to
fieldbus CI52x
modules

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3873

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0015 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0094 and xHaModPrimary =
FALSE

Case 4: Secon-
dary PLC loses
connection to
fieldbus CI52x
modules

Case 5: CI52x is
powered off or
stopped

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3874

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0081 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0081 and xHaModPrimary =
FALSE

If any CI52x-MODTCP module is powered off and on, there is no need to
power restart the complete system. The module will be recognized once the
communication is reestablished.

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0014 / 16#0094 and xHaModPri-
mary = TRUE
Secondary PLC: control block output Runtime
Error = 16#0014 / 16#0094 and xHaModPri-
mary = FALSE

Case 7 a): Sync
connection is
broken between
the PLCs

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3875

Reaction No switchover

Comment Process continues

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0008 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0008 and xHaModPrimary =
FALSE

Case 7 b):
Lifecom2 con-
nection is lost
between the
PLCs

Case 8: Primary
PLC loses
SCADA connec-
tion

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3876

Reaction No switchover

Comment Process continues, SCADA is responsible to
detect and switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0000 and xHaModPrimary =
FALSE

Reaction No switchover

Comment Process continues, SCADA is responsible to
detect and switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE
Secondary PLC: control block output Run-
time Error = 16#0000 and xHaModPrimary =
FALSE

SCADA link may be combined with sync connection or “lifecom2” connection. In
that case runtime error and system behavior will be as described in the cases
above (Sync connection lost / “lifecom2” connection broken).

Case 9: Secon-
dary PLC loses
SCADA connec-
tion

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3877

Reaction Changeover from primary PLC to secondary
PLC.

Comment CI52x outputs will be frozen during switchover

Diagnosis message on function block Primary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary =
FALSE
Secondary PLC: control block output Runtime
Error = 16#0000 and xHaModPrimary = TRUE

A manual switchover can be triggered from both PLCs. For each trigger a
switchover from primary PLC to secondary PLC will take place.

6.5.9.1.4 How to get and install the AC500 High Availability system package
The PS5601- High Availability Modbus library package can be installed from the Automation
Builder Installation Manager by selecting the component.

Case 11: Manual
changeover by
user

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3878

Fig. 302: Automation Builder Installation Manager

The following components are installed:
● Libraries

– AC500 V2 libraries: C:\Program Files (x86)\Common Files\CAA-Tar-
gets\ABB_AC500\AC500_V12\library\PS5601-HA-MTCP
CI52x_AC500_Vxx.lib, HAModbus_AC500_Vxx.lib.

– AC500 V3 libraries available in library repository:
ABB_CI52x_AC500.compiled-library, ABB_HaModbus_AC500.compiled-library

● Online help: HA-CS31, HA Modbus V2 function block description
● Automation Builder Example folder: %ALLUSERSPROFILE%\Documents\Automation

Builder Examples\PS5601-HA-MTCP
– AC500_V2: Examples for AC500 V2 including documentation
– AC500_V3: Examples for AC500 V3 including documentation
– BulkDataManager: Bulk Data Manager (BDM) tool which helps efficient engineering

in larger projects. This requires a separate installation. Further information can be
found in the document: %ALLUSERSPROFILE%\Documents\Automation Builder Exam-
ples\PS5601-HA-MTCP\BulkDataManager\Documentation.

– HA-Modbus TCP System Technology.pdf (this document)

6.5.9.1.5 System structure
Introduction

This chapter explains the detailed structure of the HA system in CODESYS. A HA-Modbus TCP
system is characterized by two AC500 PLCs with the following features:
● Identical programs (application with additional HA and Modbus function blocks) that are

loaded to both PLCs.
● Communication interface modules CI52x-MODTCP that are connected via Modbus TCP.
● Synchronization of both PLCs (sync/lifecom1 and lifecom2 logical connections).

Programming
Each PLC contains at least three main tasks/ programs:
● HA program
● Application program
● Modbus program

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3879

The programs in one PLC communicate via internal structures of the libraries and dedicated
internal memory areas for HA-Sync array and the Modbus CI52x memory(ies) CiModDataxx.

Fig. 303: Principle structure of the HA system and recommended tasks: HA, Modbus, Applica-
tion

Table 743: Image description
Layout element Meaning
Dotted outline box Indicates optional function block or programs.

Solid outline box Indicates the mandatory function blocks or
programs. All mandatory blocks are called
when an export is created from Bulk data
manager.

Italic font Indicates the program or functions user should
call in his project and not created by Bulk data
manager.

Light yellow background block / blue arrow Indicates the operations which are handled
internally in the library.

Green solid box Indicates the three different tasks which user
has to configure.

The function block CIModCI52x (V3) / CI_MOD_CI52x (V2) reads the input values from the
CI52x modules and stores them in the structure CiModDataxx. If the CPU is primary it also
writes the outputs to the CI52x modules. The Function block also parametrizes the CI Module
as configured in e.g. Bulk data manager tool during the first startup or when a CI module is
exchanged.

Modbus pro-
gram

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3880

Normally the HA-Modbus TCP library takes care of communication monitoring.
Nevertheless if com- munication is cut completely, the CI52x communication
interfaces and its I/O modules have to react on their own to achieve a bumpless
or desired behavior: The following parameters for the CI52x com- munication
interfaces and I/O modules need to be considered:

– – CI52x: parameter “Timeout" for Bus supervision: 2)

Allows to detect errors from communication interface side as well and take
action to ensure a fail- safe behavior if communication is cut. It can be set in
10 ms steps. If set to 0 no bus supervision is active. Proposed value: 50 =
500 ms = default in Bulk data manager; this value should be increased, e.g.
to value 65 if AC500 V2 CPU ports are used for field communication to take
care of the larger TCP retransmit time.

– “Behaviour Outputs” at “Timeout for Bus supervision” 1), 2). This fail-safe
parameter has to be con- sciously set: separate settings are possible for
each module (and communication interface): “off”; “last” or “substitute”: 5 s,
10 s, ∞ s 1).

Remarks:
1) The parameters “Behaviour Outputs at comm. Error” is only analyzed if the
Failsafe-mode is [ON].
2) Both are CI52x parameters set e.g. via Bulk data manager tool in the pro-
gram.

● At the start of the application task the InputRefresh program has to be called. It copies data
from Modbus via the structure CiModDataxx to the user variables, which were defined in
BDM as signals. For further information refer to BDM documentation, which is available in
the path: %ALLUSERSPROFILE%\Documents\Automation Builder Examples\PS5601-HA-
MTCP\BulkDataManager\Documentation.

● Only the main application programs should be in this task and use these variables
for the user defined functions. E.g here the user programs and logic should be called
and use the HA libraries utility blocks (which sync their historic data automatically) and
HA_MOD_DATA_SYNC blocks for further user data which should be synchronized.

● Data of utility blocks and HA_MOD_DATA_SYNC blocks are copied to the HA Sync array of
the primary CPU (which is sent to the secondary CPU by the HA program).

● OutputRefresh program is called as a last step. It copies data from the user variables via
structure CiModDataxx to Modbus.

Consider the on-delay timer HA_MOD_TON (V2)/ HaModTon (V3).

Fig. 304: HaModTon utility function block with internal synchronization

Both PLCs require the same function block called in the program. Under normal operating
conditions the elapsed time ET and output Q of the timer is synchronized internally from primary
to the secondary CPU. ET and Q data are available and can be attached to local or global
variables in the program as per application requirements. If PLC A shuts down due to a fault,
the primary status switches over to PLC B.

Application pro-
gram

Example of a
utility function
block (with inte-
grated sync
data)

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3881

In the event of a switchover, the moment PLC B becomes the primary, the timer on this PLC
will keep running. Until the time of PLC A failure, the timer on PLC B was synchronized. This
is most important in cases when one CPU was not in run or off and needs to “catch up” such
integral or historic system values (timers, counters, operator settings, …). The actual process
remains then unaffected by the switchover.

HA_MOD_CONTROL has two functions:
● Exchange status data (lifecom1 and lifecom2) and switch from secondary to primary PLC

(or vice versa) based on the status according to the use cases described in 'Failures and
use cases' Ä Chapter 6.5.9.1.3.1 “Failures and use cases” on page 3869.

● Send sync “HA SYNC” array from primary to secondary PLC to ensure that the secondary
PLC is always in hot-stand-by and can take over immediately. UDP protocol is used for data
synchronization between the CPUs.

This chapter explains how the data synchronization happens between primary and secondary
PLC via UDP.
All prepared sync data is synchronized with the secondary PLC. Typically only integral values
(timers, counters, PID, …) or settings which might have been received have to be synchronized.
For example for fast start-up cases when a secondary CPU was restarted, as both PLCs are
running and calculating closely in parallel and based on the same input values, synchronization
will make the secondary start with current value instead of default value. For details on how to
configure or use the data sync function block refer example projects.
Following steps are performed:
● HA SYNC array is transferred via UDP to the secondary CPU. This includes the exchange

of lifecom1 status between primary and secondary CPU.
● In the HA program the HA_MOD_CONTROL function block collects all diagnosis, sync and

lifecom2 data from the field and/ or the other PLC. Whether a switchover is necessary is
decided based on a simple decision matrix.

● Lifecom2 is exchanged between CPUs over Modbus TCP every cycle.
● One task per program, see figure above.
● Status of the inputs connected to CI52x decentralized I/O stations is transferred to both

PLCs simultaneously in every PLC cycle. They are received by the CI52x function block.
● At the end of the program, the generated output values are sent, by transferring from the

primary PLC respective buffers to the CI52x-MODTCP module(s) via CI52x function block
and Modbus TCP. The secondary PLC is prepared to send but stays “silent” (not sending
output values).

PLC needs one HA cycle to send one ETH frame data from primary to secon-
dary CPU and receive acknowledge from secondary CPU. Similarly V3 PLC
needs two HA cycles.

One ETH frame copies approx. 1412 data bytes. The number of ETH frames needed to syn-
chronize HA Sync Array completely depends on the number of data sync bytes. Global variable
iNoOfEthFrames gives the user this information, which should be used to calculate the cycle
time for the application task.
Ä Chapter 6.5.9.1.5.3 “Task configuration recommendations for HA system” on page 3884

Up to max. 60 kB of Sync data can be synchronized.
Synchronization between the primary and the secondary PLC happens over a few cycles of HA
task time depending on the total sync data bytes configured in the system. Lifecom1 is also
exchanged between the primary and the secondary PLC. The primary PLC sends lifecom1 to
the secondary PLC along with sync data. Backwards the secondary PLC sends lifecom1 to the
primary PLC every cycle.
The following figures shows an example for V2 PLC. When in the project the sync data is equal
to 4 iNoOfEthFrames then it takes 4 HA cycles to synchronize the data between the PLCs.

HA program

Data synchroni-
zation via UDP

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3882

When sync data in the project is equal to 6 iNoOfEthFrames then it takes 6 HA cycles to
synchronize the data between the PLCs.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3883

Task configuration recommendations for HA system
For a balanced performance of the HA system consider the following recommendations in your
project task configuration:
General
● Use the real time priorities for all HA related tasks. The HA program/ task should be called

at highest priority as it is responsible for the core HA functionality and should be the fastest
task.

● The Modbus task contains the Modbus communication function blocks at lower priority and
(depending on CPU performance) also a faster cycle time to ensure sufficient update rates
on Modbus without over- loading the CPU with communication.

● The application program parts should be called in the application task with even lower
priority and a larger cycle time than above tasks.

● Configuration to improve standard Modbus TCP for a fast switch over between PLCs.
● AC500 V2

– CM597ETH_SET_TCP_RTO function block from CM597_ETH_AC500_V28.lib needs to
be called inside HA task. User needs to call this function block for each CM597 module
connected. For recommended values see example description.

● AC500 V3
– RTO retransmission time function block “EthSetRtoMin” for the ETH port where fieldbus

communication is configured. By default, minimum retransmission time configured is 15
ms.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3884

Task Priority PM57x, PM58x, PM59x PM595-4ETH V3 PLCs
HA 10 (high) 4 ms or higher 2 ms or higher 4 ms or higher

Modbus 11 (medium) Maximum of (HA cycle
time *2), (3 ms +
roundup (#CI/2))

Maximum of (HA
cycle time *2), (3
ms + roundup
(#CI/2))

Onboard ETH: Max
((HA cycle time *2),
(3 + roundup (#CI
modules/2)))

CM5640-2ETH: Max
((HA cycle time * 2),
(#CI modules))

Application 12 (low) Maximum of (Modbus
cycle time *2), (iNoO-
fEthFrames * HA cycle
time)

(iNoOfEthFrames
* HA cycle time)

Maximum of
(Modbus cycle
time *2), (iNoOfEth-
Frames * HA cycle
time *2)

1. Choose suitable CPU type according to chapter CPU choice, system size, performance
indications

2. Configure task priorities according to the table
3. Set HA task to minimum according to above table
4. Calculate Modbus cycle time according formulas in the table, based on HA cycle and

number of CI modules “#CI”
5. Calculate Application cycle time according to formulas in the table, based on Modbus

cycle time and variable iNoOfEthFrames, which is defined in the global variables of HA-
Modbus TCP library.

6. Measure PLC and CPU load during trial operation.
V3: PLC Utilisation Ä Chapter 6.8.2.2.1.7 “PLC utilization” on page 4428

If the PLC load is higher than 40 % or CPU load higher than 60 % then increase HA cycle
time (e.g. to 8 ms / 12 ms / 24 ms, …) and go to step 4, repeat the steps until loading is
within defined range.

A new V3 CPU configuration option is introduced from Automation
Builder 2.4.1 and onwards which allows to change the priority for Ethernet
communication in PLCs.

Set this configuration in the device tree of the CPU in Automation Builder
double click on PLC “CPU Parameters è Communication Schema
è Select “Onboard Ethernet””.

The above parameter should be set to “Onboard” Ethernet for HA systems
and it will consequently increase the loading due to the higher priority.
PLC Load < 50 % and CPU load < 70 % should be considered as guide-
lines here instead, while setting the task times while setting the task times.

Procedure for
task configura-
tion

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3885

7. Following timeout values has to be defined in the user project according to the relation
defined.

Timeout variables (see defini-

tions in box below table)

HA in V2 HA in V3

timCI52xTimeOut 1 * Modbus Task time 50 ms or 2 * Modbus Task
time, whichever is higher

timHaModSyncTimeOut 1* HA Task time 2 * HA Task time

timResponseTimeout Not applicable 50ms or (3 * “Modbus Task
time”), whichever is higher

timCanTimeOut Not applicable 100 ms or increase in mul-
tiple of 100

timeLifecom2TimeOut 50 ms 50 ms

8. Add additional applications and SCADA communication: Check PLC and CPU load again
vs. your requirements.

In the HA Modbus system different timeouts must be configured for the fine
operation of the system as described above in the task configuration for V2 and
V3 PLCs. These different timeouts meaning, and relation is explained below:

timHaModSyncTimeOut:
Time limit to check if the new sync data is received or not in the secondary PLC.
If this timeout is not defined properly, Sync lost error/ “lifecom1” lost error will be
generated.

timCanTimeOut:
Time used for the check whether “lifecom2” is received when configured via
CAN. This value is applicable only in AC500 V3. Lifecom2 via CAN won’t be
stable between the PLCs and runtime error "lifecom2 lost" will be flickering if not
the right value is configured.

timCI52xTimeOut:
Time limit to check whether new data is received in the Modbus field modules.
It is also used to check whether “lifecom2” is received when configured via
Modbus TCP. If “timCI52xTimeOut” is not defined as described, “lifecom2”
error / communication interface diagnosis error will not be generated as
expected.

timResponseTimeOut:
Timeout value to check whether CPU has lost the communication interface
modules connected in the network. If this value is not defined as described,
communication interface module lost detection will not be indicated properly.

timeLifecom2TimeOut
Time limit to check whether “lifecom2” is received when configured via Modbus
TCP. Set “timlifecom2TimeOut” value to default 50 ms, if the value is not defined
correctly, runtime error “Lifecom2 lost” diagnosis error will not be generated as
expected.

Field I/O network topologies
General

Modbus TCP communication between PLC and communication interface modules CI521-
MODTCP or CI522-MODTCP can be done using different network topologies. In the following
subchapters different simple combinations with their pros and cons are explained.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3886

If a CI52x module of a daisy chain is powered off, next following modules will
lose connection/ data provided there is no redundancy in the Ethernet network
(e.g. ring and managed switch).

Simple ring topology (smaller systems)
In a simple configuration, CI52x modules can be part of a ring if MRP (or DLR) protocol is used
in the managed switches. Then the CI52x are connected from one to another device (“daisy
chained") through e.g. two network switches. The redundancy protocol detects a closed ring
and opens one port of a managed switch to avoid the ring. The user has to configure the
necessary ring configurations and enable the ring manager for the used ring ports in one switch.

It is recommended that time interval between ETH cable disconnection and
re-connection should be greater than 2-3 seconds.

Fig. 305: Redundant ring topology with 2 MRP switches (avoids a SPOF (Single Point Of
Failure))

Standard network topology (large systems)
In the standard redundant network, which is often done by third party dedicated telecommunica-
tion companies, managed switches are used for every connection point to this network. It’s the
network's (and operator's) responsibility to repair any failure fast enough so that no influence on
the HA system or its outputs occur.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3887

The network can use other fast redundancy algorithms, also having other than ring structures, if
redundancy links are activated fast enough.

Fig. 306: Redundant ring topology with independent network (using any fast redundancy mech-
anism internally in a ring or meshed network)

Parallel network topology (using PRP)
Each CI52x module and PLCs as single ended devices are connected by PRP switches to both
networks. Here the failure of the switch which connects the primary CPU will also lead to a
switchover.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3888

Fig. 307: Parallel-redundant network, PRP switches to connect each device, CPU and commu-
nication inter- face modules

Redundancy switchover timing should match the settings in the program and communication
interface modules for time-out and freeze periods. The networks for larger systems are often
seen as a separate entity and done by a separate company. Make sure to have the redundancy
status information of the network at least in SCADA, to repair in time. If the I/O field network
responsibility is with the automation/ PLC part, the redundancy status should be also monitored
by the PLC. A warning to initiate repair may be created from the managed switches in the I/O
field network.

● Alarm output(s) wired (e.g. to a CI52x input and related settings of the switch(es)).
● Settings of the switch(es) to send (e.g. SNMP traps, which can be received in PLC

(AC500 SNMP library)).
● Use of “automation switches” which can also communicate their status directly via

Modbus.

Examples

It is also possible to connect switches in ring combination with CI modules
connected to them in daisy chain. User needs to do the relevant setting based
on type of switch and protocol (Ex: MRP, RSTP).

If RSTP ring configuration is used in the system, ring reconfiguration time is
slower than other ring protocols. During this reconfiguration, connection to the
CI modules will be lost.

HA Modbus system without communication interface modules in the network
It is also possible to have a HA Modbus system without connecting any field devices, CI521-
MODTCP / CI522-MODTCP in the network. This system can be used for establishing a redun-
dant PLC system with data synchronization between two AC500 controllers, either without field
IO or with user integration of other protocols to field-IO or “intelligent” IO: CPUs as field devices.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3889

Secondary will be on hot standby with primary PLC, during a power off/ stop of the primary PLC.
Secondary will take over the control and continue the process. Any user integrated field-IO or
CPUs can establish communication mapped with the primary bit: parallel reading but prevent
parallel writing.
HA without CI modules can be also used during commissioning to check the data sync, OPC
and SCADA related communications without any field devices configured. The user has to set
the global variable 'xNoCiBus' to TRUE defined in the HA_GLOBAL_VARIABLES. This variable
has to be set to TRUE in both PLCs. Note: It is not advised to update this variable during run
time.

Fig. 308: Simple SCADA connection

6.5.9.1.6 Getting started
Quick start list and guidelines
Workflow

Fig. 309: Engineering workflow using Automation Builder

Simple steps to engineer the HA Modbus system is explained in the following chapters.

Configuration without communication interface modules to establish redundancy
Configuration of the HA system without communication interface modules to establish redun-
dancy is done by the following steps (for details see the example documentations):

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3890

1. Install the hardware Ä Chapter 6.5.9.1.2 “Hardware, requirements and options overview”
on page 3862.

2. Select the CPUs based on the requirements Ä Chapter 6.5.9.1.2.2 “CPU choice, system
size and performance indications” on page 3864.

3. Install Automation Builder including the latest libraries Ä Chapter 6.5.9.1.4 “How to get
and install the AC500 High Availability system package” on page 3878.

4. Create a new project in Automation Builder for the chosen CPUs.
5. Configure the required Modbus and UDP configuration in the Automation Builder device

tree of the CPU.

6. For UDP in AC500 V2 PLC, configure “UDP_no_AC31_header” and set the port number
to value '3000'.

7. Assign the IP addresses in ³ 2 different Ethernet networks:

● SCADA network: SCADA, connected PLC A and PLC B
● Field network: connected CI52x module(s)

8. Configure the mandatory HA_MOD_CONTROL function block for the HA task Ä “HA
program” on page 3882.

9. Add Callback stop function HA_MOD_CALLBACK_STOP and call it in the system event
“stop”.

10. Add optional HA utility function blocks or function block HA_MOD_DATASYNC.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3891

11. Make the global variable xNoCiBus = TRUE to run the system without communication
interface module configured in the system Ä Chapter 6.5.9.1.5.4.5 “HA Modbus system
without communication interface modules in the network” on page 3889.

12. Add the task configuration Ä Chapter 6.5.9.1.5.3 “Task configuration recommendations for
HA system” on page 3884.

13. Activate the runtime license if it is a V3 PLC to enable HA system Ä Chapter 6.3.2.2.2
“PLC runtime licensing” on page 1446.

14. Compile and download to both PLCs (simplified in V3 via integrated download manager).
15. Create a boot project, restart the complete system and RUN.
16. Operation: Test use cases (e.g. by putting the primary PLC to STOP mode and observe

the switchover). For different use cases and behavior refer to .
17. Runtime error and diagnosis function block can be used to monitor the system Ä Chapter

6.5.9.1.8 “Diagnosis” on page 3895.

Configuration with communication interface modules and redundancy
For medium or large HA systems the configuration with communication interface modules and
redundancy is done by the following steps. For details see the example documentations:
1. Install the hardware Ä Chapter 6.5.9.1.2 “Hardware, requirements and options overview”

on page 3862.
2. Select the CPUs based on the requirements Ä Chapter 6.5.9.1.2.2 “CPU choice, system

size and performance indications” on page 3864.
3. Install Automation Builder including the latest libraries Ä Chapter 6.5.9.1.2 “Hardware,

requirements and options overview” on page 3862.
4. Install the Bulk Data Manager tool (BDM) Ä Chapter 6.5.9.1.4 “How to get and install the

AC500 High Availability system package” on page 3878.
5. Create a new project in Automation Builder for the chosen CPUs.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3892

6. Configure the required Modbus and UDP configuration in the Automation Builder device
tree of the CPU. UDP settings are only required in AC500 V2 PLCs.

7. For UDP in AC500 V2 PLC, configure “UDP_no_AC31_header” and define the port
number as '3000'.

8. In AC500 V2 PLCs for each CM597-ETH communication module added the “Send
timeout” value has to be changed to 600 ms for the Modbus TCP server.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3893

9. Assign the IP addresses in ³ 2 different Ethernet networks:

● SCADA network: SCADA, connected PLC A and PLC B.
● Field network: connected CI52x module(s).

10. Configure a network switch in the field network (if managed /redundant) based on network
redundancy required Ä Chapter 6.5.9.1.5.4 “Field I/O network topologies” on page 3886.

11. Run BDM tool to configure CI52x network.
12. Export the files. Refer for details in the document: %ALLUSERSPROFILE%\Docu-

ments\Automation Builder Examples\PS5601-HA-MTCP\BulkDataManager\Documenta-
tion.

13. Import the Bulk data export files to the Automation Builder project.
14. Add Modbus TCP configuration for the ETH ports.
15. For the system with V3 PLCs, set the Communication Schema to “Onboard Ethernet”

“CPU Parameters” for better performance.

16. Add Callback stop function HA_MOD_CALLBACK_STOP and call it in the system event
“stop”.

17. Add optional HA utility function blocks or function block HA_MOD_DATASYNC.

18. Add the task configuration Ä Chapter 6.5.9.1.5.3 “Task configuration recommendations for
HA system” on page 3884.

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3894

19. Activate the runtime license if it is a V3 PLC to enable HA system Ä Chapter 6.3.2.2.2
“PLC runtime licensing” on page 1446.

20. Compile and download to both PLCs (simplified in V3 via integrated download manager).
21. Create a boot project, restart the complete system and RUN.
22. Operation: Test use cases (e.g. by putting the primary PLC to STOP mode and observe

the switchover).
23. For different use cases and behavior refer to 'Failures and use cases' Ä Chapter

6.5.9.1.3.1 “Failures and use cases” on page 3869.
24. Runtime error and diagnosis function block can be used to monitor the system Ä Chapter

6.5.9.1.8 “Diagnosis” on page 3895.

6.5.9.1.7 HA-Modbus TCP Limits
HA-Modbus TCP is supported as of Automation Builder 2.0 or higher and the corresponding
AC500 CPUs mentioned previously. AC500 V3 PLC is currently not supporting external ETH
communication modules. Therefore, onboard ETH1, ETH2 (and eventually CAN) ports are to be
used for communication.
3000 sync instances can be used: Either 3000 HA_MOD_DATA_SYNC function block instances
alone or together 3000 instances of HA_MOD_DATA_SYNC inclouding + HA utility function
block can be used. If more than 3000 instances are configured user can see the error at
xHaModDataErr = True and wHaModDataErNo = 16#2022 in HA_GLOBAL_VARIABLES.
The maximum length of sync data at an instance of HA_MOD_DATA_SYNC function block
would be 1412 bytes. The maximum size of sync data which can be synced between PLCA and
PLCB in total can be max. 60 000 bytes.
The HA-Modbus TCP system takes care of the first fault only. This fault must be visualized by
the programmer and overall system (e.g. HMI, SCADA) to the operator, to plan and repair as
soon as possible as redundancy might be lost. If more than one error occurs, system may not
react to second or following faults.
SCADA/ HMI has to be configured/programmed to:
● Only read data from the primary PLC.
● Parameters and control data should be always written to both PLCs or has to be synchron-

ized via the function block.
This is given automatically when using OPC DA, where the CODESYS OPC Server does this
switching for the connected clients according to the primary status. For CP600 HMI a script is
available to switch likewise (connected via the internal AC500 protocol or Modbus). Zenon as a
SCADA also uses the AC500 protocol to automatically switchover.

6.5.9.1.8 Diagnosis
General

This chapter explains the diagnosis information available to the user in the HA Modbus library
and CI52x library. Diagnosis information is available at the outputs of HA control function block,
HA Diagnosis function block and at the CI52x function block.
Depending on the use case different diagnosis information can be accessed.
Ä Chapter 6.5.9.1.3 “Functionality” on page 3869

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3895

Primary CPU currently can read-out the diagnosis information (CI52x function
block outputs) from communication interface module only once, hence secon-
dary PLC will not be able to read the diagnosis information from the CI52x
module.

So if any change happens in CI52x diagnosis it is not reflected in the secondary
CPU.

This can lead to different diagnosis information of CI52x module in the primary
and the secondary CPU. Hence it is recommended to customers that diagnosis
information should be handled in the application (e.g. SCADA).

Diagnosis in HA-Modbus TCP library
In the HA Modbus library diagnosis information is available at the control block and diagnosis
block.

This output at the HA control block gives the information of system configuration. Each bit of the
word represents a different configuration.

Bit Description
0 Sync is configured via CAN

1 Sync is configured via UDP

2 Lifecom2 is configured via CAN

3 Lifecom2 is configured via UDP

4 Lifecom2 is configured via Modbus TCP

5 Initialization for Ethernet configuration

This output at the HA control block gives the details of error in the configuration. Each bit of the
word represents different configuration errors. It is valid only when Error = TRUE.

Bit Description
0 Communication interface module is not configured properly

1 1< SyncSlot >3. Invalid value at input sync slot

2 1<SecSlot>3. Invalid value at input second slot

3 Value at IpAdrCpuASync is invalid

4 Value at IpAdrCpuBSync is invalid

5 Value at IpAdrCpuALifecom2 is invalid

6 Value at IpAdrCpuBLifecom2 is invalid

7 IpAdrCpuASync = IpAdrCpuBSync or IpAdrCpuALifecom2 = IpAdrCpuBLi-
fecom2
The IP addresses assigned at sync or lifecom2 inputs are wrong

This output at the HA control block gives the details of the error during run time of the system.
Each bit of the word represents different runtime errors. It will not set Error = FALSE.

Output System
Configuration

Output System
Configuration
error

Output Runtime
error

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3896

Bit Description
0 Communication interface modules are lost

1 Other CPU is not active

2 Lifecom1 is lost (part of sync)

3 Lifecom2 is lost. This error will not be TRUE if the PLC is in STOP status. This is
because Modbus is still responding even when PLC is in STOP

4 Synchronization is lost

5 Error in synchronization

6 Ethernet status error

7 Other PLC lost communication to CI52x modules

8 CAN_HEADER function block has error

9 CAN_DATA function block has error

10 fbGetOwnIP function block has error

Outputs at the HA Diagnosis function block, HaModDiag (V3) / HA_MOD_DIAG (V2) provides
the following diagnosis information of the HA system.

Output Description
CpuAPrimary / CPUA_PRIMARY TRUE indicates CPU A is primary

CpuBPrimary / CPUB_PRIMARY TRUE indicates CPU B is primary

CpuARun / CPUA_RUN TRUE means CPU A is in RUN mode

CpuBRun / CPUB_RUN TRUE means CPU B is in RUN mode

CpuACI52xBusActive /
CPUA_CI52x_BUS_ACTIVE

Modbus TCP CI52x bus active on CPU A

CpuBCI52xBusActive /
CPUB_CI52x_BUS_ACTIVE

Modbus TCP CI52x bus active on CPU B

CpuACi52xCfg / CPUA_CI52x_CFG Total number of CI52x configured on CPU A

CpuBCi52xCfg / CPUB_CI52x_CFG Total number of CI52x configured on CPU B

CpuACi52xAct / CPUA_CI52x_ACT Total number of CI52x active on CPU A line

CpuBCi52xAct / CPUB_CI52x_ACT Total number of CI2x active on CPU B line

SyncInstances / SYNC_INSTANCES Number of data sync and utility blocks initial-
ized in the system

SyncDataCheckSum / SYNC_DATA_SUM Checksum of all address pointer blocks in
bytes, indicates total number of bytes getting
synchronized.

Diagnosis func-
tion block

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3897

Output Description
StHACpuStatus / stHA_CPU_STATUS HA own CPU status. It will show the status

details of logged in CPU for the following
parameters:
● HA1: CPU A is primary
● HA2: CPU B is primary
● bit_CI52x_BUS_active: CI52x bus with

one or more communication interface
modules active

● bit_CI52x_BUS_err: CI52x bus one or
more communication interface modules
powered off / connection lost

● RUN: Run status of CI52x
● cnt: Count of data sync communication,

indicates data sync between CPUs is
okay.

StHAotherCpuStatus /
stHA_OTHER_CPU_STATUS

HA other CPU status. It will show the status
details of other CPU for the following parame-
ters:
● HA1: CPU A is primary
● HA2: CPU B is primary
● bit_CI52x_BUS_active: CI52x bus with

one or more communication interface
modules active

● bit_CI52x_BUS_err: CI52x bus one or
more communication interface modules
powered off / connection lost

● RUN: Run status of CI52x
● byETH_ACT_CI52x_Count: CI52x alive

identification count.

Apart from the errors / diagnosis information available in the control and diagnosis block, few
other variables can be monitored too.

Variable Value Description
wHA_ER_NO_SYNC_LINK 16#7487 No sync link between the

PLCs

HA_MOD_INVALID_LENGTH 16#2017 Invalid length at the input of
the data sync block

HA_MOD_ERNO_TBL_OVER
FLOW

16#2022 HA data reference table is full

xHaModDataErr TRUE IF TRUE – HA data sync is in
error state

wHaModDataErNo HA data sync error code

xHaModErr TRUE HA system is in error state

dwHaModServerAlive Life counter incremented by
OPC DA server

Other diagnosis
variables

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3898

Diagnosis in CI52x library
In addition to the diagnosis information in the HA Modbus library, additional diagnosis informa-
tion for each communication interface module can be obtained from the CI52x library.

This output at the CI52x function block gives the details of the configuration error in the CI52x
module. Each bit of the byte represents different configuration errors:

Bit Description
0 Reserved

1 Wrong ETH port is configured at input Config ETH

2 Wrong IP address is configured for communication interface module

RuntimeError (v3) / RUNTIME_ERROR (v2) of the function block CiModCi52x (v3) /
CI_MOD_CI52x (v2). Runtime error is a combination of error bits that are described in the
following:

Runtime Error Description
Bit 0 Indicates communication error i.e., when CPU is not able to

get any response from CI52x module. This error will get reset
when communication is reestablished.

Bit 1 Indicates parameter state is not equal to 2
(PARA_STATE_PARA_DONE). If not true, then system gives
I/O bus error. System resets this error when parameter state is
equal to 2.

Bit 2 Indicates the cluster error 1) in the system, if there is an error
in the diagnosis buffer. ACK input is needed to reset this error.

Bit 3 Indicates the hardware configuration error, mismatch between
configuration and actual hardware detected. System automati-
cally resets this error when the hardware matches.

S-ERR (LED on communica-
tion interface module)

Indicates that there is some issue with channel configuration in
the cluster 1). It is not linked with Runtime Error. User can read
DiagBuffer (v3) / DIAG_BUFFER (v2) from CiModDiag (v3)/
CI_MOD_DIAG (v2) function block to get more information.
This error does not get reset using ACK. It will only reset when
all channel errors are removed.

1) "Cluster" means a combination of one communication interface module and several I/O
modules attached to it.

Runtime error in different scenarios:

System Config-
uration error

Runtime error

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3899

Error Run-
time
error

PLC A: Primary PLC B: Secondary
Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluste
r error

Bit3 -
HW
config
error

Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluster
error

Bit3 -
HW
config
error

Wrong IP
address
configured

16#1 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE

Wrong slot
address
configured
1)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Communi-
cation
cable dis-
connected

16#2 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

Wrong I/O
module
plugged in
the CI
module

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Wrong
hotswap
I/O module
plugged at
the start

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Wrong
hotswap
I/O module
swapped
online

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Configured
I/O module
not con-
nected at
start 2)

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

Configured
hotswap
I/O module
not con-
nected at
start 2)

16#B BLINK TRUE FALSE TRUE BLINK TRUE FALSE TRUE

I/O module
powered off
in CI
module 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Hotswap
I/O module
powered off
in CI
module 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Remove
hotswap
I/O module
when
online 2)

16#4 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3900

Error Run-
time
error

PLC A: Primary PLC B: Secondary
Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluste
r error

Bit3 -
HW
config
error

Bit0 -
comm
error

Bit1 -
I/O bus
error

Bit2 -
cluster
error

Bit3 -
HW
config
error

CI module
is powered
off

16#2 TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE

Mismatch in
Channel
configura-
tion and
wiring 3)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Regular I/O
module
mounted on
hotswap
terminal
unit 4)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

During an
error stage
if HA
system
changeover
is initiated
5)

16#0 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

1) Slot input in the block can be ignored. Similar to ETH input of the ModMast blocks.
2) Error generated only in the primary PLC, to reset ACK input to be used.
3) No runtime error in function block. Module generates S-Err and ZP Blinks.
4) No runtime error in function block. Module generates S-Err.
5) Runtimer Error bit2 gets reset when the PLC is switched over and error won’t be available in
any of the PLC regardless of its Primary status.

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3901

Table 744: Function block CiModDiag (V3) and CI_MOD_DIAG (V2)
Output Description
DevState / DEV_STATE CI521 or CI522 device current status is displayed.

● STATE_PREOP: Device is booting
● STATE_OPERATION: Device is operational, no bus super-

vision is active
● STATE_ERROR: Device detected a bus error, bus supervi-

sion is active
● STATE_IP_ERROR: Device has an IP address error
● STATE_CYLIC_OPERATION: Device is operational, bus

supervision is active
● STATE_NA: Not available

ParaState / PARA_STATE CI521 or CI522 device parameter status.
● PARA_STATE_NO_PARA: Device has no parameters
● PARA_STATE_PARA_ACTIVE: Parameterization process

is running
● PARA_STATE_PARA_DONE: Device used valid parame-

ters and parameterization is done
● PARA_STATE_ERROR: Device has invalid parameters
● PARA_STATE_NA: Not available

DeviceInfo / DEVICE_INFO CI521 or CI522 type and extended module types. This will
give the details of the module configured in the communication
interface module including the I/O modules.
If module is with suffix F, then fast counter is enabled for that
module.

DiagBuffer / DIAG_BUFFER CI521 or CI522 module diagnosis buffer Ä Chapter
6.8.4.1.2.3.3 “Diagnosis data” on page 4576.

ErClass / ERR_CLASS Communication interface error class Ä Chapter 6.9.3 “Diag-
nosis messages” on page 4655.

ErNo / ERR_NO Communication interface error number Ä Chapter 6.9.3 “Diag-
nosis messages” on page 4655.

ModMastErr / MOD-
MAST_ERR

Latest 22 Modbus TCP error message status of the Mod-
MastTcp (V2) / COM_MOD_MAST (V2) function block.

ModMastErNo / MOD-
MAST_ERR_NO

Latest 22 Modbus TCP error numbers. Refer to the error
details in Modbus library Ä Chapter 6.5.9.1.8.2 “Diagnosis in
HA-Modbus TCP library” on page 3896.
V3: Refer to the ERROR_ID enumeration in the Modbus TCP
library (in the Library Manager)

6.5.9.1.9 Library overview
CODESYS V3 libraries are described in the Library Manager as an integrated documentation.
Refer to the documentation section within the Library Manager.
The following function blocks are contained in the libraries:

Communication
interface diag-
nosis

Documentation

Configuration and programming
Libraries and solutions > High Availability Modbus TCP

2024/01/053ADR010583, 1, en_US3902

HA-Modbus TCP
library

Configuration and programming

Libraries and solutions > High Availability Modbus TCP

2024/01/05 3ADR010583, 1, en_US 3903

6.5.10 Motion Control
6.5.10.1 Motion wizard

This section is an introduction to the key features and tools, which will be used during the
motion solution project.

6.5.10.1.1 Introduction to the project
Understanding the “Motion Solution Project ”

The project type “Motion Solution Project” is an AC500 project with an inbuilt “Motion Solution
Wizard” which helps guide the user intuitively though a step-by-step process to add and con-
figure the motion axis in a few simple steps.

Understanding the “Motion Solution Wizard”
The “Motion Solution Wizard” is a tool which helps the user to efficiently configure the motion
axis. The motion wizard helps the user to configure the axis based on PTO or EtherCAT using
2.7.0.
The time saving functions this includes are; code writing, adding hardware and intuitively setting
up PDO mapping. Afterwards the user can proceed by adding further PLCopen function blocks
based on their application needs.

Understanding the “Motion Specific Device” objects
When using the motion solution to commission the user will come across motion specific
objects. These are devices which allow the user to represent:

HA_CI52x
library

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3904

● Real EtherCAT axes
● Real PTO axes
● Encoders (used for following or closing the position loop)
● Virtual axes (used for following)
Each of these elements contain a motion axis object for configuration.

Understanding the motion axis objects
When using the “Motion Solution Project”, motion axis objects are used to configure the axis
behavior. These are device tree elements which allow the user to:
● define the motor position system type,
● mechanical units, gearing, and scaling
● control settings (PID)
● PLC Limits (Speed, acceleration etc.)
● PDO mapped data (Only for EtherCAT axis)
● “Drive Control Mode” (Only for EtherCAT axis)

6.5.10.1.2 Installing the latest “Motion Control Wizard” and libraries
As described earlier, during the Automation Builder installation process, or later when opening
the Installation Manager the “Motion Control (PS5611)” option can be selected and installed.
After this step is carried out, the latest version of libraries and motion control tools (such as the
“Motion Control Wizard”, Cam editor etc) are available to be used.

6.5.10.1.3 Introduction to the PLC capabilities
Selection of the correct AC500 PLC type

AC500-eCo CPU (type dependent)
● Supports up to 4 PTO channels – (1ms> Profiling time)
● Support onboard EtherCAT – (1ms> Profiling time)
AC500 CPU (e.g.PM56xx-2ETH)
● Supports only motion via EtherCAT using the CM579-ECAT communication module (0.5ms

>)
Each variant has a different limitation which are explained in the following chapters.

PTO operations
Due to differences in the performance of CPU types, there are different limits.

PTO profiling cycle time limits
On the minimum cycle times configurable in each PLC type. These are detailed below:

PLC Type PM5032 PM5052 PM5072 PM 5082
Min. cycle time 5 ms 2 ms 1 ms 1 ms

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3905

PTO hardware limits
Withing the AC500-eCo range there are different revisions hardwares available. The revision 0
hardware can only support 2 * 200 kHz or 4 * 100 kHz PTO, where in revision 1 or higher can
support 4 * 200 kHz PTO channels. To know if you have a revision 1 AC500-eCo PLC, please
refer to the SAP number on the side of the PLC.
● “Revision 1 CPU” has order number 1SAPxxxxxxR017x
● “Revision 0 CPU” has order number 1SAPxxxxxxR007x

Selection of different revision CPU’s
Within the wizard page there is a checkbox for selecting of hardware is revision 1 or higher
(default) or older revision 0 hardware. The tick box should be made matching your revison.

Up to 4 * 200 kHz (default) PTO axis
When the axis is configured in revision 1 CPU, output channels 0 to 3 are available for 200 kHz
outputs. This means “Output 0” to “Output 3” for direction (PTOx Dir) and “Output 4” to “Output
7” for pulse/step (PTOx HS Pulse) and users need to connect the PTI drive cables accordingly.
Wiring example:

The below table shows the user an overview of the hardware channels configured based on the
number of axes configured, this can be used as a reference for the pulse and direction wiring to
PTI drive.

Revision 1 or
higher CPU

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3906

 4 * 200 kHz axis
 Axis1 200 200 200 200

Axis2 200 200 200

Axis3 200 200

Axis4 200

HW
channel
selection

DO0 Output/
PTO0 Dir

Output/
PTO0 Dir

Output/
PTO0 Dir

Output/
PTO0 Dir

Output/
PTO0 Dir

DO1 Output/
PTO1 Dir

 Output/
PTO1 Dir

Output/
PTO1 Dir

Output/
PTO1 Dir

DO2 Output/
PTO2 Dir

 Output/
PTO2 Dir

Output/
PTO2 Dir

DO3 Output/
PTO3 Dir

 Output/
PTO3 Dir

DO4 PWM/PTO0
LS Pulse
PTO0 HS
Pulse/Cw
PTO0 HS
Single 0

PTO0 HS
Single 0

PTO0 HS
Single 0

PTO0 HS
Single 0

PTO0 HS
Single 0

DO5 PWM/PTO1
LS Pulse
PTO1 HS
Pulse/Cw
PTO0 HS
Single 1

PTO0 HS
Single 1

PTO0 HS
Single 1

PTO0 HS
Single 1

DO6 PWM/PTO2
LS Pulse
PTO2 HS
Pulse/Cw
PTO2 HS
Single 2

PTO2 HS
Single 2

PTO2 HS
Single 2

DO7 PWM/PTO3
LS Pulse
PTO3 HS
Pulse/Cw
PTO0 HS
Single 3

PTO0 HS
Single 3

Number of PTO axis per PLC (Below are the maximum PTO axes combinations possible based
on the PTO frequency configured).
● Max 4 PTO axis - 100 kHz
● Max 3 PTO axis - two 100 kHz and one 200 kHz (200 kHz axis must not be configured

between to 100 kHz axis)
● Max 2 PTO axis - 200 kHz

Revision 0
AC500-eCo CPU

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3907

When the axis is configured as 100 kHz, output channel “Output 0” to “Output 3” are configured
as direction output (Value = PTOx Dir) and “Output 4” to “Output 7” are configured as pulse
(Value = PTOx LS Pulse) and users need to connect the PTI drive cables accordingly.
The below table shows the user an overview of the hardware channels configured based on the
number of axes configured, this can be used as a reference for the pulse and direction wiring to
PTI drive.

 Axis frequency in kHz
 Axis1 100 100 100 100

Axis2 100 100 100

Axis3 100 200

Axis4 100

HW
channel
selection

DO0 Output/
PTO0 Dir

Output/
PTO0 Dir

Output/
PTO0 Dir

Output/
PTO0 Dir

Output/
PTO0 Dir

DO1 Output/
PTO1 Dir

 Output/
PTO1 Dir

Output/
PTO1 Dir

Output/
PTO1 Dir

DO2 Output/
PTO2 Dir

 Output/
PTO2 Dir

Output/
PTO2 Dir

DO3 Output/
PTO3 Dir

 Output/
PTO3 Dir

DO4 PWM/PTO0
LS Pulse
PTO0 HS
Pulse/Cw
PTO0 HS
Single 0

PWM/PTO0
LS Pulse

PWM/PTO0
LS Pulse

PWM/PTO0
LS Pulse

PWM/PTO0
LS Pulse

DO5 PWM/PTO1
LS Pulse
PTO1 HS
Pulse/Cw
PTO0 HS
Single 1

PWM/PTO1
LS Pulse

PWM/PTO1
LS Pulse

PWM/PTO1
LS Pulse

DO6 PWM/PTO2
LS Pulse
PTO2 HS
Pulse/Cw
PTO2 HS
Single 2

PWM/PTO2
LS Pulse

PWM/PTO2
LS Pulse

DO7 PWM/PTO3
LS Pulse
PTO3 HS
Pulse/Cw
PTO0 HS
Single 3

PWM/PTO3
LS Pulse

Up to 4 * 100
kHz (default)
PTO axis with
“Revision 0
CPU”

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3908

When two PTO axes are configured as 100 kHz, the “Motion Solution Wizard” set the onboard
output configuration. For the first axis, direction as “Output 0” and pulse as “Output 4” and for
the second axis direction as “Output 1” and pulse as “Output 5”.

PTO axes 100
kHz

When the axis is configured as 200 kHz, output channel “Output 4” (Value = PTOx HS Pulse)
and “Output 5” (Value = PTOx HS Dir) are configured as pulse and direction output for the first
axis and “Output 6” and “Output 7” is configured as pulse and direction output for the second
axis.
Below table shows the user an overview of the hardware channels configured based on the
number of axes configured, this can be used as a reference for the pulse and direction wiring to
PTI drive.

 Axis frequency in kHz
 Axis1 200 200

Axis2 200

Axis3

Axis4

HW channel
selection

DO0 Output/PTO0 Dir

DO1 Output/PTO1 Dir

DO2 Output/PTO2 Dir

DO3 Output/PTO3 Dir

DO4 PWM/PTO0 LS
Pulse
PTO0 HS
Pulse/Cw
PTO0 HS Single
0

PTO0 HS
Pulse/Cw

PTO0 HS
Pulse/Cw

Up to 2 * 200
kHz PTO axis
with “Revision 0
CPU”

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3909

 Axis frequency in kHz
DO5 PWM/PTO1 LS

Pulse
PTO0 HS Dir/Cw
PTO0 HS Single
1 PTO0 HS Dir/Cw PTO0 HS Dir/Cw

DO6 PWM/PTO2 LS
Pulse
PTO1 HS
Pulse/Cw
PTO0 HS Single
2

PTO1 HS
Pulse/Cw

DO7 PWM/PTO3 LS
Pulse
PTO1 HS Dir/Cw
PTO0 HS Single
3

PTO1 HS Dir/Cw

When two PTO axes are configured as 200 kHz, the “Motion Solution Wizard” set the onboard
output configuration. For the first axis, Pulse as “Output 4” and direction as “Output 5” and for
the second axis pulse as “Output 6” and direction as “Output 7”.

PTO axes 200
kHz

When some axes are configured as 100 kHz and some are configured as 200 kHz frequency,
user must take care following points:
● Make sure the 200 kHz axis is configured as first or last axis and not in between 100 kHz

axis.
● When the first axis is 200 kHz, Automation Builder will configure the “Output 4” and “Output

5” channels and for 100 kHz “Output 6” and “Output 7” is configured as pulse and “Output 2”
and “Output 3” are configured as direction.

Up to 2 * 100
kHz and 1 * 200
kHz PTO axis
with “Revision 0
CPU”

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3910

Below table shows the user an overview of the hardware channels configured based on the
number of axes configured.

 Axis frequency in kHz
 Axis1 100 200 100 200 100

Axis2 200 100 100 100 200

Axis3 200 100 100

Axis4

HW
channel
selection

DO0 Output/
PTO0 Dir

Output/
PTO0 Dir

 Output/
PTO0 Dir

DO1 Output/
PTO1 Dir

 Output/
PTO1 Dir

DO2 Output/
PTO2 Dir

 Output/
PTO2 Dir

 Output/
PTO2 Dir

DO3 Output/
PTO3 Dir

 Output/
PTO3 Dir

DO4 PWM/
PTO0 LS
Pulse
PTO0 HS
Pulse/Cw
PTO0 HS
Single 0

PWM/
PTO0 LS
Pulse

PTO0 HS
Pulse/Cw

PWM/
PTO0 LS
Pulse

PTO0 HS
Pulse/Cw

Configura-
tion not
allowed.
Keep 200
kHz axis
as first or
last axis.

DO5 PWM/
PTO1 LS
Pulse
PTO1 HS
Pulse/Cw
PTO0 HS
Single 1

PTO0 HS
Pulse/Cw

PWM/
PTO1 LS
Pulse

PTO0 HS
Pulse/Cw

DO6 PWM/
PTO2 LS
Pulse
PTO2 HS
Pulse/Cw
PTO2 HS
Single 2

PTO1 HS
Pulse/Cw

PWM/
PTO2 LS
Pulse

PTO1 HS
Pulse/Cw

PWM/
PTO2 LS
Pulse

DO7 PWM/
PTO3 LS
Pulse
PTO3 HS
Pulse/Cw
PTO0 HS
Single 3

PTO1 HS
Pulse/Cw

PTO1 HS
Pulse/Cw

PWM/
PTO3 LS
Pulse

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3911

EtherCAT operation limits
Due to differences in the performance of CPU types, there are different limits for EtherCAT
which are detailed below.

Configuration minimum EtherCAT cycle time in each PLC type

PLC Type PM5072 PM5082 PM5630 PM5650 PM5670/
PM5675

Min.
EtherCAT
master cycle
time configu-
rable (ms)

2 ms 1 ms 2 ms 1 ms 0.5 ms

There are limit on the minimum cycle time for each PLC type and limit on the number of
servo drives can be connected for each PLC type based on the cycle time configured. Refer
the help file for more details (“PLC Automation with V3 CPUs è Libraries and solutions
è Motion control library è Preconditions for the use of the libraries”) and adapt the cycle time
or PLC Type accordingly to avoid error messages during program download.

PLC Type PM5072 PM5082 PM5630 PM5650 PM5670/
PM5675

Number of
synchr. axis in
1 ms

- 4 - 8 16

Number of
synchr. axis in
2 ms

4 8 4 16 32

Number of
synchr. axis in
4 ms

8 16 8 32 64

These limits are based on the EtherCAT master cycle time configured in the EtherCAT master.
The “Number of axes” is counted in Automation Builder are based on the axis configured,
therefore PTO axis also counted in case if configured in the AC500-eCo Pro PLC.

Mor axis can be used by:

– Increasing the EtherCAT cycle time to accommodate a higher “Number of
axes” in the same PLC type.

– Choosing a higher PLC type.

The “Motion Solution” window can be used to see how many axes are supported and how many
are already used for the particular PLC type for the EtherCAT master cycle time configured by
checking the slider at the bottom of the “Motion Solution Wizard” overview page:

Maximum
number of
synchronized
axes in each
PLC type

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3912

6.5.10.1.4 Creation a new “Motion Solution Project”
Once the installation process is completed and the elements that will be needed in the configu-
ration are known then the “Motion Solution Project” can be used to allow the user to create a
matching configuration.

Creation a “New Project”
1. Start Automation Builder and select “New Project”.
2. Select the “Motion Solution Project” icon.

3. Click the [OK] button and a new project will be created in the specified location with the
specified name.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3913

Addition of a PLC
1. Automation Builder will now pop up a “Select PLC” window and from here user can select

one of the V3 PLC’s.

ð
The PLC type can be changed at any time using the steps outlined
earlier.

2. Click the [Add PLC] button to get it added to Automation Builder hardware tree.
3. After selecting the PLC type, “Motion Solution Wizard” will guide the user to the “Motion

Solution Wizard” page.
4. After creating the hardware tree, Automation Builder will launch the “Motion Solution

Wizard” overview page. From here user can add the axis to the application.
Depending on the PLC type selected some of the axis types are not possible for the user
to add to the project.

Addition of the PTO axes
All AC500-eCo PLC’s are supported with a maximum of 4 PTO axis via onboard I/O channels.
After creating the hardware tree, Automation Builder will launch the “Motion Solution Wizard”
overview page. From here user can add the PTO axis to the application by clicking on the
[Add PTO axis] button from the “Motion Solution Wizard” overview page.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3914

1 objects
Nested underneath the “OnBoard_IO” object is the PTO axis object. From here users can
configure each axis they have added separately as per the application requirement by opening
the motion axis object which is added under the “OnBoard_IO”.

To do this double click on the object to open “Settings” tab.

Here user can update settings as per the application requirement. Later when downloading the
application, the wizard will use these settings to define the operation and scaling of this axis
object.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3915

PTO axis settings
All settings related to the application and axis specific will be done here and need to be carefully
updated for each axis. Based on the inputs provided here, wizard will compile and generate the
code.

The user can select the type of axis to be configured based on the application requirement.

Below is the list of settings which user can configure from the “Motion Control Wizard” along
with their meanings:

Axis type Detail Max Limit (Counts)
Modulo (rotary) Default setting in the wizard.

By selecting the “Modulo”
(rotary) your axis will be con-
figured as a roll-over axis and
the desired modulo range can
be configured later.

16#7FFFFFFF[RB1]

Finite (rotary) Your axis will be configured
as a roll-over axis where
in modulo range is non
editable by the user and
calculated based on the
“Unit” selection, Inc_Per_R,
U_Per_Rev_Nominator and
U_Per_Rev_Denominator set-
ting.

16#40000000

Linear
(rotary screw)

This needs to be configured
when the user having a rotary
motor with linear movements
(linear axis).

16#7FFFFFFF+/-

Linear
(linear motor)

This needs to be configured
when the user axis is a linear
motor.

16#7FFFFFFF+/-

Axis simulation mode This option is read only from
here and needed when the
user configured the axis but
not have the real hardware
yet. This can be selected from
the “Motion Solution Wizard”
overview page.
Virtual axis configuration.
Ä Chapter 6.5.10.1.4.6 “Addi-
tion of a virtual axis”
on page 3932

16#7FFFFFFF

With “Revision 1 CPU” or higher, by default 4 * 200 kHz PTO axis is supported, there is no
special settings needed in the axis configuration page.

“Axis type”

“PTO ” (Hard-
ware settings)

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3916

If a “Revision 0 CPU” is used, user can set the PTO axis frequency to 100 kHz or 200 kHz using
the drop down as shown below. Based on the PTO axis frequency selection, the onboard I/O
configuration will be updated.

By default, the PTO axis is open loop and however user can also configure a maximum of two
PTO axis as closed loop.
To configure the axis as closed loop, user need to configure an encoder axis -> encoder source
-> encoder channel -> encoder purpose as the PTO axis which needs to be a closed loop axis.

Based on the application requirement user can select the desired unit in the wizard and the
wizard will update the subsequent parameters to the selected user unit.
From the below picture user can find the currently supported unit formats.

As an example, when the user selects the axis type as “Modulo (rotary)” and unit as degree,
the wizard will update the subsequent parameters to the selected user unit and fill with default
values, ex: modulo range = 360 degree (default). However make sure the user updates the
subsequent parameters as per the actual application requirement.

For rotary axis the units mm, µm, nm, and inch might lead to inaccuracy due to
rounding errors.

When the axis is open loop, user can update the “Pulses per revolution scaling” with the steps
per revolution.

When the PTO axis is open loop, it is important that the user set the steps
per revolution and maximum rpm by keeping the PTO frequency limits into
consideration.

For example, for a 100 kHz PTO axis if the steps per revolution is 2000, the
maximum rpm the axis can support is 3000 rpm (= 2000 * 3000/60 = 100 kHz)

Based on the actual application requirement, here user can check/uncheck the “Application has
gearing” check box. Here the user can also update the required tool travel distance per motor
revolution.
When the user unchecks the “Application has gearing”, user can update the “Tool travel
distance per motor revolution” as per the application requirement as shown in the below picture.

“Closed loop”

“Unit”

“Pulses per
revolution
scaling”

“Application
gearing”

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3917

When the user checks the “Application has gearing”, user will be prompted to provide the gear
box details additionally as shown in the below figure and during the generate application, the
wizard will update the same accordingly.

The user can provide the “Modulo range” here. This is the value at which the axis position will
wrap back to zero. This window will be active only when the user selects the axis type as any of
the rotary axis.

The user can configure some of the common “Software limits” from the wizard itself. Below is
the list of software limits which user can configure from the wizard in the selected application
units.
By default, software limits in wizard are not enabled and user need to enable the same by
enabling the check box “Enable limits”.

In some of the application we need to change the relationship between its real direction and that
within the PLC program. By default, the check box will be unchecked, and the direction will be
normal. By selecting the check box “Invert direction” both actual and reference position will be
inverted, and the axis will move in opposite direction.

“Modulo range”

“Software
limits”

“Direction
correction”

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3918

Here the user can configure the parameters related to position control and supervision. Details
of each parameter is explained in our system technology chapter.
Ä Chapter 6.5.10.3.5.6.3 “Position control loop” on page 4028

Ä Chapter 6.5.10.3.5.6.2 “Supervision” on page 4027

Users can update the maximum limits here. Some parameters depend on the drive settings and
needs to be set correctly to get the desired result.
The user can set the “Maximum application velocity” to a desired value to limit the maximum
application speed.

Maximum reference value is the maximum frequency of the drive in which it reaches the max-
imum rpm. In some drives, the calculated maximum reference value may need to be modified,
and user can select “Modify” box and change the value. Note, we have the hardware limitation
as 100 kHz or 200 kHz based on the configuration and user must make sure this limitation is not
crossed.
Maximum speed is recommended to keep the same maximum speed at the drive and at the
PLC parameter.

Currently the applications torque limits in the wizard are not valid for PTO axis and this is
ignored.

When the PTO axis is open loop, it is important that the user set the steps
per revolution and maximum rpm by keeping the PTO frequency limits into
consideration.

For example, for a 100 kHz PTO axis if the steps per revolution is 2000, the
maximum rpm the axis can support is 3000 rpm (= 2000 * 3000/60 = 100 kHz)

When in closed loop, set the maximum rpm for the axis to reach when the maximum PTO axis
frequency is provided.

“Position
control (cyclic
sync mode)”

“Dynamic
limits”

“Drive based
limits”

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3919

For example, if the axis is configured as 200 kHz and closed loop, set the maximum rpm for the
axis to reach when the 200 kHz frequency is achieved.

Based on the inputs provided, wizard will calculate the results and can be viewed immediately at
the end of the configuration page.

Addition of an EtherCAT axes
From Automation Builder 2.7.0, users will have two options to realize an EtherCAT network;
Using the AC500 and CM579-ETH solution (as we have supported before) and the new option
of use AC500-eCo PM5072 and PM5082 PLC’s (EtherCAT master using onboard ETH1 port.)

Differences of the AC500 and AC500-eCo wizard views
After creating the hardware tree the user has selected the CPU. Automation Builder will launch
the “Motion Solution Wizard” overview page. As we can see below the user will see a slightly
different view based on their selection.

AC500 CPU adding the EtherCAT master via CM579-ETHCAT
To start adding devices click the [Add CM579-ETHCAT axis] button.

AC500-eCo Pro CPU's adding the EtherCAT master onboard ETH1 port for AC500-eCo CPU’s
1. To start adding devices click “Add onboard EtherCAT axis”.

2. Adding EtherCAT devices to the master.

“Results
(calculated)”

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3920

Here user find any of EtherCAT drives or devices needed for the application. The user can
also add the axis by right clicking on the “EtherCAT_Master” object and select the “Add
Object ”option or by using the [Add axis] button from “Motion Solution Wizard” overview page.

If user wants to add multiple servo drives, please uncheck the “Close this dialog
after each transaction” check box (in left bottom corner) and add multiple drives
without closing. In AC500 CPU user can add the EtherCAT motion axis only on
the coupler slot 1.

Configuration of the EtherCAT master
As mentioned in the beginning of the chapter, user can now configure EtherCAT master in
AC500 CPU via CM579-ETHCAT communication module or in AC500-eCo Pro PLC’s via
onboard ETH1 port.
In general, all EtherCAT settings are similar in both solutions but in CM579-ETHCAT user will
have more settings tab than onboard EtherCAT. Based on which EtherCAT solution is used,
user needs to also use the relevant libraries for diagnosis/SDO handling etc.
For CM579-ETHCAT use the library “AC500_EtherCAT” and for onboard EtherCAT use the
library “ETCStack”. Both solutions are not identical, and user need to manually adapt the
applications incase if moving from CM579-ETHCAT to onboard EtherCAT or vice versa.

These are the settings specific to CM579-ETHCAT master and not valid for onboard EtherCAT.
The label will normally CM579_ETHCAT this can be changed by the user but is normally left as
default. If so, the name will be CM579_ETHCAT (CM579-ETHCAT).

In most cases these settings can be left at default but occasionally the user might need to
change these to fit the application requirements.
● “Run on Config Fault ” – As default it is set to “Yes” meaning the CM579-ETHCAT will not go

into error and the PLC program will not go into stop if a slave is lost, this is beneficial as the
PLC is then still available to handle other follow up actions. This can be changed if the user
wants a configuration where a missing slave will prevent the PLC running.

● “Distributed clocks” - As default it is set to “Active” which is a must if you want to use
syncronised motion over EtherCAT.

● “ Optimize I/O update” - As default it is set to “On” meaning that, consecutive I/O’s are
merged in one block to optimize the performance.

This second part of the EtherCAT master defines the specific settings that define the behavior
of the EtherCAT operation and from here settings are similar in both CM579-ETHCAT and in
onboard EtherCAT.

Onboard EtherCAT is only possible to configure it on PM5072 and PM5082
ETH1 port. It is recommended not to configure any other protocols on the
EtherCAT configured ETH port.

CM579-ETHCAT

ETHCAT_Master
(EtherCAT-
Master)

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3921

The label will normally be in the format of ‘[name](ETHCAT-Master)’ this can be changed by the
user but is normally left as default. If so, the name will be ETHCAT_Master (ETHCAT-Master).
The most important settings for this are mentioned below:
● “Auto-config master/slaves” – As Default this is activated, this means the parameters are

set automatically here in accordance with the default settings. This setting is recommended
unless the user is very familiar with the setup of EtherCAT networks.

● “Cycle time” - The default EtherCAT cycle time is 4000 μs but based on the application
requirement, user can adapt the EtherCAT cycle time as as shown below.

EtherCAT cycle time will directly influence the PLC load. If your PLC load is
higher than desired, please increase the cycle time or upgrade the PLC type.

Configuration of the EtherCAT slave and axis
This section explains how to configure the behavior of the Comms slave module. From here we
can define how the hardware will behave. It’s important to understand the EtherCAT slave axis
once added is split into two parts in the project tree. These two parts are described below.

EtherCAT slave drive object settings
The label will normally be in the format of [Drive name](Drive Type) this can be changed by the
user but is normally left as default. If so, the name could be “MicroFlex_e190” (MicroFlex-e190).
In most cases these settings can be left at default but occasionally the user might need to
change these to fit the application requirements. Useful settings may be to enable “Expert
Settings” to add additional PDO mappings, to check and set mappings or to check the status of
the device once online.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3922

PDO mappings
PDO and startup parameters (SDO)

Based on the selection under “Motion axis è Mapping”, PDO and startup parameters are
generated automatically as shown below.
Based on the control type and PDO mapping selected in the wizard, it will update the “Process
Data” tab from the slave axis object and assign the autogenerated name to each object which is
added.

Like PDO mapping, SDO startup will be updated based on the control type and the mapping
selected in the wizard.

Based on the application requirement, user can add more PDO/startup parame-
ters manually.

User defintion of PDO mappings
If the user wants to add additional PDO mapped objects first enable the “Expert settings”, then
the user will get an additional tab called “Expert Process Data” below the general tab and here
user can add/edit/delete the mapping.

EtherCAT axis settings
Nested underneath the EtherCAT slave drive object is the axis object, from here users can
configure each axis as per the application requirement.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3923

To open this double-click on the object to open the configuration page which then has two
separate tabs, one for “Settings” and the other one for “Mapping”.
The user can update both the pages as per the application requirement.

Later during the “Generate application” process, the wizard will use these settings to define the
operation and scaling of this axis object.

All settings related to the application and axis specific will be done here and need to be carefully
updated for each axis. Based on the inputs provided here, wizard will compile and generate the
code.

The user can select the type of axis to be configured based on the application requirement.

Below is the list of settings which user can configure from the “Motion Control Wizard” along
with their meanings:

EtherCAT axis
object settings

“Axis type”

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3924

Axis type Detail Max Limit (Counts)
Modulo (rotary) Default setting in the wizard.

By selecting the “Modulo”
(rotary) your axis will be con-
figured as a roll-over axis and
the desired modulo range can
be configured later.

16#7FFFFFFF[RB1]

Finite (rotary) Your axis will be configured
as a roll-over axis where
in modulo range is non
editable by the user and
calculated based on the
“Unit” selection, Inc_Per_R,
U_Per_Rev_Nominator and
U_Per_Rev_Denominator set-
ting.

16#40000000

Linear
(rotary screw)

This needs to be configured
when the user having a rotary
motor with linear movements
(linear axis).

16#7FFFFFFF+/-

Linear
(linear motor)

This needs to be configured
when the user axis is a linear
motor.

16#7FFFFFFF+/-

Axis simulation mode This option is read only from
here and needed when the
user configured the axis but
not have the real hardware
yet. This can be selected from
the “Motion Solution Wizard”
overview page.
Virtual axis configuration.
Ä Chapter 6.5.10.1.4.6 “Addi-
tion of a virtual axis”
on page 3932

16#7FFFFFFF

Based on the application requirement user can select the desired unit in the wizard and the
wizard will update the subsequent parameters to the selected user unit.
From the below picture user can find the currently supported unit formats.

As an example, when the user selects the axis type as “Modulo (rotary)” and unit as degree,
the wizard will update the subsequent parameters to the selected user unit and fill with default
values, ex: modulo range = 360 degree (default). However make sure the user updates the
subsequent parameters as per the actual application requirement.

For rotary axis the units mm, µm, nm, and inch might lead to inaccuracy due to
rounding errors.

User can update the “Pulses per revolution scaling” with the actual encoder increments per
motor revolution.

“Unit”

“Pulses per
revolution
scaling”

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3925

Here the user can set the tool travel distance per motor revolution and define the gearing rela-
tionship with the mechanical system. As default the “Application has gearing” box is unchecked,
this means the application has no gearing and the user can update the “Tool travel distance per
motor revolution” as per the application requirement:

If the application has gearing the user can check the “Application has gearing” box and they
will be prompted to provide the gearing details. During the generate application, the wizard will
update the same accordingly.

The user can provide the “Modulo range” here. This is the value at which the axis position will
wrap back to zero. This window will be active only when the user selects the axis type as any of
the rotary axis.

The user can configure some of the common “Software limits” from the wizard itself. Below is
the list of software limits which user can configure from the wizard in the selected application
units.
By default, software limits in wizard are not enabled and user need to enable the same by
enabling the check box “Enable limits”.

“Application
gearing/units
per revolution”

“Modulo range”

“Software
limits”

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3926

“ Invert direction” - This needs to be set for the application which needs to change the axis
relationship between its real direction and that within the PLC program. By default, the check
box will be unchecked, and the direction will be normal. By selecting the check box “Invert
direction” both actual and reference position will be inverted, and the axis will move in opposite
direction.

“Homing using DRIVE IO Touch Probe” - Selecting this will allow the axis to home to a drive
based touch probe using EtherCAT.
Selecting this also by default make the PDO mapping preselected for the user, but this can be
later changed based on the application need.

Here the user can configure the parameters related to position control and supervision. Details
of each parameter is explained in our system technology chapter.
Ä Chapter 6.5.10.3.5.6.3 “Position control loop” on page 4028

Ä Chapter 6.5.10.3.5.6.2 “Supervision” on page 4027

Users can update the maximum limits here. Some parameters depend on the drive settings and
needs to be set correctly to get the desired result.
The user can set the “Maximum application velocity” to a desired value to limit the maximum
application speed.

“Direction and
Homing type”

“Position
control (cyclic
sync mode)”

“Dynamic
limits”

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3927

Example, if user is using an ABB servo drive with, 131072 encoder increments per revolution
and a maximum speed is 6000 rpm.
Maximum application velocity = Max application velocity in RPM * Tool travel distance per
revolution / 60 * Gearbox nominator / gearbox denominator = 6000 * 360 / 60 * 1 / 1
= 36000 degree / sec

Servo drive

For easy calculation of parameters user can use the excel “AC500_V3_MotionControl_Startup
guide for MC parameterization.xlsx” from example program folder PS5611-Motion.

Use cases and how to handle the function blocks of a certain library
is described in sample projects. After the respective library has been
installed the corresponding sample projects are available in the default path
AutomationBuilder Examples. If the default path is inaccessible, click “Help
è Project examples” in the Automation Builder menu.

Here the user can define the limits that will dictate the expected behavior of the drive.

It is recommended to keep the same “Maximum speed” at the drive and at the PLC parameter.
Currently users can define the applications torque limits in the wizard and they will be written to
the SDO startup parameter only if the user selects “Torque limits” in the “Mapping” page. These
parameters are not used in the program by default.

Based on the inputs provided, wizard will calculate the results and can be viewed immediately at
the end of the configuration page.

“Drive based
limits”

“Results
(calculated)”

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3928

Mapping (Axis control type and object mapping)
The “Mapping” and “Control Type” tab can be selected if the user wants to set a “Control type”
other than CSP (default) and mappings other than default (Control Word, Set Position, Status
Word, Actual Position). It can be found under the axis object here:

By default, wizard is selected for “Cyclic synchronous position mode (CSP)”. User can change
the same based on the application requirement. The supported control modes are:
Cyclic synchronous position mode (CSP).
Cyclic synchronous velocity mode (CSV).
Cyclic synchronous velocity mode for load control (CSVL).

CSVL is an ABB specific mode to achieve load control/profiling. By using this
mode, the user can use the “Motion Control Load library” which is implemented
based on the “PLCopen Motion Part 6 – Fluid Power Extensions”. For more
details on load/torque control please refer to the library integrated documenta-
tion, system technology in online help file and the example program / descrip-
tion from example program folder.

If the application needs “Additional PDO mapping” the wizard helps the user to add most used
PDO mapping just by selecting them here.
Based on the control type selected, a few of the mandatory PDO mapping are generated
automatically and from additional mapping area in wizard user can find the most common PDO
mapping and user can add the same based on the application requirement.

The user can add additional PDO mapping which are not listed here manually by enabling the
expert settings from the slave device general configuration page (as described earlier).

Control type

Additional PDO
mapping

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3929

By default, two of the SDO startup parameters are selected and it is recommended not to
change these unless the user has expert level knowledge of DS 402 control modes or intends to
do non-standard start up coding as it will change the expected operation of the axis at start up.

The user can select the “Torque limits” and the torque values set from the “Settings” page will
be written to the respective slave drives startup parameters list.

Once these settings are made and the generated code is executed you can see that these
settings have change the drives EtherCAT slave configuration as shown in the picture below:

Addition of an encoder axis
For any application which needs an encoder, an encoder axis can be added and configured.
This can be added either by opening the “Motion Solution Wizard” object and clicking on the
[Add encoder axis] button on the bottom of the page as shown below or by right clicking on the
“Motion Solution Wizard” and selecting “Add object”.

Fig. 310: SC_2023_AB_Motion_wiring_appl_progr

After adding an encoder axis, the user can find it under the “Motion Solution Wizard” in the
Automation Builder. Users can double click on the added encoder axis object to get the settings
page and configure it as per the requirement. Settings here is like any other motion axis expect
here user need to configure encoder source.
When an encoder axis is added, user must configure the encoder source channel and encoder
source.

SDO start-up
parameter map-
ping

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3930

Selection of the encoder source
For a user to use an encoder they must know where the data source that supports it comes
from.

Below are the options for the encoder source:
● “Drive encoder” (EtherCAT) - When there is an EtherCAT axis, the user will have a chance

to use the EtherCAT servo drives, master encoder (16#400C:03) as a source for the
encoder axis (which will be scanned at EtherCAT cyclic rate). This can only be used as
a ‘master encoder’*.

● PLC encoder (OBIO) - When an AC500-eCo PLC is used there is an option to use the
onboard IO to take in a two channel Automation Builder encoder signal using the 24 V
digital inputs. This can be used as a ‘master encoder’* or to close the position loop to a PTO
drive in a PTO axis is configured.

● “Data source” – here the user can select any data source from which the value of the
encoder can be driven. This requires a data area or variable configured within the program.

* This can now be used to latch positions, or as a master for another axis to follow.

Using an EtherCAT drive based encoder source
1. Go to the desired EtherCAT drives axis object.
2. Open the “Mapping” tab.
3. Tick the box for “Master encoder”.

ð Now the configured “Master encoder” is ready to be selected. This selection will make
the encoder object 16#400C:03 available as a source for the encoder axis (which will
be scanned at EtherCAT cyclic rate).

4. Add or select the desired encoder axis.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3931

5. Select “Encoder source channel” as “Drive encoder” and the “Encoder source” via the
name of the EtherCAT drive’s name which the encoder will be selected.

Using a PLC (OBIO) based encoder source (AC500-eCo only)
When there is a PTO axis, user will have an option to use the onboard encoder channels from
AC500-eCo PLC as a source for the encoder axis.
User can add or select the desired encoder axis and select “Encoder source channel” as “PLC
encoder OBIO” and the “Encoder source” via the channel (0 or 1). In addition, the purpose
should be defined, either “Master encoder” (This can now be used to latch positions, or as a
master for another axis to follow) or “Close pos loop” to close the position loop for a PTO axis:

Filtering is also available should the encoder data require it.

Data source
Here the user can use a “Data source” to define a variable which will then create the variable in
the mentioned name as data type “DINT”.

Alternatively they can connect to an existing variable from the project to encoder axis. The
variable must be of data type “DINT”.

Other encoder axis parameters are same as EtherCAT or PTO axis and for details please refer
to the previous chapters.

Addition of a virtual axis
If the applications require a virtual axis (one which has no associated hardware) then the user
can add this.
Eeither by and .

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3932

1. Opening the “Motion Solution Wizard” object (by doubling clicking on it).
2. Clicking on the [Add virtual axis] button on the bottom of the page.

3. Open the“Motion Solution Wizard” object by doubling clicking on it.
4. Click on the [Add virtual axis] button on the bottom of the page.

5. Alternatively, right click on the “Motion Solution Wizard ”object and by selecting “Add
object” option to add the axis.

6. After adding a virtual axis, the user can find it object under the “Motion Solution Wizard ”.
Users can double click on the added virtual axis object to access the settings page and
configure it.

ð Settings here are the same as the motion axis and details for how to configure the
parameters, refer to the previous chapters.

Important general PLC settings
Compared with a standard AC500 project, when the user is using motion solution wizard, some
default settings are changed during code Generation. These settings are always overwritten as
long as there is a change in axis configuration or added a new axis. Below are the settings
which are updated by the “Motion Solution Wizard”:

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3933

 Project type
Setting EtherCAT PTO Only

IO bus – Run on congif fault Yes Yes

PLC > PLC Settings > Always
update variables

“Disabled” “Disabled”

PLC > PLC Settings > Bus
Cycle Options

e.g. “Task” - any real slow task must be selected and it
shouldn't be set as “unspecified” as this can lead to a negative
on cyclic operation.

CPU-Parameters > Check
battery

Off NA

CM579-ETHERCAT > Run on
congif fault

Yes NA

CM579-ETHERCAT > Bus
Behaviour

Sync Mode 1 NA

It is recommended that user change the above settings manually based on the actual applica-
tion requirement. To update these setting manually, user need to change the setting after all the
axis changes are done and then generate the code.

Generation the motion configuration
Once all the configuration is completed, the user can generated the application (like compile)
which will then update; its settings, the PDO and SDO mapping, and the motion task configura-
tion automatically based on the settings and parameters provided in the wizard. To do this, go to
“Build” menu and click on “Generate Code”

Automation Builder will generate the axis configuration. Once completed successfully,
Automation Builder will show the message “Motion Solution Generation successful” in the
message window. This can take some time based on the number of axes configured in the
project and PDO mapping selection.

Task configuration
Tasks within the Motion Wizard

The wizard will automatically create a fast task and a slow task to help guide the user to
correctly distribute their code. The kernel function block and the transfer of axis IO data with
EtherCAT or other hardware should be processed in a faster task. This task should be as short
and real time (if EtherCAT) or as fast possible (if PTO) to achieve the best motion control
performance.
In case the position reference is transferred to the drive the task of the axis implementation
should be synchronized to the fieldbus cycle. The following figures show an example for
EtherCAT.

The Cyclic task is show as below:

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3934

MotionSolution_Task
The “Motion Solution Wizard” will automatically create a fast task called “MotionSolution_Task”.
This will call all the axis operation code, and will be configured dependently on the configura-
tion.

MotionSolution_Task in EtherCAT applications
In the case of EtherCAT applications synchronized the setting of “Cycle time” is defined in the
EtherCAT master.

Once the solution is generated this will then define a task which has a type of external and a
cycle time which matches that configured in the EtherCAT master and the Priority is set as “0”.

MotionSolution_Task in PTO only applications
In the case of PTO only applications, set the cycle time in the “Motion Solution Wizard”.
Once the solution is generated this will then define a task which has a “Type” of “Cyclic” and a
cycle time which matches that configured in the solution wizard and the priority is set as “10”.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3935

Function blocks must be called in the Motion Solution Task
As mentioned previously the “MotionSolution_Task” is the fastest and highest priority task in the
CPU and so of course the most draining on resources. It is possible for the user to call parts of
the motion application in this “MotionSolution_Task” – however excessive amounts of code or
that with a poor structure in this task can lead to overloading of the CPU.
Despite these limitations some function blocks must be called in the same task as the kernel
function block (“MotionSolution_Task”).
● MC_CombineAxes
● MCA_MoveByExternalReference
● MCA_MoveByExtRefRelative
● MCA_DigitalCamSwitch
● MCA_GetTappetValue
● ECAT_CiA402 Touchprobe_App
● ECAT_HomingOnTouchprobe
● ECAT_CiA402ParameterHoming

For onboard EtherCAT motion axis projects, it is recommended to call all the
EtherCAT function blocks in one task, for coupler EtherCAT this is not relevant.

Cyclic tasks and created task “Task”
As default the wizard will also create a 10 ms cyclic task called “Task” which the user can use
for such code calling for noncritical motion function blocks:

Guidance for code distribution within tasks
It is recommended for most non-real time motion PLCopen function blocks in the pro-
gram to use a different cyclic task with a cycle time at least double of that used in the
“MotionSolution_Task” and a lower priority (such as ‘Task’). This will reserve more capacity
for better performance on the EtherCAT by the PLC.
To save PLC processing time the most PLCopen function blocks as well as the application logic
can also be processed in a task which runs on a lower priority than the real time task with the
axis implementation as shown in the figure below.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3936

Motion solution libraries
Based on the control type selected, mandatory libraries are added to the Library Manager. The
libraries added depend on the control type selected. See the table below for the libraries added
based on the control type selected.

Control Type Library
AC500_Ecat_CiA
402

AC500_Motion-
Control

AC500_Motion-
ControlLoad

AC500_Motion-
ControlEco

EtherCAT CSP Added Added

EtherCAT CSV Added Added

EtherCAT CSVL Added Added Added

EtherCAT CST Added Added

PTO Added Added

For example, if the user selects control type as CSVL we can see the libraries indicated in the
Library Manager.

Additional libraries can always be added later manually.

Axis program generated (Hidden by default)
The code which is generated for each axis is hidden by default (using the tick box in the “Motion
Solution Wizard”) but users can choose to make it visible if needed.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3937

To view the generated axis program, the user must access the “Motion Solution Wizard”
window .

Then navigate to the bottom and uncheck the [Hide generated code] button from the “Motion
Solution Wizard”overview page.

Once the user has unchecked [Hide generated code], they can find the folder
“MotionSolution_Generated”, which has sub folders for each of the axis configured using the
wizard. Each axes subfolder has a GVL and a PRG respectively. Name of the folder GVL/PRG/
Function Blocks/variable are generated based on the axis object name.
Below is the example from EtherCAT axis, for other axis it follows the similar structure.

It is not recommended to change the program manually without exert knowl-
edge as any changes which will be made later the axis object will overwrite all
the changes done by the user if the “Generate” check box is checked.

Axis parameters generated (GVL)
The GVL generated by the wizard maps the parameters set by the wizard to the library variables
in the Axis_Ref structure, and the Axis_IO declaration is initiated here.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3938

It is recommended not to add/edit the program here manually since this will be
lost next time when the user click on the [Generate Code].

Generation a program (PRG)
Program which is generated by the wizard initiates the CMC_Axis_Control_Parameter,
CMC_Basic_Kernel/CMC_Load_Motion_Kernel and ECAT_CiA402_Control_App func-
tion blocks and set the inputs based on the configuration done in the wizard.
For CSP and CSV control type, CMC_Basic_Kernel function block will be called and for CSVL
control type CMC_Load_Motion_Kernel function block will be called.

It is recommended not to add/edit the program here manually since this will be
lost if there was any modification done on the particular axis reference.

6.5.10.1.5 Wiring application program
It is recommended to the user to write the application by creating new POU’s and adding the
POU’s to a new task and setting a cycle time and task priority lower than “MotionSolution_Task”.
Dependent on the code writing guidelines mentioned earlier.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3939

An exception to the above general guideline is for the function blocks which needs to be called
in the same task where the axis is running and, in such cases, user need to call those function
blocks in a separate POU add call the POU in “MotionSolution_Task”. If a function block needs
to be called inside the real time task (“MotionSolution_Task”), this is mentioned in the function
block help file.

An example of a function blocks which needs to be called in the “MotionSolution_Task” is
MCA_MoveByExternalReference. To use this in a program, a new POU with this (and any
other real time function blocks) has been created called “MyMotion”.

This POU can then be called from the “MotionSolution_Task” by adding it as shown below.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3940

6.5.10.2 Cams and Tappet tables
6.5.10.2.1 Definition of a “Cam table”

A “Cam table” is an object type containing a tool which allows the user to create and edit
Cams and tappets either graphically or by means of tables. After the code is generated for the
corresponding application, there elements or tables are transposed into global data structures
or “Cam Data” which the IEC program can access.

Definition of a Cam
An electronic Cam describes the functional dependency of the position one axis (slave) to
another axis (master). The relationship is described by a continuous function (or curve) that
maps a defined range of master actual position values to slave target position values.
A software Cam is created by breaking the motion into several segments. Each segment
defines how far the slave axis will travel for a given move distance on the master axis. Once
these segments have been defined, a path between them is produced, the interpolation method
being set by the user. The user controls the size and accuracy of the segments. Using many
small segments will produce smoother motion.
Motion across each segment and across segment boundaries will go through all specified
points. The segment information for a Cam profile is defined in an array called a table. A table of
positions must be defined together with an optional table of master increments.

Definition of a Tappet
An electronic Tappet describes a function which allows the user to derive a digital state from an
axis or cam position which can be user to trigger an event or indicate a state at which an action
should occur. You may add tappets (binary switches) to the cam at any position. In this way, you
can create cam tables which contain tappets.

6.5.10.2.2 Cam table
Cam table types

With Automation Builder 2.7.0 user has two different Cam objects available in add object option
as shown below. From the context menu: “Cam table ABB” and “Cam table ABB basic”.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3941

Differences in the objects
The difference between these objects is the code that is generated by them and the libraries
they are compatible with. By hovering over them the user can see the guidance for when to use
them:
“Cam table ABB”

● This allows the user to get additional data via Cam structure.
● In the project the user need to use “MCA_CamStructureSelect” (and not

“MC_CamTableSelect”).
● Compatible with Automation Builder 2.6.1 or higher.

“Cam table ABB basic”

● This gives the user only basic information from the Cam.
● In the project the user need to use “MC_CamTableSelect” as in the past.
● Compatible with Automation Builder 2.6.0 or lower.

Differences in using the two “Cam tables” types in application code
To use the “Cam table” the user needs to call at least the “MCA_CamStructureSelect” (new) or
“MC_CamTableSelect” (old/basic) depending on which version of the “Cam table” objects that
are used. Also, in either case you will also need “CamIn” or “CamInDirect” function blocks from
the AC500_MotionControl library.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3942

If you use the wrong function block for the wrong type of Cam you can expect
your “MC_CamIn/MC_CamInDirect” to never go into ‘InSync’ = TRUE.

6.5.10.2.3 Cam table object structure
The “Cam table” is split into individual editors, which allow the users to edit and add elements to
the selected views.
The editor consists of the following tabs:
● [Cam]: Here, you can display and modify the Graphs showing slave position, slave velocity,

slave accel-eration, and slave jerk. This view can show the user when you program a
movement with high acceleration.

● [Cam table]: Here, you can display and modify the slave position, slave velocity, slave
acceleration, and slave jerk in a tabular view.

● [Tappets]: Is an editor for programming tappets (switch points) in a diagram. This display
provides a very good overview of the sequential order of the tappets.

● [Tappet table]: Is an editor which lists switch points in a table. Here, you can specify the
switch points.

6.5.10.2.4 Cam tab
In the Cam graphical editor, the Cam graphs are shown and can be interacted with.
The editor window displays the curves of four graphs:
● Slave position (black)
● Slave velocity (blue)
● Slave acceleration (green)
● Slave jerk (yellow)

The horizontal axis of all four coordinate systems shows the range of the master values ([Min-
imum - Maximum]). The vertical axis in the position diagram shows the value range that is
defined in the Cam properties. The vertical axis of velocity, acceleration, and jerk is scaled
automatically.
It is possible to modify all curves, except the jerk curve. As velocity, acceleration, and jerk are
derived curves, changes to one graph causes changes to the other graphs.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3943

Switch between the graphical editor and the alternative tabular editor at any time (“Cam table”
tab).

6.5.10.2.5 Cam table tab
The “Cam table” is an alternative to the graphical editor for defining the Cam graphs (“Cam”
tab). The first line of the table always contains the start position of the master (and the related
slave values) and the last line is always the end position. The lines in-between alternately define
segments and points.
Below is a list of key elements and their descriptions:

Inserts a new line.

Deletes the selected segment

X X-position of the slave axis

Y Y-position of the slave axis

V Velocity of the slave axis

A Acceleration of the slave axis

J Jerk of the slave axis

Segment type ● Poly5: 5th degree polynomial
● Line

These elements are always shown in every “Cam” configuration:

The following values result from the values of the respective segment. They cannot be modi-
fied.

min (Position) Minimum value of the slave position

max (Position) Maximum value of the slave position

max (Velocity) Maximum value of the velocity of the slave, based on the master axis

max (Acceleration) Maximum value of the acceleration of the slave, based on the master
axis

Table 745: View “ToolBox”
 Select Select a line in the table by using this tool.

Selected points are deleted by pressing the [Del] key.

 Add point Add new points with this tool. Click the insertion point in the diagram.
Te graph is then adapted automatically so that its curve runs through
the new inserted point.

Switch between the table editor and the graphical editor at any time (“Cam” tab).

6.5.10.2.6 Tappets tab
The tappet behaviors are shown and can be defined in this graphical editor. A tappet path
defines one or more tappets depending on the master position. At the upper edge of the editor
window, a horizontal axis approaches the range of the master positions. The individual tappet
paths are defined below.
You can switch between the graphical editor and the alternative tabular editor at any time
(“Tappet table” tab).

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3944

Track ID of the tappet path.
All tappets of a tappet path refer to the same tappet switch (a variable
of type BOOL).

Table 746: View “ToolBox”
 Select Select the tappets by means of this tool. You can drag the selected

tappets to another position.
You can modify the switch on/off attribute of a tappet by clicking the
relevant end of the crossed line ().
Delete the selected tappet by pressing the [Del] key.

Add new tappets with this tool. Click the insertion point in the path.

Table 747: View “Properties”
The tappet is assigned to a result, if it is passed from the position of the master axis in the
positive (increasing master values) or negative direction.

X Position of the tappet

Positive pass Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

Negative pass Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

Table 748: Table of the possible combinations of tappet attributes
Tappet symbol Positive pass Negative pass

No action No action

Switch to ON No action

Switch to OFF No action

No action Switch to ON

No action Switch to OFF

Switch to ON Switch to OFF

Switch to ON Switch to OFF

Switch to OFF Switch to ON

Switch to OFF Switch to OFF

Invert No action

No action Invert

Switch to ON Invert

Invert Switch to ON

Invert Switch to OFF

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3945

Tappet symbol Positive pass Negative pass
Switch to OFF Invert

Invert Invert

6.5.10.2.7 Tappet table tab
This tabular editor is an alternative to the graphical editor for configuring the tappet paths
(“Tappets” tab). A tappet path defines one or more tappets depending on the master position.
In the table, the lines with the definitions of the associated tappets follow below each line that
defines a tappet path.
Switch between the graphical editor and the alternative tabular editor at any time (“Tappet table”
tab).

Inserts a new tappet.

Deletes the tappet.

Track ID ID of the tappet path.
All tappets of a tappet path refer to the same tappet switch (a variable
of type BOOL).

X Position of the tappet.

Positive pass Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

Negative pass Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

Table 749: View “ToolBox”
 Select Select the tappets by means of this tool. You can drag the selected

tappets to another position.

Table 750: View “Properties”
The tappet is assigned to a result, if it is passed from the position of the master axis in the
positive (increasing master values) or negative direction.

X Position of the tappet

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3946

Positive pass Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

Negative pass Switch on/off attribute
● No action
● Switch to ON
● Switch to OFF
● Invert

6.5.10.2.8 Cam additional settings
Once the user has the “Cam” view open (double-click on the “Cam” object in the device tree) the
user will have access to several additional “Cam” settings and options:

Cam ToolBox
This will allow the user to add and remove elements to the “Cam” and tappet editors. Typical
options are:

Table 751: View “ToolBox”
 Select Select a line in the table by using this tool.

Selected points are deleted by pressing the [Del] key.

 Add point Add new points with this tool. Click the insertion point in the diagram.
Te graph is then adapted automatically so that its curve runs through
the new inserted point.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3947

Properties
This can be accessed by either “View è Properties” or by right clicking on the “Cam” object and
selecting properties. It will allow the user to define the behavior and dimensions of the “Cam”.

Here the user can change:
● Dimensions: The master and slave “Cam table” start and end positions.
● Slave period: Depending on these parameters, the slave start point is adjusted automatically

when the end point is changed, as well as the other way around. This adjustment optimizes
the period transition to be as smooth and jerk-free as possible.

● Continuity requirements: Activation of these options prompt a continuity check, which
reports any violations to the message view (Cam). Clear these options, if the application
requires it.

● Compile format: In the Automation Builder is only one option: “polynomial (XYVA)” - Polyno-
mial description of the points, for master position, slave position, slave velocity, and slave
acceleration.

6.5.10.2.9 Display generated Code
To view the code that is generated by the “Cam” object:
1. Close all Cam views.
2. Open the Cam which’s code needs to be viewed.
3. Go to “Cam” tab from the main Automation Builder tab.
4. Select “the display generated code” option.

The code will be shown where user can find the Cam points that are created in an array. “Cam
table” function block from motion library is already initialized with few inputs.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3948

Below is an example of the code generated by the “Cam table ABB” object (Automation Builder
2.6.1 and newer).

Here you can see more in depth information about the Cam is encoded in the structure.
Below is an example of the code generated by the “Cam table ABB basic” object (Automation
Builder 2.6.0 and older).

Here you can see only basic Cam data is encoded in the structure.
Currently it can only show the code generated from one Cam which is open.

6.5.10.2.10 Creating Cams
The steps to create a Cam can be explained using an example application. In this application,
we can say that there is a rotary table with eight slots (360° / 8 = 45° division). Inside there is a
component to be joined by ultrasonic welding. The welding tool is fed by a linear drive after the
rotary table has rotated. After welding, the linear axis returns and the rotary table continues to
rotate.
Work steps:
● Rotary table turns 45° (duration: 400 ms).
● The welding head is moved down by a vertical axis of 250 mm (duration: 200 ms).
● Start welding (duration: 1200 ms).
● The welding head is moved up by a vertical axis of 250 mm (duration: 200 ms).
A cycle time of 2000 ms results from total times.
The application is implemented by means of a virtual master axis that runs continuously
(modulo). The end value of the axis is projected according to the cycle time of 2000 ms. The
rotary table is achieved as a Cam (modulo; end value: 45°). The vertical axis is also achieved
as a Cam (restricted; end value: 300 mm). The welding process is controlled by a tappet.

6.5.10.2.11 Setting up project
1. Select “Motion Solution” project.
2. Select the required AC500 controller.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3949

3. Add two real drives and configure as below:

ð Name “RotaryAxis”, Type: Modulo, units: Degrees, scale: Gearing 8/1, 1 Tool Rev =
360°, Modulo 0-45°

ð Name “VerticalAxis” Type: Linear (Rotary Screw), units: mm, scale: 1 Motor Rev =
10mm

4. Add a virtual axis (and don’t rename it)

ð Name “MasterAxis” Type: Modulo, units: Pulse, Modulo range = 2000

1. Select the “Application” object in the device tree.
2. Click “Project è Add object è Cam table”.

ð “Cam table ABB” – This allows the user to get additional data via Cam structure and
user need to use “MCA_CamStructureSelect” instead to “MC_CamTableSelect”.

ð “Cam table ABB basic” – This allows the user to use the Cam object in the traditional
ABB way together with “MC_CamTableSelect”.

3. Specify the name “RotaryAxisCam” for the Cam and click [OK].

ð The object is inserted into the device tree.

4. Insert another Cam.
5. Rename it “VerticalAxisCam”.

1. Select the “Rotary table” Cam in the device tree.
2. Click “Properties” in the “View” menu or in the context menu.

Adding a Cam
to the device
tree

Setting the
properties of the
Cam

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3950

3. Select the “Cam” tab.
4. Specify the following values:

● Master start position: 0
● Master end position: 2000
● Slave start position: 0
● Slave end position: 45
● Slave Period: 45 (NA)
● Smooth transition: (deactivated)

5. Click [OK] to close the dialog. Confirm the dialog for changing the Cam object.
6. Change the values for the “Vertical axis” Cam in the same way:

● Master start position: 0
● Master end position: 2000
● Slave start position: 0
● Slave end position: 300
● Slave Period: 300
● Smooth transition: (activated)

7. Click [OK] to close the dialog. Confirm the dialog for changing the ca,m object.

6.5.10.2.12 Changing the Cam path
These instructions use the example from the section Ä Chapter 6.5.10.2.10 “Creating Cams”
on page 3949 to demonstrate how to change a Cam.

1. Open the “Rotary table” Cam in the editor.

ð The “Cam” tab is visible.

2. Select the point at 120 and 240 and delete them by pressing the key [Del].
3. Select the “Add point” tool from the “ToolBox” view.

ð The mouse pointer turns into crosshairs when you move it into the editor.

4. Click near “Master position” 400 and “Slave position” 45 in the upper graphs (slave posi-
tion).

ð The curve of the slave position is changed. The curves of velocity, acceleration, and
jerk also change.

5. Select the new inserted point by clicking it.
6. Drag the point to another position.

ð The curve of the slave position is adjusted accordingly.

7. Select this point and open the properties view and change the “X” value to 400 and the “Y”
value to 45.

8. 9. Using the same method, change the end point to an “X” value of 2000 and “Y” value to
45.

9. Select the “Select” tool from the “ToolBox” view.
10. Select the second curve element (between 400 and 2000).
11. Change the “Segment type” property to “Line”.

Changing the
path with the
graphical editor

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3951

12. Check the curve in the graphical editor.

1. Open the “Vertical axis” Cam in the editor.

ð The “Cam” tab is visible.

2. Select the “Cam table” tab.
3. Delete the points at 120 and 240 by clicking the symbol.
4. Click the symbol.

ð A new point and a new segment are inserted at (1000/150).

5. Add two more points.
6. Change the values X/Y of the following points:

● Point 1: 0 / 0
● Point 2: 400 / 0
● Point 3: 600 / 250
● Point 4: 1800 / 250
● Point 5: 2000 / 0

ð The curve of the slave position is changed. The curves of velocity, acceleration, and
jerk also change.

7. In the “Cam table”, change the “Segment type” of the first and third segments to “Line”.
8. Check the curve in the graphical editor.

By clicking “Display generated Code,” you can display the automatically created
global variables.

Changing the
Cam path with a
“Cam table”
editor

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3952

Application program using a generated Cam and Tappet table
Once the Cam and Tappet tables are created by the Cam editor, user can use the Cam function
blocks to use the same in user application. These instructions use the same example as the
previous example (from the section Ä Chapter 6.5.10.2.10 “Creating Cams” on page 3949) to
demonstrate how to define the application program for Cam and tappet points.

In the below example we have used an instance of “MC_CamStructureSelect” to connect to
the Cam directly (no ADR is needed). Also this function has inputs to allow the user to directly
define “Reverse” or “Periodic” settings so the use of “MCA_Cam_Extra” is no longer needed.

Note that in this instance the Cam; “Cam_1” is of the type “ABB Cam Table”.

To use the Cam Tappets the user has two options: “MCA_CamDigitalSwitch” or
“MCA_GetTappetValue”.
“MCA_GetTappetValue” uses the output from the “MCA_CamStructureSelect” and will reflect
the value based upon the “CAM SLAVE” position and “WILL” take into account offsets or
changes to scaling.
In the example, as the second Cam editor object name is “VerticalAxisCam”. If the user has
opted to use the new “ABB Cam Table” object and “MCA_CamStructureSelect” then they can
use this function to set an output based on the Cam. An excerpt from the generated code can
be seen below:

“MCA_CamDigitalSwitch” uses part of the “CAM STRUCTURE” and will reflect the value based
upon the “AXIS” position and will NOT take into account offsets or changes to scaling. If using
the this the “MCA_CAM” tappet array mut be accessed. This is generated automatically based
on the configuration in tappet. The array name follows the format [Cam object name] +[_T].
In the example, as the second Cam editor object name is “VerticalAxisCam” then the
“MCA_CAMTappet” array instance name is “VerticalAxisCam_T”. An except from the generated
code can be seen below:
VerticalAxisCam_T: ARRAY[0..1] OF MCA_CAMTappet := [
This can be directly passed to input pin name “Tappets” of function block
“MCA_DigitalCamSwitch”.

Using Cam
tables in appli-
cation code

Using Tappet
tables in appli-
cation code

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3953

More details on how to use the Cam curve can be found in Automation Builder
online help and from the “AC500_MotionControl library” integrated documenta-
tion.

Importing a Cam from 3rd party CODESYS controller
Exporting the Cam for the the 3rd party PLC

Using a Cam application that has been previously written using another 3rd party CODESYS
based PLC it’s possible to reuse these same data points in your new Automation Builder project
to save the user time and effort. The steps to do this are below, in the example application we
are using a inovance AM600 PLC program.
1. Open the 3rd party CODESYS environment and the project in question.

ð As when using ABB’s solution, the Cam object must be selected from the project tree
to allow the user to access the “Cam” item in the system menu at the top of the page
which will be needed for some of the steps that follow.

The first thing you should consider is the master and slave settings such as start and
end position, and slave period.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3954

2. Check this, with a right click on the Cam object in the hardware tree and select P“”roper-
ties.

ð From here you will get a pop up where you can double check the settings that will
define the Cam operation. Make a note of these.

3. Look at the “Cam table” just to get an idea about the general layout, here we can see this
Cam has 6 points (beginning, end and 4 user selected items).

4. Consider the method for getting the Cam data exported from the application.
5. Select the “Cam” object to access the Cam menu.
6. Select the option for “Write Cam Data into ASCII Table”.
7. Export or “Write” the data to an ASCII file.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3955

8. Select somewhere to save it.

ð Then you will see a pop up which will ask you how many Cam data points you want
to export into the file, we can treat this like resolution. In the example below we select
128 data points.

If we select many of points when the Cam is exported, we can expect the larger number of data
points will give the same profile even using the 3rd party Cam builder’s interpolation types to
ensure the Cam profile is immediately matched perfectly to the previous application.
If we select a lower number of points, one that matches the interpolation points (the smallest
number possible) for example then you are relying on Automation builder to plot the interceding
Cam points so the interpolation types selected within Automation Builder are more important
and must be checked.
Now we are finished with the 3rd party environment.

1. Switch to Automation Builder in which we need to have a project which has a Cam in it
ready for us to write the data into.

2. Check the properties of the Cam to check that it has the same maximum and minimum
values and other characteristics.

3. Select the Cam object to access the menu in the “Tool bar” from which we can select
“Read Cam Data from ASCII table”.

4. Select the ASCII file we created before.

You will then be asked how many data points you want to import into the project. Typically, this
should always match the value that was exported.

Importing the
Cam data into
Automation
Builder

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3956

In the figure below you can see the result with all 128 data points imported.

Edit the segments (interpolation types) used in each segment in this newly imported Cam via
the “Cam table” view.

Once all necessary adjustments have been made, now the Cam is ready to be used in the
program.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3957

6.5.10.3 Motion control library

Check the latest version of “Motion Library System Technology” in chapter 10.1
of the “AC500 V3 Motion Control Guide 3ADR 3ADR011239.pdf.

ABB Library

Or via pdf document at: “C:\Users\Public\Documents\Automation Builder 2.x
Examples\PS5611-Motion\Documentation

If the default path is inaccessible, click “Help è Project examples” in the
Automation Builder menu.

6.5.10.3.1 Safety instructions
● All pertinent state, regional, and local safety regulations must be observed when installing

and using this product. When functions or devices are used for applications with technical
safety requirements, the relevant instructions must be followed.

● Read the complete safety instructions of the user's manuals for the drives you are using,
before installation and commissioning.

● Read all safety instructions and important user information of the AC500 PLC.
Ä Chapter 1.4 “Regulations” on page 9

6.5.10.3.2 Preconditions for the use of the libraries
The library package has been released for the software and firmware versions listed in the
readme file of Automation Builder only (“Help ➔ Automation Builder Release Notes”) . In no
event will ABB or its representatives be liable for loss of data, profits, revenue or consequential,
incidental or other damage that may result from the use of other versions of product, software
or firmware versions. The error-free operation of the HA library with other devices, software or
firmware versions should be possible but cannot be guaranteed and may need adaptations e. g.
of example programs.

The first version of Motion Control Library Package PS5611-Motion has been released with
Automation Builder 2.4.0.There after the package is updated with several changes. For details
on all changes please refer PS5611-Motion release note area from Automation Builder release
notes.
The motion control package contains follows libraries:

Library Automation Builder PLC firmware
ABB_MotionControl_AC500

AB 2.4.0 or higher

AC500 V3 firmware version 3.3.1
or higher

AC500-eCo V3 firmware version
3.4.0 or higher

ABB_Ecat_CiA402_AC500

ABB_MathFunctions_AC500

ABB_MotionControlEco_AC500
(kernel blocks for eCo V3 PLCs)

ABB_MotionControlLoad_AC500 AB 2.5.0 or higher AC500 V3 firmware version 3.5.0
or higher

The PS5611-Motion libraries have been tested with the following product/firmware/software
versions:

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3958

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011239&LanguageCode=en&DocumentPartId=&Action=Launch

● AC500 V3 PLC firmware 3.3.1 or higher
● AC500-eCo V3 (PTO & PWM) firmware 3.4.0 or higher
● CM579-ETHCAT EtherCAT communication module firmware 4.4.3.21 or higher
● ABB e190 Drive
● CD522 module

In no event will ABB or its representatives be liable for loss of data, profits, revenue or
consequential, incidental or other damage that may result from the use of other versions of
product/software/firmware versions. The error-free operation of the PS5611 - Motion with other
devices/software/firmware versions should be possible but can not be guaranteed and may
need adaptations e. g. of example programs.

CAUTION!
Generally, the user in all applications is fully and alone responsible for checking
all functions carefully, especially for safe and reliable operation.

The function blocks contained in the library can only be executed in RUN mode
of the PLC, but not in simulation mode.

There are limits on the minimum EtherCAT cycle time, user can configure in each PLC type.

Table 752: Details on the limits on the minimum EtherCAT cycle time
PLC type PM5630 PM5650 PM5670
Min. EtherCAT master cycle
time

2 ms 1 ms 0,5 ms

Other than the above limits, there is also limits on configuring the number of synchronized axis
in each PLC type. This limits is based on the EtherCAT master cycle time configured under
EtherCAT master.

Table 753: Details on the limits for each PLC type
PLC type PM5630 PM5650 PM5670
Number of synchronized
axis in 1 ms

- 8 16

Number of synchronized
axis in 2 ms

4 16 32

Number of synchronized
axis in 4 ms

8 32 64

“Number of axis” is counted in Automation Builder is based on the number of Kernel function
block instance declared in the IEC application. In this way, it is made sure all real and virtual
axis are counted.

User can increase the EtherCAT cycle time to accommodate more “Number of
axis” in the same PLC type.

Limits on
number of
synchronized
axis

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3959

User can use the [Statistics] tab from Automation Builder to see how many axis are supported
for the particular PLC type and for the EtherCAT master cycle time configured. Once the axis
is configured user need to update the [Statistics] tab by “Generate Code” to get the updated
information.
Automation Builder allows an additional axis than what is mentioned in the above table to
support one virtual axis additionally.

Please remove any Kernel function block instance which is declared but
not used in the application to get the correct number of axis calculated by
Automation Builder under the [Statistics] tab.

6.5.10.3.3 Overview
Introduction

The PS5611-Motion is a motion control library for AC500 V3 CPUs, to create motion control
applications based on function blocks according to the standard of PLCopen motion control.
These function blocks can be used for PLC-based motion control and cover a wide range of
possible motion control functionalities. Starting from single axis movements to master-follower
axes to perform electronic gearing and CAM functions.

The detailed functionality of each function block is defined in the integrated
documentation of the library.

PLC-based motion control
With PS5611-Motion the application program and the profile generator are realized in the PLC.
The implementation of the profile generator is based on a set of function blocks which are
named central motion control (CMC).
The profile generator of many possible axes is centrally placed inside the AC500 PLC. There-
fore multiaxis motion functionalities become easily available and can be accessed by PLCopen
function blocks. As a result, motion control functionalities are almost drive independent.

The detailed functionality of each function block is defined in the integrated
documentation of the library.

Available motion control functionalities:
● Simple axis Movements
● Electronic Gearin
● Electronic CAMs
● Position Profiles
● Velocity Profiles
● Acceleration Profiles
● Load control (Torque profilling)
Then the output is a position reference signal which the drive will follow. A new position refer-
ence value will be calculated with every cycle of the PLC and has to be transferred to the
drive, which demands real time capabilities to the PLC and to the communication channel. A
real time fieldbus like EtherCAT is needed. The feedback of the actual position can be used
for supervision purposes during operation and is needed to adjust the value of the position
reference before the drive will be enabled.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3960

Fig. 311: System structure of PLC-based motion control with AC500 PLC and PS5611-Motion

With PLC-based motion control it is also possible to include the position control loop to the
AC500 PLC. In this case a speed reference signal will be transferred to the drive, which makes
it possible to perform the full range of motion functionalities with standard drives. To close the
position control loop, feedback of the actual position is mandatory.

Fig. 312: PLC-based motion control with AC500 PLC and PS5611-Motion, closed position
control loop

With PLC-based motion control it is also possible to include the load control loop to the AC500
PLC. In this case a speed reference signal will be transferred to the drive, which makes it
possible to perform the full range of motion functionalities with standard drives. To close the
position control loop, feedback of the actual position is mandatory and to close the load control
loop, feedback of the actual load / torque is mandatory.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3961

Fig. 313: PLC-based motion control with AC500 PLC and PS5611-Motion, closed load control
loop

Fig. 314: Central motion control with AC500 PLC and PS5611-Motion, different axis implemen-
tations at the same time

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3962

Overview of PLCopen function blocks
The following tables give an overview of the defined function blocks, divided into administrative
(not driving motion) and motion related sets. They give an overview which function block could
be used for the different possible configurations.
These function blocks are part of the ABB_MotionControl_AC500 and ABB_MotionControl-
Load_AC500 library.
If there are restrictions concerning a certain drive ("XXX") which lead to a different or limited
behavior compared to the standard the respective chapter is supplemented with an additional
paragraph "Notes for XXX".

The “KERNEL” function blocks are available in different variants.
The “CMC_Basic_Kernel” and “CMC_Load_Motion_Kernel” function block is designed to be
used in standard V3 PLCs, and can either work with drives connected to a fieldbus or IOs.
The “OBIO_PTOMotionKernel” or “OBIO_PWMMotionKernel” function blocks (part of
AC500_MotionControlEco) are solely to be used in AC500-eCo V3 CPUs and to make use
of the integrated stepper-IO along with PLCopen function blocks. It connects automatically to
the internal IOs.
For details of the limitations of PTO and PWM outputs in eCo V3 PLCs, refer to Automation
Builder help file.

Table 754: Motion control administrative function blocks
Function block PLC-based motion control

CMC_Basic_
Kernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMotion-
Kernel

MC_Power X X X

MC_ReadStatus X X X

MC_ReadAxisError X X X

MC_ReadParameter X X X

MC_ReadBoolParameter X X X

MC_WriteParameter X X X

MC_WriteBoolParameter X X X

MC_Reset X X X

MC_ReadActualPosition X X X

MC_ReadActualVelocity X X X

MC_SetOverride X X X

MC_SetPosition X X X

MC_CamTableSelect X X X

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3963

Table 755: Motion control single-axis function blocks
Function block PLC-based motion control

CMC_Basic_K
ernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_MoveAbsolute X X X

MC_MoveRelative X X X

MC_MoveAdditive X X X

MC_MoveSuperimposed X X X

MC_HaltSuperimposed X X X

MC_MoveVelocity X X X

MC_MoveContinuousAbsolute X X X

MC_MoveContinuousRelative X X X

MC_Stop X X X

MC_PositionProfile X X X

MC_VelocityProfile X X X

MC_AccelerationProfile X X X

MC_Halt X X X

Table 756: Motion control multi-axis function blocks
Function block PLC-based motion control

CMC_Basic_K
ernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_CamIn X X X

MC_CamOut X X X

MC_GearIn X X X

MC_GearInPos X X X

MC_GearOut X X X

MC_PhasingAbsolute X X X

MC_PhasingRelative X X X

MC_CombineAxes X X X

MC_HaltPhasing X X X

Table 757: Motion control homing function blocks
Function block PLC-based motion control

CMC_Basic_
Kernel

CMC_Load_Motion_
Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_StepAbsSwitch X X X

MC_StepLimitSwitch X X X

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3964

Function block PLC-based motion control
CMC_Basic_
Kernel

CMC_Load_Motion_
Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_StepRefPulse X X X

MC_StepDirect X X X

Table 758: Motion control ABB specific function blocks
Function block PLC-based motion control

CMC_Basic_K
ernel

CMC_Load_Motion
_Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MCA_Cam_Extra X X X

MCA_Indexing X X X

MCA_JogAxis X X X

MCA_MoveByExternalRefer-
ence

X X X

MCA_MoveVelocityContinuous X X X

MCA_Parameter X X X

MCA_ReadParameterList X X X

MCA_WriteParameterList X X X

MCA_SetPositionContinuous X X X

MCA_GearInDirect X X X

MCA_CamInDirect X X X

MCA_SetOperatingMode X X X

MCA_CamInfo X X X

MCA_DriveBasedHome X X X

MCA_MoveRelativeOpto X X X

MCA_PhasingByMaster X X X

Table 759: Motion control fluid power function blocks
Function block PLC-based motion control

CMC_Basic_
Kernel

CMC_Load_Motion_
Kernel

OBIO_PTOMotion-
Kernel/
OBIO_PWMMo-
tionKernel

MC_LimitLoad - X -

MC_LimitMotion - X -

MC_LoadControl - X -

MC_LoadProfile - X -

MC_LoadSuperimposed - X -

MC_TorqueControl - X -

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3965

Overview of libraries
Add the following libraries for the listed applications.

ð In some cases by adding a library, there will be other libraries added automatically.

Application Library to be added manually
PLC-based motion control ABB_MotionControl_AC500.-compiled-library

ABB_MathFunctions_AC500.-compiled-library

PLC-based motion control, optional for
EtherCAT

ABB_Ecat_CiA402_AC500.-library

Motion control with eCo V3 (OBIO_PTOMo-
tionKernel & OBIO_PWMMotionKernel)

ABB_MotionControlEco_AC500.compiled
ibrary

PLC-based motion control - Fluid Power
Extensions

ABB_MotionControlLoad_AC500.compiled
ibrary

The features of the function blocks provided with PS5611-Motion can be used from the PLC
program according to PLCopen standard. Different drives and different motion control realiza-
tions could be used and can be combined with each other as well as different fieldbuses.
ABB_Ecat_CiA402_AC500.library is editable and can be adapted based on the drive configura-
tion and drive type.

Overview of data types
The following data types are used for the motion control library. The data types are defined in
the library file ABB_MotionControl_AC500 compiled-library. The corresponding elements can be
used for the function blocks inputs.

Table 760: Structures
Data type Elements Element data type
CMC_AXIS_IO limitSwitchPos BOOL

limitSwitchNeg BOOL

absRefSwitch BOOL

MC_PPROFILE
Ä Chapter 6.5.10.3.5.7.2
“PositionPositionProfile”
on page 4036

master_position LREAL

interpolation_point LREAL

velocity_ratio LREAL

acceleration_ratio LREAL

MC_TPROFILE
Ä Chapter 6.5.10.3.5.7.3
“PositionTimeProfile”
on page 4036

interpolation_point LREAL

first_derivative LREAL

second_derivative LREAL

delta_time TIME

Table 761: Enum
Data type Possible values
MC_ABB_iTYPES_ENUM
Ä Chapter 6.5.10.3.5.7.4
“Interpolation types for pro-
files” on page 4036

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

MCA_POLY5

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3966

Data type Possible values
MCA_POLY3

MCA_LINEAR

MC_BUFFERMODE mcABORTING

mcBUFFERED

mcBLENDINGlow

mcBLENDINGprevious

mcBLENDINGnext

mcBLENDINGhigh

MC_DIRECTION DEFAULT

POSITIVE

SHORTEST

NEGATIVE

CURRENT

POSITIVE_STOP

NEGATIVE_STOP

CURRENT_STOP

MC_HOMING_DIRECTION MC_SwitchNegative

MC_SwitchPositive

MC_Positive

MC_Negative

MC_HOMING_EDGE MC_EdgeOn

MC_EdgeOff

MC_On

MC_Off

MC_HOMING_MODE MC_REFPULSE

MC_DIRECT

MC_SOURCE mcActualValue

mcSetValue

ERROR_ID MC_Ok

Wrong_State

Drive_Problem

Parameter_Exceeds_Limit

No_Field_Access

Bus_Problem

Abs_Switch_Error

Timeout

NAK

MC_TimeLimitExceeded

MC_DistanceLimitExceeded

MC_TorqueLimitExceeded

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3967

Data type Possible values
Not_Implemented

ErrorID_POSITION_FOLLOW

ErrorID_POSSW

ErrorID_NEGSW

ErrorID_VELOCITY_FAULT

ErrorID_INTERPOLATION_FAULT

ErrorID_WARNING_VELOCITYLIMIT

ErrorID_WARNING_POSITIONLIMITPOS

ErrorID_WARNING_POSITIONLIMITNEG

ErrorID_WARNING_POSITIONOVERRUN

ErrorID_WARNING_ABORT

ErrorID_WARNING_MOVEMENT_DIRECTION

Naming of function blocks and data structures
All function blocks and data types named MC_xxx are implemented according to PLCopen defi-
nition and follow the PLCopen documentation. They may have additional inputs but according to
PLCopen rules.
All function blocks and data types named MCA_xxx are implemented corresponding to
PLCopen rules with adaptations specific to AC500. They are AC500 specific extensions to the
PLCopen library.

All function blocks named CMC_xxx belong to the implementation of PLC-based motion control.
All data types named CMC_xxx belong to the implementation of PLC-based motion control.
All data types named AXIS_xxx exist according to PLCopen definition. The content is ABB
specific and not documented.
All function blocks named zCMC_xxx belong to the implementation of PLC-based motion con-
trol. These are not documented and not intended for customer use.
All function blocks and data types named MC_xxx are implemented according PLCopen defini-
tion and follow the PLCopen documentation.
All function blocks and data types named OBIO_xxx in the ABB_MotionControlEco_AC500
library are intended for use with AC500-eCo V3 PLCs only.
All function blocks named xxx_APP are not write protected and may be modified for adapta-
tions. Editable library is available in the example folder.

Editable library is available in the example folder.

6.5.10.3.4 PLCopen
Introduction

Based on application requirements and project specifications engineers are required to use
or select a wide range of motion control hardware. In the past this required unique software
to be created for each application even though the functions are the same. PLCopen motion
standard provide a way to have standard application libraries that are reusable for multiple
hardware platforms. This lowers development, maintenance and support costs while eliminating
confusion. In addition, engineering becomes easier, training costs decrease, and the software

PLCopen

PLC-based
motion control

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3968

is reusable across platforms. Effectively, this standardization is done by defining libraries of
reusable components. In this way the programming is less hardware dependent, the reusability
of the application software increased, the cost involved in training and support reduced, and
the application becomes scalable across different control solutions. Due to the data hiding and
encapsulation, it is usable on different architectures, for instance ranging from centralized to
distributed or integrated to networked control. It is not specifically designed for one application,
but will serve as a basic layer for ongoing definitions in different areas. As such it is open to
existing and future technologies.
ABB is a member of the PLCopen organization. More Information about PLCopen can be read
on the PLCopen website.

Fig. 315: PLCopen motion control logo

Function blocks according to PLCopen are designed for controlling axes via the language
elements consistent with those defined in the IEC 61131-3 standard. It was decided by the task
force that it would not be practical to encapsulate all the aspects of one axis into only one
function block. The retained solution is to provide a set of command-oriented function blocks
that have a reference to the axis, e.g. the abstract data type Axis, which offers flexibility, ease of
use and reusability.

Implementations based on IEC 61131-3 (for instance via function blocks and SFC) will be
focused towards the interface (look-and-feel/proxy) of the function blocks. This specification
does not define the internal operation of the function blocks.
PLCopen motion control function blocks can be used in any IEC 61131-3 programming lan-
guage. The following figure shows an example of a function block used in Function Block
Diagram (FBD) language.

Fig. 316: Command for absolute positioning according to PLCopen standard

Application programs which use the manufacturer independent function blocks according to
PLCopen will lead to the following advantages:
● Reusable software structure for different platforms.
● Programming based on function blocks.
● Function blocks can be used in any IEC 61131-3 language.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3969

http://www.plcopen.org

All function blocks which are defined by PLCopen will have the following qualities independently
to the manufacturer of the motion control system:
● Same inputs/outputs
● Same functional behavior
● Same name
The following parts of the PLCopen motion control definition are completely or partly included in
this product:
● Part 1: Function blocks for motion control
● Part 2: Extensions
● Part 3: User Guidelines
● Part 4: Homing Procedures
● Part 6: Function blocks for motion control – Fluid Power Extensions

Programming guidelines
This chapter explains some rules on the usage of the libraries and the structure Axis_Ref.
● In general, the kernel function block and the transfer of axis IO data should be processed

in a cyclic task. This task should be as short and real-time as possible to achieve the best
motion control performance. Always make sure Kernel function block is called at the highest
priority task and other applications must be at a lower priority task.

● If Axis_Ref is used as input on a user defined function block or program or function, always
use it as VAR_IN_OUT and never use it as VAR_INPUT or VAR_OUTPUT. The reason is
that this would
– Break the consistency and destroy data.
– Consume a lot of computing power by copying data.

● Any instance of a function block should be called only once per cycle and in only one
specific task.
If the instance is used in several tasks, it has to be checked that is not called several times.
Because this could corrupt the handshake from function block to Axis_Ref to
CMC_Basic_Kernel and vice versa.

● Some PLCopen function blocks are only allowed to be called within the same task as the
CMC_Basic_Kernel function block. This is mentioned in the function block descriptions.

● If PLCopen function blocks are called from a different task, the cycle time should be at least
2 times the cycle time for CMC_Basic_Kernel function block.

Axis data type Axis_Ref
The Axis_Ref is a structure that contains information on the corresponding axis. It is used as
a VAR_IN_OUT in all motion control function blocks defined in this document. The content of
this structure is implementation dependent and can ultimately be empty. If there are elements
in this structure, the supplier shall support the access to them, but this is outside of the scope
of this document. The refresh rate of this structure is also implementation dependent. According
to IEC 61131-3 it is allowed to switch the Axis_Ref for an active function block, for instance
from Axis1 to Axis2. However, the behavior of this can vary across different platforms, and is not
encouraged to do.

Axis_Ref data type declaration:
TYPE Axis_Ref : STRUCT
(Content is implementation dependent)
END_STRUCT

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3970

TYPE Axis_Ref : STRUCT
AxisNo: UINT; AxisName: STRING (255);
…….
END_STRUCT

Example:

The single axis state diagram
The following diagram normatively defines the behavior of the axis at a high level when multiple
motion control function blocks are simultaneously activated. This combination of motion profiles
is useful in building a more complicated profile or to handle exceptions within a program. (In
real implementations there may be additional states at a lower level defined). The basic rule is
that motion commands are always taken sequentially, even if the PLC had the capability of real
parallel processing. These commands act on the axis' state diagram.
The axis is always in one of the defined states (see diagram below). Any motion command that
causes a transition changes the state of the axis and, as a consequence, modifies the way the
current motion is computed. The single axis state diagram is an abstraction layer of what the
real state of the axis is, comparable to the image of the I/O points within a cyclic (PLC) program.
A change of state is reflected immediately when issuing the corresponding motion command.

The response time of immediately is system dependent, coupled to the state of
the axis, or an abstraction layer in the software.

The diagram is focused on a single axis. The multiple axis function blocks, MC_CamIn,
MC_GearIn and MC_Phasing, can be looked at, from a single axis state diagram point of view,
as multiple single-axes all in specific states. For instance, the CAM-master can be in the state
Continuous Motion. The corresponding slave is in the state Synchronized Motion. Connecting a
slave axis to a master axis has no influence on the master axis.
The state Disabled describes the initial state of the axis. In this state the movement of the axis
is not influenced by the function blocks. The axis feedback is operational. If the MC_Power
function block is called with Enable=TRUE while being in state Disabled, this either leads to
Standstill if there is no error inside the axis, or to ErrorStop if an error exists.
Calling MC_Power with Enable=FALSE in any state, the axis goes to the state Disabled, either
directly or via any other state. If a motion generating function block controls an axis, while the
MC_Power function block with Enable=FALSE is called, the motion generating function block is
aborted (CommandAborted).
The intention of the state ErrorStop is that the axis goes to a stop, if possible. There are no
further inputs from function blocks accepted until a reset has been done from the ErrorStop
state.
The transition Error refers to errors from the axis and axis control, and not from the function
block instances. These axis errors may also be reflected in the output of the function blocks
instances errors.
Issuing MC_Home in any other state than StandStill will go to ErrorStop, even if MC_Home is
issued from the state Homing itself.
Function blocks which are not listed in the single axis state diagram do not affect the state of the
axis, meaning that whenever they are called the state does not change. They are:
MC_ReadStatus; MC_ReadAxisError; MC_ReadParameter; MC_ReadBoolParameter;
MC_WriteParameter; MC_WriteBoolParameter; MC_ReadActualPosition and MC_CamTable-
Select.
Calling the function block MC_Stop in state StandStill changes the state to Stopping and back
to Standstill when Execute = FALSE. The state Stopping is kept as long as the input Execute is
TRUE. The output Done is set when the stop ramp is finished.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3971

Fig. 317: Function block state behavior

1. In this state ErrorStop or Stopping, all function blocks can be called, although
they will not be executed, except MC_Reset and Error – they will generate the
transition to StandStill or ErrorStop respectively.

2. Power.Enable=TRUE and there is an error in the Axis.

3. Power.Enable=TRUE and there is no error in the Axis.

4. MC_Stop.Done AND NOT MC_Stop.Execute.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3972

Visualizations
For usage with the PLCopen Library, a set of visualization objects is defined. These visual-
izations use the placeholder concept, which means that they could be used in an actual
visualization several times and be instantiated by replacing the “placeholder” with an effective
data-structure.
Two types of visualizations exist:
● As placeholder, an instance of Axis_Ref should be used. These are named:

MC_VISU_Axis_name. Here the name could be state machine or its actual.
● As placeholder, an instance of the respective PLCopen function block should be used.

These visualizations are named MC_VISU_FB_name where "name" could be MoveAbso-
lute or MoveVelocity, so the complete element is named MC_VISU_FB_MoveAbsolute or
MC_VISU_FB_MoveVelocity.

The background colour and the colour for the title of each element could be changed. The
colours are defined in some global predefined variables in MC_VISU_COLOR_INFORMATION.
By changing these values, different colours will be used.

Below, some existing visualizations are shown.

This shows the state machine of the axis according to PLCopen definition. The active state is
shown green except the ErrorStop which is shown red. Usually, it starts with Disabled. When no
remote connection to the drive is available, it will switch to ErrorStop immediately.
The placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

This object shows some actual values.
The Placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

MC_VISU_Axis_
StateMachine

MC_VISU_Axis_
actual

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3973

This object shows the error information connected to the PLCopen function blocks. This is NOT
a drive error. If no error occurs in the execution of a function block, just the name is shown. If an
error occurred, it shows the name of the function block as well as the error number and a short
description. In the example below, the MC_Power function block recognized that no fieldbus
connection to the drive was available.
The Placeholder of this visualization has to be connected to an instance of the data type
Axis_Ref.

Error codes
Besides the diagnosis information of the drive which is described in the respective drive docu-
mentation, there are a number of error codes directly related to the function blocks. These error
codes are displayed at the output “ErrorID” of the function block.

Error Code Mnemonic Explanation
0 MC_Ok No Error

1 WRONG_STATE A function block was activated not according
to the state machine, e.g. tried to start a
movement while in state Disabled.

2 DRIVE_PROBLEM The drive indicates an error, e.g. tripped.

3 PARAM-
ETER_EXCEEDS_LIMIT

A parameter at the function block is outside
the possible range. This does not refer to the
parameter range which is allowed for the drive
but just to the 32-Bit Integer which is used for
internal calculation.

4 NO_FIELD_ACCESS No fieldbus connection to the drive.

5 BUS_PROBLEM Not used

6 ABS_SWITCH_ERROR During Homing, (when done by function
blocks) limit switch not according to moving
direction e.g. the positive switch occurred
when moving in negative direction.

7 TIMEOUT Timeout in block execution.

MC_VISU_Axis_
FB_error

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3974

Error Code Mnemonic Explanation
8 NAK Parameter access not applicable

9 MC_TimeLimitExceeded Used by function blocks with TimeLimit.

10 MC_DistanceLimitEx-
ceeded

Used by function blocks with DistanceLimit.

11 MC_TorqueLimitExceeded Used by function blocks with TorqueLimit.

12 NOT_IMPLEMENTED Functionality not implemented for certain axis
type.

101 ErrorID_POSI-
TION_FOLLOW

Following error, caused by > position error =>
ERRORSTOP. (parameter POS_LAG_PER-
CENTAGE)

102 ErrorID_POSSW Positive software limit switch => ERROR-
STOP. The actual position did exceed
the positive Software limit switch position.
This supervision has to be activated with
MC_WriteParameter.

103 ErrorID_NEGSW Negative software limit switch => ERROR-
STOP. The actual position did exceed
the negative Software limit switch position.
This supervision has to be activated with
MC_WriteParameter.

104 ErrorID_VELOCITY_FAUL
T

The measured velocity and commanded
velocity are > 50% (related to maximum
velocity) apart, for a certain time =>ERROR-
STOP (parameter V_CHECKTIME)

105 ErrorID_INTERPOLA-
TION_FAULT

following error, caused by interpolation
problem =>ERRORSTOP. Position following
error occurred, but reason most likely a
interpo- lation problem, not drive problem (e.g.
CAM Table, position step).

110 ErrorID_WARNING_VELO
CITYLIMIT

Velocity or acceleration/deceleration are in
limitation, set by parameter EnableLimitVe-
locity, MaxVelocityAppl, MaxDecelerationAppl

111 ErrorID_WARNING_POSI-
TIONLIMITPOS

Position is in limitation towards position limit
(SWLimit2DecPos), axis decelerates near
positive software limit switch

112 ErrorID_WARNING_POSI-
TIONLIMITNEG

Position is in limitation towards position limit
(SWLimit2DecNeg)., axis decelerates near
negative software limit switch

113 ErrorID_WARNING_POSI-
TIONOVERRUN

A linear axis created a 32bit position overrun
(> 2147483647 u=>inc) =>configure modulo

114 ErrorID_WARNING_ABOR
T

Axis aborted due to too large position gap due
to velocity limitation

115 ErrorID_WARNING_MOVE
MENT_DIRECTION

Either positive or negative direction blocked
by MC_Power

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3975

Error handling
All access to the drive/motion control is via function blocks. Internally these function blocks
provide basic error checking on the input data. Exactly, how this is done is implementation
dependent. For instance, if MaxVelocity is set to 6000, and the Velocity input to a function block
is set to 10,000, a basic error report is generated. In the case where an intelligent drive is
coupled via a network to the system, the MaxVelocity parameter is probably stored on the drive.
The function block must take care of the errors generated by the drive internally. With another
implementation, the MaxVelocity value could be stored locally. In this case the function block will
generate the error locally.
Both centralized and decentralized error handling methods are possible when using the motion
control function blocks.
Centralized error handling is used to simplify programming of the function block. Error reaction
is the same independent of the instance in which the error has occurred.

Fig. 318: Function blocks with centralized error handling

Decentralized error handling gives the possibility of different reactions depending on the func-
tion block in which an error occurred.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3976

Fig. 319: function blocks with decentralized error handling

PLCopen parameter
Additional parameters are available by ReadParameter and WriteParameter function blocks.

Following function blocks can be used for the read and write operation. Func-
tionality of these blocks and its variables are explained in the integrated docu-
mentation

– MC_ReadParameter
– MC_WriteParameter
– MC_ReadBoolParameter
– MC_WriteBoolParameter

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3977

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

1 Com-
man-
ded-
Positi
on

DINT R Commanded
position.

2 SWLi
mitPo
s

DINT -214748364
7

2147483647 214748
3647

R/W Positive Software
limit switch posi-
tion.

3 SWLi
mitN
eg

DINT -214748364
7

2147483647 -21474
83647

R/W Negative Soft-
ware limit switch
position.

4 Ena-
bleLi-
mitPo
s

BOOL FALSE TRUE FALSE R/W Enable positive
software limit
switch.

5 Ena-
bleLi-
mitN
eg

BOOL FALSE TRUE FALSE R/W Enable negative
software limit
switch.

6 Ena-
ble-
Pos-
LagM
onitor
-ing

BOOL FALSE TRUE TRUE R/W Enable moni-
toring of position
lag (following
error).

7 Max-
Posi-
tionL
ag

DINT 1 2147483647

 R Maximal position
lag.

8 Max-
Veloc
ity-
Syste
m

DINT 32767 R Maximal allowed
velocity of the
axis in the motion
system.

9 Max-
Veloc
ityAp
pl

DINT 0** 32767 32767 R/W Maximal allowed
velocity of the
axis in the appli-
cation.

10 Actua
lVe-
locity

DINT -32767 32767 R Actual velocity.

11 Com-
man-
ded-
Veloc
ity

DINT -32767 32767 R Commanded
velocity.

12 Max-
Accel
era-
tion-
Syste
m

DINT 32767 R Maximal allowed
acceleration of
the axis in the
motion system.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3978

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

13 Max-
Accel
era-
tio-
nAppl

DINT 10 32767 32767 R/W Maximal allowed
acceleration of
the axis in the
application.

14 Max-
Decel
era-
tion-
Syste
m

DINT 32767 R Maximal allowed
deceleration of
the axis.

15 Max-
Decel
era-
tio-
nAppl

DINT 10 32767 32767 R/W Maximal allowed
deceleration of
the axis.

16 Max-
Jerk

DINT 0* 2147483647 214748
3647

R/W Maximal allowed
jerk of the axis.

2001 MOD
ULO
_NO
MIN-
ATO
R

DINT 1 2147483647 1 R/W ABB specific
parameter. Used
for PLC-based
motion control
implementation:
Gearbox modifier
to
MODULO_RANG
E

2002 MOD
ULO
_DE
NOM
INAT
OR

DINT 1 2147483647 1 R/W ABB specific
parameter. Used
for PLC-based
motion control
implementation:
Gearbox modifier
to
MODULO_RANG
E

2003 Ena-
ble-
Limit
2Dec
elerat
e

BOOL FALSE TRUE FALSE R/W Enable software
limit switches to
decelerate

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3979

Param-
eter
numbe
r (PN)

Nam
e

Datatype Min. Max. Default R/W Comments

2004 Ena-
bleLi-
mitA-
bort

BOOL FALSE TRUE FALSE R/W Enable that soft-
ware limit
switches will
abort ongoing
movement
FALSE = Limits
position and
velocity, deceler-
ates and shows a
warning until the
position limit is
reached, then
ERROR STOP
TRUE = Switches
off any ongoing
motion and decel-
erates to the
position limit,
then ERROR
STOP

2005 Ena-
ble-
Limt-
Veloc
ity

BOOL FALSE TRUE FALSE R/W If the velocity is
limited the
unmoved position
will be covered
whenever pos-
sible

2006 SWLi
mit2
DecP
os

LREAL -214748364
7

2147483647 214748
3647

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2007 SWLi
mit2
DecN
eg

LREAL -214748364
7

2147483647 214748
3647

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2008 Max-
Posi-
tion-
GapL
L

LREAL 0 2147483647
00

0 R/W Used to stop the
ongoing move-
ment if position is
behind

0* means: no limitation of jerk is performed.
**Axis will stay in stop.
***is modified by CMC_Axis_Control_Parameter, the max. Value is calculated in increments,
the value which is delivered by ReadParameter will be given in [u].

In addition to the above parameters certain other operation can be done using the below
parameters from the data type "Axis_Parameter"

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3980

Name Type Initial Comment
paraFilterVariant INT Filter for actual

velocity
0 = PT1
1 = LinearRegression

paraFilterTime INT 10 Time in PLC cycles,
used with paraFilter-
Variant

paraFilterForecast INT 0 Time in PLC cycles,
used with paraFilter-
Variant = 1

paraReverseDirection INT 0 Changes the direction
for actual and refer-
ence positions based
on the mode selected.
0 = normal direction
1 = reverse input posi-
tion
2 = reverse output
position and speed
reference
3 = reverse both

paraEarlyClosedLoop BOOL FALSE TRUE: hold the
position when
Drive_Release is
set (not wait for
Drive_InOperation =
TRUE)

paraLateOpenLoop BOOL FALSE TRUE: hold the posi-
tion until Drive_InOp-
eration = FALSE

Limits
Table 762: Limitations for the inputs of PLCopen function blocks when used with
CMC_Basic_Kernel
Parameter Min. Max.
Velocity 0 x

Acceleration, Deceleration 0 x

Position -2147483647 2147483647

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3981

General restrictions
Restrictions for the available function blocks
● As buffered mode, MC_Aborting is realized as a default. This does NOT mean that the axis

stops when another movement is started while an ongoing movement is still active. It means
instead that the new movement will take control immediately and change the velocity to its
own velocity by using its own acceleration or deceleration.

● The buffered mode MC_Buffered could be reached with using the axis state StandStill as
enable signal for the Execute of the next block.

● From the Extended Inputs and Outputs at the function blocks, the following are not realized:
– BufferedMode: The realization just supports the MC_Aborting mode.
– The following Outputs at ReadStatus are not supported: ConstantVelocity, Accelerating

and Decelerating.
– TorqueLimit for Homing function blocks.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3982

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3983

The diagram shows the behavior with BufferMode MC_Aborting, which is the only available
BufferMode. When the second Block is activated, it will take control and will continue on its own
velocity. The velocity is changed by using the acceleration value from the second function block.
The movement will not be stopped in between. The first function block shows CommandAborted
when the second function block is activated.

A behavior according to BufferMode MC_Buffered could be reached by using the Done output
from the first function block to enable the Execute of the second function block.

Behavior of the function block inputs and outputs
General rules

Table 763: General rules
Output exclusivity The outputs Busy, Done, Error, and CommandAborted are mutually

exclusive:
Only one of them can be TRUE on one function block. If Execute
is TRUE, one of these outputs has to be TRUE. Only one of the out-
puts Active, Error, Done and CommandAborted is set at the same
time.

Output status The outputs Done, InGear, InSync, InVelocity, Error, ErrorID and
CommandAborted are reset with the falling edge of Execute. How-
ever, the falling edge of Execute does not stop or even influence
the execution of the actual function block. It must be guaranteed
that the corresponding outputs are set for at least one cycle if the
situation occurs, even if execute was reset before the function block
completed. If an instance of a function block receives a new exe-
cute before it has finished (as a series of commands on the same
instance), the function block will not return any feedback, like Done
or CommandAborted, for the previous action.

Input parameters The parameters are used with the rising edge of the execute input.
To modify any parameter, it is necessary to change the input param-
eter(s) and to trigger the motion again.

Missing input parame-
ters

According to IEC 61131-3, if any parameter of a function block input
is missing (open) then the value from the previous invocation of
this instance will be used. In the first invocation the initial value is
applied.

Position versus distance Position is a value defined within a coordinate system. Distance is a
relative measure related to technical units. Distance is the difference
between two positions.

Sign rules Velocity, Acceleration, Deceleration and Jerk are always positive
values. Position and Distance can be both positive and negative.

Error Handling Behavior All function blocks have two outputs, which deal with errors that can
occur while executing that function block. These outputs are defined
as follow:

Error Rising edge of Error informs that an error occurred during the
execution of the function block.
ErrorID: Error number

MC_Aborting
Mode

MC_Buffered

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3984

The outputs Done, InVelocity, InGear, and InSync mean successful
completion so these signals are logically exclusive to Error.
Types of errors:
● Function blocks (e.g. parameters out of range, state machine

violation attempted),
● Communication,
● Drive Instance errors do not always result in an axis error

(bringing the axis to StandStill). The error outputs of the relevant
function block are reset with falling edge of Execute.

Function block naming In case of multiple libraries within one system (to support multiple
drive/ motion control systems), the function block naming may be
changed to MC_FunctionBlockName_SupplierID.

Behavior of Done output The outputs Done, InGear, InSync... are set when the commanded
action has been completed successfully. With multiple function
blocks working on the same axis in a sequence, the following
applies:
When one movement on an axis is interrupted with another move-
ment on the same axis without having reached the final goal, Done
of the first function block will not be set.

Behavior of CommandA-
borted output

CommandAborted is set, when a commanded motion is interrupted
by another motion command. The reset-behavior of CommandA-
borted is like that of Done. When CommandAborted occurs, the
other output-signals such as InVelocity are reset.

Inputs exceeding appli-
cation limits

If a function block is commanded with parameters which result in
a violation of application limits, the instance of the function block
generates an error. The consequences of this error for the axis are
application specific and thus should be handled by the application
program.

Behavior of Busy output Every function block can have an output Busy, reflecting that the
function block is not finished. Busy is SET at the rising edge of
Execute and RESET when one of the outputs Done, Aborted, or
Error is set. It is recommended that this function block should be
kept in the active loop of the application program for at least as long
as Busy is true, because the outputs may still change. For one axis,
several function blocks might be busy, but only one can be active at
a time.
Exceptions are MC_SuperImposed and MC_Phasing, where more
than one function block related to one axis can be active.

Output Active The output Active is required on buffered function blocks. This
output is set at the moment the function block takes control of the
motion of the according axis. For un-buffered mode the outputs
Active and Busy can have the same value.

Enable and Valid/Status The input Enable is coupled to output Valid. Enable is level sensi-
tive, and Valid shows that a valid set of outputs is available at the
function block. The output Valid is TRUE as long as an output value
of Valid is available and the input Enable is TRUE. The relevant
output value can be refreshed as long as the input Enable is TRUE.
If there is a function block error, the output is not Valid (Valid set
to FALSE). When the error condition disappears, the values will
reappear and output Valid will be set again.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3985

Fig. 320: Behavior of the Execute/Done style function blocks.

Why is the command input edge sensitive?
The input Execute for the different function blocks described in this document always triggers
the function with its rising edge. The reason for this is that with edge triggered Execute new
input values may be commanded during execution of a previous command. The advantage
of this method is a precise management of the instant a motion command is performed. Com-
bining different function blocks is then easier in both centralized and decentralized models of
axis management. The output Done can be used to trigger the next part of the movement. The
example given below is intended to explain the behavior of the function block execution.
The following figure illustrates the sequence of three function blocks First, Second and Third
controlling the same axis. These three function blocks could be for instance various absolute
or relative move commands. When First is completed the motion its rising output First.Done
triggers Second.Execute. The output Second.Done AND In13 triggers the Third.Execute.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3986

Fig. 321: Function blocks to perform a complex movement

The input ContinuousUpdate
Like described in the previous chapter, the input Execute triggers a new movement. With a
rising edge of this input the values of the other function block inputs are defining the movement.
Until version 1.1 of PLCopen there was the general rule that a later change in these input
parameters does not affect the ongoing motion.
Nevertheless, there are numerous application examples, where a continuous change of the
parameters is needed. The user could retrigger the input Execute of the function block, but this
complicated the application.
Therefore, the input ContinuousUpdate has been introduced. It is an extended input to all
applicable function blocks. If it is TRUE, when the function block is triggered (rising Execute),
it will - as long as it stays TRUE – make the function block use the current values of the input
variables and apply it to the ongoing movement. This does not influence the general behavior
of the function block nor does it impact the single axis state diagram. In other words it only
influences the ongoing movement and its impact ends as soon as the function block is no longer
Busy or the input ContinuousUpdate is set to FALSE.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3987

It can be that certain inputs like BufferMode are not really intended to change
every cycle. However, this has to be dealt with in the application, and is not
forbidden in the specification

If ContinuousUpdate is FALSE with the rising edge of the input Execute, a change in the
input parameters is ignored during the whole movement and the original behavior of previous
versions is applicable. The ContinuousUpdate is not a retriggering of the input Execute of the
function block. A retriggering of a function block which was previously aborted, stopped, or
completed, would regain control on the axis and modify its single axis state diagram. Opposite
to this, the ContinuousUpdate only effects an ongoing movement. Also, a ContinuousUpdate of
relative inputs (e.g. Distance in MC_MoveRelative) always refers to the initial condition (at rising
edge of Execute).

● MC_MoveContinuousRelative is started at Position 0 with Distance 100, Velocity 10 and
ContinuousUpdate set TRUE. Execute is Set and so the movement is started to position
100.

● While the movement is executed (let the drive be at position 50), the input Distance is
changed to 130, Velocity 20.

● The axis will accelerate (to the new Velocity 20) and stop at Position 130 and set the
output Done and does not accept any new values.

Example

Unit of length
The only specification for physical quantities is made on the unit of length (noted as [u]) that
is to be coherent with its derivatives i.e. (velocity [u/s]; acceleration [u/s2]; jerk [u/s3]). Neverthe-
less, the unit [u] is not specified (manufacturer dependent). Only its relations with others are
specified.

Aborting versus buffered modes
Some of the function blocks have an input called BufferMode. With this input, the function block
can either work in a Non-buffered mode (default behavior) or in a Buffered mode. The difference
between those modes is when they should start their action:
● A command in a non-buffered mode acts immediately, even if this interrupts another motion,
● A command in a buffered mode waits till the current function block sets its output Done (or

InPosition, InVelocity...).
● The library just supports the mode "aborting" (MCAborting)

The following examples describe the different behavior of these modes:

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3988

Fig. 322: Basic example with two MC_MoveAbsolute on same axis

Example 1:
Standard
behavior of two
following abso-
lute move-
ments

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3989

Fig. 323: Timing diagram for example above without interference between function block 1 and function
block 2

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3990

Example 2:
Aborting
motion

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3991

Fig. 324: Timing diagram for example above with function block 2 interrupting function block 1 (McAborting
Mode)

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3992

If an on-going motion is aborted by another movement, it can occur that the braking distance is
not sufficient due to deceleration limits.
In rotary axis, a modulo can be added. A modulo axis could go to the earliest repetition of the
absolute position specified, in cases where the axis should not change direction and reverse to
attain the target position.
In linear systems, the resulting overshoot can be resolved by reversing, as each position is
unique and therefore there is no need to add a modulo to reach the correct position..

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3993

PLCopen examples

The following figure shows an example where the function block (MC_MoveVelocity) is used
to control AxisX with three different values of Velocity. In a Sequential Function Chart (SFC)
the velocity 10, 20, and 0 is assigned to V. To trigger the input Execute with a rising edge the
variable E is stepwise set and reset.

Fig. 325: Single function block with SFC

The following timing diagram explains how it works:

Example: A
function block
instance con-
trols different
motions of an
axis

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3994

Fig. 326: Timing diagram for a usage of single function block

The second InVelocity is set for only one cycle because the Execute has gone
low before the ActualVelocity equals CommandedVelocity.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3995

Different instances related to the same axis can control the motions on an axis. Each instance
will then be responsible for one part of the global profile.

Fig. 327: Cascaded function blocks

The timing diagram:

Example: Dif-
ferent function
blocks
instances con-
trol the
motions of an
axis

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3996

Fig. 328: Cascaded function blocks timing diagram

A corresponding solution written in LD looks like:

Fig. 329: Cascaded function blocks with LD

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3997

6.5.10.3.5 PLC-based motion control
PLC-based motion control architecture

With PS5611-Motion different motion control system structures are possible. Independent of the
system structure a typical motion control application consists of the following system elements:
● An application program which contains PLCopen function blocks that defines the general

application behavior and logics.
● A profile generator which generates a position profile based on the dynamic specifications of

the application program to guide the axis to the desired positions.
● A position control loop which outputs a speed reference signal to minimize the following

error.
To achieve the best system structure for an application these components can be separated into
different devices. Each type of structure has its own kind of interface and type of signals which
need to be transferred between the interacting devices.

All shown motion control system structures (Central motion control with or
without position control loop) can be combined together in the same application
program for a motion control project.

With the function blocks of motion library a motion control profiler can be used inside the PLC.
As shown in the following figure it is needed to provide the actual position of the drive. The
output can be either a position or a velocity reference signal. The used output signal will then be
used to move the axis in the desired way.

There are 2 possibilities to send a reference value to the drive:
● When the position control loop is closed by the PLC by a CMC_Basic_Kernel function block,

the output Speed_Reference should be connected to the drive. The value of Speed_Refer-
ence can be scaled with the axis parameters Max_Rpm and Ref_Max.

● When the position control loop is closed by the drive, the output Position_Reference should
be connected to the drive. The unit for the output Position_Reference is incremented as well
as the input Drive_ActualPosition.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US3998

Fig. 330: Architecture for centralized motion control

In general the programming of a machine consists of two layers as shown in the figure above.
In the application layer function blocks according to PLCopen motion control are used to pro-
gram the application sequences with all necessary types of movements and administrational
commands. Due to the standard PLCopen motion control this can be reused in any other
machine programs that used PLCopen function blocks.
The axis implementation layer is responsible for the execution of the commands from the
application layer and can be programmed for each axis in a different way depending on the
used hardware components.

Table 764: Needed function blocks for an application with PLC-based motion control
Library Content
ABB_MotionControl_AC500.library Kernel function block, Parameters function

block, Axis Simulation function block

Data types for AC500 motion control

Motion control function blocks according to
PLCopen

For a central motion axis implementation the use of the function blocks
CMC_Basic_Kernel and CMC_Axis_Control_Parameter are mandatory.

The library design is independent from any bus architecture or any specific drive features.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 3999

System Velocity reference Position feedback
System A Output via analog output channel

as voltage or current
From incremental encoder con-
nected to CD522 I/O module

System B Output via EtherCAT network Input via EtherCAT network

System C Output as frequency signal of
CD522 I/O module

From incremental encoder con-
nected to CD522 I/O module

System D Output via PROFINET IO network Input via PROFINET IO network

System E Output via PTO & PWM channel in
eCo V3

Input via either encoder (included
in onboard IO), or the PTO or
PWM pulse count.

Example for a
possible
system archi-
tecture

In case the velocity reference value is used from the kernel function block the position control
loop is closed inside the drive. In this case, it is necessary to adjust the related parameters from
the parameters function block. When the position reference will be used the position control
loop is closed inside the drive. In this case, the internal control loop is just used to monitor the
position and velocity.

When the position reference is used for the drive the following aspects have to
be taken care of:

– It is necessary to use a real time fieldbus, like EtherCAT.
– The PLC cycle has to be synchronized to the fieldbus cycle.
– The task calculation times may not exceed the used cycle time.

The drive’s status should be managed by a specialized function block that supports the used
type of drive as shown in the figure above. The kernel function block is the main function block
which is needed to operate an axis with PLC-based motion control. It must be used with the
parameter function block which is the interface to input parameters which are used to setup the
axis.

The drive has to be accessed outside the CMC_Basic_Kernel function block. Actual values and
reference values might be transferred by a synchronized fieldbus or by I/Os. The function block
CMC_Basic_Kernel has to be called every cycle and at least once before any function block MC
or MCA is activated.
The following figure shows an example with an axis simulation. The main data signals are
drawn in bold lines. Here, the drive will receive a speed reference signal which means that
the position control loop is closed inside the PLC by the central motion function blocks. The
time behavior of the simulated drive can be set by the parameter T1 at the axis simulation
function block. If the time constant is to slow and the axis parameter Control_Time is too
short the simulation axis will run into instability – like a real drive. Sample values Ä Chapter
6.5.10.3.5.2.3 “How to use the axis simulation” on page 4005

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4000

A different option to create a virtual or simulated axis is to engage the Enable_Virtual input at
CMC_Basic_Kernel. This virtual axis will follow the speed reference without additional delay,
whereas the CMC_Axis_Simu creates a first order delay.

The following figure shows an example with a CiA402 drive on an EtherCAT network. The main
data signals are drawn in bold lines. Here, the drive will receive a position reference signal
which means that the position control loop is closed inside the drive.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4001

In the example the main signals are to be transferred via EtherCAT network. The drive control
function block for the Microflex e190 can be found in the ABB_Ecat_CiA402_AC500.library.
If using the eCo V3 PLCs, use the OBIO_PTOMotionKernel function block (separate library
ABB_MotionControlEco_AC500.library) instead of CMC_Basic_Kernel for the PTO functionality.

In the eCo V3 PLC, if PWM is used in the configuration, use the kernel function block
OBIO_PWMMotionKernel function block instead of CMC_Basic_Kernel function block.

Basic functionalities
How to connect a drive

The connection to a drive must be done with the inputs and outputs of the function block
CMC_Basic_Kernel. All inputs and outputs of the kernel function block with the prefix “Drive_”
are intended to be used with a drive, but in some cases not all of them are needed. In all cases
the input Drive_ActualPosition has to be connected with the actual position of the axis. This
value can be received by an I/O module of the PLC or via a fieldbus.
Depending on which device closes the position control loop either the output Speed_Reference
or Position_Reference output has to be used. The value of Speed_Reference can be connected
to an analog output module or be transferred via a fieldbus. The value of Position_Reference
should be exclusively sent via a real-time fieldbus like EtherCAT.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4002

In the example the position control loop will be closed by the PLC, therefore the input
Drive_ActualPosition and the output Speed_Reference are to be used.
In combination with the I/O module CD522 and the corresponding function block
CD522Encoder32Bit the position of the encoder can be used. For the effective resolution of
the encoder parameter Inc_Per_R of the parameter function block has to be used.
The output Speed_Reference can be written directly to the global variable of an output
channel of an analog module but can also be transferred via a fieldbus. The scaling of this
output value can be done with the parameters Ref_Max and Max_Rpm of the function block
CMC_Axis_Control_Paramter_Real.
The scaling of the Speed_Reference value can be set with the inputs Ref_Max and Max_Rpm
of the parameter function block.

In order to finish a homing sequence which is done by the function block MC_StepRefPulse
the outputs Drive_Set_Ref and Drive_Set_Position from the kernel function block have to be
connected with the inputs EN_RPI and START_VALUE of the CD552 I/O module function
block. Also the output RdyRpi of the CD552 I/O module function block has to be connected
with Drive_Ref_Ok from the kernel function block.
To enable and disable the drive Drive_Release could be connected to a binary output to acti-
vate the drive. Drive_InOperation could be connected to a binary input to get the information
that Drive_Release was successful.

Example 1:
Analog drive -
Motor with
incremental
encoder

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4003

In the example the position control loop will be closed by the drive, therefore the input
Drive_ActualPosition and the output Position_Reference are to be used. The inputs referring to
the position control loop of the parameter function block do not have to be set.
For the effective resolution of the motor’s encoder parameter Inc_Per_R of the parameter
function block has to be adjusted.

To enable and disable the drive Drive_Release and Drive_Inoperation have to be
connected to the control function block ECAT_CiA402_Control_App of the library
ABB_Ecat_CiA402_AC500.library, which controls the status and control word of the drive.
All function blocks from this library are not password protected and free to be changed in order
to be adapted for different drives. The library and the function blocks are marked with the
ending _APP.

Example 2:
Servo Drive -
Microflex e190
via EtherCAT in
continuous
positioning
mode (csp)

How to enable and disable a drive
In order to enable a drive the function block MC_Power has to be used within the applica-
tional layer. The kernel function block will then, if possible, output a rising edge on the output
Drive_Release which can be connected to the drive-control function block which performs the
needed actions on the drives control word to enable the drive. As soon the drive states enabled,
this signal can be connected to the input Drive_In_Operation of the kernel function block. The
axis state according to the single axis state diagram of PLCopen will then switch from Disabled
to Standstill.

MC_Power_inst.enable

Kernel_inst.DRIVE_ENABLE

Application Layer

Axis Implementation Layer

Drive will be enabled

Kernel_inst.DRIVE_IN_OPERATION

0

1

0

1

0

1

Axis State
disabled

standstill

Fig. 331: Enabling sequence of a drive

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4004

As long as the drive is in state Disabled or ErrorStop the input Drive_Actual_Position will be
copied to the output Position_Reference of the kernel function block. The output Speed_Refer-
ence will be zero.
When the axis is in operation, which means it is not in state Disabled or ErrorStop, then
the output Position_Reference will be calculated by the kernel function block and the position
control loop will be closed, which outputs non zero value for the output Speed_Reference in
case of a following error. The input Actual_Position should then follow the position reference.
The difference of both values is the following error and will be supervised by the kernel function
block.
In case of drive problem, Drive_InOperation should be reset. The function block will open the
position control loop and Speed_Reference will be set to zero.
For the most drives the status is control by the drives control word whereas the drives status
word represents its actual status. In order to enable the drive it might be necessary to pass
through several drives states according a defined scheme which depends on the used drive.
Therefore the library ABB_Ecat_CiA402_AC500.library is added to PS5611-Motion package
which contains function blocks to operate with different drives on an EtherCAT network. There is
also the PS5605-DRIVES library package which can be used to control the state of other ABB
drives and other protocols.

How to use the axis simulation
It is possible to use a simulated axis instead of a real drive.
The axis simulation can be used in the following use cases:
● When the real drive is not available the simulation can be used to test all available motion

functionalities to verify the application program.
● The simulation can be used to create a virtual master axis and synchronize other axes to it.
The simulation is realized by the function block CMC_Axis_Simu or input Enable_Virtual =
TRUE can be used at the KERNEL-block.
Homing will be possible if the limit-switches (data type CMC_Axis_IO) are simulated also. This
is not done by CMC_Axis_Simu but could be realized in the PLC program.

Fig. 332: Example for Simulation

The drive velocity is simulated by PT1-Characteristic. The input T1 gives the time constant
for this PT1 as multiple of the cycle time. All other properties are simulated according to the
CMC_Axis_Control_Parameter.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4005

The value of the time behavior from the axis simulation function block set by
the input T1 has to be at least four times smaller than the value of the axis
parameter Control_Time from the parameter function block. If Enable_Virtual =
TRUE is used, no delay will be applied to the simulated drive speed, and it will
not be possible to test the position-control loop, but it will be fine to be used as
virtual axis.

How to perform a homing
The homing of an axis is a procedure which consists of up to two phases. For each phase there
are different function blocks available. The available function blocks are according to PLCopen
and belong to the application layer.

Table 765: Overview of the available homing function blocks
 Phase 1 Phase 2/Finish Homing

MC_StepAbsSwitch X

MC_StepDirect X

MC_StepLimitSwitch X

MC_StepRefPulse X

In order to create a complete homing sequence one function block of each phase can be used.

The used function blocks will change the axis state to Homing and will move the axis to
approach installed limit switches or a dedicated absolute switch in the desired directions. No
manipulation of a position value will be done in this phase. The use of function blocks of this
phase is optional for a homing.
The signals of the installed limit switches have to be written to a variable of the data type
CMC_Axis_IO.

Function blocks from this phase will also change the axis state to Homing if this has not already
happen and will finish the homing. Therefore a new position will be set to the axis. The axis
state will then switch back to Standstill.
The use of a function block of the second phase is mandatory for a homing.
In general with AC500 PLC-based motion control there are two position values: One position
value will represent the encoder counts of a drive or the CD522 module which is connected to
the input Drive_ActualPosition of the kernel function block. The other position is a user defined
scaled unit which is used for PLCopen function blocks.
There are different ways to finish the homing by manipulate and adjust a position value. Which
value should be manipulated depends on the used drive or module and its capabilities. See the
following types A, B and C.

The user defined position unit will be changed only. The function block MC_StepDirect must be
used here. This type of homing is less complex than the other types but also less precise.

First phase

Second phase

Type A

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4006

Fig. 333: Homing Type A

The Drive or the CD522 module will change its own position value, the encoder counts.

Fig. 334: Homing Type B

The process will be started by the execution of the function block MC_StepRefPulse.
The axis will start to move.
The output Drive_Set_Ref of the kernel function block will then set the drive to sense for a
digital signal. At the same time the kernel function block outputs a preset value which will
replace the actual encoder count value at the moment the digital signal occurs.
This signal can be a Z-pulse of an incremental encoder but also any other signal from a sensor.
This functionality may require a configuration of the drive or the CD522 module in order to be
used.
In the same cycle when the new position value is set there also has to be a boolean signal
stating a new position value at the input Drive_Ref_Ok of the kernel function block. The user
defined position value will then be shifted accordingly.

Type B

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4007

Example of type B for phase 2 Ä Chapter 6.5.10.3.5.2.1 “How to connect a drive” on page 4002

The encoder count position value will not be changed but involves registration capabilities of a
drive or the CD522 module.

Fig. 335: Homing Type C

The process will be started by the execution of the function block ECAT_HomingOnTouchP-
robe_APP (ABB_Ecat_CiA402_AC500.library).
The axis will start to move.
The output Drive_Set_Ref of the kernel function block will then command the drive or the
CD522 module to activate the Touch Probe functionality. This will configure the drive to latch
a position at the moment a digital signal occurs. The digital signal can be a Z-pulse of an
incremental encoder but also any other signal from a sensor. This functionality may require a
configuration of the drive or the CD522 module in order to be used.
In combination with the latched position value there is a boolean signal which states that a
new latch value has been received. In case of the module CD522 this encoder count position
value has to be converted from encoder counts to equivalent user scaled units by the use of
the function “CMC_Get_Units_From_Inc” (ABB_MotionControl_AC500.library) before it can be
connected to the function block ECAT_HomingOnTouchProbe_APP.
To manage the Touch Probe objects of a drive within the CiA402 profile (e.g. Microflex e190)
the function block ECAT_HomingOnTouchProbe_APP (ABB_Ecat_CiA402_AC500.library) can
be used. This will also cover the conversion from encoder counts to user scaled units.
At the end of the process the function block ECAT_HomingOnTouchProbe_APP will manipulate
the user scaled position value according to the latched position from the drive and the users
settings.

For further information see:
AN00220-001 - AC500 and MicroFlex e190 - EtherCAT Homing Methods

Type C

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4008

http://www.abbmotion.com/support/SupportMe/ApplicationNotes.asp

How to Use a CAM curve
The CAM functionality is only available in combination with the kernel function block
CMC_Basic_Kernel.

From Automation Builder 2.5.0 onwards user can make use of inbuild Cam
Configurator to generate Cam Table. For more details on how to use Cam
Configurator please refer Automation Builder Help file.

It is recommended to use the CAM Editor from Automation Builder for those who are new to
Cam table or to get the structure of the Cam Table. User can create the complete CAM Table
using Cam Editor or can make a copy of CAM Table (IEC Code) and adapt it directly in the IEC
code if needed.
Details on the CAM Table structure and different parameters to be considered while creating the
CAM is described below.

The usage of a CAM function is based on the following elements:
● CAM table defined with the data type MC_PProfile.
● An instance of the function block MC_CamTableSelect
● An instance of the function block MCA_Cam_Extra (optional)
● An instance of function block MC_CamIn
● An instance of function block MC_CamOut

1. Declare a CAM table as an array of the data type “MC_PProfile” in the program.
2. Write data to this array.
3. Use the address of the CAM table at the input “CamTable” of the function block

“MC_CamTableSelect”.
4. Execute the function block “MC_CamTableSelect” to process the data of the CAM table

with the function block’s input parameters
5. Additionally you can execute the function block “MCA_Cam_Extra” for optional parame-

ters after the processing of the function block “MC_CamTableSelect”.
6. Execute the function block “MC_CamIn” to start the slave axis movement according to the

CAM table data and parameters.

ð The axis will operate in the axis state “Synchronized Motion”.

7. To leave the axis state you can execute the function block “MC_CamOut”.

ð The axis state will switch to state “Continuous Motion” and maintains its last velocity
as long as there is no other command.

8. You can also use any other motion command interrupt the “Synchronized Motion”.

General usage

The following
steps are neces-
sary to use a
CAM table

Preconditions to
use
“MC_CamIn”
and
“MCA_CamInDir
ect” function
blocks

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4009

1. Use no sync option
Behavior Precondition Howto Possible problems

Start directly with
cam table positions,
previous movement
will be aborted if
the master is out-
side the cam table
area, the slave posi-
tion is not changed
=>velocity=0.

Move master and
slave to matching
positions (according
to cam table) before
MC_CamIn OR start
the cam with posi-
tions=0 and use
relative=TRUE OR
compensate the posi-
tion offset with Mas-
terOffset and Slave-
Offset (MC_CamIn).

Use MC_CamIn Mas-
terStartDistance =0

A position jump, if pre-
condition is not met.

2. Synchronize to a dedicated position while the master moves from (MasterSyncPosi-
tion-MasterStartDistance) to (MasterSyncPosition)
Behavior Precondition Howto Possible problems

Sync is started
when the master
passes (MasterSync-
Position -MasterStart-
Distance).

Master position <
(MasterSyncPosition
-MasterStartDistance)
(for positive move-
ments), position can
be outside the cam
table position range.
Slave has to be in
standstill.

Use MC_CamIn
MasterStartDis-
tance>0

Acceleration and
velocity during sync
process not limited
sync has to wait until
master passes start
condition.

3. Synchronize while the master moves a certain distance (MasterStartDistance)
Behavior Precondition Howto Possible problems

Sync is started
from the actual posi-
tion and velocity
and “inSync” when
the master has
moved “MasterStart-
Distance”.

-slave axis in standstill
OR
-master already
moving in the right
direction.

Use MC_Cam_ID.
ignoreMasterSyncPo-
sition = TRUE (modify
data structure, output
from MC_CamTable-
Select)

Acceleration and
velocity during sync
process not limited.

4. Synchronize as fast as possible, master can move or standstill
Behavior Precondition Howto Possible problems

Use a given acceler-
ation and velocity
to move the slave
to the position which
matches the actual
master position.

The master position
should be within
the cam table posi-
tion range, actual
velocity=0 or actual
velocity <>0 is pos-
sible.

MCA_CamInDirect The allowed acceler-
ation and velocity
must be higher than
required by the cam
movement, so the
slave axis can catch
up.

It is important to give higher velocity and acceleration values for
“MCA_CamInDirect” than to be expected during the cam movement!!

CAM data is done with one table (two dimensional – describing master and slave positions
together).
The data of the elements (array of data type MC_PProfile) can either be assigned within the
declaration or can be assigned during run time before the execution of the function block
MC_CamTableSelect.

CAM table

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4010

It can be filled with data in the following ways:
● To use a predefined variable list.
● To calculate the values within the program (before using the MC_CamTableSelect).
● To send values by any communication access to the PLC.
In order to use the new data it is necessary to execute the function block MC_CamTableSelect
again. In case the CAM table is executed the function block MC_CamTableSelect may not be
executed.
Elements of the data type MC_PProfile Ä Chapter 6.5.10.3.3.5 “Overview of data types”
on page 3966

The inputs MasterSyncPosition and MasterSyncDistance of the function block MC_CamIn can
be used to define a distance to synchronize the slave axis onto the CAM table during the start.
In case master axis moves with negative velocity the parameter MasterSyncDistance can be
negative. The MasterSyncPosition should always be within the range of the CAM table master
position.
MasterSyncDistance = 0 will deactivate the synchronization. In this case the slave axis should
be moved on the CAM curve before MC_CamIn is executed, otherwise a following error can
occure.

Fig. 336: CAM profile figure

The master position in the CAM table must be strictly monotonic rising.
The length of a CAM table is just restricted by the memory size of the PLC. When long tables
are used, it is recommended to call CamTableSelect in a task with lower priority as it will need a
considerable computing time.
It is possible to hold several CamTables as a pool and to switch from one to another. This has to
be done at matching positions as no means for synchronization are available.
The offset and scaling values (except the time-scale) are transferred continuously. This will
allow to follow a "Moving Target" by adjusting these values.

The parameters at MC_CamTableSelect, MC_CamIn and function and MCA_Cam_Extra also
modify the behavior:

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4011

Parameter MC_Cam-
TableSelect

Type Default
value

Comment

MasterAbsolute BOOL FALSE TRUE=Master_position from MC_PProfile
equals the master axis absolute position.
FALSE=CAM is executed relative to the
master axis actual position at start.

SlaveAbsolute BOOL FALSE TRUE=interpolation_point from MC_PProfile
equals the slave axis absolute position.
FALSE=CAM is started from actual slave posi-
tion. The values "interpolation_point" are rela-
tive to the slave axis position at start.

iType MC_ABB_
iTypes_E
NUM

 Interpolationtype.

Number_of_pairs INT Number of points used in TimePosition Array.

Parameter
MC_CamIn

Type Default
value

Comment

MasterOffset LREAL 0 Just used with MasterAbsolute=TRUE,
ignored otherwise.
Used position for cam-table is: Master axis
position-Masteroffset.

SlaveOffset LREAL 0 Just used with SlaveAbsolute=TRUE, ignored
otherwise. Used position is slave axis posi-
tion=interpolation_point+Slaveoffset.

MasterScaling LREAL 1 The position used for interpolation is multiplied
by MasterScaling, e.g MasterScaling=2, the
scaled master will pass the position range with
double velocity and within the half distance
compared to its real velocity and position.

SlaveScaling LREAL 1 Interpolation result is multiplied by Slave-
Scaling, e.g SlaveScaling=2: Slave axis will
run twice the distance.

MasterSyncPosition LREAL 0 Start synchronization at master
axis position=MasterSyncPosition-Master-
StartDistance+MasterOffset, meet the CamT-
able at master axis position=MasterSyncPosi-
tion.
In case of MasterAbsolute=FALSE: start
at "actualPosition+MasterSyncPosition-Mas-
terStartDistance", meet the CamTable at
"actualPosition+MasterSyncPosition"!!! It is
just possible to use the "sync" mechanism
when the axis is in StandStill on start.

MasterStartDistance LREAL 0 A negative value will create a reverse syn-
chronization mode, which means the master
should move in negative direction to syn-
chronize. It is independent from the Reverse-
Bit which indicates how to end the movement.

These 2 parameters are "extras" to be written with the MCA_Cam_Extra function. When the
parameters are used, the MCA_Cam_Extra has to be called after the MC_CamTableSelect.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4012

Parameter
MC_CamIn

Type Default
value

Comment

Periodic BOOL TRUE for
master
“Modulo”,
FALSE for
master
linear axis

CamTable will not reach "EndOfProfile" but
will be repeated periodically. When the master
is a linear axis, it has to move forward and
backward within the CamTable position range,
but even when it leaves this position range,
the CamTable will stay active.

Reverse BOOL FALSE Just necessary when a CamTable is
NOT "periodic" and will run in reverse
direction (master with negative velocity)
Reverse=FALSE, the CamTable is ready when
the master leaves the position range in posi-
tive direction, e.g. when it moves from 359º
to 0º on a rollover axes Reverse=TRUE, the
CamTable is ready when the master leaves
the position range in negative direction.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4013

In the example, the slave will run from 0 to 2000 while the master runs from 0 to 1000. The
slave will start and end with velocity=0, no matter which velocity the master has during start.
The slave will reach the maximum velocity when it is at position 1000 and the master is at
position 500.

Example for
CAM curve

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4014

How to use an external axis
To use multiaxis PLCopen function blocks with an externally sensed axis as master axis the
following structure can be used for the axis implementation:

Fig. 337: Structure synchronization to an external axis

The use of a feed forward filter function block is needed if the slave axis has to follow the
position of the external axis. In this case there will be a time delay between sensing the position
of the external axis and moving the follower axis along the sensed position. The filter function
block will then add a certain distance to the external axis’ position depending of its speed.
The filter function block MATH_LINEAR_REGRESSION from the library ABB_MathFunc-
tions_AC500.library can be used here.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4015

Fig. 338: Filter function block to feed forward an externally sensed position

For an axis which is following the external axis, the value “mcActualValue” (from MC_Source
enumeration) for the input “MasterValueSource” for multi-axis PLCopen function blocks has to
be used.
When the filter function block MATH_LINEAR_REGRESSION is used to process an actual
position, 2 different purposes are fulfilled:
● A jitter or noise can be compensated
● It is possible to calculate a forecast-position to compensate for a delay in position measure-

ment

Process the actual position or any other master axis always before the slave
axis.

Otherwise, an additional one cycle-delay is introduced.

The MATH_LINEAR_REGRESSION function block calculates the progress for a variable which
is captured in equidistant periods of time and is assumed to follow a linear curve. It uses the
Gauss “least squares” -algorithm to do so. The line is calculated in a way that the sum of
squares for the distances from the measured points to the assumed straight line is minimized.
A noise or jitter influence of the value is compensated and a predictive value for the variable
with an adjustable forecast horizon can be calculated.
Linear equation:

Sum of squares:

The gradient and offset for the line are calculated in a way that “sum” is minimized. Then these
2 values are used to calculate the forecast value:

FORECAST=0 would mean: value right now, no future or past considered.
When the ACTUAL value is a modulo value, for example a single turn encoder or a rollover
axis, this has to be considered in the calculation. The 2 input values POSITIVE_LIMIT and
NEGATIVE_LIMIT can be used to configure this. They define the upper and lower limit for
ACTUAL. Also, the NEXT_BINARY will as a result be limited to these borders.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4016

Fig. 339: Next Value_Forecast

Example

How to use an encoder/drive with <> 32-bit position overrun
The incremental position as actual position at the function block CMC_Basic_Kernel is usually
assumed as position with a 32-bit position overrun. As well as it is the reference position which
is sent to the drive.
Any modulo-axis configuration should be done inside the PLC.
Some drives are requested to correct their positions themselves for a non-linear axis which
should constantly run into the same direction.
In this case, the drive has to be configured as a modulo-axis and the function block
CMC_Basic_Kernel needs some additional function blocks to create the 32-bit value Ä Chapter
6.5.10.3.5.6.5 “Roll-Over axis” on page 4031.

Fig. 340: Kernel

The function block CMC_Modulo2Binary will convert any position with any Modulo_Range to a
32-bit binary position.
The actual_position is assumed to run between 0 to Modulo_Range.
The actual_position should not change > 1/4 Modulo_Range between two scan cycles.
The function block CMC_Modulo2Binary will convert the 32-bit binary position reference from
CMC_Basic_Kernel to a position reference which runs from 0 to Modulo_Range.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4017

How to do position correction “on the fly”
Sometimes it is required to have a position correction "on the fly". For example, it can happen
that a position is wrong due to mechanical slip and that a switch which is passed by during the
movement is used to capture a position value.
In other cases, it is required to synchronize the position to a print mark, so an actual_position
has to be corrected, but not the movement of the printed material.
For both applications, the function block MCA_SetPositionContinuous can be used. It will use
ramps and a limited velocity for the correction, so it will be tolerable to execute it during an
ongoing movement and while the axis is activated in a multi-axis movement.

Fig. 341: MCA_Set_PositionContinuous_V3

The block can be used in any axis state except ERRORSTOP and HOMING.
Two different operation modes are possible:
1. SuperImp=FALSE

● The actual_position will be modified.
● The block will not cause any movement.
● If a PLCopen block in DISCRETE_MOTION (positioning) is active during the execu-

tion, this block will not reach Done as the actual_position is modified.
● If a slave axis is coupled to an axis while MCA_SetPositionContinuous is executed

(with SuperImp=FALSE) it will follow.
● This mode is possible while the axis is in state DISABLED.

2. SuperImp=TRUE
● The actual_position will stay constant.
● A mechanical movement is executed (without changing the axis state machine).
● A slave axis will not follow.
● This behavior is similar to a superimposed movement.
● It is not possible when the axis is in state DISABLED.

The block can just be aborted by another MCA_SetPositionContinuous.

How to limit the movement
It is possible to limit the movement by position (software limit switches) and by velocity. By
default, no software limit switches are activated in PS5611-Motion. It is possible to activate them
by accessing some PLCopen parameter.
The functionality described below is just available with linear axes.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4018

Parameter Data type Minimum Maximum Default R/W Description
2 SWLi-

mitPos
DINT 21474836

47
21474836
47

214748364
7

R/W Positive software
limit switch posi-
tion.

3 SWLi-
mitNeg

DINT 21474836
47

21474836
47

214748364
7

R/W Negative soft-
ware limit switch
position.

4 EnableLi-
mitPos

BOOL FALSE TRUE FALSE R/W Enable positive
software limit
switch.

5 EnableLi-
mitNeg

BOOL FALSE TRUE FALSE R/W Enable negative
software limit
switch.

2003 Enable-
Limit2Dec
elerate

BOOL FALSE TRUE FALSE R/W Enable software
limit switches to
decelerate

2004 EnableLi-
mitAbort

BOOL FALSE TRUE FALSE R/W Enable that soft-
ware limit
switches will
abort ongoing
movement
FALSE = Limits
position and
velocity, deceler-
ates and shows
a warning until
the position limit
is reached, then
ERROR STOP
TRUE =
Switches off any
ongoing motion
and decelerates
to the position
limit, then
ERROR STOP

2005 Enable-
LimtVe-
locity

BOOL FALSE TRUE FALSE R/W If the velocity is
limited the
unmoved posi-
tion will be cov-
ered whenever
possible

2006 SWLimit2
DecPos

LREAL -21474836
47

21474836
47

214748364
7

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2007 SWLimit2
DecNeg

LREAL -21474836
47

21474836
47

214748364
7

R/W Used as end
position for Ena-
bleLimit2Decel-
erate

2008 MaxPosi-
tionGap

LREAL 0 21474836
4700

0 R/W Used to stop the
ongoing move-
ment if position
is behind

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4019

The following different behavior is possible:
● No limitation at all (default)
● Limit position with ERRORSTOP:

– Limit position between SWLimitNeg to SWLimitPos, axis to state ERRORSTOP in case
the position range is left.

● Limit velocity and acceleration:
– Limit velocity to paraMaxVelocityAppl and acceleration/deceleration to paraMaxDeceler-

ationAppl, create WARNING_VELOCITY, not state changes for axis, abort movement is
optional when MaxPositionGap is reached due to limitation.

● Limit Position with ramp-down:
– In addition, it is possible to limit the position between SWLimit2DecNeg and

SWLimit2DecPos. paraMaxDecelerationAppl is used to ramp down.
When activated with EnableLimitPos or EnableLimitNeg, the reaction will be as follows:
● When the control position reaches the respective limit switch, the axis will go to state

ERRORSTOP, and Drive_Release will be switched off. The actual_position might be behind,
depending on the following error. It is assumed that a drive or application specific braking is
performed. The axis will be stopped behind the limit.

● The axis could be switched on again by MC_Power. A movement in the opposite direction
will be possible.

● The functionality of EnableLimitPos and EnableLimitNegis unchanged.
You can use the limitation of movement to achieve a soft or adjustable braking in advance
before reaching the software limit switch. The limitation is activated by three Boolean parameter
and will calculate a position distance to the limit switch, which depends on the actual velocity
and given deceleration ramp. “paraMaxDecelerationAppl” is used for deceleration. It will decel-
erate the axis by the given deceleration ramp when the calculated position is reached and stop
at the software limit switch. The original behavior is not modified, so if also these software
limit-switches are activated, the axis might be set to state ERRORSTOP.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4020

There are 2 different modes:
● EnableLimitAbort = TRUE

Any ongoing motion will be aborted immediately (when the distance to stop is reached, as
shown in the above diagram), a warning is shown
The axis will be decelerated to reach the software limit switch.

● EnableLimitAbort =FALSE, EnableLimitDecelerate=TRUE
A warning is shown and the velocity is reduced, with respect to the given deceleration and
position limit.
The ongoing motion is not aborted. If it was just a “tight fit”, e.g. in a master slave movement
and the direction is turned soon enough, it might be possible to continue the movement.
As the ongoing movement is not interrupted, an activated movement might not be com-
pleted, for example a MC_MoveAbsolute will never reach its target position. A warning is
shown at function block CMC_Basic_Kernel.

When EnableLimitPos = TRUE or EnableLimitNeg = TRUE, and the values for SWLimitPos or
SWLimitNeg are set, the axis will be set to state ERRORSTOP when these position limits are
reached.
In addition, the function block will allow to limit the velocity. With EnableLimitVelocity = TRUE,
it will monitor the velocity demand from the position reference and limit the position reference,
so the given velocity limit will not be exceeded. A warning will be shown. The velocity used for
limitation is MaxVelocityAppl.

The velocity limitation can be used to prevent short-term velocity peeks. The
limited position will be caught up later, whenever possible. This can result in
not-expected behavior. The WARNING issued by CMC_Basic_Kernel can be
checked and used to stop a movement. The movement will be aborted automat-
ically when the position is by MaxPositionGap behind.

– For a single axis movement, the commanded velocity is limited at the begin-
ning. No position gap will occur.

– In a multi-axis movement, the slave axis follows a master. This can result
in a position gap. A velocity peek from the master axis can be reduced
by using the limitation. If the master is too fast because of the value for
MaxPositionGap, the movement will be aborted.

When EnableLimit2Decelerate or EnableLimitAbort are used, the velocity is limited to MaxVelo-
citySystem with EnableLimitVelocity = FALSE. The function modifies the position reference. This
modified position reference is used to control the drive. Whenever the limitation interferes the
kernel will show a warning or an error. The warning or error message will disappear when the
situation is cleared.

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos TRUE ERRORSTOP when positions
exceed, no previous warning
or deceleration.5 EnableLimitNeg TRUE

2003 EnableLimit2Decelerate FALSE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4021

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when
reaching a position limit within
the deceleration distance cal-
culated by using MaxDeceler-
ationAppl. Display a warning
at CMC_Basic_Kernel. The
underlying movement stays
active. With EnableLimitPos
= TRUE or EnableLimitNeg
= TRUE: When the Position
limit is reached, the axis is
set to mode ERRORSTOP
also if EnableLimitPos or Ena-
bleLimitNeg are used. Other-
wise, just the movement is
limited, without affecting the
state machine. An activated
positioning movement will not
reach its target. Velocity is
limited to MaxVelocitySystem.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate TRUE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when
reaching a position limit within
the deceleration distance cal-
culated by using MaxDeceler-
ationAppl. Display a warning
at CMC_Basic_Kernel. The
underlying movement stays
active. With EnableLimitPos
= TRUE or EnableLimitNeg
= TRUE: When the Position
limit is reached, the axis is
set to mode ERRORSTOP
also if EnableLimitPos or Ena-
bleLimitNeg are used. Other-
wise, just the movement is
limited, without affecting the
state machine. An activated
positioning movement will not
reach its target. Velocity is
limited to MaxVelocitySystem.
The active PLCopen function
block is aborted as soon
as the warning is issued.
With EnableLimitPos = TRUE
or EnableLimitNeg = TRUE:
When the Position limit is
reached, the axis is set to
mode ERRORSTOP.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate ---

2004 EnableLimitAbort TRUE

2005 EnableLimtVelocity FALSE

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4022

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos --- The velocity is checked and
also limited to the value Max-
VelocityAppl. A warning is
shown. The active movement
is not aborted. This function-
ality works independent from
software limit switches.

5 EnableLimitNeg ---

2003 EnableLimitDecelerate ---

2004 EnableLimitAbort ---

2005 EnableLimtVelocity TRUE

Programming guidelines
To achieve the best results for motion control the actual position has to be transferred in best
possible quality (with minimal jitter) to the PLC. The position feedback is expected to be in
increments as the data type is a DINT.
The kernel function block (CMC_Basic_Kernel or OBIO_PTOMotionKernel or OBIO_PWMMo-
tionKernel) has to be called every cycle and its task requires a fixed cycle time.
A variable of type Axis_Ref is used to connect to the PLCopen function blocks and their kernel
function block.
The function block CMC_Axis_Control_Parameter has to be used for the axis configuration.
Ä Chapter 6.5.10.3.5.6 “Axis parameters” on page 4026

The signal of the limits switches and the absolute switch should be connected to the elements
of the data type CMC_Axis_IO. The signal of the absolute switch must be TRUE in case the
axis hits the sensor. The signal of a corresponding limit switch has to be true when the axis
leaves the area surrounded by the limit switches. If needed the signal has to be inverted before
it is connected to the elements of the data type.

The kernel function block and the transfer of axis IO data should be processed in a cyclic
task. This task should be as short and real-time as possible to achieve the best motion control
performance. Always make sure Kernel function block is called at the highest priority task and
other applications must be at a lower priority task.
In order to save PLC processing time the most PLCopen function blocks as well as the applica-
tion logic can also be processed in a task which runs on a lower priority than the real-time task
with the axis implementation as shown in the figure below.

All PLCopen function blocks which must be called in the same task than the kernel function
block:
● MC_CombineAxes
● MCA_MoveByExternalReference
In case the position reference is transferred to the drive the task of the axis implementation
should be synchronized to the fieldbus cycle. The following figures show an example for
EtherCAT:

Task configura-
tion

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4023

Fig. 342: Task of axis layer

Fig. 343: Task of application implementation

Visualization
The structure of the position control loop is also as visualization element
CMC_Visu_FB_Basic_Kernel. included in ABB_MotionControl_AC500.library. As placeholder,
an instance of CMC_Basic_Kernel has to be used. The visualization shows all numbers as they
are really used inside the block, the adjustment for different resolution or cycle times is already
included.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4024

Kernel function block
The “KERNEL” function blocks are available in two variants.
The OBIO_PTOMotionKernel / OBIO_PWMMotionKernel function blocks are solely to be used
in eCo V3 CPUs and to make use of the integrated stepper-IO. It connects automatically to the
internal IOs. Use the PTO or PWM specific kernel block based on your configuration Ä Chapter
5.2.1.1.2.1 “Functionality” on page 196.
The CMC_Basic_Kernel block is designed to be used in any V3 PLCs and can either work with
drives connected to a fieldbus or IOs.

Topic OBIO_PTOMotion-
Kernel/
OBIO_PWMMotion-
Kernel

CMC_Basic_Kernel

Recommended PLC eCo V3 PLC All V3 PLC`s

Kernel Arith-
metic

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4025

Fig. 344: Velocity reference with different jerk values

The diagram shows the result with different jerk values and the same velocity and acceleration.
The time needed for acceleration with jerk=0 is:
Time1=velocity/acceleration=(20/100)s=0.2s
The additional time with jerk=500 will be:
Time2=acceleration/jerk=(500/100)s = 5s
So the total time is:
Time=Time1 + Time2=0.2s + 5s=5.2s
In the last example with jerk=100, the velocity and acceleration values are not reached.

Axis parameters
General

The parameters for axis configuration and adjustment are set by the function blocks
CMC_Axis_Control_Parameter.
Depending on the version of the kernel function block the corresponding version of the parame-
ters function block has to be used. The instance will then be connected to the kernel function
block by its instance name.

How does the
parameter for
jerk influence
the axis move-
ments

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4026

In the example the control structure is a simple position control loop with just proportional
gain. When the application does not require minimized position following error it should
be used this way as it is simple to adjust, robust and requires minimal performance. The
proportional gain is then adjusted by Control_Time. Just change values at CMC_Axis_Con-
trol_Parameter when the position control loop is open (Drive_Release=FALSE, the axis state
is Disabled). The values are sending to the control loop whit a positive edge at "Enable". The
CMC_Basic_Kernel function block needs to be already enabled.

Example

Supervision
This parameter configures the position window for the supervision of the following error.
The default value is 150[%]. A value of 0[%] will deactivate the supervision function.
The size of the position window depends on the setting of the parameters Control_Time and
Max_Rpm Ä “Control_Time” on page 4028.
Position Window [Increments] = (Inc_Per_R) * (Max_Rpm/60) * (Control_Time/1000)
Position Window [Units] = (U_Per_Rev_Nominator/ U_Per_Rev_Denominator) * (Max_Rpm/60)
* (Control_Time/1000)

Position Window [Increments] = (10000) * (6000/60) * (50/1000) = 50000 [Increments]
Position Window [Units] = (1/1) * (6000/60) * (50/1000) = 5 [Units]

Example

A value of 100% will result in a position window which corresponds to the expected following
error with the giving Control_Time at Max_Rpm. Therefore it is recommended to use values
higher than 100[%]. In case the parameter FF_Percentage is used smaller values can be used.
If the supervised position window is exceeded the axis state will change to ERRORSTOP.

After the configured time the drive’s actual velocity has to be at least 50 % of the commanded
velocity. This function can also be used in case the Position Reference is transferred to the
drive.
A value of 0 will deactivate this supervision function.
If the supervised velocity window is exceeded the axis state will change to ERRORSTOP.

Pos_Lag_Per-
centage

V_Check_Time

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4027

Position control loop

Profile r

SPEED_REFERENCE

POSITION_REFERENCE

DRIVE_ACTUAL_POSITION

1000

CONTROL_TIME

INTEGRAL_TIME

Kerne l Function Block

FF_PERCENTAGE

Pos ition

Velocity

Drive /
Encoder

HORIZONT

REF_MAX
MAX_RPM

Fig. 345: Basic structure of position control loop

The default value is 100 which leads to a proportional gain of 10.

In case the value of Control Time is too short the position control loop will run
into instability.

In case the position control loop is not used this parameter must not be set to 0.

Fig. 346: Control Time and static following error in case the feed forward of velocity and the
integrational part of the position control loop is not used.

The static following error depends on the axis velocity and can be calculated easily: Control
Time multiplied by the axis velocity (p_error = v * CT).
In general it should be aimed to reach a high position control loop gain with a short Control Time
to achieve a small following error. As the reaction times take account in the possible Control
Time of the complete system (parameters of the drive control loop, PLC cycle time as well as
the communication fieldbus) should be considered.
As a basic rule the Control Time should be at least four times longer than the reaction time
between the output of the Speed Reference and the input of actual position.

Control_Time

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4028

When the time Ts and Tt is measured, a control_time of 4 * (Ts + Tt) will result in an aperiodic
damping of the position control loop. It is important to measure the values from inside the PLC
(e.g. Trace) to have the complete reaction times included. Practical values for Control_Time
might be from 50 - 500ms. The PLC cycle time as well as bus cycle times and mechanical
reaction will influence the value.

The default value is 0.
In case a velocity feedforward has to be configured a value of up to 80 is recommended. For
larger values than 80 the parameter Horizon needs to be used as the resulted position will
overshoot otherwise.
A value of 100 adds a velocity to the Speed Reference output which corresponds exactly to the
ongoing Position Reference value.

time

position

velocity

The integral part of the position control loop can be used to eliminate a permanent positioning
error, e.g. in case of hanging loads.
The time value can be regarded as the time the integrator needs to sum up the input value to
reach the same value for its output.

In case the Integral Part Time is too short the position control loop will run into
instability.

A communication delay of the Speed Reference value to the drive system can cause an over-
shoot during positioning caused by the velocity feedforward gain.
This function will compensate this communication delay to prevent an overshoot by time shifting
the signals Velocity Feed Forward and Position Reference relatively to each other.
The value of Horizon can be approximately assumed to be the time delay of the communication
delay.
The delay time might be caused by the cycle time of the control loop and by any delay in
sending the speed reference, delay in the drive to build up the torque and delay to receive
the actual position. To overcome this delay, a Horizon > 0 might be used. The feed forward
reference will be created in advance, while the proportional gain is applied to the original motion
profile. The delay is then compensated.
This function should not be used if the feed forward parameter FF_Percentage is 0.
A value of 0 will deactivate this function, which is the default value.
While this function is used, it will increase the needed PLC calculation time for this axis.

FF_Percentage

Integral_Part

Horizon

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4029

Fig. 347: Result with Horizon=0

Fig. 348: Result with Horizon>0

PLC cycle time
This parameter represents the cycle time in which the kernel function block of the axis is called.
If the configured cycle time is not correct the resulting acceleration and speed of an axis will be
not correct also.
In case the task execution of the axis is synchronized to a fieldbus (e.g. EtherCAT) the cycle
time of the fieldbus has to be used.

Cycle

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4030

Roll-Over axis
If the Position Reference value is used, the drive must able to perform a position over-run
after 32 bit. If the drive’s position over-run is different, it can be adapted with the func-
tion blocks CMC_Binary2Modulo and CMC_Modulo2Binary from the library ABB_MotionCon-
trol_AC500.library. Incompatibility can cause an axis to trip after hours of operation.
The possible position following error has to be smaller the ½ Modulo_Range. Make sure that the
modulo range is large enough.
Position following error = (100 - FF_Percentage) * Max_Rpm * Inc_Per_R * Con-
trol_Time/6000000. This is the maximum value at constant velocity.

With this parameter the axis can be configured as a roll-over axis.

The modulo range will be defined in drive position counts (DINT). It will result that the scaled
unit position which is used by the PLCopen function blocks will stay within the defined range.

En_Modulo = TRUE
Modulo_Range = 20000
Inc_Per_Rev = 10000
U_Per_Rev_Nominator = 360 (e.g. degree)
U_Per_Rev_Denominator = 1

The scaled unit's position will cover the range from 0 to 720 (degrees).

Example

In some cases it is not suitable to set the modulo range of an application with the DINT value
of the parameter Modulo_Range only. In such cases the parameters 2001 Modulo_Nominator
and 2002 Modulo_Denominator can be used to scale the parameter Modulo_Range to a more
precise value.

These parameters can be used to modify the Modulo_Range in a way that fractions of an
increment could be used for 1 modulo (=rollover) distance
● Default: Modulo_Nominator=1 and Modulo_Denominator=1: the actual position for an axis is

limited between 0 and Modulo_Range increments.
● Limitations: Modulo_Range*Modulo_Nominator < 2147483647. Otherwise: default values

will be used.
● When modifying these parameters, the position control loop should be opened.

En_Modulo

Modulo_Range

Parameter
Modulo_Nomi-
nator and
Modulo_Denom-
inator (sup-
ported with
CMC_Basic_Ker
nel)

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4031

En_Modulo = TRUE
Modulo_Range = 1024
Modulo_Nominator = 10
Modulo_Denominator = 3
Inc_Per_R = 1024
U_Per_Rev_Nominator = 80*5*3
U_Per_Rev_Denominator = 10

Motor / Encoder

5mm each tooth

3:10 ra tio

80 tee th Gearbox

1024 counts per revolution

Result of parameters Modulo_Range, Modulo_Nominator and Modulo_Denominator: The
modulo range will cover one revolution of the toothed-belt wheel.
Result of parameters U_Per_Rev_Nominator and U_Per_Rev_Denominator: One scaled unit
corresponds to one mm of the tooth belt.

Example

 Option1 Option2
En_Modulo TRUE TRUE

Modulo_Range 10240 10240

Modulo_Nominator 1 1

Modulo_Denominator 1 1

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 36 360

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The Modulo_Range is equiva-
lent to 10 motor revolutions and is 10240 increments. For the position, 1u means 1° and the
resolution is 360°/10240inc = 0,035°/Inc = 1°/28,44 Inc.

Example:
Gearbox 10.1

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4032

 Option1 Option2
En_Modulo TRUE TRUE

Modulo_Range 1024 10240

Modulo_Nominator 10 1

Modulo_Denominator 3 3

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 108 1080

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The gearbox is 10:3, so the
Modulo_Range is equivalent to 1024*10/3 = 3413 + 1/3 increments. For the first option, the
resulting modulo range is calculated 1024*10/3, for option2, it is 10240*1/3. For the position,
1u means 1° and the resolution is 108°/1024inc = 0,105°/Inc = 1°/9.481 Inc.

Example:
Gearbox 10.3

Scaling of the unit of length
With this parameter the number of the drive position counts each revolution of the motor (DINT)
have to be entered.

With these two parameters the number of units which correspond to one revolution of the motor
have to be entered.
The units of length can be scaled to values like: mm, inch, degree, …
All dynamic parameters of the PLCopen function blocks like velocity, acceleration and jerk are
based on seconds. Velocity [units/s], acceleration [units/s²], jerk [units/s³]

Inc_Per_Rev = 10000
U_Per_Rev_Nominator = 360
U_Per_Rev_Denominator = 1

This will scale one unit to one degrees of the motor shaft. Correspondingly a velocity [units/s]
of 360 will turn the motor shaft one revolution per second.

Example 1

In the example one unit will be scaled to one millimeter of the conveyor.

Motor/Encoder

5 mm each tooth

1:5 ratio

80 teeth Gearbox

1024 counts per revolution

Fig. 349: Scaling units

How many units will pass after one revolution of the motor? (80*5mm) / 5 = 80
Inc_Per_Rev = 1024
U_Per_Rev_Nominator = 80
U_Per_Rev_Denominator = 1

Example 2

Inc_Per_R

U_Per_Rev_Den
ominator &
U_Per_Rev_No
minator

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4033

In the example one unit will be scaled to one millimeter of the conveyor.

Motor/Encoder

5 mm each tooth

1:32 ratio

80 teeth
Gearbox

1024 counts per revolution

Fig. 350: Scaling units

How many units will pass after one revolution of the motor? (80*5mm) / 32 = 12,5 = 125 / 10
Inc_Per_Rev = 1024
U_Per_Rev_Nominator = 125
U_Per_Rev_Denominator = 10

Example 3

Scaling of the speed reference output
These two parameters are used to scale Speed Reference output of the kernel FB in order to
reach the intended velocity by the output value and to limit the highest possible output value.

Highest possible output value of the Speed Reference output. The Speed Reference value that
corresponds to the parameter Max_Rpm should be used.

Maximum speed of the motor in revolutions per minute.

● Analog Drive: 1000 rpm at 2 Volts, 3200 rpm at 6,4 Volts (max.)
● Analog output module: 10 Volts output at digital value 27648
● Ref_Max = 17695 (= 27648 / 10 * 6,4)
● Max_Rpm = 3200

Example

Access and modify parameters

All modifications will be effective immediately. There is no extra plausibility
check and values are not checked for limitations.

Use this functionality with care.

Some parameters are collected inside a structure in Axis_Ref, and can be accessed and modi-
fied immediately. They are the same parameters as used with function blocks MC_WritePara-
meter and MC_ReadParameter Ä Chapter 6.5.10.3.4.8 “PLCopen parameter” on page 3977.
The differences are:
● Only available with CMC_Basic_Kernel
● The parameter values are LREAL instead of DINT and can be used with decimals.
● The parameters will be effective immediately.
● There is no check for consistency or limits.
● The parameters for position control can be checked and modified by accessing the structure

Axis_Parameter.CMC_Pos_Control in addition.

Ref_Max

Max_Rpm

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4034

Parameter for position con-
trol

Description

KP Proportional gain in positive direction. Used directly to multiply
the following error and create the Reference_Prop.

KF Feed forward in positive direction. Used directly to multiply the
speed reference and create the Reference_FF.

KP_BACK Proportional gain in negative direction. Used directly to multiply
the following error and create the Reference_Prop.

KF_BACK Feed forward in negative direction. Used directly to multiply the
speed reference and create the Reference_FF.

TI Integration time. When parameter is used the position con-
trol loop has an additional integral part. In TI cycle, the Ref-
erence_ITG will reach the value of Reference_Prop, when
KI=100*KP.

KI Proportional gain, used for integral part of position control loop.

KF_100 Value for feed forward gain, if 100% would be used.

Max_Time Delay time used for supervision of velocity. With Max_Time=0,
no supervision is executed.

D_XS_Max Maximum possible velocity in [u/cycle].
The maximum allowed following error is part of the parameter
structure, PLCopen parameter paraMaxPositionLag.

Ref_Max Limit for Speed_Reference.

The element actual represents actual values from inside the position control loop.

Value Description
Position Actual position in [u] to control the axis.

Control_Position Reference position in [u] which is actually used for control
loop.

D_XS Distance in [u] to be moved per cycle.

D_XSS Following error in [u].

Reference_Prop Proportional part for Speed_Reference.

Reference_FF Feed forward part for Speed_Reference.

Reference_ITG Integral part for Speed_Reference.

See parameter KP/KP_BACK and KF/KF_BACK.

From library version 3.1 on, these values are not limited to the 16-bit range of values (32767).
The limit for velocity is calculated by the values given at CMC_Axis_Control_Parameter and the
acceleration is limited such that this velocity can not be reached faster than 1 cycle.

Element actual
of Axis_Ref

Possible to use
different gain
for forward/
backward move-
ment , possible
improvement for
hydraulic axis
or vertical
movement
Limitation for
velocity and
acceleration and
deceleration

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4035

ABB specific data structures
General

Not all data structures are defined by PLCopen. Some specific structures are described in the
following chapter. In addition to the data in these arrays, the movement is modified by offset
and scaling values at the respective function block. These offset and scaling values (except the
time-scale) are transferred continuously. This will allow to follow a "Moving Target" by adjusting
these values.

PositionPositionProfile
The data type MC_PProfile is used for CamTable. An array has to be defined and provided at
MC_CamTableSelect. Several CamTables could be defined and the axis could change between
them on the fly. There is no routine of smooth movement from one table to the next so the
user has to take care just to switch on appropriate positions. Details are described in the
documentation included with the library.

ARRAY[1..3] OF MC_PProfile:=
 (Master_position:= 0 ,interpolation_point :=
0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),
(Master_position:= 50 ,interpolation_point :=
25 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),
(Master_position:= 100 ,interpolation_point :=
0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0);

Declaration
example
CAM_table

PositionTimeProfile
This structure is used for time based profiles, e.g. MC_PositionProfile:

Interpolation types for profiles
The curves defined by an array of MC_PProfile hold master position points and according
slave positions. When the master position is between 2 points, the according position for
the slave is interpolated. Different types of interpolation are possible. The type is defined in
MC_ABB_iTypes_Enum . The master could be a real axis or some virtual axis which could be
created by just writing values for position and velocity to the Axis_Master variable as shown in
the example. The same interpolation types could be used on MC_TProfile.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4036

Table 766: Overview of different interpolations
Interpolation Types Results in Requires
MCA_LINEAR Linear interpolation

with constant velocity
between interpolation
points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

MCA_SPLINE_NAT-
URAL

Cubic spline interpola-
tion without jerk.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

MCA_SPLINE_COM-
PLETE

Cubic spline interpola-
tion without jerk, start
and end of profile with
velocity=0.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].interpola-
tion_point

MCA_POLY3 Polynomial interpola-
tion with linear velocity
between interpolation
points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].inter-
polation_point, profile.MC_PPro-
file_Array[x].velocity_ratio

MCA_POLY5 Polynomial interpola-
tion with linear accel-
eration between inter-
polation points.

profile.MC_PProfile_Array[x].master_posi-
tion, profile.MC_PProfile_Array[x].inter-
polation_point, profile.MC_PPro-
file_Array[x].velocity_ratio,
profile.MC_PProfile_Array[x].accelera-
tion_ratio

The interpolations allow to run on smooth curves without the need to define a large number
of points. The following chapter shows the results with different interpolation modes for a
sinus-curve with 10 interpolation points. The following table gives the mean deviation.

Interpolation Type Mean deviation [ppm]

MCA_LINEAR 19686 =1.9%

MCA_SPLINE_NATURAL 151=0.0151%

MCA_SPLINE_COMPLETE 25510=2.5%

MCA_POLY3 131=0.0131%

MCA_POLY5 0.37

The original curve is represented by y_sinus for position and v_sinus for velocity. The diagrams
show the result which is achieved by different interpolation types.
MCA_LINEAR

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4037

Fig. 351: Results from linear interpolation

The velocity is constant between the interpolation points.
MCA_POLY3

Fig. 352: Results from polynomial interpolation

The result looks almost identical to the original curve. The mean deviation shows that
MCA_POLY3, MCA_POLY5 and MCA_SPLINE_NATURAL produce results which follow the
original curve really good and are almost identical. The spline interpolation produces a jerk-free
curve without the need of providing velocity values and acceleration values in advance.

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4038

MCA_COMPLETE

Fig. 353: Results from complete spline interpolation

In the beginning and the end, the curve does not follow the original curve. The reason is that it
starts with velocity=0 and produces a jerk free result.
So the favoured result has to be considered in advance to choose the right interpolation
method. With these different methods it is not necessary to provide a large number of interpola-
tion points to get good results and smooth acceleration and deceleration ramps.

PLC-based motion control -– Load control / fluid power extensions
The ABB_MotionControlLoad_AC500 library is an extension to ABB_MotionControl_AC500
library based on PLCopen part 6 called “fluid power” and basically can be used to implement
load control as a simple form of torque profiling. It can be used together with all other motion
control package libraries. The same structure and general rules are applied and all the above
chapters in this document is relevant for ABB_MotionControlLoad_AC500 library as well. It is
recommended to read through all the above chapters before start using the function blocks from
this library. A difference is that the position control loop has to be closed inside the PLC as it is
to be synchronized with the load control loop which is also realized. The implementation of Load
function blocks is based on the PLCopen part 6 – Fluid power.
Overview of the defined extended function blocks:

Table 767: Overview of the defined function blocks
Administrative Motion
Single axis Multiple axis Single axis Multiple axis
MC_LimitLoad - MC_LoadControl -

MC_LimitMotion - MC_LoadSuperIm-
posed

-

- - MC_LoadProfile -

- - MC_TorqueControl -

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4039

As per PLCopen MC_TorqueControl is a part 1 function block, however due to
its implementation as a wrapper for the load control and limit load blocks this is
added to ABB_MotionControlLoad_AC500 library.

The following state diagram is based on the version as defined in ‘Part 1 – Function Blocks for
Motion Control’, Version 2.0.
This specification adds three load function blocks to the state diagram:
● MC_LoadControl
● MC_LoadSuperImposed
● MC_LoadProfile
MC_TorqueControl function block also follows the same state diagram.
Function blocks not listed in the state diagram do not affect the state diagram, meaning that
whenever they are called the state does not change.
The state diagram shows synchronized motion because the position-axis follows the load, and
the state is related to the position axis.

Note 1: From any state. An error in the axis occurred.
Note 2: From any state. MC_Power.Enable = FALSE and there is no error in the axis
Note 3: MC_Reset and MC_Power.Status = FALSE
Note 4: MC_Reset and MC_Power.Status = TRUE and MC_Power.Enable = TRUE
Note 5: MC_Power.Enable = TRUE and MC_Power.Status = TRUE
Note 6: MC_Stop.Done = TRUE and MC_Stop.Execute = FALSE

The basic block is the CMC_Load_Motion_Kernel. It has to be called every cycle and at least
once before any MC… block is activated. It is used to combine the position and velocity
functionality from CMC_Basic_Kernel with the load control functionality which is utilized by the
MC_Load... blocks.

Kernel function
block - Fluid
power

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4040

The reference which is used by the CMC_Load_Motion_Kernel is equivalent with the
Speed_Reference at CMC_Basic_Kernel, as long as no LOAD-functionality is activated. The
documentation from CMC_Basic_Kernel applies to the identical inputs and outputs. Some
inputs and outputs are added to serve the load control functionality.

The Load_Ref is used instead of Axis_Ref for the MC_Loadxxx blocks. When
the CMC_Load_Motion_Kernel is used, Load_Ref replaces Axis_Ref and user
can use all PLCopen-Blocks.

The actuator (drive) has to be accessed outside the CMC_Load_Motion_Kernel block. Actual
values and reference values might be transferred by a synchronised bus or by I/Os.
● •All inputs and outputs of the function block which are named “DRIVE_xxxx” should be used

to connect to the actuator (drive). It does not matter whether this connection is done by
fieldbus or by conventional IOs.
The Axis-structure is used to connect to the PLCopen blocks

● The Load_Axis structure is used to connect the fluid-power PLCopen blocks

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4041

● The control_parameter-structure is used for configuration of control loop.
● The IO-structure gives a connection to limit- or reference switches.
When the function block will take control (close loop) the output “Drive_Release“ is set. The
PLC-Program should then start the actuator (actuator (drive)) and set “Drive_InOperation =
TRUE” when successful. In case of actuator (actuator (drive)) problem, “Drive_InOperation”
should be reset. The function block will then open the position control loop and Speed_Refer-
ence will be 0.

The homing is done with PLCopen-blocks. As the interface to the actual position is outside the
CompactMotion, the bit “Drive_Set_Ref” is set when the state is reached to evaluate the zero-
track. When the zero-track was found, Drive_ActualPosition has to be set to “Drive_Set_Posi-
tion”, this has to be indicated by “Drive_Ref_Ok”.
The output “Drive Reference” should be send to the actuator (drive). This value is scaled with
Max_Rpm and Max_Reference which means: when “Drive_Reference” equals Max_Reference,
the motor is expected to run with Max_Rpm.

The function block holds a position control loop and a load control loop. The load control loop
is a PIDT1-Block. Both control loops are alternately activated, depending if a MC_Load..block
or a MC_Move… block is active. There is a bumbless transition realized between the different
control loops.
The PIDT1 controller has a proportional, integral and derivative part. The integral and derivative
part can be switched of by using a time value = 0.

All 3 parts of the control loop are added up. The integral or derivative part could be disabled by
setting the respective time constant to 0, so the following structures are possible:
● P
● PDT1
● PI
● PIDT1
The Load_MaxRef and Load_MinRef values will limit the controllers output Y and also apply
to the controller’s internal integral part. I.e the integral part can only hold values between the
high and low limits. If the manipulated variable Y reaches one of the two limits, the controller's
integral part is no longer changed. This prevents the integral part from holding meaningless
values and, in certain circumstances, not returning to the operating range for a long time. This
behavior of a controller is also referred to as a "special anti-reset windup measure".

Load control

Transfer func-
tion

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4042

In the diagram below, an example is explained. SFC is used here to distinguish between a
movement where the MC_LimitLoad functionality has become ‘Active’ or not. In Step 2 there
is a movement like ‘MoveAbsolute’, which is limited by the MC_LimitLoad functionality. If the
absolute position is reached without MC_LimitLoad becoming active, the transition via done to
step 3 is applicable. However, if the MC_LimitLoad becomes ‘Active’, the transition to the ‘Halt’
step is applicable, issuing a MC_Halt.

Fig. 354: MC_LimitLoad used in SFC

MC LimitLoad

The function block is intended to be used in conjunction with a MC_LoadControl or MC_Tor-
queControl having primary control on the axis. The MC_LimitMotion should be enabled by
the ‘Active’ output of the MC_LoadControl / MC_TorqueControl. If motion values on the axis
exceed the given limit, appropriate measures are taken to keep to these limits, implying that
the load/torque will not follow the programmed trajectory but depend on the external load
conditions. However, the ‘Active’ output of the MC_LoadControl/MC_TorqueControl will stay
TRUE in this case, following the modified PLCopen definition “The ‘Active’ output indicates,
that the FB has control on the set-value generation of the axis”. This is despite the fact,
that physically only the load-conditions or the movement of an axis can be controlled. With
actual motion states below programmed limits, the programmed load/torque trajectory will
proceed. Enabling the limiter block with activation of the MC_LoadControl/MC_TorqueControl
ensures that limits are only supervised when the MC_LoadControl/MC_TorqueControl takes
control on the axis for the first time. Disabling the limiter block with de-activation of the
MC_LoadControl/MC_TorqueControl ensures that limits are no more supervised when the
MC_LoadControl/MC_TorqueControl loses control on the axis by ‘CommandAborted’ or ‘Error’.

MC_LimitMo-
tion e.g. force
fitting

Example - Fluid
power exten-
sions

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4043

Possible Application: Actuator: hydraulic cylinder with fluid pressure sensor actuates the
press of plastic injection molding machine in a continuous load operation.
Request: Prior to MC_LoadSuperImposed call, a MC_LoadControl block is ‘Active’ with a
command of 7,500 kPa to press melted plastic into the mold. Once the MC_LoadControl
‘InLoad’ condition is achieved a superimposed pressure of 5,000 kPa is added several times to
cause a hammering effect to relieve stresses in the plastic.
Result: the MC_LoadControl pressure command of 7,500 kPa is superimposed with a dis-
crete pressure command of 5,000 kPa. Once the ‘LoadSuperImposed’ command is active the
system pressure rises to 12,500 kPa.
When the superimposed pressure command has been achieved the MC_LoadSuperImposed
block is done and the original command given by the MC_LoadControl resumes the original
pressure command. The MC_LoadSuperImposed block is executed several times without
affecting the original pressure command given by the MC_LoadControl block.

MC_ LoadSu-
perImposed

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4044

The example (below) opposite signs for ‘Direction’ & ‘Torque’ are used (e. g. Retention or
brake control). (In the function block: +Direction –Torque). It is like an unwinding application
with torque on the material, and a break in the material. When the material breaks, as shown
in the middle of the figure this causes a drop in the real Torque value (in absolute terms): The
velocity will decrease, limited by the fastest “deceleration” limit specified by the ‘Deceleration’
VAR_INPUT down to zero velocity (with no tension there is a risk of having shock breakings,
so we have to limit to the fastest). In this case the torque setpoint might not be achieved.

MC_Torque-
Control

In an unwinding application (derived from this brake control) material tension
is the target, not motor torque. The instantaneous diameter of the roll should
be taken into account to transform the “User tension setpoint”. Also, additional
inertia compensation by modification of the torque setpoint for acceleration /
deceleration is common from instantaneous weight data (weight is commonly
estimated from diameter). Additionally, in unwinding applications, in the case
of loose material (same condition as material break), a negative slow velocity
reference is usually applied to “rewind” the loose material. In this case, this
must be provided by external programming.

Appendix
List of all PLCopen and ABB specific function blocks in PS552-MC (for V2 PLC) and PS5611-
Motion (for V3)

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

1 PLCopen MC_Power x x

2 PLCopen MC_Home x -

3 PLCopen MC_Stop x x

4 PLCopen MC_Halt x x

5 PLCopen MC_MoveAbsolute x x

6 PLCopen MC_MoveRelative x x

7 PLCopen MC_MoveAdditive x x

8 PLCopen MC_MoveSuperImposed x x

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4045

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

9 PLCopen MC_HaltSuperImposed x x

10 PLCopen MC_MoveVelocity x x

11 PLCopen MC_MoveContinuousAb-
solute

x x

12 PLCopen MC_MoveContinuousRela-
tive

x x

13 PLCopen MC_PositionProfile x x

14 PLCopen MC_VelocityProfile x x

15 PLCopen MC_AccelerationProfile x x

16 PLCopen MC_SetPosition x x

17 PLCopen MC_SetOverride x x

18 PLCopen MC_ReadParameter x x

19 PLCopen MC_ReadBoolParameter x x

20 PLCopen MC_WriteBoolParameter x x

21 PLCopen MC_WriteParameter x x

22 PLCopen MC_ReadActualPosition x x

23 PLCopen MC_ReadActualVelocity x x

24 PLCopen MC_ReadStatus x x

25 PLCopen MC_ReadAxisError x x

26 PLCopen MC_Reset x x

27 PLCopen MC_CamTableSelect x x

28 PLCopen MC_CamIn x x

29 PLCopen MC_CamOut x x

30 PLCopen MC_GearIn x x

31 PLCopen MC_GearOut x x

32 PLCopen MC_GearInPos x x

33 PLCopen MC_PhasingAbsolute x x

34 PLCopen MC_PhasingRelative x x

35 PLCopen MC_HaltPhasing - x

36 PLCopen MC_LoadControl - x

37 PLCopen MC_LimitLoad - x

38 PLCopen MC_LimitMotion - x

39 PLCopen MC_LoadSuperImposed - x

40 PLCopen MC_LoadProfile - x

41 PLCopen MC_TorqueControl - x

42 ABB MCA_CamInDirect x x

43 ABB MCA_CamInfo - x

44 ABB MCA_Cam_Extra x x

45 ABB MCA_DriveBasedHome x x

Configuration and programming
Libraries and solutions > Motion Control

2024/01/053ADR010583, 1, en_US4046

SNo Funktion block
type

Funktion block name Motion Library
V2 (PS552-MC)

Motion Library
V3

(PS5611-
Motion)

46 ABB MCA_GearInDirect M x x

47 ABB CA_Indexing x x

48 ABB MCA_JogAxis x x

49 ABB MCA_MoveByExternalRe-
ference

x x

50 ABB MCA_MoveVelocityContin-
uous

x x

51 ABB MCA_MoveRelativeOpti x x

52 ABB MCA_Parameter x x

53 ABB MCA_PhasingbyMaster - x

54 ABB MCA_ReadParameterList x x

55 ABB MCA_SetOperatingMode x x

56 ABB MCA_SetPositionContin-
uous

x x

57 ABB MCA_WriteParameterList x x

58 ABB MCA_CamGetInterpola-
tionPosition

- x

59 ABB MCA_Home x -

60 ABB MCA_Power x -

61 ABB ECAT_402Parameter-
Homing_APP

x x

62 ABB ECAT_HomingOnTouchP-
robe_APP

x x

63 ABB ECAT_CiA402_TouchP-
robe_App

x x

PLCopen Part 4 –Coordinated Motion is only available for V2 PLC and not yet available for V3
PLC.

6.5.10.3.6 Examples
Prerequisite: Install the related library package with Automation Builder, Installation Manager -
“Modify”

Use cases and how to handle the function blocks of a certain library
is described in sample projects. After the respective library has been
installed the corresponding sample projects are available in the default path
AutomationBuilder Examples. If the default path is inaccessible, click “Help
è Project examples” in the Automation Builder menu.

Configuration and programming

Libraries and solutions > Motion Control

2024/01/05 3ADR010583, 1, en_US 4047

6.5.11 MQTT client library
6.5.11.1 Structures and enumerations

Parameter Value Description
MQTT_ERR_NO_ERROR 0 No error.

MQTT_ERR_CONN_
SERVICE_UNAVAIL

16#3001 The Network Connection has been made
but the MQTT service is unavailable on the
specified port.

MQTT_ERR_COMMUNI-
CATION_TIMEOUT

16#3013 The timeout value for the communication
has been exceeded.

MQTT_ERR_REC_PACKE
T_TOO_LONG

16#3017 Received topic is too long.

MQTT_ERR_PING_NO_A
NSWER

16#301A The MQTT broker did not answer the ping.
MQTT client has passed the KeepAlive or
MQTT broker is unreachable.

MQTT_ERR_CONN_CLIE
NT_ID_NOT_ALLOWED

16#301F The Client identifier is correct UTF-8 but
not allowed by the Server.

MQTT_ERR_CONN_
REFUSED_PROTOCOL

16#3020 The Server does not support the level
of the MQTT protocol requested by the
Client.

MQTT_ERR_CONN_REFU
SED_CONNECTION

16#3025 Connection refused, maybe the IP address
is malformed.

MQTT_ERR_UNSPECI-
FIED_ERROR

16#302B Internal library returned an unspecified
error.

MQTT_ERR_NET-
WORK_ERROR

16#302D General network error.

MQTT_ERR_CONN_AUTH
_FAILED

16#3217 Authentication failed: Bad username, pass-
word OR client id.

MQTT_ERR_CONN_TLS_
HANDSHAKE_FAILED

16#3230 Error on TLS handshake.

MQTT_ERR_CONN_SERV
ER_CERT_NOT_VALID

16#3231 Server certificate not valid. Check if PLC
date has been set correctly.

MQTT_ERR_CONN_SERV
ER_CERT_NOT_PEM

16#3232 Server certificate format is not formatted as
PEM.

MQTT_ERR_CONN_SERV
ER_CERT_EXPIRED

16#3233 Server certificate has expired.

MQTT_ERR_CONN_CLIE
NT_CERT_NOT_VALID

16#3234 Client certificate not valid. Check if PLC
date has been set correctly.

MQTT_ERR_CONN_CLIE
NT_CERT_NOT_PEM

16#3235 Client certificate or client key format is not
formatted as PEM.

MQTT_ERR_CONN_CLIE
NT_CERT_EXPIRED

16#3236 Client certificate has expired.

MQTT_ERROR_I
D (Enum)

Configuration and programming
Libraries and solutions > MQTT client library

2024/01/053ADR010583, 1, en_US4048

Parameter Value Description
MQTT_ERR_INPUT_02_0 16#4020 Function block Input 02 error (error case

0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Parameter Conn of function block was
not set.

● MqttConnectWithCertFile (FB): Param-
eter Conn of function block was not
set.

● MqttGetReceivedPacket (FB): Param-
eter Conn of function block was not
set.

● MqttPublish (FB): Parameter Conn of
function block was not set.

● MqttSubscribe (FB): Parameter Conn
of function block was not set.

● MqttUnsubscribe (FB): Parameter
Conn of function block was not set.
MqttPing (FB): Parameter Conn of
function block was not set.

MQTT_ERR_INPUT_03_0 16#4030 Function block Input 03 error (error case
0), specific error depends on used function
block:
● MqttGetReceivedPacket (FB): Pointer

payload not initialized.
● MqttPublish (FB): Publish topic name

must not contain wildcard characters (+
or #).

● MqttSubscribe (FB): Topic is missing.
● MqttUnsubscribe (FB): Topic is

missing.

MQTT_ERR_INPUT_03_1 16#4031 Function block Input 03 error (error case
1), specific error depends on used function
block:
● MqttPublish (FB): Payload is not set in

MQTT_MESSAGE.

MQTT_ERR_INPUT_04_0 16#4040 Function block Input 04 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Check if Port number has been set cor-
rectly (0 is not accepted).

● MqttConnectWithCertFile (FB): Check
if Port number has been set correctly
(0 is not accepted).

MQTT_ERR_INPUT_06_0 16#4060 Function block Input 06 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Server

certificate file was not found.

MQTT_ERR_INPUT_07_0 16#4070 Function block Input 07 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Client

certificate file was not found.

Configuration and programming

Libraries and solutions > MQTT client library

2024/01/05 3ADR010583, 1, en_US 4049

Parameter Value Description
MQTT_ERR_INPUT_08_0 16#4080 Function block Input 08 error (error case

0), specific error depends on used function
block:
● MqttConnectWithCertFile (FB): Client

key file was not found.

MQTT_ERR_INPUT_12_0 16#4120 Function block Input 12 error (error case
0), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Couldn't initialize Last Will message
because the topic is not set.

● MqttConnectWithCertFile (FB):
Couldn't initialize Last Will message
because the payload is not set.

MQTT_ERR_INPUT_12_1 16#4121 Function block Input 12 error (error case
1), specific error depends on used function
block:
● MqttConnectWithCertBuffer (FB):

Couldn't initialize Last Will message
because the topic is not set.

● MqttConnectWithCertFile (FB):
Couldn't initialize Last Will message
because the payload is not set.

MQTT_ERR_FATAL_ERR
OR

16#5FFFF Fatal error state machine.

Parameter Value Description
QOS_0 - Fire and forget (At most once delivered).

QOS_1 - Simple acknowledgement (At least once delivered).

QOS_2 - Complex acknowledgement (Exactly once delivered).

This structure is used for messages which can be published or used for LastWill on MqttCon-
nect(FB).

Variable name Data type Default
value

Description

sTopic STRING(MQTT_M
AX_TOPIC_LEN)

Empty
string

Topic where this message belongs to.

pbyPayload POINTER TO
BYTE

0 Payload which should be sent.

dwLen DWORD 0 Length of the payload.

eQos MQTT_QOS QOS_0 Quality of Service level.

xRetainFlag BOOL FALSE True = message must be stored by the
server, False = server must not store
this message.

Internal data required by the library to operate. This structure allocates memory and it is used to
identify the MQTT connection you want to work with

MQTT_QOS
(Enum)

MQTT_MES-
SAGE

MQTT_CON-
NECTION

Configuration and programming
Libraries and solutions > MQTT client library

2024/01/053ADR010583, 1, en_US4050

Parameter Data type Range
abyConn Array MQTT_CLIENT_STRUCT_SIZE

abyTxBuf Array MQTT_TX_BUF_SIZE

abyRxBuf Array MQTT_RX_BUF_SIZE

abyMsgBuf Array MQTT_MSG_BUF_SIZE

6.5.11.2 Global variables

Parameter Datatype Value Description
MQTT_MAX_IP_ADDRESS_L
EN

Word 15 Maximum length of the IP
address.

MQTT_MAX_PEM_KEY_LEN Word 2048 Maximum length of the PEM
key.

MQTT_MAX_PEM_CERT_LE
N

Word 3072 Maximum length of the PEM
certificate.

MQTT_MAX_FILE_PATH_LEN Word 255 Maximum length of the file path
to the certificate files.

MQTT_MAX_CLIENT_ID_LEN Word 250 Maximum length of the client
id.

MQTT_MAX_USER-
NAME_LEN

Word 250 Maximum length of the user-
name.

MQTT_MAX_PASS-
WORD_LEN

Word 250 Maximum length of the pass-
word.

MQTT_MAX_TOPIC_LEN Word 255 Maximum length of the topic.

MQTT_CLIENT_STRUCT_SIZ
E

Word 336 Size of the internal connection
structure representing the con-
nection state.

MQTT_TX_BUF_SIZE Word 1024 Size of the internally used
output buffer.

MQTT_RX_BUF_SIZE Word 1024 Size of the internally used input
buffer.

MQTT_MSG_BUF_SIZE Word 2148 Size of the internally used mes-
sage buffer.

6.5.12 PLCopen libraries
6.5.12.1 Common function block state machine
6.5.12.1.1 General

Most of the V3 function blocks follow the behavior model and style as recommended by PLC
Open.
● Clear separation between “Edge triggered FBs” (“Execute”) or “Level triggered FBs”

(“Enable”)
● Binary status outputs: “Done”, “Busy”, “Error” (exclusive)
● Standardized state machine
● CamelCase naming for function block and all inputs and outputs

MQTT_CON-
STANTS

Configuration and programming

Libraries and solutions > PLCopen libraries

2024/01/05 3ADR010583, 1, en_US 4051

Example: Edge_Triggerd_Function_Block_EthOwnIP according to PLCopen
Currently the following “function block state machines” are used:
● “Edge Triggered” (Input “Execute”), for example EthOwnIP
● “Level Controlled” (Input “Enable”)
● “Level Controlled Continuous” (Input “Enable”, no “Done” output, for example PID)

In contrast to AC500 V2 POUs, either “Done” or “Error” is set, not both outputs
at the same time in case of an error.

The state machines are explained in the following chapters.

6.5.12.1.2 Edge triggered (AbbETrig)

After a rising edge at the input “Execute” the state goes from “Dormant” to “Busy”. In the first
cycle all inputs are sampled and stored.
When the task is completed successfully the state goes from “Busy” to “Done”.
In case of an error the state goes to “Error”.
The states “Done” or “Error” are stable for minimum one cycle and as long as “Execute” is
“TRUE”. With a falling edge of “Execute”, the state goes via Reset to “Dormant”.

Configuration and programming
Libraries and solutions > PLCopen libraries

2024/01/053ADR010583, 1, en_US4052

Description of standard inputs and outputs:
● “Execute”

A rising edge starts the operation, the output “Busy” goes to “TRUE”. In the first cycle all
other inputs are read and stored, afterwards they are ignored.
A falling edge does not stop the operation.
After “Done = TRUE” or “Error = TRUE” and “Execute = FALSE” all outputs will be reset.

● “Busy”
Operation is running (while outputs “Done” and “Error” are “FALSE”)

● “Done”
Operation is completed without error (while outputs “Busy” and “Error” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Execute” is set to “FALSE”

● “Error”
Operation is stopped with error (while outputs “Busy” and “Done” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Execute” is set to “FALSE”.
The output “ErrorID” gives more details about the error.

6.5.12.1.3 Level controlled (AbbLCon)

After a rising edge at the input “Enable” the state goes “Dormant” to “Busy”. All inputs are
sampled and considered continuously.
When the task is completed successfully the state goes from “Busy” to “Done”.
In case of an error the state goes to “Error”.
The states “Done” or “Error” are stable for minimum one cycle and as long as “Enable is TRUE”.
With a falling edge of “Enable”, the state goes via Reset to “Dormant”.
The Busy state can be aborted from outside by setting the “Enable” input to “FALSE”.
After Aborting is done the state goes back to “Dormant”.
Description of standard inputs and outputs:
● “Enable”

A rising edge (“Enable = TRUE”) starts the operation, the output “Busy” goes to “TRUE”. All
other inputs are read and considered continuously. A falling edge (“Enable = FALSE”) aborts
the operation.
During Aborting the Busy is still “TRUE”. Afterward all outputs are reset.

● “Busy”
Operation is running (while outputs “Done” and “Error” are “FALSE”)

Configuration and programming

Libraries and solutions > PLCopen libraries

2024/01/05 3ADR010583, 1, en_US 4053

● “Done”
Operation is completed without error (while outputs “Busy” and “Error” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Enable” is set to “FALSE”

● “Error”
Operation is stopped with error (while outputs “Busy” and “Done” are “FALSE”).
This output is “TRUE” for at least one cycle or until “Enable” is set to “FALSE”.
The output “ErrorID” gives more details about the error.

6.5.12.1.4 Level controlled continous (AbbLConC)
This state machine is a special case of “Level Controlled”. Only difference is that this function
block type is never done, for example a PID which never stops.
Therefore these function blocks have no “Done” output.
Description of standard inputs and outputs:
● “Enable”

A rising edge (“Enable = TRUE”) starts the operation, the output “Busy” goes to “TRUE”. All
other inputs are read and considered continuously.
A falling edge (“Enable = FALSE”) aborts the operation.
During Aborting the “Busy” is still “TRUE”. Afterward all outputs are reset.

● “Busy”
Operation is running (while output “Error is FALSE”)

● “Error”
Operation is stopped with error (while output “Busy is FALSE”).
This output is “TRUE” for at least one cycle or until “Enable” is set to “FALSE”.
The output “ErrorID” gives more details about the error.

6.5.12.1.5 Error_ID
Each library contains an enumeration “ERROR_ID”, which is valid for this library but not across
all libraries

Only the following errors are unique:
● 16#5FFF FATAL_ERROR from state machine
● 16#4000 errors are used for input errors, same scheme like in V2:

Configuration and programming
Libraries and solutions > PLCopen libraries

2024/01/053ADR010583, 1, en_US4054

Configuration and programming

Libraries and solutions > PLCopen libraries

2024/01/05 3ADR010583, 1, en_US 4055

6.5.12.1.6 Compatibility with V2 function blocks
In order to ensure compatibility with V2 applications a lot of ABB function blocks are delivered
together with a compatible version in classic style:
Names in CAPITAL letters, input “EN” and outputs “DONE”, “ERR” and “ERNO”:

The classic blocks internally use the PLCopen style function blocks. The inputs and outputs are
mapped in the following way:

6.5.13 Pumping library V3
6.5.13.1 Overview of the PS5608 pumping library

The PS5608 – pumping library V3 stands as an upgrade of PS571 – pumping library V2. Specif-
ically designed for pumping stations equipped with up to eight pumps, this library encompasses
a comprehensive set of function blocks. This library helps in configuring and monitoring the
various pumps in pumping stations.
Depending on the pumping station requirement and objectives, the available process modes
typically include pressure control, flow control, and level control.
● Pressure control: This mode focuses on maintaining a specific pressure level within the

system. It is ideal for applications where pressure regulation is paramount, such as in water
supply systems or hydraulic systems.

● Flow control: Flow control mode is employed to regulate the rate at which the fluid is
pumped through the system. It is essential in applications where maintaining a consistent
flow rate is critical, such as in chemical manufacturing or irrigation systems.

● Level control: Level control mode is employed to manage the height or volume of liquid in
a reservoir or tank. It is commonly used in wastewater treatment plants, industrial storage
tanks, and sewage systems.

Depending on the specific operational needs and desired level of control and efficiency for the
pumping stations, it offers various operational modes, each tailored to meet different require-
ments:

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4056

● Multimode - all VFD pumps: In this mode, all pumps are equipped with Variable Frequency
Drives (VFDs). VFDs allow for precise control of pump speed, making it ideal for appli-
cations where fine-tuning flow rates and pressure is essential. This mode provides high
efficiency and flexibility.

● Traditional mode - One pump VFD, other DOL pumps: This configuration combines the
advantages of a VFD pump with the simplicity of direct-on-line (DOL) pumps. Typically, one
pump is equipped with a VFD for precise control, while the others operate using a traditional
DOL starter. This mode balances control and cost-effectiveness.

● DOL Mode - All DOL Pumps: In this mode, all pumps operate using direct-on-line (DOL)
starters, which provide basic on/off control without speed variation. It's a cost-effective
choice for applications where precise control is less critical.

Basic block diagram of a pumping station is as shown below.

The key features supported by the library includes:
● Configuration functions for pump station that permits:

– Users to customize pump parameters like pump station name, number of pumps,
process mode of pumps, pump combination and pump speed.

– Communication with all pumps in the field that are run by DOL/VFD motors by config-
uring the pump settings and collecting the pump operation status.

● Pumping functions of the pump that supports:
– Precise management of emptying and filling operations by comparing actual fluid level

with the set fluid level for level control.
– Uniform fluid level distribution across multiple tanks and reservoirs by providing ON/OFF

command to the pumps for level control.
– Maintenance of flow in the network for flow control.
– Stabilization of pressure in the network for pressure control.
– Closed loop control of pressure and flow using PID control.
– Pump turn off/on sequence generation based on demand.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4057

● Auxiliary functions of the pump that include:
– Cleaning up of the pump using antijam functionality.
– Capability to calculate and monitor energy consumed and saved.
– Calculation of pump flow rate using pump head flow and pressure flow rate curve

characteristics.
– Computation of maintenance schedule for the pump.
– Offering analog and binary protection mechanisms to safeguard pumps against opera-

tional risks.
– Conserving energy by enabling pumps to enter sleep mode during periods of low

demand.
– Soft fill functionality that ensures gradual pump start up to prevent water hammer and

system stress.
● Simulation functions of the library that help in system test and validation consists of:

– DOL (Direct-on-line pumps) simulation
– VFD (Variable Frequency Drive) simulation
– Pumptank simulation for tank behavior.

This PLC library for pumping stations is a comprehensive solution that together opti-
mize pump control, energy efficiency, maintenance, protection, and system simulation.
It stands as an invaluable tool in the field of industrial automation, ensuring reliability,
efficiency, and cost-effectiveness across a wide range of pumping applications.

6.5.13.2 Comparison of V2 and V3 pumping library
The below table compares the function blocks in the V2 library package and corresponding
adapted function blocks in the V3 library package.

Table 768: Comparison of V2 and V3 pumping library
PS571-Pumping library package (V2) PS5608-Pump library package (V3)
Library name Function block Library Function block
PMP_AC500_V25.lib PMP_CONFIGURA-

TION
ABB_Pump_AC500.c
ompiled-library
ABB_Pum-
pEco_AC500.com-
piled-library

PmpConfiguration

PMP_INTER-
FACE_DOL

PmpInterfaceDol

PMP_INTER-
FACE_VFD

PmpInterfaceVfd

PMP_LEVEL_COM-
PARATOR

PmpLevelComparator

PMP_LEVEL_DIS-
TRIBUTOR

PmpLevelDistributor

PMP_FLOW_DIS-
TRIBUTOR

PmpFlowDistributor

PMP_PRES-
SURE_DISTRIB-
UTOR

PmpPressureDistri-
butor

PMP_PID PmpPid

PMP_SEQUENCE_G
EN

PmpSequenceGen

PMP_ANTIJAM PmpAntiJam

PMP_ENERGY_CAL
C

PmpEnergyCalc

PMP_FLOW_CALC_
HQ

PmpFlowCalcHQ

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4058

PS571-Pumping library package (V2) PS5608-Pump library package (V3)
PMP_FLOW_CALC_
PQ

PmpFlowCalcPQ

PMP_MAINTAI-
NENCE

PmpMaintainence

PMP_PROTEC-
TION_ANALOG

PmpProtectionAnalog

PMP_PROTEC-
TION_BINARY

PmpProtectionBinary

PMP_SLEEP PmpSleep

PMP_SOFT_FILLING PmpSoftFilling

PMP_DOL_SIMU PmpDolSimu

PMP_DRIVE_SIMU PmpDriveSimu

PMP_TANK_SIMU PmpTankSimu

Table 769: Comparison of V3 Pump- and PumpEco libraries
Name of the library ABB_Pump_AC500 library ABB_PumpEco_AC500 library
Runtime license Needs pump runtime license Needs pump eCo runtime license

PLCs supported Runs in all PLC’s Runs only in eCo PLC’s

Number of pumps sup-
ported

8 4

6.5.13.3 Compontents of the library
6.5.13.3.1 Overview

The library contains function blocks needed for functions of pumping application (pressure con-
trol, flow control or level control). It also contains function blocks for some advanced functions
needed for different applications.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4059

Fig. 355: Overview of pumping library

6.5.13.3.2 Installation
The library is part of the Automation Builder 2.6.1 or higher. Use theLibrary Manager to add the
library into project.
For more details on the package, refer to the release notes of the latest Automation Builder.

6.5.13.3.3 Compatibility

Requirement Specification
Hardware AC500 V3 midrange and eCo PLCs

Software Automation Builder 2.6.1 or higher

Library ABB_Pump_AC500.compiled library
ABB_PumpEco_AC500.compiled library

License Runtime license required

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4060

6.5.13.3.4 Required sensors

A minimal sensor equipment is required for the following measurements:
● Actual pressure measurement for pressure control.
● Actual flow measurement for flow control.
● Actual level measurement for level control.
The pressure sensor can be at the input and/or at the output. The flow sensor should be only at
the output. Often, at the input a sensor, typically pressure, is placed for advanced protection and
diagnosis.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4061

6.5.13.4 Control philosophy of pumping library
The Pumping library is used for controlling the following three water pumping processes:
● Pressure control
● Flow control
● Level control – Emptying or filling

The figure below gives an overview of the pumping library and explains how the library pro-
cesses the data from the user and then controls the processes.

To run any process, the pumping library follows the four stages described below:

6.5.13.4.1 Stage 1: Comparator
The set process value (e.g., pressure in psi, flow rate in m3/h) is compared with the measured
actual value. The distributor uses the output of the comparator to decide the number of pumps
and their operating speeds to meet the demand.
● Pressure control and Flow control:

•Pressure control and Flow control: In pressure and flow controls, the function block
“PmpPid acts” as a comparator which gives the “PidOut” in [%] to the function block
“PmpPressureDistributor” or “PmpFlowDistributor”. In the distributor the PID output is then
converted as reference speed set point to the pumps.

● Emptying or Filling mode:
• Emptying or Filling mode: In emptying or filling modes, the function block
“PmpLevelComparator” is used to compare the actual level of the tank with the set
levels to start or stop the pumps. This information is sent to the distributor by the output
“NumberOfPumpDemand”. For example, in filling mode, at lower actual level more pumps
are needed to run, to fill the tank.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4062

6.5.13.4.2 Stage 2: Sequence generator
The “PmpSequenceGen” function block is used. The following functions are included:
● Decides which pump is ready to run in the auto mode.
● Decides which pump to start in the sequence, based on the least actual runtime hours.

Exception – when the pump station is traditional type (with master pump on VFD, rest on
DOL), then the pump ID = 1 which is attached to the VFD will always run as master and is
first to start and last to stop.

● Decides which pump to stop in the sequence, based on the highest actual runtime hours.
Exception – when the pump station is traditional type (with master pump on VFD, rest on
DOL), then the pump ID = 1 which is attached to the VFD will always run as master and is
first to start and last to stop.

● Assigns a master status to the pump in the sequence.
● Indicates how many pumps are ready for automation and how many are running.

The figure below explains a use case where the demand increases and then decreases. The
sequence is generated based on these criteria by the function block “PmpSequenceGen”.

6.5.13.4.3 Stage 3: Distributor
The distributor function block distributes the start/ stop command and speed reference to all
VFD operated pumps.
● Pressure control: For pressure control, the function block “PmpPressureDistributor” is used.

The PID output coming from the function block “PmpPid” (comparator) is converted as refer-
ence speed setpoint to the master pump. The function block works based on the reference
speed of the master pump. If the reference speed is higher, a greater number of pumps are
needed to meet the demand. If the reference speed is lower, the already running pumps in
the network need to be stopped. The function block:
– Calculates the speed reference of the master pump and then starts/ stops the follower

pumps based on the settings in the inputs “StartSpeedFwr” or “StopSpeedFwr”.
– Distributes the speed references to VFD follower pumps based on the settings in the

input “FollowerMode”.
● Flow control: For flow control, the function block “PmpFlowDistributor” is used.

– In the flow distributor the number of pumps to run is decided by the following ratio:
“FlowSetpoint”/ (Number of pumps in station * Nominal flow of pump).

– The function block distributes the speed references to VFD follower pumps based on the
settings in the input “FollowerMode”.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4063

● Emptying/Filling mode: For emptying or filling operation, the function block PmpLe-
velDistributor is used. The function block starts/ stops the pumps based on
the input “NumberOfPumpDemand” (demand) which it receives from function block
“PmpLevelComparator”.
– If the actual level is in the normal range, then the speed reference of the pumps are

based on the input “NormalSpeed”.
– If for example while filling the actual level reaches below the “LowLevel”, then all pumps

run at “HighSpeed”, to quickly fill the pump. Similar analogy is followed when the pump
is in emptying mode.

6.5.13.4.4 Stage 4: DRIVE or DOL system
The output of the distributors (“AutoStartCmd” and “AutoSpeedRef”) is connected to function
block “PmpInterfaceVFD” and “PmpInterfaceDol”. The function blocks establish the link between
library and field devices i.e., pumps.
● For pumps driven by VFD motors, the function block “PmpInterfaceVFD” can be connected

with the drives communication function blocks to establish communication and control with
the VFD.

● For pumps driven by DOL motor, the function block “PmpInterfaceDol” can be used for
start/stop controls.

For more information, see the detailed control philosophy in the following sections.

6.5.13.5 Features in pumping library
Pumping library is mainly designed to use in various application of water industries for example,
wastewater treatment, stormwater overflow tank, water association and well stations etc. Max-
imum 8 pumps can be configured for pressure, flow and level control.

6.5.13.5.1 Types of pumping stations
This section explains the possible combination of library features with different types of pumping
stations:
1. “Multi pumping” stations – maximum 8 pumps each fed by variable frequency drive.
2. “Traditional pumping” station – maximum 8 pumps, where one pump (mandatory) fed by

variable frequency drive and rest by the direct online motor.
3. “DOL pumping” station – maximum 8 pumps running by direct online motors.

Multi pumping station
This multi pumping station configuration has the best overall and operation economics:
● The library is working in the PLC which controls the operation of the variable frequency

drives based on the process requirements.
● All the pumps are connected to the motor which is fed by the VFD. This type of pumping

station is most flexible and has optimal process control efficiency performance.
● Based on the load requirements the number of pumps operating can vary and the pumps in

operation can be kept as much as possible in their “best efficiency point”.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4064

Traditional pumping station

This pumping station configuration has following features:
● One lead pump is connected to the VFD, and others are connected to the DOL motors.
● The library is working in the PLC which controls the operation of the variable frequency drive

of the lead pump. The operation of the DOL motors is based on the process requirements.
● Based on the load requirements the number of pumps operating can vary but the lead pump

with the VFD always operates.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4065

Direct-on-line (DOL) pumping station

This pumping station configuration has all the pumps running by the direct-on-line (DOL)
motors. This is the most investment cost-effective configuration. It has following features:
● The pump library runs on the AC500 PLC.
● The pump library controls the ON/OFF the pumps based on the process demands.

6.5.13.5.2 Process control vs. pump combinations
The table below explains the applicability of the three process controls and their pump combina-
tions.

Process control Pump combinations
DOL Multi pump Traditional

Flow ✔ ✔ ✔

Level ✔ ✔ ✔

Pressure ✖ ✔ ✔

6.5.13.5.3 Process control types

There are three main application and control function blocks:
● Pressure control function blocks
● Flow control function blocks
● Level control function blocks

Pressure control function blocks
Pressure control process flow diagram.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4066

Pressure control is used in applications with individual or multiple water consumers like in water
distribution networks. A typical pressure control application diagram is shown below.

1 Suction tank
2 Parallel operating pumps P1 ... P8
3 Pressure setpoint, discharge pressure
4 Consumer
5 Water distribution network
6 Water tower buffer tank
H Water head between the levels in the suction tank and water tower buffer tank

Pressure control in the pumping library can help in the following operations:
● Water consumption fluctuates always and may be discontinuous over a time period,

because of which it is difficult to have a continuous flow rate like in the flow control process.
● The number of pumps and the pump speed is decided by the water consumption in the

water distribution system.
● Water is supplied to the pump station through suction pipeline from a suction tank.
● The pumps may be operating in parallel.
● The discharge pressure is measured in the discharge pipeline. The measured discharge

pressure is controlled according to the pressure set point.
● Each pump must be started with a minimum speed to build up the pressure which is

required to produce a minimum flow.

Using pressure
control

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4067

● The pressure to deliver a minimum flow depends of the water head (H) between the water
levels in the suction tank and target tank.

● If there is pump station shutdown due to protection shutdown input, the pumps must be
stopped sequentially to prevent water hammering.

Variable speed drives should be stopped through a speed ramp. Otherwise, the water ham-
mering will quickly wear out the pipeline connections and the pump station equipment.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4068

Pressure control mode works for two types of pump combinations: Multi pump and traditional
pump.
The combination of function blocks to execute a pressure control is shown in the figures below.
● Multi pump – In this mode all pumps are run using VFDs.

Traditional pump – In this mode only one pump will run using the VFD and the rest of the pumps
will run using the direct-on-line motors. The pump, which is fed by VFD will always be master or
lead pump.
Based on the load requirement the number of pumps operating can change but the pump fed by
VFD will always be operating.

Pump combina-
tions for pres-
sure control

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4069

The pressure control mode cannot be supported by a DOL pump.

The combination with any VFD pump is necessary.

Control philosophy of pressure control mode
The pressure control mode follows this sequence of operation:
1. When the process is started, the first pump runs at “MinimumSpeed” for the time defined

in the “TimeToRunMinSpeed” duration. With this process the pipe starts filling gradually
and then the normal operation of PID control takes over.

2. The PID compares the required pressured and the actual pressure to generate the
output in terms of percentage. This output must be connected to the function block
“PmpPressureDistributor”.

3. The function block “PmpPressureDistributor” receives the “PidOut”. The distributor con-
verts the PID output in terms of speed for the master pump.

4. The function block “PmpSequenceGen” has the “MasterPump” information.
5. The “PidOut” is scaled in terms of speed in this method:

Speed reference of “MasterPump” = (“NominalSpeed” of “MasterPump”) * (“PidOut”/100)
6. As the PID output increases, the speed of the master pump increases. A higher PID

output indicates a high demand. In case one pump is not able to cater the requirement,
then more pump (followers) are needed to start and supply water to maintain the pressure.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4070

7. If speed reference of the “MasterPump” increases such that it is more than the
“StartSpeedFwr[1]”, then the first follower in the network will start. The information
about which pump to start comes from function block “PmpSequenceGen” at the output
“NextPumpToStart”.

8. If the speed reference of the “MasterPump” increases further such that it is more than
“StartSpeedFwr[2]”, then second follower pump starts. This sequence is followed till there
is an increase in demand. See the timing diagram below.

Start Delay: Delay time [s] to start the next pump

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4071

9. Similar when the demand decreases, the speed reference of master decreases. See
the timing diagram below. As the speed reference of the master pump goes below
“StopSpeedFwr[1]”, the first follower stops. The ID of next pump to stop comes from
“PmpSequenceGen” as “NextPumpToStop”. If the speed reference of the “MasterPump”
decreases further such that it is less than “StopSpeedFwr[2]”, then second follower pump
stops. This sequence is followed till there is a decrease in demand.

The follower pumps in the above figure is considered to be in the
“FollowerMode”= 1, copy master speed. They can also run at their indi-
vidual speed if “FollowerMode”= 2, fixed speed.

Stop Delay: Delay time [s] to stop the next pump

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4072

6.5.13.5.4 Flow control process flow diagram
Flow control is used in applications where continuous flow distribution to one or more target
tanks or reservoirs is needed.
A typical flow control application diagram is shown below.

1 From supply station
2 Suction tank
3 Parallel operating pumps P1 ... P8
4 Flow setpoint, discharge pressure
5 Water distribution network
6 Target tank/Reservoir
7 To next station or distribution network
H Water head between the levels in the suction tank and target tank

6.5.13.5.5 Using flow control
Flow control in the pumping library can help in followings pumping operations:
● Supplying water to the pump station through the suction pipeline from a suction tank.
● Operating pumps in parallel.
● Controlling continuous water flow over a time period.
● Measuring the discharge flow in the discharge pipeline.
● Defining the number of pumps and pump speed based on water flow demand (flow set

point).
● Starting each pump with minimum speed to build up the pressure required to produce a

minimum flow.
The pressure depends on the water head (H) between the water levels in the suction tank
and the target tank.

● In case of station shutdown stops the pumps sequentially to prevent water hammering.
● Stops variable speed drives through a speed ramp.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4073

6.5.13.5.6 Pump combinations for flow control
Flow control works for all the three types of pump combinations: Multi pump, traditional pump,
and DOL pump.
● Multi pump – In this mode all pumps are run using VFDs. See the example diagram below.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4074

● Traditional pump – In this mode only one pump is run using the VFD and rest are run using
the Direct On Line (DOL) motors. See the example diagram below.

● DOL Pump – In this mode all the pumps are operated by DOL motors. The function block
PMP_PID is not configured as there is no possibility to change the speed of the pump. See
the example diagram below.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4075

6.5.13.5.7 Control philosophy of flow control mode
The above figures show the combination of function blocks to execute the flow control. As it can
be seen,
● When the process is started, the first pump runs at the “MinimumSpeed” for the time defined

in the “TimeToRunMinSpeed” duration. This is to gradually start filling the pipe. After this the
normal operation of PID control takes over.

● The PID acts as a comparator: the PID compares the required flow and the actual
flow to generate output in terms of percentage. This needs to be connected to the
“PmpFlowDistributor”.

● “PmpFlowDistributor” takes the “PidOut”. Then converts this output in terms of speed for
the master pump. The information of master pump comes from the “MasterPump” of the
“PmpSequenceGen”. The scaling of the “PidOut” in terms of speed is done in following
ways. Speed reference “MasterPump” = (“NominalSpeed” of “MasterPump”) * (“PidOut”/
100)

● This speed reference is given to the master and the follower (if Follower Mode = 1). If
Follower Mode = 2, then follower pumps will run at their fixed speed given in the input
“FollowerSpeed” [1..8].

● The distributor then decides about the number of pumps to operate based on the following
formula, Number of pumps = “FlowSetpoint”/“NominalFlow”, here it is assumed that all
pumps are of same rating.

It is assumed that all the Pumps are of the same capacity.

● As the flow set point increases, the demand of pumps increases.
● Example: if each pump is of capacity = 100 cubic meters per hour and the flow set point is

400 cubic meters per hour, then four pumps will start together. This is unlike the pressure
control where the pumps do not start together but based on speed reference of the master
pump.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4076

6.5.13.5.8 Flow control with distributor

● Similarly when the demand decreases, the speed reference of the master decreases. As the
speed reference of the master pump goes below than “StopSpeedFwr[1]”, the first follower
stops. The ID of next pump to stop comes from “PmpSequenceGen” as “NextPumpToStop”.

● If the speed reference of the “MasterPump” decreases further such that it is less than
“StopSpeedFwr[2]”, then second follower pump stops. This sequence is follows till there is a
decrease in demand.

The follower pumps in the above figures are considered to be in the
“FollowerMode” = 1, copy master speed.

They can also run at their individual speed if “FollowerMode” = 2, fixed speed.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4077

6.5.13.5.9 Level control function blocks
Level control process flow diagram

Level control is used in applications where continuous flow distribution into one target tank or
reservoir is needed.
A typical flow control application diagram is shown below.

1 From supply station
2 Suction tank
3 Parallel operating pumps P1 ... P8
4 Water distribution network
5 Target tank/Reservoir
6 To next station or distribution network
H Water head between the levels in the suction tank and target tank

Using level control
Level control in the pumping library can help in followings pumping operations:
● Emptying the target tank/reservoir by the next pump station or water distribution network.
● Filling the suction tank from a supply station.
● Defining the number of running pumps based on water level in the water tank.
● Start/stop the pumps with predefined start/stop levels.
● In case of a station shutdown, stop pumps sequentially to prevent water hammering.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4078

Pump combinations for level control
Level control works for all the three types of pump combinations: Multi pump, traditional pump,
and DOL pump.
● Multi pump – In this mode all pumps are run using VFDs. See the example diagram below.

● Traditional pump – In this mode only one pump is run using the VFD and rest using the
Direct On Line (DOL) motors. See the example diagram below.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4079

● DOL Pump – In this mode all the pumps are operated by DOL motors. In this case the
PMP_PID is not configured as there is no possibility to change the speed of the pump. See
the example diagram below.

Control philosophy of level control mode
The level control is based on two modes.
● Emptying mode
● Filling mode
The level control mode follows this sequence of operation:
● The “PmpLevelComparator” compares the actual level (“ActLevel”) with the set

start levels (“StartLevel” [1...8]). Based on which the comparator decides the
demand - “NoOfPumpDemand”. This demand goes as an input information to the
“PmpLevelDistributor”.

● The “PmpLevelDistributor” then starts the required pumps. In case the pumps are driven by
VFD, the distributor also gives the speed reference to each pump. The information of which
pump to start in the sequence is given to the distributor by “PmpSequenceGen”.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4080

Time diagram:
Emptying mode

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4081

6.5.13.6 Auxiliary functions
The various auxiliary functions supported in this library are described in the following chapters

Time diagram:
Filling mode

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4082

6.5.13.6.1 Antijam overview
The pump antijam function is used to prevent building up of solids on the pump impellers or
pip-ing. The function consists of a programmable sequence of forward and reverse runs of
the pump to shake off any residue on the impeller or piping. This function is mostly used with
booster and wastewater pumps. See timing diagram below:

The function block PmpAntijam performs the antijam function by running the pump at high
speeds without any ramp up/down time.

6.5.13.6.2 Pump energy calculation functionality

The function block “PmpEnergyCalc” calculates the energy consumption of the pumping station
run by variable frequency drive and gives the information on cumulative flow in cubic meters.
The function includes following calculations:
● Total energy consumed.
● Total energy saved.
● Total cost saved.
● Reduced CO2 emission.

6.5.13.6.3 Pump flow calculation functionality using HQ and PQ curves
The function blocks “PmpFlowCalcHQ” and “PmpFlowCalcPQ” calculates the flow rate of
pumps using the pump head flow (HQ) and pump pressure flow rate (PQ) curve characteristics
respectively. These functions are applicable only for pumps run by variable frequency drives.
The flow calculation function provides a reasonably accurate calculation of the flow without the
installation of a separate flow meter. The flow is calculated based on the pump characteristics.
The user can define the PQ (Power vs Flow) or HQ (Head vs Flow) values for the performance
curve at the inputs of the function block for the five coordinate points. The values of the PQ
and HQ are generally provided by the pump manufacturer and all points defined must be within
the operating range of the pump. These points are taken at the maximum operation speed and
scaled down by the block according to the actual speed. By this method a good accuracy is
achieved with limited parameterization effort.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4083

6.5.13.6.4 Pump maintenance functionality
The function blocks “PmpMaintenance” is used to record the maintenance schedule of the
pump. The function block maintains an hourly counter to track the pump maintenance interval
and generates timely reminders and alarms.

6.5.13.6.5 Pump protection functionality using analog/binary inputs
The function blocks “PmpProtectionAnalog” and “PmpProtectionBinary” monitors analog inputs
and binary inputs respectively and generates signals to shut down or to block the starting of
pump or the process.
The function block sends the signals to shut down or to block the starting of pump
through inputs “ProtectionShutdown” or “StartBlocker” of these distributor and pump inter-
face function blocks: “PmpLevelDistributor”, “PmpFlowDistributor” “PmpPressureDistributor”,
“PmpInterfaceVfd” and “PmpInterfaceDol”.

6.5.13.6.6 Pump sleep functionality
The function block “PmpSleep” stops all pumps in the pressure control process during low
demand. The function works only for pressure control (when function block “PmpConfiguration”
has the input ProcessMode = 1 (Pressure control) with multi pump station or traditional pump
station.

6.5.13.6.7 Pump soft fill functionality

The function block “PmpSoftFilling” enables slow filling operation in pipes in the beginning of the
process to avoid damages. If this operation is selected, it is executed before the actual process
control takes over.

Configuration and programming
Libraries and solutions > Pumping library V3

2024/01/053ADR010583, 1, en_US4084

Note:
● This function block cannot run when the “PumpComb” = 3, DOL mode in

“PmpConfiguration”. Soft filling needs the VFD drive to run and execute gradual filling of
the water.

● In case of master pump failure when process is running (pumps running):
– If softfill - disabled, next pump to start in sequence is becoming master and running in

the normal mode.
– If softfill- enabled, next pump to start in sequence is becoming master but it is not going

to the normal mode.

Softfill will only be performed for the master pump when there are no pumps
running and the process is started for the first time.

6.5.13.7 Simulation functions
For the testing of the program in test environment where the real drives or pumps and tanks are
missing, these three simulation blocks are provided which can be used.

The outputs of the function block may or may not be as accurate as real
process. Use this function block only for simulation testing and not on the actual
system.

6.5.13.7.1 Pump DOL simulation block
The function block “PmpDolSimu” is a simple simulation of the direct online pumps. This block
can be used to test the behavior of the system when there is start and stop of pumps and
external faults are introduced.

6.5.13.7.2 Pump drive simulation block
The function block “PmpDriveSimu” is used to simulate the variable frequency drive (VFD)
pumps and for PLC communication. This block can be used to simulate the behavior of the
VFDs to check the behavior of system during maximum speed or power, external faults and to
check Start and stop sequence of the pumps.

6.5.13.7.3 Pump tank simulation block

The function block “PmpTankSimu” is used to simulate the water tank. This simulation can be
used in all the three process control modes:
● Pressure
● Flow
● Level
This block can be used to check the start and stop sequence of the pumps and fault conditions
during process control mode when the tank is not available by providing the dimensions of the
tank, it can be used in combination with “PmpDolSimu” and “PmpDriveSimu” function blocks to
simulate a test environment.

Configuration and programming

Libraries and solutions > Pumping library V3

2024/01/05 3ADR010583, 1, en_US 4085

6.5.14 Reference, function blocks
Reference documentation

Ä Chapter 6.5.3.3 “View embedded documentation of all libraries” on page 3775

● _BlockGetData
● _BlockGetPool
● _CloneMessage
● _CreateArrayReceiver
● _CreateIdAreaReceiver
● _CreateMaskReceiver
● _CreateMessage
● _CreateSingleIdReceiver
● _DeleteReceiver
● _DisableSyncService
● _DriverClose
● _DriverGetSize
● _DriverOpenH
● _DriverOpenP
● _EnableSyncService
● _FlatCreateH
● _FlatCreateP
● _FlatDelete
● _FlatDisable
● _FlatEnable
● _FlatGetSize
● _FlatRead
● _FlatTest
● _FlatUpdate
● _FreeMessage
● _GetBaudrate
● _GetBusAlarm
● _GetBusload
● _GetBusState
● _GetCiAState
● _GetDiagnosis
● _GetLostCounter
● _GetMessageDataPointer
● _GetMessageId
● _GetMessageLength
● _GetMsgCount
● _GetNetId
● _GetReceiveCounter
● _GetReceiveErrorCounter
● _GetReceivePoolSize
● _GetReceiveQueueLength
● _GetTimeStamp
● _GetTransmitCounter
● _GetTransmitErrorCounter
● _GetTransmitPoolSize
● _GetTransmitQueueLength
● _Is29BitIdMessage
● _IsRTRMessage
● _IsSendingActive
● _IsTransmitMessage
● _JobAbort

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4086

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/index.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_BlockGetData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_BlockGetPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CloneMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateArrayReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateIdAreaReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateMaskReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_CreateSingleIdReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DeleteReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Extended-Functionality/_DisableSyncService.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverOpenH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_DriverOpenP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Extended-Functionality/_EnableSyncService.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatDisable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatEnable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatTest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Flat-Functions/_FlatUpdate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_FreeMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBaudrate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBusAlarm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBusload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetBusState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Indicator-Services/_GetCiAState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetLostCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMessageDataPointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMessageId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMessageLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetMsgCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetNetId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceiveCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceiveErrorCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceivePoolSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetReceiveQueueLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_GetTimeStamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitErrorCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitPoolSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_GetTransmitQueueLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_Is29BitIdMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_IsRTRMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_IsSendingActive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_IsTransmitMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobAbort.html

● _JobClose
● _JobExecute
● _JobGetId
● _JobGetParams
● _JobGetState
● _JobOpen
● _JobOpenEx
● _JobReset
● _JobSetState
● _LostMessages
● _MsgAddRef
● _MsgClone
● _MsgGetData
● _MsgReceive
● _MsgRelease
● _MsgReleaseEx
● _MsgSend
● _PoolCreateH
● _PoolCreateP
● _PoolDelete
● _PoolExtendH
● _PoolGetBlock
● _PoolGetBlockSize
● _PoolGetCurCapacity
● _PoolGetNumBlocksLeft
● _PoolGetSize
● _PoolPutBlock
● _Read
● _ReadArrayReceiver
● _RegisterIdArea
● _ResetBusAlarm
● _RLstAddPrio
● _RLstCheckPrio
● _RLstCreateH
● _RLstCreateP
● _RLstDelete
● _RLstGetHighestPrio
● _RLstGetSize
● _RLstRemovePrio
● _SetCiAState
● _StorageGetIndexId
● _StorageGetTableId
● _UnregisterIdArea
● _WorkerRegister
● _WorkerUnregister
● _Write
● _XChgCreateH
● _XChgCreateP
● _XChgDelete
● _XChgExtendH
● _XChgGetSize
● _XChgIsEmpty
● _XChgMsgLeft
● AbbETrig
● AbbETrig2

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4087

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobExecute.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobGetId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobGetParams.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobGetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobOpenEx.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_JobSetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Message-Information/_LostMessages.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgAddRef.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgClone.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgGetData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgReceive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgRelease.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgReleaseEx.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Message-Functions/_MsgSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolExtendH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetBlockSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetCurCapacity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetNumBlocksLeft.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Pool-Functions/_PoolPutBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_Read.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_ReadArrayReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_RegisterIdArea.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Diagnostic-Information/_ResetBusAlarm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstAddPrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstCheckPrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstGetHighestPrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Ready-List/_RLstRemovePrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Indicator-Services/_SetCiAState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/3S%20Storage.library_Library/_3SStorage/External/Functions/Storage/_StorageGetIndexId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/3S%20Storage.library_Library/_3SStorage/External/Functions/Storage/_StorageGetTableId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_UnregisterIdArea.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_WorkerRegister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/Internal/_WorkerUnregister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Internal/Basic-Functions/_Write.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgExtendH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgIsEmpty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Internal/Exchange-Functions/_XChgMsgLeft.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/ETrig/Deprecated/AbbETrig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/ETrig/Deprecated/AbbETrig2.html

● AbbETrig3
● AbbLCon
● AbbLCon2
● AbbLCon3
● AbbLConA
● AbbLConC
● AbbLConC2
● AbbLConC3
● AbbLConCA
● AbsoluteAddressInfo
● AbstrTreeNode
● AC500Device
● AC500DeviceDiag
● AC500DeviceInfo
● AC500DiagEvent
● ACCESS_MODE
● AccessRights
● AcknowledgeRequestBuilder
● ActionController
● AdapterDiagnosis
● ADAPTERSTATE
● AdapterState
● AddMultiplicatedVector
● ADDR
● ADDR_TO_ID
● ADDR_TYPE
● AddressArea
● AddressGeneratedInfo
● AddressInfoType
● AddressInfoUnion
● AddressLeafTreeNode
● AffectedSourcesHelp
● AINFO_TYPE
● ALARM_ID
● AlarmFctWriteLatchVariable
● ALARMGROUP_ID
● AlarmIndices
● AlarmLatchAdapter
● AlarmSelectionInfo
● AlarmSelectionInfoDefault
● AlarmState
● AlarmStateTransition
● AlarmStorageConvertFromTimestamp
● AlarmStorageConvertToTimestamp
● AlarmStorageConvertValueToLREAL
● AlarmStorageConvertValueToREAL
● AlarmStorageConvertValueToString
● AlarmStorageGetDefaultText
● AlarmStorageGetMessageCount
● AlarmStorageGetTextId
● AlarmStorageGetTextListName
● AlarmStorageLatchVariable
● AlarmStorageLimit
● AlarmStorageReader
● AlarmStorageRow

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4088

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/ETrig/AbbETrig3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/Deprecated/AbbLCon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/Deprecated/AbbLCon2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/AbbLCon3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/Deprecated/AbbLConA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/Deprecated/AbbLConC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/Deprecated/AbbLConC2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/AbbLConC3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/LCon/Deprecated/AbbLConCA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/AddressInfos/AbsoluteAddressInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/AbstrTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Function-Blocks/AC500Device.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.9.3_Library/Function-Blocks/AC500DeviceDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Structs/AC500DeviceInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.9.3_Library/Function-Blocks/AC500DiagEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/ACCESS_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/AccessRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/HMI/AcknowledgeRequestBuilder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ActionController.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Diagnosis/AdapterDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Enums/ADAPTERSTATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Enums/AdapterState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/AddMultiplicatedVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP-Address/ADDR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/ADDR_TO_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/ADDR_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/AddressArea.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/AddressInfos/AddressGeneratedInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/AddressInfos/AddressInfoType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/AddressInfos/AddressInfoUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/AddressLeafTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/AffectedSourcesHelp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/AINFO_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/ALARM_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/AlarmFctWriteLatchVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/ALARMGROUP_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/AlarmIndices.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Optimized-placeholder-replacement/AlarmLatchAdapter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/public/AlarmSelectionInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/public/AlarmSelectionInfoDefault.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/AlarmState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/AlarmStateTransition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertFromTimestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertToTimestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertValueToLREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertValueToREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageConvertValueToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetDefaultText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetMessageCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetTextId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageGetTextListName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/AlarmStorageLatchVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Function-blocks/Utilities/AlarmStorageLimit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageRow.html

● AlarmStorageStaticData
● AlarmToAcknowledge
● AlarmType
● AllocAndCopyPString
● Allocator
● AllScalarsUnion
● AnalogDeviceDescType
● AnalyzeExpression
● AnalyzeExpressionCombined
● AnalyzeExpressionTable
● APP_MEMORY_SEGMENT
● APP_NAME
● AppCallGetProperty
● AppCallGetProperty2
● AppCallGetProperty2Release
● AppCallGetProperty3
● AppCallSetProperty
● AppCallSetProperty2
● AppendToString
● AppFindApplicationByName
● AppGenerateException
● AppGetApplicationByAreaAddress
● AppGetApplicationFlags
● AppGetApplicationInfo
● AppGetAreaAddress
● AppGetAreaOffsetByAddress
● AppGetAreaPointer
● AppGetAreaSize
● AppGetCurrent
● AppGetFirstApp
● AppGetNextApp
● AppGetProjectInformation
● AppGetSegment
● AppGetSegmentAddress
● AppGetSegmentSize
● APPLICATION
● APPLICATION_INFO
● Apply_Attributes
● AppNumOfActiveSessions
● AppRegisterPropAccessFunctions
● AppReset
● AppRestoreRetainsFromFile
● AppStartApplication
● AppStopApplication
● AppStoreRetainsInFile
● AR_Info
● AREA_TYPE
● ARInfo
● ARP_Packet
● ARRAY_RECV_ENTRY
● ArrayDimension
● ArrayRangeHelper
● AsciiUpper
● AskCredentialsHelper
● ASM_IWORKER

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4089

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/AlarmStorageStaticData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManagerInternal_Itfs.library_Library/AlarmToAcknowledge.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DataTypes/AlarmType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Functions/AllocAndCopyPString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/Allocator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/AllScalarsUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.4.3_Library/Structs/AnalogDeviceDescType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/POUs/AnalyzeExpression.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/POUs/AnalyzeExpressionCombined.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/POUs/AnalyzeExpressionTable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/APP_MEMORY_SEGMENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Types/APP_NAME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppCallGetProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppCallGetProperty2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppCallGetProperty2Release.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppCallGetProperty3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppCallSetProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppCallSetProperty2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Breakpoint%20Logging%20Functions.library_Library/WatchpointSupport/Functions/AppendToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppFindApplicationByName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGenerateException.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetApplicationByAreaAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetApplicationFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetApplicationInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetAreaAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetAreaOffsetByAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetAreaPointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetAreaSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetCurrent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetFirstApp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetNextApp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetProjectInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetSegment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetSegmentAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppGetSegmentSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/APPLICATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/APPLICATION_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Apply_Attributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppNumOfActiveSessions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppRegisterPropAccessFunctions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppRestoreRetainsFromFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppStartApplication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppStopApplication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/AppStoreRetainsInFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/AR_Info.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Enums/AREA_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/ARInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Structs/ARP_Packet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Structures/ARRAY_RECV_ENTRY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ArrayDimension.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/NativeElement/ArrayRangeHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/AsciiUpper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/AskCredentialsHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/ASM_IWORKER.html

● ASM_STATE
● Assert
● AssignerBase
● ASYNC_JOB_ERROR_ID
● AsyncAdd
● AsyncBaseClass
● AsyncGetJobReturnValue
● ASYNCJOB_EVENTPARAM
● ASYNCJOB_HOOKPARAM
● ASYNCJOB_PARAM
● ASYNCJOB_TASKPARAM
● AsyncKill
● AsyncProperty
● AsyncRemove
● AsyncRemoveAll
● atan2_func
● AtomicReadLInt
● AtomicReadLReal
● AtomicReadLTime
● AtomicReadLWord
● AtomicReadULInt
● AtomicWriteLInt
● AtomicWriteLReal
● AtomicWriteLTime
● AtomicWriteLWord
● AtomicWriteULInt
● ATTRIB
● Axis_Parameter
● Axis_Ref
● BACnetAccumulator
● BACnetAcknowledgeAlarm
● BACnetAddListElement
● BACnetAnalogInput
● BACnetAnalogOutput
● BACnetAnalogValue
● BACnetAsyncTransactionToken
● BACnetAveraging
● BACnetBackupBACnetDevice
● BACnetBinaryInput
● BACnetBinaryOutput
● BACnetBinaryValue
● BACnetBitStringGetBit
● BACnetBitStringSetBit
● BACnetCalendar
● BACnetCancelPendingConfirmedRequest
● BACnetClientAcknowledgeAlarm
● BACnetClientAddListElement
● BACnetClientBackupBACnetDevice
● BACnetClientBase
● BACnetClientConfPrivateTransfer
● BACnetClientConfTextMessage
● BACnetClientCreateObject
● BACnetClientDeleteObject
● BACnetClientDeviceCommControl
● BACnetClientGetAlarmSummary

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4090

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/ASM_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Assert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/AssignerBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/000Async_1.2.5.9_Library/Enums/ASYNC_JOB_ERROR_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/AsyncAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/AsyncBaseClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/AsyncGetJobReturnValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/ASYNCJOB_EVENTPARAM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/ASYNCJOB_HOOKPARAM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/ASYNCJOB_PARAM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/ASYNCJOB_TASKPARAM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/AsyncKill.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/AsyncProperty/AsyncProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/AsyncRemove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpAsyncMgr.library_Library/AsyncRemoveAll.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/trigonometrical-functions/atan2_func.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadLWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicReadULInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteLWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Atomic-Read-Write-Functions/AtomicWriteULInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Enums/ATTRIB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/Axis_Parameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/Axis_Ref.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Accumulator/BACnetAccumulator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetAcknowledgeAlarm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetAddListElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/AnalogInput/BACnetAnalogInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/AnalogOutput/BACnetAnalogOutput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/AnalogValue/BACnetAnalogValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetAsyncTransactionToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Averaging/BACnetAveraging.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetBackupBACnetDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/BinaryInput/BACnetBinaryInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/BinaryOutput/BACnetBinaryOutput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/BinaryValue/BACnetBinaryValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/BitStrings/BACnetBitStringGetBit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/BitStrings/BACnetBitStringSetBit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Calendar/BACnetCalendar.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetCancelPendingConfirmedRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientAlarmsEvents/BACnetClientAcknowledgeAlarm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientAddListElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientBackupBACnetDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientConfirm/BACnetClientConfPrivateTransfer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientConfirm/BACnetClientConfTextMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientCreateObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientDeleteObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientDeviceCommControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientAlarmsEvents/BACnetClientGetAlarmSummary.html

● BACNetClientGetEnrollmentSummary
● BACnetClientGetEventInfo
● BACnetClientLifeSafetyOperation
● BACnetClientReadAllPropertyDataContents
● BACnetClientReadProperty
● BACnetClientReadPropertyMultiple
● BACnetClientReadRange
● BACnetClientReadStreamFile
● BACnetClientReinitializeDevice
● BACnetClientRemoveListElement
● BACnetClientRestoreBACnetDevice
● BACnetClientSubscribeCOV
● BACnetClientSubscribeCOVProperty
● BACnetClientTimeSynchronization
● BACnetClientUTCTimeSynchronization
● BACnetClientWriteProperty
● BACnetClientWritePropertyMultiple
● BACnetClientWriteStreamFile
● BACnetCloseClientCustomer
● BACnetCommand
● BACnetConfPrivateTransfer
● BACnetConfTextMessage
● BACnetCreateObject
● BACnetCreateObjectResult
● BACnetDateRange
● BACnetDateTime
● BACnetDateTimeCmp
● BACnetDateTimeToString
● BACnetDeleteObject
● BACnetDevice
● BACnetDeviceCommControl
● BACnetDevObjPropReference
● BACnetEventEnrollment
● BACnetEventLog
● BACnetFile
● BACnetGetAlarmSummary
● BACnetGetClientDeviceCommunication
● BACnetGetEnrollmentSummary
● BACnetGetEventInfo
● BACnetGlobalGroup
● BACnetGroup
● BACnetIntegerValue
● BACnetIPdatalink
● BACnetLargeAnalogValue
● BACnetLifeSafetyOperation
● BACnetLifeSafetyPoint
● BACnetLifeSafetyZone
● BACnetLoop
● BACnetMSTPdatalink
● BACnetMultistateInput
● BACnetMultistateOutput
● BACnetMultistateValue
● BACnetNotificationClass
● BACnetObjectBase
● BACnetOpenClientCustomer

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4091

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientAlarmsEvents/BACNetClientGetEnrollmentSummary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientAlarmsEvents/BACnetClientGetEventInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientLifeSafetyOperation/BACnetClientLifeSafetyOperation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientReadAllPropertyDataContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientReadProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientReadPropertyMultiple.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientReadRange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientFile/BACnetClientReadStreamFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientReinitializeDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientRemoveListElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientRestoreBACnetDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientSubscribeCOV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientSubscribeCOVProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientTimeSynchronization.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientDeviceManagement/BACnetClientUTCTimeSynchronization.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientWriteProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientProperty/BACnetClientWritePropertyMultiple.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/BACnetClientFile/BACnetClientWriteStreamFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetCloseClientCustomer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Command/BACnetCommand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetConfPrivateTransfer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetConfTextMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetCreateObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetCreateObjectResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BACnetDateRange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BACnetDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetDateTimeCmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/BACnetDateTimeToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetDeleteObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Device/BACnetDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetDeviceCommControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BACnetDevObjPropReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/EventEnrollment/BACnetEventEnrollment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/EventLog/BACnetEventLog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/File/BACnetFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetGetAlarmSummary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetGetClientDeviceCommunication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetGetEnrollmentSummary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetGetEventInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Global-Group/BACnetGlobalGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Group/BACnetGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/IntegerValue/BACnetIntegerValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServer/BACnetIPdatalink.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/LargeAnalogValue/BACnetLargeAnalogValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetLifeSafetyOperation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/LifeSafetyPoint/BACnetLifeSafetyPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/LifeSafetyZone/BACnetLifeSafetyZone.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Loop/BACnetLoop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServer/BACnetMSTPdatalink.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/MultistateInput/BACnetMultistateInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/MultistateOutput/BACnetMultistateOutput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/MultistateValue/BACnetMultistateValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/NotificationClass/BACnetNotificationClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/BACnetObjectBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetOpenClientCustomer.html

● BACnetPersistenceInfo
● BACnetPositiveIntegerValue
● BACnetProgram
● BACnetPropertyAttributeExistent
● BACnetPropertyAttributePersistent
● BACnetPropertyAttributes
● BACnetPropertyAttributeWritable
● BACnetPulseConverter
● BACnetReadAllPropertyDataContents
● BACnetReadFile
● BACnetReadProperty
● BACnetReadPropertyMultiple
● BACnetReadRange
● BACnetRegisterClientCommunicationStateCallback
● BACnetRegisterClientDataPoint
● BACnetRegisterClientEventNotification
● BACnetRegisterClientUnsubscribeCompletionCallback
● BACnetReinitializeDevice
● BACnetRemoveListElement
● BACnetRestartAllClients
● BACnetRestoreBACnetDevice
● BACnetSchedule
● BACnetServer
● BACnetServerConfCOVNotification
● BACnetServerConfEventNotification
● BACnetServerPluginBase
● BACnetServerPluginCallbackBase
● BACnetServerPluginHookBase
● BACnetSetClientDeviceCommunication
● BACnetSetClientDeviceFixAddress
● BACnetSetClientDeviceFixSubscribeCovTime
● BACnetSetClientGlobalCommTimingParameters
● BACnetSetClientGlobalMaxDeviceActions
● BACnetSetpointReference
● BACnetStructuredView
● BACnetSubscribeCOV
● BACnetSubscribeCOVProperty
● BACnetTimeStamp
● BACnetTimeStampUnion
● BACnetTrendLog
● BACnetTrendLogMultiple
● BACnetUnconfPrivateTransfer
● BACnetUnconfTextMessage
● BACnetUnregisterClientDataPoint
● BACnetUnregisterClientEventNotification
● BACnetWhoHas
● BACnetWhoIs
● BACnetWriteFile
● BACnetWriteGroup
● BACnetWriteProperty
● BACnetWritePropertyMultiple
● BASE64
● BaseMap
● BaseVector
● BBMD_Info

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4092

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Persistence/BACnetPersistenceInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/PositiveIntegerValue/BACnetPositiveIntegerValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Program/BACnetProgram.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Enums/BACnetPropertyAttributeExistent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Enums/BACnetPropertyAttributePersistent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BACnetPropertyAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Enums/BACnetPropertyAttributeWritable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/PulseConverter/BACnetPulseConverter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetReadAllPropertyDataContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetReadFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetReadProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetReadPropertyMultiple.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetReadRange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetRegisterClientCommunicationStateCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetRegisterClientDataPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetRegisterClientEventNotification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetRegisterClientUnsubscribeCompletionCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetReinitializeDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetRemoveListElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetRestartAllClients.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetRestoreBACnetDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/Schedule/BACnetSchedule.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServer/BACnetServer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServer/Async/BACnetServerConfCOVNotification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServer/Async/BACnetServerConfEventNotification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServerPlugin/BACnetServerPluginBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServerPlugin/BACnetServerPluginCallbackBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServerPlugin/BACnetServerPluginHookBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetSetClientDeviceCommunication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetSetClientDeviceFixAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetSetClientDeviceFixSubscribeCovTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetSetClientGlobalCommTimingParameters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetSetClientGlobalMaxDeviceActions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BACnetSetpointReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/StructuredView/BACnetStructuredView.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetSubscribeCOV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetSubscribeCOVProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BACnetTimeStamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BACnetTimeStampUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/TrendLog/BACnetTrendLog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/TrendLogMultiple/BACnetTrendLogMultiple.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetUnconfPrivateTransfer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetUnconfTextMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetUnregisterClientDataPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/advanced/BACnetUnregisterClientEventNotification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetWhoHas.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetWhoIs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetWriteFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetWriteGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetWriteProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBACnet.library_Library/BACnetClientAPI/BACnetWritePropertyMultiple.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Encoding/BASE64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/BaseMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/BaseVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Structs/BBMD_Info.html

● BCD_TO_BYTE
● BCD_TO_DWORD
● BCD_TO_INT
● BCD_TO_WORD
● BehaviourModel
● BehaviourModelBase
● BIT_AS_BYTE
● BIT_AS_DWORD
● BIT_AS_WORD
● BitCpy
● BitRelativeAddressInfo
● BLINK
● BlkClass
● BLOB
● BlobAlloc
● BlobCopyToData
● BlobFree
● BlockGetData
● BlockGetPool
● BmpPoolBegin
● BmpPoolEnd
● BmpPoolRegister
● BmpPoolUnRegister
● BOLT
● BoolElement
● BoolElementFactory
● BranchNamedTreeNode
● BranchTreeNode
● BranchTreeNodeOpcUA
● BrowseOperation
● BTagAlignment
● BTagElementType
● BTagReaderCreate
● BTagReaderCreateDynamic
● BTagReaderDestroy
● BTagReaderGetComplexContent
● BTagReaderGetContent
● BTagReaderGetString
● BTagReaderGetTagId
● BTagReaderGetTagLen
● BTagReaderInit
● BTagReaderIsDataTag
● BTagReaderMoveNext
● BTagReaderPeekNext
● BTagReaderSkipContent
● BTagSwapHeader
● BTagWriterAppendBlob
● BTagWriterAppendDummyBytes
● BTagWriterAppendFillBytes
● BTagWriterAppendRaw
● BTagWriterAppendWString
● BTagWriterCreate
● BTagWriterCreateDynamic
● BTagWriterCreateSavePoint
● BTagWriterCreateSavePointDynamic

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4093

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_BYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_DWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_INT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BCD_TO_WORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/BehaviourModel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/BehaviourModelBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BIT_AS_BYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BIT_AS_DWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BIT_AS_WORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/BitCpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/AddressInfos/BitRelativeAddressInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Signals/BLINK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/BlkClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/BLOB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/BlobAlloc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/BlobCopyToData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/BlobFree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/BlockGetData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Memory%20Block%20Manager.library_Library/MemoryBlockManager/Functions/Pool-Functions/BlockGetPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolBegin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolEnd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolRegister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBitmapPool.library_Library/BmpPoolUnRegister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Function-Blocks/BOLT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/BoolElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/BoolElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/BranchNamedTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/BranchTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/BranchTreeNodeOpcUA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/BrowseOperation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/BTagAlignment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/BTagElementType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderCreateDynamic.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderDestroy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetComplexContent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetContent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetTagId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderGetTagLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderIsDataTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderMoveNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderPeekNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Reader/BTagReaderSkipContent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/BTagSwapHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendBlob.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendDummyBytes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendFillBytes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendRaw.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterAppendWString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreateDynamic.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreateSavePoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterCreateSavePointDynamic.html

● BTagWriterDestroy
● BTagWriterDestroySavePoint
● BTagWriterEndTag
● BTagWriterFinish
● BTagWriterInit
● BTagWriterInit2
● BTagWriterRestoreSavePoint
● BTagWriterStartTag
● BTagWriterSwitchBuffer
● Buffer
● BufferPool
● BufferPoolFactoryArgs
● BufferPoolFactoryBase
● BufferToString
● BuildAndEnqueueV3Request
● BUS_INFO
● BUS_STATE
● BUS_TYPE
● BusScanConfHeader
● BUSSTATE
● BYTE_AS_BIT
● BYTE_TO_BCD
● BYTE_TO_GRAY
● BYTE_TO_HEXinASCII
● ByteBuffer
● ByteOrder
● C_TS_Type
● CAADiagDeviceDefault
● CAADiagTreeBase
● CAAReconfigureBase
● CalcHesseRepresentation
● CalcRootLin
● CalcRootParable
● CalculatePropertyBufferSize
● CallbackNetVar
● CallbackTaskCodeNC
● CallFunctionByIndex
● CallGlueDeserializeParameters
● CallGlueFunctionParameterSet
● CallGlueSerializeReturnValues
● CamExtended
● CANbus
● CANbus_Diag
● CANDiagnosis
● CANOPEN_KERNEL_ERROR
● CANOPEN_KERNEL_STATE
● CANOpenDiagnosisInfo
● CANopenEvent
● CANopenManager
● CANopenManager_Diag
● CanReconfigure
● CANRemoteDevice
● CANRemoteDevice_Diag
● CANRemoteModule_Diag
● CartesianToPolar

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4094

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterDestroy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterDestroySavePoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterEndTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterFinish.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterInit2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterRestoreSavePoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterStartTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Writer/BTagWriterSwitchBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/Buffer/Function-Blocks/Buffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Function-Blocks/BufferPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Function-Blocks/BufferPoolFactoryArgs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Function-Blocks/BufferPoolFactoryBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/StringConversions/BufferToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/BuildAndEnqueueV3Request.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/BUS_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/BUS_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/BUS_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/Services/Scan/BusScanConfHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Enums/BUSSTATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/BYTE_AS_BIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/BYTE_TO_BCD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/BYTE_TO_GRAY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/HEXASCII-Functions/BYTE_TO_HEXinASCII.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functionblocks/ByteBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ByteOrder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Enums/C_TS_Type.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Internal/Diag-Base/CAADiagDeviceDefault.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Internal/Diag-Base/CAADiagTreeBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Internal/Diag-Base/CAAReconfigureBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Plane-Functions/CalcHesseRepresentation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/CalcRootLin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/CalcRootParable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CalculatePropertyBufferSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/CallbackNetVar.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/CallbackTaskCodeNC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Indirect-Functioncall/CallFunctionByIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CallGlueDeserializeParameters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CallGlueFunctionParameterSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/CallGlueSerializeReturnValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.2.0.86_Library/Data-types/Structs/CamExtended.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/CANbusDevice.library_Library/CANbusDevice/Function-Blocks/CANbus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/CANbusDevice.library_Library/CANbusDevice/Function-Blocks/CANbus_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Debugging/CANDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/CANOPEN_KERNEL_ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Enums/CANOPEN_KERNEL_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Structs/CANOpenDiagnosisInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Enums/CANopenEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/CANopenManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Device-Diagnosis/CANopenManager_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/CanReconfigure.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/CANRemoteDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Device-Diagnosis/CANRemoteDevice_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Device-Diagnosis/CANRemoteModule_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Polar-coordinates/CartesianToPolar.html

● CaseSensitiveNamedTreeNode
● CB_CALLBACK
● CCB
● CD522DoubleWordCounter
● CD522Encoder32Bit
● CD522FreqOut
● CD522FreqScan
● CD522FreqScan_PLUS
● CD522In
● CD522OneWordCounter
● CD522Out
● CD522PulseOut
● CD522PwmOut
● CD522ReadInput
● CD522SsiCnt
● CD522SsiCnt_PLUS
● CD522TwoWordCounters
● CD522WriteOutput
● CDSV3Request
● Ceil
● CeilF
● CERT_INFO
● ChainBuffer
● ChannelDiagnosisData
● ChannelErrorType
● ChannelProperties
● ChannelProperties_Type
● CharBufferPtr
● CharBufferString
● CHARCURVE
● CharCurve_DINT
● CharCurve_LREAL
● CharToUpper
● CHCAddressComponent
● CHCAddressType
● CHCPeerAddress
● CHCProtocolDataUnit
● Check
● CheckExpSubmodule
● CIFX_APPLICATION_CHANNEL_INFO
● CIFX_BOARD
● CIFX_BOARD_INFORMATION
● CIFX_CHANNEL
● CIFX_CHANNEL_INFO_BLOCK
● CIFX_CHANNEL_INFORMATION
● CIFX_COM_DIAGNOSTICS
● CIFX_COMMON_STATUS_BLOCK
● CIFX_COMMON_STATUS_BLOCK_MASTER
● CIFX_COMMUNOICATION_CHANNEL_INFO
● CIFX_DEV_INFO
● CIFX_DIRECTORY_ENTRY
● CIFX_ERROR_FIELD
● CIFX_GetBusActivationBeforeReset
● CIFX_GETSLAVECONNECTINFO_REQ
● CIFX_GETSLAVEHANDLE_CONF

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4095

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/CaseSensitiveNamedTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Structs/CB_CALLBACK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CmpHilscherCIFX/CCB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522DoubleWordCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522Encoder32Bit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522FreqOut.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522FreqScan.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522FreqScan_PLUS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Structs/CD522In.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522OneWordCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Structs/CD522Out.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522PulseOut.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522PwmOut.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522ReadInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522SsiCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522SsiCnt_PLUS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522TwoWordCounters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/CD522_1.1.4.1_Library/Function-Blocks/CD522WriteOutput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Requests/CDSV3Request.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/Ceil.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/CeilF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Structs/CERT_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/ChainBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelDiagnosisData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelErrorType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelProperties.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/ChannelProperties_Type.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/CharBufferPtr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/CharBufferString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Function-Manipulators/CHARCURVE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/function-manipulators/CharCurve_DINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/function-manipulators/CharCurve_LREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/CharToUpper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCAddressComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCAddressType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCPeerAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Structures/CHCProtocolDataUnit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/Check.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/CheckExpSubmodule.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_APPLICATION_CHANNEL_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_BOARD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_BOARD_INFORMATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_CHANNEL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_CHANNEL_INFO_BLOCK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_CHANNEL_INFORMATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_COM_DIAGNOSTICS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_COMMON_STATUS_BLOCK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_COMMON_STATUS_BLOCK_MASTER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_COMMUNOICATION_CHANNEL_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_DEV_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_DIRECTORY_ENTRY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_ERROR_FIELD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/CIFX_GetBusActivationBeforeReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_GETSLAVECONNECTINFO_REQ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_GETSLAVEHANDLE_CONF.html

● CIFX_GETSLAVEHANDLE_REQ
● CIFX_HANDSHAKE_CHANNEL_INFO
● CIFX_INDICATION_PARAM
● CIFX_MASTER_DIAG
● CIFX_MAX_PACKET
● CIFX_MEMORY_INFORMATION
● CIFX_PACKET
● CIFX_ResetConfigApplication
● CIFX_SYSTEM_CHANNEL_INFO
● CIFX_SYSTEM_INFO_BLOCK
● CIFX_xChannelBusState
● CIFX_xChannelClose
● CIFX_xChannelCommonStatusBlock
● CIFX_xChannelConfigLock
● CIFX_xChannelControlBlock
● CIFX_xChannelDownload
● CIFX_xChannelExtendedStatusBlock
● CIFX_xChannelFindFirstFile
● CIFX_xChannelFindNextFile
● CIFX_xChannelGetMBXState
● CIFX_xChannelGetPacket
● CIFX_xChannelGetPacketTimeout
● CIFX_xChannelGetSendPacket
● CIFX_xChannelHostState
● CIFX_xChannelInfo
● CIFX_xChannelIOInfo
● CIFX_xChannelIORead
● CIFX_xChannelIOReadSendData
● CIFX_xChannelIOWrite
● CIFX_xChannelOpen
● CIFX_xChannelOpen2
● CIFX_xChannelPLCActivateRead
● CIFX_xChannelPLCActivateWrite
● CIFX_xChannelPLCIsReadReady
● CIFX_xChannelPLCIsWriteReady
● CIFX_xChannelPLCMemoryPtr
● CIFX_xChannelPutPacket
● Cifx_xChannelRegisterRecvCallback
● CIFX_xChannelReset
● CIFX_xChannelSetPacketTimeout
● CIFX_xChannelUpload
● CIFX_xChannelUserBlock
● CIFX_xChannelWatchdog
● CIFX_xDriverClose
● CIFX_xDriverEnumBoards
● CIFX_xDriverEnumChannels
● CIFX_xDriverGetErrorDescription
● CIFX_xDriverGetInformation
● CIFX_xDriverMemoryPointer
● CIFX_xDriverOpen
● CIFX_xMemCpy
● CIFX_xSysdeviceClose
● CIFX_xSysdeviceDownload
● CIFX_xSysdeviceFindFirstFile
● CIFX_xSysdeviceFindNextFile

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4096

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_GETSLAVEHANDLE_REQ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_HANDSHAKE_CHANNEL_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_INDICATION_PARAM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_MASTER_DIAG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/CIFX_MAX_PACKET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_MEMORY_INFORMATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CIFX_PACKET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/CIFX_ResetConfigApplication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_SYSTEM_CHANNEL_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/CIFX_SYSTEM_INFO_BLOCK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelBusState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelCommonStatusBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelConfigLock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelControlBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelDownload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelExtendedStatusBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelFindFirstFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelFindNextFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetMBXState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetPacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetPacketTimeout.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelGetSendPacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelHostState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIOInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIORead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIOReadSendData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelIOWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelOpen2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCActivateRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCActivateWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCIsReadReady.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCIsWriteReady.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPLCMemoryPtr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelPutPacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/Cifx_xChannelRegisterRecvCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelSetPacketTimeout.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelUpload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelUserBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Channel/CIFX_xChannelWatchdog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverEnumBoards.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverEnumChannels.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverGetErrorDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverGetInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverMemoryPointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xDriverOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/Driver/CIFX_xMemCpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceDownload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceFindFirstFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceFindNextFile.html

● CIFX_xSysdeviceGetMBXState
● CIFX_xSysdeviceGetPacket
● CIFX_xSysdeviceInfo
● CIFX_xSysdeviceOpen
● CIFX_xSysdevicePutPacket
● CIFX_xSysdeviceReset
● CIFX_xSysdeviceUpload
● CiModCi52x
● CiModCiClusterDiag
● CiModClusterDiag
● CiModClusterStatus
● CiModCmdQueue
● CiModCmdQueueInput
● CiModDataAC522
● CiModDataAI523
● CiModDataAI531
● CiModDataAI561
● CiModDataAI562
● CiModDataAI563
● CiModDataAO523
● CiModDataAO561
● CiModDataAX521
● CiModDataAX522
● CiModDataAX561
● CiModDataCD522
● CiModDataCI521
● CiModDataCI522
● CiModDataDA501
● CiModDataDA502
● CiModDataDC522
● CiModDataDC523
● CiModDataDC532
● CiModDataDC561
● CiModDataDC562
● CiModDataDI524
● CiModDataDI561
● CiModDataDI562
● CiModDataDI571
● CiModDataDI572
● CiModDataDO524
● CiModDataDO526
● CiModDataDO561
● CiModDataDO562
● CiModDataDO571
● CiModDataDO572
● CiModDataDO573
● CiModDataDX522
● CiModDataDX531
● CiModDataDX561
● CiModDataDX571
● CiModDiag
● CiModDiagModInfo
● CiModDiagTableType
● CiModInput
● CiModParaAC522

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4097

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceGetMBXState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceGetPacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdevicePutPacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/SysDevice/CIFX_xSysdeviceUpload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Function-Blocks/CiModCi52x.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/Internal-Structures/CiModCiClusterDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/Internal-Structures/CiModClusterDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/Internal-Structures/CiModClusterStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Function-Blocks/Internal-Function-Blocks/CiModCmdQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/Internal-Structures/CiModCmdQueueInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAC522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAI523.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAI531.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAI561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAI562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAI563.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAO523.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAO561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAX521.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAX522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataAX561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataCD522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataCI521.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataCI522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDA501.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDA502.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDC522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDC523.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDC532.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDC561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDC562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDI524.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDI561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDI562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDI571.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDI572.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDO524.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDO526.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDO561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDO562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDO571.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDO572.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDO573.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDX522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDX531.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDX561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Structures/CiModDataDX571.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Function-Blocks/CiModDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/DIAG/CiModDiagModInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/DIAG/CiModDiagTableType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/Internal-Structures/CiModInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAC522.html

● CiModParaAI523
● CiModParaAI531
● CiModParaAI561
● CiModParaAI562
● CiModParaAI563
● CiModParaAO523
● CiModParaAO561
● CiModParaAX521
● CiModParaAX522
● CiModParaAX561
● CiModParaCD522
● CiModParaCI521
● CiModParaCI522
● CiModParaDA501
● CiModParaDA502
● CiModParaDC522
● CiModParaDC523
● CiModParaDC532
● CiModParaDC561
● CiModParaDC562
● CiModParaDI524
● CiModParaDI561
● CiModParaDI562
● CiModParaDI571
● CiModParaDI572
● CiModParaDO524
● CiModParaDO526
● CiModParaDO561
● CiModParaDO562
● CiModParaDO571
● CiModParaDO572
● CiModParaDO573
● CiModParaDX522
● CiModParaDX531
● CiModParaDX561
● CiModParaDX571
● CIPClass
● CIPCommonService
● CIPHER_LIST
● CLASS_INFO
● ClassCreate
● ClassDelete
● ClassFree
● CLClient
● CLClientOptions
● CLClientState
● CLIENT_ACCEPT
● CLIENT_REPLY
● CLOCK
● CLOCK_DT
● CloneMessage
● Close
● CLRequestState
● CLServer
● CLServerOptions

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4098

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAI523.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAI531.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAI561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAI562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAI563.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAO523.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAO561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAX521.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAX522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaAX561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaCD522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaCI521.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaCI522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDA501.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDA502.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDC522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDC523.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDC532.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDC561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDC562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDI524.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDI561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDI562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDI571.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDI572.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDO524.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDO526.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDO561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDO562.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDO571.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDO572.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDO573.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDX522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDX531.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDX561.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/IO-Module-Parameter-Structure/CiModParaDX571.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Enums/CIPClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Enums/CIPCommonService.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Structs/CIPHER_LIST.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Structs/CLASS_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/ClassCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/ClassDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/ClassFree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Function-Blocks/CLClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/CLClientOptions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/State-Machines/CLClientState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/CLIENT_ACCEPT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/CLIENT_REPLY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Realtime-clock/CompatibleV23/CLOCK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Realtime-clock/CompatibleV23/CLOCK_DT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CloneMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Close.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/State-Machines/CLRequestState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Function-Blocks/CLServer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/CLServerOptions.html

● CM5610_2RS
● CM5640_2ETH
● CM579EcatBusDiag
● CM579EcatBusGetDCMaxDeviation
● CM579EcatBusSetState
● CM579EcatBusStart
● CM579EcatBusStop
● CM579EcatCoeRead
● CM579EcatCoeWrite
● CM579EcatGetExtSyncInfo
● CM579EcatMasterGetCPULoad
● CM579EcatMasterGetFrameLossCount
● CM579EcatMasterGetMemInfo
● CM579EcatMasterGetThresholdCount
● CM579EcatMasterGetTimingInfo
● CM579EcatRegisterRead
● CM579EcatRegisterWrite
● CM579EcatScanTopology
● CM579EcatScanTopologyStop
● CM579EcatSlvDiag
● CM579EcatSlvGetDCInfo
● CM579EcatSlvGetMDPModules
● CM579EcatSlvGetState
● CM579EcatSlvReadESCVersion
● CM579EcatSlvReadLostLinkCnt
● CM579EcatSlvReadRxErrorCnt
● CM579EcatSlvSetState
● CM579EcatSoeRead
● CM579EcatSoeWrite
● CM579PnioBlockHeader
● CM579PnioCommState
● CM579PnioDeviceState
● CM579PnioDevName
● CM579PnioGetCntrlState
● CM579PnioGetDevState
● CM579PnioIM0Data
● CM579PnioIM0SwRev
● CM579PnioIM0Version
● CM579PnioImplicitRead
● CM579PnioRead
● CM579PnioReadIM0Data
● CM579PnioStartCom
● CM579PnioStopCom
● CM579PnioWrite
● CM582ProfibusDeviceInfoType
● CM592BaseCommonReq
● CM592BaseStatusBlockReq
● CM592CommErrorInfo
● CM592CommStatus
● CM592Control
● CM592DPV1Masc1Read
● CM592DPV1Masc1Write
● CM592ExtDiagData
● CM592ReadInput
● CM592ReadOutput

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4099

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Diagnosis/CM5610-2RS_1.0.0.1_Library/Function-Blocks/CM5610_2RS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Diagnosis/CM5640-2ETH_1.0.1.1_Library/Function-Blocks/CM5640_2ETH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/CM579EcatBusDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatBusGetDCMaxDeviation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Control/CM579EcatBusSetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Control/CM579EcatBusStart.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Control/CM579EcatBusStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Acyclic-Services/CoE-CAN-over-EtherCAT/CM579EcatCoeRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Acyclic-Services/CoE-CAN-over-EtherCAT/CM579EcatCoeWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatGetExtSyncInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatMasterGetCPULoad.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatMasterGetFrameLossCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatMasterGetMemInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatMasterGetThresholdCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatMasterGetTimingInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Acyclic-Services/Register-access/CM579EcatRegisterRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Acyclic-Services/Register-access/CM579EcatRegisterWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Commissioning/CM579EcatScanTopology.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Commissioning/CM579EcatScanTopologyStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/CM579EcatSlvDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Extended/CM579EcatSlvGetDCInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Commissioning/CM579EcatSlvGetMDPModules.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Control/CM579EcatSlvGetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Commissioning/CM579EcatSlvReadESCVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Commissioning/CM579EcatSlvReadLostLinkCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Diagnosis/Commissioning/CM579EcatSlvReadRxErrorCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Control/CM579EcatSlvSetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Acyclic-Services/SoE-Sercos-over-EtherCAT/CM579EcatSoeRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Function-Blocks/Acyclic-Services/SoE-Sercos-over-EtherCAT/CM579EcatSoeWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Structs/CM579PnioBlockHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Enums/CM579PnioCommState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Enums/CM579PnioDeviceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Structs/CM579PnioDevName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Diagnosis/CM579PnioGetCntrlState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Diagnosis/CM579PnioGetDevState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Structs/CM579PnioIM0Data.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Structs/CM579PnioIM0SwRev.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Structs/CM579PnioIM0Version.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Data/CM579PnioImplicitRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Data/CM579PnioRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Diagnosis/CM579PnioReadIM0Data.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Control/CM579PnioStartCom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Control/CM579PnioStopCom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFINET/CM579Profinet_1.0.1.5_Library/Function-Blocks/Data/CM579PnioWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.3.1_Library/Structs/CM582ProfibusDeviceInfoType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Internal/CM592BaseCommonReq.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Internal/CM592BaseStatusBlockReq.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Structs/CM592CommErrorInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Diagnosis/CM592CommStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Control/CM592Control.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Data/DPV1/CM592DPV1Masc1Read.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Data/DPV1/CM592DPV1Masc1Write.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Structs/CM592ExtDiagData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Data/CM592ReadInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Data/CM592ReadOutput.html

● CM592SlaveDiagnosis
● CM592SlaveStates
● CM592StateBits
● CM592StationStatus_1
● CM592StationStatus_2
● CM592StationStatus_3
● CM592SystemDiagnosis
● Cm598Base
● Cm598CanInfo
● Cm598CanInfoType
● Cm598CanMessageDataType
● Cm598CanMessageType
● Cm598CanMsgRec
● Cm598CanMsgRecDirect
● Cm598CanMsgRecEvt
● Cm598CanMsgRecMult
● Cm598CanMsgSend
● Cm598CanopenComErrorType
● Cm598CanopenNmt
● CM598CanopenNodeStates
● Cm598CanopenResetErrors
● Cm598CanopenSdoRead
● Cm598CanopenSdoWrite
● Cm598CanopenSetNodeMode
● Cm598CanopenState
● Cm598CanopenStateBitsType
● Cm598CanopenStateType
● Cm598CanopenSyncState
● Cm598CanopenSysDiag
● CM598DeviceInfoType
● Cm598NmtCmd
● Cm598NodeModeCmd
● Cm598NodeStateType
● CMAddComponent
● CMAddComponent2
● CMC_Axis_Actual
● CMC_Axis_Control_Parameter
● CMC_Axis_InOut
● CMC_Axis_IO
● CMC_Axis_Simu
● CMC_Axis_User
● CMC_Basic_Kernel
● CMC_Basic_Kernel64
● CMC_Binary2Modulo
● CMC_Get_Units_From_Inc
● CMC_Linear_Kernel
● CMC_Load_InOut
● CMC_Load_Motion_Kernel
● CMC_Load_Super
● CMC_Modulo2Binary
● CMC_PidT1
● CMC_Pos_Control
● CMC_SInterPolation
● CMC_SIPosiLoop
● CMC_XYGroupRef

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4100

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Diagnosis/CM592SlaveDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Structs/CM592SlaveStates.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Structs/CM592StateBits.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Structs/CM592StationStatus_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Structs/CM592StationStatus_2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Structs/CM592StationStatus_3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Function-Blocks/Diagnosis/CM592SystemDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Internal/Cm598Base.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/CAN2ACAN2B/Cm598CanInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Structs/Cm598CanInfoType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Structs/Cm598CanMessageDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Structs/Cm598CanMessageType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgRec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgRecDirect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgRecEvt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgRecMult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/CAN2ACAN2B/Cm598CanMsgSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Structs/Cm598CanopenComErrorType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Control/Cm598CanopenNmt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Structs/CM598CanopenNodeStates.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Diagnosis/Cm598CanopenResetErrors.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Data/Cm598CanopenSdoRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Data/Cm598CanopenSdoWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Control/Cm598CanopenSetNodeMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Diagnosis/Cm598CanopenState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Structs/Cm598CanopenStateBitsType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Structs/Cm598CanopenStateType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Diagnosis/Cm598CanopenSyncState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Function-Blocks/Diagnosis/Cm598CanopenSysDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.3.1_Library/Structs/CM598DeviceInfoType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Enums/Cm598NmtCmd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Enums/Cm598NodeModeCmd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/CAN/CM598Can_1.4.0.5_Library/Enums/Cm598NodeStateType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMAddComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMAddComponent2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/CMC_Axis_Actual.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_Axis_Control_Parameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/CMC_Axis_InOut.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/CMC_Axis_IO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_Axis_Simu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/CMC_Axis_User.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_Basic_Kernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.2.0.86_Library/02_CMC_Blocks/CMC_Basic_Kernel64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_Binary2Modulo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_Get_Units_From_Inc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.2.0.86_Library/02_CMC_Blocks/CMC_Linear_Kernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/Data-types/CMC_Load_InOut.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/02_CMC_Blocks/CMC_Load_Motion_Kernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/Data-types/CMC_Load_Super.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_Modulo2Binary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_PidT1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/CMC_Pos_Control.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_SInterPolation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/CMC_SIPosiLoop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/CMC_Blocks/CMC_XYGroupRef.html

● CMExitComponent
● CMGetComponentByName
● CMGetCoreVersion
● CMInitComponent
● CmpLogAsyncFB
● CmpTlsAccept
● CmpTlsBufferDataReceived
● CmpTlsBufferDataSent
● CmpTlsBufferDataToSendAvailable
● CmpTlsBufferOpen
● CmpTlsClose
● CmpTlsConnect
● CmpTlsCreateContext
● CmpTlsCreateContext2
● CmpTlsFreeContext
● CmpTlsMethod
● CmpTlsRead
● CmpTlsShutdown
● CmpTlsWrite
● CMRemoveComponent
● CMShutDown
● CMUtlcwstrcpy
● CMUtlSafeStrCpy
● CMUtlStrICmp
● CMUtlUtf8ToW
● CMUtlwstrcpy
● CMUtlWToUtf8
● CNCT
● CNT_IO_EXT
● COBID
● CodeMClose
● CodeMDecrementUnitCounter
● CodeMDecrypt
● CodeMEncrypt
● CodeMGetContentByFirmcode
● CodeMGetContentByFirmcode2
● CodeMGetExpirationTime
● CodeMGetFeatureMapByFirmcode
● CodeMGetFirst
● CodeMGetInfo
● CodeMGetName
● CodeMGetNext
● CodeMGetQuantity
● CodeMGetUnitCounter
● CodeMOpen
● CodeWriter
● COLLECTION_ERROR
● COM_CFG_FORMAT_ENUM
● COM_MOD_FCT22_TYPE
● COM_MOD_FCT23_TYPE
● COM_PORT_ID
● CombineDateTime
● ComGetCaaSerialComConfig
● ComGetIdByName
● CommandManager

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4101

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMExitComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMGetComponentByName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMGetCoreVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMInitComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLogAsync.library_Library/CmpLogAsyncFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsAccept.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferDataReceived.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferDataSent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferDataToSendAvailable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsBufferOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsConnect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsCreateContext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsCreateContext2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsFreeContext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls_Itfs.library_Library/CmpTlsMethod.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsShutdown.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls%20Implementation.library_Library/CmpTlsWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMRemoveComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMShutDown.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlcwstrcpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlSafeStrCpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlStrICmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlUtf8ToW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlwstrcpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/CMUtlWToUtf8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/CNCT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/Counter/CompatibleV23/CNT_IO_EXT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Types/COBID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMDecrementUnitCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMDecrypt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMEncrypt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetContentByFirmcode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetContentByFirmcode2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetExpirationTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/internal-functions/CodeMGetFeatureMapByFirmcode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetQuantity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMGetUnitCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/CodeMOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/Monitoring/CodeWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Enums/COLLECTION_ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/ComBase_1.0.3.1_Library/Enums/COM_CFG_FORMAT_ENUM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Types/COM_MOD_FCT22_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Types/COM_MOD_FCT23_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/ComBase_1.0.3.1_Library/Types/COM_PORT_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/CombineDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/Com_1.0.3.1_Library/Function-blocks/ComGetCaaSerialComConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/Com_1.0.3.1_Library/Functions/ComGetIdByName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuCommandInterface.library_Library/CommandManager.html

● CommStatus
● CommunicationSettings
● Compare
● CompareString
● CompareWString
● CompatibilitySafeGetPrepareExitCommProcessingLastCall
● CompatibilitySafeSetPrepareExitCommProcessingFurtherCallNecessary
● ComponentBase
● ComponentPseudo
● ComponentRenamed
● ComponentSimple
● CONCAT
● ConfigError
● ConfigGetConnector
● ConfigGetFirstChild
● ConfigGetFirstConnector
● ConfigGetNextChild
● ConfigGetNextConnector
● ConfigGetParameter
● ConfigGetParameterLength
● ConfigGetParameterValueByte
● ConfigGetParameterValueDword
● ConfigGetParameterValuePointer
● ConfigGetParameterValueWord
● ConnectionSetup
● Connector
● ConnectorFlagController
● ConnectorState
● ContainerSizeProvider
● ContentFeatureFlags
● ControllerConfigUtil
● ControllerState
● ConvertNSecToTick
● ConvertSystimedateToUTC
● ConvertSystimedateUsingLDate
● ConvertSysTimeValueToLWord
● ConvertTickToNSec
● ConvertTickToUSec
● ConvertTimestampToLDateAndTime
● ConvertToIBranchTreeNode
● ConvertToILeafTreeNode
● ConvertToITreeWalker
● ConvertUSecToTick
● ConvertUTF16toUTF8
● ConvertUTF8toUTF16
● Copy
● CopyBufferData
● CopyVUM_User
● CopyVUM_User3
● COUNT
● COUNT_TO_UDINT
● COUNT_TO_UINT
● COUNT_TO_ULINT
● CPU_PROD_READ_ASYNC
● CpuCoreBindingDesc

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4102

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/CommStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/CommunicationSettings.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/ARRAY-and-MemoryBlock/Compare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/CompareString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/CompareWString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Functions/CompatibilitySafeGetPrepareExitCommProcessingLastCall.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Functions/CompatibilitySafeSetPrepareExitCommProcessingFurtherCallNecessary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentPseudo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentRenamed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Components/ComponentSimple.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/CONCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/ConfigError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetConnector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetFirstChild.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetFirstConnector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetNextChild.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetNextConnector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValueByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValueDword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValuePointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/ConfigGetParameterValueWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/ConnectionSetup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Function-Blocks/Connector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvUtility.library_Library/IoDrvUtility/ConnectorFlagController/FunctionBlocks/ConnectorFlagController.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvUtility.library_Library/IoDrvUtility/ConnectorFlagController/Enums/ConnectorState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/FunctionBlocks/SizeProvider/ContainerSizeProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ContentFeatureFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/ControllerConfigUtil.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/ControllerState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertNSecToTick.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/DateTimeCalculations/ConvertSystimedateToUTC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/DateTimeCalculations/ConvertSystimedateUsingLDate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/DateTimeCalculations/ConvertSysTimeValueToLWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertTickToNSec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertTickToUSec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/ConvertTimestampToLDateAndTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/ConvertToIBranchTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/ConvertToILeafTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/ConvertToITreeWalker.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/ConvertUSecToTick.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/UTF8/ConvertUTF16toUTF8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/UTF8/ConvertUTF8toUTF16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Copy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/CopyBufferData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/CopyVUM_User.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/CopyVUM_User3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/COUNT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/COUNT_TO_UDINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/COUNT_TO_UINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/COUNT_TO_ULINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Production-data/CompatibleV23/CPU_PROD_READ_ASYNC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/CpuCoreBindingDesc.html

● CpuCoreBits
● CRC16_CCITT
● CRC16_generic
● CRC16_Modbus
● CRC16_standard
● CRC16Finish
● CRC16Init
● CRC16Update
● CRC32
● CRC32Finish
● CRC32Init
● CRC32Update
● CRC32Update2
● CREATE_ID
● CreateBuffer
● CreateIdAreaReceiver
● CreateMaskReceiver
● CreateMessage
● CreatePacket
● CreatePacketPool
● CreateSegment
● CreateSegmentPool
● CreateSingleIdReceiver
● CreateTextFromString
● CreateTextFromWString
● CredentialsHandling
● CrossProduct
● CrossProductNormed
● CryptoAsymmetricDecrypt
● CryptoAsymmetricEncrypt
● CryptoDeletePrivateKey
● CryptoDeriveKey
● CryptoExportAsymmetricKey
● CryptoExportRawAsymmetricKey
● CryptoGenerateAsymmetricKeyPair
● CryptoGenerateHash
● CryptoGenerateRandomNumber
● CryptoGetAlgorithmById
● CryptoGetAsymmetricKeyLength
● CryptoGetFirstAlgorithm
● CryptoGetNextAlgorithm
● CryptoHMACSign
● CryptoHMACVerify
● CryptoImportAsymmetricKey
● CryptoImportRawAsymmetricKey
● CryptoKeyAgreement
● CryptoKeyExit
● CryptoKeyInit
● CryptoLoadPrivateKey
● CryptoRtsByteStringExit
● CryptoRtsByteStringInit
● CryptoRtsByteStringInit2
● CryptoSignatureGenerate
● CryptoSignatureVerify
● CryptoStorePrivateKey

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4103

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/CpuCoreBits.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_CCITT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_generic.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_Modbus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC16_standard.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC16Finish.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC16Init.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC16Update.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/CRC32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Finish.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Init.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Update.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChecksum.library_Library/External-Functions/CRC32Update2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/CREATE_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/CreateBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateIdAreaReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateMaskReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Packet/CreatePacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Packet/CreatePacketPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Stream/CreateSegment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Stream/CreateSegmentPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/CreateSingleIdReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/CreateTextFromString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/CreateTextFromWString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/CredentialsHandling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/CrossProduct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/CrossProductNormed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoAsymmetricDecrypt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoAsymmetricEncrypt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoDeletePrivateKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Key-Derivation/CryptoDeriveKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoExportAsymmetricKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoExportRawAsymmetricKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoGenerateAsymmetricKeyPair.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoGenerateHash.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGenerateRandomNumber.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGetAlgorithmById.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoGetAsymmetricKeyLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGetFirstAlgorithm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoGetNextAlgorithm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoHMACSign.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoHMACVerify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoImportAsymmetricKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoImportRawAsymmetricKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoKeyAgreement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Key-Handling/CryptoKeyExit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Key-Handling/CryptoKeyInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoLoadPrivateKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoRtsByteStringExit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoRtsByteStringInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Functions/CryptoRtsByteStringInit2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoSignatureGenerate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoSignatureVerify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Asymmetric-Cryptography/CryptoStorePrivateKey.html

● CryptoSymmetricDecrypt
● CryptoSymmetricEncrypt
● CTD
● CtrlFilterContinuous
● CtrlFilterDiscrete
● CtrlIntegrator
● CtrlLag
● CtrlLagDelay
● CtrlLead
● CtrlLeadLag
● CtrlPidParallel
● CtrlPiPulse
● CtrlRampStep
● CTU
● CTUD
● CustomRequestQueue
● CustomRequestResponse
● CWCHAR
● DATA
● DatabaseSizeLimit
● DataCopyToBlob
● DataItem
● DataItemAndPtrVectors
● DataItemBase
● DataItemList
● DataItemListPublic
● DataItemListPublicPersistant
● DataItemLocation
● DataItemPtrVector
● DataItemVector
● DataRepresentation
● DataServer_StructReplacementInfo
● DataServerFlags
● DataServerRequestIdentification
● Datasource
● DataSourceError
● DataSourceMonitoringState
● Datasources
● DatasourcesAction
● DatasourcesActionRecord
● DataSourceShutdownFlags
● DatasourceShutdownInfo
● DatasourcesMgr
● DataSourcesQualityChecker
● DataSourceState
● DataSourceTransactionResult
● DateConcat
● DateSplit
● DateTime
● DateTimeFromWeek
● DateTimeProvider
● DAY
● DayOfWeek
● DAYS
● DCP_DeviceData

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4104

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoSymmetricDecrypt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto%20Implementation.library_Library/CmpCrypto-Implementation/Symmetric-Cryptography/CryptoSymmetricEncrypt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Counter/CTD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlFilterContinuous.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlFilterDiscrete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlIntegrator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlLag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlLagDelay.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlLead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlLeadLag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Closed-Loop-Control/CtrlPidParallel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Closed-Loop-Control/CtrlPiPulse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Control/Ctrl_0.9.0.26_Library/Function-Blocks/Signal-Processing/CtrlRampStep.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Counter/CTU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Counter/CTUD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/CustomRequestQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Requests/CustomRequestResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/CWCHAR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Types/DATA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Function-blocks/DatabaseSizeLimit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/BLOB/DataCopyToBlob.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemAndPtrVectors.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItemBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItemList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemListPublic.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemListPublicPersistant.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DataItemLocation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemPtrVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DataItemVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/DataRepresentation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/DataServer_StructReplacementInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/DataServerFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/DataServerRequestIdentification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Datasource.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Enums/DataSourceError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Enums/DataSourceMonitoringState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/Datasources.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Enums/DatasourcesAction.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DatasourcesActionRecord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/DataSourceShutdownFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DatasourceShutdownInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/DatasourcesMgr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/DataSourcesQualityChecker.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/DataSourceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/DataSourceTransactionResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DateConcat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DateSplit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/DateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/DateTimeFromWeek.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/FunctionBlocks/DateTimeProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/DAY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/DayOfWeek.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/DAYS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_DeviceData.html

● DCP_DeviceRole
● DCP_Error
● DCP_FilterData
● DCP_FilterMode
● DCP_FilterOptions
● DCP_Get
● DCP_GetOptions
● DCP_Identify
● DCP_Reset
● DCP_ResetMode
● DCP_Set
● DCP_SetData
● DCP_SetOptions
● DeallocStackAllocatedContentBuffer
● DebugItfAddrToItfPtr
● Decode
● DECODE_IOL_STATUS
● DecodeClass
● DecodeEvent
● DefaultAlarmFilterCriteria
● DELETE
● Delete
● DeleteBuffer
● DeleteReceiver
● DERIVATIVE
● Derivative
● DeserializeHexReal
● DetermineVarTypeOfArray
● DetermineVarTypeOfStruct
● DetermineVarTypeOfTypeDesc
● DEVICE
● DEVICE_INFO
● DEVICE_STATE
● DEVICE_TRANSITION_STATE
● DEVICE_TYPE
● DeviceAR
● DeviceAR_State
● DeviceConfigUtil
● DeviceInfo
● DeviceIterator
● DeviceState
● Diag
● DIAG_HISTORY_TXT_TYPE
● DIAG_TXT_TYPE
● DIAG_VAL_TYPE
● DiagHistory
● DiagHistoryValToTxt
● DiagMessageFactory
● DIAGNOSIS_INFO
● DiagnosisDataBuffer
● DiagnosisDataReader
● DiagnosisDirection
● DiagnosisInformationUSI
● DiagnosisRecordIndex
● DiagnosisSeverity

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4105

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_DeviceRole.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_Error.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_FilterData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_FilterMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_FilterOptions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Get.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_GetOptions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Identify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Reset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_ResetMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DCP_Set.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_SetData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/DCP_SetOptions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/Mem/DeallocStackAllocatedContentBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Debugging/DebugItfAddrToItfPtr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/Decode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DECODE_IOL_STATUS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Helper/DecodeClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Helper/DecodeEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Function-blocks/DefaultAlarmFilterCriteria.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/DELETE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Delete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/DeleteBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DeleteReceiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/DERIVATIVE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/Derivative.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/HexReal/DeserializeHexReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/Visu-Native-Element/DetermineVarTypeOfArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/Visu-Native-Element/DetermineVarTypeOfStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/Visu-Native-Element/DetermineVarTypeOfTypeDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Types/DEVICE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/DEVICE_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/DEVICE_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/DEVICE_TRANSITION_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/DEVICE_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/DeviceAR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/DeviceAR_State.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/DeviceConfigUtil.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/DeviceInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/DeviceIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/DeviceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/Diag_1.3.7.1_Library/Function-Blocks/Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.7.2_Library/Types/DIAG_HISTORY_TXT_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.7.2_Library/Types/DIAG_TXT_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.7.2_Library/Types/DIAG_VAL_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagHistory_1.0.2.1_Library/Function-Blocks/DiagHistory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagHistory_1.0.2.1_Library/Functions/DiagHistoryValToTxt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DiagMessageFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Structures/DIAGNOSIS_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DiagnosisDataBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DiagnosisDataReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisDirection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisInformationUSI.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisRecordIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisSeverity.html

● DiagnosisSource
● DiagnosisSpecifier
● DiagSignalEventIec
● DiagValToTxt
● DiagValTypeGetDeviceType
● DiagValTypeGetTextList
● DiagVerifyTextListCallback
● Dialog_FormatTypes
● DialogCheckInit
● DialogCheckInitForExponential
● DialogCheckInitForExponentialW
● DialogCheckInitW
● DINT_TO_SIGNED
● DintElement
● DintElementFactory
● DintSetBitBased
● DintSetFull
● DintToDintMap
● DintVector
● DirClose
● DirCopy
● DirCreate
● DirectAssigner
● DirectIOBits16
● DirectIOBits8
● DirFileTime
● DirInfo
● DirList
● DirOpen
● DirRemove
● DirRename
● DisableSyncService
● DM1_Read
● DM1_Write
● DM2_Read
● DM2_Write
● DownloadDestination
● DP_ADDR
● DP_AINFO
● DP_DEVICE_ID
● DP_DIAG
● DP_StationStatus1
● DP_StationStatus1_Diag
● DP_StationStatus2
● DP_StationStatus2_Diag
● DP_StationStatus3
● DP_StationStatus3_Diag
● DPSlaveDiag
● DPT10
● DPT10_IEC_to_KNX
● DPT10_KNX_to_IEC
● DPT16_IEC_to_KNX
● DPT16_KNX_to_IEC
● DPT19
● DPT19_IEC_to_KNX

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4106

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisSource.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/DiagnosisSpecifier.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.9.3_Library/Functions/DiagSignalEventIec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/Diag_1.3.7.1_Library/Functions/DiagValToTxt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagExtension_1.0.0.1_Library/Functions/DiagValTypeGetDeviceType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagExtension_1.0.0.1_Library/Functions/DiagValTypeGetTextList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.9.3_Library/Functions/Internal/Textlist/DiagVerifyTextListCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Dialog_FormatTypes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/DialogCheckInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/DialogCheckInitForExponential.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/DialogCheckInitForExponentialW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/DialogCheckInitW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/DINT_TO_SIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/DintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/DintElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DintSetBitBased.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/DintSetFull.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/DintToDintMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/DintVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirCopy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/DirectAssigner.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/DirectIoAccess/DirectIOBits16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/DirectIoAccess/DirectIOBits8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/DirFileTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/DirInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirRemove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/Directory/DirRename.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Extended-Functionality/DisableSyncService.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DM1_Read.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Transmit/DM1_Write.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DM2_Read.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Transmit/DM2_Write.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5120_1.1.3.1_Library/Enums/DownloadDestination.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/DP_ADDR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP_AINFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/DP_DEVICE_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP_DIAG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus1_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus2_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DP_StationStatus3_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/DPSlaveDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/Structs/DPT10.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/KNXConvertFunctions/DPT10_IEC_to_KNX.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/KNXConvertFunctions/DPT10_KNX_to_IEC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/KNXConvertFunctions/DPT16_IEC_to_KNX.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/KNXConvertFunctions/DPT16_KNX_to_IEC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/Structs/DPT19.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/KNXConvertFunctions/DPT19_IEC_to_KNX.html

● DPT19_KNX_to_IEC
● Driver
● DriverCfg
● DriverClose
● DriverDiag
● DriverGetSize
● DriverInitInfo
● DriverOpenH
● DriverOpenP
● DRV_PDRIVE_PRM_REQ_ERROR
● DRV_PDRIVE_PRM_TYPE
● DrvControlACS
● DrvControlCANCiA402
● DrvControlDCS
● DrvControlModbusACS
● DrvControlModbusDCS
● DrvControlModbusEng
● DrvDataType
● DrvDataTypeInternal
● DrvModbusRead
● DrvModbusReadWrite23
● DrvModbusRtu
● DrvModbusRtuBroadcast
● DrvModbusTcp
● DrvModbusWrite
● DrvModFct23Type
● DrvModMastType
● DrvModPara32Bit
● DrvPdPrmDpv1DataType
● DrvPnRead
● DrvPnWrite
● DrvScaling
● DS_DISK_STATUS
● DS_EOL_INFO
● DS_LIFETIME_USED
● DT_TO_INT64
● DT_TO_ISO8601
● DT_TO_REAL8
● DT_to_Timestamp
● DT_to_Timestamp2
● DTC
● DTCBufferWriter
● DTCLogger
● DTConcat
● DTCProvider
● DTR_CONTROL
● DTSplit
● DTU_GETDATEANDTIME_PARAMS
● DTU_GETTIMEZONEINFORMATION_PARAMS
● DTU_SETDATEANDTIME_PARAMS
● DTU_SETTIMEZONEINFORMATION_PARAMS
● Dummy
● DummyJob
● DURATION
● DURATION_TO_LTIME

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4107

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/KNXConvertFunctions/DPT19_KNX_to_IEC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Driver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/DriverCfg.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/DriverDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/DriverInitInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverOpenH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/DriverOpenP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Enums/DRV_PDRIVE_PRM_REQ_ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Enums/DRV_PDRIVE_PRM_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Basic-FBs/DrvControlACS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/CANopen-CiA402/DrvControlCANCiA402.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Basic-FBs/DrvControlDCS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvControlModbusACS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvControlModbusDCS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvControlModbusEng.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Structs/Data-Types/DrvDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Structs/Data-Types/Internal-Data-Types/DrvDataTypeInternal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvModbusRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvModbusReadWrite23.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvModbusRtu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvModbusRtuBroadcast.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvModbusTcp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Modbus/DrvModbusWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Structs/Data-Types/Internal-Data-Types/DrvModFct23Type.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Structs/Data-Types/Internal-Data-Types/DrvModMastType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Functions/DrvModPara32Bit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Structs/Data-Types/DrvPdPrmDpv1DataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Profinet/DrvPnRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Profinet/DrvPnWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Function-Blocks/Basic-FBs/DrvScaling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Structs/DS_DISK_STATUS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/DS_EOL_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/DS_LIFETIME_USED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/DT_TO_INT64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/DT_TO_ISO8601.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/DT_TO_REAL8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/DT_to_Timestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/DT_to_Timestamp2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/DTC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DTC-Processing-DTC-Handler/DTCBufferWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Receive/DTC-Processing-DTC-Handler/DTCLogger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DTConcat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/Transmit/DTCProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/DTR_CONTROL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/DTSplit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_GETDATEANDTIME_PARAMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_GETTIMEZONEINFORMATION_PARAMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_SETDATEANDTIME_PARAMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Structs/DTU_SETTIMEZONEINFORMATION_PARAMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/Dummy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/Async/DummyJob.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/DURATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/DURATION_TO_LTIME.html

● DURATION_TO_TIME
● DWORD_AS_BIT
● DWORD_TO_BCD
● DWORD_TO_GRAY
● DWORD_TO_HANDLE
● DWORD_TO_IDENT
● DWORD_TO_PVOID
● DwordVector
● DynamicTextChangeLanguage
● DynamicTextGetCurrentLanguage
● DynamicTextGetDefaultText
● DynamicTextGetDefaultTextW
● DynamicTextGetText
● DynamicTextGetTextW
● DynamicTextIterateIndices
● DynamicTextLoadDefaultTexts
● DynamicTextRegisterFile
● DynamicTextRegisterPath
● DynamicTextReloadTexts
● DynamicTextRetrieveIndices
● DynamicTextUnRegisterFile
● DynamicTraceLoader
● DynamicTraceLoaderRemote
● EAlarmStorageReaderErrors
● EAlarmTableParts
● EAlarmType
● ECAT_402ParameterHoming_APP
● ECAT_CiA402_Control_App
● ECAT_CiA402_TouchProbe_App
● ECAT_CiA_Object_App
● ECAT_DecodeCouplerError
● ECAT_HomingOnTouchProbe_APP
● ECAT_Read_Byte_App
● ECAT_Read_Coe_List_App
● ECAT_Read_DInt_App
● ECAT_Read_Int_App
● ECAT_Write_Byte_App
● ECAT_Write_Coe_List_App
● ECAT_Write_DInt_App
● ECAT_Write_Int_App
● EcatBusDiag
● EcatBusGetDCMaxDeviation
● EcatBusSetState
● EcatCoeRead
● EcatCoeWrite
● EcatDeviceIdentification
● EcatDeviceInfoData
● EcatDeviceTypeIdentification
● EcatGetExtSyncInfo
● EcatMasterGetCPULoad
● EcatMasterGetFrameLossCount
● EcatMasterGetMemInfo
● EcatMasterGetThresholdCount
● EcatMasterGetTimingInfo
● EcatRegisterRead

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4108

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/DURATION_TO_TIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/DWORD_AS_BIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/DWORD_TO_BCD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/DWORD_TO_GRAY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/DWORD_TO_HANDLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/DWORD_TO_IDENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/DWORD_TO_PVOID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/DwordVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextChangeLanguage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetCurrentLanguage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetDefaultText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetDefaultTextW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextGetTextW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextIterateIndices.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextLoadDefaultTexts.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextRegisterFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextRegisterPath.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextReloadTexts.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/DynamicTextRetrieveIndices.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpDynamicText.library_Library/DynamicTextUnRegisterFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/DynamicTraceLoader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/DynamicTraceLoaderRemote.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/EAlarmStorageReaderErrors.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/Enumerations/EAlarmTableParts.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EAlarmType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/Homing/ECAT_402ParameterHoming_APP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/Drive/ECAT_CiA402_Control_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/TouchProbe/ECAT_CiA402_TouchProbe_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/Data-types/CiA/ECAT_CiA_Object_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/DeviceIdentifikation/ECAT_DecodeCouplerError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/Homing/ECAT_HomingOnTouchProbe_APP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Read_Byte_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Read_Coe_List_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Read_DInt_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Read_Int_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Write_Byte_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Write_Coe_List_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Write_DInt_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.2.0.9_Library/POUs/CoE/ECAT_Write_Int_App.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/EcatBusDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatBusGetDCMaxDeviation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Control/EcatBusSetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Acyclic-Services/CoE-CAN-over-EtherCAT/EcatCoeRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Acyclic-Services/CoE-CAN-over-EtherCAT/EcatCoeWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/DeviceIdentifikation/EcatDeviceIdentification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/EcatDeviceInfoData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/DeviceIdentifikation/EcatDeviceTypeIdentification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatGetExtSyncInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetCPULoad.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetFrameLossCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetMemInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetThresholdCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatMasterGetTimingInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Acyclic-Services/Register-access/EcatRegisterRead.html

● EcatRegisterWrite
● EcatScanTopology
● EcatScanTopologyStop
● EcatSlvDiag
● EcatSlvGetDCInfo
● EcatSlvGetMDPModules
● EcatSlvGetState
● EcatSlvReadESCVersion
● EcatSlvReadLostLinkCnt
● EcatSlvReadRxErrorCnt
● EcatSlvSetState
● EcatSoeRead
● EcatSoeWrite
● EcatStartCom
● EcatState
● EcatStopCom
● EcatSync
● EcatVendor
● EcatVendorIDList
● EcatVendorName2Device
● ECM_IF_DC_CONTROL_STATUS_E
● ECM_IF_GET_SLAVE_DC_INFO_FLAGS_E
● ECO_DisableMultiPin
● EColorSetting
● ECUSTATE
● EDBActiveIndex
● EDBType
● eDeviceState
● EdgeTriggeredBehaviourModelBase
● EdgeTriggeredTimingControlledBehaviourModelBase
● EEthernetState
● eFastCounter
● EFillingStyle
● EFilterCriteriaActivity
● EFilterLatchContent
● EFilterTimeRangeType
● EImageStyle
● EIP_CloseClass3Connection
● EIP_OpenClass3Connection
● EIP_SendClass3ConnectedMessage
● EIP_SendUnconnectedMessage
● ElaborateLatchFilterCriteria
● ElaborateTimeRangeFilterCriteria
● Element
● EMCY_DATA
● EMCY_ERROR
● eModulName
● EnableSyncService
● Encode
● EncodeSpec
● ENDIANESS
● EnqueuedRequest
● ENUM61850_BASIC_TYPES
● ENUM61850_CLOCK_SYNC_MODE
● ENUM61850_DataPoint_Type

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4109

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Acyclic-Services/Register-access/EcatRegisterWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Commissioning/EcatScanTopology.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Commissioning/EcatScanTopologyStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/EcatSlvDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Extended/EcatSlvGetDCInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvGetMDPModules.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Control/EcatSlvGetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvReadESCVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvReadLostLinkCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/Commissioning/EcatSlvReadRxErrorCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Control/EcatSlvSetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Acyclic-Services/SoE-Sercos-over-EtherCAT/EcatSoeRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Acyclic-Services/SoE-Sercos-over-EtherCAT/EcatSoeWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Control/EcatStartCom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Legacy/EcatState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Control/EcatStopCom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCAT_1.4.0.4_Library/Function-Blocks/Diagnosis/EcatSync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/DeviceIdentifikation/EcatVendor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/DeviceIdentifikation/EcatVendorIDList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/DeviceIdentifikation/EcatVendorName2Device.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/Services/DC/ECM_IF_DC_CONTROL_STATUS_E.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/Services/DC/ECM_IF_GET_SLAVE_DC_INFO_FLAGS_E.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardIO_1.0.9.2_Library/internal/FunctionBlocks/GPIO_ACCESS/ECO_DisableMultiPin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EColorSetting.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Enum/ECUSTATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EDBActiveIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EDBType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/DIAG/eDeviceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/EdgeTriggeredBehaviourModelBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/EdgeTriggeredTimingControlledBehaviourModelBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet_Itfs.library_Library/IIoDrvEthernet_Itfs/Enums/EEthernetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/DIAG/eFastCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EFillingStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/Enumerations/EFilterCriteriaActivity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EFilterLatchContent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Enumerations/EFilterTimeRangeType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EImageStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/ConnectedMessages/EIP_CloseClass3Connection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/ConnectedMessages/EIP_OpenClass3Connection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/ConnectedMessages/EIP_SendClass3ConnectedMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/UnconnectedMessages/EIP_SendUnconnectedMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Filters/ElaborateLatchFilterCriteria.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Filters/ElaborateTimeRangeFilterCriteria.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Element/Element.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/EMCY_DATA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/EMCY_ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/DIAG/eModulName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Extended-Functionality/EnableSyncService.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/Encode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Helper/EncodeSpec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Enums/ENDIANESS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/EnqueuedRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ENUM61850_BASIC_TYPES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ENUM61850_CLOCK_SYNC_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM61850_DataPoint_Type.html

● ENUM61850_SIM_MODE
● EnumAttributes
● EnumValues
● EnXYChartClientActity
● EnXYChartDataProviderAxisVar
● EnXYChartDataProviderCurveVar
● EnXYChartDataProviderVar
● EnXYChartUpdateType
● EOF
● eParaState
● ERectSetting
● ErrFlexConf
● ERROR
● ERROR_ID
● ERROR_INFO
● ErrorCode
● ErrorCode1_RW
● ErrorCodesOB
● ErrorToString
● EShadowStyle
● ESpecial_FP_Value
● ETC_ADS_IoLinkRead
● ETC_ADS_IoLinkWrite
● ETC_CO_Emergency
● ETC_CO_ERROR
● ETC_CO_MODE
● ETC_CO_SdoInfoGeEntryDescription
● ETC_CO_SdoInfoGetObjectDescription
● ETC_CO_SdoInfoGetODList
● ETC_CO_SdoRead
● ETC_CO_SdoRead4
● ETC_CO_SdoRead_Access
● ETC_CO_SdoRead_Channel
● ETC_CO_SdoReadDWord
● ETC_CO_SdoWrite
● ETC_CO_SdoWrite4
● ETC_CO_SdoWrite_Access
● ETC_CO_SdoWriteDWord
● ETC_FoE_Download
● ETC_FoE_Upload
● ETC_LASTERROR
● ETC_MASTER_STATE
● ETC_SDO_INFO_LIST_TYPE
● ETC_SDO_INFO_OBJECT_CODE
● ETC_SLAVE_STATE
● ETC_SoE_Cmd
● ETC_SOE_ERROR
● ETC_SoE_IDNRead
● ETC_SoE_IDNRead4
● ETC_SoE_IDNWrite
● ETC_SoE_IDNWrite4
● ETC_VoE_SendReceive
● ETCDeviceIdentMode
● ETCERRORCODES
● ETCMasterStack

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4110

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM61850_SIM_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/EnumAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/EnumValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartClientActity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartDataProviderAxisVar.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartDataProviderCurveVar.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartDataProviderVar.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Enums/EnXYChartUpdateType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/EOF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Types/DIAG/eParaState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/ERectSetting.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/Enums/ErrFlexConf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Enums/ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/ERROR_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/ERROR_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/ErrorCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/ErrorCode1_RW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.4.3_Library/Enums/ErrorCodesOB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/ErrorToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Enums/EShadowStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/ESpecial_FP_Value.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ADS_over_Ethercat/ETC_ADS_IoLinkRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ADS_over_Ethercat/ETC_ADS_IoLinkWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/STRUCTS/ETC_CO_Emergency.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_CO_ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_CO_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/SdoInfo/ETC_CO_SdoInfoGeEntryDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/SdoInfo/ETC_CO_SdoInfoGetObjectDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/SdoInfo/ETC_CO_SdoInfoGetODList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead_Access.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoRead_Channel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoReadDWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWrite4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWrite_Access.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ETC_CO_SdoWriteDWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/File_over_EtherCAT/ETC_FoE_Download.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/File_over_EtherCAT/ETC_FoE_Upload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETC_LASTERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETC_MASTER_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_SDO_INFO_LIST_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/CANopen_over_Ethercat/ENUMS/ETC_SDO_INFO_OBJECT_CODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETC_SLAVE_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_Cmd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ENUMS/ETC_SOE_ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNRead4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/ServoDrive_over_Ethercat/ETC_SoE_IDNWrite4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Vendor_over_Ethercat/ETC_VoE_SendReceive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Structs/ETCDeviceIdentMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/File_over_EtherCAT/Enums/ETCERRORCODES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/EtherCATStack/ETCMasterStack.html

● ETCSlave
● ETCSlave_Diag
● ETCSlaveStack
● ETH_MOD_FCT22_TYPE
● ETH_MOD_FCT23_TYPE
● EthDNSResolve
● EtherCATDevice
● EthercatMaster_GetVersion
● EtherCatReconfigure
● EthernetState
● EthIcmpPing
● EthOwnIP
● EthOwnIPInfo
● EthSetOwnIP
● EthSetRtoMin
● ETHx_ICMP_PING
● ETHx_MOD_CONFIG
● ETHx_MOD_INFO
● ETHx_MOD_MAST
● ETHx_OWN_IP
● ETHx_OWN_IP_INFO
● ETraceAddressFlags
● ETraceGradientType
● ETrendStorageGraphType
● ETrendStoragePenStyle
● ETrendStorageReaderErrors
● ETrendStorageReaderStep
● ETrig
● ETrigA
● ETrigATl
● ETrigATlTo
● ETrigATo
● ETrigTl
● ETrigTlA
● ETrigTlTo
● ETrigTo
● ETrigToA
● ETrigToTl
● ETrigToTlA
● EVENT
● EVENT_CLASS
● EVENT_SOURCE
● EventClose2
● EventCreate
● EventCreate2
● EventCreateEventID
● EventDelete2
● EventElementData
● EventGetClass
● EventGetEvent
● EventIdToString
● EventOpen
● EventParam
● EventParam2
● EventPost

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4111

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/ETCSlave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/Diagnosis/ETCSlave_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/EtherCATStack/ETCSlaveStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Types/ETH_MOD_FCT22_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Types/ETH_MOD_FCT23_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/DNS/EthDNSResolve.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/DeviceIdentifikation/EtherCATDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/EthercatMaster_GetVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/Function-Blocks/EtherCatReconfigure.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Enums/EthernetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/ICMP/EthIcmpPing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/General/EthOwnIP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/General/EthOwnIPInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/General/EthSetOwnIP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/General/EthSetRtoMin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/ICMP/CompatibleV23/ETHx_ICMP_PING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/CompatibleV23/ETHx_MOD_CONFIG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/CompatibleV23/ETHx_MOD_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/CompatibleV23/ETHx_MOD_MAST.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/General/CompatibleV23/ETHx_OWN_IP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/General/CompatibleV23/ETHx_OWN_IP_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ETraceAddressFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/TraceMgr2_Itfs.library_Library/ETraceGradientType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStorageGraphType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStoragePenStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStorageReaderErrors.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ETrendStorageReaderStep.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigATl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigATlTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigATo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigTl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigTlA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/ETrigTlTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigToA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigToTl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/ETrigToTlA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Enums/EVENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Enums/EVENT_CLASS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Enums/EVENT_SOURCE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventClose2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventCreate2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventCreateEventID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventDelete2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/EventElementData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventGetClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventGetEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/EventIdToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr_Itfs.library_Library/EventParam.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr_Itfs.library_Library/EventParam2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPost.html

● EventPost2
● EventPostByEvent
● EventPostByEvent2
● EventQueueAndElement
● EventRegisterCallback
● EventRegisterCallback2
● EventRegisterCallbackFunction
● EventRegisterCallbackFunction2
● EventRegisteredCallbacks
● EventUnregisterCallback
● EventUnregisterCallbackFunction
● EventUnregisterCallbackFunction2
● EVTPARAM_Application
● EVTPARAM_BeforeCheckFirmware
● EVTPARAM_CIFX_GetFirmware
● EVTPARAM_CIFX_LoadFirmware
● EVTPARAM_CIFX_PacketParam
● EVTPARAM_CIFX_xChannelClose
● EVTPARAM_CIFX_xChannelOpen
● EVTPARAM_CmpApp
● EVTPARAM_CmpAppAllBootAppsLoaded
● EVTPARAM_CmpAppComm
● EVTPARAM_CmpAppCommCycle
● EVTPARAM_CmpAppConfig
● EVTPARAM_CmpAppDeny
● EVTPARAM_CmpAppDenyDelete
● EVTPARAM_CmpAppDenyLoadBootproject
● EVTPARAM_CmpAppDenyStart
● EVTPARAM_CmpAppDenyStop
● EVTPARAM_CmpAppException
● EVTPARAM_CmpAppExit
● EVTPARAM_CmpAppOEMServiceTag
● EVTPARAM_CmpAppOperatingStateChanged
● EVTPARAM_CmpAppPrepareLoadBootproject
● EVTPARAM_CmpAppRegisterBootproject
● EVTPARAM_CmpAppReset
● EVTPARAM_CmpAppResetAllApplications
● EVTPARAM_CmpAppRetainBackupState
● EVTPARAM_CmpAppSourceDownload
● EVTPARAM_CmpAppStateChanged
● EVTPARAM_CmpAppStop
● EVTPARAM_CmpCodeMeterLicenseActivated
● EVTPARAM_CmpIecTask
● EVTPARAM_CmpIecTask2
● EVTPARAM_CmpIoMgr
● EVTPARAM_CmpLogAdd
● EVTPARAM_CmpMgr_DisableOperation
● EVTPARAM_CmpMgr_LicenseRequest
● EVTPARAM_CmpMgr_PrepareExitCommProcessing
● EVTPARAM_CmpMgr_Shutdown
● EVTPARAM_CmpOPCUAServerSessionsChanged
● EVTPARAM_CmpSrv
● EVTPARAM_CmpTraceMgr_Packet
● EVTPARAM_CmpTraceMgr_Record
● EVTPARAM_CmpUserMgrDatabaseChanged

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4112

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPost2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPostByEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventPostByEvent2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueueAndElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallback2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallbackFunction.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisterCallbackFunction2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventRegisteredCallbacks.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventUnregisterCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventUnregisterCallbackFunction.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr%20Implementation.library_Library/EventUnregisterCallbackFunction2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTargetVisu.library_Library/EventParameter/EVTPARAM_Application.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_BeforeCheckFirmware.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_GetFirmware.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_LoadFirmware.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_PacketParam.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_xChannelClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_CIFX_xChannelOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpApp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppAllBootAppsLoaded.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppComm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppCommCycle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDeny.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyLoadBootproject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyStart.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppDenyStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppException.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppExit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppOEMServiceTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppOperatingStateChanged.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppPrepareLoadBootproject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppRegisterBootproject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppResetAllApplications.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppRetainBackupState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppSourceDownload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppStateChanged.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/EventParameter/EVTPARAM_CmpAppStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/Types/EVTPARAM_CmpCodeMeterLicenseActivated.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/EventParameter/EVTPARAM_CmpIecTask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/EventParameter/EVTPARAM_CmpIecTask2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/ICmpEventMgr/EVTPARAM_CmpIoMgr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/EVTPARAM_CmpLogAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_DisableOperation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_LicenseRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_PrepareExitCommProcessing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/EventParameter/EVTPARAM_CmpMgr_Shutdown.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/EVTPARAM_CmpOPCUAServerSessionsChanged.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/EventParameter/EVTPARAM_CmpSrv.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/EventParameter/EVTPARAM_CmpTraceMgr_Packet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/EventParameter/EVTPARAM_CmpTraceMgr_Record.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Types/EVTPARAM_CmpUserMgrDatabaseChanged.html

● EVTPARAM_DownloadProgress
● EVTPARAM_PacketConfirmation
● EVTPARAM_PacketIndication
● EVTPARAM_PacketUnhandled
● EVTPARAM_SysEthernet
● EVTPARAM_UploadProgress
● Expert
● ExpressionResult
● ExpSubmodule
● EXTRACT
● F_TRIG
● FactoryBase
● FaultStatus
● FbChangeVisu
● FbCloseDialog
● FBFileTransfer
● fbIEC61850_Subs_ASN1_CheckData
● fbIEC61850_Subs_ASN1_Decoder
● fbIEC61850_Subs_ASN1_Decoder_CheckDataNum
● fbIEC61850_Subs_ASN1_Decoding_Data
● fbIEC61850_Subscriber
● FbIterateClients
● FbOpenDialog
● FbOpenDialogExtended
● FctGetAngle
● FctGetAngleFromProp
● FctGetNextVisu
● FctGetPreviousVisu
● FctIncreaseElemRectForLine
● FctPointIntersectsRectangle
● FD_CLR
● FILE_DIR_ENTRY
● FILENAME
● FillNodeInfoInt
● FilterErrorCode
● FIND
● FindBlock
● FindByte
● FlatClass
● FlatCreateH
● FlatCreateP
● FlatDelete
● FlatDisable
● FlatEnable
● FlatGetSize
● FlatRead
● FlatTest
● FlatUpdate
● FLOAT
● FLOAT_TO_LREAL
● FLOAT_TO_REAL
● Floor
● FloorF
● Flush
● FMI

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4113

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_DownloadProgress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_PacketConfirmation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_PacketIndication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_PacketUnhandled.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/EventParameter/EVTPARAM_SysEthernet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/EventMgr/EVTPARAM_UploadProgress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/Expert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SFC/Analyzation.library_Library/Data-types/ExpressionResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Device/ExpSubmodule.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/EXTRACT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Trigger/F_TRIG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Factory/FactoryBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/FaultStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbChangeVisu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbCloseDialog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FBFileTransfer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_CheckData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_Decoder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_Decoder_CheckDataNum.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/fbIEC61850_Subs_ASN1_Decoding_Data.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/fbIEC61850_Subscriber.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbIterateClients.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbOpenDialog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Function-Blocks/FbOpenDialogExtended.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/FctGetAngle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/FctGetAngleFromProp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Functions/FctGetNextVisu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Functions/FctGetPreviousVisu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/FctIncreaseElemRectForLine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Calendar/FctPointIntersectsRectangle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functions/FD_CLR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Structs/FILE_DIR_ENTRY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/FILENAME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/FillNodeInfoInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/FilterErrorCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/FIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/ARRAY-and-MemoryBlock/FindBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/ARRAY-and-MemoryBlock/FindByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/FlatClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatDisable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatEnable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatTest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Flat-Functions/FlatUpdate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/FLOAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/FLOAT_TO_LREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/FLOAT_TO_REAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/Floor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/FloorF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Flush.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/FMI.html

● fmod
● FORMAT_MODE
● FormatDateTime
● FormatTimestamp
● FormatTimestamp2
● FormatTypedValue
● FrameManager
● FramePaintState
● FrameRegistrationData
● FreeMessage
● FreeStackAllocatedMemory
● FREQ_MEASURE
● FromBACnetBitString
● FromBACnetBoolean
● FromBACnetDate
● FromBACnetDateRange
● FromBACnetDateTime
● FromBACnetDevObjPropReference
● FromBACnetSetpointReference
● FromBACnetString
● FromBACnetTime
● FromBACnetTimeStamp
● FSLState
● funIEC61850_GetReportHeaderLen
● funIEC61850_MMSTYPE_TO_STRING
● funIEC61850_Subs_Bits_SwapRight
● funIEC61850_Subs_InitDatapoint
● funIEC61850_SubsCheckDataNum
● GEN
● GEN_MODE
● Generic_Service
● Get_Attribute_List
● Get_Attribute_Single
● Get_Attributes_All
● GET_CANOPEN_KERNEL_STATE
● GET_LOCAL_NODE_ID
● GET_STATE
● GetAlarmIDName
● GetAllEtherCATCouplers
● GetAttribute
● GetBACnetDataTypeSize
● GetBACnetPropertyDataType
● GetBaudrate
● GETBIT
● GetBitStringFromContents
● GetBitValue
● GetBooleanProperty
● GetBoolFromContents
● GetBufferSize
● GetBusAlarm
● GetBusError
● GetBusload
● GetBusScan
● GetBusState
● GetCallback

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4114

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/Transformations/fmod.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Enums/FORMAT_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/IECStringUtils.library_Library/FormatDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/deprecated/FormatTimestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/FormatTimestamp2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/FormatTypedValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Frameswitching/FrameManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/Frame/FramePaintState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/FrameRegistrationData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/FreeMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/Mem/FreeStackAllocatedMemory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Signals/FREQ_MEASURE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetBitString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetBoolean.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDateRange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetDevObjPropReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetSetpointReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/FromBACnetTimeStamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.4.3_Library/Enums/FSLState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/funIEC61850_GetReportHeaderLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_MMSTYPE_TO_STRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_Subs_Bits_SwapRight.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_Subs_InitDatapoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/funIEC61850_SubsCheckDataNum.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Signals/GEN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Datatypes/GEN_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Generic_Service.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Get_Attribute_List.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Get_Attribute_Single.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Get_Attributes_All.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Query-state/GET_CANOPEN_KERNEL_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Own-node-id/GET_LOCAL_NODE_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Query-state/GET_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetAlarmIDName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/Functions/GetAllEtherCATCouplers.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetAttribute.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetProperties/GetBACnetDataTypeSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetProperties/GetBACnetPropertyDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBaudrate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/GETBIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetBitStringFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/GetBitValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetBooleanProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetBoolFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Segmented%20Buffer%20Manager%20Extern.library_Library/CAA-Segemented-Buffer-Manager/Functions/Buffer/GetBufferSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBusAlarm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Bus/GetBusError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBusload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Stack/GetBusScan.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetBusState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/GetCallback.html

● GetChar
● GetCiAState
● GetClass
● GetClassInfo
● GetCompany
● GetConfigType
● GetControllerNode
● GetDatabaseFileSize
● GetDatabaseFileSize2
● GetDateAndTime
● GetDateFromContents
● GetDateRangeFromContents
● GetDateTime
● GetDateTimeFromContents
● GetDayOfWeek
● GetDeviceError
● GetDeviceNameString
● GetDeviceNameWString
● GetDeviceNode
● GetDevObjPropReferenceFromContents
● GetDiagnosis
● GetElapsedTimeInNSec
● GetElapsedTimeInUSec
● GetHandleOfCallback
● GetID
● GetIDeviceInstByIoAddr
● GetInfo
● GETIO_PART
● GetIPAddress
● GetLatchVarColumnID
● GetLibVersion
● GetLibVersionNumber
● GetLINTValue
● GetLINTValue2
● GetLINTValue3
● GetLocalDateTime
● GetLostCounter
● GetLrealFromContents
● GetLRealSpecialVal
● GetMessageDataPointer
● GetMessageId
● GetMessageLength
● GetMsgCount
● GetNetId
● GetNextNode
● GetNodeDepth
● GetNumberActiveCallbacks
● GetNumberProperty
● GetObjectIDFromContents
● GetParent
● GetPos
● GetProperty
● GetRealFromContents
● GetRealSpecialVal
● GetReceiveCounter

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4115

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Functions/GetChar.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Indicator-Services/GetCiAState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetClassInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetCompany.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetConfigType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetControllerNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetDatabaseFileSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetDatabaseFileSize2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-and-Date/GetDateAndTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDateFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDateRangeFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/GetDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDateTimeFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/GetDayOfWeek.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Device/GetDeviceError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetDeviceNameString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetDeviceNameWString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetDeviceNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetDevObjPropReferenceFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/GetElapsedTimeInNSec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20TickUtil%20Extern.library_Library/CAA-TickUtil/Functions/GetElapsedTimeInUSec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/GetHandleOfCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/GetID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Utility/GetIDeviceInstByIoAddr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/GETIO_PART.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/GetIPAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Access-to-alarm-storage-internal/only-internal/GetLatchVarColumnID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/Library-Information/GetLibVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/Library-Information/GetLibVersionNumber.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetLINTValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetLINTValue2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/GetLINTValue3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/GetLocalDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetLostCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetLrealFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/GetLRealSpecialVal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMessageDataPointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMessageId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMessageLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetMsgCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetNetId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetNextNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetNodeDepth.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/GetNumberActiveCallbacks.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetNumberProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetObjectIDFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/GetParent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/Properties/GetProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetRealFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/GetRealSpecialVal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceiveCounter.html

● GetReceiveErrorCounter
● GetReceivePoolSize
● GetReceiveQueueLength
● GetRoot
● GetSetpointReferenceFromContents
● GetSignedFromContents
● GetSize
● GetSpecificDeviceError
● GetSubmoduleDiagnosis
● GetSupplierVersion
● GetText
● GetTextListInfo
● GetTextProperty
● GetTextProperty2
● GetTextW
● GetTick
● GetTime
● GetTimeFromContents
● GetTimeStamp
● GetTimeStampsDifference
● GetTimeZoneInformation
● GetTitle
● GetTransmitCounter
● GetTransmitErrorCounter
● GetTransmitPoolSize
● GetTransmitQueueLength
● GetTypeNodeOptions
● GetUnsignedFromContents
● GetVersion
● GetVersionProperty
● GetWStringFromContents
● GlobalImagePool
● GlobalTextList
● GRAY_TO_BYTE
● GRAY_TO_DWORD
● GRAY_TO_WORD
● GUARDING_TYPE
● Guid
● HaModAIO
● HaModCallbackStop
● HaModControl
● HaModCtd
● HaModCtu
● HaModCtud
● HaModDataSync
● HaModDerivative
● HaModDiag
● HaModDIO
● HaModEthFrame
● HaModEthFrameHeader
● HaModIntegral
● HaModPid
● HaModPidFixCycle
● HaModRampInt
● HaModRampReal

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4116

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceiveErrorCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceivePoolSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetReceiveQueueLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/GetRoot.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetSetpointReferenceFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetSignedFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Device/GetSpecificDeviceError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/GetSubmoduleDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/GetSupplierVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/GetText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/GetTextListInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetTextProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Project-Information/GetTextProperty2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/GetTextW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Tick%20Extern.library_Library/CAA-Tick/Functions/GetTick.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/GetTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetTimeFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/GetTimeStamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/GetTimeStampsDifference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-Zone-Information/GetTimeZoneInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetTitle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitErrorCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitPoolSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/GetTransmitQueueLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/GetTypeNodeOptions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetUnsignedFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/GetVersionProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetContents/GetWStringFromContents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/GlobalImagePool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/GlobalTextList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/GRAY_TO_BYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/GRAY_TO_DWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/GRAY_TO_WORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Enums/GUARDING_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/Guid.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModAIO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Functions/CALLBACK/HaModCallbackStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Control/HaModControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModCtd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModCtu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModCtud.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Control/HaModDataSync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModDerivative.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Control/HaModDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModDIO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Types/Internal-data-types/HaModEthFrame.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Types/Internal-data-types/HaModEthFrameHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModIntegral.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModPid.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModPidFixCycle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModRampInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModRampReal.html

● HaModStatus
● HaModStatusLifecom2
● HaModStatusPlc
● HaModTof
● HaModTon
● HaModVisuData
● HaModVisuEthinfo
● HANDLE
● HANDLE_TO_DWORD
● HANDLE_TO_LWORD
● HANDLE_TO_WORD
● HandleChannelError
● HandleReply
● HandleStateVariables
● HandleStore
● HasAlarmStorageRecordLimit
● HashCodeFromString
● HashCodeFromWString
● HashTable
● HashTableFactory
● HasNullOrEmptySecurityPolicy
● HEADER_TAG
● HeapInspectionInfo
● HEXinASCII_TO_BYTE
● HexStrToLReal
● HexStrToReal
● HighByte
● HighWord
● HistoricalActiveAlarmRowID
● history
● HOSTNAME
● HOUR
● HvacAirDensity
● HvacAirEnthalpy
● HvacDewConcentration
● HvacDewRelHumidity
● HvacDewTemp
● HvacOnTime
● HvacPumpEnergyCalc
● HvacRuntimeCounter
● HvacVaporSaturationPressure
● HYSTERESIS
● Hysteresis_DINT
● Hysteresis_LREAL
● IAbbAsyncJob
● IAbbETrig2
● IAbbETrig3
● IAbbLCon2
● IAbbLCon3
● IAbbLConC2
● IAbbLConC3
● IAbortable
● IAC500Device
● IAC500DeviceCM5610_2RS
● IAC500DeviceCM5640_2ETH

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4117

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Types/Internal-data-types/HaModStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Types/HaModStatusLifecom2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Types/HaModStatusPlc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModTof.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Function-Blocks/Utility/HaModTon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Types/Internal-data-types/HaModVisuData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/High%20Availability/HaModbus_1.4.0.25_Library/Types/Internal-data-types/HaModVisuEthinfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/HANDLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/HANDLE_TO_DWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/HANDLE_TO_LWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/HANDLE_TO_WORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/HandleChannelError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/HandleReply.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/HandleStateVariables.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/HandleStore.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/HasAlarmStorageRecordLimit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/HashCodeFromString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Functions/HashCodeFromWString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/HashTable/HashTable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/HashTable/HashTableFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/HasNullOrEmptySecurityPolicy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/Structs/HEADER_TAG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Tests/HeapInspectionInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/HEXASCII-Functions/HEXinASCII_TO_BYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/HexStrToLReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/HexStrToReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/HighByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/HighWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Service/HistoricalActiveAlarmRowID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/000Async_1.2.5.9_Library/history.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Types/HOSTNAME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/HOUR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Functions/HvacAirDensity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Functions/HvacAirEnthalpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Functions/HvacDewConcentration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Functions/HvacDewRelHumidity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Functions/HvacDewTemp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Function-Blocks/HvacOnTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Function-Blocks/HvacPumpEnergyCalc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Function-Blocks/HvacRuntimeCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/HVAC/Hvac_0.9.0.17_Library/Functions/HvacVaporSaturationPressure.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Analog-Monitors/HYSTERESIS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/Hysteresis_DINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/Hysteresis_LREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/000Async_1.2.5.9_Library/Interfaces/IAbbAsyncJob.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/Interfaces/Deprecated/IAbbETrig2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/Interfaces/IAbbETrig3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/Interfaces/Deprecated/IAbbLCon2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/Interfaces/IAbbLCon3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/Interfaces/Deprecated/IAbbLConC2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/StateMachine_1.0.7.2_Library/Interfaces/IAbbLConC3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/IAbortable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IAC500Device.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Diagnosis/CM5610-2RS_1.0.0.1_Library/Interfaces/IAC500DeviceCM5610_2RS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Diagnosis/CM5640-2ETH_1.0.1.1_Library/Interfaces/IAC500DeviceCM5640_2ETH.html

● IAC500DeviceCM56xCoupler
● IAC500DeviceCoupler
● IAC500DeviceNetxCoupler
● IAC500DeviceOptionBoard
● IAC500DeviceSerialProtocol
● IAC500DeviceTA5130KNXPB
● IAC500DeviceTA5131RTC
● IAC500DeviceTA5141RS232I
● IAC500DeviceTA5142RS485
● IAC500Diag
● IAC500DiagGet
● IAC500NetworkInterface
● IAC500OnboardEtherCATMaster
● IActionController
● IActionController2
● IActionProvider
● IAddressResolver
● IAddrInfoLeafTreeNode
● IAlarm
● IAlarm2
● IAlarm3
● IAlarm4
● IAlarm5
● IAlarmAdditionalLatchVariables
● IAlarmAdditionalLatchVariables2
● IAlarmClass
● IAlarmConfiguration7
● IAlarmConfiguration8
● IAlarmGroup
● IAlarmGroup3
● IAlarmHandler
● IAlarmHandler2
● IAlarmHandler3
● IAlarmHandler4
● IAlarmHandler5
● IAlarmHandlerRemoteMonitor
● IAlarmManagerClient
● IAlarmManagerClient2
● IAlarmMetaObjectStub5
● IAlarmNotifiable
● IAlarmRemote
● IAlarmStateChangedEventListener
● IAlarmStateChangedListener
● IAlarmStateChangedListener2
● IAlarmStorageListener
● IAlarmStorageReaderConsumer
● IAlarmStorageReaderConsumer2
● IApplicationRectangleProvider
● IARPCallback
● IARPEthernetClient
● IArrayNotifiable
● IAsyncProperty
● IBACnetClient
● IBACnetEventConsumer
● IBACnetObjectBase

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4118

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IAC500DeviceCM56xCoupler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IAC500DeviceCoupler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IAC500DeviceNetxCoupler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IAC500DeviceOptionBoard.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IAC500DeviceSerialProtocol.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/TA513x_1.0.1.1_Library/Interfaces/IAC500DeviceTA5130KNXPB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/TA513x_1.0.1.1_Library/Interfaces/IAC500DeviceTA5131RTC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/TA514x_1.0.1.1_Library/Interfaces/IAC500DeviceTA5141RS232I.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/TA514x_1.0.1.1_Library/Interfaces/IAC500DeviceTA5142RS485.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.9.3_Library/Interfaces/IAC500Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.9.3_Library/Interfaces/IAC500DiagGet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvEthernet_1.0.3.1_Library/Interfaces/IAC500NetworkInterface.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardEtherCAT_1.0.1.1_Library/Interfaces/IAC500OnboardEtherCATMaster.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionController.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionController2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IActionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/IAddressResolver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Interfaces/IAddrInfoLeafTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarm5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManagerInternal_Itfs.library_Library/IAlarmAdditionalLatchVariables.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManagerInternal_Itfs.library_Library/IAlarmAdditionalLatchVariables2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmConfiguration7.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmConfiguration8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmGroup3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandler5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmHandlerRemoteMonitor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmManagerClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmManagerClient2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManagerInternal_Itfs.library_Library/IAlarmMetaObjectStub5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmNotifiable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmRemote.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmStateChangedEventListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmStateChangedListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Interfaces/IAlarmStateChangedListener2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/IAlarmStorageListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/IAlarmStorageReaderConsumer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Alarm-storage-API/IAlarmStorageReaderConsumer2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IApplicationRectangleProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Interfaces/IARPCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Interfaces/IARPEthernetClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IArrayNotifiable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/AsyncProperty/IAsyncProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetClient/IBACnetClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetHooksCallbacks/IBACnetEventConsumer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/IBACnetObjectBase.html

● IBACnetPersistence
● IBACnetPropertyConfiguration
● IBACnetServer
● IBACnetServerPlugin
● IBACnetServerPluginCallback
● IBACnetServerPluginHook
● IBACnetStaticObjectBase
● IBase
● IBaseTreeNode
● iBasicEthercat
● iBasicKernel
● IBehaviourModel
● IBoolElement
● IBranchTreeNode
● IBuffer
● IBufferPool
● IBufferPoolFactoryArgs
● IBus
● ICallback
● ICallOnDialogBlocks
● ICallOnVisuBlocks
● ICANopenEventHandler
● ICanOpenStack
● ICascadedDisposalProvider
● ICDSV3Request
● ICDSV3RequestBuilder
● ICDSV3RequestCallback
● ICDSV3RequestHandling
● ICDSV3Response
● ICDSV3ServiceWriter
● ICertificateVerifier
● ICleanupActionProvider
● IClient
● IClientObjectInfo
● IClippingLayer
● ICmpEventCallback
● ICmpIoDrv
● ICmpIoDrvBusControl
● ICmpIoDrvBusControl2
● ICmpIoDrvPbSlaveActivation
● ICmpIoDrvProfibus
● ICmpIoDrvProfibusConfig
● ICollection
● ICompactTextListInfo2
● ICompleteSurroundingRectInfo
● IConfigurationProvider
● IConfigurationProvider2
● IConnection
● IContainerPaintSelf
● IContainsValue
● ICredentials
● ICredentialsProvider
● ICredentialsUserPassword
● ICursor
● ICursor2

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4119

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Persistence/IBACnetPersistence.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/PropertyConfiguration/IBACnetPropertyConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServer/IBACnetServer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServerPlugin/IBACnetServerPlugin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServerPlugin/IBACnetServerPluginCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetServerPlugin/IBACnetServerPluginHook.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/BACnetObjects/IBACnetStaticObjectBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/Base_Itfs.library_Library/IBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections_Itfs.library_Library/IBaseTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/iBasicEthercat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/iBasicKernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IBehaviourModel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IBoolElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IBranchTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/Buffer/Interfaces/IBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Interfaces/IBufferPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Function-Blocks/BufferPool/Interfaces/IBufferPoolFactoryArgs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IBus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/ICallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ICallOnDialogBlocks.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ICallOnVisuBlocks.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Interfaces/ICANopenEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Interfaces/ICanOpenStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Segmented%20Buffer%20Manager.library_Library/Segemented-Buffer-Manager/Interfaces/ICascadedDisposalProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICDSV3Request.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ICDSV3RequestBuilder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ICDSV3RequestCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICDSV3RequestHandling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICDSV3Response.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICDSV3ServiceWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TLS/ICertificateVerifier.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/ICleanupActionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IClientObjectInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IClippingLayer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpEventMgr_Itfs.library_Library/ICmpEventCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDriver2_Itfs.library_Library/ICmpIoDrv.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvBusControl_Itfs.library_Library/ICmpIoDrvBusControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvBusControl_Itfs.library_Library/ICmpIoDrvBusControl2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/ICmpIoDrvPbSlaveActivation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/ICmpIoDrvProfibus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/ICmpIoDrvProfibusConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ICollection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ICompactTextListInfo2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ICompleteSurroundingRectInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IConfigurationProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IConfigurationProvider2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IConnection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IContainerPaintSelf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IContainsValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Credentials/ICredentials.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/ICredentialsProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Credentials/ICredentialsUserPassword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ICursor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ICursor2.html

● ICursor3
● ICursorAsync
● ICustomAlarmToOpcUaMapping
● ICustomEventHandler
● ICustomRequest
● ICustomRequestCallback
● ICustomRequestHandling
● ICustomResponse
● ICyclicActionProvider
● ID
● ID_TO_ADDR
● IData
● IDataGroup
● IDataItem
● IDataItem2
● IDataItemBase
● IDataItemCompound
● IDataItemInfo
● IDataItemList
● IDataItemListExpanding
● IDataItemListInternal
● IDataItemListPersistant
● IDataItemProvider
● IDataItemProvider2
● IDataItemProviderSupportsPartialLists
● IDataItemValueAssigner
● IDataServer
● IDataServer2
● IDataServer3
● IDataServer4
● IDataServer5
● IDataServer6
● IDataServerActionRecord
● IDataServerFrameManager
● IDatasource
● IDatasource2
● IDatasource3
● IDataSourceDriver
● IDataSourceDriver2
● IDataSourceDriver3
● IDataSourceDriver4
● IDataSourceDriver5
● IDatasourcesActionRecord
● IDatasourcesActionRecordInternal
● IDatasourcesFrameManager
● IDatasourcesMgr
● IDatasourcesMgr2
● IDatasourcesMgr3
● IDatasourcesMgr4
● IDatasourcesResourceEntryAllocator
● IDatasourceTraceAddressInfoProvider
● IDateTimeLanguageTextTarget
● IDateTimeProvider
● IDENT
● IDENT_TO_DWORD

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4120

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ICursor3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/ICursorAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAProviderAlarmConfiguration.library_Library/Curstom-Mapping/ICustomAlarmToOpcUaMapping.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ICustomEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICustomRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICustomRequestCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICustomRequestHandling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ICustomResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/ICyclicActionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP-Address/ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/ID_TO_ADDR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Interfaces/IData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/IDataItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/IDataItem2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDataItemBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IDataItemCompound.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/IDataItemInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataItemList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDataItemListExpanding.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IDataItemListInternal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDataItemListPersistant.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/IDataItemProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/IDataItemProvider2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/IDataItemProviderSupportsPartialLists.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDataItemValueAssigner.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServer2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServer3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServer4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServer5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServer6.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServerActionRecord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataServerFrameManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasource.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasource2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasource3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataSourceDriver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataSourceDriver2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataSourceDriver3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataSourceDriver4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IDataSourceDriver5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasourcesActionRecord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IDatasourcesActionRecordInternal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasourcesFrameManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasourcesMgr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasourcesMgr2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasourcesMgr3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasourcesMgr4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/IDatasourcesResourceEntryAllocator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/IDatasourceTraceAddressInfoProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/IDateTimeLanguageTextTarget.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Interfaces/IDateTimeProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/IDENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/IDENT_TO_DWORD.html

● IDENT_TO_WORD
● IDevice
● IDevice2
● IDeviceCM579EtherCAT
● IDeviceCM579Profinet
● IDeviceCM582Profibus
● IDeviceCM589Profinet
● IDeviceCM592Profibus
● IDeviceCM598Can
● IDeviceSM560
● IDialogCloseListener
● IDialogCloseListenerWithTag
● IDialogManager10
● IDialogManager2
● IDialogManager3
● IDialogManager4
● IDialogManager5
● IDialogManager6
● IDialogManager7
● IDialogManager8
● IDialogManager9
● IDintElement
● IDintSet
● IDirectoryFileElement
● IDisposable
● IDoubleLinkedList
● IDrawingInterface3
● IDrawSequentially
● IDriver
● IDriverCDSV3
● IDriverCredentialsHandling
● IDriverCredentialsHandlingEveryLogin
● IDriverCustomRequest
● IDriverLargeRequest
● IDriverRequest
● IDriverRequestFactory
● IDriverRequestFactoryCustom
● IDriverRequestFactoryLargeRequests
● IDriverRequestFactoryReusable
● IDriverRequestReusable
● IDriverSpecificData
● IDriverSpecifiedSettings
● IDriverStateMachine
● IDriverStateMachine2
● IDriverStateMachineNotifyBeforeShutdown
● IDriverStateMachineShutdownTimeout
● IDriverTraceAddressInfoProvider
● IEC60870_5_104_Connection
● IEC60870_BACKGROUND_SCAN
● IEC60870_DISABLE
● IEC60870_DoubleCommand
● IEC60870_DoublePointInformation
● IEC60870_GET_ADDRESS
● IEC60870_IntegratedTotal
● IEC60870_MeasuredValue

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4121

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/IDENT_TO_WORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IDevice2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.4.1_Library/Interfaces/IDeviceCM579EtherCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579Profinet_2.0.1.2_Library/Interfaces/IDeviceCM579Profinet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.3.1_Library/Interfaces/IDeviceCM582Profibus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM589Profinet_2.3.1.1_Library/Interfaces/IDeviceCM589Profinet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM592Profibus_1.0.3.1_Library/Interfaces/IDeviceCM592Profibus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.3.1_Library/Interfaces/IDeviceCM598Can.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvSM560_1.4.1.1_Library/Interfaces/IDeviceSM560.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogCloseListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogCloseListenerWithTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager10.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager6.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager7.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDialogManager9.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IDintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/IDintSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Visu_SortedFileList/IDirectoryFileElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IDisposable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IDoubleLinkedList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IDrawingInterface3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IDrawSequentially.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverCDSV3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverCredentialsHandling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverCredentialsHandlingEveryLogin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverCustomRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverLargeRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverRequestFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverRequestFactoryCustom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverRequestFactoryLargeRequests.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverRequestFactoryReusable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverRequestReusable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverSpecifiedSettings.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverStateMachine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverStateMachine2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverStateMachineNotifyBeforeShutdown.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverStateMachineShutdownTimeout.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/IDriverTraceAddressInfoProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_5_104_Connection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_BACKGROUND_SCAN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_DISABLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_DoubleCommand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_DoublePointInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_GET_ADDRESS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_IntegratedTotal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_MeasuredValue.html

● IEC60870_REC_C_DC
● IEC60870_REC_C_SC
● IEC60870_REC_C_SE
● IEC60870_REC_C_TS_NA_1
● IEC60870_REC_M_DP
● IEC60870_REC_M_IT
● IEC60870_REC_M_ME
● IEC60870_REC_M_ME_1
● IEC60870_REC_M_SP
● IEC60870_REC_P_ME
● IEC60870_SEND_C_CI_NA_1
● IEC60870_SEND_C_CI_NA_1_2
● IEC60870_SEND_C_CS_NA_1
● IEC60870_SEND_C_CS_NA_1_2
● IEC60870_SEND_C_DC
● IEC60870_SEND_C_IC_NA_1
● IEC60870_SEND_C_IC_NA_1_2
● IEC60870_SEND_C_RD_NA_1
● IEC60870_SEND_C_RP_NA_1
● IEC60870_SEND_C_RP_NA_1_2
● IEC60870_SEND_C_SC
● IEC60870_SEND_C_SE
● IEC60870_SEND_C_TS_NA_1_ACT
● IEC60870_SEND_C_TS_NA_1_ACTCON
● IEC60870_SEND_DISABLE
● IEC60870_SEND_M_DP
● IEC60870_SEND_M_DP_ET
● IEC60870_SEND_M_EI_NA_1
● IEC60870_SEND_M_IT
● IEC60870_SEND_M_IT_1
● IEC60870_SEND_M_IT_16
● IEC60870_SEND_M_IT_16_ET
● IEC60870_SEND_M_IT_1_ET
● IEC60870_SEND_M_ME
● IEC60870_SEND_M_ME_1
● IEC60870_SEND_M_ME_16
● IEC60870_SEND_M_ME_16_ET
● IEC60870_SEND_M_ME_1_ET
● IEC60870_SEND_M_SP
● IEC60870_SEND_M_SP_16
● IEC60870_SEND_M_SP_16_ET
● IEC60870_SEND_M_SP_1_ET
● IEC60870_SEND_P_ME
● IEC60870_SetPoint
● IEC60870_SingleCommand
● IEC60870_SinglePointInformation
● IEC60870_STATE
● IEC60870_TIME
● IEC60870Commands
● IEC60870Disable
● IEC60870DisableSend
● IEC60870GetConfigAddress
● IEC60870GetConfigValues
● IEC60870GetConnectionStatistics
● IEC60870GetPinData

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4122

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_control_direction/IEC60870_REC_C_DC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_control_direction/IEC60870_REC_C_SC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_control_direction/IEC60870_REC_C_SE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Rec_monitored_direction/IEC60870_REC_C_TS_NA_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_DP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_IT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_ME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_ME_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Rec_monitored_direction/IEC60870_REC_M_SP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Parameter_setting/IEC60870_REC_P_ME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CI_NA_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CI_NA_1_2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CS_NA_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_CS_NA_1_2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_control_direction/IEC60870_SEND_C_DC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_IC_NA_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_IC_NA_1_2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_RD_NA_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_RP_NA_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_RP_NA_1_2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_control_direction/IEC60870_SEND_C_SC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_control_direction/IEC60870_SEND_C_SE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_control_direction/IEC60870_SEND_C_TS_NA_1_ACT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_monitored_direction/IEC60870_SEND_C_TS_NA_1_ACTCON.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_SEND_DISABLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_DP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_DP_ET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/System_Information/Send_monitored_direction/IEC60870_SEND_M_EI_NA_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_IT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_IT_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_IT_16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_IT_16_ET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_IT_1_ET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_ME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_ME_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_ME_16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_ME_16_ET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_ME_1_ET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_SP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction/IEC60870_SEND_M_SP_16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_SP_16_ET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Data/Send_monitored_direction_external_time_stamp/IEC60870_SEND_M_SP_1_ET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Parameter_setting/IEC60870_SEND_P_ME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_SetPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_SingleCommand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_SinglePointInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/General/IEC60870_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/IEC60870_TIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Enums/IEC60870Commands.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870Disable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870DisableSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870GetConfigAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870GetConfigValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870GetConnectionStatistics.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870GetPinData.html

● IEC60870GetStatesOfPinParam
● IEC60870GetStatesOfPins
● IEC60870GetTestInformation
● IEC60870SendCommand
● IEC60870SendPinData
● IEC60870SetParameterValues
● IEC60870SetPinData
● IEC60870StartScan
● IEC61850_ArrayBits_SwapLeft
● IEC61850_ASN1_Decoder
● IEC61850_ASN1_DECODING
● IEC61850_ASN1_Decoding_Data
● IEC61850_ASN1_EncodingBlock
● IEC61850_ASN1_EncodingSize
● IEC61850_ASN1_EncodingSpecific
● IEC61850_ASN1_EncodingStruct
● IEC61850_ASN1_GetNextTag
● IEC61850_ASN1_NewDecoder
● IEC61850_ByteBits_SwapLeft
● IEC61850_ByteBits_SwapRight
● IEC61850_CDC_ACD
● IEC61850_CDC_ACT
● IEC61850_CDC_ALM
● IEC61850_CDC_APC
● IEC61850_CDC_ASG
● IEC61850_CDC_ASS
● IEC61850_CDC_BCR
● IEC61850_CDC_BRCB
● IEC61850_CDC_BSC
● IEC61850_CDC_CMD
● IEC61850_CDC_CMV
● IEC61850_CDC_CSD
● IEC61850_CDC_CTE
● IEC61850_CDC_CURVE
● IEC61850_CDC_DEL
● IEC61850_CDC_DPC
● IEC61850_CDC_DPL
● IEC61850_CDC_DPS
● IEC61850_CDC_GoCB
● IEC61850_CDC_HDEL
● IEC61850_CDC_HMV
● IEC61850_CDC_HWYE
● IEC61850_CDC_INC
● IEC61850_CDC_ING
● IEC61850_CDC_INS
● IEC61850_CDC_ISC
● IEC61850_CDC_LPL
● IEC61850_CDC_MV
● IEC61850_CDC_ORG
● IEC61850_CDC_SAV
● IEC61850_CDC_SEC
● IEC61850_CDC_SEQ
● IEC61850_CDC_SPC
● IEC61850_CDC_SPG
● IEC61850_CDC_SPS

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4123

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870GetStatesOfPinParam.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870GetStatesOfPins.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870GetTestInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870SendCommand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870SendPinData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870SetParameterValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870SetPinData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Functions/IEC60870StartScan.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_ArrayBits_SwapLeft.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_Decoder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_DECODING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_Decoding_Data.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingSpecific.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/ASN1/IEC61850_ASN1_EncodingStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_GetNextTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_ASN1_NewDecoder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_ByteBits_SwapLeft.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_ByteBits_SwapRight.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_ACD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_ACT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_ALM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Analogue-Information/IEC61850_CDC_APC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Analogue-Information/IEC61850_CDC_ASG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_ASS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_BCR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_CDC_BRCB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_BSC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_CMD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_CMV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Description-Information/IEC61850_CDC_CSD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_CTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Analogue-Information/IEC61850_CDC_CURVE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_DEL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_DPC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Description-Information/IEC61850_CDC_DPL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_DPS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/IEC61850_CDC_GoCB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_HDEL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_HMV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_HWYE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_INC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Status-Settings/IEC61850_CDC_ING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_INS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_ISC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Description-Information/IEC61850_CDC_LPL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_MV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Status-Settings/IEC61850_CDC_ORG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_SAV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_SEC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_SEQ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Controllable-Status-Information/IEC61850_CDC_SPC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Status-Settings/IEC61850_CDC_SPG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Status-Information/IEC61850_CDC_SPS.html

● IEC61850_CDC_SPV
● IEC61850_CDC_STV
● IEC61850_CDC_TMS
● IEC61850_CDC_URCB
● IEC61850_CDC_WDPL
● IEC61850_CDC_WYE
● IEC61850_Check_HexString
● IEC61850_CheckBufferIx
● IEC61850_CheckByteOrder
● IEC61850_CheckClients
● IEC61850_CheckDataPoint
● IEC61850_CheckDoubleDP
● IEC61850_CheckEntryID
● IEC61850_CheckEnumRange
● IEC61850_CheckTrgOp
● IEC61850_CLIENT_ACCEPT
● IEC61850_ClientConnectionFB
● IEC61850_CONCAT3
● IEC61850_CONCAT4
● IEC61850_CONCAT5
● IEC61850_CONCAT6
● IEC61850_CpyAndSwap
● IEC61850_CreateBasicNames
● IEC61850_DatasetFB
● IEC61850_DateTime
● IEC61850_DecodeNull
● IEC61850_DeleteDataSet
● IEC61850_DWORD_TO_HEXSTRING
● IEC61850_Encoding_Array_Count
● IEC61850_Encoding_Array_Struct
● IEC61850_Encoding_Component
● IEC61850_Encoding_Component_Struct
● IEC61850_Encoding_ComponentSingle
● IEC61850_Encoding_DirectoryNames
● IEC61850_Encoding_ListOfData
● IEC61850_Encoding_ListOfData_Struct
● IEC61850_Encoding_ListOfVariable
● IEC61850_Encoding_Value
● IEC61850_ENUM_ASN1_TAGS
● IEC61850_ENUM_ATTR_NAMES
● IEC61850_ENUM_DA_ALM_STATE
● IEC61850_ENUM_DA_ANGID
● IEC61850_ENUM_DA_ANGIDCMV
● IEC61850_ENUM_DA_ANGLEREFERENCEKIND
● IEC61850_ENUM_DA_ASS_STVAL
● IEC61850_ENUM_DA_BEH
● IEC61850_ENUM_DA_CBOPCAP
● IEC61850_ENUM_DA_CMDQUAL
● IEC61850_ENUM_DA_CONTROLOUTPUTKIND
● IEC61850_ENUM_DA_CTE_HISRS
● IEC61850_ENUM_DA_CTE_RSPER
● IEC61850_ENUM_DA_CTLMODELKIND
● IEC61850_ENUM_DA_CTLMODELS
● IEC61850_ENUM_DA_CURVECHARKIND
● IEC61850_ENUM_DA_DAWEEKDAYKIND

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4124

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_SPV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_STV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_TMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_CDC_URCB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61400/CDC/IEC61850_CDC_WDPL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/Monitoring-Measurand-Information/IEC61850_CDC_WYE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_Check_HexString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_CheckBufferIx.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CheckByteOrder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CheckClients.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/DataSet/IEC61850_CheckDataPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_CheckDoubleDP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CheckEntryID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_CheckEnumRange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_CheckTrgOp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_CLIENT_ACCEPT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/BASIC/IEC61850_ClientConnectionFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CONCAT6.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_CpyAndSwap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_CreateBasicNames.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/DataSet/IEC61850_DatasetFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850_DateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_DecodeNull.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/DataSet/IEC61850_DeleteDataSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_DWORD_TO_HEXSTRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Array_Count.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Array_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Component.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Component_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ComponentSingle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_DirectoryNames.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ListOfData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ListOfData_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_ListOfVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_Encoding_Value.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_ENUM_ASN1_TAGS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/DataClass/IEC61850_ENUM_ATTR_NAMES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ALM_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ANGID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ANGIDCMV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ANGLEREFERENCEKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ASS_STVAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_BEH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CBOPCAP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CMDQUAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CONTROLOUTPUTKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTE_HISRS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTE_RSPER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTLMODELKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CTLMODELS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_CURVECHARKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DAWEEKDAYKIND.html

● IEC61850_ENUM_DA_DBPOS
● IEC61850_ENUM_DA_DIR
● IEC61850_ENUM_DA_DIRMOD
● IEC61850_ENUM_DA_ENUMERATED
● IEC61850_ENUM_DA_FAILMOD
● IEC61850_ENUM_DA_FANCTL
● IEC61850_ENUM_DA_FAULTDIRECTIONKIND
● IEC61850_ENUM_DA_GNST
● IEC61850_ENUM_DA_HEALTH
● IEC61850_ENUM_DA_HVID
● IEC61850_ENUM_DA_HVREFERENCEKIND
● IEC61850_ENUM_DA_LEVMOD
● IEC61850_ENUM_DA_LIVDEAMOD
● IEC61850_ENUM_DA_MOD
● IEC61850_ENUM_DA_MONTHKIND
● IEC61850_ENUM_DA_MULTIPLIER
● IEC61850_ENUM_DA_MULTIPLIERKIND
● IEC61850_ENUM_DA_OCCURRENCEKIND
● IEC61850_ENUM_DA_OPMOD
● IEC61850_ENUM_DA_ORCAT
● IEC61850_ENUM_DA_ORIGINATORCATEGORYKIND
● IEC61850_ENUM_DA_PERIODKIND
● IEC61850_ENUM_DA_PHASEANGLEREFERENCEKIND
● IEC61850_ENUM_DA_PHASEFAULTDIRECTIONKIND
● IEC61850_ENUM_DA_PHASEREFERENCEKIND
● IEC61850_ENUM_DA_PHSID
● IEC61850_ENUM_DA_POLQTY
● IEC61850_ENUM_DA_POWCAP
● IEC61850_ENUM_DA_RANGE
● IEC61850_ENUM_DA_RANGEKIND
● IEC61850_ENUM_DA_RETRMOD
● IEC61850_ENUM_DA_RSTMOD
● IEC61850_ENUM_DA_RVAMOD
● IEC61850_ENUM_DA_SBOCLASSES
● IEC61850_ENUM_DA_SBOCLASSKIND
● IEC61850_ENUM_DA_SCHTYP
● IEC61850_ENUM_DA_SEQT
● IEC61850_ENUM_DA_SEQUENCEKIND
● IEC61850_ENUM_DA_SETCHARACT
● IEC61850_ENUM_DA_SEV
● IEC61850_ENUM_DA_SEVERITYKIND
● IEC61850_ENUM_DA_SHOPCAP
● IEC61850_ENUM_DA_SIUNIT
● IEC61850_ENUM_DA_SIUNITKIND
● IEC61850_ENUM_DA_SPV_CHAPERRS
● IEC61850_ENUM_DA_SPV_SPACS
● IEC61850_ENUM_DA_SWOPCAP
● IEC61850_ENUM_DA_SWTYP
● IEC61850_ENUM_DA_TCMD
● IEC61850_ENUM_DA_TMS_HISRS
● IEC61850_ENUM_DA_TMS_RSPER
● IEC61850_ENUM_DA_TRGMOD
● IEC61850_ENUM_DA_TRMOD
● IEC61850_ENUM_DA_TYPRSCRV
● IEC61850_ENUM_DA_UNBLKMOD

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4125

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DBPOS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DIR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_DIRMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ENUMERATED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_FAILMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_FANCTL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_FAULTDIRECTIONKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_GNST.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_HEALTH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_HVID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_HVREFERENCEKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_LEVMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_LIVDEAMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MONTHKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MULTIPLIER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_MULTIPLIERKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_OCCURRENCEKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_OPMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ORCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_ORIGINATORCATEGORYKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PERIODKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHASEANGLEREFERENCEKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHASEFAULTDIRECTIONKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHASEREFERENCEKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_PHSID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_POLQTY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_POWCAP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RANGE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RANGEKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RETRMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RSTMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_RVAMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SBOCLASSES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SBOCLASSKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SCHTYP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEQT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEQUENCEKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SETCHARACT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SEVERITYKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SHOPCAP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SIUNIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SIUNITKIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SPV_CHAPERRS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SPV_SPACS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SWOPCAP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_SWTYP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TCMD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TMS_HISRS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TMS_RSPER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TRGMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TRMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_TYPRSCRV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_UNBLKMOD.html

● IEC61850_ENUM_DA_WEIMOD
● IEC61850_ENUM_ELEMENTTYP
● IEC61850_ENUM_FC
● IEC61850_ENUM_MMS_CONFIRMED_REQ_PDU
● IEC61850_ENUM_MMS_CONFIRMED_RESP_PDU
● IEC61850_ENUM_MMS_DataType
● IEC61850_ENUM_MMS_OBJECTCLASS
● IEC61850_ENUM_MMS_PDU
● IEC61850_ENUM_QUALITY
● IEC61850_ENUM_SERVICES
● IEC61850_ENUM_TRGOPT
● IEC61850_EthernetAdapter
● IEC61850_GetDatapoint
● IEC61850_GetDataPointLen
● IEC61850_GetDatapointRef
● IEC61850_GetDefinition
● IEC61850_GetDirectory
● IEC61850_GetDirectory_All
● IEC61850_GetFC
● IEC61850_GetReportLen
● IEC61850_GetURCBDataLen
● IEC61850_GetValue
● IEC61850_GetValues_All
● IEC61850_Goose_ASN1_Decoder
● IEC61850_GOOSE_MReq
● IEC61850_GooseDecodeData
● IEC61850_HEXSTRING_TO_DWORD
● IEC61850_HistDataBuffer_In
● IEC61850_HistDataBufferFB
● IEC61850_Init_BReportBlock
● IEC61850_Init_DataPoints
● IEC61850_Init_GoCB
● IEC61850_Init_UBReportBlock
● IEC61850_InitDSLastValPtr
● IEC61850_INT_TO_STRING
● IEC61850_MMS_Data_InterpreterFB
● IEC61850_MMS_ErrorPDU
● IEC61850_MMS_InterpreterFB
● IEC61850_MMSGetBlockLen
● IEC61850_ReadDWord
● IEC61850_ReadISOHeader
● IEC61850_ReadString
● IEC61850_ReadWord
● IEC61850_SetDatasetVal
● IEC61850_SetDSError
● IEC61850_SetISOEntry
● IEC61850_SetISOLen
● IEC61850_SetReportValue
● IEC61850_SetStructIndex
● IEC61850_SetTrgOpt
● IEC61850_SetValue
● IEC61850_SimpleClock
● IEC61850_STR_TO_BYTE
● IEC61850_String_Split
● IEC61850_SWAP_2_BYTE

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4126

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/ENUM_TYPES/IEC61850_ENUM_DA_WEIMOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_ENUM_ELEMENTTYP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_ENUM_FC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_CONFIRMED_REQ_PDU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_CONFIRMED_RESP_PDU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_ENUM_MMS_DataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_OBJECTCLASS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_MMS_PDU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/MMS/IEC61850_ENUM_QUALITY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_ENUM_SERVICES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_ENUM_TRGOPT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_EthernetAdapter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDatapoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_GetDataPointLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDatapointRef.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDefinition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDirectory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetDirectory_All.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_GetFC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850_GetReportLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_GetURCBDataLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_GetValues_All.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/IEC61850_Goose_ASN1_Decoder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/GOOSE/IEC61850_GOOSE_MReq.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/Tools/IEC61850_GooseDecodeData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_HEXSTRING_TO_DWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_HistDataBuffer_In.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_HistDataBufferFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_Init_BReportBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_Init_DataPoints.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/IEC61850_Init_GoCB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_Init_UBReportBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/DataSet/IEC61850_InitDSLastValPtr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_INT_TO_STRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850_MMS_Data_InterpreterFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850_MMS_ErrorPDU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850_MMS_InterpreterFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/GOOSE/IEC61850_MMSGetBlockLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/TOOLS/IEC61850_ReadDWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/TOOLS/IEC61850_ReadISOHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/TOOLS/IEC61850_ReadString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/TOOLS/IEC61850_ReadWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/DataSet/IEC61850_SetDatasetVal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/DataSet/IEC61850_SetDSError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/TOOLS/IEC61850_SetISOEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/TOOLS/IEC61850_SetISOLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Reporting/IEC61850_SetReportValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_SetStructIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/DataSet/IEC61850_SetTrgOpt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/CDC/CDC-Tools/IEC61850_SetValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850_SimpleClock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_STR_TO_BYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Decoding/IEC61850_String_Split.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_SWAP_2_BYTE.html

● IEC61850_SWAP_3_BYTE
● IEC61850_SWAP_4_BYTE
● IEC61850_SysMemCpy
● IEC61850_TimeStampR
● IEC61850_Version
● IEC61850_WordBits_SwapLeft
● IEC61850_WordBits_SwapRight
● IEC61850ServerFB
● IEC_BACNET_ERROR_TO_STRING
● IEC_CYCLE_STRUCT
● IEC_STATE
● IecOpcUaMapping
● IecTaskCreate
● IecTaskCreate2
● IecTaskDelete2
● IecTaskDelete3
● IecTaskDisableScheduling
● IecTaskDisableWatchdog
● IecTaskDisableWatchdog2
● IecTaskEnableScheduling
● IecTaskEnableWatchdog
● IecTaskEnableWatchdog2
● IecTaskGetCurrent
● IecTaskGetDesc
● IecTaskGetFirst
● IecTaskGetInfo3
● IecTaskGetNext
● IecTaskGetProfiling
● IecTaskGetWatchdogHitCount
● IecTaskReload
● IecTaskResetStatistics
● IecVarAccBrowseCallback
● IecVarAccBrowseDirection
● IecVarAccBrowseDown2
● IecVarAccBrowseGetNext2
● IecVarAccBrowseRecursive
● IecVarAccBrowseUp2
● IecVarAccess
● IecVarAccessUaInformationModelMetaData
● IecVarAccExitVarInfo
● IecVarAccGetFirstInterface
● IecVarAccGetFirstInterface2
● IecVarAccGetNextInterface
● IecVarAccGetNextInterface2
● IecVarAccGetNode4
● IecVarAccGetNodeFullPath4
● IecVarAccGetNodeName4
● IecVarAccGetSymbolSetMask
● IecVarAccInitVarInfo
● IecVarAccInitVarInfo2
● IecVarAccInvalidateNode
● IecVarAccNodeInfoAddBrowseInfo
● IecVarAccNodeInfoAddReference
● IecVarAccNodeInfoGetBrowseInfo
● IecVarAccNodeInfoGetReference

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4127

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_SWAP_3_BYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/MMS/IEC61850-Encoding/IEC61850_SWAP_4_BYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_SysMemCpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/IEC61850_TimeStampR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850_Version.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_WordBits_SwapLeft.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/IEC61850/Tools/IEC61850_WordBits_SwapRight.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/IEC61850ServerFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/IEC_BACNET_ERROR_TO_STRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IEC_CYCLE_STRUCT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Enums/IEC_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/IecOpcUaMapping.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskCreate2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDelete2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDelete3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDisableScheduling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDisableWatchdog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskDisableWatchdog2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskEnableScheduling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskEnableWatchdog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskEnableWatchdog2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetCurrent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetInfo3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetProfiling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskGetWatchdogHitCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskReload.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/IecTaskResetStatistics.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IecVarAccBrowseCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IecVarAccBrowseDirection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseDown2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseGetNext2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseRecursive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccBrowseUp2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess.library_Library/IecVarAccess.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess.library_Library/IecVarAccessUaInformationModelMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccExitVarInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetFirstInterface.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetFirstInterface2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNextInterface.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNextInterface2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNode4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNodeFullPath4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetNodeName4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccGetSymbolSetMask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccInitVarInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccInitVarInfo2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccInvalidateNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoAddBrowseInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoAddReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoGetBrowseInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoGetReference.html

● IecVarAccNodeInfoRemoveBrowseInfo
● IecVarAccNodeInfoRemoveReference
● IecVarAccRegisterInstance
● IecVarAccRegisterInstance2
● IecVarAccRegisterInstance3
● IecVarAccRegisterInstanceBase
● IecVarAccRegisterInstanceBase2
● IecVarAccSetSymbolconfigCrc
● IecVarAccSymbolSetDescription
● IecVarAccUnregisterInstance
● IecVarAccUpdateSymbolSets
● IEdgeTriggered
● IElement
● IEthernet
● IETrig
● IETrigA
● IETrigATl
● IETrigATlTo
● IETrigATo
● IETrigTl
● IETrigTlTo
● IETrigTo
● IExitActionProvider
● IExpandSubNodeAdapterSingleRelease
● IExternalUserDatabaseProvider
● IExternalUserDatabaseProvider2
● IFactory
● IFBCommand
● IFDBConfig
● IFileListProvider
● IFrame
● IFrameElement2
● IFrameElement3
● IFrameManager
● IFrameManager2
● IFrameManagerBase
● IGeneralCommand
● IGeneric
● IGestureEventHandler
● IGestureEventHandler2
● IGestureEventHandler3
● IGlobalClientManagerListener
● IGridProvider
● IHasContinuousBehaviour
● iIEC61850_LogicalDevice
● IIecVarAccess
● IIecVarAccess10
● IIecVarAccess11
● IIecVarAccess12
● IIecVarAccess13
● IIecVarAccess14
● IIecVarAccess15
● IIecVarAccess2
● IIecVarAccess3
● IIecVarAccess4

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4128

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoRemoveBrowseInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccNodeInfoRemoveReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstance2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstance3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstanceBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccRegisterInstanceBase2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccSetSymbolconfigCrc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IecVarAccSymbolSetDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccUnregisterInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess%20Implementation.library_Library/IecVarAccUpdateSymbolSets.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/IEdgeTriggered.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Element/IElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Interfaces/IEthernet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigATl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigATlTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigATo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigTl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigTlTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Edge-Triggered-Function-Blocks/Interfaces/IETrigTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IExitActionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IExpandSubNodeAdapterSingleRelease.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/ExternalUserDatabase/Interfaces/IExternalUserDatabaseProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/ExternalUserDatabase/Interfaces/IExternalUserDatabaseProvider2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Interfaces/IFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Interfaces/IFBCommand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/FDBConfig_Itfs.library_Library/FDBConfig/Interfaces/IFDBConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/IFileListProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Interfaces/IFrame.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IFrameElement2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IFrameElement3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IFrameManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IFrameManager2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IFrameManagerBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuCommandInterface.library_Library/IGeneralCommand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IGeneric.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGestureEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGestureEventHandler2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGestureEventHandler3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Visu_Itfs.library_Library/IGlobalClientManagerListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IGridProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/IHasContinuousBehaviour.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/iIEC61850_LogicalDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IIecVarAccess.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess10.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess11.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess12.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess13.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess14.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess15.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecVarAccess_Itfs.library_Library/IIecVarAccess2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess4.html

● IIecVarAccess5
● IIecVarAccess6
● IIecVarAccess7
● IIecVarAccess8
● IIecVarAccess9
● IIecVarAccessOpcUaMetaData
● IInputOnElementEventHandler
● IInputRectangle
● IInputRectangleMgr
● IInputRectangleProvider
● IInstance
● IInstancePathBuildingNode
● IIntElement
● IIoDrvEIPAcylicServices
● IIPAddress
● IIPAddressSet
● IIPv4Address
● IIterator
● IKeyEventHandler
● ILayeredVisualElement
● ILayerManager
● ILCon
● ILConC
● ILConTl
● ILConTlC
● ILConTlTo
● ILConTo
● ILeafTreeNode
● ILevelControlled
● ILinkedListIterator
● ILintElement
● IList
● IList2
● IListIterator
● ILocalAssigner
● ILocalizedDateTimeNames
● ILogger
● ILRealToStringFormatter
● ImagePool
● ImagePool_3DPath
● ImagePoolDialogs
● IMap
● IMap2
● IMemberIndex
● IMouseEventHandler
● IMultitouchElement
● INADDR
● INamedTreeNode
● INetworkInterface
● INFO
● InfoValues
● InitializeBACnetBitString
● InitializeBACnetBoolean
● InitializeBACnetDate
● InitializeBACnetDateRange

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4129

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess6.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess7.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IIecVarAccess9.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccessOpcUaMetaData_Itfs.library_Library/IIecVarAccessOpcUaMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IInputOnElementEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IInputRectangle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IInputRectangleMgr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IInputRectangleProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Interfaces/IInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections_Itfs.library_Library/IInstancePathBuildingNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IIntElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvEIPAcyclicService_Itfs.library_Library/IIoDrvEIPAcylicServices.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IP/IIPAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IP/IIPAddressSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IP/IIPv4Address.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Iterators/IIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IKeyEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ILayeredVisualElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ILayerManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILCon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/Interfaces/ILConC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILConTl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/Interfaces/ILConTlC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILConTlTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/Interfaces/ILConTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/ILeafTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ILevelControlled.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Iterators/ILinkedListIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/ILintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/List/IList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IList2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Iterators/IListIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/ILocalAssigner.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/ILocalizedDateTimeNames.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/ILogger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Interfaces/ILRealToStringFormatter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/ImagePool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElem3DPath.library_Library/Control/ImagePool_3DPath.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/ImagePoolDialogs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IMap2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IMemberIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IMouseEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IMultitouchElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/INADDR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections_Itfs.library_Library/INamedTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet_Itfs.library_Library/IIoDrvEthernet_Itfs/Interfaces/INetworkInterface.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Structs/INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/General-Types/InfoValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetBitString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetBoolean.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDateRange.html

● InitializeBACnetDateTime
● InitializeBACnetDateTimeUnspecified
● InitializeBACnetDevObjPropReference
● InitializeBACnetSetpointReference
● InitializeBACnetString
● InitializeBACnetTime
● InitializeBACnetTimeStamp
● InitializeEmptyPropertyInstance
● InitializePropertyInstance
● INode
● INode_TO_IBus
● INode_TO_IDevice
● INode_TO_IDevice2
● INode_TO_IStack
● INodeName
● INotificationClient
● InputDataSave
● INSERT
● Inspect_Heap
● InstanceBase
● InstanceData
● InstancePathBuildingBranchNode
● InstancePathBuildingNode
● InstancePathBuildingNodeType
● InstancePathNodeFinder
● INT64
● INT64_TO_DT
● INT64_TO_ISO8601
● INT64_TO_LOCALTIME
● INT64_TO_LTIME
● INT64_TO_REAL8
● INT64_TO_TIME
● INT64_TO_UTC
● INT_TO_BCD
● INT_TO_SIGNED
● INTEGRAL
● Integral
● IntElement
● IntElementFactory
● InterfaceVersion
● InternalState
● INullElement
● IO_PROD_ENTRY_READ
● IO_SYSTEM_TYPE
● IOBus_Download
● IOBus_GetBusInfo
● IOBus_GetBusStatistcis
● IOBus_GetDownloadState
● IOBus_GetHotplugOK
● IOBus_GetIODriverVersion
● IOBus_GetModState
● IOBus_GetModuleInfo
● IOBus_GetModuleLinkStatistics
● IOBus_GetModuleStatistics
● IOBus_GetModuleVersion

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4130

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDateTimeUnspecified.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetDevObjPropReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetSetpointReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/InitializeBACnetDataTypes/InitializeBACnetTimeStamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetProperties/InitializeEmptyPropertyInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetProperties/InitializePropertyInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/INode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IBus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IDevice2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Functions/INode_TO_IStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagUtil_1.3.9.3_Library/Interfaces/INodeName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/INotificationClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/InputDataSave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/INSERT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Tests/Inspect_Heap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Instance/InstanceBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20FB%20Factory.library_Library/Instance/InstanceData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/InstancePathBuildingBranchNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/InstancePathBuildingNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections_Itfs.library_Library/InstancePathBuildingNodeType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/InstancePathNodeFinder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/INT64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_DT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_ISO8601.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TIMEZONE/INT64_TO_LOCALTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_LTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_REAL8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/INT64_TO_TIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TIMEZONE/INT64_TO_UTC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/INT_TO_BCD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/INT_TO_SIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/INTEGRAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/Integral.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/IntElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/IntElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/InterfaceVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Enums/InternalState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/INullElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/CompatibleV23/IO_PROD_ENTRY_READ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/IO_SYSTEM_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_Download.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetBusInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetBusStatistcis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetDownloadState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetHotplugOK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetIODriverVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetModState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleLinkStatistics.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleStatistics.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetModuleVersion.html

● IOBus_GetPlugged
● IOBus_GetProductionData
● IOBus_GetRun
● IOBUS_INFO
● IOBUS_LINKSTATISTICS
● IOBUS_MOD_STATE
● IOBUS_MODUL_STATE
● IOBUS_MODULINFO
● IOBUS_PARA_STATE
● IOBUS_PRODDATA
● IOBUS_STATISTICS
● IOBus_SwitchLinkStatistics
● IOBUS_TU_STATE
● IOBUS_VERSIONINFO
● IoCnt
● IoConfigChannelMap
● IoConfigConnector
● IoConfigConnectorMap
● IoConfigParameter
● IoConfigTaskMap
● IoDiag
● IoDriverVersion
● IoDrvAnalogBase
● IoDrvBase
● IoDrvCIFX
● IoDrvCIFXEthernetIP
● IoDrvCIFXEthernetIP_Diag
● IoDrvCIFXProfinetDevice
● IoDrvCIFXProfinetDeviceDiag
● IoDrvCM579EtherCAT
● IoDrvCM579EtherCATDiag
● IoDrvCM579Profinet
● IoDrvCM579ProfinetDiag
● IoDrvCM582Profibus
● IoDrvCM582ProfibusDiag
● IoDrvCM589Profinet
● IoDrvCM589ProfinetDiag
● IoDrvCM592Profibus
● IoDrvCM592ProfibusDiag
● IoDrvCM598
● IoDrvCM598Diag
● IoDrvCpuModuleDiag
● IoDrvDigitalOptionBoardBase
● IoDrvEtherCAT
● IoDrvEthercat_Diag
● IoDrvEthernet
● IoDrvEthernetAC500
● IoDrvEthernetAC500Diag
● IoDrvEthernetDiag
● IoDrvEtherNetIP
● IoDrvEtherNetIP_diag
● IoDrvEtherNetIPAdapter
● IoDrvEtherNetIPAdapter_Diag
● IoDrvInfo
● IoDrvIoBusModuleDiag

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4131

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetPlugged.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetProductionData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_GetRun.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Structs/IOBUS_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Structs/IOBUS_LINKSTATISTICS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Structs/IOBUS_MOD_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Enums/IOBUS_MODUL_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Structs/IOBUS_MODULINFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Enums/IOBUS_PARA_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Structs/IOBUS_PRODDATA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Structs/IOBUS_STATISTICS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Functions/IOBus_SwitchLinkStatistics.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Enums/IOBUS_TU_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IOBus_Ext_Ref_1.1.3.1_Library/IOBus_Ext_Ref/Structs/IOBUS_VERSIONINFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/Counter/IoCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigChannelMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigConnector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigConnectorMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr_Itfs.library_Library/Config-Types/IoConfigTaskMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoDriverVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.4.3_Library/Function-Blocks/IoDrvAnalogBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvBase.library_Library/IoDrvBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXBase.library_Library/FunctionBlocks/IoDrvCIFX.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/IoDrvCIFXEthernetIP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/Diagnosis/IoDrvCIFXEthernetIP_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/FunctionBlocks/IoDrvCIFXProfinetDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/FunctionBlocks/IoDrvCIFXProfinetDeviceDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.4.1_Library/Function-Blocks/IoDrvCM579EtherCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.4.1_Library/Function-Blocks/IoDrvCM579EtherCATDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579Profinet_2.0.1.2_Library/Function-Blocks/IoDrvCM579Profinet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579Profinet_2.0.1.2_Library/Function-Blocks/IoDrvCM579ProfinetDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.3.1_Library/Function-Blocks/IoDrvCM582Profibus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM582Profibus_1.0.3.1_Library/Function-Blocks/IoDrvCM582ProfibusDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM589Profinet_2.3.1.1_Library/Function-Blocks/IoDrvCM589Profinet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM589Profinet_2.3.1.1_Library/Function-Blocks/IoDrvCM589ProfinetDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM592Profibus_1.0.3.1_Library/Function-Blocks/IoDrvCM592Profibus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM592Profibus_1.0.3.1_Library/Function-Blocks/IoDrvCM592ProfibusDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.3.1_Library/Function-Blocks/IoDrvCM598.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM598_1.4.3.1_Library/Function-Blocks/IoDrvCM598Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagCpu_1.2.3.1_Library/Function-Blocks/IoDrvCpuModuleDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvDigitalOptionBoard_1.1.5.3_Library/Generic/Function-Blocks/IoDrvDigitalOptionBoardBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/IoDrvEtherCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IODrvEtherCATDriver.library_Library/Diagnosis/IoDrvEthercat_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Function-Blocks/IoDrvEthernet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvEthernet_1.0.3.1_Library/Function-Blocks/IoDrvEthernetAC500.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvEthernet_1.0.3.1_Library/Function-Blocks/IoDrvEthernetAC500Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Function-Blocks/IoDrvEthernetDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Function-Blocks/IoDrvEtherNetIP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Function-Blocks/Device-Diagnosis/IoDrvEtherNetIP_diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/IoDrvEtherNetIPAdapter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Diagnosis/IoDrvEtherNetIPAdapter_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDriver2_Itfs.library_Library/IoDrvInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagIoBus_1.2.3.2_Library/Function-Blocks/IoDrvIoBusModuleDiag.html

● IoDrvJ1939Diag
● IoDrvKNX
● IoDrvKNXDiag
● IoDrvOnboardEtherCAT
● IoDrvOnboardEtherCAT_Diag
● IoDrvOnboardIO
● IoDrvOnboardIODiag
● IoDrvS500ModuleDiag
● IoDrvSM560
● IoDrvSM560Diag
● IoDrvTA5101
● IoDrvTA5101Diag
● IoDrvTA5105
● IoDrvTA5105Diag
● IoDrvTA5110
● IoDrvTA5110Diag
● IoDrvTA5120
● IoDrvTA5120Diag
● IoDrvTA5122
● IoDrvTA5122Diag
● IoDrvTA5123
● IoDrvTA5123Diag
● IoDrvTA5126
● IoDrvTA5126Diag
● IoDrvTA5128
● IoDrvTA5128Diag
● IoInformation
● IOL_AdditionalCode
● IOL_AdjustableSwitchingSensor
● IOL_AdSS_Function
● IOL_AdSS_Status
● IOL_AdSS_TeachFunction
● IOL_AdSS_TeachMode
● IOL_CALL
● IOL_DataStorage
● IOL_DiagEntry
● IOL_Error
● IOL_ErrorCode
● IOL_Event
● IOL_EventCode
● IOL_EventCode_Device
● IOL_EventCode_Port
● IOL_EventQualifier
● IOL_EventQualifier_Instance
● IOL_EventQualifier_Mode
● IOL_EventQualifier_Source
● IOL_EventQualifier_Type
● IOL_FieldbusStatus
● IOL_GetEvent_ChannelDiagnosis
● IOL_GetEvent_UDINT
● IOL_IdentificationAndDiagnosis
● IOL_IdentificationAndDiagnosis_Function
● IOL_IdentificationObjects
● IOL_Index
● IOL_IOLM_Info

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4132

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Device-Diagnosis/IoDrvJ1939Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/Function-Blocks/IoDrvKNX.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/IoDrvKNX/Function-Blocks/IoDrvKNXDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardEtherCAT_1.0.1.1_Library/Function-blocks/IoDrvOnboardEtherCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardEtherCAT_1.0.1.1_Library/Function-blocks/Diagnosis/IoDrvOnboardEtherCAT_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardIO_1.0.9.2_Library/Generic/Function-Blocks/IoDrvOnboardIO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvOnboardIO_1.0.9.2_Library/Generic/Function-Blocks/IoDrvOnboardIODiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DiagS500_1.3.0.3_Library/Function-Blocks/IoDrvS500ModuleDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvSM560_1.4.1.1_Library/Function-Blocks/IoDrvSM560.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvSM560_1.4.1.1_Library/Function-Blocks/IoDrvSM560Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5101_1.0.4.1_Library/Function-Blocks/IoDrvTA5101.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5101_1.0.4.1_Library/Function-Blocks/IoDrvTA5101Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5105_1.0.4.1_Library/Function-Blocks/IoDrvTA5105.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5105_1.0.4.1_Library/Function-Blocks/IoDrvTA5105Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5110_1.0.4.1_Library/Function-Blocks/IoDrvTA5110.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5110_1.0.4.1_Library/Function-Blocks/IoDrvTA5110Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5120_1.1.3.1_Library/Function-Blocks/IoDrvTA5120.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5120_1.1.3.1_Library/Function-Blocks/IoDrvTA5120Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5122_1.1.3.1_Library/Function-Blocks/IoDrvTA5122.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5122_1.1.3.1_Library/Function-Blocks/IoDrvTA5122Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5123_1.1.3.1_Library/Function-Blocks/IoDrvTA5123.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5123_1.1.3.1_Library/Function-Blocks/IoDrvTA5123Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5126_1.1.3.1_Library/Function-Blocks/IoDrvTA5126.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5126_1.1.3.1_Library/Function-Blocks/IoDrvTA5126Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5128_1.0.0.1_Library/Function-Blocks/IoDrvTA5128.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvTA5128_1.0.0.1_Library/Function-Blocks/IoDrvTA5128Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_AdditionalCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/IOL_AdjustableSwitchingSensor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_Function.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_Status.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_TeachFunction.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/DataTypes/IOL_AdSS_TeachMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_CALL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_DataStorage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_DiagEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_Error.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_ErrorCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_Event.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventCode_Device.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventCode_Port.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Instance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Mode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Source.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_EventQualifier_Type.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_FieldbusStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_GetEvent_ChannelDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_GetEvent_UDINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_IdentificationAndDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_IdentificationAndDiagnosis_Function.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_IdentificationObjects.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_Index.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_IOLM_Info.html

● IOL_IOLM_InfoRecord
● IOL_IQ_Behavior
● IOL_MasterIdent
● IOL_MasterIdent_Features_1
● IOL_MasterType
● IOL_MeasurementDataChannel
● IOL_PN_PortControl
● IOL_PortConfigList
● IOL_PortConfiguration
● IOL_PortConfigurationRecord
● IOL_PortError
● IOL_PortMode
● IOL_PortQualityInfo
● IOL_PortStatus
● IOL_PortStatusInfo
● IOL_PortStatusList
● IOL_PortStatusRecord
● IOL_PortType
● IOL_PQI
● IOL_ProfileIdentifier
● IOL_TransmissionRate
● IOL_ValidationBackup
● IoMgrConfigGetConnector
● IoMgrConfigGetConnectorByDriver
● IoMgrConfigGetConnectorList
● IoMgrConfigGetDriver
● IoMgrConfigGetFirstChild
● IoMgrConfigGetFirstConnector
● IoMgrConfigGetFirstParameter
● IoMgrConfigGetNextChild
● IoMgrConfigGetNextConnector
● IoMgrConfigGetNextParameter
● IoMgrConfigGetParameter
● IoMgrConfigGetParameterValueByte
● IoMgrConfigGetParameterValueDword
● IoMgrConfigGetParameterValuePointer
● IoMgrConfigGetParameterValueWord
● IoMgrConfigResetDiagnosis
● IoMgrConfigSetDiagnosis
● IoMgrCopyInputBE
● IoMgrCopyInputLE
● IoMgrCopyOutputBE
● IoMgrCopyOutputLE
● IoMgrGetBusCycleType
● IoMgrGetConfigApplication
● IoMgrGetDriverProperties
● IoMgrGetFirstDriverInstance
● IoMgrGetModuleDiagnosis
● IoMgrGetNextDriverInstance
● IoMgrIdentify
● IoMgrLockEnter
● IoMgrLockLeave
● IoMgrReadInputs
● IoMgrReadParameter
● IoMgrReconfigure

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4133

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_IOLM_InfoRecord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_IQ_Behavior.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_MasterIdent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_MasterIdent_Features_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_MasterType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/SmartSensorProfile/IOL_MeasurementDataChannel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PN_PortControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortConfigList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_PortConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortConfigurationRecord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/DataTypes/IOL_PortError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortQualityInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL_PortStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortStatusInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortStatusList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortStatusRecord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PortType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_PQI.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_ProfileIdentifier.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_TransmissionRate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/IOL_ValidationBackup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetConnector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrConfigGetConnectorByDriver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrConfigGetConnectorList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrConfigGetDriver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetFirstChild.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetFirstConnector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoMgr_1.0.3.1_Library/Functions/IoMgrConfigGetFirstParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetNextChild.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetNextConnector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoMgr_1.0.3.1_Library/Functions/IoMgrConfigGetNextParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValueByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValueDword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValuePointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigGetParameterValueWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigResetDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ConfigAccess/IoMgrConfigSetDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyInputBE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyInputLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyOutputBE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrCopyOutputLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetBusCycleType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetConfigApplication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetDriverProperties.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetFirstDriverInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrGetModuleDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrGetNextDriverInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrIdentify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrLockEnter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrLockLeave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrReadInputs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrvParameter/IoMgrReadParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrReconfigure.html

● IoMgrRegisterConfigApplication
● IoMgrRegisterInstance2
● IoMgrScanModules
● IoMgrSetDriverProperties
● IoMgrSetDriverProperty
● IoMgrStartBusCycle
● IoMgrStartBusCycle2
● IoMgrUnregisterConfigApplication
● IoMgrUnregisterInstance
● IoMgrUpdateConfiguration
● IoMgrUpdateConfiguration2
● IoMgrUpdateMapping
● IoMgrUpdateMapping2
● IoMgrWatchdogTrigger
● IoMgrWriteOutputs
● IoMgrWriteParameter
● IoModuleDiag
● IoModuleHotSwapInfo
● IoModuleInfo
● IoModuleInfoExt
● IOnlineChangeSafeLinkedListElement
● IOPCUAClientConnectionCallback
● IOPCUAClientDataAccessCallback
● IOPCUAClientDiscoveryCallback
● IOPCUAClientMethodCallback
● IOPCUAClientMonitoredItemCallback
● IOPCUAClientSubscriptionCallback
● IOPCUAClientViewCallback
● IOpcUaDataTypeMetaData
● IOpcUaInstanceMetaData
● IoProdEntryRead
● IOptionalMultitouchElement
● IOptionProvider
● IOxStatus
● IP_ADDR
● IP_ADR_DWORD_TO_STRING
● IP_ADR_STRING_TO_DWORD
● IP_ElementImages
● IP_VUM
● IPAADialog
● IPAADialog2
● IPacket
● IPacketPool
● IPacketQueue
● IPADDRESS
● IPAddressSet
● IPaintAfterAll
● IPaintAfterAll2
● IPaintAfterAllOwningElement
● IPaintAfterAllRectangleProvider
● IPaintAfterAllSelection
● IPaintSelectionInElement
● IPARRAY_TO_INADDR
● IPARRAY_TO_IPSTRING
● IPARRAY_TO_UDINT

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4134

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrRegisterConfigApplication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrRegisterInstance2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrScanModules.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrSetDriverProperties.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrSetDriverProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrStartBusCycle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrStartBusCycle2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrUnregisterConfigApplication.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/IoMgrUnregisterInstance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateConfiguration2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateMapping.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrUpdateMapping2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrWatchdogTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrv/IoMgrWriteOutputs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIoMgr%20Implementation.library_Library/ICmpIoDrvParameter/IoMgrWriteParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoModuleDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoModuleHotSwapInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoModuleInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoModuleInfoExt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IOnlineChangeSafeLinkedListElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientConnectionCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientDataAccessCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientDiscoveryCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientMethodCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientMonitoredItemCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientSubscriptionCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Interfaces/IOPCUAClientViewCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IOpcUaDataTypeMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/IOpcUaInstanceMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Io_1.2.4.1_Library/Function-Blocks/IO-Bus/IoProdEntryRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IOptionalMultitouchElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/IOptionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IOxStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Structs/IP_ADDR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Functions/IP-Conversions/IP_ADR_DWORD_TO_STRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Functions/IP-Conversions/IP_ADR_STRING_TO_DWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/IP_ElementImages.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/IP_VUM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPAADialog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPAADialog2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPacketPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPacketQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Types/IPADDRESS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/IP/IPAddressSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAll.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAll2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAllOwningElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAllRectangleProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IPaintAfterAllSelection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/IPaintSelectionInElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/IPARRAY_TO_INADDR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/IPARRAY_TO_IPSTRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/IPARRAY_TO_UDINT.html

● IPBSlaveDiag
● IPeer
● IPersistantRecipeListSupportsAdd
● IPoolExtender
● IPParameterValue
● IProvidesBitOffset
● IProvidesConcreteType
● IProvidesContainerSize
● IProvidesDifferentRemoteName
● IProvidesRootInfo
● IProvidesTabOrder
● IProxyMonitor
● IPseudoNode
● IPSTRING_TO_UDINT
● IPStringAndIntElement
● IPStringElement
● iPTOKernel
● IPv4Address
● IQueryInterfaceElement
● IQueue
● IQueue2
● IRecipeCheckOnStart
● IRecipeDefinition2
● IRecipeDefinition3
● IReconfigureProvider
● IRectangleListManager
● IRectangleListManager2
● IRectangleListManager3
● IRectangleListManager4
● IRectangleProvider
● IRequest
● IRequestResult
● IRequiresInitMeasureString
● IResetActionProvider
● IResolveCallbackHandler
● IRoleEtherCAT
● IRoleEtherCATMaster
● IRootAddressNodeWithDatasourceIndex
● IRow
● IRow2
● IRow3
● IRowAsync
● IRowBase
● IRowIdIterator
● IRowPlanchet
● IRowPlanchetAsync
● IRPCCLClient
● IRPCCLClientCallback
● IRPCProvider
● IRPCProviderCallback
● IRtsServiceHandler
● IRtsServiceHandler2
● Is29BitIdMessage
● IS_MULTICAST_GROUP
● IsAcceptedLeafNode

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4135

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/Diagosis/IPBSlaveDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/UDP/IPeer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Interfaces/IPersistantRecipeListSupportsAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/RSM%20Utility.library_Library/RSM-Utility/Interfaces/IPoolExtender/IPoolExtender.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/IPParameterValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IProvidesBitOffset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/IProvidesConcreteType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IProvidesContainerSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IProvidesDifferentRemoteName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IProvidesRootInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IProvidesTabOrder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/IProxyMonitor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IPseudoNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/IPSTRING_TO_UDINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/IPStringAndIntElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/IPStringElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.1.0.6_Library/OBIO_FunctionBlocks/iPTOKernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/IP/IPv4Address.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/ClientObjectInfo/IQueryInterfaceElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IQueue2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Interfaces/IRecipeCheckOnStart.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Interfaces/IRecipeDefinition2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Interfaces/IRecipeDefinition3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IReconfigureProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleListManager4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRectangleProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Requests/IRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/IRequestResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IRequiresInitMeasureString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IResetActionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/IResolveCallbackHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IRoleEtherCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/DeviceBase_1.0.2.1_Library/Interfaces/IRoleEtherCATMaster.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Interfaces/IRootAddressNodeWithDatasourceIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRow.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRow2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRow3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/IRowAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRowBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/IRowIdIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IRowPlanchet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/IRowPlanchetAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCCLClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCCLClientCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Interfaces/IRPCProviderCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Interfaces/IRtsServiceHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Interfaces/IRtsServiceHandler2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/Is29BitIdMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/IS_MULTICAST_GROUP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/IsAcceptedLeafNode.html

● ISampleActionProvider
● ISavepoint
● ISavepointAsync
● IsBACnetBACnetDateTimeUnspecified
● IsBACnetDateTimeUnspecified
● IsBACnetObjectAMEVCreatable
● IsBACnetPropertyAMEVASBWritable
● IsBroadcast
● IScrollValueProvider
● ISearchCallbacks
● ISegment
● ISegmentPool
● ISelectableInside
● ISelectionManager
● IServer
● IServiceReader
● IServiceWriter
● IsHandleValid
● ISimpleList
● ISimpleTree
● IsInvalidMemoryAddress
● ISizeProvider
● IsLeapYear
● IsLegalUTF8
● IsLibReleased
● IsLRealNaN
● IsLRealNegInfinity
● IsLRealNumber
● IsLRealPosInfinity
● ISO8073_FB
● ISO8327_FB
● ISO8327_ReadHeader
● ISO8601
● ISO8601_TO_DT
● ISO8601_TO_LTIME
● ISO8601_TO_TIME
● ISO8650_FB
● ISO8823_FB
● ISOLayer_FB
● ISortedList
● ISortedList2
● IsP2P
● ISpecialEventHandler
● IsRealNaN
● IsRealNegInfinity
● IsRealNumber
● IsRealPosInfinity
● IsRTRMessage
● IsSendingActive
● IsSpaceCharacter
● IStack
● IStack2
● IStartActionProvider
● IStorage
● IStorage2

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4136

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/ISampleActionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Transaction/ISavepoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncTransaction/ISavepointAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/IsBACnetBACnetDateTimeUnspecified.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/FromBACnetDataTypes/IsBACnetDateTimeUnspecified.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetProperties/IsBACnetObjectAMEVCreatable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetProperties/IsBACnetPropertyAMEVASBWritable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/IsBroadcast.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/Multitouch/IScrollValueProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/ISearchCallbacks.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/ISegment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/ISegmentPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ISelectableInside.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ISelectionManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IServer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/IServiceReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/IServiceWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/Callback-Info/IsHandleValid.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/List/ISimpleList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Tree/ISimpleTree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/IsInvalidMemoryAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/FunctionBlocks/SizeProvider/ISizeProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/IsLeapYear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/UTF8/IsLegalUTF8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvKNX_4.0.4.1_Library/Library-Information/IsLibReleased.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealNaN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealNegInfinity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealNumber.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/LREAL/IsLRealPosInfinity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/ISO8073_FB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/ISO8327_FB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/TOOLS/ISO8327_ReadHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/ISO8601.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/ISO8601_TO_DT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/ISO8601_TO_LTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/ISO8601_TO_TIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/ISO8650_FB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/ISO8823_FB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/POUs/ISO/ISOLayer_FB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ISortedList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ISortedList2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/IsP2P.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ISpecialEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealNaN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealNegInfinity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealNumber.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/REAL/IsRealPosInfinity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/IsRTRMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/IsSendingActive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/UTF8/IsSpaceCharacter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Interfaces/IStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/IStack2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/IActionProvider/IStartActionProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IStorage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/IStorage2.html

● IStorageAsync
● IsTransmitMessage
● IStream
● IStringElement
● ISupportsRealDrawing
● ISwipeableFrame
● ITable
● ITable2
● ITable3
● ITable4
● ITableAsync
● ITaskFinishedCallback
● ItemAccess
● ItemName
● ItemNameType
● ITempShutdownResult
● ItemQuality
● ITextListInfo
● ITextListWrapper
● ITimeElement
● ITimeLimited
● ITimeOutConstraint
● ITimingControlled
● ITimingController
● ITLSContext
● ITraceAddressInfoWriter
● ITransaction
● ITransactionAsync
● ITransformationImplProvider
● ITree
● ITreeNode
● ITreeWalker
● ITrendRecording2
● ITrendRootPageManager2
● ITrendStorageAccessReadOperator
● ITrendStorageAccessReadOperator2
● ITrendStorageReaderConsumer
● ITrendStorageWriter4
● ITrendStorageWriterListener
● ITSNContext
● ITypedElement
● ITypeDesc
● ITypeDesc2
● ITypeDesc3
● ITypeDesc4
● ITypeDescExecutable
● ITypeDescSubrange
● ITypeDescWithAttributes
● ITypeDescWithBaseType
● ITypeDescWithReferenceType
● ITypedList
● ITypedTree
● IUdintElement
● IUintElement
● IUlintElement

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4137

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/IStorageAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/IsTransmitMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TCP/IStream.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IStringElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/ISupportsRealDrawing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ISwipeableFrame.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Storage/ITable4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncStorage/ITableAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/ITaskFinishedCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ItemAccess.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ItemName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ItemNameType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/ITempShutdownResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ItemQuality.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/TextListInfo/ITextListInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ITextListWrapper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/ITimeElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ITimeLimited.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ITimeOutConstraint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Decorators/ITimingControlled.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/Interfaces/ITimingController.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TLS/ITLSContext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ITraceAddressInfoWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/Transaction/ITransaction.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Interfaces/AsyncTransaction/ITransactionAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/ITransformationImplProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Tree/ITree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Collections/ITreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Interfaces/ITreeWalker.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendRecording2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendRootPageManager2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendStorageAccessReadOperator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendStorageAccessReadOperator2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ITrendStorageReaderConsumer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/ITrendStorageWriter4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/ITrendStorageWriterListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Interfaces/TSN/ITSNContext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Element/ITypedElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDesc4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescExecutable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescSubrange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescWithAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescWithBaseType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/ITypeDescWithReferenceType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/List/ITypedList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Interfaces/Tree/ITypedTree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IUdintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IUintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IUlintElement.html

● IUseDataContextSubNodes
● IUserConfiguration
● IUserMgmtEventHandler
● IValueChangedListener
● IVariableInfoCollectsSpecialAddressInfos
● IVariableInfoCollectsToplevelAddressInfo
● IVariableInformation
● IVariableInformation2
● IVariableInformation3
● IVariableInformation4
● IVariableInformation5
● IVerifyCertCallback
● IVisualElementLayer
● IVisualElementOfflineScaling
● IVisualElementProvidesChildElements
● IVisualElementProvidesSubElements
● IVisualElementWithoutBlobInit
● IVisualisationAccessRights
● IVisualizationClient
● IVisualizationClientFilter
● IVisualizationClientIteration
● IVisualizationClientRaw
● IVisualizationStyle
● IVisualTableColumnSimpleBase
● IVisuGlobalClientManager2
● IVisuGlobalClientManager3
● IVisuManager
● IVisuManager2
● IVisuManager3
● IVisuManagerBase
● IVisuStreamFileNameInfo
● IVisuStreamHandler
● IVisuStreamReader
● IVisuStreamSetFileName
● IVisuStreamWriter
● IVisuUserEventManager
● IVisuUserManagement
● IVisuUserManagement2
● IVisuUserManagement3
● IVisuUserManagement4
● IVisuUserMgmt
● IVisuUserMgmt2
● IVisuUserMgmt3
● IVisuUserMgmt4
● IVisuUserMgmtCyclicCall
● IVisuUserMgmtProvider
● IWORKER
● IWStringElement
● IXYChartAlloc
● IXYChartDataProvider
● IXYChartDataProvider2
● IXYChartDataProvider3
● IXYChartDataProviderAxis
● IXYChartDataProviderCurve
● IXYChartDataProviderCurveCheckPointer

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4138

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Interfaces/IUseDataContextSubNodes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/IUserConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IUserMgmtEventHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IValueChangedListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Interfaces/IVariableInfoCollectsSpecialAddressInfos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Interfaces/IVariableInfoCollectsToplevelAddressInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/IVariableInformation5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTls_Itfs.library_Library/IVerifyCertCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualElementLayer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualElementOfflineScaling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualElementProvidesChildElements.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualElementProvidesSubElements.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/IVisualElementWithoutBlobInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualisationAccessRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Interfaces/IVisualizationClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Interfaces/IVisualizationClientFilter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Interfaces/IVisualizationClientIteration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Interfaces/IVisualizationClientRaw.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisualizationStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/IVisualTableColumnSimpleBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Visu_Itfs.library_Library/IVisuGlobalClientManager2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Visu_Itfs.library_Library/IVisuGlobalClientManager3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuManager2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuManager3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuManagerBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamFileNameInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamSetFileName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuStreamWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Interfaces/IVisuUserEventManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VisuUserManagement/IVisuUserManagement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VisuUserManagement/IVisuUserManagement2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VisuUserManagement/IVisuUserManagement3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VisuUserManagement/IVisuUserManagement4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Interfaces/IVisuUserMgmt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Interfaces/IVisuUserMgmt2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Interfaces/IVisuUserMgmt3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Interfaces/IVisuUserMgmt4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Interfaces/IVisuUserMgmtCyclicCall.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Interfaces/IVisuUserMgmtProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/IWORKER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Interfaces/Elements/IWStringElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Interfaces/IXYChartAlloc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProvider2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProvider3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProviderAxis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProviderCurve.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartDataProviderCurveCheckPointer.html

● IXYChartFont
● IXYChartGenericVariable
● IXYChartGenericVariable2
● IXYChartStringApproxMeasurer
● IXYChartVisuStructLevelLine
● J1939ECUBase
● J1939LocalECU
● J1939LocalECUDiag
● J1939RemoteECU
● J1939RemoteECUDiag
● Jitter_Distribution
● JOB_STATE
● JobAbort
● JobClass
● JobClose
● JobExecute
● JobGetId
● JobGetParams
● JobGetState
● JobOpen
● JobOpenEx
● JobReset
● JobSetState
● JoinDateTime
● JSON_ARR_REF
● JSON_OBJ_REF
● JsonAddArray
● JsonAddBool
● JsonAddInt
● JsonAddObject
● JsonAddReal
● JsonAddString
● JsonArrayAddArray
● JsonArrayAddBool
● JsonArrayAddInt
● JsonArrayAddObject
● JsonArrayAddReal
● JsonArrayAddString
● JsonArrayGetArray
● JsonArrayGetBool
● JsonArrayGetInt
● JsonArrayGetObject
● JsonArrayGetReal
● JsonArrayGetString
● JsonArrayRemoveEntry
● JsonCreateArray
● JsonCreateObject
● JsonFreeArray
● JsonFreeObject
● JsonGetArray
● JsonGetBool
● JsonGetInt
● JsonGetObject
● JsonGetReal
● JsonGetString

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4139

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartFont.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartGenericVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartGenericVariable2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartStringApproxMeasurer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Interfaces/IXYChartVisuStructLevelLine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/J1939ECUBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/J1939LocalECU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Device-Diagnosis/J1939LocalECUDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/J1939RemoteECU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Device-Diagnosis/J1939RemoteECUDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Jitter_Distribution.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Enums/JOB_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobAbort.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Internal/JobClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobExecute.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobGetId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobGetParams.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobGetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobOpenEx.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/JobSetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/JoinDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Types/JSON_ARR_REF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Types/JSON_OBJ_REF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonAddArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonAddBool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonAddInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonAddObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonAddReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonAddString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddBool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonArrayAddString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetBool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Parsing/JsonArrayGetString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonArrayRemoveEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonCreateArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonCreateObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Cleanup/JsonFreeArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Cleanup/JsonFreeObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Parsing/JsonGetArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Parsing/JsonGetBool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Parsing/JsonGetInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Parsing/JsonGetObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Parsing/JsonGetReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Parsing/JsonGetString.html

● JsonParseArrayFromString
● JsonParseObjectFromString
● JsonRemoveEntry
● JsonSerializeArray
● JsonSerializeObject
● KeyValuePair
● LAMP_FLASH
● LAMP_INFO
● LAMP_STATUS
● LargeReadRequest
● LargeWriteRequest
● LatchVariable
● LCon
● LConC
● LConTl
● LConTlC
● LConTlTo
● LConTo
● LCTD
● LCTU
● LCTUD
● LeafTreeNode
● LeafTreeNodeOpcUA
● LeafTreeNodeTypeMember
● LeafTreeNodeTypeMemberOpcUA
● LED_ID
● LEFT
● LegacyRTSVisuStructEvent2
● LEN
● LicenseFunctions
● LIMITALARM
● LimitAlarm_DINT
● LimitAlarm_LREAL
● LIN_TRAFO
● LINE_3D
● LinearTrafo
● LinkedList
● LinkedListElementBase
● LinkedListFactory
● LinkedListIterator
● LinkState_Link
● LINT_TO_SIGNED
● LintElement
● LintElementFactory
● List
● ListBase
● Listener
● ListFactory
● ListIterator
● ListOfDevices
● Load_Ref
● LocalDateTime
● LOG_ENTRY
● LOG_ENUM_STATE
● LogAdd

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4140

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Parsing/JsonParseArrayFromString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Parsing/JsonParseObjectFromString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonRemoveEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Array/Creating/JsonSerializeArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Json_1.0.3.1_Library/Function-Blocks/JSON-Object/Creating/JsonSerializeObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Structs/KeyValuePair.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/Lamps/LAMP_FLASH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/Lamps/LAMP_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/DMx/DTC/Lamps/LAMP_STATUS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Requests/LargeReadRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Requests/LargeWriteRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/LatchVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LCon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/LConC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LConTl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Continuous-Behaviour-without-xDone/LConTlC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LConTlTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Level-Controlled-Function-Blocks/Regular-Behaviour-with-xDone/LConTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Counter/LCTD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Counter/LCTU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Counter/LCTUD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNodeOpcUA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNodeTypeMember.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/LeafTreeNodeTypeMemberOpcUA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/LED_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/LEFT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/LegacyRTSVisuStructEvent2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/LEN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/LicenseFunctions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Analog-Monitors/LIMITALARM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/LimitAlarm_DINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/LimitAlarm_LREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/LIN_TRAFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/LINE_3D.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/Transformations/LinearTrafo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/LinkedList/LinkedList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/LinkedListElementBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/LinkedList/LinkedListFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Iterators/LinkedListIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/Ethernet/LinkState_Link.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/LINT_TO_SIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/LintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/LintElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/List/List.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/List/ListBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Function-Blocks/Listener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/List/ListFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Iterators/ListIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/DCP/DataTypes/ListOfDevices.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/Data-types/Load_Ref.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/LocalDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/LOG_ENTRY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerMulti_1.0.0.12_Library/Enums/LOG_ENUM_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogAdd.html

● LogAdd2
● LogClose
● LogComponent
● LogCreate
● LogDelete
● LogFileDelete
● LogFileReduce
● LogGeneric_Input
● LogGeneric_Output
● LOGGER_MODE
● LoggingHelper
● LogHandling
● LogIec60870_Input
● LogIec60870_Output
● LogMultifile
● LogOpen
● LogOptions
● LogToDevice
● LostMessages
● LowByte
● LowWord
● LREAL_TO_FLOAT
● LRealToHexStr
● LRealToStr
● LTIME_TO_DURATION
● LTIME_TO_INT64
● LTIME_TO_ISO8601
● LTIME_TO_REAL8
● LTOF
● LTON
● LTP
● LTrig
● LWORD_TO_HANDLE
● LWORD_TO_PVOID
● MAC_ADDRESS_COMPARE
● MAKE_EVENTID
● MakeNormed3D
● MappingDesc_ArrayArbitrary
● MappingDesc_ArraySubRange
● MATH_FFT
● MATH_INPUT_SHAPER_ZV
● MATH_INPUT_SHAPER_ZVD
● MATH_LINEAR_REGRESSION
● MATH_MOVING_AVG
● MATH_NOTCH_FILTER
● MAUType
● MC_ABB_iTypes_Enum
● MC_AccelerationProfile
● MC_BufferMode
● MC_Cam_Id
● MC_CamIn
● MC_CamOut
● MC_CamTableSelect
● MC_CombineAxes
● MC_Direction

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4141

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogAdd2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/Logging/LogComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerMulti_1.0.0.12_Library/Function-Blocks/LogFileDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerMulti_1.0.0.12_Library/Function-Blocks/LogFileReduce.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerEco_1.0.0.17_Library/Function-Blocks/LogGeneric_Input.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerEco_1.0.0.17_Library/Function-Blocks/LogGeneric_Output.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Enums/LOGGER_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/LoggingHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerEco_1.0.0.17_Library/Function-Blocks/LogHandling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerEco_1.0.0.17_Library/Function-Blocks/LogIec60870_Input.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerEco_1.0.0.17_Library/Function-Blocks/LogIec60870_Output.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerMulti_1.0.0.12_Library/Function-Blocks/LogMultifile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLog.library_Library/LogOptions.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Breakpoint%20Logging%20Functions.library_Library/WatchpointSupport/Functions/LogToDevice.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Message-Information/LostMessages.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/LowByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Analysis/simple-TYPE/LowWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/LREAL_TO_FLOAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/LRealToHexStr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/LRealToStr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/LTIME_TO_DURATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/LTIME_TO_INT64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/LTIME_TO_ISO8601.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/LTIME_TO_REAL8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Timer/LTOF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Timer/LTON.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/Timer/LTP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Behaviour%20Model.library_Library/CAA-Behaviour-Model/Function-Blocks/LTrig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/LWORD_TO_HANDLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/LWORD_TO_PVOID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/ARP.library_Library/Functions/MAC_ADDRESS_COMPARE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/MAKE_EVENTID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/MakeNormed3D.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Mappings/MappingDesc_ArrayArbitrary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Mappings/MappingDesc_ArraySubRange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MathFunctions_1.0.0.5_Library/POUs/Math-Library/Filter/MATH_FFT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MathFunctions_1.0.0.5_Library/POUs/Math-Library/Filter/MATH_INPUT_SHAPER_ZV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MathFunctions_1.0.0.5_Library/POUs/Math-Library/Filter/MATH_INPUT_SHAPER_ZVD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MathFunctions_1.0.0.5_Library/POUs/Math-Library/LinearEquation/MATH_LINEAR_REGRESSION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MathFunctions_1.0.0.5_Library/POUs/Math-Library/Filter/MATH_MOVING_AVG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MathFunctions_1.0.0.5_Library/POUs/Math-Library/Filter/MATH_NOTCH_FILTER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/Profinet.library_Library/Ethernet/MAUType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_AccelerationProfile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Enums/MC_BufferMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/MC_Cam_Id.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_CamIn.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_CamOut.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_CamTableSelect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_CombineAxes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Enums/MC_Direction.html

● MC_GearIn
● MC_GearInPos
● MC_GearOut
● MC_Halt
● MC_HaltPhasing
● MC_HaltSuperImposed
● MC_Homing_Direction
● MC_Homing_Edge
● MC_Homing_Mode
● MC_LimitLoad
● MC_LimitMotion
● MC_LoadControl
● MC_LoadProfile
● MC_LoadSuperimposed
● MC_MoveAbsolute
● MC_MoveAdditive
● MC_MoveContinuousAbsolute
● MC_MoveContinuousRelative
● MC_MoveRelative
● MC_MoveSuperImposed
● MC_MoveVelocity
● MC_PhasingAbsolute
● MC_PhasingRelative
● MC_PositionProfile
● MC_Power
● MC_PProfile
● MC_ReadActualPosition
● MC_ReadActualVelocity
● MC_ReadAxisError
● MC_ReadBoolParameter
● MC_ReadParameter
● MC_ReadStatus
● MC_Reset
● MC_SetOverride
● MC_SetPosition
● MC_Source
● MC_StepAbsSwitch
● MC_StepDirect
● MC_StepLimitSwitch
● MC_StepRefPulse
● MC_Stop
● MC_TorqueControl
● MC_TProfile
● MC_VelocityProfile
● MC_WriteBoolParameter
● MC_WriteParameter
● MCA_Cam_Extra
● MCA_CamBounds
● MCA_CamEditor
● MCA_CamEditorControlStruct
● MCA_CamEditorFeedbackStruct
● MCA_CamGetInterpolationPosition
● MCA_CamGetInterpolationValues
● MCA_CamInDirect
● MCA_CamInfo

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4142

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_GearIn.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_GearInPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_GearOut.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_Halt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_HaltPhasing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_HaltSuperImposed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Enums/MC_Homing_Direction.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Enums/MC_Homing_Edge.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Enums/MC_Homing_Mode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/01_PLCopen/MC_LimitLoad.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/01_PLCopen/MC_LimitMotion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/01_PLCopen/MC_LoadControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/01_PLCopen/MC_LoadProfile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/01_PLCopen/MC_LoadSuperimposed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_MoveAbsolute.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_MoveAdditive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_MoveContinuousAbsolute.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_MoveContinuousRelative.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_MoveRelative.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_MoveSuperImposed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_MoveVelocity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_PhasingAbsolute.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-MultiAxis/MC_PhasingRelative.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_PositionProfile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_Power.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/MC_PProfile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_ReadActualPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_ReadActualVelocity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_ReadAxisError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_ReadBoolParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_ReadParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_ReadStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_Reset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_SetOverride.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_SetPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Enums/MC_Source.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Homing/MC_StepAbsSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Homing/MC_StepDirect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Homing/MC_StepLimitSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Homing/MC_StepRefPulse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_Stop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.23_Library/01_PLCopen/MC_TorqueControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/MC_TProfile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-SingleAxis/MC_VelocityProfile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_WriteBoolParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/MC-Administrative/MC_WriteParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_Cam_Extra.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_CamBounds.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_CamEditor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Data-types/Structs/MCA_CamEditorControlStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Data-types/Structs/MCA_CamEditorFeedbackStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_CamGetInterpolationPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.2.0.86_Library/01_PLCopen/ABB-Specific/MCA_CamGetInterpolationValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_CamInDirect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_CamInfo.html

● MCA_CamStructureSelect
● MCA_CAMTappet
● MCA_CamTappet
● MCA_DigitalCamSwitch
● MCA_doWrap
● MCA_DriveBasedHome
● MCA_DriveCheckReadyToEnable
● MCA_DriveEnableImmediateApply
● MCA_DriveParametersSave
● MCA_DriveSetOperatingMode
● MCA_EncoderAxisMotionState
● MCA_GearInDirect
● MCA_GetCamMasterPhase
● MCA_GetE1x0DriveErrorDescription
● MCA_GetTappetValue
● MCA_HomeAbsSwitch
● MCA_HomeLimitSwitch
● MCA_HomeToTorque
● MCA_HomeToTouchProbe
● MCA_Indexing
● MCA_JogAxis
● MCA_LinkOption
● MCA_MoveBuffer
● MCA_MoveByExternalReference
● MCA_MoveByExtRefRelative
● MCA_MoveFeed
● MCA_MoveLink
● MCA_MoveMode
● MCA_MoveRelativeOpti
● MCA_MoveVelocity_PV
● MCA_MoveVelocityContinuous
● MCA_Parameter
● MCA_Parameter_Struct
● MCA_PhasingByMaster
● MCA_Pos_Ref
● MCA_QuickStop
● MCA_ReadCamFile
● MCA_ReadCamTablePoint
● MCA_ReadParameterList
● MCA_ReadTappetTablePoint
● MCA_SetOperatingMode
● MCA_SetPositionContinuous
● MCA_TappetAction
● MCA_TappetType
● MCA_TorqueControl_CSTOL
● MCA_TorqueControl_PT
● MCA_TouchProbeECAT
● MCA_TouchProbeECATFiltering
● MCA_TouchProbeOBIO
● MCA_WriteCamFile
● MCA_WriteCamTablePoint
● MCA_WriteParameterList
● MCA_WriteTappetTablePoint
● MCA_XYGroupCircMode
● MCA_XYGroupEnable

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4143

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.2.0.86_Library/01_PLCopen/ABB-Specific/MCA_CamStructureSelect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Prototype/MCA_CAMTappet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.2.0.86_Library/Data-types/Structs/MCA_CamTappet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/Prototype/MCA_DigitalCamSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Functions/MCA_doWrap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_DriveBasedHome.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_DriveCheckReadyToEnable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_DriveEnableImmediateApply.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_DriveParametersSave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_DriveSetOperatingMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Generic/MCA_EncoderAxisMotionState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_GearInDirect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_GetCamMasterPhase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_GetE1x0DriveErrorDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.2.0.86_Library/01_PLCopen/ABB-Specific/MCA_GetTappetValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Homing/MCA_HomeAbsSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Homing/MCA_HomeLimitSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Homing/MCA_HomeToTorque.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Homing/MCA_HomeToTouchProbe.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_Indexing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_JogAxis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Data-types/Enums/MCA_LinkOption.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/Prototype/MCA_MoveBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_MoveByExternalReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/Prototype/MCA_MoveByExtRefRelative.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_MoveFeed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/MCA_MoveLink.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Data-types/Enums/MCA_MoveMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_MoveRelativeOpti.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_MoveVelocity_PV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_MoveVelocityContinuous.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_Parameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/MCA_Parameter_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_PhasingByMaster.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Structs/MCA_Pos_Ref.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_QuickStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_ReadCamFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_ReadCamTablePoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_ReadParameterList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_ReadTappetTablePoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_SetOperatingMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_SetPositionContinuous.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Prototype/MCA_TappetAction.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/Prototype/MCA_TappetType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_TorqueControl_CSTOL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_TorqueControl_PT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_TouchProbeECAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/EtherCAT/MCA_TouchProbeECATFiltering.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.1.0.6_Library/OBIO_FunctionBlocks/MCA_TouchProbeOBIO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_WriteCamFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_WriteCamTablePoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/01_PLCopen/ABB-Specific/MCA_WriteParameterList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/Cam/MCA_WriteTappetTablePoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Data-types/Enums/MCA_XYGroupCircMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/MCA_XYGroupEnable.html

● MCA_XYGroupHome
● MCA_XYGroupHomingSequence
● MCA_XYGroupPause
● MCA_XYGroupReset
● MCA_XYGroupState
● MCA_XYGroupStop
● MCA_XYMoveCircular
● MCA_XYMoveLinear
● MD5
● MD5_FF
● MD5_GG
● MD5_HH
● MD5_II
● MD5_Transform
● MeasureFrequence
● MeasuringPoint
● MemBuffer
● MemCmp
● MemCpy
● MemFill
● MemForceSwap
● MemMove
● MemoryManager
● MemoryToString
● MemSet
● MESSAGE
● MessageBox_Struct
● MessageBoxDialog_Types
● METRICS
● MID
● MILLISECOND
● MinMaxLabels
● MINUTE
● Mod_Client_FCT23
● MODE
● ModRtuGenDevDataType
● ModRtuGenDevDataTypeInternal
● ModRtuMast
● ModRtuMastDev
● ModRtuMastTypeInternal
● ModRtuRead
● ModRtuReadWrite23
● ModRtuToken
● ModRtuTokenDev
● ModRtuTokenType
● ModRtuWrite
● ModTcpConfig
● ModTcpInfo
● ModTcpMast
● ModTcpMast2
● ModTcpServOnOff
● Module
● Module_Diag
● MODULESTATE
● ModuleState

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4144

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/MCA_XYGroupHome.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Data-types/Enums/MCA_XYGroupHomingSequence.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/MCA_XYGroupPause.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/MCA_XYGroupReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/Data-types/Enums/MCA_XYGroupState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/MCA_XYGroupStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/MCA_XYMoveCircular.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlExtension_0.10.0.7_Library/01_PLCopen/ABB-Specific/XYGroup/MCA_XYMoveLinear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Checksum/MD5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_FF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_GG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_HH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_II.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Internal-functions/MD5_Transform.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/signals/MeasureFrequence.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Enums/MeasuringPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/MemBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/MemCmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/MemCpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/MemFill.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/Swapping/MemForceSwap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Manipulation/MemMove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functionblocks/MemoryManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/MemoryToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/MemSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Imp%20Extern.library_Library/CAA-Can-Low-Level-Imp/Structures/MESSAGE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/General-Types/MessageBox_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/MessageBoxDialog_Types.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/METRICS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/MID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/MILLISECOND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/MinMaxLabels.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/MINUTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Modbus/CI52x_1.4.0.15_Library/Function-Blocks/Internal-Function-Blocks/Mod_Client_FCT23.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Enums/MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Types/ModRtuGenDevDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Types/Internal-Data-Types/ModRtuGenDevDataTypeInternal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Function-Blocks/ModRtuMast.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Function-Blocks/ModRtuMastDev.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Types/Internal-Data-Types/ModRtuMastTypeInternal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Function-Blocks/ModRtuRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Function-Blocks/ModRtuReadWrite23.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Function-Blocks/ModRtuToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Function-Blocks/ModRtuTokenDev.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Types/ModRtuTokenType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.7.3_Library/Function-Blocks/ModRtuWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/ModTcpConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/ModTcpInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/ModTcpMast.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/ModTcpMast2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/ModbusTcp_1.1.9.3_Library/Function-Blocks/ModTcpServOnOff.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Module.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Function-Blocks/Diagnosis/Module_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIPAdapter.library_Library/IoDrvEtherNetIPAdapter/Enums/MODULESTATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/ModuleState.html

● ModuleStatus
● MonitorDBStatus
● MonitorFilterByDateTime
● MonitorFilterByLatch
● Monitoring2ByteCode
● Monitoring2ByteCodeUnion
● MonitoringService
● MonitoringServiceHelper
● MonitoringState
● MonitorPopulateFilterCriteria
● MonLog_Binary
● MonLog_CurrentTime
● MonLog_DumpDataItem
● MonLog_DumpDataItemBase
● MonLog_DumpDataItemWriting
● MonLog_Error
● MonLog_ErrorAndClose
● MonLog_LogLine
● MonLog_OkAndClose
● MONTH
● MQTT_CONNECTION
● MQTT_MESSAGE
● MQTT_QOS
● MqttConnectWithCertBuffer
● MqttConnectWithCertFile
● MqttConnectWithCertStore
● MqttDisconnect
● MqttGetReceivedPacket
● MqttPing
● MqttPublish
● MqttSubscribe
● MqttUnsubscribe
● MRC_PortState
● MsgAddRef
● MsgClass
● MsgClone
● MsgGetData
● MsgGetRXChg
● MsgReceive
● MsgRelease
● MsgReleaseEx
● MsgSend
● MSK_ECM_IF_EXT_SYNC_INFO_FLAGS
● NamedTreeNode
● NamespaceNodeFlags
● NCAPDUFaultStatus
● NestingPathEntry
● NestingPathInformation
● NET_INFO
● NetClientCloseChannel
● NetClientOpenChannel
● NetClientOpenChannelResult
● NetClientSend
● NetDiagnosis
● NetVarDataItem_Udp

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4145

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/ModuleStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/MonitorDBStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/MonitorFilterByDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Structures/MonitorFilterByLatch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/Monitoring2ByteCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/Monitoring2ByteCodeUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/MonitoringService.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/Monitoring/MonitoringServiceHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/MonitoringState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/MonitorPopulateFilterCriteria.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_Binary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_CurrentTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_DumpDataItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_DumpDataItemBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_DumpDataItemWriting.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_Error.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_ErrorAndClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_LogLine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Monitoring-Logging/MonLog_OkAndClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/MONTH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Structs/MQTT_CONNECTION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Structs/MQTT_MESSAGE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Enums/MQTT_QOS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttConnectWithCertBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttConnectWithCertFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttConnectWithCertStore.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttDisconnect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttGetReceivedPacket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttPing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttPublish.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttSubscribe.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Mqtt_1.1.3.1_Library/Function-Blocks/MqttUnsubscribe.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/FDBConfig_Itfs.library_Library/FDBConfig/Enums/MRC_PortState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgAddRef.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/MsgClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgClone.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgGetData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Memory%20Block%20Manager.library_Library/MemoryBlockManager/Functions/Message-Functions/MsgGetRXChg.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgReceive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgRelease.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgReleaseEx.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Message-Functions/MsgSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/Services/ExtSync/MSK_ECM_IF_EXT_SYNC_INFO_FLAGS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/NamedTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/NamespaceNodeFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/NCAPDUFaultStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/NestingPathEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/NestingPathInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/NET_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientCloseChannel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientOpenChannel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientOpenChannelResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/NetClientSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Structs/NetDiagnosis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarDataItem_Udp.html

● NetVarManager_Udp_FB
● NetVarOD_Service_Udp
● NetVarPDO_Rx_Udp
● NetVarPDO_Tx_Udp
● NetVarTelegramm_Udp
● NetVarTlgHeader_Udp
● NetVarUDPDiagStruct
● NetVarUDPError
● NetworkScanSettings
● NETX_DEV_DIAG
● NETX_SYSTEM_CHANNEL
● NETX_UDINT_TO_STRINGHEX
● NetxEcatInit
● NetxEcatIsCompatible
● NMT
● NMT_ERROR_BEHAVIOUR
● NodeFlags
● NOP
● Norm3D
● NSC_AddrComponent
● NSC_CompleteNodeInfo
● NSC_NodeAddress
● NSC_NodeInfoExt
● NSC_NodeInfoInt
● NSClientClose
● NSClientGeneralResolveCallback
● NSClientOpen
● NSClientResolveAll
● NSClientSearchNodeFlags
● NSClientSysMemAllocator
● NSClientTaskBase
● NSClientTaskResolveAllNodes
● NSClientTaskSearchForSpecificNode
● NSClientUtil_DumpAddress
● NSClientUtil_DumpAddressHelp
● NSClientUtil_DumpCallback
● NSClientUtil_DumpNodeInfo
● NSClientUtil_DumpStartSearchNodeParams
● NSClientUtil_Log1
● NSClientUtil_Log2
● NSClientUtil_Log3
● NSClientWrapper
● NtpSourceInfoData
● NtpSourceMode
● NtpSourceState
● NullElement
● OBIO_PTO_Motion_Parameter
● OBIO_PTOMotionKernel
● OBIO_PTOSingleLineMotionKernel
● OBIO_PWM_Motion_Parameter
● OBIO_PWMMotionKernel
● OBIOBasicPoint2Point
● OBIOEncoderCounter
● OBIOForwardCounter
● OBIOFreqOut

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4146

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/NetVarManager_Udp_FB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarOD_Service_Udp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/NetVarPDO_Rx_Udp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/NetVar-POUs/NetVarPDO_Tx_Udp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarTelegramm_Udp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarTlgHeader_Udp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarUDPDiagStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/Data-types/NetVarUDPError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/NetworkScanSettings.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/NETX_DEV_DIAG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SystemInfo/NETX_SYSTEM_CHANNEL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Functions/NETX_UDINT_TO_STRINGHEX.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Functions/Internal/NetxEcatInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Functions/Internal/NetxEcatIsCompatible.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Network-management/NMT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/3S%20CANopenStack.library_Library/Enums/NMT_ERROR_BEHAVIOUR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/NodeFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/NOP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/Norm3D.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_AddrComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_CompleteNodeInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_NodeAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_NodeInfoExt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Datastructures/NSC_NodeInfoInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/External-Functions/NSClientClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientGeneralResolveCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/External-Functions/NSClientOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/External-Functions/NSClientResolveAll.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/NSClientSearchNodeFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientSysMemAllocator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientTaskBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientTaskResolveAllNodes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/NSClientTaskSearchForSpecificNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpAddressHelp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpNodeInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_DumpStartSearchNodeParams.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_Log1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_Log2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/Logging/NSClientUtil_Log3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/NSClientWrapper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Structs/NtpSourceInfoData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/NtpSourceMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/NtpSourceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/NullElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.1.0.6_Library/Data-types/OBIO_PTO_Motion_Parameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.1.0.6_Library/eCo-Kernel-Function-blocks/OBIO_PTOMotionKernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.1.0.6_Library/eCo-Kernel-Function-blocks/OBIO_PTOSingleLineMotionKernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.1.0.6_Library/Data-types/OBIO_PWM_Motion_Parameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.1.0.6_Library/eCo-Kernel-Function-blocks/OBIO_PWMMotionKernel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_SimpleMotion/Positioning_Algorithm/OBIOBasicPoint2Point.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOEncoderCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOForwardCounter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOFreqOut.html

● OBIOInterpolationType
● OBIOInterruptInfo
● OBIOInterruptPara
● OBIOLimitSwitch
● OBIOMotionPTO
● OBIOMotionPwm
● OBIOMotionSinglePTO
● OBIOPulseTrainOutput
● OBIOPulseTrainSingleOutput
● OBIOPwm
● OBIOSineSquarePoint2Point
● OBIOTouchProbe
● OLM_OnlineLicenseManager
● OnChangePasswordDialogClosed
● OnLoginDialogClosed
● OnUserManagementDialogClosed
● OPCAClientCredentials_UserPassword
● OpcUa_ActivateSessionRequest
● OpcUa_ActivateSessionResponse
● OpcUa_AddNodesItem
● OpcUa_AddNodesRequest
● OpcUa_AddNodesResponse
● OpcUa_AddNodesResult
● OpcUa_AddReferencesItem
● OpcUa_AddReferencesRequest
● OpcUa_AddReferencesResponse
● OpcUa_AggregateConfiguration
● OpcUa_AggregateFilter
● OpcUa_AggregateFilterResult
● OpcUa_Annotation
● OpcUa_AnonymousIdentityToken
● OpcUa_ApplicationDescription
● OpcUa_ApplicationType
● OpcUa_Argument
● OpcUa_ArrayType
● OpcUa_AttributeOperand
● OpcUa_Attributes
● OpcUa_AxisInformation
● OpcUa_AxisScaleEnumeration
● OpcUa_Boolean
● OpcUa_BrowseDescription
● OpcUa_BrowseDirection
● OpcUa_BrowseNextRequest
● OpcUa_BrowseNextResponse
● OpcUa_BrowsePath
● OpcUa_BrowsePathResult
● OpcUa_BrowsePathTarget
● OpcUa_BrowseRequest
● OpcUa_BrowseResponse
● OpcUa_BrowseResult
● OpcUa_BrowseResultMask
● OpcUa_BuildInfo
● OpcUa_BuiltInType
● OpcUa_Byte
● OpcUa_ByteString

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4147

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIOInterpolationType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOInterruptInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOInterruptPara.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOLimitSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_SimpleMotion/OBIOMotionPTO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_SimpleMotion/OBIOMotionPwm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_SimpleMotion/OBIOMotionSinglePTO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOPulseTrainOutput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOPulseTrainSingleOutput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOPwm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_SimpleMotion/Positioning_Algorithm/OBIOSineSquarePoint2Point.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/OnboardIO_1.0.8.2_Library/OBIO_FunctionBlocks/OBIOTouchProbe.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/3SLicense.library_Library/OLM_OnlineLicenseManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OnChangePasswordDialogClosed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OnLoginDialogClosed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OnUserManagementDialogClosed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCAClientCredentials_UserPassword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ActivateSessionRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ActivateSessionResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddNodesResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddReferencesItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddReferencesRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AddReferencesResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AggregateConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AggregateFilter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AggregateFilterResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Annotation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AnonymousIdentityToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ApplicationDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ApplicationType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Argument.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ArrayType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AttributeOperand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_Attributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_AxisInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_AxisScaleEnumeration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Boolean.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_BrowseDirection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseNextRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseNextResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowsePath.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowsePathResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowsePathTarget.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BrowseResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_BrowseResultMask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_BuildInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_BuiltInType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Byte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ByteString.html

● OpcUa_CallMethodRequest
● OpcUa_CallMethodResult
● OpcUa_CallRequest
● OpcUa_CallResponse
● OpcUa_CancelRequest
● OpcUa_CancelResponse
● OpcUa_ChannelSecurityToken
● OpcUa_CharA
● OpcUa_CloseSecureChannelRequest
● OpcUa_CloseSecureChannelResponse
● OpcUa_CloseSessionRequest
● OpcUa_CloseSessionResponse
● OpcUa_ComplexNumberType
● OpcUa_ContentFilter
● OpcUa_ContentFilterElement
● OpcUa_ContentFilterElementResult
● OpcUa_ContentFilterResult
● OpcUa_CreateMonitoredItemsRequest
● OpcUa_CreateMonitoredItemsResponse
● OpcUa_CreateSessionRequest
● OpcUa_CreateSessionResponse
● OpcUa_CreateSubscriptionRequest
● OpcUa_CreateSubscriptionResponse
● OpcUa_DataChangeFilter
● OpcUa_DataChangeNotification
● OpcUa_DataChangeTrigger
● OpcUa_DataTypeAttributes
● OpcUa_DataValue
● OpcUa_DateTime
● OpcUa_Decoder
● OpcUa_DeleteAtTimeDetails
● OpcUa_DeleteEventDetails
● OpcUa_DeleteMonitoredItemsRequest
● OpcUa_DeleteMonitoredItemsResponse
● OpcUa_DeleteNodesItem
● OpcUa_DeleteNodesRequest
● OpcUa_DeleteNodesResponse
● OpcUa_DeleteRawModifiedDetails
● OpcUa_DeleteReferencesItem
● OpcUa_DeleteReferencesRequest
● OpcUa_DeleteReferencesResponse
● OpcUa_DeleteSubscriptionsRequest
● OpcUa_DeleteSubscriptionsResponse
● OpcUa_DiagnosticInfo
● OpcUa_Double
● OpcUa_DoubleComplexNumberType
● OpcUa_ElementOperand
● OpcUa_EncodeableObjectBody
● OpcUa_EncodeableType
● OpcUa_Encoder
● OpcUa_EndpointConfiguration
● OpcUa_EndpointDescription
● OpcUa_EndpointUrlListDataType
● OpcUa_EnumDefinition
● OpcUa_EnumField

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4148

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallMethodRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallMethodResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CallResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CancelRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CancelResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ChannelSecurityToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_CharA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSecureChannelRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSecureChannelResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSessionRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CloseSessionResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ComplexNumberType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilterElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilterElementResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ContentFilterResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateMonitoredItemsRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateMonitoredItemsResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSessionRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSessionResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSubscriptionRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_CreateSubscriptionResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataChangeFilter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataChangeNotification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_DataChangeTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataTypeAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DataValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_DateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Decoder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteAtTimeDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteEventDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteMonitoredItemsRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteMonitoredItemsResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteNodesItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteNodesRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteNodesResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteRawModifiedDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteReferencesItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteReferencesRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteReferencesResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteSubscriptionsRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DeleteSubscriptionsResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DiagnosticInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Double.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_DoubleComplexNumberType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ElementOperand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EncodeableObjectBody.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EncodeableType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Encoder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EndpointConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EndpointDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EndpointUrlListDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EnumDefinition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EnumField.html

● OpcUa_EnumValueType
● OpcUa_EUInformation
● OpcUa_EventFieldList
● OpcUa_EventFilter
● OpcUa_EventFilterResult
● OpcUa_EventNotificationList
● OpcUa_ExpandedNodeId
● OpcUa_ExtensionObject
● OpcUa_ExtensionObject_Body
● OpcUa_ExtensionObjectEncoding
● OpcUa_FilterOperator
● OpcUa_FindServersOnNetworkRequest
● OpcUa_FindServersOnNetworkResponse
● OpcUa_FindServersRequest
● OpcUa_FindServersResponse
● OpcUa_Float
● OpcUa_GenericAttributes
● OpcUa_GenericAttributeValue
● OpcUa_GetEndpointsRequest
● OpcUa_GetEndpointsResponse
● OpcUa_Guid
● OPcUa_Handle
● OpcUa_HistoryData
● OpcUa_HistoryEvent
● OpcUa_HistoryEventFieldList
● OpcUa_HistoryModifiedData
● OpcUa_HistoryReadRequest
● OpcUa_HistoryReadResponse
● OpcUa_HistoryReadResult
● OpcUa_HistoryReadValueId
● OpcUa_HistoryUpdateDetails
● OpcUa_HistoryUpdateRequest
● OpcUa_HistoryUpdateResponse
● OpcUa_HistoryUpdateResult
● OpcUa_HistoryUpdateType
● OpcUa_IdentifierType
● OpcUa_Int
● OpcUa_Int16
● OpcUa_Int32
● OpcUa_Int64
● OpcUa_IssuedIdentityToken
● OpcUa_LiteralOperand
● OpcUa_LocalizedText
● OpcUa_MdnsDiscoveryConfiguration
● OpcUa_MessageSecurityMode
● OpcUa_MethodAttributes
● OpcUa_ModelChangeStructureDataType
● OpcUa_ModificationInfo
● OpcUa_ModifyMonitoredItemsRequest
● OpcUa_ModifyMonitoredItemsResponse
● OpcUa_ModifySubscriptionRequest
● OpcUa_ModifySubscriptionResponse
● OpcUa_MonitoredItemCreateRequest
● OpcUa_MonitoredItemCreateResult
● OpcUa_MonitoredItemModifyRequest

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4149

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EnumValueType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EUInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventFieldList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventFilter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventFilterResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_EventNotificationList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ExpandedNodeId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ExtensionObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ExtensionObject_Body.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ExtensionObjectEncoding.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_FilterOperator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersOnNetworkRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersOnNetworkResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_FindServersResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Float.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GenericAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GenericAttributeValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GetEndpointsRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_GetEndpointsResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Guid.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OPcUa_Handle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryEventFieldList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryModifiedData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryReadValueId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_HistoryUpdateResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_HistoryUpdateType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_IdentifierType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Int64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_IssuedIdentityToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_LiteralOperand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_LocalizedText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MdnsDiscoveryConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_MessageSecurityMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MethodAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModelChangeStructureDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModificationInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifyMonitoredItemsRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifyMonitoredItemsResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifySubscriptionRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ModifySubscriptionResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemCreateRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemCreateResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemModifyRequest.html

● OpcUa_MonitoredItemModifyResult
● OpcUa_MonitoredItemNotification
● OpcUa_MonitoringMode
● OpcUa_MonitoringParameters
● OpcUa_NetworkGroupDataType
● OpcUa_NodeAttributes
● OpcUa_NodeClass
● OpcUa_NodeId
● OpcUa_NodeId_anon
● OpcUa_NodeIds
● OpcUa_NodeReference
● OpcUa_NodeTypeDescription
● OpcUa_NotificationMessage
● OpcUa_ObjectAttributes
● OpcUa_ObjectTypeAttributes
● OpcUa_OpenSecureChannelRequest
● OpcUa_OpenSecureChannelResponse
● OpcUa_OptionSet
● OpcUa_ParsingResult
● OpcUa_PerformUpdateType
● OpcUa_ProgramDiagnostic2DataType
● OpcUa_ProgramDiagnosticDataType
● OpcUa_PublishRequest
● OpcUa_PublishResponse
● OpcUa_QualifiedName
● OpcUa_QueryDataDescription
● OpcUa_QueryDataSet
● OpcUa_QueryFirstRequest
● OpcUa_QueryFirstResponse
● OpcUa_QueryNextRequest
● OpcUa_QueryNextResponse
● OpcUa_Range
● OpcUa_ReadAtTimeDetails
● OpcUa_ReadEventDetails
● OpcUa_ReadProcessedDetails
● OpcUa_ReadRawModifiedDetails
● OpcUa_ReadRequest
● OpcUa_ReadResponse
● OpcUa_ReadValueId
● OpcUa_RedundantServerDataType
● OpcUa_ReferenceDescription
● OpcUa_ReferenceTypeAttributes
● OpcUa_RegisteredServer
● OpcUa_RegisterNodesRequest
● OpcUa_RegisterNodesResponse
● OpcUa_RegisterServer2Request
● OpcUa_RegisterServer2Response
● OpcUa_RegisterServerRequest
● OpcUa_RegisterServerResponse
● OpcUa_RelativePath
● OpcUa_RelativePathElement
● OpcUa_RepublishRequest
● OpcUa_RepublishResponse
● OpcUa_RequestHeader
● OpcUa_ResponseHeader

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4150

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemModifyResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoredItemNotification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_MonitoringMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_MonitoringParameters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NetworkGroupDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_NodeClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeId_anon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_NodeIds.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeReference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NodeTypeDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_NotificationMessage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ObjectAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ObjectTypeAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_OpenSecureChannelRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_OpenSecureChannelResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_OptionSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ParsingResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_PerformUpdateType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ProgramDiagnostic2DataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ProgramDiagnosticDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_PublishRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_PublishResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QualifiedName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryDataDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryDataSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryFirstRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryFirstResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryNextRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_QueryNextResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Range.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadAtTimeDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadEventDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadProcessedDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadRawModifiedDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReadValueId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RedundantServerDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReferenceDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ReferenceTypeAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisteredServer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterNodesRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterNodesResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServer2Request.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServer2Response.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServerRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RegisterServerResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RelativePath.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RelativePathElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RepublishRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RepublishResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RequestHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ResponseHeader.html

● OpcUa_RolePermissionType
● OpcUa_SamplingIntervalDiagnosticsDataType
● OpcUa_SByte
● OpcUa_SecurityTokenRequestType
● OpcUa_SemanticChangeStructureDataType
● OpcUa_ServerDiagnosticsSummaryDataType
● OpcUa_ServerOnNetwork
● OpcUa_ServerState
● OpcUa_ServerStatusDataType
● OpcUa_ServiceCounterDataType
● OpcUa_ServiceFault
● OpcUa_SessionDiagnosticsDataType
● OpcUa_SessionlessInvokeRequestType
● OpcUa_SessionlessInvokeResponseType
● OpcUa_SessionSecurityDiagnosticsDataType
● OpcUa_SetMonitoringModeRequest
● OpcUa_SetMonitoringModeResponse
● OpcUa_SetPublishingModeRequest
● OpcUa_SetPublishingModeResponse
● OpcUa_SetTriggeringRequest
● OpcUa_SetTriggeringResponse
● OpcUa_SignatureData
● OpcUa_SignedSoftwareCertificate
● OpcUa_SimpleAttributeOperand
● OpcUa_StatusChangeNotification
● OpcUa_StatusCode
● OpcUa_StatusResult
● OpcUa_String
● OpcUa_StructureDefinition
● OpcUa_StructureField
● OpcUa_StructureType
● OpcUa_SubscriptionAcknowledgement
● OpcUa_SubscriptionDiagnosticsDataType
● OpcUa_TimestampsToReturn
● OpcUa_TimeZoneDataType
● OpcUa_TransferResult
● OpcUa_TransferSubscriptionsRequest
● OpcUa_TransferSubscriptionsResponse
● OpcUa_TranslateBrowsePathsToNodeIdsRequest
● OpcUa_TranslateBrowsePathsToNodeIdsResponse
● OpcUa_UInt
● OpcUa_Uint16
● OpcUa_UInt32
● OpcUa_UInt64
● OpcUa_UnregisterNodesRequest
● OpcUa_UnregisterNodesResponse
● OpcUa_UpdateDataDetails
● OpcUa_UpdateEventDetails
● OpcUa_UpdateStructureDataDetails
● OpcUa_UserIdentityToken
● OpcUa_UserNameIdentityToken
● OpcUa_UserTokenPolicy
● OpcUa_UserTokenType
● OpcUa_VariableAttributes
● OpcUa_VariableTypeAttributes

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4151

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_RolePermissionType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SamplingIntervalDiagnosticsDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_SByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_SecurityTokenRequestType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SemanticChangeStructureDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServerDiagnosticsSummaryDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServerOnNetwork.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_ServerState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServerStatusDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServiceCounterDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ServiceFault.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionDiagnosticsDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionlessInvokeRequestType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionlessInvokeResponseType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SessionSecurityDiagnosticsDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetMonitoringModeRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetMonitoringModeResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetPublishingModeRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetPublishingModeResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetTriggeringRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SetTriggeringResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SignatureData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SignedSoftwareCertificate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SimpleAttributeOperand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StatusChangeNotification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_StatusCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StatusResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_String.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StructureDefinition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_StructureField.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_StructureType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SubscriptionAcknowledgement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_SubscriptionDiagnosticsDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_TimestampsToReturn.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TimeZoneDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TransferResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TransferSubscriptionsRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TransferSubscriptionsResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TranslateBrowsePathsToNodeIdsRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_TranslateBrowsePathsToNodeIdsResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_UInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_Uint16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_UInt32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/BaseTypes/OpcUa_UInt64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UnregisterNodesRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UnregisterNodesResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UpdateDataDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UpdateEventDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UpdateStructureDataDetails.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UserIdentityToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UserNameIdentityToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_UserTokenPolicy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_UserTokenType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariableAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariableTypeAttributes.html

● OpcUa_Variant
● OpcUa_VariantArrayType
● OpcUa_VariantArrayUnion
● OpcUa_VariantArrayValue
● OpcUa_VariantMatrixValue
● OpcUa_VariantUnion
● OpcUa_ViewAttributes
● OpcUa_ViewDescription
● OpcUa_WriteRequest
● OpcUa_WriteResponse
● OpcUa_WriteValue
● OpcUa_X509IdentityToken
● OpcUa_XVType
● OpcUaApplicationDescriptionClear
● OpcUaApplicationDescriptionInitialize
● OpcUaBrowsePathClear
● OpcUaBrowsePathInitialize
● OpcUaBrowsePathResultClear
● OpcUaBrowsePathResultInitialize
● OpcUaBrowseResultClear
● OpcUaBrowseResultInitialize
● OpcUaByteStringClear
● OpcUaByteStringCompare
● OpcUaByteStringConcatenate
● OpcUaByteStringCopyTo
● OpcUaByteStringInitialize
● OPCUAClient_Browse
● OPCUAClient_BrowseNext
● OPCUAClient_Call
● OPCUAClient_Connect
● OPCUAClient_Create
● OPCUAClient_CreateMonitoredItems
● OPCUAClient_CreateSubscription
● OPCUAClient_Delete
● OPCUAClient_DeleteMonitoredItems
● OPCUAClient_DeleteSubscription
● OPCUAClient_Disconnect
● OPCUAClient_FindServers
● OPCUAClient_FindServersOnNetwork
● OPCUAClient_GetConfig
● OPCUAClient_GetEndpoints
● OPCUAClient_ModifyMonitoredItems
● OPCUAClient_ModifySubscription
● OPCUAClient_Read
● OPCUAClient_RegisterNodes
● OPCUAClient_SetDataChangeFilterStatic
● OPCUAClient_SetEventFilterStatic
● OPCUAClient_SetMonitoringMode
● OPCUAClient_SetPublishingMode
● OPCUAClient_TranslateBrowsePathsToNodeIds
● OPCUAClient_UnregisterNodes
● OPCUAClient_Write
● OPCUAClientConnectionConfiguration
● OPCUAClientConnectionState
● OPCUAClientCredentials

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4152

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_Variant.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Types/OpcUa_VariantArrayType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantArrayUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantArrayValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantMatrixValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_VariantUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ViewAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_ViewDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_WriteRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_WriteResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_WriteValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_X509IdentityToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack_Itfs.library_Library/CmpOPCUAStack-Interfaces/Structs/OpcUa_XVType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaApplicationDescriptionClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaApplicationDescriptionInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathResultClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowsePathResultInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowseResultClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaBrowseResultInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringConcatenate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaByteStringInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_Browse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_BrowseNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Method/OPCUAClient_Call.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Connection/OPCUAClient_Connect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/CmpOPCUAClient/OPCUAClient_Create.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_CreateMonitoredItems.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_CreateSubscription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/CmpOPCUAClient/OPCUAClient_Delete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_DeleteMonitoredItems.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_DeleteSubscription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Connection/OPCUAClient_Disconnect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Discovery/OPCUAClient_FindServers.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Discovery/OPCUAClient_FindServersOnNetwork.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/CmpOPCUAClient/OPCUAClient_GetConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Discovery/OPCUAClient_GetEndpoints.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_ModifyMonitoredItems.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_ModifySubscription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/DataAccess/OPCUAClient_Read.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_RegisterNodes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_SetDataChangeFilterStatic.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_SetEventFilterStatic.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/MonitoredItems/OPCUAClient_SetMonitoringMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/Subscription/OPCUAClient_SetPublishingMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_TranslateBrowsePathsToNodeIds.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/View/OPCUAClient_UnregisterNodes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient%20Implementation.library_Library/DataAccess/OPCUAClient_Write.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientConnectionConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Types/OPCUAClientConnectionState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientCredentials.html

● OPCUAClientMonitoredItemConfiguration
● OPCUAClientMonitoredItemState
● OPCUAClientSubscriptionState
● OPCUAClientUserToken
● OpcUaDataTypeDescription
● OpcUaDataValueClear
● OpcUaDataValueCompare
● OpcUaDataValueCopyTo
● OpcUaDataValueInitialize
● OpcUaDateTimeUtcNow
● OpcUaElementDescription
● OpcUaEndpointDescriptionClear
● OpcUaEndpointDescriptionInitialize
● OpcUaEventFieldListClear
● OpcUaEventFieldListInitialize
● OpcUaEventNotificationListClear
● OpcUaEventNotificationListInitialize
● OpcUaExpandedNodeIdClear
● OpcUaExpandedNodeIdCompare
● OpcUaExpandedNodeIdCopyTo
● OpcUaExpandedNodeIdInitialize
● OpcUaExpandedNodeIdIsNull
● OpcUaExtensionObjectClear
● OpcUaExtensionObjectCompare
● OpcUaExtensionObjectCopyTo
● OpcUaExtensionObjectCreate
● OpcUaExtensionObjectDelete
● OpcUaExtensionObjectInitialize
● OpcUaLocalizedTextClear
● OpcUaLocalizedTextCompare
● OpcUaLocalizedTextCopyTo
● OpcUaLocalizedTextInitialize
● OpcUaMetaDataType
● OpcUaMethodDescription
● OpcUaMethodMetaData
● OpcUaNodeIdClear
● OpcUaNodeIdCompare
● OpcUaNodeIdCopyTo
● OpcUaNodeIdInitialize
● OpcUaNodeIdIsNull
● OpcUaNodeMetaData
● OpcUaObjectDescription
● OpcUaObjectTypeDescription
● OpcUaOwnDataTypeMetaData
● OpcUaQualifiedNameClear
● OpcUaQualifiedNameCompare
● OpcUaQualifiedNameCopyTo
● OpcUaQualifiedNameInitialize
● OpcUaReadValueIdClear
● OpcUaReadValueIdInitialize
● OpcUaReferenceDescriptionClear
● OpcUaReferenceDescriptionInitialize
● OpcUaReferenceTypeDescription
● OpcUaServer_MessageSecurityMode
● OpcUaServer_Session_Information

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4153

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientMonitoredItemConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Types/OPCUAClientMonitoredItemState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Types/OPCUAClientSubscriptionState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAClient_Itfs.library_Library/CmpOPCUAClient-Interfaces/Structs/OPCUAClientUserToken.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaDataTypeDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDataValueInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaDateTimeUtcNow.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaElementDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEndpointDescriptionClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEndpointDescriptionInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventFieldListClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventFieldListInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventNotificationListClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaEventNotificationListInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExpandedNodeIdIsNull.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaExtensionObjectInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaLocalizedTextInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaMetaDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaMethodDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaMethodMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaNodeIdIsNull.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaNodeMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaObjectDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaObjectTypeDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaOwnDataTypeMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaQualifiedNameInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReadValueIdClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReadValueIdInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReferenceDescriptionClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaReferenceDescriptionInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaReferenceTypeDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/OpcUaServer_MessageSecurityMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/OpcUaServer_Session_Information.html

● OpcUaServer_SessionEvents
● OpcUaServerGetFirstSession
● OpcUaServerGetNextSession
● OpcUaServerGetSessionInfo
● OpcUaServerNodeDescription
● OpcUaServerOnNetworkClear
● OpcUaServerOnNetworkInitialize
● OpcUaServerReferenceDescription
● OpcUaSimpleAttributeOperandClear
● OpcUaSimpleAttributeOperandInitialize
● OpcUaStackDecodeGetPosition
● OpcUaStackDecodeSetPosition
● OpcUaStackDecodeValue
● OpcUaStackEncodeGetPosition
● OpcUaStackEncodeSetPosition
● OpcUaStackEncodeValue
● OpcUaStackFinishDecode
● OpcUaStackFinishEncode
● OpcUaStackStartDecode
● OpcUaStackStartEncode
● OpcUaStatusChangeNotificationClear
● OpcUaStatusChangeNotificationInitialize
● OpcUaStatusCodeToString
● OpcUaStringAttachCopy
● OpcUaStringAttachReadOnly
● OpcUaStringAttachToString
● OpcUaStringClear
● OpcUaStringGetRawString
● OpcUaStringInitialize
● OpcUaStringIsEmpty
● OpcUaStringIsNull
● OpcUaStringStrLen
● OpcUaStringStrnCat
● OpcUaStringStrnCmp
● OpcUaStringStrnCpy
● OpcUaStringStrSize
● OpcUaTypeMetaData
● OpcUaTypeMetaDataUnion
● OpcUaVariableDescription
● OpcUaVariableTypeDescription
● OpcUaVariantClear
● OpcUaVariantCompare
● OpcUaVariantCopyTo
● OpcUaVariantInitialize
● OpcUaViewDescription
● OpcUaWellKnownDataTypeMetaData
● Open
● OpenChangePasswordDialog
● OpenChangePasswordDialog2
● OpenLoginDialog
● OpenLoginDialog2
● OpenUserManagementDialog
● OpenUserManagementDialog2
● OPERATION
● OPERATION_FWK_ACCESS_ADDRESS

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4154

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/OpcUaServer_SessionEvents.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer%20Implementation.library_Library/OpcUaServerGetFirstSession.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer%20Implementation.library_Library/OpcUaServerGetNextSession.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer%20Implementation.library_Library/OpcUaServerGetSessionInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaServerNodeDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaServerOnNetworkClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaServerOnNetworkInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaServerReferenceDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaSimpleAttributeOperandClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaSimpleAttributeOperandInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackDecodeGetPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackDecodeSetPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackDecodeValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackEncodeGetPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackEncodeSetPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackEncodeValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackFinishDecode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackFinishEncode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackStartDecode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStackStartEncode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStatusChangeNotificationClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStatusChangeNotificationInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Logging/OpcUaStatusCodeToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringAttachCopy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringAttachReadOnly.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringAttachToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringGetRawString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringIsEmpty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringIsNull.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrnCat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrnCmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrnCpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaStringStrSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaTypeMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaTypeMetaDataUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaVariableDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaVariableTypeDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantCompare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantCopyTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAStack%20Implementation.library_Library/OpcUaVariantInitialize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAServer_Itfs.library_Library/CmpOPCUAServer-Interfaces/Structs/OpcUaViewDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/OpcUaWellKnownDataTypeMetaData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Open.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OpenChangePasswordDialog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OpenChangePasswordDialog2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OpenLoginDialog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OpenLoginDialog2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OpenUserManagementDialog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/OpenUserManagementDialog2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Enums/OPERATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_ACCESS_ADDRESS.html

● OPERATION_FWK_ACCESS_CONFIG
● OPERATION_FWK_ACCESS_PARAMETER
● OPERATION_FWK_CALLINFO
● OPERATION_FWK_GET_DEV_STATUS_PARAMETER
● OPERATION_FWK_SEND_COMMAND
● OPERATION_FWK_SEND_PARAMETER
● OPERATION_FWK_SET_PARAMETER
● OPERATION_FWK_START_SCAN
● OPERATION_FWK_STATUS_PARAMETER
● OPERATION_FWK_TEST_ADDRESS
● OPTION
● OS
● OurVarInfo
● PACK
● PackArrayOfBoolToArrayOfByte
● PackBitsToByte
● PackBitsToDword
● PackBitsToWord
● PackBytesToDword
● PackBytesToWord
● PacketPool
● PacketQueue
● PacketReader
● PacketWriter
● PackWordsToDword
● Pair_DintDint
● Pair_PStringDint
● Pair_PStringXWORD
● Pair_StringDint
● Pair_StringString
● PARAMETER
● PARAMETERS_INPUT_SHAPING_TYPE
● PARITY
● ParseCANID
● ParsePGN
● PB_SlaveActivation
● PB_SlaveConfigurationData
● PCB
● PD
● PERIOD
● PERIODE
● PERIODE_INFO
● PersistantItemListUsage
● PFSYS_TASK_EXCEPTIONHANDLER
● PFSYS_TASK_FUNCTION
● PG_TYPE
● PID
● PID_FIXCYCLE
● PingRequest
● PINGROUP
● PLANE_H
● plc
● PLC_IDENT
● PlcAbsoluteAddressInfo
● PlcAddressInfo

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4155

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_ACCESS_CONFIG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_ACCESS_PARAMETER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_CALLINFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_GET_DEV_STATUS_PARAMETER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_SEND_COMMAND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_SEND_PARAMETER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_SET_PARAMETER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_START_SCAN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_STATUS_PARAMETER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Types/OPERATION_FWK_TEST_ADDRESS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Structs/OPTION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Enum/OS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Nodefinding/OurVarInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/PACK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackArrayOfBoolToArrayOfByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBitsToByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBitsToDword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBitsToWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBytesToDword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackBytesToWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Packet/PacketPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Packet/PacketQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXBase.library_Library/FunctionBlocks/Utils/PacketReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXBase.library_Library/FunctionBlocks/Utils/PacketWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/PackWordsToDword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_DintDint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_PStringDint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_PStringXWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_StringDint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/Pair_StringString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Structs/PARAMETER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MathFunctions_1.0.0.5_Library/Data-types/PARAMETERS_INPUT_SHAPING_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/PARITY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/ParseCANID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Help-Functions/Parser/ParsePGN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/PB_SlaveActivation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoDrvProfibus2_Itfs.library_Library/PB_SlaveConfigurationData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/CmpHilscherCIFX/PCB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Controller/PD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Enums/PERIOD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Enums/PERIODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/PERIODE_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/PersistantItemListUsage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/PFSYS_TASK_EXCEPTIONHANDLER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/PFSYS_TASK_FUNCTION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/Enum/PG_TYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Controller/PID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Controller/PID_FIXCYCLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/IP/PingRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Structs/PINGROUP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/PLANE_H.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/EtherCAT/EtherCatFlex_1.0.3.1_Library/Function-Blocks/Internal/plc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Enums/PLC_IDENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcAbsoluteAddressInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcAddressInfo.html

● PlcAddressInfoType
● PlcAddressInfoUnion
● PlcAppIdentification
● PlcConnectionInitFlags
● PlcCredentialInfo
● PlcCredentials
● PlcCryptType
● PlcDataItemAccess
● PlcDataItemQuality
● PlcDataItemQualityInfo
● PlcDataItemType
● PlcOperationControl
● PlcPropertyByCallAddressInfo
● PM_VERSION
● PmBatt
● PmDiskLifetimeUsed
● PmDiskStatus
● PmDiskWriteProtection
● PmDispSetText
● PmEcoResetFRAM
● PmErrLedSet
● PmGetDeviceState
● PmGetPlcId
● PmLedSet
● PmNtpInfo
● PmpAntiJam
● PmpConfiguration
● PmpDolSimu
● PmpDriveSimu
● PmpEnergyCalc
● PmpFlowCalcHQ
● PmpFlowCalcPQ
● PmpFlowDistributor
● PmpInterfaceDol
● PmpInterfaceVFD
● PmPlcReboot
● PmpLevelComparator
● PmpLevelDistributor
● PmpMaintenance
● PmpPid
● PmpPressureDistributor
● PmpProtectionAnalog
● PmpProtectionBinary
● PmProdRead
● PmProdReadAsync
● PmpSequenceGen
● PmpSleep
● PmpSoftFilling
● PmpStationType
● PmpTankSimu
● PmRealtimeClock
● PmRealtimeClockDT
● PmSntpInfo
● PmSramCleared
● PmSramExport

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4156

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcAddressInfoType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/PlcAddressInfoUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/PlcAppIdentification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/PlcConnectionInitFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/PlcCredentialInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/PlcCredentials.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/PlcCryptType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcDataItemAccess.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcDataItemQuality.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcDataItemQualityInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcDataItemType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/Component%20Manager.library_Library/PlcOperationControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/MonitoringData_Itfs.library_Library/PlcPropertyByCallAddressInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/System-information/CompatibleV23/PM_VERSION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/Battery/PmBatt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Data-storage/FlashDisk/PmDiskLifetimeUsed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Data-storage/FlashDisk/PmDiskStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Data-storage/FlashDisk/PmDiskWriteProtection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Display/PmDispSetText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/EcoResetFRAM/PmEcoResetFRAM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/LED-control/PmErrLedSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Device-State/PmGetDeviceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/System-information/PmGetPlcId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/LED-control/PmLedSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/SNTP-Diagnosis/PmNtpInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpAntiJam.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Configuration-Functions/PmpConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Simulation-Functions/PmpDolSimu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Simulation-Functions/PmpDriveSimu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpEnergyCalc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpFlowCalcHQ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpFlowCalcPQ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Pumping-Functions/Process-Controls/Flow-Control/PmpFlowDistributor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Configuration-Functions/PmpInterfaceDol.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Configuration-Functions/PmpInterfaceVFD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Reboot/PmPlcReboot.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Pumping-Functions/Emptying-and-Filling/PmpLevelComparator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Pumping-Functions/Emptying-and-Filling/PmpLevelDistributor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpMaintenance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Pumping-Functions/Process-Controls/PmpPid.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Pumping-Functions/Process-Controls/Pressure-Control/PmpPressureDistributor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpProtectionAnalog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpProtectionBinary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Production-data/PmProdRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Production-data/Deprecated/PmProdReadAsync.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Pumping-Functions/PmpSequenceGen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpSleep.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Auxiliary-Functions/PmpSoftFilling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/Data-types/PmpStationType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Pumping/PumpEco_0.9.0.5_Library/POUs/PUMPING/Simulation-Functions/PmpTankSimu.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Realtime-clock/PmRealtimeClock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Realtime-clock/PmRealtimeClockDT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/SNTP-Diagnosis/PmSntpInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/Data-storage/SRAM-data/PmSramCleared.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Data-storage/SRAM-data/PmSramExport.html

● PmSramImport
● PmSysTime
● PmVersion
● PN_ADDR
● PN_AINFO
● PN_DEVICE_ID
● PN_PortConfiguration
● PN_PortConfigurationRecord
● PNS_CONFIG_STATES
● PNS_DIAG
● PNS_DIAG_LinkState
● PNS_IF_APDU_STATUS_CHANGED_IND_DATA_T
● PNS_IF_APDU_STATUS_CHANGED_IND_T
● PNS_IF_AR_ABORT_IND_IND_T
● PNS_IF_AR_CHECK_IND_DATA_T
● PNS_IF_AR_CHECK_IND_T
● PNS_IF_AR_IN_DATA_IND_T
● PNS_IF_CHECK_IND
● PNS_IF_CHECK_IND_DATA_T
● PNS_IF_CMD
● PNS_IF_EVENT_IND_T
● PNS_IF_GET_ASSET_IND_DATA_T
● PNS_IF_GET_ASSET_IND_T
● PNS_IF_GET_IP_ADDR_CNF_DATA_T
● PNS_IF_GET_IP_ADDR_CNF_T
● PNS_IF_GET_STATION_NAME_CNF_DATA_T
● PNS_IF_GET_STATION_NAME_CNF_T
● PNS_IF_LOAD_REMANENT_DATA_REQ
● PNS_IF_READ_RECORD_IND_DATA_T
● PNS_IF_READ_RECORD_IND_T
● PNS_IF_READ_RECORD_RSP_DATA_T
● PNS_IF_READ_RECORD_RSP_T
● PNS_IF_RESET_FACTORY_SETTINGS_IND_T
● PNS_IF_START_LED_BLINKING_IND_T
● PNS_IF_STORE_REMANENT_DATA_IND_T
● PNS_IF_USER_ERROR_IND_DATA_T
● PNS_IF_USER_ERROR_IND_T
● PNSlave
● PNSlaveDiag
● POINT
● POINT2_DINT
● POINT2_LREAL
● PolarToCartesian
● PolynomialValue
● PoolClass
● PoolCreateH
● PoolCreateP
● PoolDelete
● PoolExtendH
● PoolGetBlock
● PoolGetBlockSize
● PoolGetCurCapacity
● PoolGetNumBlocksLeft
● PoolGetSize
● PoolPutBlock

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4157

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Data-storage/SRAM-data/PmSramImport.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/System-information/PmSysTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/System-information/PmVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/PN_ADDR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/PN_AINFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/PN_DEVICE_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/PN_PortConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/IO-Link/IOL/PN_PortConfigurationRecord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PNS_CONFIG_STATES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PNS_DIAG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PNS_DIAG_LinkState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_APDU_STATUS_CHANGED_IND_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_APDU_STATUS_CHANGED_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_AR_ABORT_IND_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_AR_CHECK_IND_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_AR_CHECK_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Connection/PNS_IF_AR_IN_DATA_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_CHECK_IND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_CHECK_IND_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_CMD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_EVENT_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_GET_ASSET_IND_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_GET_ASSET_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_IP_ADDR_CNF_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_IP_ADDR_CNF_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_STATION_NAME_CNF_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/Network/PNS_IF_GET_STATION_NAME_CNF_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_LOAD_REMANENT_DATA_REQ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_IND_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_RSP_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/RecordData/PNS_IF_READ_RECORD_RSP_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_RESET_FACTORY_SETTINGS_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/PNS_IF_START_LED_BLINKING_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_STORE_REMANENT_DATA_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_USER_ERROR_IND_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXProfinetDevice2.library_Library/IoDrvCIFXProfinetDevice2/Datastructs/PacketInterface/StackEvents/PNS_IF_USER_ERROR_IND_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/FunctionBlocks/PNSlave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/Diagnosis/PNSlaveDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Datatypes/POINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/POINT2_DINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/POINT2_LREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Polar-coordinates/PolarToCartesian.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analytical-functions/PolynomialValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/PoolClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolExtendH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolGetBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Memory%20Block%20Manager.library_Library/MemoryBlockManager/Functions/Pool-Functions/PoolGetBlockSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Memory%20Block%20Manager.library_Library/MemoryBlockManager/Functions/Pool-Functions/PoolGetCurCapacity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Memory%20Block%20Manager.library_Library/MemoryBlockManager/Functions/Pool-Functions/PoolGetNumBlocksLeft.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Pool-Functions/PoolPutBlock.html

● Port
● PostEvent
● Printf
● PrintfW
● private_iomgr_memcpy
● PROC_CMD
● PROC_STATE
● ProfinetByteData
● ProfinetConfigType
● ProfinetController
● ProfinetControllerDiag
● PROJECT_INFO
● ProjectPointOnLine
● ProjectPointOnPlane
● PropertyAddressInfo
● PropertyAddrString
● PropertyAttributeExistenceString
● PropertyAttributePersistentString
● PropertyAttributesString
● PropertyAttributeWritableString
● PropertyIndexAddrString
● PropertyInfo
● PropertyInfoRemote
● PropertyLocation
● PROTOCOL_DATA_UNIT
● ProtocolDataUnit
● ProxyEnumState
● ProxyFbHistActiveAlarmsQueue
● ProxyFbHistAlarmsRowQueue
● ProxyStructError
● ProxyStructMonitor
● ProxyStructMonitorAlarmClassDesc
● ProxyStructMonitorAlarmDesc
● ProxyStructMonitorAlarmGroupDesc
● ProxyStructMonitorRequest
● prvCheckUserMgrIsActive
● prvGetTags
● PRVREC
● PRVREC_MODE
● PStrCat
● PStrCmp
● PStrICmp
● PStrIFind
● PStringElement
● PStringElementFactory
● PStringToDintMap
● PStringToXWORDMap
● PStringVector
● PStrLen
● PStrLenUntil
● PStrNICmp
● PStrToUpper
● PT_SIZE
● PtrToString
● PURPOSE

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4158

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functionblocks/Port.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/PostEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/IECStringUtils.library_Library/Printf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/IECStringUtils.library_Library/PrintfW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/IoStandard.library_Library/Config-Access-Help-Functions-internal/private/private_iomgr_memcpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/PROC_CMD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/PROC_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Util/ProfinetByteData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinetBase.library_Library/IoDrvProfinetBase/ConfigUtils/ProfinetConfigType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/FunctionBlocks/ProfinetController.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/Diagnosis/ProfinetControllerDiag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/PROJECT_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Line-Functions/ProjectPointOnLine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Plane-Functions/ProjectPointOnPlane.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/AddressInfos/PropertyAddressInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/PropertyAddrString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/PropertyAttributeExistenceString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/PropertyAttributePersistentString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/PropertyAttributesString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/PropertyAttributeWritableString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/ToString/PropertyIndexAddrString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/PropertyInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/PropertyInfoRemote.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/PropertyLocation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/Structs/PROTOCOL_DATA_UNIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ProtocolDataUnit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/ProxyEnumState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/ProxyFbHistActiveAlarmsQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/ProxyFbHistAlarmsRowQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/ProxyStructError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorAlarmClassDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorAlarmDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorAlarmGroupDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Structures/Monitor/ProxyStructMonitorRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/Private/prvCheckUserMgrIsActive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/Private/prvGetTags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/PRVREC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/PRVREC_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrCat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrCmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrICmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrIFind.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/PStringElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Collections/PStringElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/PStringToDintMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/PStringToXWORDMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/PStringVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrLenUntil.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/StringFunctions/PStrNICmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringFunctions/PStrToUpper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Datatypes/PT_SIZE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/Logging/PtrToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Enums/PURPOSE.html

● PUTBIT
● PVOID
● PVOID_TO_DWORD
● PVOID_TO_LWORD
● PVOID_TO_WORD
● QOS_INFO
● Queue
● QueueFactory
● QuickSortAddrItemHelpers
● R_TRIG
● RALARM
● RALARM_MODE
● RAMP_INT
● RAMP_REAL
● RCVREC
● RCVREC_MODE
● RCX_SET_WATCHDOG_TIME_CNF_T
● RCX_SET_WATCHDOG_TIME_REQ_DATA_T
● RCX_SET_WATCHDOG_TIME_REQ_T
● RDIAG
● RDREC
● Read
● ReadArbitraryStringFromBuffer
● ReadEEpromData
● ReadIdentification
● ReadMemory
● ReadNbrSlaves
● ReadRequest
● ReadWriteEEprom
● REAL8
● REAL8_TO_DT
● REAL8_TO_LTIME
● REAL8_TO_TIME
● REAL_TO_FLOAT
● RealToHexStr
● RealToStr
● ReceiveParameterGroup
● ReceiveWatchdog
● Recipe_FileParameters
● RecipeMan_FctTypeClassToDataType
● RecipeManCommands
● Reconfigure
● RECV_EMCY
● RECV_EMCY_DEV
● RedundancyManager
● RedundancyState
● RegContext
● Register
● RegisterCallback
● RegisterIdArea
● RemoteAdapter
● RemoteAdapter_Diag
● RemoteAdapter_diag
● RemotePlcRequestIdentification
● RemoteProcedureCall

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4159

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/PUTBIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/PVOID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/PVOID_TO_DWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/PVOID_TO_LWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/PVOID_TO_WORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Structs/QOS_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Queue/Queue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Queue/QueueFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/QuickSortAddrItemHelpers.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Trigger/R_TRIG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RALARM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RALARM_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Function-Manipulators/RAMP_INT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Function-Manipulators/RAMP_REAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/RCVREC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/RCVREC_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/RCX_SET_WATCHDOG_TIME_CNF_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/RCX_SET_WATCHDOG_TIME_REQ_DATA_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/PacketInterface/RCX_SET_WATCHDOG_TIME_REQ_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RDIAG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/RDREC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/Read.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/ReadArbitraryStringFromBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadEEpromData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadIdentification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadMemory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadNbrSlaves.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Requests/ReadRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/ReadWriteEEprom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/REAL8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/REAL8_TO_DT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/REAL8_TO_LTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/REAL8_TO_TIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/FLOAT/REAL_TO_FLOAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/RealToHexStr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/RealToStr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/ParameterGroups/ReceiveParameterGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/Diagnosis/ReceiveWatchdog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuCommandInterface.library_Library/Recipe_FileParameters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/Utilities/RecipeMan_FctTypeClassToDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/RecipeManCommands.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Device%20Diagnosis.library_Library/CAA-Device-Diagnosis/Function-Blocks/Reconfigure/Reconfigure.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Network-management/RECV_EMCY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/Network-management/RECV_EMCY_DEV.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/SysRed/RedundancyManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Structs/RedundancyState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysExcept.library_Library/RegContext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/Register.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/RegisterCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/RegisterIdArea.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/RemoteAdapter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvCIFXEthernetIP.library_Library/FunctionBlocks/Diagnosis/RemoteAdapter_Diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Function-Blocks/Device-Diagnosis/RemoteAdapter_diag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/Access-to-data-source/RemotePlcRequestIdentification.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/RemoteProcedureCall.html

● RemoteVarInfo
● RemoteVarResolver
● Rename
● ReparseIOMemoryAccessExpression
● REPLACE
● ReplacementInfo
● REQUEST
● Request
● RequestFactory
● Reset
● RESET_INIT
● RESET_OPTION
● RESET_RESET
● ResetBusAlarm
● ResetNodeInfo
● ResetNodeInfoInt
● ResolveHostname
● ReturnValues
● ReusableRequestInfo
● ReusableRequestOperations
● ReverseBitsInBYTE
● ReverseBitsInDWORD
● ReverseBitsInWORD
● ReverseBYTEsInDWORD
● ReverseBYTEsInWORD
● ReverseWORDsInDWORD
● RIGHT
● RLstAddPrio
● RLstCheckPrio
● RLstClass
● RLstCreateH
● RLstCreateP
● RLstDelete
● RLstGetHighestPrio
● RLstGetSize
● RLstRemovePrio
● RootAddressDatasourceIndex
● RootDatasourceIndex
● RootPseudo
● RootRenamed
● RootRenamedDatasourceIndex
● ROTATION_DIFFERENCE
● RouterGetHostAddress
● RouterGetInstanceByName
● RouterGetName
● RouterGetParentAddress
● RPCDataRepresentation
● RPCNCARejectStatus
● RS
● RSM_HANDLE
● RSMClass
● RTC
● RtcGetTime_ms
● RTCLK_GETDATEANDTIME_PARAMS
● RTCLK_GETTIMEZONEINFORMATION_PARAMS

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4160

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Address-Resolution/RemoteVarInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Address-Resolution/RemoteVarResolver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/Rename.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/ReparseIOMemoryAccessExpression.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/REPLACE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/ReplacementInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/RSM%20Utility.library_Library/RSM-Utility/Structs/REQUEST.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Communication/Request.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/RequestFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Reset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Supplement/RESET_INIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/003CmpApp.library_Library/RESET_OPTION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2060870-5-104/IEC60870_5_104_1.0.5.1_Library/IEC60870_5_104/Function-Blocks/Supplement/RESET_RESET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Diagnostic-Information/ResetBusAlarm.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/ResetNodeInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/ResetNodeInfoInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/IP/ResolveHostname.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/TextListUtils.library_Library/TextListUtils/ReturnValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/ReusableRequestInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources_Itfs.library_Library/Drivers-relevant-only/ReusableRequestOperations.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBitsInBYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBitsInDWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBitsInWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBYTEsInDWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseBYTEsInWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Reverse-Bit-Swap-ByteWord-order/ReverseWORDsInDWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/String-Functions/RIGHT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstAddPrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstCheckPrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/RLstClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstGetHighestPrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Ready-List/RLstRemovePrio.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Roots/RootAddressDatasourceIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootDatasourceIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootPseudo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootRenamed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Roots/RootRenamedDatasourceIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/ROTATION_DIFFERENCE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetHostAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetInstanceByName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RouterGetParentAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/RPCDataRepresentation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/RPCNCARejectStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Bistable-Function-Blocks/RS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/RSM-Utility/RSM_HANDLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/RSM-Utility/RSMClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Miscellaneous/RTC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerMulti_1.0.0.12_Library/Function-Blocks/Internal-subroutines/RtcGetTime_ms.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_GETDATEANDTIME_PARAMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_GETTIMEZONEINFORMATION_PARAMS.html

● RTCLK_PERIODE_INFO
● RTCLK_SETDATEANDTIME_PARAMS
● RTCLK_SETTIMEZONEINFORMATION_PARAMS
● RTCLK_SYSTEMTIME
● RTCLK_TIME_ZONE_INFO
● RTR_AddrComponent
● RTR_NodeAddress
● RTS_CMBOXENTRY
● RTS_CODEMETER_INFO
● RTS_CONTROL
● RTS_IEC_CWCHAR
● RTS_IEC_HANDLE
● RTS_IEC_RESULT
● RTS_IEC_SIZE
● RTS_SOCKET_SO_VALUE_IP_MREQ
● RTS_SOCKET_SO_VALUE_LINGER
● RTS_SOCKET_SO_VALUE_TCP_KEEPALIVE
● RTS_SYSTIMEDATE
● RtsBrowseInfo
● RtsByteString
● RtsCertEncoding
● RtsCertTrustLevel
● RtsCryptoID
● RtsCryptoKey
● RtsCryptoKeyStorage
● RtsCryptoKeyType
● RtsCryptoType
● RtsKdfParameter
● RtsOID
● RtsOIDClear
● RtsOIDCreate
● RtsOIDGetID
● RtsOIDGetName
● RtsOIDStore
● RtsScryptParameter
● RtsServicehandlerBase
● RtsServicehandlerBase2
● RtsX509AltName
● RtsX509AltNameStore
● RtsX509AltNameType
● RtsX509CertCheckFlags
● RtsX509CertFilter
● RtsX509CertFilterContent
● RtsX509CertFilterType
● RtsX509CertInfo
● RtsX509CertName
● RtsX509ExKeyUsage
● RtsX509NameEntry
● RtsX509VerifyFlags
● RXChgGetCurCapacity
● RXChgGetMsgSize
● S_ALLOC
● SAdapterFlags
● SafeStringCopy
● SALARM

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4161

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_PERIODE_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_SETDATEANDTIME_PARAMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_SETTIMEZONEINFORMATION_PARAMS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_SYSTEMTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/RTCLK_TIME_ZONE_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RTR_AddrComponent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpRouter.library_Library/RTR_NodeAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/RTS_CMBOXENTRY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCodeMeter.library_Library/RTS_CODEMETER_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/RTS_CONTROL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_CWCHAR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_HANDLE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_RESULT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/RTS_IEC_SIZE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/RTS_SOCKET_SO_VALUE_IP_MREQ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/RTS_SOCKET_SO_VALUE_LINGER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/RTS_SOCKET_SO_VALUE_TCP_KEEPALIVE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/RTS_SYSTIMEDATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/RtsBrowseInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Structs/RtsByteString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsCertEncoding.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsCertTrustLevel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Enums/RtsCryptoID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Structs/RtsCryptoKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Unions/RtsCryptoKeyStorage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Enums/RtsCryptoKeyType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Enums/RtsCryptoType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Unions/RtsKdfParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsOID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDGetID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/RtsOIDGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Types/RtsOIDStore.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpCrypto_Itfs.library_Library/CmpCrypto-Interfaces/Structs/RtsScryptParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Function-Blocks/RtsServicehandlerBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Function-Blocks/RtsServicehandlerBase2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509AltName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Types/RtsX509AltNameStore.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsX509AltNameType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsX509CertCheckFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509CertFilter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Types/RtsX509CertFilterContent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsX509CertFilterType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509CertInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509CertName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509ExKeyUsage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Structs/RtsX509NameEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert_Itfs.library_Library/CmpX509Cert-Interfaces/Enums/RtsX509VerifyFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Memory%20Block%20Manager.library_Library/MemoryBlockManager/Functions/Exchange-Functions/RXChgGetCurCapacity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Strings/Memory%20Block%20Manager.library_Library/MemoryBlockManager/Functions/Exchange-Functions/RXChgGetMsgSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/S_ALLOC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet_Itfs.library_Library/IIoDrvEthernet_Itfs/Structs/SAdapterFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/SafeStringCopy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/FieldDevice/SALARM.html

● ScalProd3D
● ScalProd3DStand
● ScannerState
● SchedGetCurrentTask
● SchedGetNumOfTasks
● SchedGetProcessorLoad
● SchedGetTaskEventByHandle
● SchedGetTaskHandleByIndex
● SchedGetTaskHandleByName
● SchedGetTaskInterval
● SchedPostExternalEvent
● SchedRegisterExternalEvent
● SchedSetTaskInterval
● Schedule
● SchedUnregisterExternalEvent
● SchedWaitBusy
● SchedWaitSleep
● SDO_ABORT
● SDO_ERROR
● SDO_MODE
● SDO_READ
● SDO_READ4
● SDO_READ_DATA
● SDO_WRITE
● SDO_WRITE4
● SDO_WRITE_DATA
● SdoAbort
● SdoRead
● SdoWrite
● SECOND
● Segment
● SegmentPool
● Select
● SEMA
● SendEvent
● SeparateDateTime
● SerializeHexReal
● ServiceGroup
● SERVICEHANDLER_PARAMETER
● ServiceHeader
● ServiceReader
● ServiceRequest
● ServiceRequestBase
● ServiceRequestRaw
● ServiceResponse
● ServiceWriter
● ServiceWriterSavepoint
● Set_Attribute_List
● Set_Attribute_Single
● Set_Attributes_All
● SETBIT
● SetBitValue
● SetCiAState
● SetCustomMapping
● SetDateAndTime

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4162

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/ScalProd3D.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/ScalProd3DStand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEtherNetIP.library_Library/IoDrvEtherNetIP/Enums/ScannerState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetCurrentTask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetNumOfTasks.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetProcessorLoad.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskEventByHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskHandleByIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskHandleByName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedGetTaskInterval.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedPostExternalEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedRegisterExternalEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedSetTaskInterval.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/Schedule.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedUnregisterExternalEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedWaitBusy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSchedule.library_Library/SchedWaitSleep.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/SDO_ABORT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Types/SDO_ERROR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/SDO_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/SDO_READ.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_READ4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_READ_DATA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/SDO_WRITE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_WRITE4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Function-Blocks/SDO-access/SDO_WRITE_DATA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/SdoAbort.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/SdoRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/SdoWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/SECOND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/Segment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Stream/SegmentPool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Function-Blocks/Select.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Function-Blocks/SEMA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/SendEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/SeparateDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/HexReal/SerializeHexReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Rts%20Service%20Handler.library_Library/RtsServiceHandler/Types/ServiceGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSrv.library_Library/Structs/SERVICEHANDLER_PARAMETER.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceRequestBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceRequestRaw.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceResponse.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/ServiceWriterSavepoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Set_Attribute_List.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Set_Attribute_Single.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/DataExchange/Set_Attributes_All.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/SETBIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SetBitValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Indicator-Services/SetCiAState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpOPCUAProviderAlarmConfiguration.library_Library/Curstom-Mapping/SetCustomMapping.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-and-Date/SetDateAndTime.html

● SetError
● SETIO_PART
● SetParent
● SetPos
● SetPropertyAgain
● SetResult
● SettgBeginUpdate
● SettgEndUpdate
● SettgGetIntValue
● SettgGetStringValue
● SettgGetWStringValue
● SettgRemoveKey
● SettgSetIntValue
● SettgSetStringValue
● SettgSetWStringValue
● SetTimeZoneInformation
● SettingsHelper
● SettingValue
● SetValueOfTypeDesc
● Severity
● SFCActionControl
● SFCActionType
● SFCStepType
● sgn
● SIGNED
● SIGNED_TO_DINT
● SIGNED_TO_INT
● SIGNED_TO_LINT
● SIZE
● SIZE_TO_UDINT
● SIZE_TO_UINT
● SIZE_TO_ULINT
● SlaveStateBitFieldType
● SLOT_ID
● Sm560Rec
● Sm560Send
● SntpSourceInfoData
● SntpSourceMode
● SntpSourceState
● SOCK_ADAPTER_INFORMATION
● SOCK_ADAPTER_INFORMATION2
● SOCK_ADAPTER_INFORMATION3
● SOCK_HOSTENT
● SOCK_RECVMSG_MSG
● SockAddr
● SOCKADDRESS
● SOCKET_FD_SET
● SOCKET_TIMEVAL
● SocketType
● SolarBackTracking
● SolarEncoderCD522
● SolarEncoderIO
● SolarEncoderOnboardIO
● SolarEWAxisPrimary
● SolarEWAxisSecondary

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4163

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/SetError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/SETIO_PART.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/SetParent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20File.library_Library/CAA-File/Function-Blocks/File/SetPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/BACnet/BACnet.library_Library/Utilities/BACnetUtilities/BACnetProperties/SetPropertyAgain.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Helper-Functions/SetResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgBeginUpdate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgEndUpdate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgGetIntValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgGetStringValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgGetWStringValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgRemoveKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgSetIntValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgSetStringValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpSettings.library_Library/SettgSetWStringValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Function-Blocks/Time-Zone-Information/SetTimeZoneInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SettingsHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SettingValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/TypeInformation/SetValueOfTypeDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Logging/Severity.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SFC/IecSfc.library_Library/SFCActionControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SFC/IecSfc.library_Library/SFCActionType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SFC/IecSfc.library_Library/SFCStepType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/analog-monitors/sgn.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/SIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/SIGNED_TO_DINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/SIGNED_TO_INT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIGNED/SIGNED_TO_LINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/SIZE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/SIZE_TO_UDINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/SIZE_TO_UINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/SIZE_TO_ULINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/PROFIBUS/CM592Profibus_1.0.2.3_Library/Enums/SlaveStateBitFieldType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/DP-Address/SLOT_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Safety/SM560Safety_1.2.3.5_Library/Function-Blocks/Non-Safe-Data-Exchange/Sm560Rec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Safety/SM560Safety_1.2.3.5_Library/Function-Blocks/Non-Safe-Data-Exchange/Sm560Send.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Structs/SntpSourceInfoData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/SntpSourceMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/SntpSourceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_ADAPTER_INFORMATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_ADAPTER_INFORMATION2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_ADAPTER_INFORMATION3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_HOSTENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCK_RECVMSG_MSG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Structs/SockAddr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCKADDRESS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCKET_FD_SET.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/SOCKET_TIMEVAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Enum/SocketType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/13-Backtrack/SolarBackTracking.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/21-Position/SolarEncoderCD522.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/21-Position/SolarEncoderIO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/21-Position/SolarEncoderOnboardIO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/12-Axis/SolarEWAxisPrimary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/12-Axis/SolarEWAxisSecondary.html

● SolarHydraulicControl
● SolarModeCalibration
● SolarModeHoming
● SolarModeManual
● SolarModePosition
● SolarModeTracking
● SolarNoaa
● SolarNormalizeAnalog
● SolarNrel
● SolarNSAxisPrimary
● SolarNSAxisSecondary
● SolarPositionControl
● SortByAddrItemHelper
● SortedBranchNamedTreeNode
● SortedDirectoryFileElementFactory
● SortedInstancePathBuildingBranchNode
● SortedList
● SortedListFactory
● SortedPStringVector
● SplitDateTime
● SplitString
● SplitTextListId
● SQLSTATEMENT
● SR
● SR_Mode
● SRAM_CLEARED
● SRAM_EXPORT
● SRAM_IMPORT
● SRAMArea
● SRstate
● Stack
● StackFactory
● Start
● StatDynMemory
● STATE
● StateFlags
● StateMachine
● StaticCredentialsProvider
● StaticMemBuffer
● Statistics_DINT
● STATISTICS_INT
● Statistics_LREAL
● Statistics_LTIME
● STATISTICS_REAL
● STK_INFO
● STK_NODES
● STK_SPEC
● STK_STATE
● StkClose
● StkGetInfo
● StkOpen
● StkRegister
● StkUnregister
● STO_BLOB
● STO_METRICS

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4164

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/23-Actuator/SolarHydraulicControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/22-Mode/SolarModeCalibration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/22-Mode/SolarModeHoming.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/22-Mode/SolarModeManual.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/22-Mode/SolarModePosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/22-Mode/SolarModeTracking.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/11-Track/SolarNoaa.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/21-Position/SolarNormalizeAnalog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/11-Track/SolarNrel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/12-Axis/SolarNSAxisPrimary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/12-Axis/SolarNSAxisSecondary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Solar/Solar_0.9.0.15_Library/POUs/23-Actuator/SolarPositionControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/SortByAddrItemHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/SortedBranchNamedTreeNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Visu_SortedFileList/SortedDirectoryFileElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/SortedInstancePathBuildingBranchNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/SortedList/SortedList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/SortedList/SortedListFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/SortedPStringVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/SplitDateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/SplitString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Functions/SplitTextListId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Types/SQLSTATEMENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Bistable-Function-Blocks/SR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/SysRed/SR_Mode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/Data-storage/SRAM-data/CompatibleV23/SRAM_CLEARED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Data-storage/SRAM-data/CompatibleV23/SRAM_EXPORT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Data-storage/SRAM-data/CompatibleV23/SRAM_IMPORT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Enum/SRAMArea.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvProfinet.library_Library/SysRed/SRstate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Stack/Stack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Stack/StackFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Start.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/Memory/StatDynMemory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Structs/STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Structs/StateFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/StateMachine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/CredentialsProviders/StaticCredentialsProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StaticMemBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/statistical-functions/Statistics_DINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/STATISTICS_INT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/statistical-functions/Statistics_LREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Proxy/Statistics_LTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/STATISTICS_REAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Structs/STK_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/STK_NODES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/STK_SPEC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CanOpen%20Stack.library_Library/CAA-CANopen-Stack/Enums/STK_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/StkClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/StkGetInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/StkOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/Services-for-CANopen-Stack/StkRegister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CANopen%20Manager.library_Library/CAA-CANopen-Manager/Functions/Services-for-CANopen-Stack/StkUnregister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/STO_BLOB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/STO_METRICS.html

● STO_TEXT
● Stop
● STOPBIT
● Storage
● StrCaseCmpA
● StrCaseCmpEndA
● StrCaseCmpStartA
● StrCaseCmpW
● StrCaseFindA
● StrCaseFindW
● StrCmpA
● StrCmpEndA
● StrCmpStartA
● StrCmpW
● StrConcatA
● StrConcatW
● StrCpyA
● StrCpyW
● StrCpyWtoA
● StrDeleteA
● StrDeleteW
● Stream
● STREAM_STATE
● StrFindA
● StrFindW
● StringBuilder
● StringBuilderSysMemExtending
● StringElement
● StringElementFactory
● StringToDintMap
● StringToStringMap
● StringVector
● StrIsNullOrEmptyA
● StrIsNullOrEmptyW
● StrLenA
● StrLenW
● StrMidA
● StrMidW
● StrPadLeftA
● StrPadLeftW
● StrPadRightA
● StrPadRightW
● StrReplaceA
● StrReplaceW
● StrToLowerA
● StrToLReal
● StrToReal
● StrToUpperA
● StrTrimA
● StrTrimEndA
● StrTrimEndW
● StrTrimStartA
● StrTrimStartW
● StrTrimW
● StructFilteringName

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4165

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/STO_TEXT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Function-Blocks/Stop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20SerialCom.library_Library/CAA-SerialCom/Enums/STOPBIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/3S%20Storage.library_Library/_3SStorage/Instances/Storage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseCmpA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseCmpEndA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseCmpStartA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCaseCmpW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCaseFindA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCaseFindW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCmpA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCmpEndA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCmpStartA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCmpW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrConcatA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrConcatW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrCpyA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrCpyW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/Functions/StrCpyWtoA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrDeleteA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrDeleteW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Stream/Stream.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/TCP.library_Library/TCP/Enums/STREAM_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrFindA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrFindW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringBuilder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/StringBuilderSysMemExtending.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/StringElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/StringElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringToDintMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringToStringMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/StringVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrIsNullOrEmptyA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrIsNullOrEmptyW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrLenA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrLenW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrMidA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrMidW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrPadLeftA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrPadLeftW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrPadRightA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrPadRightW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrReplaceA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrReplaceW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrToLowerA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/StrToLReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/StringFunctions/StrToReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrToUpperA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrTrimA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrTrimEndA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrTrimEndW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Ansi/StrTrimStartA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrTrimStartW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/StrTrimW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager_Itfs.library_Library/StructFilteringName.html

● StuSprintf
● StuSprintfW
● StyleUtilFct_GetBoolFromStyle
● StyleUtilFct_GetBoolFromStyleEnumOrExplicitValue
● StyleUtilFct_GetSimpleTypeFromStyleEnumOrExplicitValue
● StyleUtilFct_GetUDIntFromStyle
● SubmoduleDiagnosisEntry
● SubmoduleInfo
● SubmoduleIterator
● SubmoduleState_AddInfo
● SubmoduleState_ARInfo
● SubmoduleState_Detail
● SubmoduleState_IdentInfo
● SubmoduleStatus
● SUBSLOT_ID
● SubVector
● Swap
● SwapByteArrayByWords
● SwapDword
● SwapDwordIf
● SwapLocalToIntel
● SwapLocalToMotorola
● SwapLword
● SwapLwordIf
● SwappedDirectAssigner
● SwappingInfo
● SwapWord
● SwapWordIf
● SWITCHBIT
● Symbol_Translation
● SymbolicInfo
● SymbolicVarNodeAccessor
● SymbolicVarNodeFinder
● SymbolicVarsBaseHandleConverter
● SymbolInfo
● Symbols
● SymbolsBaseNode
● SymbolsBranchNode
● SymVarAccess
● SYNC_INFO
● SYS_FILE_STATUS
● SYS_FILETIME
● SYS_TASK_INFO
● SYS_TASK_PARAM
● SYS_TIME
● SysCpuAtomicAdd
● SysCpuAtomicAdd64
● SysCpuAtomicCompareAndSwap
● SysCpuCallIecFuncWithParams
● SysCpuResetBit
● SysCpuResetBit2
● SysCpuSetBit
● SysCpuSetBit2
● SysCpuTestAndReset
● SysCpuTestAndSet

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4166

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/StuSprintf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/StuSprintfW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetBoolFromStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetBoolFromStyleEnumOrExplicitValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetSimpleTypeFromStyleEnumOrExplicitValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/Utils/StyleUtils/StyleUtilFct_GetUDIntFromStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleDiagnosisEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleIterator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_AddInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_ARInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_Detail.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Status/SubmoduleState_IdentInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Application/SubmoduleStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/Addresses/SUBSLOT_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/geometrical-functions/Vector-Functions/SubVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Swap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/SwapByteArrayByWords.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Swap/SwapDword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Swapping/SwapDwordIf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/Swapping/SwapLocalToIntel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/MemoryUtils.library_Library/MemoryUtils/Functions/Swapping/SwapLocalToMotorola.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Swap/SwapLword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Swapping/SwapLwordIf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Assigners/SwappedDirectAssigner.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/SwappingInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Swap/SwapWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Swapping/SwapWordIf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/SWITCHBIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuSymbols.library_Library/Symbol_Translation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Structs/SymbolicInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/SymbolicVarNodeAccessor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/SymbolicVarNodeFinder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/SymbolicVarsBaseHandleConverter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/SymbolInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuSymbols.library_Library/Symbols.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/SymbolsBaseNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Nodes/SymbolsBranchNode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/SymVarAccess.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/Redundancy/Redundancy_Itfs.library_Library/CmpRedundancy-Interfaces/Structs/SYNC_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SYS_FILE_STATUS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SYS_FILETIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/SYS_TASK_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/DUTs/SYS_TASK_PARAM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Functions/System-information/CompatibleV23/SYS_TIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuAtomicAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuAtomicAdd64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuAtomicCompareAndSwap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuCallIecFuncWithParams.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuResetBit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuResetBit2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuSetBit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuSetBit2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuTestAndReset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuTestAndSet.html

● SysCpuTestAndSetBit
● SysDirClose
● SysDirCopy
● SysDirCreate
● SysDirCreate2
● SysDirDelete
● SysDirDelete2
● SysDirGetCurrent
● SysDirOpen
● SysDirRead
● SysDirRename
● SysDirSetCurrent
● SysEthernetAdapterClose
● SysEthernetAdapterOpen
● SysEthernetCapabilities
● SysEthernetEthFrameReceive
● SysEthernetEthFrameSend
● SysEthernetFrame
● SysEthernetFrameRelease
● SysEthernetGetCapabilities
● SysEthernetGetInterfaceCounters
● SysEthernetGetMediaCounters
● SysEthernetGetPortConfigAndStatus
● SysEthernetInterfaceCounters
● SysEthernetIpFrameReceive
● SysEthernetIpFrameSend
● SysEthernetMediaCounters
● SysEthernetPortConfigAndStatus
● SysEthernetSetAutoNegAdvertisedCap
● SysEthernetSetAutoNegMode
● SysEthernetSetMauType
● SysEventCreate
● SysEventDelete
● SysEventSet
● SysEventWait
● SysExceptGenerateException
● SysFileClose
● SysFileCopy
● SysFileDelete
● SysFileDeleteByHandle
● SysFileEOF
● SysFileFlush
● SysFileGetName
● SysFileGetName2
● SysFileGetPath
● SysFileGetPos
● SysFileGetSize
● SysFileGetSizeByHandle
● SysFileGetStatus
● SysFileGetStatus2
● SysFileGetTime
● SysFileIoctl
● SysFileOpen
● SysFileRead
● SysFileRename

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4167

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuHandling.library_Library/SysCpuTestAndSetBit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirCopy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirCreate2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirDelete2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirGetCurrent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirRename.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysDir.library_Library/SysDirSetCurrent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetAdapterClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetAdapterOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetCapabilities.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetEthFrameReceive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetEthFrameSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetFrame.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetFrameRelease.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetCapabilities.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetInterfaceCounters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetMediaCounters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetGetPortConfigAndStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetInterfaceCounters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetIpFrameReceive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetIpFrameSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetMediaCounters.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Structs/SysEthernetPortConfigAndStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetSetAutoNegAdvertisedCap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetSetAutoNegMode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEthernet.library_Library/SysEthernet/Functions/SysEthernetSetMauType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysEvent.library_Library/SysEventWait.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysExcept.library_Library/SysExceptGenerateException.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileCopy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileDeleteByHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileEOF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileFlush.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetName2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetPath.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetSizeByHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetStatus2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileGetTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/SysFile_1.0.3.1_Library/Functions/SysFileIoctl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileRename.html

● SysFileSetPos
● SysFileTruncate
● SysFileWrite
● SysMCBDAlloc
● SysMCBDCount
● SysMCBDFree
● SysMCBDGetFirstID
● SysMCBDGetNextID
● SysMCBDIsSet
● SysMCGetLoad
● SysMCGetNumOfCores
● SysMCGetProcessBinding
● SysMCGetTaskBinding
● SysMemAllocData
● SysMemCmp
● SysMemCpy
● SysMemForceSwap
● SysMemFreeData
● SysMemGetCurrentHeapSize
● SysMemIsValidPointer
● SysMemMove
● SysMemReallocData
● SysMemSet
● SysMemSwap
● SysProcessCreate
● SysProcessCreate2
● SysProcessExecuteCommand
● SysProcessExecuteCommand2
● SysProcessFreeHandle
● SysProcessGetCurrentHandle
● SysProcessGetOSId
● SysProcessGetPriority
● SysProcessGetState
● SysProcessResume
● SysProcessSetPriority
● SysProcessTerminate
● SysSemCreate
● SysSemDelete
● SysSemEnter
● SysSemLeave
● SysSemTry
● SysSharedMemoryClose
● SysSharedMemoryCreate
● SysSharedMemoryDelete
● SysSharedMemoryGetPointer
● SysSharedMemoryOpen2
● SysSharedMemoryRead
● SysSharedMemoryReadByte
● SysSharedMemoryWrite
● SysSharedMemoryWriteByte
● SysSock2Accept
● SysSock2Bind
● SysSock2Close
● SysSock2Connect
● SysSock2Create

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4168

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileSetPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileTruncate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysFile.library_Library/SysFileWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDAlloc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDFree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDGetFirstID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDGetNextID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCBDIsSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetLoad.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetNumOfCores.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetProcessBinding.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysCpuMultiCore.library_Library/SysMCGetTaskBinding.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemAllocData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemCmp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemCpy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemForceSwap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemFreeData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemGetCurrentHeapSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemIsValidPointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemMove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemReallocData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysMem.library_Library/SysMemSwap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessCreate2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessExecuteCommand.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessExecuteCommand2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessFreeHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetCurrentHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetOSId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetPriority.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessGetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessResume.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessSetPriority.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysProcess%20Implementation.library_Library/SysProcessTerminate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemEnter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemLeave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSem%20Implementation.library_Library/SysSemTry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryGetPointer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryOpen2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryRead.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryReadByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryWrite.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysShm%20Implementation.library_Library/SysSharedMemoryWriteByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Accept.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Bind.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Close.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Connect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Create.html

● SysSock2FdInit
● SysSock2FdIsset
● SysSock2FdZero
● SysSock2GetOption
● SysSock2GetPeerName
● SysSock2GetSockName
● SysSock2Htonl
● SysSock2Htons
● SysSock2InetAddr
● SysSock2InetNtoa
● SysSock2Ioctl
● SysSock2Listen
● SysSock2Ntohl
● SysSock2Ntohs
● SysSock2Recv
● SysSock2RecvFrom
● SysSock2RecvMsg
● SysSock2Select
● SysSock2Send
● SysSock2SendTo
● SysSock2SetOption
● SysSock2Shutdown
● SysSockAccept
● SysSockAsyncFB
● SysSockBind
● SysSockClose
● SysSockCloseUdp
● SysSockConnect
● SysSockCreate
● SysSockCreateUdp
● SysSocket2_Parameter
● SysSocket2_SpecificParameter
● SysSocket2_StdSockets
● SysSocket2_TlsSockets
● SysSocket2_Type
● SysSocketPair
● SysSockFdInit
● SysSockFdIsset
● SysSockFdZero
● SysSockGetAdapterInfo
● SysSockGetFirstAdapterInfo
● SysSockGetHostByName
● SysSockGetHostName
● SysSockGetNextAdapterInfo
● SysSockGetOption
● SysSockGetOSHandle
● SysSockGetPeerName
● SysSockGetRecvSizeUdp
● SysSockGetSockName
● SysSockGetSubnetMask
● SysSockHtonl
● SysSockHtons
● SysSockInetAddr
● SysSockInetNtoa
● SysSockIoctl

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4169

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2FdInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2FdIsset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2FdZero.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2GetOption.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2GetPeerName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2GetSockName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Htonl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Htons.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2InetAddr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2InetNtoa.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Ioctl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Listen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Ntohl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Ntohs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Recv.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2RecvFrom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2RecvMsg.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Select.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Send.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2SendTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2SetOption.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2%20Implementation.library_Library/SysSock2Shutdown.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockAccept.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/SysSockAsyncFB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockBind.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockCloseUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockConnect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockCreateUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_Parameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_SpecificParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_StdSockets.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_TlsSockets.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket2_Itfs.library_Library/SysSocket2_Type.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/SysSocket_1.0.3.1_Library/Functions/SysSocketPair.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockFdInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockFdIsset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockFdZero.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/SysSocket_1.0.3.1_Library/Functions/SysSockGetAdapterInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetFirstAdapterInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetHostByName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetHostName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetNextAdapterInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetOption.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetOSHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetPeerName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetRecvSizeUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetSockName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockGetSubnetMask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockHtonl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockHtons.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockInetAddr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockInetNtoa.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockIoctl.html

● SysSockListen
● SysSockNtohl
● SysSockNtohs
● SysSockPing
● SysSockRecv
● SysSockRecvFrom
● SysSockRecvFromUdp
● SysSockRecvFromUdp2
● SysSockRecvMsg
● SysSockSelect
● SysSockSend
● SysSockSendTo
● SysSockSendToUdp
● SysSockSetDefaultGateway
● SysSockSetIPAddress
● SysSockSetIpAddressAndNetMask
● SysSockSetOption
● SysSockSetSubnetMask
● SysSockShutdown
● SysTargetGetDeviceName
● SysTargetGetId
● SysTargetGetNodeName
● SysTargetGetOperatingSystemId
● SysTargetGetProcessorId
● SysTargetGetSerialNumber
● SysTargetGetType
● SysTargetGetVendorName
● SysTargetGetVersion
● SysTargetOperationNumber
● SysTaskAutoReleaseOnExit
● SysTaskCheckStack
● SysTaskCreate
● SysTaskCreate2
● SysTaskDestroy
● SysTaskEnd
● SysTaskEnter
● SysTaskExit
● SysTaskGenerateException
● SysTaskGetContext
● SysTaskGetCurrent
● SysTaskGetCurrentOSHandle
● SysTaskGetInfo
● SysTaskGetInterval
● SysTaskGetName
● SysTaskGetOSHandle
● SysTaskGetOSPriority
● SysTaskGetPriority
● SysTaskJoin
● SysTaskLeave
● SysTaskResume
● SysTaskSetExit
● SysTaskSetInterval
● SysTaskSetPriority
● SysTaskSuspend
● SysTaskWaitInterval

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4170

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockListen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockNtohl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockNtohs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockPing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecv.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecvFrom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecvFromUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecvFromUdp2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockRecvMsg.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSelect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSendTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSendToUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetDefaultGateway.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetIPAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetIpAddressAndNetMask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetOption.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockSetSubnetMask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket%20Implementation.library_Library/SysSockShutdown.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetDeviceName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetNodeName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetOperatingSystemId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetProcessorId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetSerialNumber.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetVendorName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTarget.library_Library/SysTargetGetVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Enums/SysTargetOperationNumber.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskAutoReleaseOnExit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskCheckStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskCreate2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskDestroy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskEnd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskEnter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskExit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGenerateException.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetContext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetCurrent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetCurrentOSHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetInterval.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetOSHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetOSPriority.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskGetPriority.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskJoin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskLeave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskResume.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSetExit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSetInterval.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSetPriority.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskSuspend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskWaitInterval.html

● SysTaskWaitSleep
● SysTaskWaitSleepUs
● SYSTEM_MEMORY_INFORMATION
● SystemParameter
● SYSTEMTIME
● SYSTIME
● SYSTIMEDATE
● SysTimeGetMs
● SysTimeGetNs
● SysTimeGetUs
● SysTimeRtcControl
● SysTimeRtcConvertDateToHighRes
● SysTimeRtcConvertDateToUtc
● SysTimeRtcConvertHighResToDate
● SysTimeRtcConvertHighResToLocal
● SysTimeRtcConvertLocalToHighRes
● SysTimeRtcConvertLocalToUtc
● SysTimeRtcConvertUtcToDate
● SysTimeRtcConvertUtcToLocal
● SysTimeRtcGet
● SysTimeRtcGetTimezone
● SysTimeRtcHighResGet
● SysTimeRtcHighResSet
● SysTimeRtcSet
● SysTimeRtcSetTimezone
● SYSTYPE
● TA5130KNXPB
● TA5131RTC
● TA5141RS232I
● TA5142RS485
● TargetVisuCyclic
● TargetVisuFindById
● TargetVisuNotify
● Task_Desc
● Task_Desc2
● TASK_GROUP
● Task_Info2
● TASK_NAME
● Task_WatchdogHitCount
● TaskLock
● TaskUnlock
● tCmpLogAdd
● TCP_Client
● TCP_Connection
● TCP_Processor
● TCP_Read
● TCP_ReadBuffer
● TCP_Reader
● TCP_Server
● TCP_Write
● TCP_WRITE_STATE
● TCP_WriteBuffer
● TCP_Writer
● teClass
● teEcatDcControlState

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4171

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskWaitSleep.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTask.library_Library/SysTaskWaitSleepUs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/SYSTEM_MEMORY_INFORMATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/SystemParameter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/SYSTEMTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SYSTIME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/SYSTIMEDATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SysTimeGetMs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SysTimeGetNs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeCore.library_Library/SysTimeGetUs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertDateToHighRes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertDateToUtc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertHighResToDate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertHighResToLocal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcConvertLocalToHighRes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertLocalToUtc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertUtcToDate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcConvertUtcToLocal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcGet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcGetTimezone.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcHighResGet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/High-Resolution/SysTimeRtcHighResSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/SysTimeRtcSetTimezone.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Enums/SYSTYPE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/TA513x_1.0.1.1_Library/Function-Blocks/TA5130KNXPB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/ECO/TA513x_1.0.1.1_Library/Function-Blocks/TA5131RTC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/TA514x_1.0.1.1_Library/Function-Blocks/TA5141RS232I.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/Serial%20Communication/TA514x_1.0.1.1_Library/Function-Blocks/TA5142RS485.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTargetVisu.library_Library/TargetVisuCyclic.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTargetVisu.library_Library/TargetVisuFindById.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTargetVisu.library_Library/TargetVisuNotify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Task_Desc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Task_Desc2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Types/TASK_GROUP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Task_Info2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Types/TASK_NAME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpIecTask.library_Library/Task_WatchdogHitCount.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Helper-Fuctions/TaskLock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Helper-Fuctions/TaskUnlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpLogAsync.library_Library/DUT/tCmpLogAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Client.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Connection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Processor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Read.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/TCP/TCP_ReadBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Reader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Server.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Write.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Enums/TCP_WRITE_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/TCP/TCP_WriteBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TCP/TCP_Writer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.7.2_Library/Enums/teClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/teEcatDcControlState.html

● teEcatDevState
● teEcatSlvDcInfoFlags
● teErrorCodesOB
● teEvent
● teExtSyncInfoFlags
● teHwId
● Test_State
● Testcases
● TEXT
● TextCopyToString
● TextCopyToWString
● TextFree
● TextHelper
● TextListForCombobox_CIPClass
● TICK
● TICK_TO_UDINT
● TICK_TO_UINT
● TICK_TO_ULINT
● TIME_TO_DURATION
● TIME_TO_INT64
● TIME_TO_ISO8601
● TIME_TO_REAL8
● TIME_ZONE_INFO
● TimeElement
● TimeElementFactory
● TimerSwitch
● TIMESTAMP
● Timestamp_to_DT
● TimeZone
● TimezoneInformation
● TimingControlledBehaviourModelBase
● TimingController
● TL_AlarmStatus
● TL_AlarmTableColumnTitles
● TL_DateTime
● TL_ElementProperties
● TL_RecipeManager
● TL_VUM_Errors
● TLR_PACKET_HEADER_T
● TLS_VERSION
● TLSContext
● TO_IDeviceCM579EtherCAT
● TODConcat
● TODSplit
● TOF
● TON
● TP
● TraceAbsoluteAddressInfoWriter
● TraceAbstractAddressInfoWriter
● TraceAddress
● TraceFctGetPropertyValue
● TraceFctGetVariableName
● TraceFctGetVariableNameW
● TraceMgrGetConfigFromFile
● TraceMgrGetConfigFromFileRelease

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4172

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/teEcatDevState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/teEcatSlvDcInfoFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvDigitalOptionBoard_1.1.5.3_Library/teErrorCodesOB.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.7.2_Library/Enums/teEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/teExtSyncInfoFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Diagnosis/DiagTypes_1.2.7.2_Library/Enums/teHwId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpChannelClientIec.library_Library/Test/Test_State.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpBinTagUtilIec.library_Library/Test/Testcases.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Structs/TEXT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/TextCopyToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/TextCopyToWString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/TEXT/TextFree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Function-blocks/Utilities/TextHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/EtherNetIP%20Services.library_Library/EtherNetIPServices/Visualization/TextListForCombobox_CIPClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/TICK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/TICK_TO_UDINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/TICK_TO_UINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/TICK_TO_ULINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/DURATION/TIME_TO_DURATION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/TIME_TO_INT64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/TIME_TO_ISO8601.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Database/CAA%20Storage.library_Library/CAA-Storage/Functions/ISO8601/TIME_TO_REAL8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20Real%20Time%20Clock%20Extern.library_Library/CAA-Real-Time-Clock/Structs/TIME_ZONE_INFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/TimeElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/TimeElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/FunctionBlocks/TimerSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/TIMESTAMP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/Functions/Timestamp_to_DT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Structs/TimeZone.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTimeRtc.library_Library/Standard/TimezoneInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/ImplementationBase/TimingControlledBehaviourModelBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Common%20Behaviour%20Model.library_Library/Common-Behaviour-Model/Behaviour-Model/TimingController.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/AlarmManager/AlarmManager.library_Library/TL_AlarmStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/TL_AlarmTableColumnTitles.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/TL_DateTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElem3DPath.library_Library/TL_ElementProperties.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/RecipeManagement/Recipe%20Management.library_Library/TL_RecipeManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/TL_VUM_Errors.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpHilscherCIFX.library_Library/Datastructs/TLR_PACKET_HEADER_T.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Types/TLS_VERSION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/TLS/TLSContext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvCM579EtherCAT_1.0.4.1_Library/Functions/TO_IDeviceCM579EtherCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/TODConcat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/System/CAA%20DTUtil%20Extern.library_Library/CAA-DTUtil/Functions/Utility-Functions/TODSplit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Timer/TOF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Timer/TON.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard.library_Library/Timer/TP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/ITraceAddressInfoWriter/TraceAbsoluteAddressInfoWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/ITraceAddressInfoWriter/TraceAbstractAddressInfoWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/Functions/TraceFctGetPropertyValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/Helpfunctions/TraceFctGetVariableName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/Helpfunctions/TraceFctGetVariableNameW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrGetConfigFromFile.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrGetConfigFromFileRelease.html

● TraceMgrPacketCheckTrigger
● TraceMgrPacketClose
● TraceMgrPacketComplete
● TraceMgrPacketCreate
● TraceMgrPacketDelete
● TraceMgrPacketDisable
● TraceMgrPacketDisableTrigger
● TraceMgrPacketEnable
● TraceMgrPacketEnableTrigger
● TraceMgrPacketGetAbsoluteStartTime
● TraceMgrPacketGetChangeTimestamp
● TraceMgrPacketGetConfig
● TraceMgrPacketGetFirst
● TraceMgrPacketGetNext
● TraceMgrPacketGetStartTime
● TraceMgrPacketGetState
● TraceMgrPacketOpen
● TraceMgrPacketReadBegin
● TraceMgrPacketReadEnd
● TraceMgrPacketReadFirst
● TraceMgrPacketReadFirst2
● TraceMgrPacketReadNext
● TraceMgrPacketReadNext2
● TraceMgrPacketResetTrigger
● TraceMgrPacketRestart
● TraceMgrPacketRestore
● TraceMgrPacketStart
● TraceMgrPacketStop
● TraceMgrPacketStore
● TraceMgrRecordAdd
● TraceMgrRecordGetConfig
● TraceMgrRecordGetFirst
● TraceMgrRecordGetNext
● TraceMgrRecordRemove
● TraceMgrRecordUpdate
● TraceMgrRecordUpdate2
● TraceMgrRecordUpdate3
● TraceMgrRecordUpdate4
● TraceMgrRecordUpdate5
● TracePacketConfiguration
● TracePropertyByCallAddressInfoWriter
● TraceRecordConfiguration
● TraceRecordEntry
● TraceState
● TraceTrigger
● TraceVariable
● TraceVariableAddress
● TraceVarInfo
● TRANSITION_STATE
● TRANSMISSION
● TransmissionTrigger
● TransmitParameterGroup
● Tree
● TreeBase
● TreeNode

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4173

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketCheckTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketComplete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketDisable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketDisableTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketEnable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketEnableTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetAbsoluteStartTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetChangeTimestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetStartTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketGetState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadBegin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadEnd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadFirst2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketReadNext2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketResetTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketRestart.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketRestore.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketStart.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketStop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrPacketStore.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordGetConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordGetFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordGetNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordRemove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/TraceMgrRecordUpdate5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TracePacketConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/ITraceAddressInfoWriter/TracePropertyByCallAddressInfoWriter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceRecordConfiguration.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceRecordEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceVariableAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TraceVarInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20CiA%20405.library_Library/CAA-CiA-405/Enums/TRANSITION_STATE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Enums/TRANSMISSION.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/TransmissionTrigger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CANbus/IoDrvJ1939.library_Library/API/ParameterGroups/TransmitParameterGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Tree/Tree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Tree/TreeBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/TreeNode/TreeNode.html

● TreeNodeFactory
● TreeNodeType
● TrendFbDatabaseAccessErrorHandler
● TrendFbTrendStorageWriterReader
● TrendFctCursorSearchFirstRow
● TrendFctGetDBFileSize
● TrendFctGetDBPercLimit
● TrendFctGetDBReOrderingData
● TrendFctGetDBReOrderingForceFailure
● TrendFctGetRecordSizeFactor
● TrendFctGetTimestamp
● TrendFctResetDBReOrderingData
● TrendFctSetComplexElementCallState
● TrendFctSetDBPercLimit
● TrendFctSetDBReOrderingForceFailure
● TrendFctSetRecordSizeFactor
● TrendFctShowLossOfPrecisionWarning
● TrendFctShowUnsupportedFunctionWarning
● TrendStorageCacheItemData
● TrendStorageConvertFromTimestamp
● TrendStorageConvertToTimestamp
● TrendStorageReader
● TrendStorageReaderValueConverter
● TrendStorageVariableDescription
● TriggerState
● TriggerValue
● Truncate
● TruncateF
● TryAdjustData_Int
● TryAdjustData_Real
● TryAdjustData_UInt
● tsEcmExtSyncInfo
● tsEcmMstrDcInfo
● tsEcmMstrFrameLossCnt
● tsEcmMstrFrameLossCntEntry
● tsEcmMstrInfo
● tsEcmMstrMemInfo
● tsEcmMstrThresholdCnt
● tsEcmMstrThresholdCntEntry
● tsEcmMstrTimingInfo
● tsEcmSlvConnInfo
● tsEcmSlvDcInfo
● tsEcmSlvEmergencies
● tsEcmSlvEmergency
● tsEcmSlvESCVersion
● tsEcmSlvESCVersion_1
● tsEcmSlvInfo
● tsEcmSlvLostLinkCnt
● tsEcmSlvRxErrorCnt
● tsNetxChannel
● tsNetxEcatBusScanDeviceInfo
● tsNetxEcatHandle
● tsParameterStruct
● tSysSockAccept
● tSysSockBind

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4174

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/TreeNode/TreeNodeFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TreeNodeType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/TrendFbDatabaseAccessErrorHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/TrendFbTrendStorageWriterReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/TrendFctCursorSearchFirstRow.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctGetDBFileSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctGetDBPercLimit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctGetDBReOrderingData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctGetDBReOrderingForceFailure.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctGetRecordSizeFactor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/TrendFctGetTimestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctResetDBReOrderingData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/Helpfunctions/TrendFctSetComplexElementCallState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctSetDBPercLimit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctSetDBReOrderingForceFailure.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Access-to-trend-storage/Functions/StorageSizeMonitor/TrendFctSetRecordSizeFactor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/debugging/TrendFctShowLossOfPrecisionWarning.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/debugging/TrendFctShowUnsupportedFunctionWarning.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/Service/TrendStorageCache/TrendStorageCacheItemData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageConvertFromTimestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageConvertToTimestamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageReader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageReaderValueConverter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuTrendStorageAccess.library_Library/VisuTrendStorageAccess/TrendStorageVariableDescription.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TriggerState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TriggerValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/Truncate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/FloatingPointUtils.library_Library/Functions/TruncateF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/TryAdjustData_Int.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/TryAdjustData_Real.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/Utils/TryAdjustData_UInt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsEcmExtSyncInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmMstrDcInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmMstrFrameLossCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmMstrFrameLossCntEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsEcmMstrInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmMstrMemInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmMstrThresholdCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmMstrThresholdCntEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmMstrTimingInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsEcmSlvConnInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsEcmSlvDcInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsEcmSlvEmergencies.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsEcmSlvEmergency.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmSlvESCVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmSlvESCVersion_1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsEcmSlvInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmSlvLostLinkCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/tsEcmSlvRxErrorCnt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/NetxBase_1.2.3.6_Library/Structs/tsNetxChannel.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/Services/Scan/tsNetxEcatBusScanDeviceInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/EtherCAT/CM579EtherCAT_1.0.1.3_Library/Types/Internal/tsNetxEcatHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Intern/IoDrivers/IoDrvAnalogOptionBoard_1.1.4.3_Library/Structs/tsParameterStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockAccept.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockBind.html

● tSysSockClose
● tSysSockCloseUdp
● tSysSockConnect
● tSysSockCreate
● tSysSockCreateUdp
● tSysSockGetHostByName
● tSysSockGetHostname
● tSysSockGetOption
● tSysSockGetOsHandle
● tSysSockGetRecvSizeUdp
● tSysSockGetSubnetMask
● tSysSockHtonl
● tSysSockHtons
● tSysSockInetAddr
● tSysSockInetNtoa
● tSysSockIoctl
● tSysSockListen
● tSysSockNtohl
● tSysSockNtohs
● tSysSockPing
● tSysSockRecv
● tSysSockRecvFrom
● tSysSockRecvFromUdp
● tSysSockSelect
● tSysSockSend
● tSysSockSendTo
● tSysSockSendToUdp
● tSysSockSetIpAddress
● tSysSockSetOption
● tSysSockSetSubnetMask
● tSysSockShutdown
● tyIEC61850_ASN1_Header
● tyIEC61850_AT_AnalogueValue
● tyIEC61850_AT_AnalogueValue_Struct
● tyIEC61850_AT_APC
● tyIEC61850_AT_APC1
● tyIEC61850_AT_APC_Operate
● tyIEC61850_AT_APC_Operate_SP
● tyIEC61850_AT_BOOLEAN
● tyIEC61850_AT_BSC_Operate
● tyIEC61850_AT_Check
● tyIEC61850_AT_CODED_ENUM
● tyIEC61850_AT_DPC_Operate
● tyIEC61850_AT_DstAddress
● tyIEC61850_AT_EntryTime
● tyIEC61850_AT_ENUM_CtlModels
● tyIEC61850_AT_ENUM_MODE
● tyIEC61850_AT_ENUM_SboClass
● tyIEC61850_AT_ENUMERATED
● tyIEC61850_AT_FLOAT32
● tyIEC61850_AT_INC
● tyIEC61850_AT_INC1
● tyIEC61850_AT_INC_Operate
● tyIEC61850_AT_INS
● tyIEC61850_AT_INT128

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4175

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockCloseUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockConnect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockCreate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockCreateUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetHostByName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetHostname.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetOption.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetOsHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetRecvSizeUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockGetSubnetMask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockHtonl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockHtons.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockInetAddr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockInetNtoa.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockIoctl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockListen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockNtohl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockNtohs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockPing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockRecv.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockRecvFrom.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockRecvFromUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSelect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSendTo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSendToUdp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSetIpAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSetOption.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockSetSubnetMask.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocketAsync.library_Library/DUT/tSysSockShutdown.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/tyIEC61850_ASN1_Header.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_AnalogueValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_AnalogueValue_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_APC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_APC1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_APC_Operate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_APC_Operate_SP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_BOOLEAN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_BSC_Operate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Check.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_CODED_ENUM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_DPC_Operate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_DstAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_EntryTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUM_CtlModels.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUM_MODE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUM_SboClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ENUMERATED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_FLOAT32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_INC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_INC1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_INC_Operate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_INS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT128.html

● tyIEC61850_AT_INT16
● tyIEC61850_AT_INT16U
● tyIEC61850_AT_INT32
● tyIEC61850_AT_INT32U
● tyIEC61850_AT_INT8
● tyIEC61850_AT_INT8U
● tyIEC61850_AT_ISC_Operate
● tyIEC61850_AT_Octet255
● tyIEC61850_AT_Octet64
● tyIEC61850_AT_Origin
● tyIEC61850_AT_POINT
● tyIEC61850_AT_PulseConfig
● tyIEC61850_AT_Quality
● tyIEC61850_AT_RANGECONFIG
● tyIEC61850_AT_ScaledValConfig
● tyIEC61850_AT_SPC
● tyIEC61850_AT_SPC_Operate
● tyIEC61850_AT_StatusValue_Struct
● tyIEC61850_AT_TimeStamp
● tyIEC61850_AT_UCSTRING255
● tyIEC61850_AT_UINT32
● tyIEC61850_AT_UNIT
● tyIEC61850_AT_ValWithTrans
● tyIEC61850_AT_VECTOR
● tyIEC61850_AT_VisSTRING129
● tyIEC61850_AT_VisSTRING255
● tyIEC61850_AT_VisSTRING32
● tyIEC61850_AT_VisSTRING64
● tyIEC61850_AT_VisSTRING65
● tyIEC61850_DataPoint
● tyIEC61850_DataSetRef
● tyIEC61850_GOOSE_Check
● tyIEC61850_GOOSEMsg
● tyIEC61850_MMS_DataExchange
● tyIEC61850_MMS_Initiate
● tyIEC61850_SubsDataBlock
● tyIEC61850_SubsDataPoint
● tyISO8073_BlockHeader
● tyISO8073_ClientPara
● tyISO8073_PDU
● tyISO8327_BlockHeader
● tyISO8327_ClientData
● tyISO8327_Connect_AcceptItem
● tyISO8327_ConnectionIdent
● tyISO8650_UserInfoData
● tyISO8823_ContextList
● tyISO8823_ContextName
● tyISO8823_CP_Type
● tyISO8823_DataUser
● tyISO8823_NormalModePara
● tyISO_BlockHeader
● tyISO_SPDU
● TypeClass
● TypeClass3
● TypedElement

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4176

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT16.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT16U.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT32U.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT8.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_INT8U.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_ISC_Operate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Octet255.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Octet64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Origin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_POINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_PulseConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_Quality.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_RANGECONFIG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ScaledValConfig.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61400-Special/tyIEC61850_AT_SPC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/IEC61850-Control/tyIEC61850_AT_SPC_Operate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_StatusValue_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_TimeStamp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_UCSTRING255.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_UINT32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_UNIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_ValWithTrans.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VECTOR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING129.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING255.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING64.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/AttributeTypen/tyIEC61850_AT_VisSTRING65.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/DataClass/tyIEC61850_DataPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/tyIEC61850_DataSetRef.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/tyIEC61850_GOOSE_Check.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/GOOSE/tyIEC61850_GOOSEMsg.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/MMS/tyIEC61850_MMS_DataExchange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/MMS/tyIEC61850_MMS_Initiate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/tyIEC61850_SubsDataBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/IEC61850/tyIEC61850_SubsDataPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8073_BlockHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8073_ClientPara.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8073_PDU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8327_BlockHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8327_ClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8327_Connect_AcceptItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8327_ConnectionIdent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8650_UserInfoData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8823_ContextList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8823_ContextName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8823_CP_Type.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8823_DataUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO8823_NormalModePara.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO_BlockHeader.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/IEC%2061850/IEC61850Server_4.0.8.1_Library/Data-types/ISO/tyISO_SPDU.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDriverBase/Base_Itfs.library_Library/TypeClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpTraceMgr.library_Library/Structs/TypeClass3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Element/TypedElement.html

● TypeDesc
● TypeDesc_Alias
● TypeDesc_AliasWithAttributes
● TypeDesc_Array
● TypeDesc_Array_ByteAddressed
● TypeDesc_Array_Remote
● TypeDesc_Enum
● TypeDesc_EnumWithAttributes
● TypeDesc_Executable
● TypeDesc_Executable2
● TypeDesc_OpcUaBuiltInType
● TypeDesc_Property
● TypeDesc_Property_Remote
● TypeDesc_Reference
● TypeDesc_Simple
● TypeDesc_Simple_Bit
● TypeDesc_Struct
● TypeDesc_Struct2
● TypeDesc_Struct2_WithBaseType
● TypeDesc_Struct2_WithBaseTypeAndAttributes
● TypeDesc_Struct_Derived_Remote
● TypeDesc_Struct_Remote
● TypeDesc_Subrange
● TypeDesc_UAProperties
● TypeDesc_VarLenArray
● TypeDescArrayAsStruct
● TypeDescAsUnion
● TypeDescSimpleAsStruct
● TypeDescStructAsStruct
● TypeDescUnion
● TypeDescVarArrayAsStruct
● TypedList
● TypedTree
● TypeHasCompleteBlittableLayout
● TypeIds
● TZ_NAME
● UDINT_IN_BYTES
● UDINT_IN_WORDS
● UDINT_TO_COUNT
● UDINT_TO_HEX
● UDINT_TO_IPARRAY
● UDINT_TO_IPSTRING
● UDINT_TO_SIZE
● UDINT_TO_TICK
● UDINT_TO_UNSIGNED
● UdintElement
● UdintElementFactory
● UDP_GetDataSize
● UDP_Peer
● UDP_Processor
● UDP_Receive
● UDP_ReceiveBuffer
● UDP_Receiver
● UDP_REPLY
● UDP_REPLY2

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4177

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Alias.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_AliasWithAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Array.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Array_ByteAddressed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Array_Remote.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Enum.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_EnumWithAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Executable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Executable2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_OpcUaBuiltInType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Property.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Property_Remote.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Reference.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Simple.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Simple_Bit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct2_WithBaseType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct2_WithBaseTypeAndAttributes.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct_Derived_Remote.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Struct_Remote.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_Subrange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_UAProperties.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeDesc_VarLenArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescArrayAsStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescAsUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescSimpleAsStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescStructAsStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/TypeDescVarArrayAsStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/List/TypedList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20List%20And%20Tree.library_Library/CAA-List-and-Tree/Function-Blocks/Tree/TypedTree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/Typedescription/TypeHasCompleteBlittableLayout.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/DataServer_Itfs.library_Library/TypeIds.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/TZ_NAME.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDINT_IN_BYTES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDINT_IN_WORDS.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/UDINT_TO_COUNT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functions/UDINT_TO_HEX.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/IoDrvEthernet.library_Library/IoDrvEthernet/Functions/UDINT_TO_IPARRAY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/UDINT_TO_IPSTRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/UDINT_TO_SIZE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/UDINT_TO_TICK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UDINT_TO_UNSIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UdintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UdintElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Functions/UDP/UDP_GetDataSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Peer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Processor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Receive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/UDP/UDP_ReceiveBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Receiver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDP_REPLY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysSocket_Itfs.library_Library/UDP_REPLY2.html

● UDP_Send
● UDP_SendBuffer
● UDP_Sender
● UDPDriver
● UdpGetReceiveDataSize
● UdpOpenReceiveSocket
● UdpOpenSendSocket
● UdpReceiveData
● UdpSendData
● UINT_TO_COUNT
● UINT_TO_HEX
● UINT_TO_SIZE
● UINT_TO_TICK
● UINT_TO_UNSIGNED
● UintElement
● UintElementFactory
● ULINT_TO_COUNT
● ULINT_TO_SIZE
● ULINT_TO_TICK
● ULINT_TO_UNSIGNED
● UlintElement
● UlintElementFactory
● UNPACK
● UnpackArrayOfByte
● UnpackByte
● UnpackDWord
● UnpackWord
● Unregister
● UnregisterCallback
● UnregisterIdArea
● UNSIGNED
● UNSIGNED_TO_UDINT
● UNSIGNED_TO_UINT
● UNSIGNED_TO_ULINT
● UpdateByDefaultInfo
● UpdateByDefaultItem
● UpdateDiagnosis_Status
● UpdateDiagnosisEntry
● UserConfigurationV1
● UserMgrCacheValue
● UserMgrChangeMyPassword
● UserMgrCredentials
● UserMgrCredentials_Password
● UserMgrCredentials_Store
● UserMgrCredentials_Type
● UserMgrGetSessionUser
● UserMgrGetUserAccessRights
● UserMgrGroupAdd
● UserMgrGroupAddUser
● UserMgrGroupGetFirst
● UserMgrGroupGetFirstUser
● UserMgrGroupGetHandle
● UserMgrGroupGetName
● UserMgrGroupGetNext
● UserMgrGroupGetNextUser

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4178

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Send.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Network/CAA%20Net%20Base%20Services.library_Library/CAA-Net-Base-Services/Function-Blocks/UDP/UDP_SendBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/001Net%20Base%20Services.library_Library/NetBaseServices/Function-Blocks/UDP/UDP_Sender.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functionblocks/UDPDriver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpGetReceiveDataSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpOpenReceiveSocket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpOpenSendSocket.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpReceiveData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/NetVars/NetVarUdp.library_Library/POUs/Udp-specific/UdpSendData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/UINT_TO_COUNT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/UDP.library_Library/UDP/Functions/UINT_TO_HEX.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/UINT_TO_SIZE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/UINT_TO_TICK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UINT_TO_UNSIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UintElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/COUNT/ULINT_TO_COUNT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/SIZE/ULINT_TO_SIZE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/TICK/ULINT_TO_TICK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/ULINT_TO_UNSIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UlintElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/UlintElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/UNPACK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackArrayOfByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackByte.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackDWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Memory.library_Library/CAA_Memory/Packing/UnpackWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Ressource%20Manager%20Extern.library_Library/CAA-Ressource-Manager/Functions/Unregister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Callback%20Extern.library_Library/CAA-Callback/Functions/UnregisterCallback.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/UnregisterIdArea.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Types/UNSIGNED.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UNSIGNED_TO_UDINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UNSIGNED_TO_UINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/UNSIGNED/UNSIGNED_TO_ULINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/UpdateByDefaultInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Structs/UpdateByDefaultItem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/DataTypes/UpdateDiagnosis_Status.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/ProfinetCommon.library_Library/ProfinetCommon/Diagnosis/UpdateDiagnosisEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20OpcUa.library_Library/Datasource-OpcUa/UserConfigurationV1.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Types/UserMgrCacheValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrChangeMyPassword.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Structs/UserMgrCredentials.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Structs/UserMgrCredentials_Password.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Structs/UserMgrCredentials_Store.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Types/UserMgrCredentials_Type.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrGetSessionUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authorization/UserMgrGetUserAccessRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupAddUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupGetFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupGetFirstUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupGetHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupGetNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupGetNextUser.html

● UserMgrGroupRemove
● UserMgrGroupRemoveUser
● UserMgrHasUserAccessRights
● UserMgrIsActive
● UserMgrLogin
● UserMgrLogout
● UserMgrObjectAdd
● UserMgrObjectAddGroup
● UserMgrObjectClearRights
● UserMgrObjectGetFirstChild
● UserMgrObjectGetFirstGroup
● UserMgrObjectGetGroupRights
● UserMgrObjectGetHandle
● UserMgrObjectGetName
● UserMgrObjectGetNextChild
● UserMgrObjectGetNextGroup
● UserMgrObjectRemove
● UserMgrObjectRemoveGroup
● UserMgrObjectSetGroupDeniedRights
● UserMgrObjectSetGroupRights
● UserMgrObjectSetUsedRights
● UserMgrRelogin
● UserMgrTypeClass
● UserMgrUserAdd
● UserMgrUserAddInfoToUser
● UserMgrUserGetFirst
● UserMgrUserGetInfoOfUser
● UserMgrUserGetName
● UserMgrUserGetNext
● UserMgrUserGetProperty
● UserMgrUserRemove
● UserMgrUserRemoveInfoFromAllUsers
● UserMgrUserRemoveInfoFromUser
● UserMgrUserSetCredentials
● UserMgrUserSetProperty
● UserMgrValue
● UtilAddrEqual
● UtilAreGuidsEqual
● UtilBuildItemErrorCode
● UtilBytesFromHexSubString
● UtilByteToHexString
● UtilFillLanguageGroupNames
● UtilFillNodeAddress
● UtilGetHostName
● UtilGetLocalByteorder
● UtilGetLocalByteorderAtRuntime
● UtilGuidToString
● UtilIsGeneralErrorReply
● UtilIsGuidEmpty
● UtilIsIntelByteorder
● UtilIsToSwap
● UtilNumericVersionToString
● UtilReadAddressFromRouter
● UtilResolveItemToRemoteAddr
● UtilSizeFromAddrInfo

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4179

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupRemove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Grouphandling/UserMgrGroupRemoveUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authorization/UserMgrHasUserAccessRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrIsActive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrLogin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrLogout.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectAddGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectClearRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectGetFirstChild.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectGetFirstGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectGetGroupRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectGetHandle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectGetNextChild.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectGetNextGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectRemove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectRemoveGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectSetGroupDeniedRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectSetGroupRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Objecthandling/UserMgrObjectSetUsedRights.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Authentication/UserMgrRelogin.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Types/UserMgrTypeClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserAdd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserAddInfoToUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserGetFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserGetInfoOfUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserGetName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserGetNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserGetProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserRemove.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserRemoveInfoFromAllUsers.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserRemoveInfoFromUser.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserSetCredentials.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr%20Implementation.library_Library/CmpUserMgr/Functions/Userhandling/UserMgrUserSetProperty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpUserMgr_Itfs.library_Library/CmpUserMgr/Types/UserMgrValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilAddrEqual.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilAreGuidsEqual.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilBuildItemErrorCode.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilBytesFromHexSubString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilByteToHexString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/UtilFillLanguageGroupNames.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilFillNodeAddress.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilGetHostName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilGetLocalByteorder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilGetLocalByteorderAtRuntime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilGuidToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilIsGeneralErrorReply.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilIsGuidEmpty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilIsIntelByteorder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilIsToSwap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilNumericVersionToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/UtilReadAddressFromRouter.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilResolveItemToRemoteAddr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilSizeFromAddrInfo.html

● UtilSwapGuidIf
● UtilsWriteBYTE
● UtilsWriteString
● UtilsWriteUDINT
● UtilsWriteUINT
● UtilsWriteULINT
● UtilTokenizer
● UtilValidateByteOrder
● UtilVersionToString
● UUID
● UUID_COMPARE
● UUIDGenerator
● ValueToString
● VarAccUaNamespaceFragment
● VariableInformation
● VariableInformationStruct
● VariableInformationStruct2
● VariableInformationStruct3
● VariableInformationStruct4
● VariableInformationStruct5
● VARIANCE
● Variance
● VECTOR3D
● Visu_Assert
● Visu_CheckPropertyInfo
● Visu_ClientTagData
● Visu_ClientType
● Visu_DialogResult
● Visu_FbClearEventsAfterStart
● Visu_FbDialogLoginProvider
● Visu_FbFileListProvider
● Visu_FbStringDintMap
● Visu_FbWebserver
● Visu_FctCheckForLongFormatSpecifier
● Visu_FctClosePAADialogIfNecessary
● Visu_FctGetDatasources
● Visu_FctGetDevicePixelRatioFromAdditionalData
● Visu_FctGetElementFromInputInfo
● Visu_FctGetElementIndexFromID
● Visu_FctGetInitFramePreviewFlags
● Visu_FctGetSubElementFromIndex
● Visu_FctHandleInputGesture
● Visu_FctHandleVisuInputDialogTarget
● Visu_FctHandleVisuInputMouseEvent
● Visu_FctHandleVisuInputOverlayMeasureString
● Visu_FctHandleVisuInputPAA
● Visu_FctInitMemSet
● Visu_FctIsEventToIgnoreWhileEditboxOpen
● Visu_FctIsGestureEvent
● Visu_FctIsModalDialogOpen
● Visu_FctIsOnStraightLine
● Visu_FctIsRelevantGestureEvent
● Visu_FctIsSelectionEmpty
● Visu_FctLegacyIDStackInfoFill
● Visu_FctLegacyIDStackInfoReadFromAdditionalData

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4180

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/Swapping/UtilSwapGuidIf.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteBYTE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteUDINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteUINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Utilities/UtilsWriteULINT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/UtilTokenizer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/CDSV3ProtocolUtils.library_Library/Intern/Utilities/UtilValidateByteOrder.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Utilities/UtilVersionToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Structs/UUID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Functions/UUID_COMPARE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Networking/Remote%20Procedure%20Calls.library_Library/RPC/Function-Blocks/Utils/UUIDGenerator.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasources.library_Library/Datasources/Function-Blocks/Utils/Logging/ValueToString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccessOpcUaMetaData_Itfs.library_Library/VarAccUaNamespaceFragment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/SymbolicVarsBase.library_Library/SymbolicVarsBase/VariableInformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct4.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/SymbolConfiguration/IecVarAccess3_Itfs.library_Library/VariableInformationStruct5.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Mathematical-Functions/VARIANCE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Functions/statistical-functions/Variance.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Utilities/CAA%20Mathematics.library_Library/CAA-Mathematics/Structs/VECTOR3D.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu_Assert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PropertySupport/Visu_CheckPropertyInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpVisuHandler.library_Library/Structures/Visu_ClientTagData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/Visu_ClientType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/Visu_DialogResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/Visu_FbClearEventsAfterStart.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Visu_FbDialogLoginProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Visu_FbFileListProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Collections/Visu_FbStringDintMap.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Webvisu/Visu_FbWebserver.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/StringFunctions/Visu_FctCheckForLongFormatSpecifier.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctClosePAADialogIfNecessary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Visu_FctGetDatasources.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu_FctGetDevicePixelRatioFromAdditionalData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/InputInfo/Visu_FctGetElementFromInputInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/InputInfo/Visu_FctGetElementIndexFromID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/FramePreview/Visu_FctGetInitFramePreviewFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/InputInfo/Visu_FctGetSubElementFromIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/Visu_FctHandleInputGesture.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputDialogTarget.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputMouseEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputOverlayMeasureString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/HandleVisuInput/Visu_FctHandleVisuInputPAA.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu_FctInitMemSet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/Visu_FctIsEventToIgnoreWhileEditboxOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/Visu_FctIsGestureEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/Visu_FctIsModalDialogOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/Visu_FctIsOnStraightLine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/Visu_FctIsRelevantGestureEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/Visu_FctIsSelectionEmpty.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/Visu_FctLegacyIDStackInfoFill.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/Visu_FctLegacyIDStackInfoReadFromAdditionalData.html

● Visu_FctRaiseMouseLeave
● Visu_FctReleaseNonIECMemClientResources
● Visu_FctSetDialogClientData
● Visu_FctTransformSelectionIsotropicOverlay
● Visu_HelpDumpLibHierarchy
● Visu_OnlinechangeNotify
● Visu_ScalarTypesUnion
● Visu_ScalarTypesWithPtr
● Visu_SetCodegenFeatureSupport
● Visu_StructCommandData
● Visu_TypeString
● Visu_UserPasswordCredentials
● VisuAlarmScrollValueProvider
● VisuAssignRtsBasedUserMgt
● VisuBenchmarkFBStatistics
● VisuBenchmarkNowInUs
● VisuChangePasswordProvider
● VisuClientAnimationData
● VisuClientObject
● VisuClientObjectClientSpecificData
● VisuClientObjectFlags
● VisuClientObjectFlags_HighWord
● VisuClientObjectIdStack
● VisuClientObjectIdStackOptimized
● VisuClientObjectIdStackWithParentSize
● VisuClientObjectInputRectangleMgr
● VisuClientObjectLayerInitFlags
● VisuClientObjectMgr
● VisuClientObjectReservedIds
● VisuClientObjectStateFlags
● VisuClientTag
● VisuClientType
● VisuCreateUserMgmtObjects
● VisuDateTimeFormatPlaceholders
● VisuDialogOpenFlags
● VisuDlg_CheckedAppend
● VisuDlg_CheckedAppendExp
● VisuDlg_CheckedAppendW
● VisuDlg_CheckedBack
● VisuDlg_CheckedBackW
● VisuDlg_CheckedChangeNumberFormat
● VisuDlg_CheckedChangeSign
● VisuDlg_CheckedChangeSignExtended
● VisuDlg_CheckedClear
● VisuDlg_CheckedExpFloatFormatSwitch
● VisuDlg_GetPasswordString
● VisuDlg_ProcessBack
● VisuDlg_ProcessBack2
● VisuDlg_ProcessBackPrepare
● VisuDlg_ProcessBackW
● VisuDlg_ProcessChangeNumberFormat
● VisuDlg_ProcessChangeSign
● VisuDlg_ProcessChangeSignExtended
● VisuDlg_ProcessChar
● VisuDlg_ProcessCharW

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4181

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Input-Event-Handling/Visu_FctRaiseMouseLeave.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Visu_FctReleaseNonIECMemClientResources.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Visu_FctSetDialogClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/Visu_FctTransformSelectionIsotropicOverlay.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/Visu_HelpDumpLibHierarchy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/OnlineChange/Visu_OnlinechangeNotify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PropertySupport/Visu_ScalarTypesUnion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PropertySupport/Visu_ScalarTypesWithPtr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/OnlineChange/Visu_SetCodegenFeatureSupport.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Collections/Visu_StructCommandData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Types/Visu_TypeString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Visu_UserPasswordCredentials.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/VisuAlarmScrollValueProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/VisuAssignRtsBasedUserMgt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Benchmarking/VisuBenchmarkFBStatistics.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Benchmarking/VisuBenchmarkNowInUs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/VisuChangePasswordProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientAnimationData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectFlags_HighWord.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectIdStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectIdStackOptimized.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectIdStackWithParentSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectInputRectangleMgr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectLayerInitFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectMgr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectReservedIds.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuClientObjectStateFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Enumerations/VisuClientTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Types/Enum/VisuClientType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/VisuCreateUserMgmtObjects.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuDateTimeFormatPlaceholders.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/VisuDialogOpenFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedAppend.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedAppendExp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedAppendW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedBack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedBackW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedChangeNumberFormat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedChangeSign.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedChangeSignExtended.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_CheckedExpFloatFormatSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_GetPasswordString.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessBack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessBack2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessBackPrepare.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessBackW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessChangeNumberFormat.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessChangeSign.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessChangeSignExtended.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessChar.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessCharW.html

● VisuDlg_ProcessCharW_WithInit
● VisuDlg_ProcessCharWithInit
● VisuDlg_ProcessClear
● VisuDlg_ProcessExp
● VisuDlg_ProcessExpFloatFormatSwitch
● VisuDlg_SetErrorColor
● VisuDlg_Utf8PasswordCaretPosition
● VisuDlg_Utf8RuneLen
● VisuDlgUtil_AdjustCaretAndSelectionAfterNumberFormatChange
● VisuDlgUtil_CloseNumpadExtended
● VisuDlgUtil_CloseNumpadExtended2
● VisuDlgUtil_FormatExpToG
● VisuDlgUtil_FormatValueToDec
● VisuDlgUtil_FormatValueToHex
● VisuDlgUtil_InitValueFromFlags
● VisuDlgUtil_IsDialogOpen
● VisuDlgUtil_SetbInitFormatValue
● VisuDlgUtil_UpdateOutputValue
● VisuElemLayer
● VisuElemLayerAlignmentFlag
● VisuElemLayerClientSpecificData
● VisuElemLayerData
● VisuElemLayerFlag
● VisuElemMgrClientData
● VisuElemMgrClientSpecificData
● VisuElemMgrClientSpecificDataIndices
● VisuElemSelectionLayer
● VisuEnumActionType
● VisuEnumAfterTransformation
● VisuEnumAlarmDataType
● VisuEnumAnalogClockStyle
● VisuEnumAttachedElementLocation
● VisuEnumBackgroundDrawingState
● VisuEnumBrushStyle
● VisuEnumClientTag
● VisuEnumCreateTemporaryRenderLocationFlags
● VisuEnumCurrentCheckboxState
● VisuEnumFileTransferDirection
● VisuEnumFileTransferError
● VisuEnumFileTransferInputEventType
● VisuEnumHorizontalAlignment
● VisuEnumInputOnElementType
● VisuEnumIsotropicType
● VisuEnumLegendDisplayerLineType
● VisuEnumLineCapStyle
● VisuEnumLineJoinStyle
● VisuEnumOrientation
● VisuEnumPenStyle
● VisuEnumPieType
● VisuEnumPolygonType
● VisuEnumPropertyElement
● VisuEnumRectangleFlags
● VisuEnumRedundancyValueChanged
● VisuEnumTableParts
● VisuEnumTextFlag

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4182

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessCharW_WithInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessCharWithInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessClear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessExp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_ProcessExpFloatFormatSwitch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_SetErrorColor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_Utf8PasswordCaretPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/VisuDlg_Utf8RuneLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_AdjustCaretAndSelectionAfterNumberFormatChange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_CloseNumpadExtended.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_CloseNumpadExtended2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_FormatExpToG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_FormatValueToDec.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_FormatValueToHex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_InitValueFromFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_IsDialogOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_SetbInitFormatValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuDialogs.library_Library/Utils/VisuDlgUtil_UpdateOutputValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerAlignmentFlag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemLayerFlag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemMgrClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemMgrClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemMgrClientSpecificDataIndices.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuElemLayer/VisuElemSelectionLayer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumActionType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumAfterTransformation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/Enumerations/VisuEnumAlarmDataType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsDateTime.library_Library/AnalogClock/Enumerations/VisuEnumAnalogClockStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumAttachedElementLocation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Enumerations/VisuEnumBackgroundDrawingState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumBrushStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpVisuHandler.library_Library/VisuEnumClientTag.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumCreateTemporaryRenderLocationFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuEnumCurrentCheckboxState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/File-transfer/VisuEnumFileTransferDirection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumFileTransferError.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/File-transfer/VisuEnumFileTransferInputEventType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumHorizontalAlignment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumInputOnElementType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumIsotropicType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/LegendDisplayer/VisuEnumLegendDisplayerLineType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumLineCapStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumLineJoinStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumOrientation.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumPenStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumPieType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumPolygonType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumPropertyElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumRectangleFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumRedundancyValueChanged.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuEnumTableParts.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumTextFlag.html

● VisuEnumVerticalAlignment
● VisuEnumXYChartActivityType
● VisuEnumXYChartAxisPosition
● VisuEnumXYChartAxType
● VisuEnumXYChartBarType
● VisuEnumXYChartBgType
● VisuEnumXYChartCommands
● VisuEnumXYChartCursorActive
● VisuEnumXYChartCursorType
● VisuEnumXYChartCursorVisible
● VisuEnumXYChartCvChartType
● VisuEnumXYChartCvFillType
● VisuEnumXYChartCvHeapCmd
● VisuEnumXYChartCvOverlapType
● VisuEnumXYChartFocusType
● VisuEnumXYChartGradientType
● VisuEnumXYChartGridType
● VisuEnumXYChartLineType
● VisuEnumXYChartLvlLineLbPos
● VisuEnumXYChartPointStyle
● VisuEnumXYChartProgType
● VisuEnumXYChartShadowStyle
● VisuEnumXYChartZeroLineType
● VisuEventOptimization
● VisuEventTarget
● VisuFb3DPathClientData
● VisuFbAlarmBannerDataBlock
● VisuFbAnalyzeDateTimeFormatExtractWithoutWeekdays
● VisuFbAnalyzeDateTimeFormatStringBase
● VisuFbAnalyzeDateTimeFormatStringMinSecOnly
● VisuFbAnalyzeStateVarsTapAware
● VisuFbAnalyzeTextVarsDateTimeOnly
● VisuFbBaseVector
● VisuFbCapturedTransformationProvider
● VisuFbClientLogger
● VisuFbClientManagerListener
● VisuFbClientStartVisuMgr
● VisuFbClientTagDataHelper
● VisuFbCommandVector
● VisuFbDatasourcesResourceEntries_MBM
● VisuFbDatasourcesResourceEntries_SysMem
● VisuFbDateTimeNamesLocalizer
● VisuFbDialogClientInfo
● VisuFbDialogInfoVector
● VisuFbDialogPos
● VisuFbDialogPosByElementVector
● VisuFbDialogPosVector
● VisuFbDWORDVector
● VisuFbElemTextEditor
● VisuFbExecution
● VisuFbFileTransferManager
● VisuFbFrameRegistrationVector
● VisuFbFrameSwipingHelper
● VisuFbGestureFromEvent
● VisuFbGroupOverlay

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4183

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuEnumVerticalAlignment.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartActivityType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartAxisPosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartAxType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartBarType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartBgType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCommands.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCursorActive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCursorType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCursorVisible.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvChartType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvFillType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvHeapCmd.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartCvOverlapType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartFocusType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartGradientType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartGridType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartLineType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartLvlLineLbPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartPointStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartProgType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartShadowStyle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Enums/VisuEnumXYChartZeroLineType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuEventOptimization.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Enumerations/VisuEventTarget.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElem3DPath.library_Library/VisuFb3DPathClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsAlarm.library_Library/private/HMI/VisuFbAlarmBannerDataBlock.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbAnalyzeDateTimeFormatExtractWithoutWeekdays.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbAnalyzeDateTimeFormatStringBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbAnalyzeDateTimeFormatStringMinSecOnly.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbAnalyzeStateVarsTapAware.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/VisuFbAnalyzeTextVarsDateTimeOnly.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbBaseVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Capturing/VisuFbCapturedTransformationProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbClientLogger.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/VisuFbClientManagerListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/VisuFbClientStartVisuMgr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Client-Tags/VisuFbClientTagDataHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Collections/VisuFbCommandVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFbDatasourcesResourceEntries_MBM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFbDatasourcesResourceEntries_SysMem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/VisuFbDateTimeNamesLocalizer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/VisuFbDialogClientInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/VisuFbDialogInfoVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Position-infos/VisuFbDialogPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Position-infos/VisuFbDialogPosByElementVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Position-infos/VisuFbDialogPosVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbDWORDVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTextEditor.library_Library/VisuFbElemTextEditor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Execution/VisuFbExecution.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/File-transfer/VisuFbFileTransferManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Frame-Switching/VisuFbFrameRegistrationVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/Frame/VisuFbFrameSwipingHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuFbGestureFromEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/VisuFbGroupOverlay.html

● VisuFbInputRectangle
● VisuFbLegacyCapturingTransformationProvider
● VisuFbLibHierarchy
● VisuFbMainClientMgmt
● VisuFbMouseTouchDragUtil
● VisuFbMoveAbsoluteTapAware
● VisuFbMoveAbsoluteTapAwareF
● VisuFbMoveRelativeTapAware
● VisuFbMultiTouchHelper
● VisuFbNamespaceTable
● VisuFbNamespaceTableHelper
● VisuFbNativeControlItemVector
● VisuFbPaintAfterAllDialog
● VisuFbPaintAfterAllElement
● VisuFbPaintRectF
● VisuFbPointF
● VisuFbPrintDateTimeFormatBase
● VisuFbPrintDateTimeFormatCurrentTime
● VisuFbPrintDateTimeFormatVariable
● VisuFbRecordConditionInfo
● VisuFbRecordingRangeRingBuffer
● VisuFbRectangleListManager
● VisuFbRectF
● VisuFbResourcesEntryVector
● VisuFbScalingInfo
● VisuFbSizeF
● VisuFbTabControlOverlayTabs
● VisuFbTableColumnSimpleBase
● VisuFbTemporaryPolygon
● VisuFbTickMarkDrawer2
● VisuFbTransformationCommon
● VisuFbTransformationScrolling
● VisuFbValueChangedListenerForOnValueChanged
● VisuFbVisuVector
● VisuFbWriteDateTimeVariableFormatted
● VisuFbXYChartDataProvider
● VisuFbXYChartDataProviderAxis
● VisuFbXYChartDataProviderCurve
● VisuFbXYChartGenericVariable
● VisuFbXYChartGenericVariableArray
● VisuFct_IsBehindOverlayElement
● VisuFctAddChecksumBool
● VisuFctAddChecksumForConverted
● VisuFctAddClientToEventQueue
● VisuFctAdjustElemRectAndSelectRect
● VisuFctAssignValue
● VisuFctCalculateCompleteSurroundingSimpleRectOfElemArray
● VisuFctCalculateMaxTooltipLength
● VisuFctCalculateSurroundingSimpleRectOfElemArray
● VisuFctCheckClientSupportsFramePreview
● VisuFctCheckClientSupportsTouch
● VisuFctCheckSpecificClientType
● VisuFctClearElementEntries
● VisuFctClearEventIdStack
● VisuFctConfigureTextBufferSize

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4184

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbInputRectangle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Capturing/VisuFbLegacyCapturingTransformationProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuFbLibHierarchy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuFbMainClientMgmt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFbMouseTouchDragUtil.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbMoveAbsoluteTapAware.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbMoveAbsoluteTapAwareF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Animations/Tap-Awareness/VisuFbMoveRelativeTapAware.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trend/Function-blocks/VisuFbMultiTouchHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuFbNamespaceTable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbNamespaceTableHelper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Native-Control/VisuFbNativeControlItemVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFbPaintAfterAllDialog.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbPaintAfterAllElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbPaintRectF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbPointF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbPrintDateTimeFormatBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbPrintDateTimeFormatCurrentTime.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbPrintDateTimeFormatVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/Function-blocks/VisuFbRecordConditionInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/Function-blocks/Collections/VisuFbRecordingRangeRingBuffer.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/Touch-Handling/VisuFbRectangleListManager.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbRectF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/VisuFbResourcesEntryVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/VisuFbScalingInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Geometrics/VisuFbSizeF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/VisuFbTabControlOverlayTabs.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuFbTableColumnSimpleBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbTemporaryPolygon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Internal/VisuFbTickMarkDrawer2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Transformation/VisuFbTransformationCommon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Transformation/VisuFbTransformationScrolling.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFbValueChangedListenerForOnValueChanged.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Management/VisuFbVisuVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Recent/VisuFbWriteDateTimeVariableFormatted.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartDataProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartDataProviderAxis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartDataProviderCurve.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartGenericVariable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Private/FunctionBlocks/VisuFbXYChartGenericVariableArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFct_IsBehindOverlayElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctAddChecksumBool.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctAddChecksumForConverted.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/VisuFctAddClientToEventQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctAdjustElemRectAndSelectRect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctAssignValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctCalculateCompleteSurroundingSimpleRectOfElemArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trace/Helpfunctions/VisuFctCalculateMaxTooltipLength.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctCalculateSurroundingSimpleRectOfElemArray.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctCheckClientSupportsFramePreview.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctCheckClientSupportsTouch.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctCheckSpecificClientType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctClearElementEntries.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctClearEventIdStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctConfigureTextBufferSize.html

● VisuFctConvertUtcToSystimedate
● VisuFctCreateEventMapIfNeeded
● VisuFctCreateIdStack
● VisuFctDatasourcesResourceEntryAllocatorGet
● VisuFctDatasourcesResourceEntryAllocatorGet_MBM
● VisuFctDatasourcesResourceEntryAllocatorGet_SysMem
● VisuFctDrawCircle
● VisuFctDrawDot
● VisuFctDrawDot2
● VisuFctDrawImage
● VisuFctDrawIsoBackground
● VisuFctDrawLine
● VisuFctDrawLineEx
● VisuFctDrawLineExUntransformed
● VisuFctDrawLineUntransformed
● VisuFctDrawPolygon
● VisuFctDrawPolyline
● VisuFctDrawPolyline2
● VisuFctDrawText
● VisuFctEvaluatePanGesture
● VisuFctEventIdStackGetValue
● VisuFctEventIdStackGetValuePtr
● VisuFctEventIdStackGetValuePtrFromEvent2
● VisuFctEventIdStackGetValuePtrFromEventLegacy
● VisuFctEventIdStackHas
● VisuFctEventIdStackPopHelp
● VisuFctEventIdStackPopId
● VisuFctEventIdStackPopTarget
● VisuFctEventIdStackPopVisuVersion
● VisuFctEventIdStackPushId
● VisuFctEventIdStackSetValue
● VisuFctExitVisuClientObject
● VisuFctFillPolygon
● VisuFctFillPolygon2
● VisuFctFillPolygon3
● VisuFctFillRectangle
● VisuFctFreeClientTagData
● VisuFctGetAbsolutePosition
● VisuFctGetClientName
● VisuFctGetEffectiveTextProperties
● VisuFctGetElementClientData
● VisuFctGetElementEntry
● VisuFctGetElementState
● VisuFctGetGradient
● VisuFctGetIsNativeElementEventWithResult
● VisuFctGetLineJoinMiterLimit
● VisuFctGetMeasureString2Result
● VisuFctGetMeasureStringApprox
● VisuFctGetMeasureStringResult
● VisuFctGetMultitouchActive
● VisuFctGetMultitouchScrollbarsActive
● VisuFctGetNanosSince1970
● VisuFctGetPaintRectFromSimpleRect
● VisuFctGetRectangleFromPaintRect
● VisuFctGetRectangleFromSimpleRect

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4185

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Access-to-Systime-library/VisuFctConvertUtcToSystimedate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/VisuFctCreateEventMapIfNeeded.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctCreateIdStack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFctDatasourcesResourceEntryAllocatorGet.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFctDatasourcesResourceEntryAllocatorGet_MBM.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Resources/Allocation/VisuFctDatasourcesResourceEntryAllocatorGet_SysMem.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawCircle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawDot.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawDot2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawImage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Execution/VisuFctDrawIsoBackground.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLineEx.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLineExUntransformed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawLineUntransformed.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawPolygon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawPolyline.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawPolyline2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctDrawText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctEvaluatePanGesture.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValuePtr.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValuePtrFromEvent2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackGetValuePtrFromEventLegacy.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackHas.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopHelp.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopTarget.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPopVisuVersion.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackPushId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctEventIdStackSetValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctExitVisuClientObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillPolygon.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillPolygon2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillPolygon3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctFillRectangle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Client-Tags/VisuFctFreeClientTagData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/ClientObjectInfo/VisuFctGetAbsolutePosition.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Functions/VisuFctGetClientName.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctGetEffectiveTextProperties.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetElementClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetElementEntry.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctGetElementState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trace/Helpfunctions/VisuFctGetGradient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetIsNativeElementEventWithResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctGetLineJoinMiterLimit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMeasureString2Result.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctGetMeasureStringApprox.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMeasureStringResult.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMultitouchActive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetMultitouchScrollbarsActive.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Date-and-Time/Access-to-Systime-library/VisuFctGetNanosSince1970.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetPaintRectFromSimpleRect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetRectangleFromPaintRect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetRectangleFromSimpleRect.html

● VisuFctGetRectHeight
● VisuFctGetRectWidth
● VisuFctGetShadowColor
● VisuFctGetTargetVisuTouchFlags
● VisuFctGetTextMargins
● VisuFctGetTransparentValue
● VisuFctHandleInputOnElementEvent
● VisuFctHandleInputVisuClientObject
● VisuFctHandleInputWithoutInputHandler
● VisuFctIncreaseCurrentElementIndex
● VisuFctIncreaseSimpleRectIfRotated
● VisuFctInitFlagsVisuClientObject
● VisuFctInitVisuClientObject
● VisuFctIsDegenerateRectangle
● VisuFctIsMultitouchClient
● VisuFctIsRectangleRotated
● VisuFctIsRectRotatedBy0To90Degree
● VisuFctIsRectRotatedBy180Degree
● VisuFctIsRectRotatedBy180To270Degree
● VisuFctIsRectRotatedBy270Degree
● VisuFctIsRectRotatedBy270To360Degree
● VisuFctIsRectRotatedBy90Degree
● VisuFctIsRectRotatedBy90To180Degree
● VisuFctIsToPaintSelection
● VisuFctIsTransparentBackground
● VisuFctLimitSimpleRectangleSize
● VisuFctMainClientsCheck
● VisuFctMainClientsCheck3
● VisuFctMainClientsCheckOld
● VisuFctPaintSelection
● VisuFctPaintVisuClientObject
● VisuFctRectSize
● VisuFctRemoveClientFromEventQueue
● VisuFctSearchElementById
● VisuFctSelectElement
● VisuFctSetClientDataVisuClientObject
● VisuFctSetMaxElementCountPaintAfterAll
● VisuFctSetNumericValue
● VisuFctSetRectangleUpdateNecessaryOnAllClients
● VisuFctSetSelectionChanged
● VisuFctSetSimpleRect
● VisuFctSimpleRectangleFToSimpleRectangle
● VisuFctSplitColor
● VisuFctTestLReal
● VisuFctTestReal
● VisuFctTextAddOffset
● VisuFctTextEditorGetErrorText
● VisuFctTryAtomicAssignValueBySize
● VisuFctTryAtomicAssignValueByType
● VisuFctUtf8RuneLen
● VisuFctWriteValueIfValid
● VisuGestureInfo
● VisuInput_CheckUpdateElementStatePossible_DependingOnCurrentInput
● VisuInputType
● VisuIsValidClientId

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4186

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctGetRectHeight.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Public/Functions/VisuFctGetRectWidth.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuFPlot.library_Library/Private/Functions/VisuFctGetShadowColor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/Touch-Handling/VisuFctGetTargetVisuTouchFlags.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctGetTextMargins.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/Trace/Helpfunctions/VisuFctGetTransparentValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/VisuFctHandleInputOnElementEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctHandleInputVisuClientObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctHandleInputWithoutInputHandler.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctIncreaseCurrentElementIndex.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIncreaseSimpleRectIfRotated.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctInitFlagsVisuClientObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctInitVisuClientObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsDegenerateRectangle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctIsMultitouchClient.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectangleRotated.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectRotatedBy0To90Degree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectRotatedBy180Degree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectRotatedBy180To270Degree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectRotatedBy270Degree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectRotatedBy270To360Degree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectRotatedBy90Degree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctIsRectRotatedBy90To180Degree.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Selection-Management/VisuFctIsToPaintSelection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Colors/VisuFctIsTransparentBackground.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctLimitSimpleRectangleSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuFctMainClientsCheck.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuFctMainClientsCheck3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuFctMainClientsCheckOld.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctPaintSelection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctPaintVisuClientObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctRectSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Event-Handling/EventQueuePerClient/VisuFctRemoveClientFromEventQueue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/ElementSearch/VisuFctSearchElementById.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSelectElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/PaintAfterAllDialog/VisuFctSetClientDataVisuClientObject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSetMaxElementCountPaintAfterAll.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctSetNumericValue.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctSetRectangleUpdateNecessaryOnAllClients.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Inputs/VisuFctSetSelectionChanged.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSetSimpleRect.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctSimpleRectangleFToSimpleRectangle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Colors/VisuFctSplitColor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Functions/VisuFctTestLReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Functions/VisuFctTestReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctTextAddOffset.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTextEditor.library_Library/VisuFctTextEditorGetErrorText.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctTryAtomicAssignValueBySize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctTryAtomicAssignValueByType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Functions/VisuFctUtf8RuneLen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuFctWriteValueIfValid.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuGestureInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuInputs.library_Library/Functions/VisuInput_CheckUpdateElementStatePossible_DependingOnCurrentInput.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/Visu%20Utils.library_Library/VisuUtils/VisuActionUtilities/Types/Enum/VisuInputType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Clienthandling/Main-Clienthandling/VisuIsValidClientId.html

● VisuLoginProvider
● VisuNativeElement
● VisuNativeElementMethod
● VisuNativeElementMethodParameterList
● VisuRegistrationHelpDuringDecl
● VisuScrollValueData
● VisuScrollValueProvider
● VisuSecureTappingKeyEvent
● VisuSizeProvider
● VisuStruct3DControl
● VisuStruct3DPathPoint
● VisuStruct3DTrack
● VisuStructAllDialogInfo
● VisuStructAllModalDialogInfo
● VisuStructAllNonModalDialogInfo
● VisuStructBackgroundAndStaticElementDrawing
● VisuStructButtonClientSpecificData
● VisuStructClientSpecificInputRectangles
● VisuStructClientTagData
● VisuStructColors
● VisuStructComboboxTouchData
● VisuStructCompleteSurroundingRectInfo
● VisuStructComplexFrameClientSpecificData
● VisuStructDialogPosByElement
● VisuStructElemBaseClientSpecificData
● VisuStructElementClientData
● VisuStructElementClientDataExtended
● VisuStructElementState
● VisuStructFileTransfParams_Union
● VisuStructFindElementEvent
● VisuStructFlickInfo
● VisuStructFont
● VisuStructIECTouchInfo
● VisuStructInputInfo
● VisuStructInputOnElementEvent
● VisuStructLegendDisplayerCheckBoxPos
● VisuStructLegendDisplayerCheckBoxStatus
● VisuStructMethodClientSpecificData
● VisuStructNamespace
● VisuStructNamespaceProjectIdent
● VisuStructNativeElementClientData
● VisuStructNativeElementClientSpecificData
● VisuStructPAADialogClientSpecificData
● VisuStructPanInfo
● VisuStructPoint
● VisuStructPointD
● VisuStructPolygonClientSpecificData
● VisuStructRadioButtonClientData
● VisuStructRadius
● VisuStructRecordingRange
● VisuStructRectangularElementUtilBaseClientSpecificData
● VisuStructScaleScrollInfo
● VisuStructSecureTappingKeyEvent
● VisuStructSimpleRectangleD
● VisuStructSimpleRectWithBorder

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4187

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/VisuLoginProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/Visu-Native-Element/VisuNativeElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/Visu-Native-Element/VisuNativeElementMethod.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/Visu-Native-Element/VisuNativeElementMethodParameterList.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuRegistrationHelpDuringDecl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuScrollValueData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Element-Management/VisuScrollValueProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/VisuSecureTappingKeyEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/FunctionBlocks/SizeProvider/VisuSizeProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElem3DPath.library_Library/Data-structures/VisuStruct3DControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElem3DPath.library_Library/Data-structures/VisuStruct3DPathPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElem3DPath.library_Library/Data-structures/VisuStruct3DTrack.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Structures/VisuStructAllDialogInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Structures/VisuStructAllModalDialogInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Structures/VisuStructAllNonModalDialogInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructBackgroundAndStaticElementDrawing.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/VisuStructButtonClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructClientSpecificInputRectangles.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructClientTagData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructColors.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructComboboxTouchData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructCompleteSurroundingRectInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/VisuStructComplexFrameClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Dialog-Management/Position-infos/VisuStructDialogPosByElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsSpecialControls.library_Library/private/Struct/VisuStructElemBaseClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemMeter.library_Library/private/Structures/VisuStructElementClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemMeter.library_Library/private/Structures/VisuStructElementClientDataExtended.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructElementState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/File-transfer/VisuStructFileTransfParams_Union.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructFindElementEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructFlickInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructFont.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructIECTouchInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructInputInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/User-Events/VisuStructInputOnElementEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/LegendDisplayer/VisuStructLegendDisplayerCheckBoxPos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemTrace.library_Library/LegendDisplayer/VisuStructLegendDisplayerCheckBoxStatus.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/private/Structures/VisuStructMethodClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuStructNamespace.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Namespaces-Table/VisuStructNamespaceProjectIdent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/private/Structures/VisuStructNativeElementClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuNativeControl.library_Library/private/Structures/VisuStructNativeElementClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructPAADialogClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructPanInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpVisuHandler.library_Library/Structures/VisuStructPoint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructPointD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElems.library_Library/Intern/VisuStructPolygonClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructRadioButtonClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructRadius.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/Trace%20Mgr%20Utils.library_Library/Function-blocks/Collections/VisuStructRecordingRange.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsSpecialControls.library_Library/private/Struct/VisuStructRectangularElementUtilBaseClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Visu-Scaling/VisuStructScaleScrollInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructSecureTappingKeyEvent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructSimpleRectangleD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructSimpleRectWithBorder.html

● VisuStructSingleIECTouchInfo
● VisuStructSpreadPinchInfo
● VisuStructTableColumnSimpleDynamicCellsData
● VisuStructTableColumnSimpleDynamicCellsDataBase
● VisuStructTableColumnTextfieldDynamicCellsData
● VisuStructTemporaryRenderLocationInfo
● VisuStructTextAndId
● VisuStructTextProperties
● VisuStructTopMostDialogInfo
● VisuStructTraceGradientColor
● VisuStructUpdateRectangle
● VisuStructWaitingCubeClientSpecificData
● VisuStructWaitingFlowerClientSpecificData
● VisuStructWinControlClientData
● VisuStructWinControlElementClientData
● VisuStructXYChart
● VisuStructXYChartAxis
● VisuStructXYChartCurve
● VisuStructXYChartGradientColor
● VisuStructXYChartLevelLine
● VisuStyleFct_GetImageAccordingMapping
● VisuTouchState
● VisuUserMgmt
● VisuUserMgmtCyclicCall
● VisuUserMgmtDialogManagerListener
● VisuUserMgmtHasUserRightToChangeUsers
● VisuUserMgmtProvider
● VPNControl
● VPNState
● VUM_EditType
● VUM_GroupSelection
● VUM_ReturnValues
● VUM_User
● VUM_User2
● VUM_User3
● VUM_UserAdminAccess
● VUM_UserGroup
● VUM_UserInternal
● WARNING_ID
● WCharToUpper
● WCONCAT
● WDELETE
● WEEK
● WEEKDAY
● WeekOfYear
● WFIND
● WINSERT
● WLEFT
● WLEN
● WMID
● WORD_AS_BIT
● WORD_AS_STRING
● WORD_TO_BCD
● WORD_TO_GRAY
● WORD_TO_HANDLE

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4188

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructSingleIECTouchInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Gestures/VisuStructSpreadPinchInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructTableColumnSimpleDynamicCellsData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructTableColumnSimpleDynamicCellsDataBase.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructTableColumnTextfieldDynamicCellsData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructTemporaryRenderLocationInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructTextAndId.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Structures/VisuStructTextProperties.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructTopMostDialogInfo.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/TraceMgr2_Itfs.library_Library/VisuStructTraceGradientColor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Structures/VisuStructUpdateRectangle.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsSpecialControls.library_Library/private/Struct/VisuStructWaitingCubeClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsSpecialControls.library_Library/private/Struct/VisuStructWaitingFlowerClientSpecificData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructWinControlClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemsWinControls.library_Library/private/VisuStructWinControlElementClientData.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChart.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartAxis.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartCurve.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartGradientColor.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemXYChart.library_Library/Public/Structures/VisuStructXYChartLevelLine.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Private-Implementation/Utilities/Styles/VisuStyleFct_GetImageAccordingMapping.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuElemBase.library_Library/Public-Parts/Enumerations/VisuTouchState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/VisuUserMgmt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/VisuUserMgmtCyclicCall.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/VisuUserMgmtDialogManagerListener.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Utilities/VisuUserMgmtHasUserRightToChangeUsers.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/VisuUserMgmtProvider.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/VPN/VPNControl.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Ethernet/Ethernet_1.5.0.5_Library/Function-Blocks/VPN/VPNState.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VUM_EditType.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/Dialogs-and-provider/VUM_GroupSelection.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VUM_ReturnValues.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VUM_User.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VUM_User2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt3_Itfs.library_Library/VUM_User3.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/VUM_UserAdminAccess.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/VUM_UserGroup.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Visu/VisuUserMgmt.library_Library/UserManagement/VUM_UserInternal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Drives/Drives_1.3.0.5_Library/Enums/WARNING_ID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Utils/StringUtils.library_Library/Public-Parts/Unicode/WCharToUpper.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WCONCAT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WDELETE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/WEEK.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Enums/WEEKDAY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Functions/WeekOfYear.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WFIND.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WINSERT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WLEFT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WLEN.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WMID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BitByte-Functions/WORD_AS_BIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/HEXASCII-Functions/WORD_AS_STRING.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/BCD-Conversions/WORD_TO_BCD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/Gray-Conversions/WORD_TO_GRAY.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/HANDLE/WORD_TO_HANDLE.html

● WORD_TO_IDENT
● WORD_TO_PVOID
● WorkerRegister
● WorkerUnregister
● WREPLACE
● WRIGHT
● Write
● WriteBootProject
● WriteMemory
● WriteRequest
● WRREC
● WStringElement
● WStringElementFactory
● WStringsEqual
● X509CertCheckHost
● X509CertCheckIP
● X509CertClose
● X509CertCmsDecrypt
● X509CertCmsVerify
● X509CertCreateCSR
● X509CertCreateSelfSigned
● X509CertGetBinary
● X509CertGetContent
● X509CertGetPrivateKey
● X509CertGetPublicKey
● X509CertGetThumbprint
● X509CertHasExtendedKeyUsage
● X509CertHasKeyUsage
● X509CertInfoExit
● X509CertInfoInit
● X509CertIsAuthority
● X509CertIsDateValid
● X509CertIsSelfSigned
● X509CertKeyClose
● X509CertStoreAddCert
● X509CertStoreClose
● X509CertStoreGetFirstCert
● X509CertStoreGetNextCert
● X509CertStoreGetRegisteredCert
● X509CertStoreOpen
● X509CertStoreRegister
● X509CertStoreRemoveCert
● X509CertStoreSearchGetFirst
● X509CertStoreSearchGetNext
● X509CertStoreUnregister
● X509CertVerify
● X509CertVerify2
● X509ParseCertificate
● XChgClass
● XChgCreateH
● XChgCreateP
● XChgDelete
● XChgExtendH
● XChgGetSize
● XChgIsEmpty

Configuration and programming

Libraries and solutions > Reference, function blocks

2024/01/05 3ADR010583, 1, en_US 4189

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/IDENT/WORD_TO_IDENT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Foundation/CAA%20Types%20Extern.library_Library/CAA-Types/Convert-Functions/PVOID/WORD_TO_PVOID.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/WorkerRegister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Async%20Manager%20Extern.library_Library/CAA-Async-Manager/Functions/WorkerUnregister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WREPLACE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Standard64.library_Library/String-Functions/WRIGHT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Fieldbus/CAA%20Can%20Low%20Level%20Extern.library_Library/CAN-Low-Level/Functions/Basic-Functions/Write.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/AC500%20Utils/Pm_1.2.8.10_Library/Function-Blocks/Boot-project/WriteBootProject.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/IoDrivers/EtherCATStack.library_Library/Commands/WriteMemory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataSources/Datasource%20ApplicationV3%20Access.library_Library/DatasourceApplicationV3/Function-Blocks/Requests/WriteRequest.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Fieldbus/CommFB.library_Library/CommFB/WRREC.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/WStringElement.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/Element%20Collections.library_Library/ElementCollections/Function-Blocks/Elements/WStringElementFactory.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpNameServiceClientIec.library_Library/Internal-Implementation/WStringsEqual.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertCheckHost.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertCheckIP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CMS/X509CertCmsDecrypt.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CMS/X509CertCmsVerify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertCreateCSR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertCreateSelfSigned.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetBinary.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetContent.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertGetPrivateKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetPublicKey.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertGetThumbprint.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertHasExtendedKeyUsage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertHasKeyUsage.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/X509CertInfoExit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/UtilityFunctions/X509CertInfoInit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertIsAuthority.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertIsDateValid.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertIsSelfSigned.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509CertKeyClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreAddCert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreClose.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreGetFirstCert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreGetNextCert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreGetRegisteredCert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreOpen.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreRegister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreRemoveCert.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreSearchGetFirst.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreSearchGetNext.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertStoreUnregister.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertVerify.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/CertificateStore/X509CertVerify2.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/CmpX509Cert%20Implementation.library_Library/BasicCertificateHandling/X509ParseCertificate.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Internal/XChgClass.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgCreateH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgCreateP.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgDelete.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgExtendH.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgGetSize.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgIsEmpty.html

● XChgMsgLeft
● XWORD
● XwordVector
● YEAR
● zCMC_ABB_AXIS_TYPES
● zCMC_ABB_ERRORINFO
● zCMC_ADDW
● zCMC_AXIS_INTERNAL
● zCMC_createDecelTable
● zCMC_Cut40Bit
● zCMC_DIFF
● zCMC_DIFF_MODULO32
● zCMC_DIV_LONG_REST
● zCMC_FBPosiReal
● ZCMC_FBPOSIREAL_ZACTION_INIT
● zCMC_FBSpeedReal
● zCMC_INTERPOLATION_BASE
● zCMC_Kernel_Base
● zCMC_POLYNOM_pos
● zCMC_POLYNOM_time
● zCMC_POSITION_IPO
● zCMC_POSITION_IPO_ORIG
● zCMC_PosLoop
● zCMC_PT1_LREAL
● zCMC_SPLINE_pos
● zCMC_STOP_IPO
● zLOG_ENUM_STATE

Configuration and programming
Libraries and solutions > Reference, function blocks

2024/01/053ADR010583, 1, en_US4190

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/CAA/Runtime/CAA%20Memory%20Block%20Manager%20Extern.library_Library/CAA-Memory-Block-Manager/Functions/Exchange-Functions/XChgMsgLeft.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20System/SysLibs/SysTypes2_Itfs.library_Library/XWORD.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Intern/DataServer/Collections.library_Library/XwordVector.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/CODESYS%20-%20Application/Common/Util.library_Library/TimerSwitch/Types/YEAR.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/InternalDataTypes/zCMC_ABB_AXIS_TYPES.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/InternalDataTypes/zCMC_ABB_ERRORINFO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/INTEGER_CALC/zCMC_ADDW.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/Data-types/InternalDataTypes/zCMC_AXIS_INTERNAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/Interpolationen/zCMC_createDecelTable.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/zCMC_Cut40Bit.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/MiniMotion_real/zCMC_DIFF.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/MiniMotion_real/zCMC_DIFF_MODULO32.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/INTEGER_CALC/zCMC_DIV_LONG_REST.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/MiniMotion_real/zCMC_FBPosiReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/MiniMotion_real/ZCMC_FBPOSIREAL_ZACTION_INIT.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/MiniMotion_real/zCMC_FBSpeedReal.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/V3/zCMC_INTERPOLATION_BASE.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/V3/zCMC_Kernel_Base.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/Interpolationen/zCMC_POLYNOM_pos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/Interpolationen/zCMC_POLYNOM_time.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/V3/zCMC_POSITION_IPO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/V3/zCMC_POSITION_IPO_ORIG.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/MiniMotion_real/zCMC_PosLoop.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/INTEGER_CALC/zCMC_PT1_LREAL.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/Internal-subroutines/Interpolationen/zCMC_SPLINE_pos.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlK%2BB_1.2.0.3_Library/02_CMC_Blocks/Internal/V3/zCMC_STOP_IPO.html
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_7_0/Libraries/ABB%20-%20AC500/Use%20Cases/Logger/DataLoggerEco_1.0.0.17_Library/Enums/zLOG_ENUM_STATE.html

6.6 Engineering interfaces and tools
6.6.1 Export and import interfaces
6.6.1.1 Exporting and importing ECAD data (PBF)
6.6.1.1.1 Introduction

Automation Builder provides an ECAD interface for exchanging the PLC configuration data with
EPLAN Electric P8 and Zuken E3. This feature removes double data entry between electrical
engineering in the ECAD tool and the control logic programming in Automation Builder by
synchronizing the PLC hardware including topology and I/O signals between these tools.
Automation Builder - ECAD interface supports various flexible workflows:
● Enables PLC hardware planning and configuration in the ECAD tool and allows importing

the exported data from the ECAD tool through the PBF file (process integration bus
interchange format) into the Automation Builder project with diff and merge functionality,
providing full control on selective import/merge.

● Enables PLC hardware configuration in Automation Builder and allows exporting the config-
uration to the ECAD tool through a PBF file.

● Supports bi-directional roundtrip engineering with loss less data exchange between
Automation Builder and the ECAD tool.

Automation Builder uses the rack information to identify the relations between:
● PLC and devices plugged to I/O bus or extension bus.
● Fieldbus slave and attached IO devices.
It is recommended to assign the PLC, IO devices, communication modules and fieldbus slaves
properly to the rack in the ECAD project. If the rack information is missing, devices will be
imported to the device pool and must be arranged manually in the Automation Builder project or
mapped to already existing devices.

6.6.1.1.2 Requirements on EPLAN electric P8
● EPLAN Electric P8 with PLC and Bus Extension. It is recommended to use version 2.3 or

later.
● Use of appropriate part data and macros for ABB devices. This can be achieved by getting

the part data and macros from the EPLAN data portal.

6.6.1.1.3 Importing PLC data from the ECAD tool
You can create a new Automation Builder PLC project from the existing PLC hardware configu-
ration in your ECAD tool, by importing the exported PBF file to Automation Builder.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. From the file system, select the PBF file.

Automation Builder starts importing the devices and its associated signals from the PBF
file. After a successful import, the result is displayed in the Project Compare –Differ-
ences view. You can now decide and selectively merge the differences.
Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

3. Select the DevicePool node and click “Accept Block” to accept the complete PLC structure
in the ECAD tool.

4. Select the PLC node and click “Accept Block” to accept all child device nodes.

The DevicePool node holds all devices coming from the ECAD tool
without any hierarchy information. The missing hierarchy information can
be defined after closing the editor.

5. Close the Project Compare – Differences view to accept the changes.

Import PBF file
to Automation
Builder

Configuration and programming

Engineering interfaces and tools > Export and import interfaces

2024/01/05 3ADR010583, 1, en_US 4191

6. Arrange unassigned devices in the DevicePool to the PLC hardware structure by drag-
and-drop.

ð The I/O signals assigned to I/O devices in the PBF file are imported and allocated to
IO devices. IO signals can be viewed in I/O mapping editor of the I/O devices.

6.6.1.1.4 Importing third party devices
Prerequisite: To import third party devices from ECAD to Automation Builder, install third party
fieldbus devices (for example, GSD, GSDML and EDS files) using “Tools è Device repository”
in Automation Builder.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. From the file system, select the ECAD pbf file which consists of third party devices.

ð When the device identifier of the third party device installed in Automation Builder
does not match with the device identifier of the device imported from ECAD, an error
window is shown with the devices which are failed to import with error identifier 14.
To import third party devices, it is required to assign ECAD identifier (PLC type desig-
nation/order number) in Automation Builder in “Tools è Device ECAD data”. Click the
link in the Import window to see the error messages in a text file.

3. Click “Continue” in the Import window to import valid devices to the project that are
imported successfully or click “Cancel” to cancel the import process.

4. In Automation Builder, click “Tools è Device ECAD data”.

Configuration and programming
Engineering interfaces and tools > Export and import interfaces

2024/01/053ADR010583, 1, en_US4192

5. In the Device ECAD data editor, add the ECAD identifier for the devices shown in the
import errors window with error identifier 14, to enable these devices for export and
import.

ð Also, add the ECAD identifiers for all devices which need to support export/import in
ECAD.

6. Reimport the pbf file to import the third party devices.

6.6.1.1.5 Exporting PLC data to ECAD tool
1. Open the existing PLC project.
2. In the device tree, right-click “PLC è Export è ECAD (PBF)”.
3. Select the desired location in the file system to save the PBF file.

The ECAD user can import the exported PBF file from Automation Builder and can use the
imported PLC data for electrical engineering purpose. If the user modifies imported PLC
data in the ECAD project, the data can be imported back to the Automation Builder project
which supports the round trip engineering efficiently with loss less synchronization of the
data.

6.6.1.1.6 Exporting third party devices
1. Right-click on a PLC device, click “Export” and select “ECAD (PBF)”.
2. Save the file to the desired location in the file system.

If the third party devices does not contain assigned ECAD identifiers, a message is
displayed showing which devices cannot be exported.

ð To add ECAD identifiers to the devices, see Importing third party devices Ä Chapter
6.6.1.1.4 “Importing third party devices” on page 4192.
After adding ECAD identifiers to the third party devices, execute “Export” to export the
devices including third party devices.

Configuration and programming

Engineering interfaces and tools > Export and import interfaces

2024/01/05 3ADR010583, 1, en_US 4193

6.6.1.1.7 Importing ECAD PLC data to existing AB project
Automation Builder ECAD interface supports concurrent engineering by importing the ECAD
data to the existing Automation Builder PLC project.
1. From the main menu, select “Project è Import è ECAD (PBF)”.
2. Select the PBF file which has been created during the export from the ECAD tool.
3. Select the PLC from the list and click “OK”.

ð A dialog window is displayed if the Automation Builder project provides PLCs of the
identical type as defined in the PBF file.
By selecting “None” in the dialog window a new PLC is defined in the ECAD tool.

4. In the Project Compare – Differences view, click to merge device signals.

ð The differences between the current PLC hardware configuration in Automation
Builder and the ECAD PLC data are displayed.

5. Select the differences as desired and click “Accept Single” to accept the selected differ-
ence block.

6. Close the Project Compare – Differences view to accept the changes.

6.6.1.1.8 Arrange or map devices imported to the device pool
Devices that are imported to the device pool because of missing hierarchy information (mainly
rack information) must be arranged manually in the Automation Builder project or mapped to
already existing devices.

Arrange the unassigned devices in the DevicePool to the PLC hardware structure by drag-and-
drop.

If the devices are already added to the Automation Builder project prior to the import, you have
to map the instances of the same type manually (one instance in the Automation Builder project
tree and one instance in the DevicePool).
After mapping the devices, you can selectively merge the device parameter or signal in the
difference view.
To map pool devices, proceed as follows:

Arrange devices
imported to the
device pool

Map devices
imported to the
device pool

Configuration and programming
Engineering interfaces and tools > Export and import interfaces

2024/01/053ADR010583, 1, en_US4194

1. In the device tree, select the Device Pool node, click “Project” and select “Map pool
devices”.

2. Map the device pool instances of identical types in the project from the drop-down list and
click “OK”.

ð Pool devices which are mapped are removed from the device pool and mapped to
the corresponding Automation Builder device. Differences between the signals of the
mapped I/O devices are displayed. e.g. AI523_1 device:

6.6.1.1.9 Limitations
The following limitations are considered when working with the Automation Builder ECAD inter-
face:
● The scope of a PBF file is limited to one single PLC including all connected devices.
● There is no representation of XC variants of devices in Automation Builder. Therefore,

always use the standard variant for export. This might lead to part data mismatch when
importing into the ECAD tool.

● In reimport or round trip import cases, if any changes are made in ECAD by adding a
new communication module with connecting to one of the PLC slot or replacing existing
communication module, then those device changes to the communication modules are not
displayed as connected to PLC slots during the import in Automation Builder diff and import,
instead those CM modules are added under the device pool. After merging and importing is
completed, to work with device pool devices Ä Chapter 6.6.1.1.8 “Arrange or map devices
imported to the device pool” on page 4194.

● IO mapping data cannot be imported for IO devices plugged to an EtherCAT slave when
they are imported individually to the device pool because of missing hierarchy information.
After arranging the devices properly in the device tree, the import can be done again to
import also the IO mapping data.

6.6.1.2 Exporting and importing I/O mapping (CSV)
The I/O module mappings of an Automation Builder project can be exported to CSV for bulk
editing in MS Excel or other documentation purposes. I/O mappings can be exported at single
I/O module level or at PLC level.

Configuration and programming

Engineering interfaces and tools > Export and import interfaces

2024/01/05 3ADR010583, 1, en_US 4195

Further, the I/O module mappings can be imported with the option of displaying differences and
merging each single changed or import all signals at once by overwriting existing I/O module
signals.

6.6.1.2.1 Exporting IO mapping data to CSV
To export I/O mappings to a CSV signal list, proceed as follows:
1. In the device tree, right-click “PLC è Export è IO mapping (CSV)”.
2. Save the IO mappings CSV to the desired location in the file system.

If the CSV signal list has been exported successfully, a success message is displayed.
The status of the export is shown in the dialog.

3. In the export dialog, click the link to open the exported IO mapping CSV file in MS Excel.

The template can only be opened if MS Excel is installed and configured
to open .csv files.

4. In the IO mapping (CSV) file, change Variable and Description fields to edit I/O map-
pings.

ð
Do not modify other field’s data in IO mapping (CSV) file.

Configuration and programming
Engineering interfaces and tools > Export and import interfaces

2024/01/053ADR010583, 1, en_US4196

6.6.1.2.2 Importing I/O mapping data from CSV
To import an edited I/O mapping (CSV) file, proceed as follows:
1. From the main menu, select “Project è Import è IO mapping (CSV) è Open”.
2. A CSV signal list import dialog is displayed.

ð With “YES”, all I/O mappings will be imported without difference view. With “NO”, the
difference view is displayed with the I/O mapping differences.

3. In the Project Compare – Differences view, click to merge I/O mappings.
4. Select the signal row for which the difference is to be accepted. Select the Variable field

and click “Accept Single” to merge the I/O mappings.
5. Close the Project compare – Differences view to accept the changes and merge the I/O

mappings with the Automation Builder project.

6.6.1.3 Exporting and importing device list (CSV)
6.6.1.3.1 General

The Automation Builder project devices can be exported to CSV for bulk device renaming or
adding device tag labels to devices in MS Excel or other documentation purposes. A devices
export is only possible at PLC level.
Automation Builder provides importing devices in bulk based on device type, instance and
hierarchy information provided in the CSV file.

6.6.1.3.2 Exporting device list to CSV
To export a CSV device list, proceed as follows:
1. In the device tree, right-click “PLC è Export è Device list (CSV)”.
2. Select the desired location in the file system to save the Device list (CSV).

If the CSV device list is exported successfully, a success message is displayed.

Configuration and programming

Engineering interfaces and tools > Export and import interfaces

2024/01/05 3ADR010583, 1, en_US 4197

3. In the Export dialog, click the link to open the exported CSV device list.
The exported CSV device list consists of all devices connected to the PLC that is
exported. Each row represents a device with its device type and hierarchy information.

6.6.1.3.3 Creating CSV device list
To create the devices in CSV, use the device list template provided in Automation Builder.

In the main menu, click “Tools è Create CSV Device list”.

ð The device list template is opened in the MS Excel.

The template can only be opened if MS Excel is installed and config-
ured to open .csv files.

In this file, add each device in a separate row with device information like Device Type
(Order Num or Device Type Name) and instance details (name, tag) and hierarchy
information (parent Device name, parent Device Tag, position). The mandatory infor-
mation required to import CSV is only Device Type. All other fields are optional. After
editing the device list CSV file, save it in the file system and close.

Configuration and programming
Engineering interfaces and tools > Export and import interfaces

2024/01/053ADR010583, 1, en_US4198

6.6.1.3.4 Importing a device list from CSV
To import devices from CSV in bulk, proceed as follows:
1. From the main menu, click “Project è Import è Device list (CSV)”.
2. Select the device list CSV file from the file system and click “Open” in the Import dialog.

All devices that are defined in the CSV are imported. The Project Compare – Differ-
ences view displays the current project and the project that has been updated by the
import file.

3. Select the desired devices and click “Accept Block” to accept all the devices and its child
device nodes or “Accept Single” to accept only a single device.

4. After closing the Project Compare – Differences view, the devices are imported to the
Automation Builder project.

ð The devices (except PLC) are placed under the device pool if the valid device hier-
archy information is not provided in the CSV device list file. By drag-and-drop devices
can be assigned to the desired PLC hardware structure Ä Chapter 6.6.1.1.8 “Arrange
or map devices imported to the device pool” on page 4194.
If a device tag is provided for a device in CSV, it appears next to each device node in
the device tree.

6.6.1.3.5 Renaming devices
To rename the devices, proceed as follows:
1. In the device tree, right-click “PLC è Export è Device list (CSV)”.
2. Select the desired location from the file system to save the CSV device list.

Configuration and programming

Engineering interfaces and tools > Export and import interfaces

2024/01/05 3ADR010583, 1, en_US 4199

3. Rename the device names in the column Device Name:

4. Click “Project è Import è Device list (CSV)”.
5. Select the updated CSV file from the file system.

Open the Project Compare – Differences view. If only the device names have been
changed in the CSV file, the difference view does not show the changes.

Device Name changes are not displayed as changes in the difference
view.

6. Close the Project Compare – Differences view. The Renamed Devices dialog is dis-
played with the current name and the new name provided in the CSV file.

7. In the Rename Devices window, select the desired devices and click “OK”.
The device names are updated in the Automation Builder project.

Configuration and programming
Engineering interfaces and tools > Export and import interfaces

2024/01/053ADR010583, 1, en_US4200

6.6.2 CODESYS Security Agent
6.6.2.1 Integration in CODESYS Development System

At this time, you can configure and create certificates of the controller with the CODESYS
Security Agent. You can then configure encrypted communication with the controller, as well as
encrypt the boot application, download, and online change.
● Ä Chapter 6.6.2.2 “Encrypted Communication with Devices via Controller Certificates”

on page 4201
● Ä Chapter 6.6.2.3 “Encryption of the Boot Application, Download, and Online Change”

on page 4202

6.6.2.2 Encrypted Communication with Devices via Controller Certificates
An application can be encrypted and signed in order to protect a running application in an
AC500 V3 PLC and to protect a configured project. How to set-up the user management, the
communication and the boot application in order to prevent unauthorized access is explained in
the application note AC500 V3 - Encrypt and sign your application.

Requirement: A digital signature for certificate exchange is configured.
Ä Chapter 6.4.1.9.18 “Protecting an application” on page 1915

No certificate use in live system
Self-signed certificates should never be used on production or public websites.
The certificates that are created in the following steps are self signed.

We assume that there is still no certificate on the controller that is intended for encrypted
communication. In the following steps, you generate this kind of certificate and encrypt commu-
nication:
1. Configure the active path to the controller.
2. Open the “Security Screen” view by double-clicking the symbol in the status bar or by

clicking “View è Security Screen”. Select the “Devices” tab.
3. Click the button to refresh the list of available devices and their certificate stores.
4. Select the corresponding device on the left side.

ð On the right side, there is still no license listed for the “Encrypted communication” use
case.

5. On the right side, select “Encrypted Communication” and click the button to create a
new certificate on the device.
Change the default key length to 4096. Otherwise an error occurs that is only visible in the
log of the PLC.

ð The certificate is generated and listed in the table with its properties. The symbol
before “Encrypted communication” now appears as such: . The field in the "Valid
until" column is highlighted in green because the remaining time is still at least two-
thirds of the entire validity period.

Encrypted and
signed applica-
tions

Configuration and programming

Engineering interfaces and tools > CODESYS Security Agent

2024/01/05 3ADR010583, 1, en_US 4201

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010707&LanguageCode=en&DocumentPartId=&Action=Launch

6. In this step, you activate encrypted communication with the controller.
Open the “Security Screen” view of CODESYS (“Users” tab). In the “Security Level” group,
select the “Enforce encrypted communication” option.

ð As of this point, communication with all controllers is possible only as long as the
certificate is valid on the controller and you have a key for it.
The connecting line between the development system, the gateway, and the controller
is displayed in yellow on the “Communication Settings” tab of the device editor of the
controller.
As an alternative to the “Enforce encrypted communication” option that was just
described and which applies to all controllers, you can also encrypt communication
with a specific controller only. To do this, open the “Communication” tab in the device
editor of the controller. Click “Encrypted Communication” in the “Device” list box.

7. Now log back in again to the controller.

ð A dialog opens with the notification that the certificate of the controller is not signed
by a trusted source. In addition, the dialog displays information about the certificate
and prompts for you to install it as a trustworthy certificate in the local store in the
"Controller Certificates" folder.

8. Confirm the dialog.

ð The certificate is installed in the local store and you are logged in to the controller.

In the future, communication with the controller will be encrypted automatically with
this control certificate.
Note: When logging in to the controller, the expiration date of the certificate currently in
use is checked. You get a warning if the remaining time is just one-third of the entire
time or less. Then you can renew the certificate in time in the security screen.

See also
● Ä Chapter 6.6.2.4.1 “View 'Security Screen' - 'Devices'” on page 4205
● Ä Chapter 6.6.2.1 “Integration in CODESYS Development System” on page 4201

6.6.2.3 Encryption of the Boot Application, Download, and Online Change
An application can be encrypted and signed in order to protect a running application in an
AC500 V3 PLC and to protect a configured project. How to set-up the user management, the
communication and the boot application in order to prevent unauthorized access is explained in
the application note AC500 V3 - Encrypt and sign your application.

Aim: You want to encrypt boot applications, downloads, and online changes with a certificate
to make sure that the application on the controller cannot be exchanged at will. To do this,
you need to download a corresponding certificate of the type "Encrypted Application" from the
controller and install it to the "Windows Certificate Store" of your computer. This certificate is
required for all development environments that need to make changes to the application on the
controller. For example, if this application has to be downloaded from another computer, then
the certificate also has to exist on this computer.
See also
● Ä Chapter 6.6.2.1 “Integration in CODESYS Development System” on page 4201
● CODESYS Help: "Security", "Encryption", "Certificate"

Encrypted and
signed applica-
tions

Configuration and programming
Engineering interfaces and tools > CODESYS Security Agent

2024/01/053ADR010583, 1, en_US4202

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010707&LanguageCode=en&DocumentPartId=&Action=Launch

Requirement: The active path to the controller is configured.

1. Open the “Properties” dialog of the application.
2. Click the “Encryption” tab. Set “ Encryption Technology” to “Encryption with certificates”.

ð The “Encryption Wizard” button is available in the “Certificates” field.

3. Click the “Encryption Wizard” button.

ð The “Encryption Wizard” dialog opens. The status is Not connected and under
“Details” is Ready.

4. Click the “Start” button.

ð The wizard searches for suitable certificates on the controller. If necessary, the con-
troller creates a new certificate which is registered in the Certificate Store of your
computer.
NOTE: A certificate obtained this way is automatically accepted as trusted.
If a certificate for application encryption already exists on the controller, then it is used.
If a new certificate has to be created on the controller for your CODESYS, then the
“Certificate Settings” dialog opens for configuring the key length for the private key
and the validity period.

5. In the “Certificate Settings” dialog, click “OK” to confirm the default or edited values for key
length and validity period.

ð CODESYS saves the values in the CODESYS options as the default for the next
certificate configuration of this kind.
In the “Details” of the wizard, you see a description of the performed actions and the
thumbprint of the recently created certificate.

6. When the status reaches “Wizard finished”, close the wizard.

ð The new certificate is listed in the “Certificates” field of the properties dialog. In the
“Certificate Store”, it is listed under “Controller Certificates”. In the “Security Screen”
view, on the “Devices” tab, the certificate is displayed in the right window with the
“Encrypted Application” information.

7. Confirm the “Properties” dialog of the application.
8. Open the “Security Screen” view.

ð On the “Project” tab, in the “Encryption of boot application, download and online
change” group, the certificate is displayed with the “Encrypted Application” informa-
tion.
Boot application, download, and online change are therefore encrypted and only pos-
sible as long as the configured certificate and signature are valid.

See also
● Ä Chapter 6.6.2.4.2 “Dialog 'Encryption Wizard'” on page 4207
● CODESYS Help: Dialog "Properties" "Encryption"
● CODESYS Help: "Security", "Encryption", "Certificate"

Encrypting the
boot applica-
tion, download,
and online
change with the
encryption
wizard

Configuration and programming

Engineering interfaces and tools > CODESYS Security Agent

2024/01/05 3ADR010583, 1, en_US 4203

Requirement: The active path to the controller is configured. There is still no certificate on the
controller that is suitable and valid for encryption.

1. Open the “Security Screen” view by double-clicking the symbol in the status bar or by
clicking “View è Security Screen”. Open the “Devices” tab.

2. Click the “Refresh the list of available devices and their certificate stores” button.
3. Select the device listed on the left side.
4. Select “Encrypted Application” on the right side and click the “Create a new certificate on

the device” button.
Change the default key length to 4096. Otherwise an error occurs that is only visible in the
log of the PLC.

ð The certificate is created and listed in the table with the symbol.

5. Double-click the certificate entry.

ð The Windows “Certificate” default dialog opens.

6. Click the “Install certificate” button on the “General” tab.

ð The “Certificate Import Wizard” opens.

7. In the “Certificate Store” dialog, select the “Place all certificates in the following store”
option and select the “Controller Certificates” folder for “Certificate Store”.

ð The controller certificate is imported to the “Controller Certificates” directory and it
is immediately available for the encryption of downloads, online changes, and boot
applications.

8. Open the “Project” tab and double-click the application entry in the “Encryption of boot
application, download and online change” group.

ð The “Properties” dialog of the application opens.

9. Click the “Encryption” tab and set “Encryption Technology” to “Encryption with certificates”.
Then click . Note: If the “Enforce encryption of downloads, online changes and boot
applications” option is selected in the “Security Screen”, then “Encryption with certificates”
is already preset.

10. In the “Certificate Selection” dialog, select the corresponding certificate from the
“Controller Certificates” folder and click .

11. Click “OK” to confirm the dialog.

ð The certificate is displayed in the properties dialog.

12. As above when using the wizard, steps 7 and 8.

Open the “Users” tab in the “Security Screen”. In the “Security level” group, select the
“Enforce encryption of downloads, online changes and boot applications” option.

ð Only with a valid certificate is it possible to change the application on the controller.

Encrypting the
boot applica-
tion, download,
and online
change without
the encryption
wizard

Enforcing the
encryption of
boot applica-
tions, down-
loads, and
online changes

Configuration and programming
Engineering interfaces and tools > CODESYS Security Agent

2024/01/053ADR010583, 1, en_US4204

See also
● CODESYS Help: "Security-Screen"

6.6.2.4 Reference, User Interface
6.6.2.4.1 View 'Security Screen' - 'Devices'.. 4205
6.6.2.4.2 Dialog 'Encryption Wizard'... 4207

6.6.2.4.1 View 'Security Screen' - 'Devices'
Symbol:
Function: The tab allows for the configuration and the transfer of controller certificates for
encrypted communication with the controller.
Call: Menu bar: “View”

The “Devices” tab shows all PLC devices configured in the project and their certificate store.
If the communication path to the controller is configured, then you see the certificates that are
stored in memory. Here you can create and configure new certificates on the controller. If a
certificate currently in use is about to expire, then you get a warning when you log in to the
device. From there you can also switch directly to the “Security Screen” to renew the certificate.

Left side: “Information” Devices and certificate store

Shows the individual devices as expandable nodes, each with the controller-
specific certificate store below it.

Toolbar (left side) : Refresh the display

: Download: Transfer the selected certificate to the PLC

Configuration and programming

Engineering interfaces and tools > CODESYS Security Agent

2024/01/05 3ADR010583, 1, en_US 4205

Right side:
“Information”

If the active path to the controller is set and a device node is selected, then every
use case for controller certificates is displayed on the right side.
● “OPC UA Server”: Encrypted communication over an OPC UA server
● “Encrypted Communication”: Encrypted communication between the devel-

opment system and the controller
● “Encrypted Communication”: Encryption of the boot application
● “Web server”: Encrypted communication with the web server
As long as a certificate is not available for one of these use cases, it is displayed
with the symbol as “(not available)”.
When a certificate store is selected on the left side, all certificates in it are
displayed on the right side with the following information:
“Information”: Use case (currently the controller component in question is dis-
played: for example “CmpSecureChannel”.)
“Created for”: Name of the computer for which the certificate was created (for
example, “MyLocalPC”)
“Created by”: Name of the computer on which the certificate was created (for
example, “MyLocalPC”)
“Valid as of”: Date (for example, “07/20/2017 15:09:29”)
“Valid until”: Date (example: “07/20/2022 00:00:00”. Depending on the remaining
time of the certificate, the highlight color of the field changes: green -> yellow
(two-thirds expired) -> orange (nine-tenths expired) -> red (expired). Note: When
logging in to the controller, you get a warning when two-thirds or more of the
validity period have expired. Then you can renew the certificate here in the
“Security Screen”.
“Thumbprint”: Hash value from specific properties of the certificate for purposes
of identification (for example, “279e1a46b86bd636c8e6f19fd51c222469ec49a8”)
This thumbprint can be used together with the Mqtt library. Refer to the Mqtt
library documentation in the Library Manager.
Double-clicking a certificate entry opens the default Windows “Certificate” dialog.
As a result, you can import a controller certificate into the Windows Certificate
Store in the “Controller Certificates” folder, so that it is available for the encryp-
tion of boot applications, downloads, and online changes.
If multiple certificates are available for one use case, then the system follows the
steps below to determine the certificate that is used:
● Certificate that was created directly by the user (currently not supported)
● Filtering of existing certificates by:

– 1. Subject (user of the certificate)
– 2. Key usage
– 3. Extended key usage
– 4. Valid time stamp

● Dividing of detected, valid certificates as "signed" and "self-signed"
● Filtering of signed certificates, and the self-signed certificates by the fol-

lowing criteria:
– 1. Longest validity period
– 2. Strongest key

Configuration and programming
Engineering interfaces and tools > CODESYS Security Agent

2024/01/053ADR010583, 1, en_US4206

 Drag&Drop: Moving of the certificate to another certificate store of the same
device
Double-clicking a certificate entry opens the default Windows dialog for dis-
playing all certificate information.

Toolbar (right side) : Creates a new certificate for a specific use case
The “Certificate Settings” dialog opens for configuring the “Validity period” of
the certificate and the “Key length” for the private key. Clicking “OK” saves the
specified values in the CODESYS options. The values are reset at the next
operation.
As long as the certificate is being created, "“(computing)”" is shown after the use
case. You cannot cancel the creation operation, but you can close and continue
working with the “Security Screen”.

: Delete the selected certificate.

: Upload and save the selected certificate to the local file system.

I : Details about the selected certificate: Opens the “Certificate” dialog with the
“General” tab, “Details” tab, and “Certification Path” tab.

: Renew the selected certificate. Opens the “Certificate Settings” dialog to
create an additional new certificate for a certificate that will expire soon, with the
same purpose and specified key length. The predefined values in the dialog are
adapted, if necessary, depending on the selected certificate.

6.6.2.4.2 Dialog 'Encryption Wizard'
Function: The wizard makes sure that a certificate for the encryption of downloads, online
changes, and boot applications is downloaded from the controller. If a valid certificate does not
exist on the controller for this purpose, then the wizard makes sure that a certificate is created.
Changes to the application on the controller (download, online change, boot application) are
possible only when this certificate exists.
Call: “Properties” dialog of an application, “Encryption” tab, “Encryption with certificates” setting,
“Encryption Wizard” button
Requirement: “Encryption Technology” is set to “Encryption with certificates”.

Configuration and programming

Engineering interfaces and tools > CODESYS Security Agent

2024/01/05 3ADR010583, 1, en_US 4207

“Status” Statuses while the wizard:is in action:
● “Not connected”: The connection to the controller has not been established

yet or the device cannot be reached.
● “Error connecting to the device”: The network path to the controller has not

been set correctly.
● “Connecting...”: A connection to the controller is being established.
● “Processing request...”: The wizard is checking for available certificates

and if necessary makes sure that the controller creates a new certificate.
The certificate downloaded from the controller is automatically classified as
"trusted" and registered in the Certificate Store of the computer.

● “Wizard finished”

“Details” Description of the individual actions of the wizard with corresponding notices in
the case of failures

“Start” If the connection path to the controller is set correctly in the device editor,
then the wizard starts the necessary actions for encrypting downloads, online
changes, and boot applications with a certificate.
If an expired certificate exists, then a corresponding warning is displayed with
a dialog prompt whether or not a new certificate should be created by the con-
troller. When this is confirmed, the new certificate is created and loaded to the
local Certificate Store. In this case, the existing boot application may not start
anymore and must be created again with the new certificate.
The “Certificate Settings” dialog opens when a new certificate is to be created
on the device. Here you configure the “Key length (bit)” and the “Validity period
(days)” for the certificate.

See also
● Ä Chapter 6.6.2.3 “Encryption of the Boot Application, Download, and Online Change”

on page 4202
● CODESYS Help: "Security", "Encryption", "Certificate"

6.6.3 CODESYS Static Analysis
6.6.3.1 Introduction

Already when programming in CODESYS, CODESYS Static Analysis helps to write more read-
able code and to detect contradictory or unsupported settings. In particular, potential sources of
error can be identified, such as test code or pointers that have not been checked for 0 before
dereferencing. With specific checks, you can make sure that the code is portable. Example: The
analysis should report the use of language resources for object orientation because the code is
to run on platforms that do not support object orientation.
The analysis checks the source code of the CODESYS project and reports any deviations from
certain coding rules, naming conventions, or permitted keywords and identifiers. CODESYS
Static Analysis is based on the rule set defined in the PLCopen Coding Guidelines and extends
it with additional test options.
You can display the detected deviations as errors or warnings in the message view before the
project is downloaded to the target system. For errors that are reported by Static Analysis based
on precompile information, there is support for an immediate error handling ("Quickfix").
You activate Static Analysis either explicitly by clicking “Build è Run Static Analysis”, or you let
it execute automatically at each code generation. You activate the automatic execution in the
“Static Analysis” dialog of the projects settings. In this dialog, you also configure what is to be
checked in detail. You can use pragma statements to exclude individual parts of the code from
the check.
To evaluate the code quality, you can also display selected metrics that CODESYS Static
Analysis detects in your code in a separate view. An example of this is the McCabe metric,
which measures the cyclomatic complexity and indicates the number of execution paths that
can be processed during code execution.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4208

NOTICE!
The analysis is performed only for the code of the applications in the current
project. Libraries are not taken into consideration.

The CODESYS development system contains a light version of Static Analysis
that is extended by CODESYS Static Analysis.

Application example
The Pro Static Analysis tool can be used to check the source code during pro-
gramming or for debugging purposes in order to identify possible weaknesses
of the code. Usage and benefits of the Pro Static Analysis tool are described in
the application example Pro Static Analysis tool.

● Ä Chapter 6.6.3.3.2.2 “Dialog 'Static Analysis Settings' - 'Settings'” on page 4217
Ä Chapter 6.6.3.3.1 “Commands” on page 4212

● Ä Chapter 6.6.3.4.1 “Pragmas and Attributes” on page 4228

6.6.3.2 Configuring and Running Static Analysis
Using a basic sample project below, you will find the most important steps and options for
configuring and running a static analysis.
Requirements: CODESYS Static Analysis is installed.

If you want to reproduce the example project, create a standard project and insert the POUs
below the application in the device tree. Then configure the communication settings for the
connection to your local CODESYS Control Win V3.
FUNCTION_BLOCK fb1
VAR_INPUT
 iVar_fb1in1 : INT;
 ivar_fb1in2 : INT;
 rVar_fb1in3 : REAL;
END_VAR
VAR_OUTPUT
 iVar_fb1out:INT;
END_VAR
VAR
 P_fSampleProperty : INT;
 rVar : REAL;
 PRO : BOOL;
END_VAR
iVar_fb1out:=iVar_fb1in1 + 1;

FUNCTION_BLOCK fb2
VAR_INPUT
 iVar_fb2in:INT;
END_VAR
VAR_OUTPUT
 iVar_fb2out:INT;
END_VAR
VAR
END_VAR

Sample project

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4209

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010652&LanguageCode=en&DocumentPartId=&Action=Launch

PROGRAM PLC_PRG
VAR
 fb1_inst: fb1;
 fb2_inst: fb2;
END_VAR
fb1_inst(iVar_fb1in1 := 99);
fb2_inst(iVar_fb2in := 22);
fb2_inst(iVar_fb2in := 1);

1. Click “Build è Static Analysis è Settings”. Switch to the “Rules” tab.

ð A list is displayed containing all possible rule checks. They are organized in a tree
structure by topical category. The rule number is added in parentheses (for example,
“Unused variables (33)” in category “Unused objects”).

2. Click the check box of the first line a few times (“Rules” node).

ð Clicking toggles the activation status. The check boxes in the entire tree have a red or
orange check mark, or no check mark at all.

3. In this way, activate all entries with a red check mark. This means that CODESYS Static
Analysis should report any detected rule violations as errors.

4. Click “Build è Static Analysis è Run Static Analysis”.

ð Errors are reported in the message view. The message texts are tagged with a and
begin with the error number "SA<rule number>".

5. Double-click the first message SA0033: Unused variables 'iVar_fb2out'.

ð The focus moves to the declaration part of function block fb2 and the relevant vari-
able is selected. The variable is declared, but not used. This is checked in Rule 33
(“Unused variables”). In the code, the relevant locations are underlined with a wavy
line.

6. To test the automatic execution of the analysis, click “Build è Static Analysis è Settings”.
On the “Settings” tab, select the “Perform static analysis automatically” option. Click “OK”
to exit the dialog.

7. Click “Online è Login”.

ð A dialog prompt indicates that compile errors exist. The errors reported by the code
analysis are displayed again in the message view.

8. Click “Build è Static Analysis è Settings”. Switch to the “Rules” tab.Now clear all of
the rules in the dialog. In the “Unused Objects” category, explicitly activate Rule SA0035
(“Unused input variables (35)”) with an orange-colored check mark to report a warning.
See the tooltip for the rule text: “This rule corresponds to the following PLCopen rules:
CP24”). Click “OK” to exit the dialog.
In the project settings, click “OK”.

9. Click “Build è Generate Code”.

ð The analysis is performed automatically. Two errors are reported in the message view:
§ SA0035: Unused input variable 'iVar_fb1in2 and § SA0035: Unused
input variable 'iVar_fb1in3.

10. Double-click the message and comment or remove the declaration. Perform the code
analysis again.

ð No error messages are displayed.

Checking for
compliance to
rules

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4210

See also
● Ä Chapter 6.6.3.3.2.2 “Dialog 'Static Analysis Settings' - 'Settings'” on page 4217
● Ä Chapter 6.6.3.3.2.3 “Dialog 'Static Analysis Settings' - 'Rules'” on page 4218

1. Click “Build è Static Analysis è Settings”. Click the “Naming Conventions” tab.

ð You see a table in a tree structure that is divided into expandable categories of
variables and program blocks.

2. Expand the “Prefixes for Variables” - “Prefixes for Types” category, and in the “Prefix”
column, specify I for “INT (14)”.

Expand the “Prefixes for POUs” - “Prefixes for POU Type” category: In the “Prefix”column,
specify the prog for “PROGRAM (122)” and fb for “FUNCTIONBLOCK (103)”.

3. Select the “First character after prefix should be an upper case letter” option. Clear all
other options.

4. Click “Build è Static Analysis è Run Static Analysis”.

ð Error messages:

● NC0102: Invalid name 'PLC_PRG': Expect prefix 'prog' because
PLC_PRG does not have the required prefix

● First character after prefix should be uppercase:
'ivar_fb1in2' because ivar_fb1in2 : INT; in fb1

● NC0014: Invalid variable name P_fSampleProperty: Expect
prefix 'i' because this integer variable does not have the required prefix

See also
● Ä Chapter 6.6.3.3.2.4 “Dialog 'Static Analysis Settings' - 'Naming Conventions'”

on page 4219

1. Click “Build è Static Analysis è Settings”. Click the “Forbidden Symbols” tab.

ð A line editor allows for specifying character strings that should not to be used in the
code.

2. As an example, double-click the blank line and type in the invalid character string PRO
directly. Double-click the next blank line and click to open the input assistance. From
“Standard Types”, select “REAL”. Click “OK” to exit the dialog.

3. Click “Build è Static Analysis è Run Static Analysis”.

ð The error messages Forbidden symbol 'REAL' and Forbidden symbol
'PRO' are displayed in the message view. Double-click the message text to jump
to the relevant line of code.

See also
● Ä Chapter 6.6.3.3.2.6 “Dialog 'Static Analysis Settings' - 'Forbidden Symbols'” on page 4227

Checking for
compliance to
defined naming
conventions

Checking for
forbidden sym-
bols

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4211

CODESYS Static Analysis performs selected tests on the code, and you can display the results
in a view.
1. Click “Build è Static Analysis è Settings”. Click the “Metrics” tab.

ð The metrics that CODESYS Static Analysis applies to the code are listed in a table.

2. For this example, activate the “Number of inputs variables” metric and specify the per-
mitted range of values: lower limit 1 and upper limit 2. Activate some more metrics, for
example “Code size” and “Number of calls”.

3. Click “Build è Static Analysis è View Standard Metrics”.

ð The view includes a table with a line for each “Program unit” of the sample program.
For each activated metric, there is a column showing the measured values. Values
that are outside of the range of values defined in the settings are highlighted in red. In
the case of this specific example, this is at least the “PLC_PRG/Inputs” field because
the number of input variables in this POU is greater than the defined upper limit of 2.

See also
● Ä Chapter 6.6.3.3.2.5 “Dialog 'Static Analysis Settings' - 'Metrics'” on page 4226

See also
● Ä Chapter 6.6.3.3.1 “Commands” on page 4212

6.6.3.3 Reference, User Interface
6.6.3.3.1 Commands.. 4212
6.6.3.3.2 Dialogs... 4217

6.6.3.3.1 Commands
6.6.3.3.1.1 Command 'Settings'.. 4212
6.6.3.3.1.2 Command 'Run Static Analysis'.. 4212
6.6.3.3.1.3 Command 'View Standard-Metrics'.. 4213
6.6.3.3.1.4 Command 'Extract function'.. 4215
6.6.3.3.1.5 Command 'Detect clones'... 4216

Command 'Settings'
Function: The command opens the “Static Analysis Settings” dialog.
Call: Menu bar: “Build è Static Analysis”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.
See also
● Ä Chapter 6.6.3.3.2.2 “Dialog 'Static Analysis Settings' - 'Settings'” on page 4217

Command 'Run Static Analysis'
Symbol:
Function: The command starts the static analysis for the active application and displays the
results in the message view.

Displaying of
metrics

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4212

Call: Menu bar: “Build è Static Analysis”

During the code analysis, CODESYS generates code just like the “Build è Generate Code”
command. The results of the analysis are displayed as errors and warnings in the mes-
sage view (“Build” category). The numbers refer to the corresponding rules as they are defined
in the project settings. The syntax for the displayed messages is “SA<rule number:<rule text>”.
See also
● Ä Chapter 6.6.3.4.2 “Rules” on page 4233

Command 'View Standard-Metrics'
Symbol:
Function: The command starts the static analysis for the active application and displays the
metrics for all POUs in a table.
Call: Menu bar: “Build è View Standard Metrics”

The metrics (code numbers) to be displayed are activated in the project settings. You can
access the configuration by clicking “Configure” in the context menu of the displayed table. If a
value is outside of the configured upper and lower limits, then the field in the table is highlighted
in red.
See also
● Ä Chapter 6.6.3.3.2.5 “Dialog 'Static Analysis Settings' - 'Metrics'” on page 4226

Metric Description
“Code size” Number of bytes

“Variable size” Number of bytes

“Stack size” Number of bytes

“Calls” Number of calls

“Tasks” Number of calls from tasks

“Global” Number of different global variables

“I/Os” Number of direct object accesses

“Local” Number of local variables

“Inputs” Number of input variables

“Outputs” Number of output variables

“NOS” Number of statements

“Comments” Percentage of comments

“McGabe” McGabe complexity

“Prather” Prather complexity of nesting

“DIT” Depth of inheritance tree

“NOC” Number of children

“RFC” Response for class

“Elshof” Elshof complexity of reference

“CBO” Coupling between objects

“LCOM” Lack of cohesion in methods

“n1 (Halstead)” Number of different used Halstead (n1) opera-
tors

Standard Met-
rics

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4213

Metric Description
“N1 (Halstead)” Number of Halstead (N1) operators

“n2 (Halstead)” Number of different used Halstead (n2) oper-
ands

“N2 (Halstead)” Number of operands (N2)

“HL (Halstead)” Halstead length (HL)

“HV (Halstead)” Halstead volume (HV)

“D (Halstead)” Halstead difficulty (D)

“ SFC branches” Number of SFC branches

“SFC steps” Number of SFC steps

The following commands are provided in the context menu of the table:
● “Calculate”: The values are refreshed.
● “Copy Table”: The table is copied to the clipboard. The separators are tabs.
● “Print Table”: The default dialog for setting up a print job opens.
● “Export Table”: The table is exported as a CSV file. The separators are semicolons.
● “Kiviat Diagram”: Requirement: At least three metrics have defined upper and lower limits.

A radar chart is created for the selected POU. This visualizes the quality of POU code with
respect to a given standard.
Each metric is depicted as an axis with its origin at the center (value 0) which radiates
outward into three concentric ring zones. The inner ring zone represents the range of values
below the lower limit defined for the metric. The outer ring represents the range of values
above the upper limit. The axes of the metrics are distributed uniformly around the circle.
The current values of the individual metrics on the axes are connected by a line. In the ideal
case, the complete line is located in the middle zone.

● “Configure”: The table for selecting the desired metrics opens. This corresponds to the table
in the project settings.

● “Open POU”: The POU opens in the editor.

Commands in
the context
menu

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4214

The name of the metric is displayed at the end of the respective axis and the name of the POU
is displayed in the upper right corner of the diagram.

Example of a
Kiviat diagram
for five metrics

See also
● Ä Chapter 6.6.3.3.2.5 “Dialog 'Static Analysis Settings' - 'Metrics'” on page 4226

Command 'Extract function'
Function: The command opens the “Extract Function Configuration” dialog.
The command extracts selected code from the ST editor and creates a new method or function
containing this code. The affected code in the ST editor is replaced by a correct call. When code
is extracted from a function block or the child of a function block, a new method is created from
the code. When code is extracted from a program or a function, a new function is created from
the code.
Call: Context menu: “Refactoring”

Requirements: When the selected code consists of one or more statements:
● The selected code does not contain any compile errors.
● The selected code is located in the implementation part of an ST POU.
● The selected code does not contain any exiting jumps

Examples of exiting jumps include the following:
– Using RETURN to exit the enclosing function
– Using CONTINUE or EXIT to exit a loop enclosing the code

You can undo the changes that the “Extract function” command made in your
project by positioning the cursor in the device tree and clicking “Edit è Undo”.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4215

Table 770: Dialog “Extract Function Configuration”
“Name” Name of the recently created function or method

The default name can be changed.

“Return value” Determines the return value of a function if there are multiple output and/or input/
output parameters

“Parameter” Display of the available POUs
Configuration whether the parameters are used as input, output, or input/output
variables

 : Input variables

 : Output variables

 : Input/Output variables

The changes made for “Name”, “Return value”, or “Parameter” are undone.

Upper code window Recently created code of the call location

Lower code window Recently created code of the function or method

“OK” The displayed code changes are accepted in the ST POUs and the dialog is
closed.

“Cancel” The displayed code changes are rejected and the dialog is closed.

Command 'Detect clones'
Function: The command scans the program code of the open CODESYS project for copied
code, and opens the “Clone detection results” view to display the detected cloned code blocks.
In the process, only code blocks larger than a specific size are considered to be clones. Very
small chunks of code are not displayed as clones.
Call:
● Menu bar: “Build è Static Analysis”
● Context menu: “Static Analysis”

Requirement: The CODESYS project is open.
Two code positions are considered clones if they have the following properties:
● Same structural composition
● Variables have the same data type.
● Variable names may be different (exception: component access). However, an identifier that

is contained multiple times in the code has to be in the same place in both code positions.
● Literals have the same data type.
● Literals may be different. A literal that occurs multiple times in the code has to occur at the

same place in both code positions.

Table 771: View “Clone detection results”
 “Summary” Tab to display the search results

● “Number of found cloned code sequences”
● “Number of statements compared”
● “Number of statements in cloned code”
● “Clone ratio”: Specified as a percentage: “Number of statements in cloned

code” / “Number of statements compared”

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4216

 “Results” The tab displays the code clones in a tree view and provides commands and
filter options.
The first occurrence of a duplicate from the set of duplicates is taken as the root
node. The background color of the child nodes indicates whether the code is dif-
ferent or completely identical. Same colors mean the "same code". The contents
of the tree view are sorted in descending order by the number of statements of
the duplicated code.

Commands and filters on the
“Results” tab

“Subnodes/Clone” Number of subnodes (statements) in the code block
If the number of subnodes is less than 20, then the code clone is not considered.

“Filter on Object” Input field for an “Object”, by which the clone list is filtered

“Show selected clones” Requirement: Two child nodes of the same parent node are selected.
Both programming objects are displayed in the upper part of the view for com-
parison. In the process, the code duplicates are highlighted and differences (for
example, different variable names) are highlighted in a different color.

List of code clones Columns
● “Description”
● “Subnodes/Clone”
● “Object”
● “Position”

Double-clicking a child node opens the corresponding programming object, and
the duplicated code block is selected there.

6.6.3.3.2 Dialogs
6.6.3.3.2.1 General... 4217
6.6.3.3.2.2 Dialog 'Static Analysis Settings' - 'Settings'.................................. 4217
6.6.3.3.2.3 Dialog 'Static Analysis Settings' - 'Rules'...................................... 4218
6.6.3.3.2.4 Dialog 'Static Analysis Settings' - 'Naming Conventions'.............. 4219
6.6.3.3.2.5 Dialog 'Static Analysis Settings' - 'Metrics'................................... 4226
6.6.3.3.2.6 Dialog 'Static Analysis Settings' - 'Forbidden Symbols'................ 4227

General
For the dialogs for the configuration of static code analysis, click “Build è Static Analysis
è Settings”. Requirement: A CODESYS project is open.

Dialog 'Static Analysis Settings' - 'Settings'
Function: In the dialog, you select automatic static analysis, and save or load the project
settings for static analysis as a CSA file.
Call:
● Menu bar: “Project è Project Settings”, “Static Analysis” category, “Open configuration

dialog” link
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4217

“Perform static analysis
automatically”

: CODESYS performs the code check automatically at each code generation
(for example, when the “Build è Generate Code” command is executed or
before a download.

: The code check is not performed automatically, but it can be performed
explicitly by means of the “Build è Static Analysis è Run Static Analysis”
command.

“Load” Opens the “Load Static Analysis Configuration” dialog for selecting the project
settings for the static analysis as a CSA file in the file system. When you click the
“Open” button, the selected CSA file is loaded.

“Save” Opens the “Save Static Analysis Configuration” dialog for saving all project set-
tings in the “Static Analysis” category as a CSA file in the file system.

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Dialog 'Static Analysis Settings' - 'Rules'
Function: In the dialog, you select the rules that are checked during the static analysis of the
source code of a project.
Call:
● Menu bar: “Project è Project Settings”, “Static Analysis” category, “Open configuration

dialog” link
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.
This tab shows a tree structure of all rules that can be checked during static analysis. By
default, every rule is activated, with the exception of SA0016, SA0024, SA0073, SA0101,
SA0105, SA0106, SA0133, SA0134, SA0150, SA0162, and all strict IEC rules.
Each rule has a unique number. When the rule is checked and a violation is detected, the rule
number and an error description are shown in the message view in the “Build” category in the
following format: SA<rule number>, where SA stands for "Static Analysis" (example: "SA003"
for rule 3).

The list of available rules can be extended by specific plug-ins.

Some rules that are activated in the dialog can be deactivated temporarily in the application by applying a
pragma.

When you click the check box, the setting toggles between , , and .
When you activate or deactivate a parent node, all child rules are also activated or deactivated, respectively.

“Filter”: ● Input field for the strings to be searched for
● : Rules are grouped by category.

– “Structured by Importance”: Sorting by “Importance High”, “Importance
Medium”, and “Importance Low”

– “Default”: Default structuring of the rules in CODESYS Static Analysis
● : Rules are displayed as a flat list. By clicking on the corresponding column

header, the list can be sorted by rule number, activation/deactivation, rule-
specific configuration, or importance.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4218

Columns

“Rules” List of rules with rule number

Rule check ● : The rule is not checked.
● : If the result of the check is positive, then an error () for the static

analysis is displayed in the message view.
● : If the result of the check is positive, then a warning () for the static

analysis is displayed in the message view.

“Precompile” Rules which can be checked during precompile are identified by a check mark
 in this column.

An immediate bugfix (Quickfix) is possible for these rules. You can execute an
automatic, immediate error handling directly at the affected code positions.

“Rule specific configuration” For some rules, you can double-click the field to open a rule-specific dialog to
configure the rule.

“Importance”: Importance of the rule:
● 3 red stars: High
● 2 orange stars: Medium
● 1 gray star: Low

See also
● Ä Chapter 6.6.3.4.2 “Rules” on page 4233
● Ä Chapter 6.6.3.4.1 “Pragmas and Attributes” on page 4228
● Ä “Checking for compliance to rules” on page 4210

Dialog 'Static Analysis Settings' - 'Naming Conventions'
Function: In the dialog, you define the prefixes for the data types and scopes of variables,
as well as prefixes for POUs and user-defined data types (DUTs). Static analysis checks com-
pliance with the naming conventions. When a convention is not observed, the static analysis
reports an error message in the “Messages” view.
Call:
● Menu bar: “Project è Project Settings”, “Static Analysis” category, “Open configuration

dialog” link
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

The error messages are displayed in the following format: NC <prefix convention
number> : <message text>. NC stands for "Naming Convention". For example, the error
message " “NC0102: Invalid name...”" means a violation of naming convention 102 for POUs of
type PROGRAM.

You can use the pragma 'naming' to deactivate naming conventions for indi-
vidual identifiers. The identifiers can begin with anything, not necessarily with
the prefix.

“Filter” Input field for strings to be searched for

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4219

Table with the naming conventions

“Names” Nodes and elements for which a prefix can be defined.
The number in parentheses after each element (for example, “PROGRAM
(102)”) is the prefix convention number that is reported in the case of noncompli-
ance with a naming convention.

“Prefix” Input field of the prefix
● Multiple prefixes can be specified by means of comma separation.

Example:
“Prefix for POUs”, PROGRAM (102): prog, PRG_
“Prefix for POUs”, FUNCTION (103): fun, FUN_

● Regular expressions (RegEx) are also possible for prefixes. To do this, an @
has to be prepended.
Example:
The name has to begin with x and may contain one character from the scope
a-dA-D: @x[a-dA-D].

● For variables of type “Alias” and POUs of type “Property”, the prefix can be
defined with the placeholder {datatype}.

“Prefixes for variables” Organizational node for all variables for which a prefix can be defined dependent
on data type or scope.

“Prefixes for POUs” Organizational node for all POU types and method scopes for which a prefix can
be defined

“Prefixes for DUTs” Organizational node for the DUT data types (structure, enumeration, alias, or
union) for which a prefix can be defined

“Prefixes for custom types” Organizational node for special custom types (particularly those from libraries)
You can extend the list with conventions: Click the blank space below it. In the
“Input Assistant” dialog, specify the name of a custom type or select a custom
type.
To delete a convention, select it and press the [Del] key.
Note: These conventions have priority over the prefixes which are defined with
the attribute {attribute 'nameprefix' := '<prefix>'}.

Options

“First character after prefix
should be an upper case letter”

: Static analysis reports an error for a variable when the first character of the
variable name after the defined prefix is not an uppercase letter.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4220

“Combine scope prefix with
data type prefix”

: As its namespace, a variable must have the defined prefix followed by the
defined prefix for its data type.
Example: The following prefixes are defined: g_ for “VAR_GLOBAL”, and r for
the data type “REAL”. The code analysis reports errors for global REAL variables
that do not have the prefix g_r.

: If conventions for the namespace are specified for a variable, then these
conventions are taken into account. As a result, any data type conventions are
ignored.
Example: The following prefixes are defined: g_ for “VAR_GLOBAL”, and r for
the data type “REAL”. The code analysis reports exclusively errors for global
REAL variables that do not have the prefix g_.

“Recursive prefixes for
combinable data types”

: Variables of combined data types have to have compound prefixes that follow
the defined naming conventions.
Example:
ppiVariable : POINTER TO POINTER TO INT;
The prefix p was defined for variables of data type POINTER, and the prefix I
was defined for the data type INT. Static analysis reports errors for all variables
of type POINTER TO POINTER TO INT which do not have the prefix ppi.
refaiVar : REFERENCE TO ARRAY[1..3] OF INT;
The prefix ref was defined for the data type REFERENCE TO, the prefix a for an
array, and the prefix I for the data type INT. Static analysis reports errors for all
variables of type REFERENCE TO ARRAY[1..3] OF INT which do not have
the prefix refai.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4221

The following naming convention corresponds for the most part to the recommendations
described in the "Identifiers" chapter.

Example

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4222

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4223

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4224

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4225

The naming convention (1) refers to the standard POU TON. As a result, declarations of the
special library POU are checked for the prefix "ton_". Click the blank space (2) to insert more
naming conventions.

Example

See also
● Ä “Checking for compliance to defined naming conventions” on page 4211
● Ä Chapter 6.6.3.4.1.4 “Attribute 'naming'” on page 4229
● Ä Chapter 6.6.3.4.1.5 “Attribute 'nameprefix'” on page 4230
● Identifiers
● Data Type Alias
● PROPERTY

Dialog 'Static Analysis Settings' - 'Metrics'
Function: In the dialog, you select the metrics to be displayed for each POU in the “Standard
Metrics” view by means of the “Build è Static Analysis è View Standard Metrics” command.
Call:
● “Open configuration dialog” button in the menu “Project è Project Settings”, “Static

Analysis” category
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4226

ms-its:codesys.chm::/_cds_identifiers.htm
ms-its:codesys.chm::/_cds_datatype_alias.htm
ms-its:codesys.chm::/_cds_obj_property.htm

The “Code size”, “Variable size”, “Stack size”, and “Calls” metrics are reported
only for POUs from libraries which are integrated in the project.

Violations of the upper and lower limits of the activated metrics can be reported
as build errors by means of static analysis rule SA0150.

“Metrics” All selectable metrics are displayed in the column.

“Active” : The metric is displayed for each POU in the “Standard Metrics” view following
the “Build è Static Analysis è View Standard Metrics” command.

: The metric is not displayed in the “Standard Metrics” view following the “Build
è Static Analysis è View Standard Metrics” command.

“ Lower limit” Lower value from which the “Metric” is displayed

“Upper Limit” Upper value to which the “Metric” is displayed

See also
● Ä “Displaying of metrics” on page 4212
● Ä Chapter 6.6.3.4.2.52 “SA0150: Violations of lower or upper limits or the metrics”

on page 4299

Dialog 'Static Analysis Settings' - 'Forbidden Symbols'
Function: In the dialog, you define the keywords and symbols that must not be used in the
project code.
Call:
● “Open configuration dialog” button in the menu “Project è Project Settings”, “Static

Analysis” category
● Menu bar: “Build è Static analysis è Settings”

Requirement:
● The CODESYS Static Analysis package is installed.
● A project is open.

Input line Double-clicking the line opens the line editor for specifying a keyword or symbol.

: The Input Assistant opens for selecting the keyword or symbol.

See also
● Ä “Checking for forbidden symbols” on page 4211

6.6.3.4 Reference, Programming
6.6.3.4.1 Pragmas and Attributes... 4228
6.6.3.4.2 Rules... 4233

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4227

6.6.3.4.1 Pragmas and Attributes
General

CODESYS Static Analysis provides pragmas and attributes for activating or deactivating indi-
vidual rules or naming conventions for static code analysis.
Requirement: The rules or conventions are activated or defined in the project settings.
Attributes are inserted in the declaration part of a POU to deactivate specific rules for an entire
programming object.
Pragmas are used in the implementation part of a POU to deactivate specific rules for individual
lines of code. One exception is Rule 164, which can also be switched off in the declaration part.

Rules that are deactivated in the project settings cannot be activated by means
of pragmas or attributes.

Rule SA0004 cannot be deactivated by means of a pragma or an attribute.

See also
● Ä Chapter 6.6.3.4 “Reference, Programming” on page 4227

Pragma 'analysis'
This pragma is used to deactivate the code rules for individual code lines of a POU. You
deactivate code rules by specifying the rule numbers with a prepended minus sign ("-"). A
prepended plus sign ("+") activates the rule. You can specify any number of rules in the pragma.
Insert location: Deactivation: In the implementation part, with {analysis - ...} before the
first code line where the code analysis is deactivated. Activation: With {analysis + ...}
after the last line of the deactivation. For Rule 164, the pragma can also be inserted in the
declaration part before a comment.
Syntax:
Deactivation of rules:

{analysis -<rule number> (, -<additional rule number>)* }
* : optional none, one or more additional rule numbers
Activation of rules:

{analysis +<rule number> (, +<additional rule number>)* }
* : none, one or more additional rule numbers

Rule 24 is deactivated for two lines and then reactivated. As a result, rule 24 is not checked in
these lines so that nTest:=DINT#99 is allowed for example.
 {analysis -24}
nTest := 99;
iVar := INT#2;
{analysis +24}

Deactivating multiple rules:

{analysis -10, -24, -18}

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4228

Attribute 'analysis'
The attribute deactivates specific rules for an entire programming object. You deactivate the
code rules by specifying the rule numbers with a prepended minus sign ("-"). You can specify
any number of rules in the attribute.
Insert location: In the declaration part of a POU, in the first line.
Syntax:
{attribute 'analysis' := '-<rule number> (, -<additional rule
number>)* '}
* : none, one or more additional rule numbers

Rules 33 and 31 are deactivated for the entire structure:

{attribute 'analysis' := '-33, -31'}
TYPE My_Structure :
STRUCT
 iLocal : INT;
 uiLocal : UINT;
 udiLocal : UDINT;
END_STRUCT
END_TYPE

Rule 100 is deactivated for the array:

{attribute 'analysis' := '-100'}
PROGRAM PLC_PRG
VAR
 aBigData: ARRAY[1..10000] OF DWORD;
 aBigDATA_2: ARRAY[1..10000] OF DWORD;
END_VAR
;

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Attribute 'naming'
The attribute marks the code lines that are excluded from the analysis of naming convention.
An off is assigned to the pragma attribute before the first code line where the code analysis is
deactivated. An on is assigned after the last line. When an omit is assigned, only the next code
line is ignored.
Insert location: Deactivation: In the declaration part of POUs and DUTs, above the affected
lines. Activation: Below the affected lines.
Syntax:
{attribute 'naming' := '<switch state>'}
<switch state> : on | off | omit
on : naming is switched on
off : naming is switched off
omit : only next code line is switched off

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4229

Defined naming conventions: 1) INT variable names must be prepended with "int" as the
identifier prefix, for example "intVar1". 2) Program names must begin with "prog".
For the code presented below, the static analysis issues messages only for the following
variables: cccVar, aVariable, and bVariable.

VAR
{attribute 'naming' := 'off'}
 iVarA : INT;
 iVarB : INT;
{attribute 'naming' := 'on'}
 iVarC : INT;
END_VAR

VAR
 ...
{attribute 'naming' := 'omit'}
 iVarC : INT;
...
END_VAR

{attribute 'naming' := 'omit'}
PROGRAM PLC_PRG
VAR
...
END_VAR

{attribute 'naming' := 'off'}
PROGRAM DoSomethingA
VAR
{attribute 'naming' := 'on'}
 iVarA : INT;
 iVarB : INT;
 …
VAR_END

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Attribute 'nameprefix'
The attribute defines a prefix for variables of a structured data type. The prefix must be pre-
pended to the identifier of variables that are declared by this type.
Insert location: In the line before the declaration of a structured data type
Syntax:
{attribute 'nameprefix' := '<prefix>'}

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4230

In the following example, Static Analysis issues a message for pB because the variable name
does not begin with "point".

{attribute 'nameprefix' := 'point'}
TYPE DATAPOINT :
STRUCT
 iX: INT;
 iY: INT;
END_STRUCT
END_TYPE

PROGRAM PLC_PRG
VAR
 pointA : DATAPOINT;
 pB : DATAPOINT;
END_VAR
pointA.iX := 1;
pointA.iY := 10;
pB.iX := 2;
pB.iY := 20;

Error message after static analysis: “Invalid variable name 'pB'. Expect prefix 'point'”

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Attribute 'analysis:report-multiple-instance-calls'
The attribute marks a function block for checking for rule 105: Only function blocks with this
attribute are checked whether the function block instances are called more than one time. If rule
105 is deactivated in the project settings, then the attribute does not have any effect.
Insert location: Top line in the declaration part of a function block.
Syntax:
{attribute 'analysis:report-multiple-instance-calls'}

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4231

// {attribute 'analysis:report-multiple-instance-calls'} Deactivated
FUNCTION_BLOCK FB_DoA
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
END_VAR
iA := iA + 1;

{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION_BLOCK FB_DoB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iB : INT;
END_VAR
iB := iB +1;

PROGRAM PLC_PRG
VAR
 fbA : FB_DoA;
 fbB : FB_DoB;
ND_VAR

fbA();
fbB(); // SA0105
fbA();
fbB(); // SA0105

--> SA0105: Instance 'fbB' called more than once

Example

See also
● Ä Chapter 6.6.3.4.2.46 “SA0105: Multiple instance calls” on page 4285
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4232

6.6.3.4.2 Rules
6.6.3.4.2.1 SA0001: Unreachable code... 4234
6.6.3.4.2.2 SA0002: Empty objects.. 4234
6.6.3.4.2.3 SA0003: Empty statements.. 4235
6.6.3.4.2.4 SA0004: Multiple write access on output..................................... 4235
6.6.3.4.2.5 SA0006: Write access from several tasks.................................... 4236
6.6.3.4.2.6 SA0007: Address operator on constants...................................... 4237
6.6.3.4.2.7 SA0008: Check subrange types... 4237
6.6.3.4.2.8 SA0009: Unused return values.. 4238
6.6.3.4.2.9 SA0010: Arrays with only one component................................... 4239
6.6.3.4.2.10 SA0011: Useless declarations.. 4239
6.6.3.4.2.11 SA0012: Variable which could be declared as constants........... 4240
6.6.3.4.2.12 SA0013: Declarations with the same variable name.................. 4240
6.6.3.4.2.13 SA0014: Assignment of instances.. 4241
6.6.3.4.2.14 SA0015: Access to global data via FB_Init................................ 4242
6.6.3.4.2.15 SA0016: Gaps in structures... 4242
6.6.3.4.2.16 SA0017: Non-regular assignments.. 4243
6.6.3.4.2.17 SA0018: Unusual bit access.. 4243
6.6.3.4.2.18 SA0020: Possibly assignment of truncated value to REAL vari-

able... 4244
6.6.3.4.2.19 SA0021: Transporting the address of a temporary variable....... 4245
6.6.3.4.2.20 SA0022: (Possibly) unassigned return value............................. 4245
6.6.3.4.2.21 SA0023: Complex return values... 4246
6.6.3.4.2.22 SA0024: Untyped literals / constants... 4246
6.6.3.4.2.23 SA0025: Unqualified enumeration constants............................. 4247
6.6.3.4.2.24 SA0026: Possible truncated strings... 4247
6.6.3.4.2.25 SA0027: Multiple uses of identifiers... 4248
6.6.3.4.2.26 SA0028: Overlapping memory areas... 4248
6.6.3.4.2.27 SA0029: Notation in code different to declaration...................... 4249
6.6.3.4.2.28 Unused Objects.. 4249
6.6.3.4.2.29 SA0034: Enumerations with incorrect assignment..................... 4252
6.6.3.4.2.30 SA0037: Write access to input variable...................................... 4252
6.6.3.4.2.31 SA0038: Read access to output variable................................... 4253
6.6.3.4.2.32 SA0040: Possible division by zero... 4254
6.6.3.4.2.33 SA0041: Detect possible loop invariant code............................. 4255
6.6.3.4.2.34 SA0042: Usage of different access paths.................................. 4256
6.6.3.4.2.35 SA0043: Use of a global variable in only one POU.................... 4256
6.6.3.4.2.36 SA0044: Declarations with reference to interface...................... 4257
6.6.3.4.2.37 Conversions... 4258
6.6.3.4.2.38 Use of Direct Addresses... 4263
6.6.3.4.2.39 Rules for Operators.. 4265
6.6.3.4.2.40 Rules for Statements.. 4275
6.6.3.4.2.41 SA0095: Assignments in conditions... 4281
6.6.3.4.2.42 SA0100: Variables greater than <n> bytes................................. 4282
6.6.3.4.2.43 SA0101: Names with invalid length.. 4283
6.6.3.4.2.44 SA0102: Access to program/fb variables from the outside........ 4283
6.6.3.4.2.45 SA0103: Concurrent access on not atomic data........................ 4284
6.6.3.4.2.46 SA0105: Multiple instance calls.. 4285
6.6.3.4.2.47 SA0106: Virtual method calls in FB_INIT................................... 4286
6.6.3.4.2.48 SA0107: Missing formal parameters.. 4287
6.6.3.4.2.49 Checking Strict IEC Rules.. 4288

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4233

6.6.3.4.2.50 SA0140: Statements commented out... 4296
6.6.3.4.2.51 Possible Use of Uninitialized Variables...................................... 4296
6.6.3.4.2.52 SA0150: Violations of lower or upper limits or the metrics......... 4299
6.6.3.4.2.53 SA0160: Recursive calls.. 4299
6.6.3.4.2.54 SA0161: Unpacked structure in packed structure...................... 4300
6.6.3.4.2.55 SA0162: Missing comments... 4301
6.6.3.4.2.56 SA0163: Nested comments.. 4302
6.6.3.4.2.57 SA0164: Multiline comments.. 4303
6.6.3.4.2.58 SA0165: Tasks calling other POUs than programs.................... 4303
6.6.3.4.2.59 SA0166: Max. number of input/output/in-out variables.............. 4304
6.6.3.4.2.60 SA0167: Temporary function block instances............................ 4304
6.6.3.4.2.61 SA0168: Unnecessary Assignments ... 4305
6.6.3.4.2.62 SA0169: Ignored outputs.. 4306

SA0001: Unreachable code
Detects lines of code that are not executed, for example due to a RETURN or CONTINUE
statement
Justification: Unreachable code should always be avoided. The test often indicates that test
code still exists which should be removed.
Importance: High
PLCopen rule: CP2

PROGRAM PLC_PRG
VAR
 xReturn_Before_End: BOOL;
 xContinue_In_Loop_FUN: BOOL;
 iCounter: INT;
END_VAR

xContinue_In_Loop_FUN := FALSE;
FOR iCounter := INT#0 TO INT#5 BY INT#1 DO
 CONTINUE;
 xContinue_In_Loop_FUN := FALSE;
END_FOR

--> SA0001: Unreachable code detected in 'PLC_PRG'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0002: Empty objects
Detects POUs, GVLs, data type declarations, or interfaces that do not contain any code
Justification: Empty objects should be avoided. They are often a sign that an object has not
been implemented completely. Exception: In some cases, no code is specified in the body of a
function block when it should be used by interfaces only. In other cases, a method is created
only because it is required by an interface without a sensible implementation being possible for
the method. No matter the case, this kind of situation should be commented.
Importance: Medium
See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4234

SA0003: Empty statements
Detects lines of code that have a semicolon (;) but not a statement

Justification: An empty statement can be a sign for missing code.
Note: There are good reasons for using empty statements. For example, in a CASE statement
it can make sense to explicitly program out all cases, even those where there is nothing to
do. When this kind of empty CASE statement contains a comment, Static Analysis does not
generate an error message.
Importance: Low

CASE value OF
1:DoSomething();
2:;
3:DoSomethingElse();
END_CASE

--> SA0003: Empty statements
CASE value OF
1:DoSomething();
2:; //nothing to do
3:DoSomethingElse();
END_CASE

--> No SA error

Examples

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0004: Multiple write access on output
Detects outputs that are written to more than one location
Justification: The maintainability is degraded when an output is written in different locations in
the code. Then it is uncertain which write access is the one that actually has an effect in the
process. Good practice is to calculate the output variables in auxiliary variables and assign the
calculated value at one location at the end of the cycle.
Importance: High
PLCopen rule: CP12

An error is not issued when an output variable (VAR_IN_OUT) is written in
different branches of IF and CASE statements.

A pragma cannot deactivate this rule.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4235

VAR_GLOBAL
 g_xVar AT %QX0.0 : BOOL ;
 g_iTest AT %QW0 : INT ;
END_VAR

PROGRAM PLC_PRG
IF g_iCondition < INT#0 THEN
 g_xVar := TRUE;
 g_iTest := INT#12;
END_IF

CASE g_iCondition OF
 INT#1:
 g_xVar := FALSE;
 INT#2:
 g_iTest := INT#11;
 ELSE
 g_xVar := TRUE;
 g_iTest := INT#9;
END_CASE

--> SA0004: Multiple write access on output '%QX0.0'
--> SA0004: Multiple write access on output '%QW0'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0006: Write access from several tasks
Detects variables that are written by more than one task
Justification: A variable that is written in multiple tasks may change its value unexpectedly.
This can lead to confusing situations. String variables (and on some 32-bit systems also 64-bit
integer variables) can even reach an inconsistent state if the variable is written to two tasks
simultaneously.
Exception: In specific cases, it may be necessary for several tasks to write a variable. For
example, use semaphores to make sure that access does not lead to an inconsistent state.
Importance: High
PLCopen rule: CP10

VAR_GLOBAL
 g_iTemp1: INT;
END_VAR

PROGRAM PLC_PRG // Controlled by MainTask
g_iTemp1 := g_iTemp1 + INT#2;

PROGRAM PLC_PRG_1 //Controlled by SubTask
g_iTemp1 := g_iTemp1 - INT#3;

--> SA0006: Concurrent write access to 'g_iTemp1' in Tasks
MainTask, SubTask

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4236

SA0007: Address operator on constants
Detects lines of code where the operator ADR is applied for a constant

Justification: Using a pointer to a constant variables overrides the CONSTANT property of the
variable. The variable can be changed by means of the pointer without any notification from the
compiler.
Exception: In rare cases, it might be useful to pass a pointer to a constant to a function.
However, you have to make sure that this function does not change the transferred value.
Whenever possible, use VAR_IN_OUT CONSTANT.

Importance: High

When the “replace constants” option is selected in the “Compiler options” of
the project settings, the address operator is not permitted for scalar constants
(integer, BOOL, REAL) and a complie error is issued. (Constant strings, struc-
tures, and arrays always have an address.)

PROGRAM PLC_PRG
VAR CONSTANT
 c_iValue : INT := INT#15;
END_VAR
VAR
 poiValue : POINTER TO INT;
END_VAR
poiValue := ADR(c_iValue); // SA0007

--> SA0007: Address to constant variable 'c_iValue'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0008: Check subrange types
Detects out-of-range violations of subrange types. Assigned literals are already checked by
the compiler. When constants are assigned, then the values must be within the defined range.
When variables are assigned, then the data types must be identical.
Justification: If subrange types are used, then make sure that this subrange is not exited. The
compiler checks for these kinds of subrange violations only for assignments of constants.
Importance: Low

The check is not performed for CFC objects because the code structure does
not allow for it.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4237

VAR_GLOBAL
 iVarGlob:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 iSubr1: INT (INT#1..INT#10);
 iSubr2: INT (INT#1..INT#1000);
 iCount: INT;
 by_SubType : BYTE (BYTE#0..BYTE#11);
 iVar : INT (-4095..4095);
END_VAR
 iSubr1 := nCount; // SA0008
 iSubr1 := subr2; // SA0008
 iSubr1 := gvl.iVarGlob; // SA0008
 //byBYTE_SubType := BYTE#123; //already detected by compiler,
error "Cannot convert type..."

--> SA0008: Subrange variable 'iSubr1' maybe out of allowed range

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0009: Unused return values
Detects function, method and property calls in which the return value is not used
Justification: When a function or method returns a return value, it should also be evaluated. The
return value often indicates whether or not the function was executed successfully. If not, then
you will not be able to identify later whether the return value was forgotten or if it is actually not
needed.
Exception: If a return value is irrelevant to the call, then you can document this and omit the
assignment. Error returns should never be ignored.
Importance: Medium
PLCopen rule: CP7 / CP17

FUNCTION Return_BOOL : BOOL
VAR_INPUT
END_VAR
VAR
 xTest : BOOL;
END_VAR
xTest := FALSE;
Return_BOOL := xTest;

PROGRAM PLC_PRG

Return_BOOL (); // SA0009

--> SA0009: Ignoring return value of 'Return_Bool'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4238

SA0010: Arrays with only one component
Detects arrays with only one element
Justification: An array with one element can be replaced by a base-type variable. Access to this
variable is considerably faster than access by index to the variable.
Exception: The length of an array is often determined by a constant and is a parameter for a
program. Then the program can work with arrays of different lengths and does not have to be
changed if the length is only 1. This kind of situation should be documented accordingly.
Importance: Low

PROGRAM PLC_PRG
VAR
 aoiEmpty : ARRAY [22..22] OF INT;
 aorEmpty : ARRAY [1..1] OF REAL;
END_VAR

aoiEmpty;
aorEmpty;

--> SA0010: Vacuous array element in variable 'aoiEmpty'
--> SA0010: Vacuous array element in variable 'aorEmpty'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0011: Useless declarations
Detects structures or enumerations with only one component
Justification: This kind of declaration can be confusing for the reader. A structure with only
one element can be replaced by an alias type. An enumeration with only one element can be
replaced by an constant.
PLCopen rule: CP22 / CP24
Importance: Low

TYPE SingleStruct :
STRUCT
 iPart : INT;
END_STRUCT
END_TYPE

TYPE myUnion :
UNION
 lrValue : LREAL;
END_UNION
END_TYPE

TYPE SingleEnum :
(
 OnlyOne := 1
);
END_TYPE

--> Useless declaration 'SingleStruct'
--> Useless declaration 'myUnion'
--> Useless declaration 'SingleEnum'

Example

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4239

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0012: Variable which could be declared as constants
Detects variables that are not accessed with write permission and therefore could be declared
as constants
Justification: If a variable is written only at the declaration point and is otherwise used only
for reading, then the static analysis assumes that the variable should also not to be changed.
Firstly, a declaration as a constant results in checking that the variable is not changed when the
program is changed. Secondly, the declaration as a constant may result in faster code.

NOTICE!
If multiple applications exist in one project, then only the objects below the
currently active application are affected. If there is only one application, then the
objects in the common POU pool are also affected.

Importance: Low

PROGRAM PLC_PRG
VAR
 iVar : INT := INT#17;
 iTest : INT;
END_VAR
iTest := iTest + iVar; // SA0012: iVar could be declared as
constant

--> SA0012: Variable 'iVar' could be declared as constant

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0013: Declarations with the same variable name
Detects variables with names that are already used by other variables (for example, global and
local variables with the same name). Also detects variables with names of functions, actions,
methods, or properties which are used in the same access scope. Variables are also detected
that are declared in a GVL in the “Devices” view or in the POUs pool. For this, however, the
GVL of the “POUs” view have to be used in the application program.
Justification: The same names can be confusing when reading the code, and they can cause
errors if the wrong object is accessed unintentionally. We recommend that you use naming
conventions to avoid these situations.
PLCopen rule: N5 / N9
Importance: Medium

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4240

VAR_GLOBAL
 xVar1 : BOOL;
 iVar3 : INT;
END_VAR

PROGRAM PLC_PRG
VAR
 xVar1 : BOOL; // SA0013
 iVar3 : INT; // SA0013
END_VAR

xVar1 := NOT GVL.xVar1;
iVar3 := iVar3 + INT#2;
iVar3 := GVL.iVar3;

--> SA0013: Declaration of 'iVar1' hides symbol 'GVL.iVar1
--> SA0013: Declaration of 'xVar3' hides symbol 'GVL.xVar3

Example

The function block POU has the action ACT and the method METH.

FUNCTION_BLOCK POU
VAR
 ACT : UINT; // SA0013
 METH : BYTE; // SA0013
END_VAR

--> SA0013: Declaration of 'ACT' hides symbol 'POT.ACT'
--> SA0013: Declaration of 'METH' hides symbol 'POT.METH'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0014: Assignment of instances
Detects assignments to function block instances. In the case of instances with pointer or refer-
ence variables, these assignments are potentially risky.
Justification: This is a performance warning. When an instance is assigned to another instance,
all elements and subelements are copied from the one instance to the other instance. Pointers
to data are also copied, but not their referenced data, so that the target instance and the source
instance contain the same data after the assignment. Depending on the size of the instances,
this kind of assignment could last a long time. For example, if an instance should be passed
to a function for processing, then it is much more efficient to pass a pointer to the instance. If
you want to selectively copy values from one instance to another, then a copy method is useful:
inst_First.Copy_From(inst_Second).

Importance: Medium

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4241

PROGRAM PLC_PRG
VAR
 inst_First : My_FB;
 inst_Second : My_FB;
END_VAR
inst_First();
inst_Second := inst_First; // SA0014

--> SA0014: Assignment of instances

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0015: Access to global data via FB_Init
Detects the access of a function block to global variables by means of the method FB_Init.
The value of this variable depends on the order of initializations.
Justification: Depending on the declaration location of the POU instance, an uninitialized vari-
able could be accessed if the rule is violated.
Importance: High

VAR_GLOBAL
 g_xTest1 : BOOL;
 g_iTest3 : INT;
END_VAR

METHOD PUBLIC fb_init : BOOL
VAR_INPUT
 bInitRetains : BOOL; // If TRUE, the retain variables are
initialized (warm start / cold start)
 bInCopyCode : BOOL; // If TRUE, the instance afterwards gets
moved into the copy code (online change)
END_VAR
g_xTest1 := NOT g_xTest1; // SA0015
g_iTest3 := g_iTest3 + INT#1; // SA0015

--> SA0015: FB_Init method of function block 'POU' accesses global
data

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0016: Gaps in structures
Detects gaps in structures or function blocks that are caused by the alignment requirements
of the currently set target system. If possible, you should remove the gaps by resorting the
structure elements or filling them with a dummy element. If this is not possible, then you can
deactivate the rule for the affected structures by means of the analysis pragma.

Justification: Due to different alignment requirements on different platforms, there may be a dif-
ferent layout in the memory for these kinds of structures. Then the code can perform differently,
depending on the platform.
Importance: Low

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4242

PROGRAM PLC_PRG
VAR
 myStruct : Unpadded_Structure;
END_VAR
myStruct.iTest := 0;

TYPE Unpadded_Structure :
STRUCT
 xTest : BOOL;
 iTest : INT; // SA0016
 byTest : BYTE;
 wTest : WORD;
END_STRUCT
END_TYPE

--> SA0016: Structure 'Unpadded_Structure' must be padded (pack-
mode=8)

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0017: Non-regular assignments
Detects assignments to pointers that are neither addresses (ADR operator, pointer variables) nor
constants 0
Justification: If a pointer contains a value that is not a valid address, then an access violation
exception occurs when dereferencing the pointer.
Importance: High

PROGRAM PLC_PRG
VAR
 pInt : POINTER TO INT;
 dwAddress : DWORD;
END_VAR
dwAddress := dwAddress + DWORD#1;
pInt := dwAddress; // SA0017

--> SA0017: Non-regular assignment

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0018: Unusual bit access
Detects bit access to signed variables. However, the IEC 61131-3 standard permits only bit
access and bit shift operations on bitfields. See also the strict rules SA0147 and SA0148.
Justification: Signed data types should not be used as bitfields and the other way around. The
IEC 61131-3 standard does not provide for this kind of access, and therefore you should comply
with this rule when you write portable code.
Importance: Medium

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4243

Exception for flag enumerations: When an enumeration is declared as a flag by
means of the {attribute 'flags'} pragma attribute, the SA0018 error is
not issued for bit access with the OR, AND or NOT operators.

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 diTemp3 : DINT;
 uliTemp4 : ULINT;
 siTemp5 : SINT;
 usiTemp6 : USINT;
 byTemp2 : BYTE;
END_VAR
iTemp1.3 := TRUE; // SA0018
diTemp3.4 := TRUE; // SA0018
uliTemp4.18 := FALSE; // no error because this is an unsigned data
type
siTemp5.2 := FALSE; // SA0018
usiTemp6.3 := TRUE; // no error because this is an unsigned data
type
byTemp2.5 := FALSE; // no error because the byte is a bitfield

--> SA0018: Unusual bit access

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209
● Ä Chapter 6.6.3.4.2.49.12 “SA0147: Unusual shift operation - strict” on page 4293
● Ä Chapter 6.6.3.4.2.49.13 “SA0148: Unusual bit access - strict” on page 4294

SA0020: Possibly assignment of truncated value to REAL variable
Detects operations on integer variables for which a truncated value could be assigned to a
REAL data type variable

Justification: Static analysis issues an error when the result of an integer calculation is assigned
to a REAL or LREAL variable. The programmer should be alerted to a possible incorrect inter-
pretation of this kind of assignment: lrealvar := dintvar1 * dintvar2. Because the
range of values of LREAL is greater than that of DINT, one could assume that the result
of the calculation could always be represented in LREAL. But that is not the case. The pro-
cessor calculates the result of the multiplication as an integer and then casts the result to
LREAL. An overflow in the integer calculation would be lost. To work around the problem, the
calculation has to be done as a REAL operation: lreal_var := TO_LREAL(dintvar1) *
TO_LREAL(dintvar2).

Importance: High

PROGRAM PLC_PRG
VAR
 rx : LREAL;
 di : DINT;
END_VAR
rx := di * di // SA0020
rx := TO_LREAL(di) * TO_LREAL(di) // No message

--> SA0020: Possibly assignment of truncated value to REAL variable

Example

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4244

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0021: Transporting the address of a temporary variable
Detects address assignments of temporary variables (on the stack) to non-temporary variables
Justification: Local variables of a function or method are created on the stack and they exist only
while the function or method is being processed. If a pointer points to this kind of variable after
processing the method or function, then you can use this pointer to access undefined memory,
or to access an incorrect variable in another function. This situation should be avoided at all
costs.
Importance: High

FUNCTION TempVarInFUNC : DWORD
VAR
 uiTemp : UINT;
END_VAR
TempVarInFUNC := ADR(uiTemp); // SA0021

PROGRAM PLC_PRG
VAR
 dwTest : DWORD;
END_VAR
dwTest := TempVarInFUNC();

--> SA0021: Transporting address of temporary variable to outer
scope symbol

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0022: (Possibly) unassigned return value
Detects all functions and methods that include an execution thread without an assignment to the
return value
Justification: An unassigned return value in a function or method is an indication of missing
code. Even if the return value always has a default value, it is always useful to assign it again
explicitly to avoid confusion.
Importance: Medium

FUNCTION FUN : DINT
VAR_INPUT
 bTest : BOOL;
END_VAR

IF bTest THEN
 RETURN;
END_IF
FUN := 99;

--> SA0022: (Possibly) unassigned return value

Example

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4245

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0023: Complex return values
Determines complex return values that cannot be returned with a simple registry copy of the
processor. This includes structures, arrays, and return values of type STRING (regardless of the
size of the used memory).
Justification: This is a performance warning. If large values are returned as the result of a
function, method, or property, then the processor copies them multiple times when executing the
code. This can lead to runtime problems and should be avoided whenever possible. Perform-
ance can be improved by passing a structured value as VAR_IN_OUT to a function or method
and filling it in the function or method.
Importance: Medium

TYPE LargeStructure :
STRUCT
 a : LINT;
 b : BOOL;
END_STRUCT
END_TYPE

FUNCTION Large_Return_Value_FUNC : LargeStructure // SA0023

--> SA0023: Complex return values

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0024: Untyped literals / constants
Detects untyped literals and constants
Justification: CODESYS assigns types for literals depending on their use. In some cases, this
can cause unexpected problems, which should be resolved better with a typed literal. For
example: dw := ROL(DWORD#1, i)
Importance: Low

PROGRAM PLC_PRG
VAR
 iTemp1 : INT = 10; // SA0024
 diTemp2 : DINT;
 liTemp3 : LINT;
 rTemp4 : REAL;
 lrTemp5 : LREAL;
END_VAR
iTemp1 := iTemp1 + INT#34;
diTemp2 := diTemp2 + 23; // SA0024
liTemp3 := liTemp3 + 124; // SA0024
rTemp4 := rTemp4 + 1.1; // SA0024
lrTemp5 := lrTemp5 + 3.4; // SA0024

--> SA0024: Untyped literal found

Example

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4246

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0025: Unqualified enumeration constants
Detects enumeration constants for which a qualified name does not prepend the enumeration
Justification: Qualified access makes the code more readable and easier to maintain. Without
forcing qualified variable names, an additional enumeration could be inserted when the program
is extended. This enumeration contains a constant with the same name as an existing enumer-
ation (see the example below: "red"). This would result in ambiguous access to this piece of
code. We recommend to always use only enumerations with the {attribute 'qualified-only'}.
Importance: Medium

TYPE COLOR
(red,green,blue);
END_TYPE

PROGRAM PLC_PRG
enumVar : COLOR;

enumVar := COLOR.red; // SA0025
enumVar := red; // SA0025

--> SA0025: Enumeration constant 'red' not qualified

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0026: Possible truncated strings
Detects string assignments and string initializations that do not use sufficient string length
Justification: When strings of different lengths are assigned, a string could be truncated. This
can have unexpected results.
Importance: Medium

PROGRAM PLC_PRG
VAR
 strVar1 : STRING[10];
 strVar2 : STRING[6];
 strVar3 : STRING[6] := 'abcdefghi'; // SA0026
END_VAR

strVar2 := strVar1; // SA0026

--> SA0026: Truncation of string 'abcdefghi'
--> SA0026: Possible truncation of string 'strVar1'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4247

SA0027: Multiple uses of identifiers
Detects multiple uses of a name/identifier for a variable or an object (POU) within the scope of a
project
Justification: Same names can be confusing when reading the code. They can cause errors if
the wrong object is accessed accidentally. Define and follow naming conventions to avoid any
situation like this.
The following cases are detected:
● The name of an enumeration is identical to the name of another enumeration in the applica-

tion or in an integrated library.
● The name of a variable is identical to the name of another object in the application or in an

integrated library.
● The name of a variable is identical to the name of an enumeration constant in an enumera-

tion in the application or in an integrated library.
● The name of an object is identical to the name of another object in the application or in an

integrated library.
Importance: Medium

The Standard library is integrated in the project and provides the TON function.
PROGRAM PLC_PRG
VAR
ton : INT;
END_VAR

--> Variable name 'ton' in 'PLC_PRG' already used for an object in
library 'standard, ...'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0028: Overlapping memory areas
Detects the lines of code where two or more variables reserve the same memory
Justification: When two variables reserve the same memory, the code may behave with unex-
pected results. This situation should be avoided at all costs. If you cannot avoid using a value
in different interpretations (for example, one time as DINT and another time as REAL), then
you should define a UNION. You can also use a pointer to access a value with a different type
without the value being converted.
Importance: High

PROGRAM PLC_PRG
VAR
iVvar1 AT %QB21: INT;
dwVar2 AT %QD5: DWORD;
END_VAR

--> The following variables access the same memory:
--> SA0028: iVar1 AT %QB21
--> SA0028: dwVar2 AT %QD5

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4248

SA0029: Notation in code different to declaration
Detects the code locations where the notation of an identifier is different from the notation in its
declaration
Justification: The IEC 61131-3 standard defines identifiers as not case-sensitive. This means
that a variable declared as "varx" can also be used as "VaRx" in the code. However, this is
confusing and misleading and should be avoided.
Importance: Medium

A POU PLC_PRG and a POU fnc (function) exist in the device tree.
PROGRAM PLC_PRG
VAR
 iVar: INT;
 _123test_var_: INT;
END_VAR

ivar := iVar + 1; // SA0029
_123TEST_var_ := _123test_var_; // SA0029
Fnc(); // SA0029

--> SA0029: Notation in code (ivar) must equal declaration (iVar)
--> SA0029: Notation in code (_123TEST_var_) must equal declaration
(_123test_var_)
--> SA0029: Notation in code (Fnc) must equal declaration (fnc)

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Unused Objects
6.6.3.4.2.28.1 SA0031: Unused signatures.. 4249
6.6.3.4.2.28.2 SA0032: Unused enumeration constants................................ 4250
6.6.3.4.2.28.3 SA0033: Unused variables.. 4250
6.6.3.4.2.28.4 SA0035: Unused input variables... 4251
6.6.3.4.2.28.5 SA0036: Unused output variables... 4251

SA0031: Unused signatures
Detects programs, function blocks, functions, data types, interfaces, methods, properties, and
actions that are not called within the compiled program code
Justification: Unused objects unnecessarily increase the size of the project and can be con-
fusing when reading the code.
Importance: Low
PLCopen rule: CP2

If multiple applications exist in a project, then only the objects below the cur-
rently active applications are affected. If there is only one application, then the
objects in the POU pool are also affected.

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4249

SA0032: Unused enumeration constants
Detects enumeration constants that are not used in the compiled program code
Justification: Unused enumeration constants unnecessarily increase the size of the enumeration
definition and can be confusing when reading the program.
PLCopen rule: CP24
Importance: Low

If multiple applications exist in a project, then only the objects below the cur-
rently active applications are affected. If there is only one application, then the
objects in the common POU pool are also affected.

TYPE My_Enum :
(
 one := 1, two := 2
);
END_TYPEE

--> SA0032: Unused enumeration constant 'one'
--> SA0032: Unused enumeration constant 'two'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0033: Unused variables
Detects variables that are declared but not used within the compiled program code
Justification: Unused variables make a program less readable and maintainable. Unused varia-
bles unnecessarily fill memory and unnecessarily waste runtime during initialization.
Importance: Medium
PLCopen rule: CP22 / CP24

For GVL variables:If multiple applications exist in a project, then only the objects
below the currently active applications are affected. If there is only one applica-
tion, then the objects in the common POU pool are also affected.

PROGRAM PLC_PRG
VAR
 iCounter1 : INT;
 iCounter2 : INT; // SA0035
END_VAR

ICounter1 := 100;

--> SA0035: Unused Variable 'iCounter2'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4250

SA0035: Unused input variables
Detects input variables that are not used by any function block instance
Justification: Unused variables make a program less readable and maintainable. Unused varia-
bles unnecessarily fill memory and unnecessarily waste runtime during initialization.
Importance: Medium
PLCopen rule: CP24

FUNCTION_BLOCK AFB
VAR_INPUT
 iIn1: INT;
 iIn2: INT;
END_VAR
VAR_OUTPUT
 iOut1: INT;
END_VAR

PROGRAM PLC_PRG
VAR
 Fb1: AFB;
END_VAR

Fb1(iIn1 := 99)

--> SA0035: Unused input 'iIn2'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0036: Unused output variables
Detects output variables that are not used by any function block instance
Justification: Unused variables make a program less readable and maintainable. Unused varia-
bles unnecessarily fill memory and unnecessarily waste runtime during initialization.
Importance: Medium
PLCopen rule: CP24

FUNCTION_BLOCK AFB
VAR_INPUT
 iIn1: INT;
 iIn2: INT;
END_VAR
VAR_OUTPUT
 iOut1: INT;
END_VAR

PROGRAM PLC_PRG
VAR
 Fb1: AFB;
END_VAR
Fb1(iIn1 := 99)

--> SA0036: Unused output 'iOut1'

Example

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4251

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0034: Enumerations with incorrect assignment
Detects values that are assigned to an enumeration variable. Only defined enumeration con-
stants of an enumeration variable are permitted to be assigned.
Justification: A variable of the enumeration type should have only the intended values, other-
wise the code that uses this variable may not work correctly. We recommend to always use
enumerations with the {attribute 'strict'}. Then the compiler already checks the cor-
rect use of the enumeration components.
Importance: High

TYPE COLOR :
(
 Red := 0,
 Green,
 Yellow
);
END_TYPE

PROGRAM PLC_PRG
VAR
 eColor1: COLOR;
END_VAR

eColor1 := COLOR.Red;
eColor1 := 1; // SA0034

--> SA0034: Use enumeration value instead of 'INT#1'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0037: Write access to input variable
Detects input variables (VAR_INPUT) that are accessed with write permission within the POU
Justification: According to the IEC 61131-3 standard, an input variable must not be changed
within a POU. This kind of access is also a cause for errors and makes the code poorly
maintainable. This is an indication that a variable is used as both an input variable and an
auxiliary variable. This kind of dual use should be avoided.
Importance: Medium

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4252

VAR_GLOBAL
 g_xGlob AT %QX0.0 : BOOL;
END_VAR

PROGRAM PLC_PRG
VAR_INPUT
 xVarIn1:BOOL;
 xVarIn2:BOOL;
END_VAR
VAR
 iCondition : INT;
END_VAR

iCondition := iCondition + INT#1;
CASE iCondition OF
 INT#1:
 g_xGlob := xVarIn1;
 INT#2:
 g_xGlob := xVarIn2;
ELSE
 g_xGlob := FALSE;
 xVarIn1 := FALSE; // SA0037
END_CASE

--> SA0037: Write access to input variable 'xVarIn1'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0038: Read access to output variable
Detects output variables (VAR_OUTPUT) that are accessed with read permission within the
POU
Justification: According to the IEC 61131-3 standard, it is prohibited to read an output within a
POU. This is an indication that the output is not only used as an output but also as a temporary
variable for intermediate results. This kind of dual use should be avoided.
Importance: Low

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4253

VAR_GLOBAL
 g_xGlob AT %QX0.0 : BOOL ;
 g_iGlob AT %QW1 : INT ;
END_VAR

PROGRAM PLC_PRG
VAR_OUTPUT
 xVarOut1:BOOL;
 xVarOut2:INT;
 xVarOut3:INT;
END_VAR
VAR
 iCondition : INT;
END_VAR

iCondition := iCondition + INT#1;
CASE iCondition OF
 INT#1:
 xVarOut1 := g_xGlob;
 xVarOut2 := g_iGlob;
 INT#2:
 xVarOut3 := xVarOut2; // SA0038
 ELSE
 xVarOut1 := FALSE;
 g_xGlob := xVarOut1; // SA0038
 xVarOut2 := INT#0;
 xVarOut3 := INT#-1;
END_CASE

--> SA0038: Read access to output variable 'xVarOUT2'
--> SA0038: Read access to output variable 'xVarOUT1'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0040: Possible division by zero
Detects code locations where there is possible division by zero
Justification: Division by zero should never occur, and a variable denominator should always be
checked for 0 first.
Importance: High

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4254

VAR_GLOBAL
 g_iVar AT %QW1 : INT ;
END_VAR

PROGRAM PLC_PRG
VAR
 iCounter : INT;
 iSumme:INT;
 iMid:INT;
 iVal1:INT := INT#2;
 iVal2:INT;
 iVal3:INT := INT#3;
 iVal4:INT := INT#4;
 iVal5:INT;
END_VAR

IF iVal2 <> 0 THEN
iVal1 := iVal1/iVal2; // no error
END_IF;
iMid := iSumme / iCounter; // SA0040
iCounter := iCounter + INT#1;
iSumme := g_iVar + iSumme;
IF iMid < INT#100 THEN
 iVal1 := iVal1 / iVal2; // SA0040
END_IF

--> SA0040: Possible division by zero
--> SA0040: Possible division by zero

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0041: Detect possible loop invariant code
Detects assignments in loops that calculate the same value for each loop cycle. These lines of
code could possibly be inserted outside of the loop.
Justification: This is a performance warning. Code that is executed in a loop, but does the same
thing in each loop cycle, can be executed outside of the loop.
Importance: Medium

PROGRAM PLC_PRG
VAR
 iCounter, iVar1, iVar2: INT;
END_VAR

FOR iCounter := 0 TO 10 DO
 iVar1 := 100; // SA0041
 iVar2 := iVar2 + iVar1;
END_FOR

--> SAN0041: Possible loop invariant code 'iVar1 := 100'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4255

SA0042: Usage of different access paths
Detects the usage of different access paths for the same variable
Justification: Different access to the same element decreases the readability and maintainability
of a program. We recommend the consistent usage of {attribute 'qualified-only'} for
libraries, global variable lists, and enumerations. This forces a fully qualified access.
Importance: Low

VAR_GLOBAL
 iTemp:INT;
 instPOU:POU;
END_VAR

FUNCTION_BLOCK POU
VAR
 a:INT;
END_VAR
a := INT#1;

PROGRAM SA0042
VAR
 ptiTemp:POINTER TO INT;
 sTemp:STRING;
END_VAR

ptiTemp := ADR(iTemp);

ptiTemp^:= INT#1;
iTemp:= INT#2; // SA0042 - direct access
on variable
GVL.iTemp := INT#3; // SA0042 - access on
variable via GVL

sTemp := CONCAT('ab', 'cd'); // SA0042 - direct access on
function
sTemp := Standard.CONCAT('ab', 'cd'); // SA0042 - access on
function via Standard

instPOU(); // SA0042 - direct access
on POU instance
GVL.instPOU(); // SA0042 - access via GVL

--> SA0042: Different access paths for 'CONCAT'
--> SA0042: Different access paths for 'Standard.CONCAT'
--> SA0042: Different access paths for 'instPOU'
--> SA0042: Different access paths for 'GVL.instPOU'
--> SA0042: Different access paths for 'iTemp'
--> SA0042: Different access paths for 'GVL.iTemp'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0043: Use of a global variable in only one POU
Detects the use of a global variable in only a single POU
Justification: A global variable that is used in only one location should also only be declared at
this location.
Importance: Medium

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4256

PLCopen rule: CP26

VAR_GLOBAL
 g_xVar AT %QX0.0 : BOOL ;
 g_iTest AT %QW1 : INT ;
 g_wTest AT %QW2 : WORD;
END_VAR

PROGRAM prog1
VAR
 iCondition : INT;
 bTemp :BOOL;
END_VAR
iCondition := iCondition + INT#1;
IF iCondition < INT#0 THEN
 bTemp := g_xVar; // SA0043 - g_xVar only read in this POU
ELSIF iCondition = INT#0 THEN
 bTemp := g_xVar; // SA0043 - g_xVar only read in this POU
ELSE
 bTemp := g_xVar; // SA0043 - g_xVar only read in this POU
 g_wTest := WORD#4; // g_WTest used also in prog2 -> OK
END_IF

PROGRAM prog2
VAR
 iCondition : INT;
END_VAR
iCondition := iCondition + INT#1;

CASE iCondition OF
 INT#1:
 g_iTest := WORD_TO_INT(g_wTest); // SA0043 - g_iTest only
written in this POU
 INT#2:
 g_iTest := INT#2; // SA0043 - g_iTest only
written in this POU
 ELSE
 g_iTest := INT#3; // SA0043 - g_iTest only
written in this POU
END_CASE

--> SA0043: Global variable 'g_xVar' only used in 'prog1'
--> SA0043: Global variable 'g_iTest' only used in 'prog2'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0044: Declarations with reference to interface
Detects declarations with REFERENCE TO interfaces and declarations of VAR_IN_OUT variables
with interfaces (implicitly implemented by means of REFERENCE TO)

Justification: An interface type is always implicitly a reference to an instance of a function block
that implements this interface. A reference to an interface is therefore a reference to a reference
and can result in unwanted behavior.
Importance: High

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4257

ITF is an interface that is defined in the project.
PROGRAM PLC_PRG
VAR
 inst:POU;
 itf_inst1 : ITF;
 itf_ref : REFERENCE TO ITF; // SA0044
END_VAR FUNCTION_BLOCK POU
VAR_INPUT
 inst_itf2 : ITF;
END_VAR
VAR_OUTPUT
 inst_itf3 : ITF;
END_VAR
VAR_IN_OUT
 inst_itf4 : ITF; // SA0044
END_VAR

--> SA0044: Reference to interface 'itf_ref'
--> SA0044: Reference to interface 'itf4_ref'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Conversions
6.6.3.4.2.37.1 SA0019: Implicit pointer conversions...................................... 4258
6.6.3.4.2.37.2 SA0130: Implicit expanding conversions................................. 4259
6.6.3.4.2.37.3 SA0131: Implicit narrowing conversions................................. 4260
6.6.3.4.2.37.4 SA0132: Implicit signed/unsigned conversions....................... 4261
6.6.3.4.2.37.5 SA0133: Explicit narrowing conversions................................. 4261
6.6.3.4.2.37.6 SA0134: Explicit signed/unsigned conversions....................... 4262

SA0019: Implicit pointer conversions
Detects implicitly generated pointer conversions
Justification: In CODESYS, pointers are not strictly typed and they can be assigned to each
other in any way. This is often used and therefore not reported by the compiler. However, it can
also accidentally cause unexpected access. If you assign a POINTER TO BYTE to a POINTER
TO DWORD, then you can unintentionally overwrite memory using the latter pointer. Therefore,
always check this rule and block the message for cases in which you intentionally want to
access a value with a different type.
Implicit data type conversions are reported with a different message.
Importance: High
PLCopen rule: CP25
Exception: BOOL <-> BIT

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4258

PROGRAM PLC_PRG
VAR
 pINT : POINTER TO INT;
 byteVar : BYTE;
END_VAR

pINT := ADR(byteVar);

--> SA0019: Implicit conversion from pointer to 'POINTER TO BYTE'
to pointer to 'POINTER TO INT'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0130: Implicit expanding conversions
Detects implicit conversions from smaller data types to larger data types
Justification: The compiler permits any assignments of different types when the value range of
the source type is completely contained within the value range of the target type. However, the
compiler will build a conversion into the code as late as possible. For an assignment of type
lint := dint * dint, the compiler performs the implicit conversion only after multiplication:
lint := TO_LINT(dint * dint). An overflow is therefore truncated. To prevent this, you
can already convert the elements: lint := TO_LINT(dint) * TO_LINT(dint). There-
fore, it may be useful to report locations where the compiler implements implicit conversions in
order to check whether these are exactly what is intended. Furthermore, explicit conversions
can be used to improve portability to other systems when those systems have more restrictive
type checks.
Importance: Low

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4259

PROGRAM PLC_PRG
VAR
 byTemp : BYTE;
 usiTemp : USINT;
 uiTemp: UINT;
 iTemp : INT;
 udiTemp: UDINT;
 diTemp : DINT;
 uliTemp : ULINT;
 liTemp : LINT;
 lwTemp : LWORD;
 lrTemp : LREAL;
END_VAR

liTemp := iTemp; // SA0130
uliTemp := usiTemp; // SA0130
lwTemp := udiTemp; // SA0130
lrTemp := byTemp; // SA0130
diTemp := uiTemp; // SA0130

byTemp.5 := FALSE; // OK (BIT_BOOL conversion)

--> SA0130: Implicit widening conversion from type 'INT' to type
'LINT'
--> SA0130: Implicit widening conversion from type 'USINT' to type
'ULINT'
--> SA0130: Implicit widening conversion from type 'UDINT' to type
'LWORD'
--> SA0130: Implicit widening conversion from type 'BYTE' to type
'LREAL'
--> SA0130: Implicit widening conversion from type 'UINT' to type
'DINT'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0131: Implicit narrowing conversions
Detects implicit conversions from larger data types to smaller data types
Justification: This message is obsolete now because it is already reported as a warning by the
compiler.
Importance: Low

PROGRAM PLC_PRG
VAR
 rTemp : REAL;
 lrTemp : LREAL;
END_VAR
rTemp := lrTemp; // SA0131

--> SA0131: Implicit narrowing conversion from type 'LREAL' to type
'REAL'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4260

SA0132: Implicit signed/unsigned conversions
Detects implicit conversions from signed data types to unsigned data types or the other way
around.

This message is obsolete now because it is already reported as a warning by
the compiler.

Importance: Low

PROGRAM PLC_PRG
VAR
 byTest :BYTE;
 udiTest: UDINT;
 ulktest: ULINT;
 wTest : WORD;
 lwTest : LWORD;
 siTest : SINT;
 iTest : INT;
 diTest : DINT;
 liTest :LINT;
END_VAR
liTest := ulktest; // SA0132
udiTest:= diTest; // SA0132
siTest := byTest; // SA0132
wTest := iTest; // SA0132
lwTest := siTest; // SA0132

--> SA0132: Implicit signed/unsigned conversion from type 'ULINT'
to type 'LINT'
--> SA0132: Implicit signed/unsigned conversion from type 'DINT' to
type 'UDINT'
--> SA0132: Implicit signed/unsigned conversion from type 'BYTE' to
type 'SINT'
--> SA0132: Implicit signed/unsigned conversion from type 'INT' to
type 'WORD'
--> SA0132: Implicit signed/unsigned conversion from type 'SINT' to
type 'LWORD'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0133: Explicit narrowing conversions
Detects explicit conversions from a larger data type to a smaller data type
Justification: A large number of type conversions may indicate that you have chosen the wrong
data types for variables. For this reason, there are programming guidelines that require an
explicit justification for data type conversions.
Importance: Low

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4261

PROGRAM SA0133
VAR
 siVar:SINT;
 diVar:DINT;
 liVar:LINT;
 byVar:BYTE;
 uiVar:UINT;
 dwVar:DWORD;
 lwVar:LWORD;
 rVar:REAL;
 lrVar:LREAL;
END_VAR
siVar := LINT_TO_SINT(liVar); // SA0133
byVar := DINT_TO_BYTE(diVar); // SA0133
siVar := DWORD_TO_SINT(dwVar); // SA0133
uiVar := LREAL_TO_UINT(lrVar); // SA0133
rVar := LWORD_TO_REAL(lwVar); // SA0133

--> SA0133: Explicit narrowing conversion from type 'LINT' to type
'SINT'
--> SA0133: Explicit narrowing conversion from type 'DINT' to type
'BYTE'
--> SA0133: Explicit narrowing conversion from type 'DWORD' to type
'SINT'
--> SA0133: Explicit narrowing conversion from type 'LREAL' to type
'UINT'
--> SA0133: Explicit narrowing conversion from type 'LWORD' to type
'REAL'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0134: Explicit signed/unsigned conversions
Detects explicit conversions from signed data types to unsigned data types and the other way
around
Justification: Excessive use of type conversions may indicate that you have chosen the wrong
data types for variables. For this reason, there are programming guidelines that require an
explicit justification for data type conversions.
Importance: Low

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4262

PROGRAM PLC_PRG
VAR
 byVar :BYTE;
 udiVar : UDINT;
 uliVar : ULINT;
 lwVar : LWORD;
 wVar : WORD;
 siVar : SINT;
 iVar : INT;
 diVar : DINT;
 liVar : LINT;
END_VAR
liVar := ULINT_TO_LINT(uliVar);
udiVar := DINT_TO_UDINT(diVar);
siVar := BYTE_TO_SINT(byVar);
wVar := INT_TO_WORD(iVar);
lwVar := SINT_TO_LWORD(siVar);

--> SA0134: Explicit signed/unsigned conversion from type 'ULINT'
to type 'LINT'
--> SA0134: Explicit signed/unsigned conversion from type 'DINT' to
type 'UDINT'
--> SA0134: Explicit signed/unsigned conversion from type 'BYTE' to
type 'SINT'
--> SA0134: Explicit signed/unsigned conversion from type 'INT' to
type 'WORD'
--> SA0134: Explicit signed/unsigned conversion from type 'SINT' to
type 'LWORD'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Use of Direct Addresses
6.6.3.4.2.38.1 SA0005: Invalid addresses and data types............................. 4263
6.6.3.4.2.38.2 SA0047: Accesses to direct address....................................... 4264
6.6.3.4.2.38.3 SA0048: AT-declarations on direct addresses......................... 4264

SA0005: Invalid addresses and data types
Detects invalid addresses and data type specifications. Valid size prefixes in addresses: X for
BOOL B for 1-byte data types, W for 2-byte data types, and D for 4-byte data types.

Justification: Variables located on direct addresses should preferably be associated with an
address that corresponds to their data type width. It can be confusing for the reader of the code,
for example, if a DWORD is assigned to a BYTE address.

Importance: Low

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4263

PROGRAM Check_Address_Type_PRG
VAR
 iVar AT %QB0 : INT ; // OK e. g.: %QW0
 xTest AT %QW1 : BOOL ; // OK e. g.: %QX1.0
END_VAR

iVar := iVar + INT#1;
xTest := NOT xTest;

--> SA0005: Invalid address for data type 'iVar'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0047: Accesses to direct address
Detects direct address access in the implementation code
Justification: Symbolic programming is always preferable. A variable has a name that can also
have a meaning. An address cannot indicate what it is used for.
Importance: High
PLCopen rule: N1 / CP1

PROGRAM PLC_PRG
VAR
 xVar : BOOL;
 byVar : BYTE;
END_VAR

xVar := %IX0.0;
%QX0.0 := xVar;
%MX0.1 := xVar;
%MB1 := byVar;

--> Access to direct address '%IX0.0'
--> Access to direct address '%QX0.0'
--> Access to direct address '%MX0.1'
--> Access to direct address '%MB1'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0048: AT-declarations on direct addresses
Detects AT declarations on direct addresses

Justification: The use of direct addresses in the code is problematic because the address
then appears in multiple locations: first in the controller configuration where the assignment
of a physical object to an address is defined, and second in the program where variables
are assigned to these addresses. If the addresses are relocated because the configuration is
changed, then you have to reassign variables to addresses at a completely different location in
the program. This is a cause of error and results in poorer readability and maintainability of the
code. Therefore, it is best to perform all assignments in the I/O mapping of the device editor.
Importance: High

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4264

PLCopen rule: N1 / CP1
Note: We recommend that you use direct addresses ONLY in the “I/O Mapping” tab of the
device editor.

PROGRAM PLC_PRG
VAR
 xVar1 AT %IX0.0 : BOOL;
 byVar1 AT %IB1 : BYTE;
 xVar2 AT %QX0.0 : BOOL;
END_VAR

--> SA0048: Declaration uses direct address '%IX0.0'
--> SA0048: Declaration uses direct address '%IB1
--> SA0048: Declaration uses direct address '%QX0.0'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Rules for Operators
6.6.3.4.2.39.1 SA0051: Comparison operations on BOOL variables............. 4265
6.6.3.4.2.39.2 SA0052: Unusual shift operation... 4266
6.6.3.4.2.39.3 SA0053: Too big bitwise shift.. 4266
6.6.3.4.2.39.4 SA0054: Comparisons of REAL/LREAL for equality /

inequality... 4267
6.6.3.4.2.39.5 SA0055: Unnecessary comparisons of unsigned operands.... 4268
6.6.3.4.2.39.6 SA0056: Constant out of valid range....................................... 4268
6.6.3.4.2.39.7 SA0057: Possible loss of decimal places................................ 4269
6.6.3.4.2.39.8 SA0058: Operations on enumeration variables....................... 4269
6.6.3.4.2.39.9 SA0059: Comparison operations always returning TRUE or

FALSE... 4271
6.6.3.4.2.39.10 SA0060: Zero used as invalid operand................................. 4271
6.6.3.4.2.39.11 SA0061: Unusual operation on pointer.................................. 4271
6.6.3.4.2.39.12 SA0062: Uses of TRUE or FALSE in expressions................ 4272
6.6.3.4.2.39.13 SA0063: Possibly not 16-bit-compatible operations.............. 4272
6.6.3.4.2.39.14 SA0064: Addition of pointer... 4273
6.6.3.4.2.39.15 SA0065: Incorrect pointer addition to base size.................... 4273
6.6.3.4.2.39.16 SA0066: Uses of temporary results....................................... 4274

SA0051: Comparison operations on BOOL variables
Detects comparison operations on variables of type BOOL
Justification: CODESYS permits these kinds of comparison, but they are very unusual and can
be confusing. The IEC 61131-3 standard does not provide for these comparisons. By avoiding
them, you increase the portability of the code to other development systems.
Importance: Medium

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4265

PROGRAM PLC_PRG
VAR
 xBool1, xBool2 : BOOL;
 xResult : BOOL;
END_VAR
xResult := xBool1 > xBool2; // SA0051
xBool1 := NOT xBool1; // OK!
xBool2 := xBool2 XOR xBool1; // OK!

--> SA0051: Comparison operations on BOOL varables

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0052: Unusual shift operation
Detects shift operations (bit shift) on signed variables. In the case of shift operations on bitfield
data types (Byte, DWORD, LWORD, WORD), an error is not reported.

Justification: CODESYS permits shift operations on signed data types. However, these opera-
tions are unusual and can be confusing. The IEC 61131-3 standard does not provide for these
kinds of operations. Therefore, they should be avoided in order to increase the portability of the
code to other development systems.
Importance: Medium

PROGRAM PLC_PRG
VAR
 iTemp : INT;
 dwTemp1 : DWORD;
 byTemp2 : BYTE;
 diTemp3 : DINT;
 siTemp4 : SINT;
 liTemp5 : LINT;
END_VAR

//the following lines each will cause an SA0052:
iTemp := SHL(iTemp, BYTE#2);
diTemp3 := SHR(diTemp3, BYTE#4);
siTemp4 := ROL(siTemp4, BYTE#2);
liTemp5 := ROR(liTemp5, BYTE#2);

//no error SA0052 because DWORD and BYTE are bit field data types:
dwTemp1 := SHL(dwTemp1, BYTE#3);
byTemp2 := SHR(byTemp2, BYTE#1);

---> SA0052: Unusual shift operation

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0053: Too big bitwise shift
Detects whether or not the data type width of the operand has been exceeded in the case of a
bitwise shift (bit shift) of operands

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4266

Justification: If a shift operation exceeds the data type width, then a constant 0 is generated. If a
rotation shift exceeds the data type width, then it is difficult to read. Therefore, the rotation value
should be shortened.
Importance: High

PROGRAM PLC_PRG
VAR
 byTemp1 : BYTE;
 wTemp2 : WORD;
 dwTemp3 : DWORD;
 lwTemp4 : LWORD;
END_VAR
byTemp1 := SHR(byTemp1, BYTE#25);
wTemp2 := SHL(wTemp2, BYTE#45);
dwTemp3 := ROR(dwTemp3, BYTE#78);
lwTemp4 := ROL(lwTemp4, BYTE#111);

--> SA0053: Too big bitwise shift

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0054: Comparisons of REAL/LREAL for equality / inequality
Detects whether or not the comparison operators = (equality) and <> (inequality) compare the
operands of type REAL or LREAL
Justification: REAL/LREAL values are implemented as floating-point numbers according to the
IEEE 754 standard. This standard implies that specific, apparently simple decimal numbers
cannot be represented with precision. As a result, there may be different representations as
LREAL for the same decimal number.

Consider the following lines of code:
lr11 := 1.1;
lr33 := 3.3;
lrVar1 := lr11 + lr11;
lrVar2 := lr33 - lr11;
botest := lrVar1 = lrVar2;
In this case, botest returns FALSE, even if the variables lrVar1 and lrVar2 both return the
monitoring value of 2.2. This is not an error of the compiler, but a property of the floating point
units of all conventional processors. You can avoid this by specifying a minimum value by which
the values may differ: botest := ABS(lrVar1 - lrVar2) < 0.1;
Exception: A comparison with 0.0 is not reported by this analysis. For the 0, there is an exact
representation in the IEEE 754 standard, and therefore the comparison functions normally as
expected. Therefore, for better performance, it makes sense to permit a direct comparison here.
Importance: High
PLCopen rule: CP54

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4267

PROGRAM PLC_PRG
VAR
 rTest1 : REAL;
 rTest2 : REAL;
 lrTest3 : LREAL;
 lrTest4 : LREAL;
 xResult : BOOL;
END_VAR

//the following lines each will cause an SA0054:
xResult := rTest1 = rTest1;
xResult := rTest1 = rTest2;
xResult := rTest1 <> rTest2;
xResult := lrTest3 = lrTest3;
xResult := lrTest3 = lrTest4;
xResult := lrTest3 <> lrTest4;
//the following lines each will not cause an SA0054:
xResult := rTest1 > rTest2;
xResult := lrTest3 < lrTest4;

--> SA0054: Comparisons of REAL/LREAL for equality / inequality

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0055: Unnecessary comparisons of unsigned operands
Detects unnecessary comparisons with unsigned operands. An unsigned data type is never less
than zero. This can be used as a sign check.
Justification: A comparison detected with this check yields a constant result and is an indication
of an error in the code.
Importance: High

PROGRAM PLC_PRG
VAR
 byTest: BYTE;
END_VAR

WHILE byTest >= 0 DO
 byTest := byTest - 1;
END_WHILE;

--> SA0055: Unnecessary comparisons of unsigned operands

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0056: Constant out of valid range
Detects literals (constants) outside of the valid range of the operator
Justification: The message is issued in cases when a value is compared with a constant that is
outside of the range of this value. Then the comparison constantly returns TRUE or FALSE. This
is an indication of a programming error.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4268

Importance: High

PROGRAM PLC_PRG
VAR
 byTestVar: BYTE;
END_VAR

WHILE byTestVar >= 260 DO
 byTestVar := byTestVar + 1;
END_WHILE

--> SA0056: Constant out of valid range

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0057: Possible loss of decimal places
Detects statements with possible loss of decimal places
Justification: A piece of code of the following type (diTemp2 := 1 rTemp1 :=
TO_REAL(diTemp2 / DINT#2)) can cause a misinterpretation. The author or reader of this
line of code can assume that the division would be performed as a REAL operation, and in this
case the result would be REAL#0.5. However, this is not true. It is an integer operation. The
result is cast to REAL and rTemp1 gets the value REAL#0. To avoid this, use a cast to make
sure that the operation is performed as a REAL operation: rTemp1 := TO_REAL(diTemp2) /
REAL#2.

Importance: Medium

PROGRAM PLC_PRG
VAR
 rTemp1 : REAL;
 diTemp2 : DINT;
 liTemp3 : LINT;
END_VAR

diTemp2 := diTemp2 + DINT#11;
rTemp1 := DINT_TO_REAL(diTemp2 / DINT#3); // SA0057
rTemp1 := DINT_TO_REAL(diTemp2) / REAL#3.0;
liTemp3 := liTemp3 + LINT#13;
rTemp1 := LINT_TO_REAL(liTemp3 / LINT#7); // SA0057
rTemp1 := LINT_TO_REAL(liTemp3) / REAL#7.0;

--> SA0057: Possible loss of decimal places

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0058: Operations on enumeration variables
Detects operations on variables of the enumeration data type Assignments are permitted.
Justification: Enumerations should not be used as ordinary integer values. You can also define
an alias data type or use a subrange type.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4269

Importance: Medium
Exception: If an enumeration is tagged with the pragma {attribute 'strict'}, then the
compiler already reports this kind of operation.
If an enumeration is declared as a flag by the pragma {attribute 'flags'}, then an error
is not issued for AND, OR, NOT, or oder XOR operations.

TYPE My_Enum :
(
 red := 1, blue := 2, green := 3, black := 4
);
END_TYPE

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 abc : My_Enum;
END_VAR
iTemp1 := iTemp1 + INT#1;
abc := My_Enum.red; // OK
iTemp1 := My_Enum.black / My_Enum.blue; // SA0058
iTemp1 := My_Enum.green / My_Enum.red; // SA0058

--> SA0058: Operations on enumeration variables

Example

{attribute 'flags'} // declaring the enumeration as a "flag"
TYPE Flags :
(
 Unknown := 16#00000001,
 Stopped := 16#00000002,
 Running := 16#00000004
) DWORD;
END_TYPE

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 abc : Flags;
 batate : BYTE;
 dwFlags : DWORD;
 dwState : DWORD;
END_VAR

// OK for the following
IF (dwFlags AND Flags.Unknown) <> DWORD#0 THEN
 dwState := dwState AND Flags.Unknown;
ELSIF (dwFlags OR Flags.Stopped) <>DWORD#0 THEN
 dwState := dwState OR Flags.Running;
END_IF

Example with a
pragma
{attribute
'flags'}

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4270

SA0059: Comparison operations always returning TRUE or FALSE
Detects comparisons with literals that always have the result TRUE or FALSE, and can already
be processed during at the compile.
Justification: An operation that consistently yields TRUE or FALSE is an indication of a program-
ming error.
Importance: High

PROGRAM PLC_PRG
VAR
 byTemp1 : BYTE;
END_VAR

WHILE byTemp1 <= 255 DO
 byTemp1 := byTemp1 + 1;
END_WHILE;

--> SA0059: Relational operator '<=' always evaluates 'TRUE'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0060: Zero used as invalid operand
Detects operations where an operand with the value "0" causes an invalid or a nonsense
operation
Justification: This kind of expression could be an indication of a programming error. In any case,
it unnecessarily wastes runtime.
Importance: Medium

PROGRAM PLC_PRG
VAR
 byTemp1 : BYTE;
 wTemp2 : WORD;
 dwTemp3 : DWORD;
END_VAR

byTemp1 := byTemp1 + 0;
wTemp2 := wTemp2 - WORD#0;
dwTemp3 := dwTemp3 * DWORD#0;

--> SA0060: Zero used as invalid operand

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0061: Unusual operation on pointer
Detects operations one variables of type POINTER TO which are not = (equality), <>
(inequality), + (addition), or ADR.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4271

In CODESYS, pointer arithmetic is generally permitted and can also be used appropriately.
Therefore, the addition of a pointer with an integer value is considered a common operation on
pointers. This makes it possible to use a pointer to process an array of variable length. All other
(unusual) operations with pointers are reported with SA0061.
Importance: High
PLCopen rule: E2 / E3

PROGRAM PLC_PRG
VAR
 piTemp : POINTER TO INT;
 iTemp : INT;
END_VAR

iTemp := iTemp + INT#1;
piTemp := ADR(iTemp);
piTemp := piTemp * DWORD#5; // SA0061
piTemp := piTemp / DWORD#2; // SA0061
piTemp := piTemp MOD DWORD#3; // SA0061
piTemp := piTemp + DWORD#1;
piTemp := piTemp - DWORD#1; // SA0061

--> SA0061: Unusual operation on pointer

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0062: Uses of TRUE or FALSE in expressions
Detects the use of the literals TRUE or FALSE in expressions

Justification: This kind of expression is obviously unnecessary and may indicate an error. In any
case, the expression unnecessarily affects the runtime.
Importance: Medium

PROGRAM PLC_PRG
VAR
 xTemp1, xTemp2 : BOOL;
END_VAR
xTemp1 := xTemp1 AND NOT TRUE;
xTemp2 := xTemp1 OR TRUE;
xTemp2 := xTemp1 OR NOT FALSE;
xTemp2 := xTemp1 AND FALSE;

--> Uses of TRUE or FALSE in expressions

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0063: Possibly not 16-bit-compatible operations
Detects 16-bit operations with temporary results. Background: On 16-bit systems, 32-bit tempo-
rary results can be truncated. Example: (int+10) can exceed 16 bits.

Justification: In the very rare case that you have to write code which should run on a 16-bit
processor as well as on a 32-bit processor, this message should help to prevent any problems.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4272

Importance: Low

PROGRAM PLC_PRG
VAR
 iVar : INT;
END_VAR
iVar := (iVar + 10) / 2;

--> SA0063: Compatibility for 16 Bit - Possible truncated
intermediate result

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0064: Addition of pointer
Detects the addition of pointers
Justification: In CODESYS, pointer arithmetic is generally permitted and can also be used
appropriately. However, it is also a source of errors. Therefore, programming rules exist that
generally prohibit pointer arithmetic. This test can check such a requirement.
Importance: Medium

PROGRAM PLC_PRG
VAR
 iTest:INT;
 ariTest:ARRAY[0..10] OF INT;
 {attribute 'analysis':='-111'}
 piTest:POINTER TO INT;
 i:INT;
END_VAR

piTest := ADR(ariTest[0]); // OK
piTest^:= 0;
piTest := ADR(ariTest) + SIZEOF(INT); // SA0064
piTest^:= 1;
piTest := ADR(ariTest) + 6; // SA0064
piTest^:= 3;
piTest := ADR(ariTest[10]);
FOR i:=0 TO 10 DO
 piTest^ := i;
 piTest := piTest + 2; // SA0064
END_FOR

--> SA0064: Addition of pointer

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0065: Incorrect pointer addition to base size
Detects pointer additions for which the value to be added does not match the base size of the
pointer. Only literals of the base size can be added. Also multiplication products of the base size
cannot be added.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4273

Justification: In CODESYS (in contrast to C and C++), when adding a pointer with an integer
value, only this integer value is added as the number of bytes, and not the integer value
multiplied by the base size. Example in ST:
pINT := ADR(array_of_int[0])
pINT := pINT + 2 ; // In CODESYS, pINT then points to
array_of_int[1]
This code would function differently in C:
short* pShort
pShort = &(array_of_short[0])
pShort = pShort + 2; // In C, pShort then points to array_of_short[2]
Therefore, in CODESYS, you should always add a multiple of the base size of the pointer to
a pointer. Otherwise, the pointer may point to non-aligned memory which (depending on the
processor) can lead to an alignment exception when accessing it.
Importance: High

VAR
 pudiTest:POINTER TO UDINT;
 udiTest:UDINT;
 prTest:POINTER TO REAL;
 rTest:REAL;
END_VAR

pudiTest := ADR(udiTest) + 4; // OK
pudiTest := ADR(udiTest) + (2 + 2); // OK
pudiTest := ADR(udiTest) + SIZEOF(UDINT); // OK
pudiTest := ADR(udiTest) + 3; // SA0065
pudiTest := ADR(udiTest) + 2*SIZEOF(UDINT); // SA0065
pudiTest := ADR(udiTest) + (3 + 2); // SA0065
prTest := ADR(rTest);
prTest := prTest + 4; // OK
prTest := prTest + (2 + 2); // OK
prTest := prTest + SIZEOF(REAL); // OK
prTest := prTest + 1; // SA0065
prTest := prTest + 2; // SA0065
prTest := prTest + 3; // SA0065
prTest := prTest + (SIZEOF(REAL) - 1); // SA0065
prTest := prTest + (1 + 4); // SA0065

--> SA0065: Incorrect pointer addition to base size

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0066: Uses of temporary results
Detects the use of temporary results in statements with a data type that is less than the registry
size. The implicit cast in this case may lead to unwanted results.
Justification: For performance reasons, CODESYS performs operations on the register width
of the processor. Intermediate results are not truncated. This can lead to misinterpretations
as in the following case: usintTest := 0; xError := usintTest - 1 <> 255;. In
CODESYS, xError is TRUE in this case because the operation usintTest - 1 is typically
executed as a 32-bit operation and the result is not cast to the byte size. Then the value
16#ffffffff (not equal to 255) is located in the registry. To avoid this, you have to cast the
intermediate result explicitly: xError := TO_USINT(usintTest - 1) <> 255;

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4274

NOTICE!
If this message is activated, then many less problematic locations in the code
will be reported. Although a problem can only occur when the operation pro-
duces an overflow or underflow in the data type, the static analysis cannot
differentiate between the individual locations.
If you include an explicit typecast in all reported locations, then the code will be
much slower and less readable.

Importance: Low

PROGRAM PLC_PRG
VAR
 byTest:BYTE;
 liTest:LINT;
 xError:BOOL;
END_VAR

//type size smaller than register size;
byTest := 0;
IF (byTest - 1) <> 255 THEN //use of temporary result + implicit
casting -> SA0066
 xError := TRUE;
ELSE
 xError := FALSE;
END_IF

//type size equal to or bigger than register size;
liTest := 0;
IF (liTest - 1) <> -1 THEN // use of temporary result and no
implicit casting -> OK
 xError := TRUE;
ELSE
 xError := FALSE;
END_IF

--> SA0066: Use of temporary result: (byTest - USINT #1)

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Rules for Statements
6.6.3.4.2.40.1 SA0072: Invalid uses of counter variable................................ 4276
6.6.3.4.2.40.2 SA0073: Uses of inadequate counter variable........................ 4276
6.6.3.4.2.40.3 SA0080: Loop index variable for array index exeeds array

range... 4276
6.6.3.4.2.40.4 SA0081: Upper border is not a constant................................. 4277
6.6.3.4.2.40.5 SA0075: Missing ELSE... 4278
6.6.3.4.2.40.6 SA0076: Missing enumeration constant.................................. 4279
6.6.3.4.2.40.7 SA0077: Type mismatches with CASE expression................. 4280
6.6.3.4.2.40.8 SA0078: Missing CASE branches... 4280
6.6.3.4.2.40.9 SA0090: Return statement before end of function.................. 4281

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4275

SA0072: Invalid uses of counter variable
Detects the use of a counter variable in a FOR loop

Justification: Manipulation of the counter variable in a FOR loop can easily result in an infinite
loop. To prevent the execution of the loop for specific values of the counter variable, use
CONTINUE or simply an IF.

Importance: High
PLCopen rule: L12

PROGRAM PLC_PRG
VAR_TEMP
 iIndex : INT;
END_VAR
FOR iIndex := INT#0 TO INT#20 BY INT#1 DO
 iIndex := iIndex - INT#1;
END_FOR

--> SA0072: Invalid use of counter variable 'iIndex'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0073: Uses of inadequate counter variable
Detects the use of non-temporary variables in FOR loops.

Justification: This is a performance warning. A counter variable is always initialized each time a
POU is called. You can create this variable as a temporary variable (VAR_TEMP). Access to it
may be faster and the variable does not take up any permanent memory.
Importance: Medium
PLCopen rule: CP21 / L13

PROGRAM PLC_PRG
VAR
 nIndex : INT;
 iVar : INT;
END_VAR
FOR nIndex := INT#0 TO INT#20 BY INT#1 DO
 iVar := iVar + nIndex;
END_FOR

--> SA0073: Inadequate counter variable

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0080: Loop index variable for array index exeeds array range
Detects the FOR statements where the index variable is used to access an array index and
exceeds the range of the array index

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4276

Justification: Arrays are typically processed in FOR loops. The start and end value of the counter
variable should typically match (or at least not exceed) the upper and lower bounds of the array.
A typical cause of error is detected here when array bounds are changed and constants are not
carefully used; or when a different value is used accidentally in the FOR loop than in the array
declaration.
Importance: High

PROGRAM PLC_PRG
VAR
 iIndex1,iIndex2,iIndex3 : INT;
 arWord : ARRAY[1..100] OF WORD;
 arararINT : ARRAY[1..9,1..9,1..9] OF INT;
 arUSINT : ARRAY[0..99] OF USINT;
END_VAR

//1 violation of the rule(lower range is exeeded): SA0080
FOR iIndex1 := INT#0 TO INT#100 DO
 arWord[iIndex1] := INT_TO_WORD(iIndex1);
END_FOR

//6 violations (lower and upper range is exceeded for each array
dimension): 3SA0080
FOR iIndex2 := INT#0 TO INT#10 DO
 arararINT[iIndex2, iIndex2, iIndex2] := iIndex2;
END_FOR

//1 violation (upper range is exceeded by the end result of the
index), previous expressions on index are not evaluated -> OK
FOR iIndex3 := INT#0 TO INT#50 DO
 arUSINT[iIndex3 * INT#2] := INT_TO_USINT(iIndex3);
END_FOR

--> SA0080: Loop index range of 'Index1' exceeds array range
--> SA0080: Loop index range of 'Index2' exceeds array range

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0081: Upper border is not a constant
Detects the FOR statements where the upper bound is not defined with a constant value
Justification: If the upper bound of a loop is a variable value, then it is no longer possible to see
how often a loop is executed. This can result in serious problems at runtime. The worst case is
an infinite loop.
Importance: High

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4277

PROGRAM PLC_PRG
VAR
 i:INT;
 iBorder1: INT := 10;
 iBorder2: INT := 10;
 iCounter: INT;
END_VAR
VAR CONSTANT
 ciBorder:INT := 10;
END_VAR

FOR i:=0 TO 10 DO //OK
 iCounter := i;
END_FOR

FOR i:=0 TO ciBorder DO // OK
 iCounter := i;
END_FOR

FOR i:=0 TO iBorder1 DO // SA0081
 iCounter := i;
END_FOR

FOR i:=0 TO iBorder2 DO // SA0081
 iCounter := i;
 IF iCounter = 10 THEN
 iBorder2 := 50;
 END_IF
END_FOR

--> SA0081: Upper border of a for loop must be a constant value

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0075: Missing ELSE
Detects CASE statements without an ELSE branch

Justification: Defensive programming requires the inclusion of an ELSE branch in every CASE
statement. If there is nothing to do in the ELSE branch, then include a comment to indicate this.
It is then clear to the reader of the code that the case was not simply forgotten.
Importance: Low
PLCopen rule: L17

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4278

PROGRAM PLC_PRG
VAR
 iVar : INT;
 xTemp : BOOL;
END_VAR

iVar := iVar + INT#1;
CASE iVar OF
 INT#1:
 xTemp := FALSE;
 INT#2:
 xTemp := TRUE;
END_CASE

--> SA0075: Missing ELSE in CASE statement

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0076: Missing enumeration constant
Detects whether or not an enumeration variable is used as a condition and not all enumeration
values are treated as CASE branches

Justification: Defensive programming requires the processing of all possible values of an enu-
meration. If an action is not required for a particular enumeration value, then you should add a
comment to indicate this explicitly. It is then clear to the reader of the code that the value was
not simply forgotten.
Importance: Low

TYPE My_Enum :
(
 red := 1, blue := 2, green := 3, black := 4
);
END_TYPE

PROGRAM PLC_PRG
VAR
 iVar : My_Enum;
 xTemp : BOOL;
END_VAR
iVar := My_Enum.black;

CASE iVar OF
 My_Enum.red:
 xTemp := FALSE;
 My_Enum.blue, My_Enum.green:
 xTemp := TRUE;
 ELSE
 xTemp := NOT xTemp;
END_CASE

--> SA0076: Missing enumeration constant 'black' in CASE statement

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4279

SA0077: Type mismatches with CASE expression
Detects code locations where the data type of a condition does not match that of the CASE
branch
Justification: If the data types between the CASE variable and the CASE itself do not match, then
this could indicate an error.
Importance: Low

TYPE My_Enum :
(
 eins := 1, zwei := 2, drei := 3, vier := 4
);
END_TYPE

PROGRAM PLC_PRG
VAR
 diVar : DINT;
 xTemp : BOOL;
END_VAR
diVar := diVar + DINT#1;
CASE diVar OF
 DINT#1:
 xTemp := FALSE;
 My_Enum.zwei, DINT#3: //SA0077
 xTemp := TRUE;
 ELSE
 xTemp := NOT xTemp;
END_CASE

--> SA0077: Type mismatches with CASE expression

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0078: Missing CASE branches
Detects CASE statements without CASE branches and only one ELSE statement

Justification: A CASE statement without cases wastes execution time and it is difficult to read.

Importance: Medium

PROGRAM PLC_PRG
VAR
 iVar : INT;
 xTemp : BOOL;
END_VAR

iVar := iVar + INT#1;
//in the following the case descriptions are missing:
CASE iVar OF
 ELSE
 xTemp := NOT xTemp;
END_CASE

--> SA0078: CASE-Missing CASE branches

Example

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4280

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0090: Return statement before end of function
Detects whether or not the RETURN statement is not the last statement in a function, method,
property, or program.
Justification: A RETURN in the code results in worse maintainability, testability, and readability of
the code. A RETURN in the code is easily overlooked. Before each RETURN, it is often forgotten
to insert code that should always be executed when exiting a function.
Importance: Medium
PLCopen rule: CP14

FUNCTION FUN : DINT
VAR_INPUT
 bTest : BOOL;
END_VAR

IF bTest THEN
 RETURN;
END_IF
FUN := 99;

--> SA0090: Return statement before end of function

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0095: Assignments in conditions
Detects assignments in conditions of IF, CASE, or REPEAT constructs

Justification: An assignment (:=) and a comparison (=) can easily be mistaken. As a result, an
assignment in a condition can easily be unintentional, and it is therefore reported. This can also
confuse the reader of the code.
Importance: High

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4281

PROGRAM PLC_PRG
VAR
 iCond1:INT := INT#1;
 iCond2:INT := INT#2;
 xCond:BOOL := FALSE;
 iVar : INT;
END_VAR

IF INT_TO_BOOL(iCond1 := iCond2) THEN // SA0095
 iCond1 := INT#1;
 iCond2 := INT#2;
ELSIF (iCond1 := 11) = 11 THEN // SA0095
 iCond1 := INT#1;
 iCond2 := INT#2;
END_IF

IF xCond := TRUE THEN // SA0095
 xCond := FALSE;
END_IF

IF (xCond := FALSE) OR (iCond1 := iCond2) = 12 THEN // SA0095
 xCond := FALSE;
 iCond1 := INT#1;
 iCond2 := INT#2;
END_IF

IF (iVar := iVar + 1) = 120 THEN //
SA0095 (can be valid, but is not reparable very well
iVar := 0;
END_IF

WHILE (xCond = TRUE) OR (iCond1 := iCond2) = 12 DO // SA0095
 xCond := FALSE;
END_WHILE

//Error: assignment in repeat loop
REPEAT
 xCond := FALSE;
UNTIL
 (xCond = TRUE) OR (iCond1 := iCond2) = 12 //
SA0095
END_REPEAT

--> SA0095: Assignment in condition: '...'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0100: Variables greater than <n> bytes...
Detects variables that use more than n bytes, where n is defined by the current configuration.
Default value: 1024 bytes. The value can be changed by double-clicking the line.
Justification: Some programming guidelines specify a maximum size for a single variable. This
can be checked with this.
Importance: Low

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4282

PROGRAM PLC_PRG
VAR
 aobyTest : ARRAY [0..1024] OF BYTE;
END_VAR

aobyTest[INT#0] := aobyTest[INT#0] + BYTE#1;

--> SA0100: Variable 'aobyTest' greater 1024 bytes

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0101: Names with invalid length
Detects names with invalid lengths. In the “Project Settings”, double-click the rule entry to open
a dialog where you can define the length of the name and define any exception.
Justification: Some programming guidelines specify a minimum length for variable names. This
analysis can be used to check compliance.
Importance: Low
PLCopen rule: N6

PROGRAM PLC1 // SA0101
VAR
 iVar1: INT; // SA0101
END_VAR

--> SA0101: Incorrect length of name 'PLC1'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0102: Access to program/fb variables from the outside
Detects external access to local variables of programs or function blocks
Justification: CODESYS permits external read access to local variables of programs or function
blocks. This contradicts the principle of data encapsulation (hiding data) and does not comply
with the IEC 61131-3 standard.
Importance: Medium

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4283

PROGRAM PLC_PRG
VAR
 iCounter : INT;
 afb_Instance : AFB;
 bfb_Instance : BFB;
END_VAR
iCounter := A_PRG.iLocal; // SA0102
iCounter := bfb_Instance.iLocal; // SA0102
A_PRG();

FUNCTION_BLOCK AFB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iLocal: INT;
END_VAR
METHOD METH : INT
VAR_INPUT
END_VAR
iLocal := iLocal + 1;

FUNCTION_BLOCK BFB EXTENDS AFB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
END_VAR
METHOD METH : INT
VAR_INPUT
END_VAR
iLocal := iLocal + 1;

PROGRAM A_PRG
VAR
 iLocal: INT;
END_VAR
iLocal := iLocal + 1;

--> SA0102: Access to program/fb variable 'iLocal' from the outside

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0103: Concurrent access on not atomic data
Detects whether or not non-atomic variables (for example, with data type STRING, WSTRING,
ARRAY, STRUCT, FB instances, 64-bit data types) are used in more than one task

Justification: When there is no synchronization during access, inconsistent values can be read
when reading in one task and writing in another task at the same time.
Importance: Medium

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4284

For some data types, especially 64-bit integers, it depends on the platform
whether or not access is atomic. Static analysis reports a problem only when
the controller does not support atomic access to 64-bit integer data types.

This rule does not apply in the following cases:
● If the target system has a floating point unit (FPU), then access of multiple tasks to LREAL

variables is not detected
● If the target system is a 64-bit processor or the corresponding target setting is set for the

target device, then the rule does not apply to 64-bit data types

The project contains both programs, PRG1 and PRG2: The program PRG1 is called by the task
MainTask_1. The program PRG2 is called by the task MainTask_2.
GVL
VAR_GLOBAL
 lrTest : LREAL; // Since the target system has an FPU, SA0103
does apply.
 lint1 : LINT;
 sTest : STRING; // SA0103
 wsTest : WSTRING; // SA0103
END_VAR

PROGRAM PRG1
GVL.lrTest := 5.0;
GVL.sTest := 'welt';
GVL.wsTest := "welt";
GVL.lint1 := 99;

PROGRAM PRG2
GVL.lrTest := 5.0;
GVL.sTest := 'hallo';
GVL.wsTest := "hallo";
GVL.lint1 := 88;

--> SA0103: Concurrent access on not atomic data 'sTest'
--> SA0103: Concurrent access on not atomic data 'wsTest'

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

SA0105: Multiple instance calls
Detects the instances of function blocks that are called multiple times. To do this, the function
blocks haves to be marked with the pragma {attribute 'analysis:report-multiple-
instance-calls'}.

Justification: Some function blocks are designed in such as way that they can be called only
one time in the cycle. This test checks whether or not a call is made in multiple locations.
Importance: Low
PLCopen rule: CP16 / CP20

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4285

// {attribute 'analysis:report-multiple-instance-calls'} Deactivated
FUNCTION_BLOCK FB_DoA
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iA : INT;
END_VAR
iA := iA + 1;

{attribute 'analysis:report-multiple-instance-calls'}
FUNCTION_BLOCK FB_DoB
VAR_INPUT
END_VAR
VAR_OUTPUT
END_VAR
VAR
 iB : INT;
END_VAR
iB := iB +1;

PROGRAM PLC_PRG
VAR
 fbA : FB_DoA;
 fbB : FB_DoB;
ND_VAR

fbA();
fbB(); // SA0105
fbA();
fbB(); // SA0105

--> SA0105: Instance 'fbB' called more than once

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0106: Virtual method calls in FB_INIT
Detects method calls in the FB_Init method of a base function block, which are overwritten by
a function block derived from a base function block
Justification: In these cases, it could be that the variables in the overwritten methods are not
initialized in the base FB.
Importance: High

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4286

The function block FB_A includes the methods FB_Init and Meth_MyInit. FB_Init calls
Meth_MyInit for initialization. The function block FB_B is derived from FB_A. PLC_PRG
calls FB_B and therefore uses its mbMyDintB variable before it has been initialized.
FB_B.Meth_MyInit overwrites FB_A.Meth_MyInit.
FUNCTION_BLOCK FB_A
VAR
 mbMyDintA : DINT;
END_VAR FUNCTION_BLOCK FB_B EXTENDS FB_A
VAR
 mbMyDintB : DINT;
END_VAR METHOD FB_Init : BOOL
VAR_INPUT
 bInitRetains:BOOL;
 bInCopyCode:BOOL;
END_VAR
VAR
 diDummy:DINT; // SA0106
END_VAR
mbMyDintA := 123;
diDummy := Meth_MyInit(); METHOD Meth_MyInit : DINT
VAR_INPUT
END_VAR
mbMyDintB := 123; // access to member of FB_B PROGRAM PLC_PRG
VAR
 g_BInst : FB_B;
 xVar : BOOL;
END_VAR
xVar := g_BInst.fb_init(TRUE, TRUE);
//this instruction causes the following order of initializations:
//FB_A.fb_init
//FB_B.Meth_MyInit // SA0106
//FB_B.fb_init
//FB_B.Meth_MyInit

--> SA0106: Virtual method call 'Meth_MyInit' in FB_INIT

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0107: Missing formal parameters
Detects whether or not formal parameters are missing
Justification: Code becomes more readable when formal parameters are specified in the call.
Importance: Low

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4287

FUNCTION FUNA : BOOL
VAR_INPUT
 bDo: BOOL;
 bInit: BOOL;
 bManual : BOOL;
END_VAR
VAR
 iInit: INT;
 iLocal: INT;
 iManual: INT;
END_VAR

IF bInit = TRUE THEN
 iInit := iInit + 1;
END_IF
IF bDo = TRUE THEN
 iLocal := iLocal + 1;
END_IF
IF bManual = TRUE THEN
 iManual:= iManual + 1;
END_IF
FUNA := TRUE;

PROGRAM PLC_PRG
VAR
END_VAR

FUNA(bInit := TRUE, bDo := TRUE, bManual := FALSE); // OK
FUNA(TRUE, TRUE, bManual:= FALSE); // SA0107

--> SA0107: Missing formal parameter for input 'TRUE'

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

Checking Strict IEC Rules
6.6.3.4.2.49.1 SA0111: Pointer variables... 4289
6.6.3.4.2.49.2 SA0112: Reference variables.. 4289
6.6.3.4.2.49.3 SA0113: Variables with data type WSTRING.......................... 4289
6.6.3.4.2.49.4 SA0114: Variables with data type LTIME................................. 4290
6.6.3.4.2.49.5 SA0115: Variables with data type UNION............................... 4290
6.6.3.4.2.49.6 SA0117: Variables with data type BIT..................................... 4290
6.6.3.4.2.49.7 SA0119:Object-oriented features.. 4291
6.6.3.4.2.49.8 SA0120: Program calls.. 4291
6.6.3.4.2.49.9 SA0121: Missing VAR_EXTERNAL declarations.................... 4292
6.6.3.4.2.49.10 SA0122: Array index defined as expression......................... 4293
6.6.3.4.2.49.11 SA0123: Usages of INI, ADR or BITADR.............................. 4293
6.6.3.4.2.49.12 SA0147: Unusual shift operation - strict................................ 4293
6.6.3.4.2.49.13 SA0148: Unusual bit access - strict....................................... 4294
6.6.3.4.2.49.14 SA0118: Initialisations not using constants........................... 4295
6.6.3.4.2.49.15 SA0124: Pointer dereferences in declarations...................... 4295
6.6.3.4.2.49.16 SA0125: References in initializations.................................... 4295

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4288

SA0111: Pointer variables
Detects variables of type POINTER TO
Justification: The IEC 61131-3 standard does not permit pointers.
Importance: Low

VAR
 piTemp : POINTER TO INT;
 pbyTemp : POINTER TO BYTE;
END_VAR

--> SA0111: Data type POINTER not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0112: Reference variables
Detects variables of type REFERENCE TO
Justification: The IEC 61131-3 standard does not permit references.
Importance: Low

VAR
 ref_int : REFERENCE TO INT;
 ref_dw : REFERENCE TO DWORD;
END_VAR

--> Data type REFERENCE not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0113: Variables with data type WSTRING
Detects variables of type WSTRING
Justification: Not all systems support WSTRING. The code is more easily portable without
WSTRING.

VAR
 wstrTemp : WSTRING;
END_VAR

--> SA0113: Data type WSTRING not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4289

SA0114: Variables with data type LTIME
Detects variables of type LTIME.

Justification: Not all systems support LTIME The code is more easily portable without LTIME.

Importance: Low

VAR
 ltVar : LTIME; // SA0114
END_VAR

--> SA0114: Data type LTIME not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0115: Variables with data type UNION
Detects declarations of a UNION data type and variable declarations of the UNION type

Justification: The IEC 61131-3 standard does not include unions. The code is more easily
portable without unions.
Importance: Low

TYPE u1: UNION
 lrTemp : LREAL;
 liTemp : LINT;
END_UNION
END_TYPE

PROGRAM PLC_PRG
VAR
 uVar: u1;
END_VAR

--> SA0115: Unions not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0117: Variables with data type BIT
Detects variable declarations of data type BIT (possible within structure definitions)
Justification: The IEC 61131-3 standard does not include the data type BIT. The code is more
easily portable without BIT.

Importance: Low

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4290

TYPE Struct1 :
STRUCT
 bitVar : BIT;
 iVar : INT;
 bVar : BOOL;
END_STRUCT
END_TYPE

--> SA0117: Variables with data type BIT

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0119:Object-oriented features
Detects the use of object-oriented features, such as function block declarations with EXTENDS
and IMPLEMENTS, or property and interface declarations. This rule is useful when you write
code that is intended to be ported to other IEC 61131-3-compliant systems.
Justification: Not all systems support object-oriented programming. The code is more easily
portable without object-orientation.
Importance: Low

//Function block extended by another and implementing an interface:
FUNCTION_BLOCK POU EXTENDS CTD IMPLEMENTS ITF //SA0119
...

// Declaration parts of property methods assigned to a function
block:
POU.Prop.Get //SA0119
POU.Prop.Set //SA0119

--> SA0119: Object-oriented features not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0120: Program calls
Detects program calls
Justification: According to the IEC 61131-3 standard, programs can be called in the task con-
figuration only. The code is more easily portable when you do not call programs from other
locations.
Importance: Low

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4291

PROGRAM prog_control
VAR
END_VAR

PROGRAM PLC_PRG
VAR
END_VAR

prog_control();

--> SA0120: Program call to 'prg_control' not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0121: Missing VAR_EXTERNAL declarations
Detects the use of a global variable in function blocks without them being declared there as
“VAR_EXTERNAL”

Justification: According to the IEC 61131-3 standard, access to global variables is permitted
only by an explicit import by means of a VAR_EXTERNAL declaration.

Importance: Low
PLCopen rule: CP18

VAR_GLOBAL
 iGlob1:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 ivar:INT;
END_VAR

ivar:=iGlob1; // SA0121

--> SA0121: EXTERNAL declaration required for variable ''iGlob1'

Example

VAR_GLOBAL
 iGlob1:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 ivar:INT;
END_VAR
VAR_EXTERNAL
 iGlob1:INT;
END_VAR

ivar:=iGlob1; // OK

Example:
Avoid error

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4292

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0122: Array index defined as expression
Detects the use of expressions in the declaration of array indexes
Justification: Not all systems permit expressions as array limits.
Importance: Low

PROGRAM PLC_PRG
VAR CONSTANT
 c_iValue : INT := INT#15;
END_VAR
VAR
 arr: ARRAY[0..c_iValue + 1] OF INT;
END_VAR

--> SA0122: Only constants allowed for array definition 'arr'

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0123: Usages of INI, ADR or BITADR
Detects the use of the CODESYS-specific operators INI, ADR, and BITADR
Justification: CODESYS-specific operators prevent the portability of code.
Importance: Low

PROGRAM PLC_PRG
VAR
 uiTemp: UINT;
 TempVarInFUNC: DWORD;
END_VAR

TempVarInFUNC := ADR(uiTemp); //SA0123

--> SA0123: Operator 'ADR' not allowed

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0147: Unusual shift operation - strict
Detects bit shift operations that are not made to bitfield data types (BYTE, WORD, DWORD, LWORD)

Justification: The IEC 61131-3 standard permits bit access only to bitfield data types. However,
the CODESYS compiler also permits bit shift operations with unsigned data types.
Importance: Low

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4293

See also the strict rule SA0018.

PROGRAM PLC_PRG
VAR
 in_byte : BYTE := 16#45; // 2#01000101
 in_word : WORD := 16#0045; // 2#0000000001000101
 in_uint : UINT;
 in_dint : DINT;
 erg_byte : BYTE;
 erg_word : WORD;
 erg_uint : UINT;
 erg_dint : DINT;
 n: BYTE := 2;
END_VAR

erg_byte := SHL(in_byte,n); // no error because BYTE is a bit field
erg_word := SHL(in_word,n); // no error because WORD is a bit field
erg_uint := SHL(in_uint,n); // SA0147
erg_dint := SHL(in_dint,n); // SA0147

--> SA0147: Unusual shift operation - strict

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231
● Ä Chapter 6.6.3.4.2.17 “SA0018: Unusual bit access” on page 4243

SA0148: Unusual bit access - strict

Detects bit access that is not made to bitfield data types (BYTE, WORD, DWORD, and LWORD). The
IEC 61131-3 standard permits only bit access to bitfield data types. However, the CODESYS
compiler also permits bit access to unsigned data types.

PROGRAM PLC_PRG
VAR
 iTemp1 : INT;
 diTemp3 : DINT;
 uliTemp4 : ULINT;
 siTemp5 : SINT;
 usiTemp6 : USINT;
 byTemp2 : BYTE;
END_VAR

iTemp1.3 := TRUE; // SA0148
diTemp3.4 := TRUE; // SA0148
uliTemp4.18 := FALSE; // SA0148
siTemp5.2 := FALSE; // SA0148
usiTemp6.3 := TRUE; // SA0148
byTemp2.5 := FALSE; // no error because BYTE is a bit field

--> SA0148: Unusual bit access - strict

Example

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4294

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0118: Initialisations not using constants
Detects initializations that do not assign constants
Justification: Initializations should be constant if possible and should not refer to other variables.
In particular, you should avoid function calls during initialization because this can allow access
to uninitialized data.
Importance: Medium

PROGRAM PLC_PRG
VAR
 dwTemp : DWORD := 22;
 dwTest : DWORD := dwTemp; // SA0118
 dwVar : DWORD := TempVarInFUNC(); // SA0118
END_VAR

--> SA0118: Initialisations not using constants

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0124: Pointer dereferences in declarations
Detects pointer dereferences that are used for initialization in the declaration part
Justification: Pointers and references should not be used for initializations because this can lead
to access violations if the pointer has not been initialized.
Importance: Medium

FUNCTION_BLOCK FB_Test
VAR_INPUT
 refStruct: REFERENCE TO ST_Test;
END_VAR
VAR
 xPointer : BOOL := refStruct.a; // SA0124
 iCount : INT;
END_VAR

--> SA0124: Dereference access in initialisation

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0125: References in initializations
Detects reference variables that are used for initialization in the declaration part
Justification: Pointers and references should not be used for initializations because this can lead
to access violations if the pointer has not been initialized.
Importance: Medium

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4295

PROGRAM PLC_PRG
VAR
 xRef: REFERENCE TO INT;
 iCount: INT := xRef;
END_VAR

--> SA0125: Reference used in initializations

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0140: Statements commented out
Detects commented-out statements
Justification: Code is often commented out for debugging purposes. When this kind of comment
is released, it is not always clear at a later time whether the code should be deleted, or whether
it has been commented out for debugging purposes and unintentionally not uncommented.
Importance: High
PLCopen rule: C4

PROGRAM PLC_PRG
VAR
 iValue1: INT;
 iValue2: INT;
END_VAR

iValue1 := 100;
iValue2 := 200;
// iValue2 := 300;

--> SA0140: Statement commented out:: iValue2 := 300

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

Possible Use of Uninitialized Variables
6.6.3.4.2.51.1 SA0039: Possible null-pointer deferences.............................. 4296
6.6.3.4.2.51.2 SA0046: Possible use of not initialised interface..................... 4297
6.6.3.4.2.51.3 SA0145: Possible use of not initialised reference................... 4298

SA0039: Possible null-pointer deferences
Detects code locations where a null pointer is possibly dereferenced
Justification: A pointer should be checked before each dereferencing to make sure it is not
equal to zero. Otherwise an access violation may occur at runtime.
Importance: High

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4296

PROGRAM PLC_PRG
VAR
 ptiVar1:POINTER TO INT;
 ptiVar2:POINTER TO INT;
 ptiVar3:POINTER TO INT;
 iVar:INT;
 iCount :INT;
 iCondition: INT;
END_VAR

iCount := iCount + INT#1;
ptiVar1 := ADR(iVar);
ptiVar1^ := iCondition; // OK - valid reference
ptiVar2^ := iCondition; // SA0039 - null pointer dereferenciation
iVar := ptiVar3^; // SA0039 - null pointer dereferenciation

--> SA0039: Possible null pointer dereference 'ptiVar2^'
--> SA0039: Possible null pointer dereference 'ptiVar3^'

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0046: Possible use of not initialised interface
Detects the use of interfaces that were not initialized before being used
Justification: An interface reference should be checked for <> 0 before it is used. Otherwise an
access violation may occur during access.
Importance: High

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4297

//declaration of INTERFACE ITF and assigned METH2:
METHOD METH2 : BOOL
VAR_INPUT
 iInput2:INT;
END_VAR
//declaration of INTERFACE Master_ITF1 and assigned METH:
METHOD METH : BOOL
VAR_INPUT
 iInput:INT;
END_VAR

PROGRAM PLC_PRG
VAR
 instPOU:POU;
 instITF:ITF;
 instMasterITF1:Master_ITF1;
 instMasterITF2:Master_ITF2;
 iDummy:INT;
 xDummy:BOOL;
 instNoInitITF:ITF;
 instNoInitITF2:ITF;
 instNoInitMasterITF1:Master_ITF1;
 instNoInitMasterITF2:Master_ITF2;
END_VAR

instITF := instPOU;
xDummy := instITF.METH(iInput := iDummy); // OK
instMasterITF1 := instPOU;
xDummy := instMasterITF1.METH(iInput := iDummy); // OK

xDummy := instNoInitITF.METH(iInput := INT#1); // SA0046
xDummy := instNoInitITF.METH2(iInput2 := INT#2); // SA0046
xDummy := instNoInitMasterITF1.METH(iInput := INT#3); // SA0046
iDummy := instNoInitMasterITF2.Prop; // SA0046

IF instNoInitITF <> 0 THEN
 instNoInitITF.Prop; // OK, weil das Interface nicht 0
sein kann
END_IF

--> SA0046: Possible use of not initialised interface
'instNoInitITF'
--> SA0046: Possible use of not initialised interface
'instNoInitITF'
--> SA0046: Possible use of not initialised interface
'instNoInitMasterITF1'
--> SA0046: Possible use of not initialised interface
'instNoInitMasterITF2

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0145: Possible use of not initialised reference
Detects any reference variables that may not be initialized before use and are not checked by
the operator __ISVALIDREF. This rule is applied in the implementation part of POUs. Rule
SA0124 applies to the declaration.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4298

Justification: A reference should be checked for its validity before access because an access
violation may occur during access.
Importance: High

PROGRAM PLC_PRG
VAR_INPUT
 ref_iTest : REFERENCE TO INT;
END_VAR

ref_iTest := 99; // SA0145
IF __ISVALIDREF(ref_iTest) THEN
 ref_iTest := 88;
END_IF

--> SA0145: Possible use of not initialised reference 'ref_iTest'

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231
● Ä Chapter 6.6.3.4.2.49.15 “SA0124: Pointer dereferences in declarations” on page 4295

SA0150: Violations of lower or upper limits or the metrics
Detects the POUs that violate the activated metrics at the lower or upper limits
Justification: Code that complies with certain metrics is easier to read, easier to maintain, and
easier to test.
Importance: High
PLCopen rule: CP9

Initial situation: The “Number of calls” metric is selected in “Project Settings è Static Analysis
è Metrics”. Lower limit: 0; upper limit: 3. Prog_1 is called five times.

When running the static analysis, the “SA0150: Metric violation for Prog_1. Report for metric
calls (5) > 2” error is issued in the message view, in the “Build” category.

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0160: Recursive calls
Detects recursive calls in actions, methods, and properties of function blocks. Also detects
possible recursions from virtual function calls and interface calls.
Justification: Recursions lead to non-deterministic behavior and are therefore a source of errors.
Importance: Medium
PLCopen rule: CP13

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4299

The following method Call is assigned to the function block FB_Test:
FUNCTION_BLOCK FB_Test
VAR
 bParameter: BOOL;
END_VAR

METHOD Call : BOOL
VAR_INPUT
END_VAR
Call := THIS^.Call(); //SA0160

The program PLC_PRG calls FB_Test:
PROGRAM PLC_PRG
VAR
 fbTest : FB_Test;
 bValue : BOOL;
END_VAR
bValue := fbTest.bParameter;
fbTest.Call();

--> SA0160: Recursive call detected: 'PLC_PRG -> FB_Test.Call ->
FB_Test.Call

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0161: Unpacked structure in packed structure
Detects unpacked structures that are used in packed structures
Justification: The compiler typically sets an unpacked structure to an address that allows aligned
access to all elements within the structure. If you create this structure in a packed structure,
then aligned access is no longer possible. Furthermore, access to an element in the unpacked
structure can lead to a misalignment exception.
Importance: High

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4300

The structure structSingleDataRecord is packed, but it contains the unpacked structures
struct4Byte and struct9Byte.
{attribute 'pack_mode' := '1'}
TYPE structSingleDataRecord :
STRUCT
 str9ByteData: struct9Byte; (* 9 BYTE *)
 str4ByteData: struct4Byte; (* 4 BYTE *)
 udi1: UDINT;
 udi2: UDINT;
 udi3: UDINT;
 usi4: USINT;
END_STRUCT
END_TYPE (* 9 BYTE *)
TYPE struct9Byte :
STRUCT
 usiRotorSlots: USINT; (* 1 BYTE *)
 uiMaxCurrent: UINT; (* 2 BYTE *)
 usiVelocity: USINT; (* 1 BYTE *)
 uiAcceleration: UINT; (* 2 BYTE *)
 uiDeceleration: UINT; (* 2 BYTE *)
 usiDirectionChange: USINT; (* 1 BYTE *)
END_STRUCT
END_TYPE TYPE struct4Byte :
STRUCT
 //udiDummy : UDINT;
 rRealDummy : REAL;
END_STRUCT
END_TYPE

--> SA0161: Declaration of an unpacked struct 'struct9ByteData'
inside a packed struct 'structSingleDataRecord'
--> SA0161: Declaration of an unpacked struct 'struct4ByteData'
inside a packed struct 'structSingleDataRecord'

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0162: Missing comments
Detects uncommented locations in the program
Justification: Complete commenting is required by many programming guidelines, and it
increases the readability and maintainability of the code.
Importance: Low
PLCopen rule: C2
Comments are required in the following cases:
● Declaration of variables (Comments are located either above the declaration or to the right

of the declaration.)
● Declaration of programs, function blocks, or methods (Comments are located above the

declaration in the first line.)

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4301

PROGRAM PLC_PRG
VAR
 iMaxValue: INT;
END_VAR

--> SA0162: Missing comment for 'PLC_PRG'
--> SA0162: Missing comment for 'iMaxValue'

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0163: Nested comments
Detects nested comments
Justification: Nested comments should be avoided because they are difficult to read.
Importance: Low
PLCopen rule: C3

{attribute 'do-analysis'}
(* That is
(* nested comment 1 *)
*)
PROGRAM PLC_PRG
VAR
(* That is
// nested comment 2
comment *)
 iVal1: INT;
 iVal2: INT;

(* That is
(* nested comment 3 *) *)
 pVal3: POINTER TO DWORD;
 hugo: INT;
END_VAR

(* That is
// nested comment 4
comment *)

iVal1 := iVal1 + 1;

(* That is
(* nested comment 5 *)
*)

(* Not that one *)

--> SA0163: Nested comment 'nested comment 1'
--> SA0163: Nested comment 'nested comment 2'
--> SA0163: Nested comment 'nested comment 3'
--> SA0163: Nested comment 'nested comment 4'
--> SA0163: Nested comment 'nested comment 5'

Example

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4302

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0164: Multiline comments
Detects multiline comments that are coded as (* comment *). Only single-line comments
that are coded as // comment are permitted.

Justification: Some programming guidelines prohibit multiline comments in code because the
beginning and end of a comment could get lost and the closing comment bracket could be
deleted by accident.

You can deactivate this check by means of the pragma analysis, also for
comments in the declaration part.

Importance: Low
PLCopen rule: C5

{attribute 'do-analysis'}
(*
 This is a multi-line comment // SA0164
*)
PROGRAM PLC_PRG
VAR
// This is a single line comment
 a: DINT;
END_VAR

(* This is not a single line comment *) // SA0164
a := a + 1;

Example

See also
● Ä Chapter 6.6.3.4.1.3 “Attribute 'analysis'” on page 4229

SA0165: Tasks calling other POUs than programs
Detects tasks that call function blocks or functions instead of a program
Justification: This rule is part of the PLCopen Coding Guidelines. Therefore, compliance is also
checked in CODESYS. We do not see any problems with data consistency in CODESYS if
tasks would call POUs other than programs. However, problems can occur if the code is to be
ported to other platforms.
Importance: Low
PLCopen rule: CP16
Tasks are inserted below the task configuration. The POUs to be called are configured in the
tasks. The POUs must be the “Program” type. The “Function block” and “Function” types are not
permitted.

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4303

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0166: Max. number of input/output/in-out variables...
Detects whether or not a defined number of input variables (VAR_INPUT), output variables
(VAR_OUTPUT) or VAR_IN_OUT variables is exceeded in a POU. In the “Project Settings”,
double-click the rule entry to open a dialog where you define the maximum number.
Justification: This is about checking individual programming guidelines. Many programming
guidelines provide for a maximum number of POU parameters. Too many parameters make the
code unreadable and the POUs difficult to test.
Importance: Medium
PLCopen rule: CP23

In the project settings, for Rule 166, you have defined a maximum number of 1 for
VAR_IN_OUT variables.
FUNCTION_BLOCK FB1
VAR_INPUT
 xIn : BOOL;
END_VAR
VAR_IN_OUT
 xInOut1 : BOOL;
 xInOut2 : BOOL;
END_VAR

--> SA0166: Too many VAR_IN_OUT variables in POU 'FB1'

Example

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0167: Temporary function block instances
Detects function block instances that are declared as temporary variables. This affects
instances that are declared in a method or function or as VAR_TEMP, and therefore are reinitial-
ized in each processing cycle or for each POU call.
Justification: Function blocks have a state that is usually maintained over multiple PLC cycles.
An instance on the stack exists only for the duration of the function call. Therefore, it rarely
makes sense to create an instance as a temporary variable. Secondly, function block instances
are often large and need a lot of space on the stack (which is usually restricted to controllers).
Thirdly, the initialization and often also the scheduling of a function block can take a long time.

Configuration and programming
Engineering interfaces and tools > CODESYS Static Analysis

2024/01/053ADR010583, 1, en_US4304

Importance: Medium

PROGRAM PLC_PRG
VAR
END_VAR
VAR_TEMP
 yafb: AFB;
END_VAR

FUNCTION Fun : INT
VAR_INPUT
END_VAR
VAR
 funafb: AFB;
END_VAR

METHOD METH : INT
VAR_INPUT
END_VAR
VAR
 methafb: AFB; // SA0167
END_VAR

--> SA0167: Temporary function block instance: 'methafb'

Examples

See also
● Ä Chapter 6.6.3.4.1.6 “Attribute 'analysis:report-multiple-instance-calls'” on page 4231

SA0168: Unnecessary Assignments
Detects assignments to variables which do not have any effect in the code.
Justification: When values are assigned to a variable multiple times without the variable being
evaluated between assignments, the first assignments do not have any effect on the program.
Importance: Low

PROGRAM PLC_PRG
VAR
 dwVal1 : DWORD;
 dwVal2 : DWORD;
END_VAR

dwVal1 := 1; // unnecessary assignment
IF dwVal2 > 100 THEN
 dwVal2 := 0;
 dwVal2 := dwVal2 + 1;
END_IF
dwVal1 := 2;

--> SA0168: The variable 'dwVal1' is assigned but its value is
never used.

Example

See also
● Ä Chapter 6.6.3.2 “Configuring and Running Static Analysis” on page 4209

Configuration and programming

Engineering interfaces and tools > CODESYS Static Analysis

2024/01/05 3ADR010583, 1, en_US 4305

SA0169: Ignored outputs
Detects the outputs of methods and functions that are not specified when calling the method or
function.
Justification: Ignored outputs can be a notice about an unhandled error or meaningless function
calls because results are not used.
Importance: Medium

FUNCTION Fun1
VAR_INPUT
 bIn : BOOL;
VAR_END
VAR_OUTPUT
 bOut : BOOL;
END_VAR

PROGRAM PLC_PRG
VAR
 bValue :BOOl;
END_VAR

Fun1(bIn : TRUE);

 --//SA0169: The output 'bOut' is ignored when called.

Example

See also
● Ä Chapter 6.6.3.4.2.28.5 “SA0036: Unused output variables” on page 4251

6.6.4 Multi download tool
The multi download tool for AC500 V3 PLCs in Automation Builder enables firmware updates
and application downloads of the same project to several PLCs of the same type.

● For application download: An AC500 V3 PLC with the desired target application is available
as reference to create an online backup as input for the multi download tool (tbf backup file).

● For firmware download: The desired firmware must be provided as memory card image as
input to the multi download tool.

It is recommended to close all Automation Builder instances and projects
besides the multi download tool to avoid conflicts and performance reductions.

● For application backup: Create an online backup of your desired AC500 V3 PLC target
application via PLC device editor’s “Backup and Restore” tab as tbf (target backup file). For
further details, please refer to the help section.
Ä Chapter 6.4.1.21.2.8.6 “Tab 'Backup and Restore'” on page 2435

● For firmware download: Create a firmware memory card image of your target PLC applica-
tion via context menu on the application node “Export è Firmware (SD-card)...”.

The multi download tool can be launched within the Automation Builder via “Tools è Options
è Multi download tool”.

Preconditions

Create reference
data for down-
load

Usage of the
multi download
tool

Configuration and programming
Engineering interfaces and tools > Multi download tool

2024/01/053ADR010583, 1, en_US4306

The first editor section offers the possibility to select a firmware memory card image and/or
an application backup file which shall be downloaded to the PLCs. Depending on the selec-
tion a firmware download and/or application download is then executed when executing the
[Download] button.
The PLCs to download to can be defined in several ways:
● Execute a scan via [Scan] button and the found connected PLCs will be listed in the table.
● Import a corresponding PLC addresses configuration as csv-file into the table via

[Import list] button.
● Enter the IP addresses in the table manually or via copy and paste.
The PLCs to consider for download can be defined via the checkboxes in the first table column.
A defined selection can be exported via the [Export list] button as csv-file for later reuse or
external modification.

Device name, port, MAC address and serial number are shown as information
only. The IP address itself is sufficient to identify the PLC.

General settings for the multi download tool can be configured by clicking the [Setting] button or
via “Tools è Options è Multi download tool”.

Selection

Configuration
settings

Configuration and programming

Engineering interfaces and tools > Multi download tool

2024/01/05 3ADR010583, 1, en_US 4307

● “Network scan timeout”: Maximum time to wait for the network scan results (by default 10
seconds).

● “Blink timeout”: Maximum time to wait for the blink operation to execute (by default 10
seconds).

● “Number of parallel downloads”: How many PLC downloads are executed in parallel (by
default 10).

● “Download timeout”: Depending on the network infrastructure the download might run into
errors due to timeouts. The user will not be informed about these timeouts directly, but
each timeout might result in errors. To avoid these timeouts the corresponding value can be
adapted here in minutes (by default 5 minutes).

Specific settings like “Force download even when there are applications running on the PLC”
and “Reboot PLC after download operation” can be defined directly in the lower part of the multi
download tool editor.

Double-check the selection by executing the [Blink] button which triggers a display blinking of
the checked PLCs which are connected to the PC. The connection status itself can be updated
via the [Check connection] button indicating it in the “Connected” column.

The download of the defined firmware and/or application backup to the checked PLCs can be
executed via the [Download] button.
If downloads to running PLCs shall be executed, the setting “Force download even when there
are applications running on the PLC” must be enabled.

The PLC type of the application backup file/firmware memory card image is
cross-checked with the PLC types of the checked PLCs before executing a
download.

In case a firmware memory card image is selected for download process, first the firmware
is download und updated. The status can be seen in the column “Firmware download”. The
selected application backup file is downloaded afterwards. The corresponding status is shown
in the column “Application download”.

Check

Download

Configuration and programming
Engineering interfaces and tools > Multi download tool

2024/01/053ADR010583, 1, en_US4308

If any error occurs, it is shown in the corresponding status column with additional information in
the “Error message” column.
After successful download the PLCs are rebooted if the setting “Reboot PLC after download
operation” is enabled.
The status of a download is shown as “Success”, “Failed” or “In progress” for the firmware/appli-
cation and the PLC state is shown with “Stop” and “Run” modes.
A running download can be cancelled via the [Cancel Download] button which finishes the
currently running downloads and stops further executions afterwards.
An overall summary of executed and ongoing downloads can be found in the status line below
the table. The results of the download can be documented via “Export Results”.

6.6.5 Tool Calling Interface (TCI) implementation
Automation Builder supports the Tool Calling Interface (TCI) up to conformance class 3 to
engineer 3rd party safety devices.
The TCI from PROFINET organization offers a standard interface to call 3rd party configuration
tools to e.g., configure iParameters in functional safety applications, calculate F_iPar_CRC
values and write configurations via the PLC to the safety devices.
The corresponding vendor specific configuration tools must be installed manually on the same
PC as the Automation Builder. As soon as a 3rd party safety device is added to the Automation
Builder project and a matching configuration tool is found to be installed, corresponding context
menus are offered on the device to call this tool via TCI (refer to screenshot below).

The offered functionality of those configuration tools strongly varies on the device manufacturer.
In the following the functionalities and workflows are exemplarily shown with two tools.

1. Install the “TR TCI Device Tool” on the same PC as the Automation Builder.
2. Install the required TR GSDML-files in the Automation Builder device repository.
3. Create the desired devices configuration in the Automation Builder device tree.
4. Define the required iParameter of the TR safety device in the Automation Builder.
5. Open the “TR TCI Device Tool” via context menu on the TR safety device.
6. Calculate the F_iPar_CRC in the “TR TCI Device Tool” and paste the value into the

corresponding field in the Automation Builder editor.

TR TCI Device
Tool

Configuration and programming

Engineering interfaces and tools > Tool Calling Interface (TCI) implementation

2024/01/05 3ADR010583, 1, en_US 4309

In case an online connection is available you can also display the F-Destination-Address which
can be set via rotary switches depending on the used hardware device and read/write mainte-
nance data.
To enable an online connection, you must be online in Automation Builder, PLC needs to be in
RUN and PROFINET must be running.

1. Install the Siemens S7-Failsafe Configuration Tool on the same PC as the Automation
Builder.

2. Install the required Siemens GSDML-files in the Automation Builder device repository.
3. Create the desired devices configuration in the Automation Builder device tree.
4. Change “F_Dest_Add” or “F_Source_Add” on the Siemens safety device in the

Automation Builder project.
5. Set “F_Dest_Add” and “F_Source_Add” (if needed in offline mode).

6. Go online, PLC needs to be in RUN and PROFInet must be running.

Siemens F-Des-
tination-
Address Assign
Device Tool

Configuration and programming
Engineering interfaces and tools > Tool Calling Interface (TCI) implementation

2024/01/053ADR010583, 1, en_US4310

7. Call the Siemens device tool and choose your preferred way of identification (LED blinking
or serial number).

8. Select the check box at the module where the F-destination-address should be set.
9. Press the [Identification] button.
10. Press the [Assign PROFIsafe-address] button after you confirmed that either the correct

module is blinking or the displayed serial numbers is matching.

The device tool has a build in timeout with only a view seconds. After that time
the device tool cannot communicate with the slave anymore. In this case close
the device tool and reopen it again.

6.6.6 Drive composer pro integration
Drive Composer Pro is a start-up and maintenance tool for ABB's common architecture drives.
The tool is used to view and set drive parameters, and to monitor and tune process perform-
ance.
Drive Composer Pro provides:
● Setting parameters,
● taking local control of the drive from the PC,
● event logger handling
● control diagrams,
● fast monitoring,
● working with multiple drives on the PC tool network,
● macro script editing for parameters and much more.

1. Add “Drive Composer Pro” object into the tree via add object dialog.
2. Open the “Drive Composer Pro” with double-click on the object.

In the following section important functions are described.

Configuration and programming

Engineering interfaces and tools > Drive composer pro integration

2024/01/05 3ADR010583, 1, en_US 4311

1. Import of FSO backup files (*.dcsafety) and Drive Parameters backup files
(*.dcparamsbak) into Automation Builder project via the Drive Composer Pro object in
the device tree.

2. View of integrated FSO backup files and Drive Parameters backup files in Automation
Builder project - refer to figure below.

ð
Drive Composer Pro can't be launched directly with integrated “FSO
backup files” but they have to be loaded manually via context menu
on the drive in Drive Composer Pro ® “Safety Settings”.

Import of
backup files

Configuration and programming
Engineering interfaces and tools > Drive composer pro integration

2024/01/053ADR010583, 1, en_US4312

1. Select the FSO and Drive Parameters backup files.
2. Export the selected file by clicking [Export].

ð Select the desired storage path.

Export of
backup files

Configuration and programming

Engineering interfaces and tools > Drive composer pro integration

2024/01/05 3ADR010583, 1, en_US 4313

1. Select the FSO and Drive Parameter backup files from Automation Builder project.
2. Remove the selected files by clicking [Remove].

Remove of
backup files

Configuration and programming
Engineering interfaces and tools > Drive composer pro integration

2024/01/053ADR010583, 1, en_US4314

1. Open the “Crane_follower12.dcparamsbak” with double-click.
2. The “Drive Composer Pro” starts automatically.

Standard Drive Parameter backup files (*.dcparamsbak) are automatically
displayed under “File Drives”.

3. Saved changes in the standard drive parameter backup file are automatically updated in
the Automation Builder project.

6.6.7 Professional Version Control
6.6.7.1 SVN integration in CODESYS

Professional Version Control allows for the development of CODESYS projects under version
control by Apache™ Subversion®. Professional Version Control provides an SVN client inte-
grated in CODESYS. The objects of your project are versioned in a central SVN repository.
As a rule, the SVN repository should be created in a server configuration and located on a
server. For testing purposes, you can create a local SVN repository where you can access via
file://.

Professional Version Control requires a valid license and can be installed using the Automation
Builder Installer or the Automation Builder Installation Manager.

View standard
drive parameter
backup files

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4315

6.6.7.2 Getting Started
The following steps are required in order to develop your CODESYS project with Professional
Version Control with version control by Apache™ Subversion®:
1. Install the Professional Version Control package in CODESYS.
2. Install an SVN server.
3. Create an SVN repository.
4. Open your CODESYS project in CODESYS.
5. Import the CODESYS project into the SVN project archive.

ð The CODESYS project is saved in the SVN repository.

6. To edit and further develop the project with SVN version control, the project is edited in
CODESYS and then committed to the SVN repository.

As of version 4.4.0.0, in the case of storage profile inconsistencies between the working copy
and the project in the SVN repository, corresponding instructions will guide you further. Under
certain circumstances, commit actions at the object level are then no longer possible.
See also
● Ä Chapter 6.6.7.4 “Using an SVN Repository” on page 4316
● Ä Chapter 6.6.7.5 “Using Working Copies” on page 4318

6.6.7.3 Version control
Apache™ Subversion® (SVN) is a tool for version and revision management of current and
previous versions of files, such as source code, websites, and documentation. Apache™ Sub-
version® is a registered trademark of the Apache Software Foundation.
Revision management (also known as version control, version management, and source code
management) is the management of changes to documents, programs, and other information
that is stored as computer files. Version control is employed frequently in software development
when a team of employees works on the same files.
Tasks
● Tracking of changes in revisions: At any time, you can show who made which changes at

which time.
● Restoring of old revisions of individual files: At any time, you can reverse accidental

changes to files.
● Archiving of special revisions of a project: At any time, you can revert to older versions.
● Coordination of shared access of developers to data
● Development of a project at the same time in multiple branches

Professional Version Control provides a scripting-interface for SVN.

6.6.7.4 Using an SVN Repository
An SVN repository usually saves information as a file system tree, a hierarchy of files, and
directories. Any number of clients connects to the SVN repository and reads or writes changes
to the files in revisions.

What is version
control?

Script Engine
SVN Add-on API

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4316

NOTICE!
Consult with your IT specialists for more information, for example how to create
an SVN repository. For production purposes, we recommend a strictly dedicated
administrative SVN server.
We recommend that you create the suggested default directory structure in the
SVN repository.
See also
– http://svnbook.red-bean.com/en/1.8/

svn.tour.importing.html#svn.tour.importing.layout

NOTICE!
Use the file:// access method for testing purposes only.

You can reach SVN repositories that were created in format 1.8 or 1.9 via the
file:// protocol.

For testing purposes, you can create a local SVN repository without installing your own server.
The SVN repository is accessed via file:// and provides the same functionality as a server.

Requirement: The SVN client TortoiseSVN 1.9 is installed on the development system.
1. Create a new, empty folder on your local file system. The test repository will be created

there.

ð Example: D:\SVN repository
2. Click “TortoiseSVN è Create repository here”.

ð The dialog “Create repository” opens.

3. Click “Create directory tree”.

ð The SVN repository is created.

See also
● Documentation TortoiseSVN Documentation TortoiseSVN

Table 772: SVN repository URLs
file:/// Direct access to an SVN repository (on local hard drive)
http:// Access via WebDAV protocol to Apache server that is sup-

ported by SVN
https:// As http://, but with SSL encryption

svn:// Access via own protocol to an svnserve server

svn+ssh:// As svn://, but tunneled via SSH

Creating an SVN
repository

Creating an SVN
repository for
testing pur-
poses

Creating a test
repository with
TortoiseSVN

Accessing the
SVN repository

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4317

http://svnbook.red-bean.com/en/1.8/svn.tour.importing.html#svn.tour.importing.layout
http://svnbook.red-bean.com/en/1.8/svn.tour.importing.html#svn.tour.importing.layout
https://tortoisesvn.net/docs/release/TortoiseSVN_de/index.html

1. Open the CODESYS project that you want to save in the SVN repository.

ð Example: A.project is open.

2. Click “Project è SVN è Import project to SVN”.

ð The “Browse SVN repository” dialog opens.

3. Select the directory file:///D:/SVN repository/trunk in the directory tree.

4. Select the command.

ð The “Create remote directory” dialog opens.

5. Specify the URL for the new directory.
Note: Because the new directory should contain the CODESYS project, specify the project
name with extension here.

ð file:///D:/SVN%20repository/trunk/A.project
6. Click “OK” to close the dialog.
7. Select the new project and click “OK” to exit the “Browse SVN repository” dialog.

ð The “Import Project to SVN” dialog opens. The directory file:///D:/SVN
repository/trunk/A.project is specified in “URL of SVN repository”.

See also
● Ä Chapter 6.6.7.6.1 “Overlay Icons” on page 4319

6.6.7.5 Using Working Copies
You can copy CODESYS projects to your development system that are saved in the SVN
repository.
1. Open CODESYS.
2. Click “Project è SVN è Checkout”.

ð The “Checkout” dialog opens.

3. Specify the URL of the SVN repository and select a project in the SVN repository tree.
A CODESYS project is automatically identified by its file extension (.project,
_project, .library or _library) as a "project" or "library project" at checkout.

4. In “Checkout to”, specify the name and location of the working copy on your development
system.

5. Click “OK” to close the dialog.

ð The project opens in CODESYS. In the object tree of the project, the SVN link is
shown with overlaid icons. Now the project is saved as a working copy on your
development system.

See also
● Ä Chapter 6.6.7.6.1 “Overlay Icons” on page 4319

Import the
project into the
SVN repository.

Checking out a
project
Creating a
working copy

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4318

Update the working copy before you start editing, especially if the project is
revised by a team. This is how you avoid conflicts.

1. Open the working copy.
2. Click “Project è SVN è Update project” (symbol:).

ð You working copy is current.

3. Revise your project.
4. Click “Project è SVN è Edit SVN working copy”.

ð The dialog opens. There you can browse your changes.

5. Close the dialog.
6. If necessary, you can click “SVN è Revert” in the context menu.

ð The file is reverted back to the base revision and your changes are discarded.

7. If necessary, you can click “Compare” in the context menu of an edited object.

ð The compare dialog opens. You can resolve any conflicts here.

8. Close the compare dialog.
9. Click “Project è SVN è Commit project” (symbol:).

ð The “Commit” dialog opens.

10. In “Message”, specify a log entry that describes your changes. Example: Changes for
customer ABC, request 1234.
ð Your changes are saved in the SVN repository as a revision with a revision number.

See also
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322

For projects in version Professional Version Control V4.1.0.0 and later, the working directory
(working copy) has a new format.
If you open a project that was created with V4.0.4.0 or earlier, then the project is updated
automatically to the new format when it is opened.
If you open a project that was created with V4.0.4.0 or earlier and the project is based on an
older SVN version of 1.7.x or earlier, then you are prompted whether or not CODESYS should
update the format. If you decline the update, then the SVN link of the project is deactivated. You
can still load and edit the project.
The update does not have an effect on saving to the SVN server. You can also checkout proj-
ects with earlier versions of the client. The new format affects only the local working directory.
See also
● http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.upgrade.html

6.6.7.6 Reference, User Interface
6.6.7.6.1 Overlay Icons

Every object in CODESYS has a status value in the SVN repository. This status value is
displayed in the object tree (in the “POUs”, “Devices”, or “Modules” views) for each object by
overlay icons.

Editing the
working copy

Changed
working copy
format in Pro-
fessional Ver-
sion Control
V4.1.0.0 and
later

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4319

http://svnbook.red-bean.com/en/1.8/svn.ref.svn.c.upgrade.html

Table 773: Overlay icons
Object is planned to be added to the SVN repository.

Object conflicted

Object deleted

Object modified

Object with modification in the metadata

Object with modifications in the memory format

Object normal

Object write-protected (read-only)

Object locked

Object with deleted subobjects

Object ignored on commit

External object

Ignored object

Unversioned object

Object with modified subobjects

The object is not saved in the SVN repository. It will be created again when
loaded from SVN.

SVN_VERSION_INFO temporarily unavailable, for example as with inter-
face libraries

The status of the object is not updated.

The object was modified on the server (Update available).

The object was locked on the server by another user (or in another working
directory).

Tree conflict by changes to the structure of the project

6.6.7.6.2 Commands
Availability of commands

Not all commands are available in the logged in state because some SVN commands of the
project could be changed.

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4320

Table 774: Availability of commands
Command Not Logged In Logged In

Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repo-
sitory Browser'” on page 4322

X X

Ä Chapter 6.6.7.6.2.3 “Command 'Edit SVN
working copy'” on page 4323

X

Ä Chapter 6.6.7.6.2.4 “Command 'Import
project to SVN'” on page 4326

X X

Ä Chapter 6.6.7.6.2.5 “Command 'Checkout'”
on page 4327

X X

Ä Chapter 6.6.7.6.2.6 “Command 'Commit',
Command 'Commit Project'” on page 4328

X X

Ä Chapter 6.6.7.6.2.7 “Command 'Compare'”
on page 4331

X

Ä Chapter 6.6.7.6.2.8 “Command 'Compare
with HEAD revision'” on page 4331

X

Ä Chapter 6.6.7.6.2.9 “Command 'Compare
with revision'” on page 4331

X

Ä Chapter 6.6.7.6.2.10 “Command 'Compare
to remote project...'” on page 4332

X

Ä Chapter 6.6.7.6.2.11 “Command 'Include
externals to project', Command 'Include exter-

nals'” on page 4333

X

Ä Chapter 6.6.7.6.2.12 “Command 'Ignore on
commit'” on page 4335

X X

Ä Chapter 6.6.7.6.2.13 “Command 'SVN Info'”
on page 4335

X X

Ä Chapter 6.6.7.6.2.14 “Command 'Show
properties'” on page 4336

X X

Ä Chapter 6.6.7.6.2.15 “Command 'Get lock'”
on page 4336

X X

Ä Chapter 6.6.7.6.2.16 “Command 'Steal
locks'” on page 4337

X X

Ä Chapter 6.6.7.6.2.17 “Command 'Release
lock'” on page 4337

X X

Ä Chapter 6.6.7.6.2.18 “Command 'Release
locks recursively'” on page 4337

X X

Ä Chapter 6.6.7.6.2.19 “Command 'Show log',
Command 'Show project log'” on page 4337

X X

Ä Chapter 6.6.7.6.2.20 “Command 'Revert',
Command 'Revert project'” on page 4339

X

Ä Chapter 6.6.7.6.2.21 “Command 'Revert
to revision', Command 'Revert project to revi-

sion'” on page 4340

X

Ä Chapter 6.6.7.6.2.22 “Command 'Update',
Command 'Update project' ” on page 4340

X

Ä Chapter 6.6.7.6.2.23 “Command 'Update to
revision'” on page 4341

X

Ä Chapter 6.6.7.6.2.24 “Command 'Update
only this'” on page 4342

X

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4321

Command Not Logged In Logged In
Ä Chapter 6.6.7.6.2.25 “Command 'Discon-

nect project from SVN'” on page 4342
X X

Ä Chapter 6.6.7.6.2.26 “Command 'Switch'”
on page 4342

X

Ä Chapter 6.6.7.6.2.27 “Command 'Un-Ignore
on commit'” on page 4343

X X

Ä Chapter 6.6.7.6.2.28 “Command 'SVN
Cleanup'” on page 4343

X X

Ä Chapter 6.6.7.6.2.29 “Command 'Clear
authentication data' ” on page 4344

X X

Ä Chapter 6.6.7.6.2.30 “Command 'Merge
changes'” on page 4344

X

Ä Chapter 6.6.7.6.2.31 “Command 'Connect
to existing project'” on page 4345

X X

Ä Chapter 6.6.7.6.2.32 “Command 'Resolve
conflict' ” on page 4346

X

Ä Chapter 6.6.7.6.2.33 “Command 'Work in
offline mode'” on page 4346

X X

Ä Chapter 6.6.7.6.2.34 “Command 'Copy
(Branch/Tag)'” on page 4347

X

Ä Chapter 6.6.7.6.2.35 “Command 'Pending
Changes'” on page 4348

X X

Command 'SVN Repository Browser'
Symbol:
Function: This command opens the SVN repository browser. The contents of an SVN reposi-
tory is shown in a tree structure here. You can search through the repository in the browser.
Call: Menu bar: “Project è SVN”.
Depending on the selected object, the following commands are available in the context menu:
● “Show log”
● “Checkout”
● “Create folder”
● “Copy to”
● “Rename”
● “Delete”

Double-clicking the object with the right mouse button opens the log dialog.

Dialog 'SVN
Repository
Browser'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4322

“URL” URL in SVN repository
Example: https://svnserver/repository/trunk/
ControlABC.project
Tip: As soon as a valid SVN repository is specified, you can browse and select a
specific project by means of the adjacent button.

Opens the dialog “Select revision”.
The button is labeled with the currently selected revision:
● “HEAD”: Top revision (latest). Preset
● “3”: Revision number of the selected revision
● “12/23/2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Updates the browser view by rescanning the SVN repository.

Navigates the URL address up by one folder.

Left area Directory tree in the SVN repository. Project nodes are shown in bold.

Note: In this view, you can directly edit the project name and the name of the
superordinate folder.

Right area List of objects of the selected directory

“Close” Closes the dialog

See also
● Ä Chapter 6.6.7.6.3.3 “Dialog 'Select revision'” on page 4351

Command 'Edit SVN working copy'
Symbol:
Function: This command opens the dialog “Edit SVN working copy” and displays the working
copy in a browser from the SVN view.
Call: Menu bar: “Project è SVN”.
The functionality of the browser allows for:
● Access to and actions on objects that are not displayed in the “Devices” view.
● Actions on objects that can lead to exceptions in the “Devices” view.
● Editing of global objects that are modified, in conflict, or blocked.

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4323

Table 775: “Edit SVN working copy: <project name> - <project URL>”
“Path in the SVN repository” Display of working copy from SVN view repository. The file and folder structure

of the objects in the project are presented in a tree view here. As a result, the
recursion depth of an object is visible.

: Object selected for the following menu command

“Name of object” File name of the object
Example: Application

“ Node type” The top node is the project root directory.

“Text status” Object status:
● “modified”
● “added”
● “deleted”
● “non-versioned”
● “Conflicted”

“Property status” Status in SVN repository:
● “modified”
● “added”
● “deleted”
● “Conflicted”
● “normal”

“Revision” Revision number

“Conflict information” File conflict, property conflict, or tree conflict

“Lock” For locked objects, the user who applied the lock is displayed.
Example: b.mayer

“Lock comment” Lock message. Implicit, normal, or stolen lock.

“URL” URL of the object

Table 776: Menu commands

“Select è All” Selects all files.

“Select è None” Deselects all files.

“Select è Modified” Selects the modified files.

“Select è Conflicted” Selects the conflicted files.

“Select è Locked” Selects the locked files.

Updates the working copy. Changes made by others are added from the SVN
repository to your working copy.

“Update è Project” Updates all files of the project.

“Update è Selected nodes” Updates only the selected files.

“Update
è Selected nodes and
children”

Updates the selected files and subordinate files.

Dialog ‘Edit SVN
working copy'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4324

 “Clear” Discards your changes to the working copy. Then the object corresponds to the
revision in the repository.

“Delete è Selected nodes” Deletes the selected objects from the working copy.

 “Commit” Commits your changes to the SVN repository. Any locked objects will be
unlocked.

“Commit è Project” Commits all files in the project.

“Commit è Selected nodes” Commits only the selected files.

“Commit
è Selected nodes and
children”

Commits the selected files and subordinate files.

Commands for managing locks.

“Locks è Revalidate all” Checks the validity of locks in the working copy. Any invalid locks will be
unlocked.

“Locks è Release locks” Releases the lock.

“Locks è Acquire locks” Locks the object from editing by others.

“Locks è Steal locks” Locks the file for you and removes the lock of another user.
Tip: Avoid stealing a lock because the changes made by another user can be
lost.

Commands to resolve conflicts.

“Conflicts è Mark as resolved” Indicates a displayed conflict in the SVN repository as marked and resolved.
Note: Select the command if you edited and resolved the displayed conflict.
Then you can commit changes again.

“Conflicts
è Resolve using theirs”

Resolves the conflict: In the SVN repository, the changes are accepted that were
committed by other users. Your changes are discarded.

“Conflicts
è Resolve using mine”

Resolves the conflict: In the SVN repository, the changes to your working copy
are accepted and the changes by other users are discarded.

 “Show log” Opens the dialog “Log - Application”. The history of the selected node is shown
here. The previous revisions are displayed with the respective actions.

 “Change location” Changes the storage location of the selected object within the working copy.
Example: You can resolve a tree conflict by saving the local object to another
location. Then update the parent object to apply it to the locked children.

 “Update” Updates the browser view by rescanning the working copy.

 “Cleanup” Executes an SVN cleanup operation on the working copy.

See also
● Ä Chapter 6.6.7.6.2.22 “Command 'Update', Command 'Update project' ” on page 4340
● Ä Chapter 6.6.7.6.2.20 “Command 'Revert', Command 'Revert project'” on page 4339
● Ä Chapter 6.6.7.6.2.6 “Command 'Commit', Command 'Commit Project'” on page 4328
● Ä Chapter 6.6.7.6.2.32 “Command 'Resolve conflict' ” on page 4346
● Ä Chapter 6.6.7.6.2.15 “Command 'Get lock'” on page 4336
● Ä Chapter 6.6.7.6.2.17 “Command 'Release lock'” on page 4337

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4325

● Ä Chapter 6.6.7.6.2.16 “Command 'Steal locks'” on page 4337
● Ä Chapter 6.6.7.6.2.26 “Command 'Switch'” on page 4342
● Ä Chapter 6.6.7.6.2.19 “Command 'Show log', Command 'Show project log'” on page 4337
● Ä Chapter 6.6.7.6.2.28 “Command 'SVN Cleanup'” on page 4343

Command 'Import project to SVN'
Symbol:
Function: This command opens the “Import Project to SVN” dialog for importing a CODESYS
project to the SVN repository.
Call: Menu bar: “Project è SVN”.
Requirement
● You have access to an SVN repository and you know its URL.
● You have read access to the entire project.

NOTICE!
Projects are always saved unencrypted on the server. Therefore, take appro-
priate security measures (for example, respective access rights to the SVN
server) for protecting your projects.

See also
● User and access management in Protect and save project

“URL of SVN repository” URL of the SVN repository with the new project folder where the files are
imported
Example: https://svnserver/repository/trunk/
ControlABC.project
Hint: When importing libraries, specify the extension .library or _library.
For projects, specify the extension .project or _project. Then the project
type is recognized automatically at checkout and the options are set accordingly
in the “Checkout” dialog.

Opens the “SVN Repository Browser” dialog The previous project structure is
displayed and you can edit them here.

“Import message” Text for use as log message
Example: Control project for customer A

“Recent messages” Opens the “Recent Messages” dialog. There you can reuse the last log mes-
sages.

“Generate
SVN_VERSION_INFO”

: The object SVN_VERSION_INFO is not created automatically during the
import operation. Therefore, the project does not get any global constants or
variables for the project metadata.

“OK” Creates the current project in the SVN repository and imports the project objects.
The local project in CODESYS Development System is linked to the SVN reposi-
tory. Overlay icons show this in the object trees.

See also
● Ä Chapter 6.6.7.6.2.5 “Command 'Checkout'” on page 4327
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322
● Ä Chapter 6.6.7.6.1 “Overlay Icons” on page 4319

Dialog 'Import
Project to SVN'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4326

ms-its:codesys.chm::/_cds_struct_project_protection_storage.htm

Command 'Checkout'
Symbol:
Function: This command opens the “Checkout” dialog. Here you can checkout a project stored
in the SVN repository as a working copy.
Call: Menu bar: “Project è SVN”.

Table 777: “URL of SVN repository”
URL of the project in the SVN repository
Example: https://svnserver/repository/trunk/
ControlABC.project
Tip: As soon as a valid SVN repository is specified, you can click the adjacent
button or use the options to browse in “Revision” and select a specific project.

Opens the dialog “Select revision”.
The button is labeled with the currently selected revision:
● “HEAD”: Newest revision (top revision). Default
● “15”: Revision number of the selected revision
● “12/23/2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Opens the “SVN repository browser” dialog Here you can browse the SVN repo-
sitory.

Table 778: “Checkout to”
“Name” Name of the working copy

Example: ControlABC.project
“Location” Storage location of the working copy

Example: /D:/svn/repository/trunk/ControlABC.project

Table 779: “Checkout as”
“Project” The project is saved as a CODESYS project "<project name>.project".

“Library” The project is saved as a CODESYS library file "<project name>.library".

“Auto-detect” CODESYS attempts to recognize the project type by means of the extension.
The current implementation checks whether the URL of the project ends with
"_library" or ".library". In this case, the project is recognized as a library
or a project.

Table 780: “Checkout options”
“Omit externals”: : Externals (external objects) are not copied to the working directory.

Table 781: “Revision”
For a description, refer to the section "Dialog 'Select revision'".
Note: The group provides the same options as the “Revision” dialog.

Dialog 'Check-
out'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4327

“OK” Checks out the project from the SVN repository, saves it locally to the specified
location, and opens it in CODESYS as the primary project.

If files were encrypted when imported to the SVN repository, or if they have
been committed, then note the following:

When committing to the SVN repository, the information about an encrypted
project file is included. However, the type of encryption is not included (pass-
word, Wibu security key, X509 certificate). Therefore, it may be necessary to
encrypt the working copy again in the project settings. In this case, a dialog
opens when exiting the command to notify you of this. Then you are able to
switch directly to the project settings.

See also
● Ä Chapter 6.6.7.6.3.3 “Dialog 'Select revision'” on page 4351
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322
● "Version control with Subversion", Section "Revision identifier"

Command 'Commit', Command 'Commit Project'
Symbol:
Function: The command commits changes that were made in CODESYS to the SVN reposi-
tory. The “Commit” dialog opens for this purpose.
Call:
● Context menu: “SVN” to commit exactly this object
● “Project è SVN è Commit Project” to commit all changes in the project at the same time
Requirement: At least one object was modified. An object whose contents have been modified
is overlaid in the object tree with the , , or symbol.
When you execute the command, the lock on the objects to be committed is lifted automatically.
See also
● Ä Chapter 6.6.7.6.1 “Overlay Icons” on page 4319

Table 782: “Commit to: <URL project/object>”
 URL in SVN repository

Example: file:///D:/SVN repository/trunk/ControlABC.project
“Log message” Type in a log message that comments your change.

Example: Bug fix error 123
“Recent Messages” Opens the “Recent Messages” dialog for displaying the last log messages. You

can click a log message to accept it.

Dialog 'Commit'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4328

http://svnbook.red-bean.com/de/1.8/svn.tour.revs.specifiers.html

Table 783: “Changes made (double-click on object for compare, right-click on object for more operations)”
List of objects that were changed and can therefore be committed. The SVN
URLs mirror the hierarchy of the object in the SVN repository.
The objects are highlighted in color according to the object status:
● Blue: Modified
● Green: Added
● Dark red: Deleted
● Red: Conflicted
● Black: Non-versioned (not in SVN repository)

Note: These objects are displayed when the “Show non-versioned objects”
option is selected.

● Gray: Excluded from commit
Note: This is the case when the “Ignore during commit” option is selected.

The list also contains objects which have not been modified but have a lock. This
helps to prevent locking from going unnoticed in the repository.
Double-click an object in order to open the compare dialog. The revision of
the working copy is compared with the base revision. The compare dialog also
opens when you click “Compare” in the context menu.
Right-click an object in order to open the context menu.
Note: When the “Commit Project” command has been executed, a list of objects
is shown here. When the “Commit” command is applied to a specific object,
only this object is shown (if modified or locked) and its modified or locked child
objects.

“Object” : The object is selected for the commit.

Example:

“Text status” Object status in CODESYS
● “Modified”
● “Added”
● “Deleted”
● “Non-versioned”
● “Conflicted”

“Property status” Status of the metadata of the object
● “Modified”
● “Added”
● “Deleted”
● “Conflicted”
● “Normal”

“Lock” If the object has a lock, then it is shown here the user who applied the lock.
Example: b.mayer

“Description” Display of the log message

“Select/Deselect All” : All objects in the list are selected.

“Keep Locks” : Your locked object remains in locked after the commit.

“Keep Change Lists”: : The change list also remains after the commit.

: The change list is not deleted after the commit.

“Update After Commit
(recommended)”

: The object/project is updated after the commit. Select this check box to
ensure that the project is up-to-date and to prevent conflicts resulting from mixed
revisions of working copies.

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4329

Button “Update Project” Updates the project
Hint: Prevent conflicts by committing a previously updated project/object.

“OK”

Keyboard shortcut [Ctrl]+
[Enter]

Keyboard shortcut [Ctrl]+
[Enter]

Checks the working copy first. Starts the commit of changes when the working
copy is current.
Opens a dialog when the working copy is outdated. You can then select from the
following:
● “Abort the commit, I want to investigate the issue.”
● “Yes, I want to update this project now.”
● “Continue with the commit, I know what I do.”

Note: The history of the commit is displayed in the “Messages” view.
The messages are highlighted in color.
● Blue: Commit a change
● Green: Add an object
● Dark red: Delete/replace an object
● Black: Other messages (summary)

Handling external objects
If the external object is in the same SVN repository, then changes in this
external object are listed in the commit dialog and committed together with the
internal project. If an external object is in another SVN repository, then you are
notified about changes in the external project and you have to commit these
separately.

An external object has the “externals” property.

See also
● Ä Chapter 6.6.7.6.2.7 “Command 'Compare'” on page 4331
● SVN help:

http://svnbook.red-bean.com/en/1.7/svn.basic.in-action.html#svn.basic.in-action.mixedrevs)

 “Compare” Opens the compare dialog to compare the working copy with the top-level revi-
sion.

 “Compare with HEAD
version”

Opens the compare dialog to compare the working copy with the HEAD revision.

“Compare with Revision” The list entries are highlighted in color according to the object status:
● Blue: Modified
● Green: Added
● Dark red: Deleted
● Red: Conflicted
● Black: Non-versioned (not in SVN repository)

Note: These objects are displayed when the “Show non-versioned objects”
option is selected.

● Gray: Excluded from commit
Note: This is the case when the “Ignore during commit” option is selected for
the object.

“Clear” Discards your changes to the working copy. Then the object corresponds to the
revision in the SVN repository.

“Show log” Shows the version history of the selected object.

Context menu
(right-click on
object)

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4330

http://svnbook.red-bean.com/de/1.7/svn.basic.in-action.html#svn.basic.in-action.mixedrevs)

“Properties” Opens the “SVN Properties” dialog. The properties are displayed there and you
can edit them.

Move to change list Note: This command has not been implemented yet.

Command 'Compare'
Symbol:
Function: This command opens a tab that shows the result of the comparison of your working
copy and the BASE revision. The base revision is the top-level revision in the SVN repository.
Call:
● Menu bar: “Project è SVN”.
● Context menu
Requirement: The object is versioned, it was modified locally, and it does not contain any
conflicts.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä Chapter 6.4.1.5 “Comparing projects” on page 1817

Command 'Compare with HEAD revision'
Symbol:
Function: This command opens a tab that shows the result of the comparison of your working
copy and the HEAD revision. The HEAD revision is the top-level revision in the branch. You can
revert specific changes that were committed to the HEAD revision.
Call: Context menu: “SVN”

Requirement: The object is versioned and not conflicted.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

Command 'Compare with revision'
Symbol:

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4331

Function: This command opens the “Project log” dialog or “Log - <object> ” where the version
history is displayed from the project or an object of the CODESYS project. Here you can select
a revision. A tab opens and shows the result of the comparison of your working copy and the
revision.
Call: Context menu: “SVN”

Requirement: The object is versioned and not conflicted.
Multiple tabs can be open at the same time with the comparison of different objects.

Comparison by object type
The comparison dialog makes use of the functionality of the CODESYS com-
mand “Project è Compare”. In this way, objects are compared according to
their object type.

See also
● Ä “Tab 'Project log', Dialog 'Log - <object>'” on page 4338
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

Command 'Compare to remote project...'
Symbol:
Function: This command opens the dialog “Select Remote Project for Comparison”.
Call: Menu bar: “Project è SVN”.
See also
● Ä Chapter 6.4.1.21.3.5.21 “Command 'Compare'” on page 2607

Table 784: “URL of SVN repository”
URL of the project in the SVN repository that is compared.
Example: file:///D:/SVN repository/trunk/ControlDEF.project
As soon as a valid SVN repository is specified, you can click the adjacent button
or use the options to browse in “Revision” and select a project.

The label on the button corresponds to the selected revision:
● “HEAD”: Newest revision (top revision)
● “15”: Revision number of the selected revision
● “12/23/2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
After clicking the button, the dialog “Select revision” opens.
Note: The dialog provides the same options as the “Revision” group.

Opens the dialog “Browse SVN repository” to search the SVN repository.

Table 785: “Checkout options”
“Omit externals”: : External objects are not compared.

Dialog 'Select
Remote Project
for Comparison'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4332

Table 786: “Revision”
Options for selecting a specific revision
Note: the current valid selection is also displayed next to the SVN repository URL.

“HEAD” : The HEAD revision is selected. This is the latest revision (top revision) within
a branch.

“Revision” : A specific revision is selected by the revision number.
Example: 3

“Date” : The specific revision is selected by the modification date.
Example: 12/23/2016 11:59:59

“Use UTC Time”: : Modification date in universal time.

Table 787: “compare options”
“Ignore Whitespace” : No comparison of whitespace characters. Semantically relevant whitespaces,

such as in strings, are compared anyway.

“Ignore Comments” : No comparison of comments.

“Ignore Properties” : No comparison of properties. Folders, the property “Exclude from build”, and
POU images are not compared.
See: Dialog 'Properties'

“OK” Compares the SVN project with the working copy.

See also
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322
● Ä Chapter 6.4.1.21.4.11 “Dialog 'Properties'” on page 2753

Command 'Include externals to project', Command 'Include externals'
Symbol:
Function: These commands open the dialog “Include externals”.
Call:
● Menu bar: “Project è SVN”.
● Context menu: “SVN”

Requirement: An object is selected in the object tree. The external objects are linked below
that. If you have selected nothing or the project root directory, then the command “Include
externals to project” is available. If you have selected an object, then the command “Include
externals” is available.

The same external objects cannot be linked multiple times at different locations
in the same project. This leads to problems in CODESYS because of conflicts
with the internal identification of the object.

Dialog 'Include
externals'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4333

Table 788: “URL of SVN repository”
URL of the external object that is linked. The object to be linked is versioned and
can have sub-objects.
External objects are located at another location in the SVN repository than the
project. It can even be in another SVN repository.
Example: file:///D:/SVN repo A/trunk/DSTest.project/
GlobalTextList
Note: The objects that should be linked below the selected object must have a
matching object type. For example, only a task can be linked below the “Task
configuration” object.

Opens the dialog “Select revision”. Here you can select a revision.
The button is labeled with the currently selected revision:
● “HEAD”: Newest revision (top revision). Default
● “15”: Revision number of the selected revision
● “12/23/2016 11:59:59 (UTC)”: Change date of the selected revision (UTC)
Note: The dialog provides the same options as the “Revision” group.

Opens the “SVN repository browser” dialog Here you can browse the SVN repo-
sitory.

Table 789: “Revision”
Options for selecting a revision
Note: the current valid selection is also displayed in the buttons next to the SVN repository URL.

“HEAD” : Latest revision (top revision) selected in a branch.

“Revision” : A specific revision by the revision number.
Example: 3

“Date” : A specific revision by the modification date.
Example: 12/23/2016 11:59:59

“Use UTC Time”: : Modification date in universal time.

“OK” Adds the external object and its sub-objects with the property svn:externals
to your project (below the selected object). The working copy is updated and the
external object is overlaid with the symbol.

Example: (external device Source)

Note: If the linking fails (for example when adding a device below a task configu-
ration), then the complete operation fails and reverts back.
Note: Renaming or moving individual external objects is permitted inly within an
external tree, whereby it is not permitted to move the top object.
To move a complete tree, you have to remove it and link it to another location.

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4334

“... You should seriously consider using explicit revision numbers in all of your
externals definitions. Doing so means that you get to decide when to pull down
a different snapshot of external information, and exactly which snapshot to pull.
Besides avoiding the surprise of getting changes to third-party repositories that
you might not have any control over, using explicit revision numbers also means
that as you backdate your working copy to a previous revision, your externals
definitions will also revert to the way they looked in that previous revision, which
in turn means that the external working copies will be updated to match the
way they looked back when your repository was at that previous revision. For
software projects, this could be the difference between a successful and a failed
build of an older snapshot of your complex codebase. ...”

This is cited from:

http://svnbook.red-bean.com/nightly/en/svn.advanced.externals.html).

Command 'Ignore on commit'
Function: This command identifies an object and adds it to the "ignore-on-commit” list. Then it
is deactivated in the commit dialog by default.
Call: Menu bar: “SVN”

Requirement: At least one object is available that is not in the change list ignore-on-
comment.

Objects of the "ignore-on-commit” list are overlaid with the symbol in the object tree. By
default, they are not selected in the commit dialog, unless a dependency of a selected object
requires it. These objects can always be selected manually in the dialog.
See also
● Ä Chapter 6.6.7.6.2.27 “Command 'Un-Ignore on commit'” on page 4343

Command 'SVN Info'
Function: This command provides information about the selected object in the SVN repository.
The “SVN Information” dialog opens for this purpose.
Call: Context menu: “SVN”

Requirement: A versioned object (with SVN link) is selected in the object tree.

Name: Device_4\Plc Logic\Application\PLC_PRG
URL: file:///D:/SVN repository/trunk/ControlABC.project/Device/Plc
Logic/Application/PLC_PRG/svnobj
Repository Root: file:///D:/SVN repository/
Repository UUID: 185325d7-73eb-e54b-ab50-206aa23c8b42
Revision: 29
Node Kind: File
Schedule: Normal
Last Changed Author: a.mayer
Last Changed Rev: 8
Last Changed Date: 17.01.2017 12:33:51
Text Last Updated: 17.01.2017 12:33:51
Checksum: d5fb4d91ebaea06f26bcdb15942724d57932b6a3

Example

Dialog 'SVN
Information'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4335

http://svnbook.red-bean.com/nightly/de/svn.advanced.externals.html

Command 'Show properties'
Symbol:
Function: This command opens the “SVN Properties” dialog. Here you can edit the properties
of the versioned object.
Call: Context menu: “SVN”

Requirement: A versioned, unlocked object is selected.

Table 790: “properties for: <object name>”
“Name” Name of the property

Example: myprop:customer-number
Note: SVN has some reserved properties. Example: svn:mime-type

“Value” Example: 1234
Double-click in the field to edit the value.

“Add” Opens a dialog to define another property with its value.

“Remove” Deletes the selected property.

“Show binary properties” : The binary properties are also displayed.

“Reset” Resets the changes displayed in green.

“OK” Accepts the changes.

See also
● http://svnbook.red-bean.com.

Command 'Get lock'
Symbol:
Function: This command locks the object explicitly for you. The “Lock Message” dialog opens
for this purpose.
Call: Context menu: “SVN”

Requirement: The versioned object is not locked (not overlaid with the symbol).

“Enter the reason why you lock
the object:”

Lock message
Example: Locked for processing task 123

Button “Recent Message” Shows message in the dialog that have already been used. There you select one
in order to use the lock message.

“Recursive” : The object is locked with all subordinate child objects.

“OK” Locks the object

When the lock is successful, the object (in the object tree) is overlaid with the
symbol.

Dialog 'SVN
Properties'

Dialog 'Lock
Message'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4336

http://svnbook.red-bean.com

Command 'Steal locks'
Symbol:
Function: This command steal the lock of the object. The “Lock Message” dialog opens for this
purpose.
Call: Context menu: “SVN”

Requirement: The versioned object is locked by someone else (overlaid with the symbol).

“Enter the reason why you lock
the object:”

Lock message
Example: a.mayer had to steal the lock because the changes
need to be implemented so urgently.

“Recent Message” Shows message in the dialog that have already been used. There you select one
in order to use the lock message.

“Recursive” : The lock is stolen by the object and all subordinate child objects.

“OK” Steals the lock.
When the stolen lock is successful, the object (in the object tree) is overlaid with
the symbol.

Command 'Release lock'
Symbol:
Function: This command releases the lock of an object.
Call: “Context menu è SVN”

Requirement: The object is locked.

Command 'Release locks recursively'
Symbol:
Function: This command releases the lock of an object explicitly with all of its subordinate
objects.
Call: “Context menu è SVN”

Requirement: The object is locked.

Command 'Show log', Command 'Show project log'
Symbol:
Function: These commands open the tab “Project log” or “Log - <object>”. The version history
of the project or an object of the CODESYS project is displayed in the tab.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If you select nothing or the base node in the object tree, then the history of the entire project
is displayed (“Show project log”). If you select one or more objects, then the history of these
elements is displayed (“Show log”).
Multiple tabs can be open at the same time with the version history of different objects.

Dialog 'Lock
Message'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4337

Upper area
● “Revision”: Revision

number
● “Author”
● “Date”
● “Message”: Message

entered at commit

List of all revisions of the project or the selected objects in the information. The
first 100 revisions are displayed by default. The “Next 100” and “All” buttons are
provided for displaying more or all revisions.
Several commands are available in the context menu of each revision. These
context menu commands are described below.

Middle area Display of the “Message” of the revision that is selected in the upper area.

Lower area
● “Action”
● “Path”: Object path in SVN
● “Copy from path”
● “Copy from revision”

List of actions that were performed on the objects of the project in the selected
revision:

“Hide unrelated changed
paths”

: All changes of this revision are hidden that do not have any relevance to the
object.

“Stop on copy/rename” : If the object was copied from another location in the SVN repository, then no
more log messages are retrieved. This is especially beneficial when branches or
tags are monitored and only changes within the branch are relevant.

“Filter/Range” Opens the “Filter” dialog

“All” All revisions are listed.

“Next 100” The next 100 revisions are listed.

Table 791: Dialog “Filter”
“Revision range” The displayed revisions can be filtered by “Head”, “Revision”, or “Date”.

: The option fields for “Start revision” and “End revision” are editable.
“Use UTC time”: Date display in universal time.
For more detailed information, refer to the description “Dialog ‘Select revision’“.

“Message contains” Display of revision logs that contain a special text in the “Message”

“ Author contains” Display of revision logs of the specified author

“Path contains” Display of revision logs of the specified path

Table 792: Context menu commands of the revisions
“Compare with base working
copy”

Compares the selected revision of the object with the base working copy (without
local changes).

“Com with working copy” Compares the selected revision of the object with the working copy.

“Compare with HEAD revision” Compares the selected revision of the object with the HEAD revision.

“Compare with previous
revision”

Compares the selected revision of the object with the previous revision.

“Update item to revision” Updates the object to the selected revision.
Note: Changes of the project by this command cannot be committed.
For VSS users: This is comparable to loading an older version without checkout.
To revert a previous commit, the command “Revert to this revision” has to be
used.

Tab 'Project log',
Dialog 'Log -
<object>'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4338

“Revert to this revision” Reverts the object to the selected revision.
This command does not have an effect on the SVN repository as long as the
changes are not committed. Internally, SVN reverts the merges for all changes
that were made after the selected revision in order to revert the changes of the
preceding commits.

“Edit author” Opens a dialog for changing the author of the revision.

“Edit log message” Opens a dialog for changing the log message of the revision.

“Revision properties” Opens the dialog “Revision properties” where the properties are displayed.
In the dialog, you can activate the “Add” and “Remove” properties and the option
“Show binary properties”.

“Create branch/tag from this
revision”

Creates a branch or tag from the selected revision.

“Browse SVN repository” Opens the “SVN repository browser” dialog

“Copy to clipboard” Copies log details of the selected revision to the clipboard This is the revision
number, author, date of revision, log message, and the list of changes objects for
each revision.

See also
● Ä Chapter 6.6.7.6.2.7 “Command 'Compare'” on page 4331
● Ä Chapter 6.6.7.6.2.8 “Command 'Compare with HEAD revision'” on page 4331
● Ä Chapter 6.6.7.6.2.9 “Command 'Compare with revision'” on page 4331
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322
● Ä Chapter 6.6.7.6.3.3 “Dialog 'Select revision'” on page 4351

Command 'Revert', Command 'Revert project'
Symbol:
Function: This command opens the “Revert” dialog. In the dialog, select the objects whose
local changes should be reverted, and those that are reverted to the state of the base revision
of the working copy.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If you select nothing or the main node in the device tree, then all modified objects are listed in
this dialog (“Revert project”). If you selected one or more objects, then only the changes to this
object are listed and recursively their sub-objects (“Revert”).

“Group externals” : The external definitions are grouped by their external storage locations.

“Keep locks” : The lock is retained for all files that are modified by the revert command.

“Select/deselect all”

When external objects are deleted, Professional Version Control cannot restore this data in SVN
offline mode. The user is prompted how to proceed:
● Switch back to SVN online mode and call the external objects.
● Connect now to the SVN server one time in order to complete the current operation, but

afterwards switch back to SVN offline mode.
● Skip the retrieval of the external objects. They can be fetched later by updating the project.

Dialog 'Revert'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4339

See also
● Ä Chapter 6.6.7.6.2.21 “Command 'Revert to revision', Command 'Revert project to revi-

sion'” on page 4340

Command 'Revert to revision', Command 'Revert project to revision'
Symbol:
Function: This command opens the “Select revision” dialog. In this dialog, you select the
revision to which the project or the selected objects revert.
Call:
● “Project è SVN”
● “Context menu è SVN”

If nothing or the base node is marked in the object tree, then the entire project is reverted to
a specific revision (“Revert project to revision”). If one or more objects are selected, then these
objects and their sub-objects are reverted (“Revert to revision”).

For a description of the dialog, refer to the section "Select revision".
See also
● Ä Chapter 6.6.7.6.3.3 “Dialog 'Select revision'” on page 4351
● Ä Chapter 6.6.7.6.2.20 “Command 'Revert', Command 'Revert project'” on page 4339
● Ä Chapter 6.6.7.6.2.19 “Command 'Show log', Command 'Show project log'” on page 4337

Command 'Update', Command 'Update project'
Symbol:
Function: This command commits changes in the SVN repository to the project. The update is
performed with the HEAD revision.
Call:
● Menu bar: “Project è SVN”.
● “Context menu è SVN”

If nothing or the main node is selected, then the entire project is updated (“Update project”).
If one or more objects are selected, then these objects and their sub-objects are updated
(“Update SVN”).

Dialog 'Select
revision'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4340

The following cases are possible:
● Projects are added to the project that are present in the SVN repository, but not in the

project. In this case, the message "Added <object>" is issued to the message view.
● Objects that no longer exist in the SVN repository, but are present in the project locally

(and not marked as "added”), are treated according to the Subversion standard procedure:
If local changes are present, then the object remains in the project as unversioned. If there
are no local changes, then the object is also deleted locally because the user can retrieve
the object from an older version at any time. In this case, "Deleted object" is issued to the
message view.

● Versioned objects that exist in both the SVN repository and the project are updated if they
are different. Three cases to observe:
– No local changes have been made since the last update: In this case, the local object is

overwritten by the contents from the SVN repository. The message “Object updated” is
issued to the message view.

– Local changes have been made since the last update and the corresponding object type
can be merged. When versions have been merged successfully, the message “Objects
merged” is issued to the message view. If the command is not executed successfully,
then the object is marked as "Conflicted object" in the object tree and the message
“Conflicted object” is issued.

– Local changes have been made since the last update and the corresponding object type
cannot be merged. In this case, the object is marked as "Conflicted object" in the object
tree and the message “Conflicted object” is issued.

If only some of the objects are updated, it may be that objects with the same name already
exist. For example, this situation can come from moving objects to a folder.
For this conflict, you can react in the following ways:
● Do nothing and leave the conflict-causing objects as they are.
● Update (and remove) the conflicting objects in order to correct the conflict.
● Update the entire project in order to remove all conflicting objects and correct the conflict.
See also
● Ä Chapter 6.6.7.6.2.23 “Command 'Update to revision'” on page 4341

Command 'Update to revision'
Symbol:
SFunction: This command opens the “Update” dialog. In the dialog, the revision is defined for
updating the project.
Call:
● “Project è SVN”
● “Context menu è SVN”

If you select nothing or the base node in the object tree, then the entire project is updated to a
revision (“Update project to revision”). If you select one or more objects, then these objects are
updated and their sub-objects are updated recursively (“Update to revision”). As an option, you
can define that the sub-objects are not updated.
The behavior of the updating process (for example merging of conflicts) is similar to the “Update
project” and “Update” commands.

“HEAD” : This command behaves the same as the “Update” and “Update project”
commands.

“Revision” : The revision to which was last updated is selected by the revision number.

: Opens the dialog “Log” for selecting the revision.

Dialog 'Update'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4341

“Date” : The revision to which was last updated is selected by the modification date.

“Use UTC time”: : The date is displayed in universal time.

“Recursive” : Default setting. The selected part is updated recursively. This means that all
elements below the selected object are also updated.

“Omit externals” : External objects are not updated.

See also
● Ä Chapter 6.6.7.6.2.22 “Command 'Update', Command 'Update project' ” on page 4340
● Ä Chapter 6.6.7.6.3.3 “Dialog 'Select revision'” on page 4351

Command 'Update only this'
Symbol:
Function: The command updates the selected objects. In contrast to the “Update” and “Update
to Revision” commands, the child objects are not updated.
Call: “Context menu è SVN”

See also
● Ä Chapter 6.6.7.6.2.22 “Command 'Update', Command 'Update project' ” on page 4340
● Ä Chapter 6.6.7.6.2.23 “Command 'Update to revision'” on page 4341

Command 'Disconnect project from SVN'
Symbol:
Function: This command deletes all connections of the current project to SVN by converting the
project into a non-versioned project.
Call: Menu bar: “Project è SVN”.

Because this operation cannot be reversed, the operation must be confirmed
before the command is executed.

Use the command "Connect to existing project” to connect to the SVN reposi-
tory again at a later time.

See also
● Ä Chapter 6.6.7.6.2.31 “Command 'Connect to existing project'” on page 4345

Command 'Switch'
Symbol:
Function: This command opens the “SVN switch” dialog. In this dialog, you specify a URL in
the SVN repository to which the current working copy of the project is updated. The command
switches a project from a branch or tag to another.
Call: Menu bar: “Project è SVN”.
Requirement: The project is versioned.

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4342

“From” Current SVN URL of the project

“To” Input field for the target URL in SVN
● “HEAD”: The “Select revision” dialog opens.
● : The “SVN Repository Browser” dialog opens. There you select the target

URL in the SVN repository.

See also
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322

Command 'Un-Ignore on commit'
Function: This command removes an unversioned object from the ignore list so that the object
is checked by default on commit.
Call: Context menu: “SVN”

Requirement: The command “Ignore on commit” was executed for the object. The object is
marked with the symbol.
See also
● Ä Chapter 6.6.7.6.2.12 “Command 'Ignore on commit'” on page 4335

Command 'SVN Cleanup'
Function: This command opens the “SVN Cleanup” dialog. In the dialog, you define actions that
are performed when cleaning up the SVN working copy.
Call: Menu bar: “Project è SVN”.

Table 793
“Internal SVN working copy”

“Update time stamps (speeds
up SVN status display)”

: Corrects recorded time stamps for unchanged files in the working directory.
This leads to a reduction in the compare time for future checks. It is not neces-
sary to execute this in regular intervals in the normal workflow.

“Vacuum cached pristine
copies (may reduce the size of
your project file)”

: Cleans the buffer for the original copies by deleting older versions that are no
longer referenced by the current project. Advantage: The size of the project file
is reduced. Disadvantage: If you downgrade to older revisions, or if you switch
between different branches, then the retrieved data size will become larger.

“Clear work queue and force
unlock of SVN internal data
structures (emergency only!)”

: Cleans up the internal SVN task queues and unlocks internal SVN data
structures. This should never be necessary during normal work by Professional
Version Control.
Note: Use this option only if errors occur for SVN commands due to locked
working copies. When this is the case, it refers to an error in Professional
Version Control. Then please send us an error report (if possible with steps to
repeat) to the CODESYS support.
Info: These are administrative locks that are internal locks in the SVN
working copy. These locks are not set up by context menu commands. For
more information, refer to the section "The three meanings of locks" in:
http://svnbook.red-bean.com/en/1.8/svn.advanced.locking.html

“Project contents”

Dialog 'SVN
switch'

Dialog 'SVN
Cleanup'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4343

http://svnbook.red-bean.com/en/1.8/svn.advanced.locking.html

“Revert all local changes (use
with care!)”

Reverts all local changes to the original status in the SVN repository.

“Release all locks” Releases all advisory locks in the project (locks visible to the user). These locks
are activated by “Acquire lock” and “Steal lock”.

“Revalidate all locks against
the repository (they could have
been stolen)”

Checks whether the locally available advisory locks are still valid or have been
stolen by someone else for example. All invalid locks are removed.

“Status caches”

“Clear all caches and refresh
status icons”

Deletes all internal caches that Professional Version Control has and updates
the status icons. Required only if it issues an error in Professional Version
Control through which the caches or the status display are inconsistent.

Command 'Clear authentication data'
Function: This command opens the “CODESYS” dialog. In this dialog, define the caches that
will be deleted.
Call: Menu bar: “Project è SVN”.

The authentication memory contains the authentication data of all SVN repositories for which the user has
selected for saving the authorization data. This memory is deleted completely by this command.

“Clear the shared on-disk
cache.”

: The data saved on the computer is deleted.

“Clear the RAM cache of this
instance.”

: The data saved in the RAM is deleted.

The authentication data saved on the computer is stored in %APPDATA%
\Subversion\auth. This memory path is also used for most other Subver-
sion client applications (for example, TortoiseSVN and AnkhSVN). Therefore,
deleting the authentication data affects these applications as well.

Command 'Merge changes'
Symbol:
Function: This command opens the “Merge” dialog. In this dialog, you determine the revisions
with the changes to be merged with the working copy of the project.
Call: Menu bar: “Project è SVN”.
Requirement: The project is linked to SVN.

Dialog 'CODE-
SYS'

Dialog 'Merge'“”

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4344

“Kind of merge” ● “Sync/Reintegrate/Symmetric merge”: All missing changes from the trunk (or
a different branch) are synchronized with this branch.

● “Cherry pick”: Integrates specifically selected revisions from one branch to
another branch. This is necessary, for example, if any error trapping has to
be ported back to an older version.

“Merge source” SVN URL of the SVN repository
● Input field
● “HEAD”: HEAD revision
● : Dialog “SVN Repository Browser” opens for selecting the SVN repository.

“Define start and end revision” Select this option to merge a cohesive range of revisions with the working copy.

“Start revision” Defines the range of revisions that are merged with the working copy:
● “HEAD”: HEAD revision
● “Revision”: Start and end revision of the range
● “Date”: Date of the start and end revisions

“End revision”

“Define revision range” Select this option to merge individual revisions with the working copy. You can
also highlight the individual revisions in the “Log” dialog.
Note: When defining ranges, CODESYS SVN behaves like other graphical cli-
ents, such as Tortoise SVN), and not like the command-line client. Example: For
a range of 4-7, revisions 4, 5, 6, and 7 are merged.

See also: Merging a Range of Revisions

“Dry run (simulation)” : This command is executed without changing the working copy. Files that are
changed during an actual merge are displayed, as well as ranges where conflicts
occur.

“Record only” : The revision is marked as "merged" without actually performing the merge.

“Ignore ancestry ” : SVN uses path-based differences only, not history-based differences.

See also
● Ä Chapter 6.6.7.6.3.3 “Dialog 'Select revision'” on page 4351
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322

Command 'Connect to existing project'
Symbol:
Function: This command opens the “Connect to SVN repository” dialog. In the dialog, you
define the URL and the revision of the SVN repository with which the unversioned project is
connected.
Call: Menu bar: “Project è SVN”.
Requirement: The project is disconnected from SVN.

NOTICE!
Only users who have read access to the entire project (see the CODESYS user
and access management) can import the project into the SVN repository or can
link to an existing database project.

NOTICE!
This command functions reliably only when the project has already been
imported into SVN and then disconnected with the command “Disconnect
project from SVN”.

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4345

https://tortoisesvn.net/docs/release/TortoiseSVN_en/tsvn-dug-merge.html#tsvn-dug-merge-range

“URL of existing project” URL of the SVN repository
“HEAD”: Selection of the revision in the “Select revision” dialog

: Selection of the SVN repository in the “SVN Repository Browser”

“Checkout options” “Omit externals”: External objects are not checked out.

“Revision” ● “HEAD”: HEAD revision
● “Revision”: Number of the revision
● “Date”: Date of the revision

“Use UTC time”: : Date display in universal time.

See also
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322

Command 'Resolve conflict'
Symbol:
Function: This command opens the “<object>” dialog. In the dialog, the conflicts are displayed
and functions for resolving conflicts are prepared in order to merge changes.
Call: Context menu of the object.
Requirement: The object has a conflict that has occurred by updating the object with local
changes.

“Compare” The local objects are displayed on the left side, and the version from the SVN
repository is displayed on the right side.

“Use mine” A local change is used.

“Use yours” A change of the version from the SVN repository is changed.

“Apply” All changes are accepted that you made in this dialog. The status of the object is
changed.

“Cancel” Cancels all changes that you made in this dialog. But the object keeps the
conflicted status.

Command 'Work in offline mode'
Function: This command switches to SVN offline mode. In SVN offline mode, the implicit
locking and all commands that access the SVN repository are not possible.
Call:
● Menu bar: “Project è SVN”.
● Context menu: “SVN”

Requirement: The project is linked to SVN.
When switching back to SVN online mode, all present locks on the working copy are checked
against the server. If this locking is invalid, then it is released.

Dialog 'Connect
to SVN reposi-
tory'

Dialog '<object>'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4346

The user on a machine wants to make changes to the project without disconnecting the connec-
tion. At the moment, there is not connection to the server. Despite this, when automatic locking
is activated, work is possible because the SVN offline mode deactivates the automatic lock
temporarily.

Command 'Copy (Branch/Tag)'
Symbol:
Function: This command opens the “SVN Copy Branch/Tag” dialog. There you can “Branch” or
“Tag” a revision of your project. A specific revision of your project is saved there at this position.
A branch is normally used in order to save changes isolated in one version. A tag is used for
marking a specific state, for example a shipping version. Internally, it is copied not in the actual
sense, but more refers to the revision.
Call: Menu bar: “Project è SVN”.
Requirement: The project is versioned.

Table 794: “SVN repository”
“From” SVN path of the current project

Example: https://svnserver/repository/trunk/
ControlABC.project

“To” Target path in the SVN repository for the copy operation
Example of tag: https://svnserver/repository/tags/V4.4.4.4/
ControlABC.project

: Dialog “SVN Repository Browser” opens for selecting the target path.

Table 795: “Log message”
Input field Comment the change in a log message.

Example: Tag for version 4.4.4.4 created.
“ Recent Messages” Opens the dialog “Recent Messages” to display the last log messages. You can

click a log message to accept it.

Table 796: “Create copy from”
“Working copy (including local
changes)”

The new branch/tag refers to the working copy including all local changes. The
local changes are committed to the SVN repository for this purpose.

“Base revision of working copy
(<revision number>)”

The new branch/tag refers to the base revision of your working copy whose
revision number is displayed in the parentheses. If the working copy already
contains local changes, then these are not committed to the SVN repository.

“HEAD revision of the
repository”

The new branch/tag refers to the HEAD revision of your project.

“Specific revision in SVN
repository”

The new branch/tag refers to a revision that is displayed on the adjacent button.
Click the button to change the revision. The “ dialog opens.”.

Uses case

Dialog 'SVN
Copy (Branch/
Tag)'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4347

“Switch to new location ” : After the dialog is confirmed, the working copy switches to the new branch/
tag.

“OK” The target path is created (as a new tag ../repository/tags/V4.4.4.4
or as a new branch ../repository/branches/new_feature). Then the
revision specified in “Create copy from” is copied there.

See also
● Ä Chapter 6.6.7.6.2.2 “Command 'SVN Repository Browser'” on page 4322

Command 'Pending Changes'
Symbol:
Function: The command opens the “Pending Changes” view. All objects are listed there which
have changed from the base revision or which are locked.
Call: “View è Pending Changes”

The modified or locked objects are displayed in the lower half of the view. You can use the
“Commit”, “Revert”, and “Update” commands on single or multiple objects. You will find com-
mands for comparing and displaying the version history in the context menu of a selected
object.
CODESYS SVN first checks whether or not the storage format of the working copy matches the
storage format of the project in the SVN repository. If the storage formats differ, then the revert
must not be executed at the object level in order to prevent inconsistencies. In this case, you
can delete the entire project (working copy) first with the Save as command as the appropriate
storage format, which however can result in smaller data losses. After you select one of the
revert options, you will be guided by corresponding dialog prompts.
Double-clicking the object opens the project comparison.

“Select” Selection or clearing of all objects

“Commit” Commits local changes to the SVN repository

“Revert” Reverts the local changes to the state of the base revision of the working copy

“Update” The command commits changes in the SVN repository to the project. The
update is performed with the HEAD revision.

“Keep Locks” Lock is not released automatically after commit

“Storage profile update” Note that the storage profile (storage version) of the repository in the working
copy differs from the one in the SVN repository. In this case, a commit will
change the storage profile in the repository.
For actions which require an exchange between the working copy and reposi-
tory, you will be guided by corresponding messages to match the storage profile.

“Recent Messages” Shows the last used log messages. You can click a log message to accept it.

“Messages” Type in a log message that comments your change. Example: Bug fix error
123

See also
● Ä Chapter 6.6.7.6.2.6 “Command 'Commit', Command 'Commit Project'” on page 4328
● Ä Chapter 6.6.7.6.2.20 “Command 'Revert', Command 'Revert project'” on page 4339
● Ä Chapter 6.6.7.6.2.22 “Command 'Update', Command 'Update project' ” on page 4340

View 'Pending
Changes'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4348

6.6.7.6.3 Dialogs
6.6.7.6.3.1 Dialog 'Options' - 'SVN Settings'... 4349
6.6.7.6.3.2 Dialog 'Project Settings' - 'SVN Settings'...................................... 4350
6.6.7.6.3.3 Dialog 'Select revision'.. 4351
6.6.7.6.3.4 Dialog 'Subversion Authentication'... 4352
6.6.7.6.3.5 Dialog 'Automatic locking failed'... 4354

Dialog 'Options' - 'SVN Settings'
Symbol:
Function: This tab includes the basic settings for Professional Version Control.
Call: Menu bar: “Tools è Options”.

Table 797: “Automatic locking and merging”
“Merge” Behavior for the commands “Update”, “Merge”, or “Switch”, when both sides

(working copy and SVN repository) have changed from the base version.
● “Mark all colliding changes as conflicts”: The objects are not merged auto-

matically. All changes with a conflict are marked as "With conflict", even if
some of them can be merged automatically.

● “Merge mergeable changes, mark the others as conflicts”: Changes that
can be merged are merged automatically. All others are marked as "With
conflict".

● “Merge mergeable changes, ask the user for the others”: Changes that can
be merged are merged automatically. The user is prompted for all others.

● “Always ask the user, even for mergeable changes”: For all changed objects,
the user is prompted, even if some of them can be merged automatically.

“Locks” Behavior such as Professional Version Control objects when they are changed
locally.
● “Always try to lock before modification”: All objects are locked before they

are changed, even if they can be merged.
● “Only lock the objects which don't support merging”: Only those objects are

locked that cannot be merged automatically.
● “Never acquire a lock automatically”: No objects are locked, not even if they

can be merged automatically.

“Marker” ● “Use conflict markers when merging objects”: If objects with conflicts exist
that cannot be merged, then these conflicts are marked in the source code
with conflict markers. In addition, the object itself is marked as being merged
successfully (no conflict).

● “Leave non-mergeable objects as conflicted”: No conflict marker is set.
Objects that cannot be merged remain in the status "Conflicted".

“Prompt the user when
automatic locking fails.”

: If it is not possible, to lock the object, then the dialog “Automatic locking
failed” opens (see dialog description).

Foo();
>>>>>>>>>>>>>>>
I := I + 1;
===============
I := I + 2;
<<<<<<<<<<<<<<<

Example of
conflict
markers

Tab 'General'

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4349

Table 798: “Server check”
“Check server for updates and
locks”

: Professional Version Control checks in the specified time interval that objects
have been updated on the server. In addition, it checks whether objects are
locked or locks have been stolen.

“Check interval (minutes)” Example: 10

Table 799: “Ignore for comparison”
Ignore whitespace : Whitespace differences between the current project and the reference project

are ignored.

Ignore comments : Comments in the programming code are excluded from the comparison.

Ignore Properties : Object properties are excluded from the comparison.

Some of the SVN options can be overwritten by the project-specific settings.

Project-specific settings are defined in the menu “Project è Project settings”,
category “SVN Settings”.

See also
● Ä Chapter 6.6.7.6.3.5 “Dialog 'Automatic locking failed'” on page 4354
● Ä Chapter 6.6.7.6.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 4350

Symbol:
Function: This tab contains the settings for the SSH protocol.
Call: Menu bar: “Tools è Options”.

Table 800: “SSH client implementation”
“libssh2 (recommended)” Professional Version Control uses Libssh2 for establishing a connection via SSH

protocol. This is the recommended setting.

“SharpPlink (backwards
compatibility)”

Professional Version Control uses plink.exe for establishing a connection with
SSH servers. This option is required only for communication with outdated
servers that support the deprecated SSH-1 protocol.

The SSH configuration can be overwritten by means of the environment vari-
able SVN_SSH or server-specific by means of the SVN configuration file.

See also
● Tunneling via SSH

Dialog 'Project Settings' - 'SVN Settings'
Symbol:
Function: The behavior of the integrated SVN version control system is configured in this
dialog.
Call: Menu bar: “Project è Project Settings” (“SVN Settings”).
Requirement: A project is open.

Tab 'SSH'

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4350

http://svnbook.red-bean.com/nightly/en/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sshauth

Table 801: “Automatic locking and merging”
With these settings, you can overwrite the default settings that were made in the dialog “Tools è Options”,
category “SVN Settings”.

“Merge” Behavior for the commands “Update”, “Merge”, or “Switch”, when both sides
(working copy and SVN repository) have changed from the base version.

“Locks” Behavior such as Professional Version Control objects when they are changed
locally.

“Marker” Behavior for conflicts

Table 802: “Settings SVN version info”
“Create SVN_VERSION_INFO
constants for IEC access”

: The object SVN_VERSION_INFO is created and includes global constants or
variables for the project metadata.

: The object SVN_VERSION_INFO is not available.

When you activate the option, the object is created automatically. When you
deactivate the option, the object is removed from the project automatically.

See also
● Ä Chapter 6.6.7.6.3.1 “Dialog 'Options' - 'SVN Settings'” on page 4349

Dialog 'Select revision'
Function: This dialog shows the currently selected revision. You can edit the selection there.

“Revision”

“HEAD” : The latest revision (top revision) within a branch is displayed.

“Revision” : A specific revision is displayed by the revision number.
Example: 3
Tip: Click to show the revisions. Then the “Log” dialog opens to display
the revisions and the associated actions. The revision that you select there is
applied.

“Date” : A specific revision is checked out by the modification date. This is the highest
revision at the given time (the last revision before that time).
Example: 12/23/2016 11:59:59
Tip: See section "Revision identifiers" in "Version control with Subversion"

“Use UTC Time”: : Modification date in universal time is used.

“Reset recursively” : All objects below the selected object are also reset.
The action fails if
● Objects have been moved in or out of the hierarchy below
● Objects outside of the hierarchy would be changed by implicit dependencies

See also
● Ä Chapter 6.6.7.6.2.19 “Command 'Show log', Command 'Show project log'” on page 4337
● "Version control with Subversion", Section "Revision identifier"

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4351

http://svnbook.red-bean.com/de/1.8/svn.tour.revs.specifiers.html

Dialog 'Subversion Authentication'
The dialogs are used for authenticating the server/client connection. A server or client authenti-
cation is performed depending on the initial situation and protocol.
Overview of possible protocols and dialogs
● svn://: The SVN protocol; either unencrypted or SSL/TLS encrypted

– Can prompt for user name and password (even for an unencrypted connection)
– Can prompt for a server certificate from the dialog for authentication in order to confirm

the server if a certificate is unknown, defective, or invalid (for TLS/SSL encryption)
– As an alternative or in addition to the user name and password prompt, the client can

also be authenticated with client certificates (for TLS/SSL encryption). The dialogs for
authentication open with the client certificate.

● http://: SVN via http, unencrypted
– Can prompt for user name and password

● https://: SVN via http, SSL/TLS encrypted.
– Can prompt for user name and password
– Can prompt for a server certificate from the dialog for authentication in order to confirm

the server if a certificate is unknown, defective, or invalid.
– As an alternative or in addition to the user name and password, the client can also be

authenticated with client certificates. The dialogs for authentication open with the client
certificate.

● svn+ssh://: The SVN protocol, encrypted through an SSH tunnel. SSH (Secure Shell) is
the usual networking tool in Linux/Unix for accessing other computers.
– Can prompt for user name and password
– Prompts for server certificate in the dialog for authentication if the server is still unknown

in order to be sure that it is the correct server.

Initial situation: CODESYS (as a client) receives an unknown or defective server certificate.
This dialog shows information about the certificate. There you can confirm the identity of the
server.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Table 803: “Certificate information” (for SSL/TLS connections)
“Host name” Example: svn repository
“Thumbprint”

“Valid from”

“Valid to”

“Issuer” Example: ABB AG
“Certificate”

Table 804: “SSH server key information” (for SSH connections)
“Key type”

“Key size (bits)”

“Key thumbprint”

Dialog for
authentication
with a server
certificate

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4352

“Save information to RAM” : The certificate is saved to the working memory. Then the client recognizes in
the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The certificate is saved on the computer and it is available for future connec-
tions.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates and established the connection.

The certificate memory is secured cryptographically and distributed with other
SVN clients.

See also
● Version Control with Subversion

Initial situation: The SVN server requires a client certificate for authentication.
In this dialog, you select the client certificate in order to confirm the identity.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Table 805: “The SSL server requires a client certificate file.”
“File” Client certificate file

“Save information to RAM” : The certificate is saved to the working memory. Then the client recognizes in
the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The certificate is saved on the computer and it is available for future connec-
tions.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates and established the connection.

Initial situation: The SVN server is configured so that it demands a client certificate for authenti-
cation. The applied certificate is protected by a pass phrase.

“Authentication area” Connection that is secured
Example: https://svn repository:443

Dialog for
authentication
with a client cer-
tificate

Dialog for
authentication
with a pass
phrase

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4353

http://svnbook.red-bean.com/en/1.7/svn.serverconfig.netmodel.html

Table 806: “A pass phrase is needed to unlock the certificate.”
“Pass phrase” Example: ***

“Save information to RAM” : The pass phrase is saved to the working memory. Then the client recognizes
in the current CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : The pass phrase is saved on the computer and it is available for future
connections.
If you restart CODESYS, then the saved certificate is used.

“OK” Authenticates with client certificates by means of a pass phrase and establishes
the connection.

Initial situation: The SVN server is configured so that it demands a user name and password for
authentication.

“Authentication area” Connection that is secured
Example: https://svn repository:443

“User name” Example: a.mayr
“Password” Example: ***

“Save information to RAM” : Saved to the working memory. Then the client recognizes in the current
CODESYS session for future connections.
If you restart CODESYS, then you have to accept the certificate again.

“Save to disk” : Saved on the computer and it is available for future connections.
If you restart CODESYS, then the saved certificate is used.

“OK” Establishes the connection and authenticates it.

Dialog 'Automatic locking failed'
The dialog shows a list of all objects for which an automatic locking was not possible. In the
optoins you define how Professional Version Control will resolve the confilict.

Dialog for
authentication
with a user
name and pass-
word

Configuration and programming
Engineering interfaces and tools > Professional Version Control

2024/01/053ADR010583, 1, en_US4354

Table 807: “Automatic Locking and Merging”
● “Try to steal the lock for the

affected objects”
● “Activate the "Offline Mode"

to temporarily suppress
locking”

These options are displayed if another user has locked the object.

● “Update the affected
objects to the newest
revision”

● “Update the whole project
to the newest revision”

● “Activate the "Offline Mode"
to temporarily suppress
locking”

These options are displayed if there exists a more current version of the object
on the server.

● “Activate the "Offline Mode"
to temporarily suppress
locking”

These options are displayed if no connection can be established to the server.

“SVN Project Settings” Opens the SVN project settings dialog (menu “Project è Project Settings”).
There you can change the settings for the automatic locking.

“SVN Settings” Opens the general SVN project settings dialog (menu “Tools è Options”).

See also
● Ä Chapter 6.6.7.6.3.1 “Dialog 'Options' - 'SVN Settings'” on page 4349
● Ä Chapter 6.6.7.6.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 4350

6.6.7.6.4 Objects
6.6.7.6.4.1 Object 'SVN_VERSION_INFO'... 4355

Object 'SVN_VERSION_INFO'
Symbol:
The object contains the SVN metadata of the project as global constants or variables in a
variable list. It is located in the “POUs” view. You can specifically retrieve the data of the global
constants or variables by the application. By calling specific data, you can also reduce the
memory usage on the controller.
The SVN metadata is provided for this purpose, subdivided over multiple global variable lists
(GVLs):
● “SVN_VERSION_INFO”
● “SVN_Info_Summary”
● “SVN_Info_SummaryW”
● “SVN_Info_URI”
● “SVN_Info_Revisions”
● “SVN_Info_Flags”
● “SVN_info_LastChange”

The SVN_VERSION_INFO object is created automatically when a project is versioned by
importing it into a SVN repository. To do this, the “Create SVN_VERSION_INFO” option has
to be selected in the “Import project to SVN” dialog.
Furthermore you can create the object or remove it from the project with the option “Generate
SVN_VERSION_INFO constants for IEC Access” (Dialog “Project è Project Settings”, category
“SVN Settings”).

Configuration and programming

Engineering interfaces and tools > Professional Version Control

2024/01/05 3ADR010583, 1, en_US 4355

Table 808: Global Constants
Name Data type Description
MINREVISIO
N

LINT Lowest revision number of the working copy

MAXREVISIO
N

LINT Highest revision number of the working copy

PARTIAL BOOL TRUE: The working copy is incomplete.

Example: Cancellation during the last update due to a net-
work error or a checkout.

MODIFIED BOOL TRUE: Local changes were made.

SWITCHED BOOL TRUE: Parts of the project were branched (with the “Switch”
command).

VERSION STRING Version identification, similar to Apache™ Subversion®
(subversion.exe)

Example: 12:34M, means MINREVISION = 12,
MAXREVISION = 34, MODIFIED = TRUE
For more information, refer to the documentation for
Apache™ Subversion®.

CLEAN BOOL TRUE: The version is clean.

This is the case when MINREVISION is equal to
MAXREVISION, the working copy is complete, and non-ver-
sioned, and is was not switched.

URL WSTRING SVN-URL of the project
Example: https://svnserver/repository/trunk/
ControlABC.project

If a controller does not support the data type WSTRING, then a compiler error is
issued when accessing the object SVN_VERSION_INFO.

See also
● Ä Chapter 6.6.7.6.3.2 “Dialog 'Project Settings' - 'SVN Settings'” on page 4350
● Ä Chapter 6.6.7.6.2.4 “Command 'Import project to SVN'” on page 4326

6.6.8 Subversion
6.6.8.1 Project Version Control with Subversion
6.6.8.1.1 Introduction

Automation Builder projects can be stored in Subversion (SVN) repositories by using the Project
Version Control. The Project Version Control can be used to track changes on a project and
to have access to historic versions of the whole project or objects in the project. It is possible
to hold different versions of a project in branches and to compare these versions. The Project
Version Control enables multiple engineers to work collaboratively on the same project.

6.6.8.1.2 Preconditions
Make yourself familiar with the concepts of SVN.
This manual about Project Version Control is additionally to the following information and
describes mainly the specific behavior of Subversion in Automation Builder.

Basic knowl-
edge

Configuration and programming
Engineering interfaces and tools > Subversion

2024/01/053ADR010583, 1, en_US4356

● Homepage of Subversion: http://subversion.apache.org/
● Online user manual for Subversion: http://svnbook.red-bean.com/
● Documentation on SVN integration in Automation Builder: Refer to subfolder .

● In Automation Builder, the Project Version Control must be installed.
● A valid license for the Project Version Control must be activated.
● All collaborating users working on the same project need:

– Automation Builder installed in the same version with the same features.
– License for same edition.
– Same set of optional third party device descriptions.
– Same set of optional customer specific packages.

The Project Version Control can be used in combination with an SVN server in version 1.6 or
newer, the repository format should be 1.5, 1.6 or 1.7. Newer repository formats are not yet
supported.
The usage of local repositories in the local file system or even on a network share is strongly
discouraged.

6.6.8.1.3 Working with Project Version Control
● All objects in the device tree or POU tree are represented by an object in the SVN reposi-

tory, there might be hidden objects that are not visible in the tree but that exist in SVN.
● The smallest unit in the SVN repository is one object including all its data like name,

parameters, device identification.
● Objects are identified in the SVN repository by their name. Renaming one object in

Automation Builder means to delete it from the SVN repository and add a new one to the
SVN repository. Renaming an object causes a break in the history of that object.

● By default objects are locked before they are changed to prevent other users from changing
the object. The locking strategy can be changed in the user options.

● Objects can be compared to other versions of the same object, many differences/changes
between the current object in the Automation Builder project and the compared object can
be merged into the object in the Automation Builder project. Merging changes could be used
to resolve conflicts in case concurrent changed can not be avoided.

● To ensure consistency it is required and also enforced that some changes can be committed
or reverted only together.
– All changes to device objects in the hardware tree that are sub-nodes to the same top

level device. Note: Objects that are not devices are excluded, e.g. the application node.
– All changes below the AC500 PLC application node.

● Most SVN operations can not be performed while other external applications like CODESYS
or Panel Builder work on files that are embedded in Automation Builder project.

● Some operations like changing the target or updating the project to the latest device
(description) versions do a recursive lock of the whole AC500 PLC. If the lock can’t be
obtained the operation is aborted.

● Some objects contain internal data that has no meaning to the end user but is also impor-
tant. Changes on such data are not shown in the compare dialog or are summarized by a
placeholder like "There are hidden changes".

● Including externals is not supported.

Automation
Builder

SVN server

Configuration and programming

Engineering interfaces and tools > Subversion

2024/01/05 3ADR010583, 1, en_US 4357

http://subversion.apache.org/
http://svnbook.red-bean.com/

6.6.8.1.4 Recommendations on Working with Project Version Control
● Multiple users that work collaboratively on the same project should agree on their respon-

sibility for certain parts of the project where they do changes to avoid conflicts and tree
conflicts.

● Agree on locking strategy used by all users working on the same project.
● Distribute the work between multiple users meaningful.

– It is suggested to setup the hardware structure at first before other users checkout a
project to work on it and limit structure changes in the hardware tree to the minimum.

– Before adding objects, especially top level objects, users should agree that only one
user adds objects at top level or below the same parent, or agree on unique names for
the objects to add. The default naming scheme for new objects bears the risk of name
conflicts. These conflicts could be resolved only by reverting the changes of the user
who later tried to commit the changes.

● The SVN integration (and also project compare) gives lot of power to the user, users should
be sure to do only things they fully understand. Especially by merging changes incomplete it
is possible to create inconsistent data.

● Adding devices, removing devices or even changing parameters can have side effects to
other devices, do not change objects/parameters to their original state by merging that were
not done explicitly.

● Commit changes frequently to SVN.
– To release locks that you don’t longer need.
– To reduce the risk of conflict with co-workers.
– To keep the sets of changes to commit small.

● Do frequent updates when collaborating in a team.
– To be up-to date.
– To keep the sets of changes to get from SVN small.
– To reduce the risk of losing work results in case of conflicts.

● To avoid conflicts, it is suggested to stay with the default setting to automatically lock objects
before doing changes. Consider explicit recursive locks of sub-trees where you plan bigger
changes.

● Prefer a clean checkout over using the switch command to change between different
branches.

● Do not use the switch command to change between unrelated projects, this could corrupt
the Automation Builder project (local copy, not in SVN) easily.

● Commit local changes to the SVN repository before creating a branch.

● Give objects good/correct names after adding them and use renaming of objects already
committed to SVN sparely to maintain a continuous history in the SVN repository.

● The goal to revert only single changes of all changes done that must be committed/reverted
together, could be achieved by using project compare or the object compare dialog.

● If changes can’t be committed to the SVN repository because of locks hold by other users,
it is possible to create a branch, use the switch command to change to this branch and
commit the changes there. The branch and base line could be merged together later.

6.6.8.1.5 Known Issues and Troubleshooting
Not all changes are shown for all objects, but hidden changes are also important.
The device pool may be changed as side effect of several operations, including opening the
project.
When a project was corrupted (by performing an update that tried to add an AC500 communica-
tion module) it is possible to save this project and merge changes to a project that has been
cleanly checked out by project compare.

Be collaborative

Be careful

Be effective

Configuration and programming
Engineering interfaces and tools > Subversion

2024/01/053ADR010583, 1, en_US4358

6.6.8.2 SVN Support Examples
6.6.8.2.1 Importing Automation Builder Project to SVN Repository

1. In the Automation Builder main menu, go to “Project è SVN
è Import Project to Subversion”.

2. Enter user credentials and click “OK”.
3. Select SVN server repository to import Automation Builder project and click “OK”.

ð The Automation Builder project is imported into the selected repository and connected
automatically to the repository. The imported project nodes are identified with green
indicators.

6.6.8.2.2 Logging in User2
1. In the Automation Builder main menu, go to “Project è SVN è Checkout”.
2. Enter user credentials and click OK.
3. Select the repository location, project folder and revision if any and click “OK”.

ð The project will checked out of the repository, saved in the selected location and
opened as a primary project.

The tables below provide the descriptions of the options availlable in the check-out dialog.

Checkout options
Omit externals Do not checkout external objects.

As library project Saves the project as a CODESYS library file.

Configuration and programming

Engineering interfaces and tools > Subversion

2024/01/05 3ADR010583, 1, en_US 4359

Revisions
HEAD Checks out the Head revision.

Revision Allows to select the required revision of the
project.

Date Allows to select a revision date of the project.

The following instances can occur in the workflow.

● If the project contains any updates, the specific project level node is indicated with .
● If a new object is added to the project, the newly added node is indicated with .
● If the project node is deleted, the specific node is indicated with .

6.6.8.2.3 Examples
If User1 modifies Panel_CP600 project, then the node indicator turns to orange with lock
symbols. If User2 need to modify the same Panel_CP600 project, the Panel_CP600 project
appears with a lock symbol.

To steal the lock of an affected object, proceed as follows:
1. Double-click “Panel_CP600” project.

ð Automatic lock failed dialog is displayed.

2. Enable “Try to steal the lock for the affected objects” and click “OK” to steal the lock.
3. In the Lock Message window, enter the reason to steal the lock and click “OK”.
4. User2 can modify and commit the project.

If User1 adds a new object to the project and commit the changes, then User2 can update the
project to see the latest modifications.

Example 1

Example 2

Configuration and programming
Engineering interfaces and tools > Subversion

2024/01/053ADR010583, 1, en_US4360

The user can revert to any of the available project revisions.
1. Right-click on object node and select “SVN è Revert to Revision”.
2. Select or enter the revision number and click “OK”.

ð The revision command reverts local changes of this object back to the specific revision
of the working copy.

3. Right-click on the object node and select “SVN è Commit”.
4. In the commit window, enter the reason to change the project and click “OK” to make the

changes.

ð The project node is updated with the latest changes.

SVN server allows to select the required revisions of Automation Builder project. You can
checkout the project using “Project è SVN è Checkout” and then enter the credentials and
click “OK”.
In the check-out dialog, do the following:
1. Select the project repository.
2. Activate “Revision” and select or enter the revision number and click “OK”.

The user can work on the selected revision. To commit the changes to the project, right-click on
project and select “SVN è Commit Project”.

6.6.9 Mail service with SMTP/SMTPS

With the integration of the “Mail Service SL” library, the prerequisite for sending
mails with the PLC has been created. After appropriate programming of the
user requirements and the provision of appropriate hardware and software in
the periphery (router, mail program) this service is available.

Example 3

Example 4

Configuration and programming

Engineering interfaces and tools > Mail service with SMTP/SMTPS

2024/01/05 3ADR010583, 1, en_US 4361

This library can send, receive and delete emails. An SMTP server is required for sending, and
a POP3 server and mail account are required for receiving and deleting. An email can be sent
to multiple recipients, with carbon copies and blind copies. Also, any type of file can be attached
up to a size of 20 MB if the timeout has been adjusted to the internet speed. If the user specifies
a folder, attachments of received e-mails will be stored in this folder. The POP3 server must
support unique IDs in case of email deletion.

SMTP is a communication protocol for the exchange of data (e-mails) in networks or in the
internet. SMTP is primarily used for sending and forwarding e-mails. Other, specialized proto-
cols (POP3/IMAP) are used to fetch e-mails.

SMTPS is an independent further development of the SMTProtocol and authenticates the com-
munication of the e-mail partners by additional encryption protocols (SSL/TSL). This happens
before the message is even sent.

How to send e-mails via the SMTP protocol and how to create the tech-
nical requirements for this is described in detail in the application example.
AC500 V3 - Sending e-mails via the SMTP protocol

6.6.10 SNMP
SNMP is a network protocol to monitor and control routers, servers, switches, printers, com-
puters etc. from a central station. The protocol controls the communication between the devices
and the monitoring station.

Use the SNMP Service SL library to read out information from devices via the SNMP protocol.
The library provides function blocks for sending and receiving SNMP messages and is part of
the software package "IIoT Libraries SL".

In the integrated V3 library documentation (within the library manager) you find
further information on a respective library as well as on the functionality and
application area of the contained function blocks.

The application example AC500 V3 - SNMP Protocol describes the SNMP communication in a
scenario in which an AC500 PLC acts on the one hand as SNMP agent and on the other hand
as SNMP manager. In this case, the SNMP protocol is used for network monitoring. The AC500
PLC can receive SNMP requests and respond to them as an agent. As a manager, it can query
managed information from any network device that supports SNMP.

6.6.11 Scripting with Python
6.6.11.1 Python
6.6.11.1.1 Python script support

Scripting allows python scripts to be used to automate project configuration in Automation
Builder. Parameters can be added to scripts, so that a generic script can be customized before
execution. The user can add a script to most parts of the device tree. A script can be started
either from the user interface (by a command or with the python scripting editor) or from the
Windows command line and is saved with the project.
With the scripting feature commands or complex program operations can be automated.
Examples of use cases:

Mail Service SL
library

Simple Mail
Transfer Pro-
tocol (SMTP)

Simple Mail
Transfer Pro-
tocol Secure
(SMTPS)

Application
example

Simple Network
Management
Protocol (SNMP)

SNMP Service
SL Library

Application
example

Using scripts

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4362

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011078&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011079&LanguageCode=en&DocumentPartId=&Action=Launch

● Integration of Automation Builder in automatic build server environments:
– continuous integration (CI)
– continuous delivery (CD)
– continuous testing

● Integration with third-party software, for example:
– code generators
– creation of projects that are custom tailored to a specific machine configuration

● Creation of documentation
● Updating of libraries: Setting of project information during the release process
● Automatic testing: Mostly in connection with the Professional Test Manager
● Outputting variables via monitoring APIs

A valid license is required to use the scripting. If you open a project with the existing script
object without a valid license, you are not allowed to add or edit the scripts. However, the scripts
are not removed from the project.

The Automation Builder scripting language is modular and based on IronPython. For this pur-
pose, the Automation Builder “ScriptEngine” component combines the IronPython interpreter
with the Automation Builder development environment which makes the extensive python
framework libraries available including file access in networks and much more.

6.6.11.1.2 Working with script objects
Scripts to execute can be added to and stored in the Automation Builder project. Additionally,
parameters can be added to scripts, so that generic scripts can be customized before execution.

1. In the device tree, right-click on a node (e.g. a PLC node) and click “Add object”.
2. Under “Scripting category” select “Script è Add object”.

ð The 'Add Script' dialog is displayed.

3. Browse and select a script from the file system or create a new script by clicking [Add].

ð A script is added below the selected node and the editor is opened.

Licensing

Scripting lan-
guage

Adding a script
object to the
project

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4363

4. The default parameter values are read from the script. The user can edit the default
values as required.

Editing scripts within Automation Builder is not supported. You can use an
external editor to edit the script and then import it to Automation Builder.

The script objects can be reused within the project via copy-and-paste around
the device tree.

The user can execute the script with the parameter values via the execute button in the editor or
via right-click on the script object in the device tree by selecting “Script è Execute”.

The user can import the script from the file system. This will replace the contents of the
current script object with the contents of the imported file. Optionally, parameter values will be
preserved if the imported script has a matching named parameter. In the device tree, right-click
on a script object and select “Script è Import”.

The user can export the selected script and saved it as a new file in the file system. The
exported file does not include any edited parameter values. In the device tree, right-click on a
script object and select “Script è Export”.

The following instructions help the user to create parameters in the python script:
● Parameters must be defined in the script.
● Parameters and values are optional.
● The ParameterName and the ParameterValue must be delimited with symbols. The

format must be as follows:
"#AutomationBuilder_Parameter {"ParameterName"} {= "ParameterValue"}

● {ParameterName} is the name given to the parameter. This allows the values to be refer-
enced in the python script.

● {ParameterValue} is the default value given to the parameter. This value can be modified in
the editor.

The example below shows the format of the ParameterName and ParameterValue in the
script.
● #AutomationBuilder_Parameter "numWidgets": creates a new parameter called

numWidgets.
● #AutomationBuilder_Parameter "numWidgets" = "4": creates a new parameter called

numWidgets and initializes to the value 4.

Using parameters within the python script:
● Parameters can be used in the script by creating an instance of the parameter helper:

parameterHelper = AutomationBuilder_Parameters.create()
● Individual parameters are retrieved by calling:

GetParameter(parameterName). devicename = parameterHelper.GetParameter("Name")

A set of python script examples are available in the path %Public%\Documents\Automation-
Builder\Examples\Python scripts.

Execution

Import

Export

Parameters

Python script
examples

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4364

6.6.11.1.3 Execute Script
You can execute Python script files (<file name>.py), which contain a sequence of commands
for activating CODESYS functionalities, in the following way:
● In the CODESYS user interface by means of commands in the “Tools è Scripting” menu
● From the CODESYS user interface by means of a customized, configured toolbar
● From the Windows command-line

Calling Scripts from Menu Commands
Requirement: A valid Python script file <file name>.py is located in the file system. The
CODESYS user interface is open.
1. (optional) To monitor the processing of individual commands used in the script, click “Tools

è Scripting è Enable Script Tracing”.
2. In CODESYS, click “Tools è Scripting è Execute Script File”.

ð The statements in the script are executed and, if script tracing is activated, listed in the
message view.

Starting Scripts from the Command Line
In automated environments such as CI (Continuous Integration) servers or if scripts in
CODESYS have to be controlled by other programs, menu commands are not appropriate for
executing scripts. For these kinds of requirements, you can use the Windows command line to
start CODESYS and execute scripts.
Requirement: A valid Python script file <file name>.py is located in the file system.

1. Create a cmd file using start to start CODESYS and with the option --runscript
executes the script file. Other options are possible, for example --noUI, if the
CODESYS- User interface should not be opened.

2. Open the Windows “Command prompt” and execute the CMD file.

You can pass arguments with additional information to the script. Python scripts can access
arguments with the sys.argv[] list. The first element (Index 0) is always the name or path
of the Python script that is executed, followed by the "actual" parameters. (This is similar to
argc/argv in C.) In addition, scripts can also access environment variables that are set before
CODESYS is started with the corresponding Python or .NET APIs.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4365

A CMD batch file argvtestbat.cmd has the following contents (all in one line).
"C:\Program Files (x86)\CODESYS
3.5.17.0\CODESYS\Common\CODESYS.exe" --profile="CODESYS V3.5
SP17" --runscript="D:\Dokumente\Scripting\ArgvTestScript.py" --
scriptargs:'username password 3.14 "path=\"C:\temp\\\""' --noUI

You have a matching script file ArgvTestScript.py.
from __future__ import print_function

import sys
print("sys.argv: ",
 len(sys.argv),
 " elements:")

for arg in sys.argv:
 print(" - ", arg)

Now when you execute the CMD file, CODESYS starts and executes the script without
opening the CODESYS main window. Then CODESYS is exited:

Example

For a complete reference of all possible command line parameters, see the help page for the
command-line interface in CODESYS in the section for "--runscript".

For information about the Python API, see:
https://docs.python.org/2/library/os.html#process-parameters

For information about the .NET-API, see:
https://msdn.microsoft.com/de-de/library/77zkk0b6%28v=vs.110%29.aspx

● See also: Ä Chapter 6.4.1.16 “Using the Command-Line Interface” on page 2028

Calling Scripts from Toolbar Icons
You can provide your own toolbar in the CODESYS user interface with up to 32 icons for calling
script files. For this you need an ICO file where the icon is stored, and a PY file where the
Python script to be called is stored.
In the installation directory or in the program files directory under CODESYS, you create a
subdirectory named Script Commands. In that directory, you create the config.json config-
uration file. Specify the call information outline for each icon in the file. Here you can configure a
maximum of 16 icons. You can also store the ICO and PY files in the same directory.
Location
● <CODESYS installation directory>\CODESYS\Script Commands
● Users\<username>\AppData\Local\CODESYS\Script Commands

Default installation on Windows 10
C:\Program Files (x86)\CODESYS 3.5.14.0\CODESYS\Script Commands\
C:\Users\r.smith\AppData\Local\CODESYS\Script Commands

Example

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4366

https://docs.python.org/2/library/os.html#process-parameters
https://msdn.microsoft.com/de-de/library/77zkk0b6%28v=vs.110%29.aspx

If you store a config.json file with different call information at each of the
storage locations, then you can configure up to 32 different icons.

Configuration file
Outline of the configuration file for 2 icons
[
 {
 <icon call information>
 },
 {
 <last icon call information>
 }
]
Outline of the call information <icon call information>
"Name": "<tooltip of the symbol button>",
"Desc": "<description of the symbol button>",
"Icon": "<icon file name>",
"Path": "<path of the script file>"

Table 809: Call information
"Name" Required

Displayed as symbol tooltip
Example: "Name": "Pause"

"Desc" Optional
Comment for the icon
Example: "Desc": "Operation pause"
Note: Not yet displayed in the user interface

"Icon" Required
File path: <directory path>\<icon name>.ico of the icon

Example: "Icon": "pause.ico"
Hint: If the file is in the same folder as the config.json file, then the file name is
enough.

"Path" Required
Path of the Python script <directory path>\<script name>.ico
Example: "Path": "stop.py"
Hint: If the file is in the same folder as the config.json file, then the file name is
enough.

"Params" Note: These parameters are not currently assessed.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4367

File config.json
[
 {
 "Name": "Start",
 "Desc": "Starts processing",
 "Icon": "start.ico",
 "Path": "goon.py"
 },
 {
 "Name": "Pause",
 "Desc": "Pause operation",
 "Icon": "pause.ico",
 "Path": "stop.py"
 },
 {
 "Name": "Processing",
 "Desc": "Process again",
 "Icon": "VarStatSmall.ico",
 "Path": "process.py"
 }
]

The following files are located in the Script Commands:
config.json
goon.py
stop.py
process.py
start.ico
pause.ico
VarStatSmall.ico

Example

Creating script calls for a toolbar button
1. Create the Script Commands folder in one of the storage locations.

ð C:\Users\<username>\AppData\Local\CODESYS
2. Create executable Python files there.

ð Example:

File copy.py
print("The script COPY.PY is executed")
File delete.py
print("The script DELETE.PY is executed")

3. Create the ICO files for the scripts.

ð Example: Copy_before.ico, Copy_below.ico, CopyAll.ico

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4368

4. Create a configuration file config.json there.

ð The folder Users\<username>\AppData\Local\CODESYS\Script Commands
has the following content:

5. Open config.json and add the outlined call information.

ð [
 {
 "Name": "Copy Before",
 "Desc": "Copy something",
 "Icon": "Copy_before.ico",
 "Path": "copy.py
 },
 {
 "Name": "Copy Below",
 "Desc": "Copy something",
 "Icon": "Copy_below.ico",
 "Path": "copy.py"
 },
 {
 "Name": "Copy All",
 "Desc": "Copy something",
 "Icon": "CopyAll.ico",
 "Path": "copy.py"
 },
 {
 "Name": "Delete",
 "Desc": "Delete something",
 "Icon": "Delete.ico",
 "Path": "delete.py"
 }
]

6. Start CODESYS.

ð The script files, configuration file, and symbol files are read and provided in the “Tools
è Customize” dialog on the “Command Icons” tab, in “ScriptEngine Commands”
category.

7. Open the dialog “Tools è Customize” and click on the tab .
8. Select the empty toolbar there and click the “Add Toolbar” button.

ð A line editor opens at the empty toolbar.

9. Type in a name (example: User defined toolbar).

ð The custom toolbar is displayed in the CODESYS window.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4369

10. Add the recently imported commands and close the dialog.

11. Click one of the icons.

ð The following output is displayed in the message view.

6.6.11.1.4 Python script editor
In Automation Builder a browser-based python script editor is integrated. This allows the user
to modify the existing python script, to create a python script from the scratch and to finally
execute the script. Moreover, it assists the user in writing the script with the following features:
● Auto suggest

– IntelliSense suggestions for the python syntax during typing.
– IntelliSense for CODESYS script engine and Automation Builder injected script objects.
– Built-in language service that provides complete code intelligence for objects, properties

and methods.
– Details of the object with [CTRL] + [spacebar].

● Auto completion
Press the Enter key on a function suggested by IntelliSense in order to insert it.

● Python syntax highlighting (basic syntax colorization)
The function and its respective namespace is automatically colored in order to match colors.

● Matching brackets
Matching brackets are highlighted as soon as the cursor is near to one of them using the
command palette.

● Zoom
Changes the font size of the editor's content.

● Find and replace
Support of 'Find' (search for a keyword) and 'Find and replace' (search and replace a
keyword). This feature is supported in the editor, however not integrated in Automation
Builder platform.

● Minimap
High level overview of the script for a quick navigation and code understanding.

● Copy/paste
Support of 'copy and paste' of the script text within and into the editor.

● Undo/redo
Support of 'undo/redo' for editing actions. This feature is supported in the editor, however
not integrated in Automation Builder platform.

● Keyboard shortcuts
Keyboard shortcuts allow to perform most tasks directly from the keyboard (e.g. [CTRL]
+ [Z], [CTRL] + [Y]) including copy and paste. For further keyboard shortcuts refer to the
command palette ([F1]).

● Folding
Support of folding and expanding script regions.

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4370

● Comment/uncomment the code
Support of commenting ([CTRL] + [K]) and uncommenting ([CTRL] + [C]) code through
shortcuts.

● 'Execution' button
Executes the script directly in the editor window.

● In order to start a new script from the scratch the user can start with an empty editor. This
can be done via the 'Add script' dialog without script file selection.

For further features that can be used in the python script editor refer to the command palette
([F1]).

● No IntelliSense available for return type of a property.
● No support of IntelliSense for keyword “None”.
● No IntelliSense support for method overloading.
● No IntelliSense support for methods that return an object.
● Private methods are also part of IntelliSense. Refer to the CODESYS script engine docu-

ment to verify the access modifier.

6.6.11.1.5 Configure port number for python editor server
The python editor server is required for the usage of python script editor.
Earlier versions of Automation Builder than 2.6.0 do not have an option to change the port
number of Python editor server via user interface. The user had to update the port number in
Automation Builder configuration file if the port was already in use.
With Automation Builder 2.6 onwards, the user has an option to install multiple versions of
Automation Builder on a system with separate Python editor servers. Since multiple servers
cannot run on a single port, users are given an option to configure the port number from user
interface (“Tools è Options è Python Scripting Editor”) if the port number are in use.
Default port number of Python editor server is 11030 for Automation Builder versions before 2.6
and 11040 for Automation Builder 2.6 onwards.

6.6.11.1.6 Creating a Python Script
Python is a dynamic language. You can start in a simple linear programming style ("batch files")
and later add the necessary and more powerful means, such as conditions, loops, functions,
exceptions, classes, and modules. The focus of the language is on easy and expressive code.
Python is more typical at runtime and uses an automatic garbage collector to protect the
programmer from accidental damage to the entire system.
IronPython is an implementation of Python for .NET and allows for full access to the .NET
framework and classes. The implementation of the IronPython interpreter is based on Python
Version 2.7.
There are a variety of free manuals and help pages on the Internet. See the following links for
an introduction and detailed introduction about IronPython.
● http://forum.codesys.com/viewforum.php: "Script language Python..." area in the CODESYS

forum
– Especially for CODESYS-specific questions
– Also includes some examples

● https://docs.python.org/2/tutorial/index.html:: Python tutorial in the official Python documen-
tation

● http://docs.python.org/release/2.7/: Official documentation for Python 2.7
● http://wiki.python.org/moin/BeginnersGuide: Useful manuals for learning IronPython
● http://wiki.python.org/moin/GermanLanguage: Collection of links for German help pages
● http://stackoverflow.com/: General community for programming

For general question about (Iron)Python, not CODESYS-specific

Limitations with
CODESYS script
engine Intelli-
Sense

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4371

http://forum.codesys.com/viewforum.php?f=18
https://docs.python.org/2/tutorial/index.html
http://docs.python.org/release/2.7/
http://wiki.python.org/moin/BeginnersGuide
http://wiki.python.org/moin/GermanLanguage
http://stackoverflow.com/

● http://ironpython.net/: IronPython homepage
● http://ironpython.net/support/: Mailing list, FAQ, etc.
● https://gitter.im/IronLanguages/ironpython:: Chat channel for IronPython developers

Version incompatibility to Python V3.x
The Python programming language will soon be available in the
new version V3.x. Some of the older program modules have been
removed. CODESYS GmbH is planning an update to this new ver-
sion. Scripting developers should take this into consideration and design
their scripts accordingly, for example by using the expression from
__future__ import print_function. You can find more informa-
tion about this topic at http://wiki.python.org/moin/Python2orPython3 and
http://docs.python.org/release/3.1.2/whatsnew/3.0.html

Getting Started with Python for CODESYS
See below for an simple application of a Python script in CODESYS:
1. In any text editor, create a text file hello.py with the following contents:

print("Hello, automation!")
2. Start CODESYS and click “Tools è Scripting è Execute Script File”. Select the file

hello.py in the file system.

ð See the result in the message view:

For more detailed examples of Python scripts for different use cases with CODESYS, see the
following help pages.

Tips for Python Programmers about .NET API Documentation
The current prerelease of the script interface documentation has been generated automatically
from the underlying .NET and C# sources. Therefore, the documentation includes some expres-
sions that are not familiar to Python programmers. The following overview provides some tips
about how these expressions can be understood from the Python perspective.
● An interface is the contract that tells an instance of a class that implements the interface

which members (methods, properties) it has to prepare. In IronPython, you can implement
one or more .NET interfaces in one class by inheriting from a superclass. If a method is
needed for the interface but is not available in the class definition, then an exception is
thrown. (The DeviceImportFromSvn.py example shows a class that implements the
ImportReporter interface.)

● Each parameter and each method in .NET is strictly typed. The type of parameter is sepa-
rated by one space character before the parameter name, and the type of return value
from a method by one space character before the method name. You can use instances
from subclasses when you define a class (or interface). A method without a return value is
marked void.

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4372

http://ironpython.net/
http://ironpython.net/support/
https://gitter.im/IronLanguages/ironpython
http://wiki.python.org/moin/Python2orPython3
http://docs.python.org/release/3.1.2/whatsnew/3.0.html

● You can overload methods. As a result, multiple methods with the same name can exist in
one class. However, the number or the types of parameters have to be different. IronPython
automatically takes care of the most appropriate method overloading being called.

● The data type int corresponds to an integer from -2,147,483,648 to 2,147,483,647.
The data type bool corresponds to the Python type bool (True and False).
The data type string corresponds to the Python types str or unicode, which are iden-
tical in IronPython.
The IDictionary<object, object> data type corresponds to an ordinary Python dic-
tionary. IronPython automatically converts between Python and .NET data types.

● When a T type is inherited from IBaseObject<T>, it means that this type can be extended
by other plug-ins for additional members. The actual use of this extended type as a param-
eter or return value is marked by IExtendedObject<T>.

● The IEnumerable<T> interface to a T type means that you can use every Python
sequence (generators, lists, tuples, etc.) which returns T type values (or a subclass).
Returns the sequence of incompatible objects, and throws an exception at runtime.

● The IList<T> interface to a T type identifies a typified list which guarantees to include only
elements of type T (or a subclass). An exception is thrown at runtime when any attempt is
made to add an incompatible object.

● The params T[] name id for a parameter of type T corresponds to the Python mechanism
*name for variable argument lists.

● In Python, enumerations (enum) do not exist as language constructs. Its purpose is to define
an exact number of constant values for a specific purpose, for example the days of the
week. Access to .NET enumerations from IronPython works by using "Name.Member", for
example via OnlineChangeOption.Try.
There are also different approaches to emulate enums in Python.
For example, see: http://pypi.python.org/pypi/enum/

● The syntax T name { get; set; } defines a property with name as the name and T
as the type. If set; is missing, then the property is read-only. In Python, the respective
construct is @property decorator.

Basic Syntax of Python (with Examples)
Python is similar to the languages of the "C family", but there are some significant differences
and unique properties.
The most obvious syntactic difference between Python and language such as C and ST is that
the Python parser recognizes block structures by their indentation. There is no BEGIN/END or
braces {} to identify the blocks of IF/ELSE conditions, FOR and WHILE loops, or functions.

Comments start with # and extend to the end of the line. In the first and second line of the
source code, you can set a special marker to declare the encoding of the file. We recommend
that you use UTF-8 as the encoding if ASCII characters are not required.
For debugging purposes, you use print for easy output. With the % operator, you achieve
functionality similar to the C function printf(). The output is displayed in the message view of
CODESYS.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4373

http://pypi.python.org/pypi/enum/

encoding:utf-8

defining a function with the parameter i
def do_something(i):
 # if branch
 if i>0:
 print("The value is: %i" % i)
 sum
+= i
 print("The new sum is: %i" % sum)

 # else if (optional, there can be none or several elif branches)
 elif i=0:
 print("The sum did not change: %i" % sum)

 # and the final else branch (also optional).
 else:
 handle_error()

an endless while loop
while True:
 print("I got stuck forever!")

Example:
print

Everything that belongs to the same block has to be indented the same distance. The size of
the indentation is irrelevant. Elements such as brackets and braces have a higher priority than
indentations. Therefore, the following code segment is completely correct, even if it is written in
a "poor programming style":

warning: bad style below. Kids, don't try this at home!
if foo >= bar:
 print("foobar")
else:
 print(
 "barfoo"
)

Example:
Indentation

To avoid ambiguity, you should not mix tabs and spaces in a file.

At this time, mixing tabs and spaces gilt in Python 3 qualifies as a syntax error.

The official Python Style Guide recommends indentation of four spaces and
includes some examples of good and poor style. The Python tutorial provides a
summary of coding style.

Python is "case-sensitive", similar to C and in contrast to ST. Keywords, such as def, if, else,
and while, have to be lowercase (in contrast to the ST rule: keywords are uppercase). Two
identifiers, such as "i" and "I", also identify two different variables.
The following keywords are reserved in Python and not permitted for use as identifiers for
variables, functions, etc.: and | as | assert | break | class | continue | def |
del | elif | else | except | exec | finally | for | from | global | if
| import | in | is | lambda | not | or | pass | print | raise | return
| try | while | with | yield.

Python 3 defined four other keywords: False | None | True | nonlocal. While the first
three are really new, the first three were already predefined constants in Python 2 and should
not be used for any other purposes.

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4374

For more information, see: Python Style Guide and Python Tutorial

Variables and data types
Python is a powerful, dynamically typed language -- all type information is evaluated at runtime.
Variables hold references to objects, and the object knows its type, not the variable. When
a programmer attempts to execute an operation that is not possible (for example, adding an
integer and a string), Python throws an exception at runtime.
Consequently, there are no declarations of variables and their types. In Python, variables are
created only to assign values to them. This is completely different in C and ST where types
are strong and static. Every variable is declared with a type, and at compile time the compiler
checks that the type and operators are permitted.
See the following examples for handling variables:

assign the integer 1 to the variable i (also "creates" the
variable")
i = 1

assign the string "foobar" to the variable s
s = "foobar"

Add 5 to the integer i - this is equivalent to i = i + 5
i += 5
i now holds the integer 6.

Try to add i and s - this will throw an exception when executed
TypeError: unsupported operand type(s) for +: 'int' and 'str'
result = i + s

variables can also be "undeclared" by deleting them.
Further access to the variable i will throw a NameError exception,
as the variable does not exist any more.
del i

i += 5 # now throws an exception: NameError: name 'i' is not defined

Example: Vari-
ables

All existing variables reference one value only. There is not any unassigned or uninitialized
variables in Python. To express the absence of a value, Python provides a special object: None.
In C or ST, you would use a null pointer. Its only purpose is to express "no value here", although
None is actually an existing instance of the class NoneType.

Numeric types and floating points
In contrast to the dozens of integer types in IEC or C, there is only one integer type in Python.
Integer types in Python do not have a fixed size. Instead, they grow as needed and are limited
only by available memory.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4375

https://www.python.org/dev/peps/pep-0008/
https://docs.python.org/2/tutorial/controlflow.html

from __future__ import print_function

i = 1
print(i)

j = 0x1234 # hex number, is 16#1234 in IEC and 4660 in decimal
k = 0o123 # octal number, is 8#123 in IEC and 83 decimal
l = 0b101010 # binary number, is 2#101010 in IEC and 42 in decimal
print(j, k, l)

m = (2 + 3)*10 # k is 50 now
print(m)

n = 10 ** 100 # 10 to the power of 100
print(n)

Resulting output:

Example:
Integers.py

There is also only one floating-point type in Python which is similar to the IEC data type LREAL.
It provides 64-bit IEEE floating point arithmetic.
The syntax is like C-based languages for the most part:

A simple float...
a = 123.456

A float containing the integral value 2
b = 2.

Leading zeroes can be left off
c = .3 # same as 0.3

Exponential / scientific representation
d = -123e-5

Example:
Floating-point
types

Two special cases are True and False, two constants that define the Boolean truth values.
They behave similar to the integer values 0 and 1, except when they are converted into strings
and return their names.

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4376

booleans behave like integers, except when converted to strings.
The built-in function "type" can be used to query the type of a
value.
print("True: ", True, type(True))
print("False: ", False, type(False))
print("1: ", 1, type(1))
print("False + 0: ", False + 0, type(False + 0))
print("True * 5: ", True * 5, type(True * 5))

Resulting output:

Example:
Booleans.py

Strings
In IronPython, strings are always in Unicode and any length. It does not make any difference
if they are enclosed in ' or ". Strings can also have triple quotation marks """ or ''', which
allows for multiline string literals.
Similar to C, special characters can be excluded by means of backslash characters. As a
comparison, the dollar sign ($) is used in IEC for this purpose.

There are also raw strings that have other rules for the backslash. This is practical when the
string should have literal backslashes. Example: Windows file paths or regular expressions.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4377

encoding:utf-8
from __future__ import print_function

a = "a simple string"
b = 'another string'
c = "strings may contain 'quotes' of the other type."
d = "multiple string literals" ' are concatenated ' '''by the
parser'''
e = "Escaping: quotes: \" \' backslash: \\ newline: \r\n ascii
code: \x40"
f = """triple-quoted strings may contain newlines, "single"
'quotes' and '''multiquotes''' of the other type"""
g = "Üňíçǿđȩ is also possible: 北京, Москва, Αθήνα, القاهرة"
h = r"c:\raw\strings\retain\backslashes.txt"

we iterate over a sequence of all the variables defined above:
for i in (a,b,c,d,e,f,g,h):
 print(i) # prints the contents of the variable

Resulting output:

Example:
Strings.py

Python does not have characters types. Characters are expressed by the use of strings with a
length of 1. In this way, iteration via a string, or indexing in a string, returns a single-string.

Lists and tuples (data sets)
Lists and tuples basically correspond to arrays in C and IEC, but there are some noticeable
differences:
● The index access is always checked. Accessing a list or a tuple with an invalid index throws

an exception.
● Both lists and tuples can contain elements of different types (also other lists and tuples). In

contrast in C and IEC, arrays can contain only elements of a single type.
● Lists are dynamic, and elements can be added, removed, or replaced at any time.
● Tuples are not changeable: Once a tuple is created, it cannot be modified anymore.
Lists are created with the list() constructor. As an alternative, you can use brackets [].
Tuples are created with the tuple() constructor or parentheses ().

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4378

from __future__ import print_function
print("Testing tuples and lists")

We define a tuple with the numbers from 1 to 10:
t = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
print("Tuple:", t)

We can access the 6th element of the tuple.
As in C, index counting starts with 0.
print("Element 5:", t[5])

Subscription is more powerful using the range syntax:
print("Range[2:5]:", t[2:5]) # lower bound is inclusive, upper
bound is exclusive.
print("Range[2::2]:", t[2::2]) # start with 3rd element, and print
every 2nd element.
print("Range[-3:-1]:", t[-3:-1]) # Start with the 3rd last element,
end just before the last element (upper bound is exclusive)
print("Range[::-1]:", t[::-1]) # negative step with - print
backwards

lists are similar to tuples...
l = [11, 12, 13, "8", t] # contains mixed types: 3 integers, a
string, and the tuple defined above.
print("List:", l)

... but elements can be added or removed dynamically.
l.append(9) # Add a 9 to the list.
print("List with 9:", l)
print("List Range[3:6:2]:", l[3:6:2]) # print the 4th and 6th
element.

del l[1] # remove the element at index 1, the 12.
print("Removed[1]:", l)
del l[1:3] # Remove the elements at index 1 and 2, the 13 and the
'8'.
print("Removed[1:3]:", l)

Resulting output:

Example:
list_tuples.
py

Dictionary
Python also has a hash table type (also "hashmap"). In contrast to the list, it can be indexed
with any elements, for example strings. Its constructor is dict() and its literals are declared
with braces {}.

The sample script dictionaries.py creates the output displayed below. In the last line, the
script is terminated with a "KeyError" exception:

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4379

from __future__ import print_function
print("Testing dictionaries")

Declare a dictionary with three entries, the third being a list
d = {1: "a", 2: "b", "my list": [1, 2, 3]}
print(d)

print the value of the key 1
print(d[1])

remove the value with the key "my list"
del d["my list"]

Add a value 4 with the key 3
d[3] = 4
print(d)

The "get" method returns the second argument if the key cannot be
found.
print(d.get(1, 42))
print(d.get(23, 42))

print all keys in the dictionary
for key in d:
 print(key)

index access for unknown keys will throw a "KeyError" exception!
print(d[23])

Resulting output:

And then in the last line, the script terminates:

Example:
dictionaries
.py

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4380

Click the “Details” button to view the stack trace. Here you determine line number 27 and the
unknown key 23.

Python Control Structures (with Examples)
Loops

As opposed to C and ST, for loops in Python do not count loop variables, but iterate over a
sequence. This kind of sequence can be a "dictionary", a list, a tuple, the characters in a string,
or lines in a file.
The following example shows some for loops:

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4381

from __future__ import print_function

print("Enumerating over a simple list:")
for i in (1,2,3,4):
 print(i, end=", ") # end= replaces the newline with ", "
print() # but we still need a newline at the end of
this case.

print("Enumerating over the characters in a string:")
for i in "CODESYS": # characters are representet as strings of
length 1.
 print(i, end=", ")
print()

print("Enumerating over the integers 1 to 4:")
for i in range(1, 5): # upper bound is exclusive.
 print(i, end=", ")
print()

print("Enumerating using xrange:")
for i in xrange(5): # xrange is similar to range, but needs less
memory for large ranges.
 print(i, end=", ")
print()

print("Enumerating including the item number:")
for i, v in enumerate("CODESYS"):
 print(i, v)

Resulting output:

Example:
loops.py

If you require an index or number in addition to the item, then you should use enumerate as
shown in the last case of the sample script. The following code is considered as poor style:

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4382

text = "CODESYS"

for i in range(len(text)): # BAD STYLE!
 v = text[i] # DON'T TRY THIS AT HOME!
 print(i, v)

Example: Poor
style

Besides for loops, Python also has while loops which are very similar to those in C and ST:

i = 0
while i < 3;
 print(i)
 i += 1

Note: This example is not very practical. You would more likely use a for loop with a range.

Example of
"while" loop

IF / ELSE
The if/else construct is similar to those in other programming languages. Here is a short
example:

from __future__ import print_function
i = int(system.ui.query_string("Please enter an integral
number..."))
if i < 0:
 print("Your number was negative.")
elif i > 0:
 print("Your numer was positive.")
else:
 print("It seems your number was zero.")

Example:
"if_else.py"

The else branch is optional and there can be zero, one, or many elif branches.

Functions, classes, and methods
Python allows for defining functions and classes with methods. A class with methods is basically
similar to a function block in ST, or classes in languages such as C++, Java, or C#. However,
Python does not support interfaces.
For detailed information, see the Python documentation for defining Functions and Classes.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4383

https://docs.python.org/2/tutorial/controlflow.html#defining-functions
https://docs.python.org/2/tutorial/classes.html

#defining a function with name sum and two parameters a and b:
def sum(a, b):
 return a + b # we return the sum of a and b.

we can now call the function defined above:
print(sum(5,7))

Now we define a class Foo:
class Foo:
 # The class gets a method "bar".
 # Note: for methods, the first parameter is always "self" and
 # points to the current instance. This is similar to "this" in
 # ST and other languages.
 def bar(self, a, b):
 print("bar(%s,%s)" % (a,b))

We create an instance of the class:
f = Foo()

We call the method bar on the instance.
f.bar("some", "params")

Examples:
Functions,
classes, and
methods

Modules and standard libraries
In IEC, you can import libraries for reuse by other written code. As a pendant, there is the
possibility in Python of importing modules.
The Python standard library contains many modules for different purposes, such as:
● String processing
● Date and time handling
● Collections
● Threading
● Mathematical functions
● File handling
● Persistence
● Compression and archiving
● Database access
● Encryption services
● Network and Internet access
● Sending of emails
To create your own modules, write a Python file that defines the functions and classes that you
want to provide. Save this file to the same directory as our sample script. If you name the file
mymodule.py, then you can import it with import mymodule.

Here is an example of importing and using the cosine function and the pi constant from the
math module:

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4384

https://docs.python.org/2/tutorial/classes.html

from math import cos, pi

print(pi) # prints 3.14159265359

print(cos(pi)) # prints -1.0

Example:
Import mathe-
matical func-
tion

The following contains more examples that access information about the operating system, the
Python version, and the interpreter:

import os
print(os.environ["OS"])

from sys import platform, version, executable
print(platform)
print(version)
print(executable)

More import
examples

There is a special module __future__ for activating new language features. Above all, it
is used when Python developers introduce new functionalities that are backward compatible.
These kinds of functionalities have to be activated with special "__future__ imports". One
example that we use in most of our sample scripts here is the activation of the new power
syntax of print as a function instead of a statement.

make print() a function instead of a statement
from __future__ import print_function

Example:
"__future__"

The Python documentation provides a complete list of all imports.
In addition to the normal Python modules, IronPython code can also access .NET assemblies
as if they were Python modules. This opens the access to the .NET framework class library and
third-party libraries. Here is an example how to open a dialog by means of the Windows Forms
library:

import clr
clr.AddReference("System.Windows.Forms")
from System.Windows.Forms import MessageBox

MessageBox.Show("Hello")

Example:
Opening
a .NET dialog

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4385

https://docs.python.org/2/library/__future__.html
https://msdn.microsoft.com/en-us/library/hfa3fa08%28v=vs.110%29.aspx

Transitioning from Python 2 to Python 3
With Python version 3, Python developers introduced some incompatible changes and removed
some obsolete functionalities. At this time, the Python community is still in the transitional phase
from version 2 to version 3.
IronPython does not yet support Python 3, but it is being worked on. As the Python community
no longer supports Python 2, we intend to up0grade to Python 3 as soon as it is supported by
IronPython.
Although we strive for a smooth transition, script writers should take care that their scripts
are created in a future-proof style. For example, by using the expression from __future__
import print_function.

For more information, see: Python 2 or Python 3? and New in Python 3

Comparison of IronPython and cPython
There are some small differences and Incompatibilities between IronPython and "standard"
Python ("cPython"). Some are direct errors in IronPython and should be removed in future
versions. However, others are considered "implementation details" and will remain. Some of
them are very challenging topics.
The difference that is most obvious for users is the handling of strings. Original cPython has
two different string types for "byte strings" and "Unicode strings". This concept is similar to the
data types STRING and WSTRING in IEC. IronPython simply uses .NET strings that are always
Unicode-capable and use UTF-16 internally. However, IronPython implements a trick to hide
the difference to cPython from the programmer. (Interesting: For the new Python version 3, the
developers have completely reworked their string handling. The result was a model which is
much closer to IronPython. Unicode strings are always used after that and there is a separate
data type for handling raw bytes)
Python modules that are written in C cannot be imported into IronPython because cPython
uses internal data structures that are completely different from IronPython. Most of the standard
library modules were reimplemented in IronPython. However, some modules (such as the TK
interface) are not available as long as they are not ported to IronPython explicitly. On the other
hand, IronPython provides access to .NET assemblies including the .NET framework (as shown
above), which more than compensates for this feature.
While cPython uses reference counting and a deterministic garbage collector for cleaning up
cyclic garbage, IronPython relies on the non-deterministic .NET garbage collector. In most
cases, this difference does not matter. But when you open files or other resources from the
Python standard library or the .NET framework, you should make sure to close them later. It
is best to use the with statement with the Python context manager or .NET IDisposable
instances.
For more information, see: Content Managers and .NET IDisposable

6.6.11.1.7 Using Scripts to Access CODESYS Functionalities
All objects and command which CODESYS provides for scripting are also available in the
"scriptengine" Python module. Whenever a script is started, an implicit <code>from
scriptengine import *</code> results. This allows for easy access to CODESYS. How-
ever, if your script imports modules that require access CODESYS APIs, then these modules
have to import the module scriptengine themselves.

In the following table, you will find the main objects (categories) that can be used in Python
scripts as entry points. For comprehensive documentation about entry points, see the for the
CODESYS ScriptEngine.

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4386

http://wiki.python.org/moin/Python2orPython3
http://docs.python.org/release/3.1.2/whatsnew/3.0.html
https://docs.python.org/2.5/lib/typecontextmanager.html
https://msdn.microsoft.com/en-us/library/system.idisposable%28v=vs.110%29.aspx

Objects Description
System Access to general CODESYS functionalities

Examples:
● Exiting CODESYS
● Handling the general user interface
● Access to the message memory (including compiler messages)
● Control of delay and progress bars

projects Access to the CODESYS project as an object tree that combines the three
navigator views (devices, POUs, modules) in one project tree
Also allows for the loading, creating, saving, and closing of projects
For most objects in a project, there are special methods with detailed func-
tionality, for example compiling, access to ST POUs, export, import, device
configuration, etc.

online Access to online functionalities
Examples:
● Log in to devices and applications
● Management of access data (user name, password)
● Performance of network scans
● Gateway management

librarymanager Permits the management of library repositories and viewing, installation,
and removal of libraries

device_reposi-
tory

Handling of device repositories; import and export of device descriptions

modulereposi-
tory

Management of CODESYS Application Composer modules and CODESYS
Application Composer repositories

See the following specific sample scripts for ways to access CODESYS functionalities. For
detailed information, see the for the CODESYS.

Example: Printing the device tree of the current project
The script PrintDeviceTree.py is an example for navigating in a project. It creates the
output of a hierarchical display of all devices in the open project.
Load a project that contains some device objects and execute the script.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4387

encoding:utf-8
We enable the new python 3 print syntax
from __future__ import print_function

Prints out all devices in the currently open project.

print("--- Printing the devices of the project: ---")

Define the printing function. This function starts with the
so called "docstring" which is the recommended way to document
functions in python.
def print_tree(treeobj, depth=0):
 """ Print a device and all its children

 Arguments:
 treeobj -- the object to print
 depth -- The current depth within the tree (default 0).

 The argument 'depth' is used by recursive call and
 should not be supplied by the user.
 """

 # if the current object is a device, we print the name and
device identification.
 if treeobj.is_device:
 name = treeobj.get_name(False)
 deviceid = treeobj.get_device_identification()
 print("{0}- {1} {2}".format("--"*depth, name, deviceid))

 # we recursively call the print_tree function for the child
objects.
 for child in treeobj.get_children(False):
 print_tree(child, depth+1)

We iterate over all top level objects and call the print_tree
function for them.
for obj in projects.primary.get_children():
 print_tree(obj)

print("--- Script finished. ---")
The device tree (from the "Devices" view) is displayed in the message view and all non-device
objects are left out:

Example:
PrintDeviceT
ree.py

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4388

Example: Reading of variables
The script ReadVariable.py logs in to the device and starts the application if necessary.
Then the value of the variable PLC_PRG.iVar1 is read and output. To try the script, you have
to modify the project path and variable names.

encoding:utf-8
from __future__ import print_function

close open project if necessary:
if projects.primary:
 projects.primary.close()

opens project
proj = projects.open(r"D:\data\projects\Ampel.project")

set "Ampel.project" to active application
app = proj.active_application
onlineapp = online.create_online_application(app)

login to device
onlineapp.login(OnlineChangeOption.Try, True)

set status of application to "run", if not in "run"
if not onlineapp.application_state == ApplicationState.run:
 onlineapp.start()

wait 1 second
system.delay(1000)

read value of iVar1
value = onlineapp.read_value("PLC_PRG.iVar1")

display value in message view or command line
print(value)

log out from device and close "Ampel.project"
onlineapp.logout()
proj.close()

Example:
ReadVariable
.py

In the extension of the script ReadVariable.py, the script MailVariables.py loads varia-
bles and expressions from a recipe file and reads their current values from the controller. Then
these values are written back to the same file. In addition, is uses the Python SMTP library to
send an email with an attachment containing a list of all variables.
To use the script, you have to modify the paths, email address, and the name of the SMTP
server to your environment.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4389

encoding:utf-8
from __future__ import print_function

Close current project if necessary and open "ScriptTest.project"
if not projects.primary == None:
 projects.primary.close()
project = projects.open("D:\\Data\\projects\\scriptTest.project")

retrieve active application
application = project.active_application

create online application
online_application = online.create_online_application(application)

login to application.
online_application.login(OnlineChangeOption.Try, True)

start PLC if necessary
if not online_application.application_state == ApplicationState.run:
 online_application.start()

wait 2 seconds
system.delay(2000)

open recipe file to read values.
recipe_input_file = open("D:\\Data\\projects\\RecipeInput.txt", "r")

watch_expressions = []

for watch_expression in recipe_input_file:
 watch_expressions.append(watch_expression.strip())

print watch_expressions

read values from the controllerd
watch_values = online_application.read_values(watch_expressions)

print watch_values

open output file to write values
recipe_output_file = open("D:\\Data\\projects\\RecipeOutput.txt",
"w")
for i in range(len(watch_expressions)):
 recipe_output_file.write(watch_expressions[i])
 recipe_output_file.write(" = ")
 recipe_output_file.write(watch_values[i])
 recipe_output_file.write("\n")

Close files
recipe_input_file.close()
recipe_output_file.close()

send Email
import respective libraries
import smtplib
from email.mime.text import MIMEText

#open output file
recipe_output_file = open("D:\\Data\\projects\\RecipeOutput.txt",
"r")
mail = MIMEText(recipe_output_file.read())

Example:
MailVariable
s.py

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4390

recipe_output_file.close()

#email address sender and recipient
fromm = "info@example.com"
to = "info@example.com"

set sender and recipient
mail["Subject"] = "Attention value has changed"
mail["From"] = fromm
mail["To"] = to

send email
smtp = smtplib.SMTP("name of smtp server")
smtp.sendmail(fromm, [to], mail.as_string())
smtp.quit()

logout and close application
online_application.logout()
project.close()

Example: Creating and editing of POUs
The script CreateDut.py creates the objects MyStruct, MyAlias, and MyUnion in the
CODESYS project. The folder DataTypes already has to be present.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4391

encoding:utf-8
from __future__ import print_function

STRUCT_CONTENT = """\
 a : BOOL;
 b : BIT;
 c : BIT;
"""

UNION_WHOLE = """\
TYPE MyUnion :
UNION
 Zahl : INT;
 Prozent : MyAlias;
 Bits : MyStruct;
END_UNION
END_TYPE
"""

proj = projects.primary

folder = proj.find('DataTypes', recursive = True)[0]

Create a struct DUT and insert the list of variables just into
the right
place in line two, row 0 (line numbering starts with line 0)
struktur = folder.create_dut('MyStruct') # DutType.Structure is the
default
struktur.textual_declaration.insert(2, 0, STRUCT_CONTENT)

Alias types get their "content" via the base type, which will
just end up
as one line in the declaration part:
TYPE MyAlias : INT (0..100); END_TYPE
bereich = folder.create_dut('MyAlias', DutType.Alias, "INT
(0..100)")

Instead of injecting the variables into the existing declaration,
one can also just replace the complete declaration part,
including the
boilerplate code.
union = folder.create_dut('MyUnion', DutType.Union)
union.textual_declaration.replace(UNION_WHOLE)

CreateDut.py

Example: User interface / Interaction with the user
In some cases, scripts have to interact with the user. We provide some simple APIs for the
most common interactions. The sample script System_UI_Test.py shows all of the possible
functions in this regard.

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4392

encoding:utf-8
from __future__ import print_function

"""Performs some tests on the messagestore and UI."""

print("Some Error, Warning and Information popups:")
system.ui.error("Fatal error: Everything is OK. :-)")
system.ui.warning("Your bank account is surprisingly low")
system.ui.info("Just for your information: 42")

print("Now, we ask the user something.")
res = system.ui.prompt("Do you like this?", PromptChoice.YesNo,
PromptResult.Yes);
print("The user selected '%s'" % res)

print("Now, the user can choose between custom options:")
res = system.ui.choose("Please choose:", ("First", 2, 7.5,
"Something else"))
print("The user selected option '%s'" % str(res)) # res is a tuple

print("Now, the user can choose several options:")
res = system.ui.select_many("Please select one or more options",
PromptChoice.OKCancel, PromptResult.OK, ("La Premiere", "The
Second", "Das Dritte"))
print("The returned result is: '%s'" % str(res)) # res is a tuple

print("Now, the user can select files and directories")
res = system.ui.open_file_dialog("Choose multiple files:",
filter="Text files (*.txt)|*.txt|Image Files(*.BMP;*.JPG;*.GIF)|
.BMP;.JPG;*.GIF|All files (*.*)|*.*", filter_index = 0,
multiselect=True)
print("The user did choose: '%s'" % str(res)) # res is a tuple as
multiselect is true.

res = system.ui.save_file_dialog("Choose a file to save:",
filter="Text files (*.txt)|*.txt|Image Files(*.BMP;*.JPG;*.GIF)|
.BMP;.JPG;*.GIF|All files (*.*)|*.*", filter_index = 0)
print("The user did choose: '%s'" % res)

res = system.ui.browse_directory_dialog("Choose a directory",
path="C:\\")
print("The user did choose: '%s'" % res)

print("Now we query a single line string")
res = system.ui.query_string("What's your name?")
print("Nice to meet you, dear %s." % res)

print("Now we query a multi line string")
res = system.ui.query_string("Please tell me a nice story about
your life!", multi_line=True)
if (res):
 print("Huh, that has been a long text, at least %s
characters!" % len(res))
else:
 print("Hey, don't be lazy!")

print("Username and passwort prompts...")
res = system.ui.query_password("Please enter your favourite
password!", cancellable=True)
if res:
 print("Huh, it's very careless to tell me your favourite

Example:
System_UI_Te
st.py

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4393

password '%s'!" % res)
else:
 print("Ok, if you don't want...")

res = system.ui.query_credentials("Now, for real...")
if res:
 print("Username '%s' and password '%s'" % res) # res is a
2-tuple
else:
 print("Sigh...")

Example: Manipulating the “Project Information” object
In the script ProjectInfoExample.py, we set some information in the “Project Information”
object. The most important information items, such as “Title” and “Version”, have explicit
properties. However, you can read and write any other information fields by means of the
dictionary syntax. For example, those that are recommended for the properties of a library
project.
The example below may seem somewhat unrealistic, but similar code is used in build servers
that create, test, and possibly release automatic library projects and other projects. The Scrip-
tEngine is one of the key elements for creating CI (Continuous Integration) and CD (Continuous
Delivery) systems.

encoding:utf-8
from __future__ import print_function

proj = projects.load("D:\Some.library")

info = proj.get_project_info()

Set some values
info.company = "Test Library Ltd"
info.title = "Script Test Project"
info.version = (0, 8, 15, 4711)
info.default_namespace = "testlibrary"
info.author = "Python von Scriptinger"

some values recommended in the library toolchain
info.values["DefaultNamespace"] = "testlibrary"
info.values["Placeholder"] = "testlibrary"
info.values["DocFormat"] = "reStructuredText"

now we set a custom / vendor specific value.
info.values["SpecialDeviceId"] = "PLC0815_4711"

Enable generation of Accessor functions, so the IEC
application can display the version in an info screen.
info.change_accessor_generation(True)

And set the library to released
info.released = True;

proj.save()

Example:
ProjectInfoE
xample.py

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4394

Example: Calling external commands and importing PLCOpenXML files
The sample script DeviceImportFromSVN.py gets a PLCOpenXML file from an external
program (in this case a SVN client) and imports it into a new created CODESYS project.
To use the script, you have to modify the paths to your environment.

encoding:utf-8
Imports a Device in PLCOpenXML from Subversion via command line
svn client.

We enable the new python 3 print syntax
from __future__ import print_function

import sys, os

some variable definitions:
SVNEXE = r"C:\Program Files\Subversion\bin\svn.exe"
XMLURL = "file:///D:/testrepo/testfolder/TestExport.xml"
PROJECT = r"D:\test.project"

clean up any open project:
if projects.primary:
 projects.primary.close()

Fetch the plcopenxml data from subversion.
We'll catch the output of the program into the xmldata variable.
The 'with' construct automatically closes the open pipe for us.
with os.popen('"' + SVNEXE + '" cat ' + XMLURL, 'r') as pipe:
 xmldata = pipe.read()

create a new project:
proj = projects.create(PROJECT)

import the data into the project.
proj.import_xml(xmldata, False)

and finally save. :-)
proj.save()

print("--- Script finished. ---")

Example:
DeviceImport
FromSVN.py

Advanced example: Calling a library from SVN and installing it in CODESYS
The following sample script can perform the calling and installing of a library as part of
a CT (Continuous Testing) environment so that they can be tested. In addition to standard-
CODESYS, the CODESYS SVN add-on also has to be installed with a valid license.

Configuration and programming

Engineering interfaces and tools > Scripting with Python

2024/01/05 3ADR010583, 1, en_US 4395

import tempfile

if projects.primary:
 projects.primary.close()

tempdir = tempfile.mkdtemp()
URL = "svn://localhost/testrepo/trunk/SvnTestLibrary/"

proj = svn.checkout(URL, tempdir, "testlibrary", as_library=True)
proj.save()

repo = librarymanager.repositories[0]
librarymanager.install_library(proj.path, repo, True)

proj.close()

Example

Configuration and programming
Engineering interfaces and tools > Scripting with Python

2024/01/053ADR010583, 1, en_US4396

6.7 Human machine interface
6.7.1 Control panels

The CP600-eCo, CP600 and CP600-Pro control panels in different screen sizes provide com-
prehensive HMI functions for a wide range of applications. The engineering tool Panel Builder,
part of Automation Builder, ensures easy scalability on the platform of the control panels.

Application examples/ application notes
Control panels can be used with the AC500 PLCs for different purposes and different applica-
tion environments. Example projects (application examples; ending with *.zip) and step-by-step
instructions (application notes; ending with *.pdf) that demonstrate a specific use case can be
found on the following topics:

A CP600 project can be converted to a project for control panels of the 2nd generation. The
conversion procedure is described in the application note Converting a CP600 project.

Installation, licensing and configuration of the control panel runtime is described in the applica-
tion note Control panel PC runtime.

How to enable and handle the runtime logging on control panels is demonstrated in the applica-
tion example Control panel runtime logging.

How to dump data like trends, alarm buffers, audit trail buffers, recipes, etc. from
the control panels to a network shared folder is described in the application note
How to store data on a network shared folder.

Modbus RTU can be used for communication between an AC500-eCo V3 PLC and a control
panel. The connection principle is described using the CP604 control panel as an example:
CP604 connection via Modbus RTU.

How to upload a disk image from a control panel is described in the application note
Upload disk image.

A summary of frequently asked questions related to the Boot Support Packages (BSP) and the
control panels can be found in the application note FAQ on BSP.
How to check the BSP version of a CP600 HMI is described in the application note
Check BSP version.
For a description of how to update the BSP in order to improve the control panel security and
how to use enhanced product functionality see the application note Update BSP version.

How to update or reinstall a micro browser on an CP600-WEB control panel is described in the
application note CP600-WEB and micro browser.

The control panels support web visualization via Chromium browser. How to setup and con-
figure the Chromium browser for the usage in control panels is described in the application note
Control panels and Chromium browser.

CP600 control panels contain a buzzer that can be used to give acoustic signals on certain
events. The application note CP600 buzzer control describes how the buzzer can be controlled
by using AC500 PLC tags on the connected PLC.

Configuration and programming

Human machine interface > Control panels

2024/01/05 3ADR010583, 1, en_US 4397

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010541&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010831&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010678&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010773&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010982&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010571&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011073&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010987&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010676&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010989&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010663&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011150&LanguageCode=en&DocumentPartId=&Action=Launch

How to design and create control panel projects that comply with 21 CFR part 11 standard is
described in the application note PB610 Panel Builder 600 V2.8.

The procedure for changing from a CP600 device to a CP600 device of the 2nd generation
is described in the application example Converting a CP600 project. A description of the differ-
ences between both device variants can also be found in this application example.

How to connect an MQTT message broker with a CP600 is described in the application example
CP600 MQTT.

6.7.2 Panel Builder interface
6.7.2.1 General

This document describes HMI CP600 Control Panel configuration in Automation Builder and
starting HMI configuration and programming software Panel Builder 600 from Automation
Builder. The Panel Builder project created for the HMI CP600 is stored within the Automation
Builder project.

Configuration and programming
Human machine interface > Panel Builder interface

2024/01/053ADR010583, 1, en_US4398

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010415&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010541&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011118&LanguageCode=en&DocumentPartId=&Action=Launch

6.7.2.2 Adding desired AC500 PLC to the project

1. In the Automation Builder device tree, right-click the “Application” node and click “Add
object”

2. Click on “Symbol Configuration” and click “Add object”

ð A “Symbol Configuration” object is added to the “Application” node.

3. Double-click on the “Symbol Configuration” object , then click on “Build”

ð A list of all variables in the project is generated. Single variables or groups of variables
can be selected by checking the corresponding item in the list.

Configuring the
Symbol File

Configuration and programming

Human machine interface > Panel Builder interface

2024/01/05 3ADR010583, 1, en_US 4399

4. After the symbols have been configured, download the project or click “Build
è Generate code” in the Automation Builder to create an .xml file containing all the
variables read to be imported in the Tag Editor.

6.7.2.3 Creating a Panel Builder project

1. Right-click in the Automation Builder device tree and click “Add object è Panel-CP600”

2. Click on “CP600 Control Panel” and click “Add object”

ð A Control Panel object is added to the Automation Builder device tree.

1. In the device tree, double-click “Panel CP600” object to start Panel CP600 screen.

2. Select the required PLC and enable the checkbox in the 'Use Standard Connection Set-
tings' column to use it as a standard gateway connection.
You can set communication settings using the application program or by creating custom
communication settings. Custom communication settings can be configured by clicking the
button in the 'Details' column.

3. Enable the “Update Panel Builder project on launch” checkbox and click
[Launch Panel Builder Editor].

If you update Automation Builder project with new variables and data
types or if there are changes in existing Automation Builder project varia-
bles and data types (new, modified, deleted), recompile CODESYS appli-
cation to refresh the symbol file, then launch Panel Builder editor.

4. Select “New” and click “Open” to create a new HMI project.

ð A project wizard is displayed.

If you want to import an already existing Panel Builder project file from
the file system, select “Import existing project file” and proceed.

Adding a panel
object

Starting a Panel
Builder project

Configuration and programming
Human machine interface > Panel Builder interface

2024/01/053ADR010583, 1, en_US4400

5. Select the required panel type and orientation and click “Finish”.

ð A new project wizard starts only if the Panel project is empty.

The panel projects can be compared in Automation Builder using the “Compare
Objects” option.

Configuration and programming

Human machine interface > Panel Builder interface

2024/01/05 3ADR010583, 1, en_US 4401

1. In the Panel project, double-click “Project properties” to change the panel type to the panel
which is used.

ð The Properties dialog is displayed.

2. In the Properties dialog, expand “Project” and click “Project Type ”.

ð A project wizard dialog is displayed.

3. Select the desired panel type and click “Finish”.

The project information view provides an overview of the Panel Builder project without opening
the project. To open the project information, double-click the “Panel_CP600” object.
The project information is updated every time the Panel Builder project is edited. You can
rename the Panel Builder project via context menu.

The project name is internally used as a base for the Panel Builder project
file name. Therefore, the project name has to comply with general file name
restrictions.

Changing panel
type

Project informa-
tion

Configuration and programming
Human machine interface > Panel Builder interface

2024/01/053ADR010583, 1, en_US4402

The Panel Builder project information shows the list of PLCs added to the project.

6.7.2.4 Configuring Panel Builder

The user can configure a panel project manually in Panel Builder editor when
there is a need to create individual panel projects. Otherwise, the configura-
tion is updated in the panel project while launching Panel Builder editor in
Automation Builder.

1. In the Panel Builder project structure, double-click “Config è Protocols”.
2. Click to add a protocol.

3. Select “OPC UA Client” to ensure an encrypted communication between AC500 V3
devices and the control panels. This is necessary to protect passwords and other data
in terms of cyber security.
Set the IP address, port, protocol type and PLC models. Click [OK].

1. In the Panel project view, click “Config è Tags”.
2. Select the protocol from the drop-down list and click to import tags.

If the Panel Builder contains multiple tag importers, a dialog is displayed
to select the required importer type.

Configuring
communication
protocols

Importing tags

Configuration and programming

Human machine interface > Panel Builder interface

2024/01/05 3ADR010583, 1, en_US 4403

3. Select the symbol file which was exported to the file system.
4. In the lower part of the tag editor, mark the desired tags and click “Import Tag (s)” to

import the tags to the Panel Builder project.

1. In the project view, expand “Pages” and double-click Page1.
2. In the Panel Builder 600 main menu, select “View è Toolbars and Docking Windows

è Widget Gallery”.
3. Drag-and-drop the desired widget to the page editor.

Attaching tags
to widgets

Configuration and programming
Human machine interface > Panel Builder interface

2024/01/053ADR010583, 1, en_US4404

4. Right-click on the widget value and select “Attach To” to attach a tag to the widget.

5. Select the desired tag and select the desired option for the authorization “Read Only” or
“Read/ Write” or “Write Only”. Then, click [OK].

1. In the Panel Builder main menu, click “Run è Download To Target”.
2. Select the CP600 project from the drop-down list and click “Download”.

1. In the Automation Builder device tree, right-click the Panel project and click “Import
è Panel Builder Project”.
System prompts to overwrite the exiting project object data.

2. Click “Yes” to confirm.
3. Select the existing Panel Builder 600 project from the file system and click “Open”.

ð The imported project is displayed.

Downloading a
project to panel

Importing an
existing Panel
Builder project

Configuration and programming

Human machine interface > Panel Builder interface

2024/01/05 3ADR010583, 1, en_US 4405

1. In the Automation Builder device tree, right-click the Panel Builder 600 project and click
“Export è Panel Builder Project”.

2. Click “Browse” and select the desired location in the file system and save the project file.

ð A success message is displayed, if the project file exports successfully.

When you double-click the Panel Builder project node, the compressed informa-
tion of the node is extracted into a temporary folder and then the external Panel
Builder program is started. After the external Panel Builder program is closed,
the corresponding Panel Builder files can be compressed back into the node
and saved in the Automation Builder project.

We recommend to edit the Panel Builder project by starting Panel Builder
through the Automation Builder. You can also export a Panel Builder project
to the file system to edit the project by using the external Panel Builder. Then,
reimport it to Automation Builder.

6.7.3 SCADA Integration
6.7.3.1 General

This document describes SCADA integration configuration in Automation Builder using zenon
editor. The configured device network address information and variables are synchronized with
zenon editor to avoid double entry.
The Automation Builder supports both standard and multi-user functionality.

6.7.3.2 Creating Workspace and Project
1. In the device tree, double-click “zenon_Project”.

ð To launch the zenon editor, click [Launch Zenon Editor].

To update the zenon project with latest changes of application program, click
[Update zenon project].

Exporting Panel
Builder project

Configuration and programming
Human machine interface > SCADA Integration

2024/01/053ADR010583, 1, en_US4406

2. Select the required PLC and select the “Use Standard Conn. Settings” option to use as a
standard gateway connection.
This enables the user to use the same communication settings that Automation Builder
uses to communicate to the PLC.

The configured gateway communication settings made in Automation
Builder are displayed in the column 'Connection Type'.

As an alternative you can create custom communication settings: Deselect the “Use
Standard Conn. Settings” option and click the button in the 'Details' column.

3. Click [Launch Zenon Editor] to create a new workspace and project.

Fig. 356: Connect to zenon project

ð
If Zenon Editor is already running, then select the “Use current
workspace” option.

4. Select the “Create a new workspace” option and select the file location to create a new
workspace.

5. Select the “Create new project” option to create a project.

ð ABB zenon editor is displayed.

If you update or change an Automation Builder project with new variables or
data types (new, modified, deleted), recompile the application to refresh the
symbol file and click [Update zenon project].

Configuration and programming

Human machine interface > SCADA Integration

2024/01/05 3ADR010583, 1, en_US 4407

After creating the project and workspace in Automation Builder, it is not required to set it again
for the zenon object. A double-clicking on the zenon project shows the previously configured
zenon project and the workspace.

6.7.3.3 Loading existing Workspace and Project
You can load an existing workspace and project to ABB zenon supervisor.
1. In the zenon_Project screen, click [Update zenon project].

ð Connection to the zenon project dialog is displayed.

2. In the workspace area, enable “Load existing workspace” and select the location.
3. In the project area, enable “Select loaded project” and click [OK].

ð Zenon editor loads the selected existing workspace and the project.

6.7.3.4 Checking the Gateway Settings in a Zenon Project
The gateway settings configured in Automation Builder can be checked in a zenon project. The
IP address configured in Automation Builder are displayed in the zenon driver configuration.
In the Project Manager structure of the zenon editor, click “Variables è Drivers” to configure the
driver configuration.

The “Settings” tab shows all gateway settings based on the number of configured PLCs
in Automation Builder. The IP address should be similar to the project gateway settings in
Automation Builder.

In the zenon project window, the Connect column should be checked to
transfer the desired number of PLC connection settings to the zenon editor.

Configuration and programming
Human machine interface > SCADA Integration

2024/01/053ADR010583, 1, en_US4408

6.7.3.5 Creating a symbol configuration
Requirement: The project can be compiled without any errors.
1. Select the “Application” object in the device tree.
2. Click “Project è Add Object è Symbol Configuration”.

ð The “Symbol Configuration” object is added to the device tree and the objects editor
opens.

3. Open the “View” menu of the editor and activate the categories of variables that should be
provided in the configuration editor. Click “Build” in the symbol configuration editor.

ð All variables (according to the currently defined filter in the “View” menu) are displayed
in a tree structure.

4. Select the check boxes of individual variables.

Pay attention to the current settings (see the “Settings” button in the menu
bar of the editor).

ð In the field below the menu bar of the editor, information is provided about the current
situation with accompanying instructions, as well as controls for corrective actions.

5. Follow the prompt in the field below the menu bar. In the following case, this should be
only the information that the modified symbol configuration is transferred with the next
download or online change.

6. Click “Build Generate Code” on the CODESYS menu bar.

ð The <project name>.<device name>.<application name> .xml file is gen-
erated in the project directory.

CODESYS transmits the symbol configuration to the PLC for an application download or online
change.

6.7.3.6 Updating Standard Data Types
The standard data types created in CODESYS application can be updated to the zenon project
by clicking on “Update zenon project”.

Data types and variables can be updated from the desired number of PLCs
configured in the zenon project of Automation Builder.

Configuration and programming

Human machine interface > SCADA Integration

2024/01/05 3ADR010583, 1, en_US 4409

In the zenon project, double-click “Variables” and check the updated standard data type.

6.7.3.7 Creating Data Types
1. In the CODESYS application open the “Data types” tab. Right-click “Data types

è Add object” to create a new data type.
2. Enter the user defined data type name.
3. In “POUs” tab, add the user defined variable data type and compile.

ð The user defined data type is created and can be imported in the zenon editor.

If you modify or delete the data types in CODESYS application, compile with
“Rebuild all option”.

6.7.3.8 Importing Data Types in zenon Editor
1. In the zenon project, click [Update zenon project] to update the data types.
2. Click “Update” to update the variables and data types to the zenon project.

ð The user defined variables and data types are imported to the zenon project.

Fig. 357: User defined variables

Configuration and programming
Human machine interface > SCADA Integration

2024/01/053ADR010583, 1, en_US4410

6.8 System technology
6.8.1 General

This chapter provides advanced information on the system technology of AC500 control sys-
tems from a general perspective. It provides information to link the details from the hardware
descriptions (provided in the device specifications section) with detailed information on config-
uring/programming a corresponding library (provided in the individual library sections).
Configuration of a specific device with Automation Builder is described in the PLC configuration
section.

Configuration and programming

System technology > General

2024/01/05 3ADR010583, 1, en_US 4411

6.8.2 System technology of CPU and overall system
6.8.2.1 Handling of remanent variables for AC500 V3 products
6.8.2.1.1 Introduction

The retain / persistent memory must be buffered by a battery TA521 for the
PLCs PM56xx-2ETH. Following described functionalities are only working if a
battery is inserted. Take care about the handling for TA521 battery.

Ä Chapter 5.2.8.2.3 “TA521 - Battery” on page 1319

The AC500-eCo V3 PLCs, PM50xx-ETH PLCs don't need a battery.

Ä “Detailed data” on page 188

All operands supported by CODESYS are described in 'Configuring I/O links' Ä Chapter 6.4.1.8
“Configuring I/O Links” on page 1835. For the memory sizes of the different CPUs, see for
AC500-eCo V3 'Memory sizes' Ä “AC500-eCo V3 processor modules” on page 4413 and for
AC500 V3 'Memory sizes' Ä “AC500 V3 processor modules” on page 4413.

This part of the documentation describes the declaration of remanent variables for AC500 V3
products.

Different handling of remanent variables in AC500 FW ≥V3.0.2
– No more %R memory area (use instead %M with {no_init} Ä Chapter

6.8.2.1.6 “Initialization of %M variables” on page 4417)
– Creating of addresses for "VAR RETAIN PERSISTENT" variables automati-

cally by IEC Compiler

It is NOT possible to change the structure (e.g. add, delete, change order, ..) of retain / persis-
tent variables of a project and update the project via memory card.
Up to version of SystemFW 3.4.x the boot project will be deleted (renamed into application.err)
and the PLC will not load the boot project anymore. Also download of new/other project with
Automation Builder failes.
Workaround:
● Automation Builder ➔ PLC Shell ➔ clearsram all ➔ retain persistent / retain area is deleted

(not the %M area) ➔ application is running after reboot with initialized / retain / persistent
data

● Automation Builder ➔ PLC Shell ➔ clearsram all ➔ retain persistent / retain area is deleted
➔ sram c m (clear %M) ➔ %M area is deleted ➔ reboot ➔ application is running with
initialized /retain/persistent/%M data

● Automation Builder empty project ➔ Reset Origin Device ➔ retain persistent / retain area /
%M area is deleted ➔ new update via SD card ➔ application is running after reboot with
initialized data

● For midrange reboot without battery ➔ application is running after reboot with initialized
data

The application is running with initialized persistent and/or retain after updating
the application via memory card and rebooting the PLC.

In version of SystemFW 3.5.x the changed retain persistent / retain area is
deleted. Application is running after reboot with initialized / retain / persistent
data.

In case of trouble use the above described workaround.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4412

6.8.2.1.2 Memory sizes

PLC type system RAM
disk

userdisk
PlcLogic
...

Retain, %M area flash disk memory
card

PM5012-x-
ETH

Dynamically
 /max. 7.6 MB

30 MB 8 kB
Retain and per-
sistent 4 kB (of
which 88 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 4 kB

None Ä Chapter
5.2.8.2.1
“MC5102 -
Micro
memory card
with adapter”
on page 1309

PM5032-x-
ETH

32 kB
Retain and per-
sistent 16 kB (of
which 88 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 16 kB

PM5052-x-
ETH

PM5072-
T-2ETH(W)
PM5082-
T-2ETH

100 kB
Retain and per-
sistent 36 kB (of
which 88 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 64 kB

PLC type system RAM
disk

userdisk
PlcLogic
...

SRAM
Retain, %M area

flash disk memory
card

PM5630-2ET
H

Dynamically
 /max. 7.6 MB

40 MB
30 MB (as of
V3.4.0)

256 kB
Retain and per-
sistent 128 kB (of
which 68 byte are
reserved for allo-
cation table and
are not available
to the user)
%M 128 kB

None
Ä Chapter
5.2.8.2.2
“MC5141 -
Memory
card”
on page 1315

Ä Chapter
5.2.8.2.1
“MC5102 -
Micro
memory card
with adapter”
on page 1309

PM5650-2ET
H

Dynamically
 /max. 16 MB

246 MB (as
of V3.0.x)
381 MB (as
of V3.1)
285.75 (as of
V3.4.0)

AC500-eCo V3
processor
modules

AC500 V3 pro-
cessor modules

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4413

PLC type system RAM
disk

userdisk
PlcLogic
...

SRAM
Retain, %M area

flash disk memory
card

PM5670-2ET
H

Dynamically
 /max. 69 MB

858 MB
643.50 MB
(as of V3.4.0)

1536 MB
1 MB retain and
persistent (of
which 68 byte are
reserved for allo-
cation table and
are not available
to the user)
512 kB %M

PM5675-2ET
H

8 GB

It is not possible to use 100 % of a device's memory space. About 10 % of the
total available space must remain unused at any time to maintain normal device
operation.

6.8.2.1.3 Adding a global list of persistent/retain variables
A global list of persistent variables will be added with the standard definition for persistent
variables "VAR RETAIN PERSISTENT" Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN”
on page 2124Ä Chapter 6.4.1.20.2.13 “Persistent Variable - PERSISTENT” on page 2122.
First steps:
1. Expand the object path of your PLC
2. After right click on “App” select “Add object” in the context menu.

The window “Add object below: Application” appears.

3. Select “Persistent Variables” and click [Add object].

The object name can be chosen freely. In the application it will be reused to reference the
persistent variables.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4414

6.8.2.1.4 Declaring a new variable in global list
Declare a new variable in the window “GlobPersist”.

Afterwards the variable can be selected in the program.

In this way the persistent variable can be accessed directly.

Do not use the same persistent variable in different IEC tasks, to avoid prob-
lems with consistency.

6.8.2.1.5 Declaring a new persistent/retain variable in local POU
It is also possible to declare a persistent/retain variable in a local POU and not in the global list
of persistent variables.

It is not recommended to declare a large number of persistent variables locally,
due to the potentially effect to performance.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4415

The auto-declare mechanism declares always a persistent variable locally and not in the global
list. If the program will be executed, the following warning appears in the message window:

The locally declared persistent variable has to be added to the global list.

NOTICE!
For the initialization of a Retain/Persistent variable the value of the global list is
used NOT the value of the local declaration.
For further information see "RetainPersistentExample.project".

1. Right-click in window “PersistentVars”.
2. Select option “Add all instance paths”.

ð Afterwards the persistent variables are added.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4416

The application can be downloaded to the PLC

It is NOT recommended to declare a new persistent variable in the application
due to performance problems.

For example PM5650-2ETH:

1000 DWORD ≈ 600µs additional cycle time of task.

6.8.2.1.6 Initialization of %M variables
After download or restart, all %M variables will be initialized to 0. This can be prevented by
setting the "no_init" attribute.
In doing so the %M variables behave similar to the "VAR RETAIN PERSISTENT" variables.

In the example above variable "ProzMivar" has the attribute "no_init". This variable will not be
initialized and keeps its last value.
The attribute "no_init" is always and only valid for the next following variable Ä Chapter
6.4.1.20.6.3.32 “Attribute 'noinit'” on page 2299.
The following two variables "ProzMivarField" and "ProzMivar1" will be further on initialized to 0.

6.8.2.1.7 Behavior of retain variables
The declaration of the retain variables strictly follows the 3S standard (see Remanent variables
Ä Chapter 6.4.1.20.2.14 “Retain Variable - RETAIN” on page 2124Ä Chapter 6.4.1.20.2.13
“Persistent Variable - PERSISTENT” on page 2122).
For retain variables it does not matter if they are declared locally in a program or in the global
variable list.

6.8.2.1.8 PLC shell command for import and export of retain/persistent variables
The syntax of the command is: sram <direction><area><path>

Supported options:
Direction: i=import, e=export

Area: rp=Retain/Persistent, m=%M area

Path: Any pathname

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4417

The file will be stored in the user partition of the PLC. This data can be imported or exported via
the FTP-Server or the Files dialog in Automation Builder.
If no path is indicated, the files are saved under
“PlcLogic/<ApplicationName>/<ApplicationName>.ret or .prozm”.
If a path is indicated, the files are saved under or accessed via
“<path>/<ApplicationName>.ret or .prozm”.
A non-existing path is created with the exception of the memory card. The path for the memory
card must be an existing path. On the memory card a non-existing path leads to an error
message.

Data area File extension Path
Retain/Persistent .ret PlcLogic/<ApplicationName>/<Application-

Name>.ret
<path>/<ApplicationName>.ret

%M (memory area) .prozm PlcLogic/<ApplicationName>/<Application-
Name>.prozm
<path>/<ApplicationName>.prozm

Application Command File
myApp sram e rp PlcLogic/myApp/myApp.ret

sram e ep data data/myApp.ret

Application sram i m PlcLogic/Application/Applica-
tion.prozm

sram i m data data/Application.prozm

If the path "data" does not exist, tha path is created. The path for the memory card must be
an existing path. The path "sdcard/data" leads to an error message if the path "data" does not
exists on the memory card.
Only if the application uses Retain or Retain/Persistent variables the command generates an
output file.

Examples:

Attention!
It is recommended to execute the PLC shell command only while PLC is in
state STOP, or it is ensured that there is no write access to the %M or the
Retain/Persistent area.

6.8.2.1.9 Import and export of retain/persistent variables by library functions
General

It is also possible to import or export the Retain/Persistent variables and the %M markers via
system function calls from the PLC Application. The required system functions are implemented
in the IEC library ABB_IntUtils_AC500.library.
It provides the following functions or function blocks:

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4418

● SRAM_IMPORT
Ä Chapter 6.8.2.1.9.2 “SRAM_IMPORT” on page 4419

● SRAM_EXPORT
Ä Chapter 6.8.2.1.9.3 “SRAM_EXPORT” on page 4419

● SRAM_CLEARED
Ä Chapter 6.8.2.1.9.4 “SRAM_CLEARED” on page 4419

SRAM_IMPORT
The function block SRAM_IMPORT is used to import the %M markers and the Retain/Persistent
variables from the specified files in the userdisk.

Import only those %M markers and/or Retain/Persistent variables that are com-
patible to the application running in the PLC.

It is recommended to import only when the %M and/or the Retain/Persistent
area is not accessed by the application.

Otherwise inconsistencies are possible.

For a complete description of the function block see ABB_IntUtils_AC500.library.

SRAM_EXPORT
The function block SRAM_EXPORT is used to export the %M markers and the Retain/Persis-
tent variables to the specified files in the userdisk.

Export only those %M markers and/or Retain/Persistent variables that are com-
patible to the application running in the PLC.

It is recommended to export only when the %M and/or the Retain/Persistent
area is not accessed by the application.

Otherwise inconsistencies are possible.

For a complete description of the function block see ABB_IntUtils_AC500.library.

SRAM_CLEARED
The Function SRAM_CLEARED is used to check if the SRAM was deleted.
For a complete description of the Function see ABB_IntUtils_AC500.library.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4419

6.8.2.2 System processing
6.8.2.2.1 System start-up / Program processing
Definitions: PLC system start-up

The AC500-eCo V3 does not use a battery for buffering the operand areas
specified below, hence the “cold start” mode does not exist in this product.

● A cold start is performed by switching power OFF/ON if no battery is connected.
● All RAM memory modules are checked and erased Ä Chapter 6.4.1.21.3.7.10 “Command

'Reset Cold'” on page 2633.
● If no user program is stored in the Flash EPROM, the default values (as set on delivery) are

applied to the interfaces.
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

● A warm start is performed by switching power OFF/ON with a battery connected.
● All RAM memory modules are checked and erased except of the buffered operand

areas and the RETAIN variables Ä Chapter 6.4.1.21.3.7.11 “Command 'Reset Warm'”
on page 2634.

● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.
● By booting the CPU the connected IO modules are re-initialized and parameterized, there-

fore the IO output fails for a short time.

● RUN -> STOP means pressing the RUN function key on the PLC while the PLC is in run
mode (AC500 PLC display “run”, AC500-eCo PLC "RUN LED" is ON).

● If a user program is loaded into RAM, execution is stopped.
● The behavior of outputs in stop state is configurable. Double click on PLC_AC500_V3 in the

project tree. In the “PLC_AC500_V3” tab click on “PLC Settings”.
– To activate update of I/O while in stop state, click the checkbox left of “Update I/O while

in stop”.
– To specify the behavior of the outputs in stop state, select an option in the pull down

menu right of “Behavior for outputs in stop”. Options are:
“Keep current values”
“Set all outputs to default”
“Execute program” (If the “Execute program” option is selected, the “Input Assistant”
must be opened via the [...] button and a program must be selected which is executed
exactly once.)

● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from “run” to “StoP”, AC500-eCo "RUN LED" changes

from ON to OFF.

Cold start

Warm start

RUN -> STOP

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4420

● START -> STOP means stopping the execution of the user program in the PLC's RAM using
the menu item "Online/Stop" in the programming system.

● The behavior of the outputs in stop state is configurable. Double click on PLC_AC500_V3 in
the project tree. In the “PLC_AC500_V3” tab click on “PLC Settings”.
– To activate update of I/O while in stop state, click the checkbox left of “Update I/O while

in stop”.
– To specify the behavior of the outputs in stop state, select an option in the pull down

menu right of “Behavior for outputs in stop”. Options are:
“Keep current values”
“Set all outputs to default”
“Execute program” (If the “Execute program” option is selected, the “Input Assistant”
must be opened via the [...] button and a program must be selected which is executed
exactly once.)

● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from “run” to “StoP”.

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (exception: RETAIN variables) are

set to their initialization values.
● Reset is performed using the menu item "Online/Reset" in the programming system or

pressing the function key RUN for ≥ 5 s in STOP mode.

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (also RETAIN variables) are set to

their initialization values.
● Reset (cold) is performed using the menu item "Online/Reset (cold)" in the programming

system.

● Resets the controller to its original state (deletion of Flash, SRAM (%M, area, %R area,
RETAIN, RETAIN PERSISTENT), Communication Module configurations and user pro-
gram!).

● Reset (original) is performed using the menu item "Online/Reset (original)" in the program-
ming system.

● STOP -> RUN means short pressing the RUN function key on the PLC while the PLC is
in STOP mode (AC500 PLC display "StoP", AC500-eCo "RUN LED" is ON). "RUN LED" is
OFF of the toggle switch of an AC500-eCo CPU.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo "RUN LED" changes
from OFF to ON.

● STOP -> START means continuing the execution of the user program in the PLC's RAM
using the menu item "Online/Start" in the programming system.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be set to
their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo PLC "RUN LED"
changes from OFF to ON.

● Download means loading the complete user program into the PLC's RAM. This process is
started by selecting the menu item "Online/Download" in the programming system or after
confirming a corresponding system message when switching to online mode (menu item
"Online/Login").

● Execution of the user program is stopped.

START -> STOP

Reset

Reset (cold)

Reset (original)

STOP -> RUN

STOP -> START

Download

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4421

● In order to store the user program to the Flash memory, the menu item "Online/Create boot
project" must be called after downloading the program.

● Variables are set to their initialization values according to the initialization table.
● RETAIN variables can have wrong values as they can be allocated to other memory

addresses in the new project!
● A download is forced by the following:

– changed PLC configuration
– changed task configuration
– changed library management
– changed compile-specific settings (segment sizes)
– execution of the commands "Project/Clean all" and "Project/Rebuild All".

● After a project has changed, only these changes are compiled when pressing the key <F11>
or calling the menu item "Project/Build". The changed program parts are marked with a blue
arrow in the block list.

● The term Online Change means loading the changes made in the user program into the
PLC's RAM using the programming system (after confirming a corresponding system mes-
sage when switching to online mode, menu item "Online/Login").

● Execution of the user program is not stopped. After downloading the program changes,
the program is re-organized. During re-organization, no further online change command is
allowed. The storage of the user program to the Flash memory using the command "Online/
Create boot project" cannot be initiated until re-organization is completed.

● Online Change is not possible after:
– changes in the PLC configuration
– changes in the task configuration
– changes in the library management
– changed compile-specific settings (segment sizes)
– performing the commands "Project/Clean all" and "Project/Rebuild All".

● Data buffering, i.e., maintaining data after power ON/OFF, is only possible, if a battery is
connected for AC500 CPU and the buffering will take place in FLASH with AC500-eCo V3
CPU. The following data can be buffered completely or in parts:
– Data in the addressable flag area (%M area)
– RETAIN variable
– PERSISTENT variable (number is limited, no structured variables)
– PERSISTENT area (%R area)

● In order to buffer particular data, the data must be excluded from the initialization process
Ä Chapter 6.8.2.1 “Handling of remanent variables for AC500 V3 products” on page 4412.

Start of the user program
The user program (UP) is started according to the following table. It is assumed that a valid
user program is stored to the Flash memory Ä Chapter 5.2.9.4 “Storage device details”
on page 1336.

Online change

Data buffering

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4422

Action No memory
card with UP
installed
Auto run = ON

No memory
card with UP
installed
Auto run = OFF

Memory card
with UP
installed
Auto run = ON

Memory card
with UP
installed
Auto run = OFF

Voltage ON
or Warm start
or Cold start

UP is loaded
from Flash into
RAM and started
from Flash.

No UP is loaded
from Flash.
When logging in,
the message "No
program avail-
able in the con-
troller ..." is dis-
played.

UP is loaded
from the memory
card into Flash
memory and
RAM and then
started from
RAM.

UP is loaded
from the memory
card to the Flash
memory. RAM
remains empty.
When logging in,
the message "No
program avail-
able in the con-
troller ..." is dis-
played.

STOP -> RUN UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

STOP -> START UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

UP in RAM is
started.

Download 1) The UP currently
stored in the
CPU's RAM is
stopped. The
built UP is loaded
from the PC into
the PLC's RAM.

The built UP is
loaded from the
PC into the PLC's
RAM.

The UP currently
stored in the
CPU's RAM is
stopped. The
built UP is loaded
from the PC into
the PLC's RAM.

The built UP is
loaded from the
PC into the PLC's
RAM.

Online Change 2) Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
reorganized and
processed.

The changes
made to the UP
are loaded from
the PC into the
PLC's RAM. The
UP is reorgan-
ized.

Processing of the
UP currently
stored in the
CPU's RAM is
continued. The
changes made to
the UP are
loaded from the
PC into the PLC's
RAM. The UP is
reorganized and
processed.

The changes
made to the UP
are loaded from
the PC into the
PLC's RAM. The
UP is reorgan-
ized.

Remarks:
1): After the download is completed, the program is not automatically stored to the Flash
memory. To perform this, create a boot project Ä Chapter 6.4.1.11.7 “Generating boot applica-
tions” on page 1978. If the UP is not stored to the Flash memory, the UP is reloaded from
the Flash memory after voltage OFF/ON. Start the program either by pressing the RUN/STOP
function key or using Automation Builder.
2): After the online change process is completed, the program is not automatically stored to
the Flash memory. For this, after reorganization is completed create a boot project. During
reorganization and flashing, no further online change command is allowed. If the UP is not
stored to the Flash memory, the UP is reloaded from the Flash memory after voltage OFF/ON.
2): After the online change process is completed, the program is not automatically stored to
the Flash memory. For this, after reorganization is completed create a boot project Ä Chapter
6.4.1.11.7 “Generating boot applications” on page 1978. During reorganization and flashing, no
further online change command is allowed. If the UP is not stored to the Flash memory, the UP
is reloaded from the Flash memory after voltage OFF/ON.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4423

User flash memory for AC500 V3 products
AC500 processor modules for V3 products (PM56xx) are equipped with non-removable and
non-volatile onboard user flash memory for program and data storage. The integrated flash
management, including a wear levelling algorithm and a power-fail protected file system, is
designed for robustness and operation in industrial environments and applications. The user
flash memory can be accessed from the user program using the CAA_File library .

NOTICE!
The user flash memory has a finite number of write cycles.
Ä Chapter 5.2.9.4.2 “Flash disk” on page 1336

Important: Programmers should keep the amount of cyclic written data low to
ensure long availability.

Health monitoring
AC500 V3 products are equipped with non-removable and non-volatile onboard user flash
memory for program and data storage. The integrated flash management, including a wear lev-
elling algorithm and a power-fail protected file system, is designed for robustness and operation
in industrial environments and applications.

Keep the amount of cyclic written data low to assure long availability of the
user flash memory. The spent/remaining lifetime information of the user flash
memory can be acquired with the function block PmDiskStatus and PmDiskLife-
timeUsed.

Ä Chapter 5.2.9.4.2 “Flash disk” on page 1336

Further information is provided in the documentation of the AC500_Pm library. Ä Chapter
6.5.14 “Reference, function blocks” on page 4086

Since FW version 3.3.0, there is also a diagnosis message issued when the user flash memory
reaches the end of its lifecycle. Please refer to the diagnosis documentation for more info.

PID controller
Using PID function blocks, such as HaModPidFixCycle, a PID controller can be configured and
used in AC500 PLCs. The procedure is described in the application note PID - function block.

Task configuration
General

This statement is applicable to PM5032-x-ETH, PM5052-x-ETH, PM5072-
T-2ETH(W) and PM5082-T-2ETH.
If the main task cycle is faster than 10 ms, remove the onboard inputs I8..I11
and I/O channels of option boards or option boards for serial communication
from the main task cycle, but use a separate task cycle.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4424

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011146&LanguageCode=en&DocumentPartId=&Action=Launch

The task model processes the following kind of tasks:
● Non-real-time system tasks: system tasks with no real-time property (e.g. file access,

Ethernet communication, OPC UA, …)
● Non-real-time IEC tasks: IEC tasks with no real-time property
● Real-time system tasks: system tasks with real-time property
● Real-time IEC tasks: IEC tasks with real-time property
The possible number of tasks depends on the type of processor module. How to distribute the
IEC tasks over multiple CPU cores and on how to use the IEC task configuration for Automation
Builder is described in detail in the CODESYS task configuration section.
● Task configuration Ä Chapter 6.4.1.9.17 “Task Configuration” on page 1914
● Tab 'Configuration' Ä Chapter 6.4.1.21.2.30.2 “Tab 'Configuration'” on page 2538

Watchdog handling in IEC tasks
If a new project is created or a new task is inserted in the task configuration Ä Chapter
6.4.1.9.17 “Task Configuration” on page 1914, the task is created with the “default task settings”
priority = 15 and cycle time = 10 ms. The watchdog is activated, set to 20 ms and sensitivity = 1.

The watchdog handling depends also on the setting of the CPU parameter “Missed cycle
behavior”:

This parameter configures the behavior of a real-time task if the processing time of the task is
longer than the cycle time.
“Next” means – skip the missed cycle and start the task on the next cycle on time. This might
result in skipped tasks, but at least the highest priority task is always started on time, if it is not
skipped (= default value).
“ASAP” means - start the task immediately when possible.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4425

This parameter is valid for all real-time tasks (priorities 0 ... 15) of the PLC
application.

Example 1: default task settings, tTask – processing time of the task in [ms]

tTask Par.

6 Next

12 ASAP

12 Next

No watchdog occurs, also if the processing time of the task is longer than the cycle time (cases
2 and 3) since the processing time is shorter than the watchdog time.

Example 2: default task settings, tTask – processing time of the task 24 ms, SWD – sensitivity of
the watchdog

SWD Par.

1 Next

3 ASAP

3 Next

Watchdog occurs in all 3 cases since the processing time of the task is longer than the
watchdog time. According to the setting of the sensitivity the watchdog occurs after 1 or 3
cycles.
Beside the task watchdog there is the so-called “omitted cycle watchdog” (OMCW). The omitted
cycle watchdog is only active if a watchdog has been configured for the task.
The "normal" Watchdog triggers only if the processing time of the task exceeds the set
Watchdog value.
The omitted cycle watchdog on the other hand checks completely "failed" cycles. E.g. if the
scheduler has a problem and the task never executes its cycle again, then the "normal"
watchdog will not be triggered. Therefore, the run time does an additional check, if a task has
been executed within the double cycle time or the double watchdog time (the bigger of both is
valid). If not, the omitted cycle watchdog is triggered.

Example 3: default task settings, tTask - processing time of the task in ms, Clost - lost cycles

tTask Clost

6 3 ... 6

12 3 ... 6

¥ 2ff

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4426

Omitted cycle watchdog occurs after double watchdog time (2 x 20 ms = 40 ms).

Example 4: Two tasks with following settings:

Task Priority Cycle time
[ms]

Watchdog
time [ms]

Sensitivity Parameter Task pro-
cessing
time [ms]

1 10 10 20 1 Next 6

2 15 50 50 1 30

Task

1

2

Watchdog of task 2 is triggered since the task cannot run in the defined task cycle.

Example 5: Two tasks with following settings

Task Priority Cycle time
[ms]

Watchdog
time [ms]

Sensitivity Parameter Task pro-
cessing
time [ms]

1 10 10 20 1 ASAP 12

2 15 30 60 1 6

Task

1

2

Watchdog of task 2 is triggered since the task cannot start in the defined task cycle.

Example 6: Two tasks with following settings

Task Priority Cycle time
[ms]

Watchdog
time [ms]

Sensitivity Parameter Task pro-
cessing
time [ms]

1 10 10 20 1 Next 12

2 15 30 60 1 6

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4427

Task

1

2

No watchdog is triggered, but task 1 is running in 20 ms cycle instead of configured 10 ms
cycle. Task 2 is running alternating every 20 ms or 40 ms.

PLC utilization
General

The parameters cpuload and plcload represent the actual CPU load or PLC load of the
system.
● cpuload: This value represents the time the PLC requires to calculate all processes run-

ning on the PLC. For a good system performance this value should be less than 80%. In
case of a higher value, the degree of utilization should be reduced by using a more powerful
PLC or by reducing the amount of processes.

● plcload: This value represents the time the PLC requires to calculate all real-time pro-
cesses. Real-time processes are either high priority system tasks or IEC tasks with a priority
between 0 and 15. For a good system performance this value should be less than 60%. In
case of a higher value, the degree of utilization should be reduced by using a more powerful
PLC.

During commissioning we recommend to monitor the CPU and PLC values online with one of
the following methods:

● Commissioning via 'PLC shell commands' Ä Chapter 6.9.2.4.4 “PLC shell commands”
on page 4647 (command 'plcload' and 'cpuload').

● Commissioning via 'Application at runtime' Ä Chapter 6.4.1.13.3 “Data Recording with
Trace” on page 2007. In order to display the load of the CPU or PLC, create a new Device
Trace object in your PLC project. Then upload the data into the views 'Command 'Upload
Trace' Ä Chapter 6.4.1.21.3.22.19 “ Command 'Upload Trace'” on page 2742.

To access the parameters plcload and cpuload please use system functions as follows:

● plcload: SchedGetProcessorLoad() included in library ‘CmpSchedule’.
● cpuload: SysMCGetLoad() included in library ‘SysCpuMultiCore’.

Automation
Builder

IEC applica-
tions/IEC pro-
gram

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4428

Managing priorities by selecting the appropriate communication schema
The AC500 V3 PLCs have an integrated preemptive real-time operating system that supports
100 priorities from 0 (lowest priority) to 99 (highest priority). Hereof 0 ... 49 in the non-real-time
area and 50 ... 99 in the real-time area.
For real-time tasks in the IEC user program 16 priorities 0 (highest priority) ... 15 (lowest priority)
can be used. They correspond to the operating system priorities 67 (for IEC task priority 0) ... 52
(for IEC task priority 15).
The file system, the memory card and flash tasks run on lowest real-time priority 50.
The non-real-time IEC task priority 16 runs in the non-real-time area. Likewise, all Ethernet
protocols and the diagnosis system run in the non-real-time area.
As of Automation Builder 2.4.1 and “SystemFW” 3.4.1 provides a new PLC boot parameter
Communication Schema (non-real time vs. real-time Ethernet data) for AC500 V3:

● Name: “Default”
Description: Balanced priority for communication via communication modules (CMs) and
onboard Ethernet communication.
Ä Further information on page 4429

● Name: “Communication modules”
Description: Priority and high performance for communication module (CM) based commu-
nication via sync tasks. Lower priority for onboard Ethernet and I/O bus.
Ä Further information on page 4430

● Name: “Onboard Ethernet”
Description: Priority for onboard Ethernet communication (e. g. via Modbus TCP). Lower
priority for communication via communication modules (CMs)
Ä Further information on page 4431

● Name: “Realtime onboard Ethernet”
Description: Very high priority for onboard Ethernet communication (e. g. EtherCAT,
PROFINET, Ethernet/IP). Low priority for communication via communication modules (CMs)
Ä Further information on page 4431

The value “Realtime onboard Ethernet” is reserved for later use and has cur-
rently the same settings as “Onboard Ethernet” and in addition the I/O bus on
the same priority as the Ethernet.

In version of “SystemFW” 3.5.0 the priority of onboard CAN interface has been adapted and is
now included in the priority schemas.
In addition the parameter Communication Schema is now also available for the eCo-V3
PLCs.

The „Default“ priority schema in “SystemFW” 3.4.1
The default value of the boot-parameter Communication Schema is the balanced priority for
communication via communication modules (CMs) and onboard Ethernet communication. The
following figure gives an overview about the main task priorities in the AC500 V3 PLCs.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4429

The highest IEC task priority 0 should be used
for high prior functions in the PLC with short
execution time.
The communication modules interrupts
(CM5xx), the I/O bus, the IEC scheduler
observer task and the CAA event task are pro-
cessed with higher priority than all user IEC
tasks.
Ethernet runs on non-real-time priority.

The default setting of the priorities is suitable for most applications and corresponds to the
settings in the firmware versions 3.4.0 and before.

The “Communication modules” priority schema in “SystemFW” 3.4.1
The communication modules priority schema has been established for priority and high perform-
ance for communication module (CM) based communication via sync tasks. Lower priority for
onboard Ethernet and I/O bus.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4430

The highest IEC task priority 0 should be used
for the sync task of the highest priority com-
munication module, e. g. CM579-ETHCAT, pri-
ority 1 for the sync task with second highest
priority, and so on.
Only the communication modules interrupts
(CM5xx) and the CAA event task is processed
with higher priority than the IEC tasks.
The IEC scheduler observer task has been
moved to priority 66, means below IEC task
priority 0 and on the same level as IEC task
priority 1.
The priority of the I/O bus has been moved to
priority 59, means inside the IEC task priority
area, but below the external event task priori-
ties.
Ethernet runs on non-real-time priority.

The priority schema communication module should be used in applications with one or more
communication modules CM5xx with sync mode. As of Automation Builder 2.4.1 these are the
CM579-ETHCAT EtherCAT master and CM598-CN CANopen master communication modules.
The sync task with priority 0 will be interrupted only by system interrupts. Since the IEC sched-
uler observer task is located below IEC priority 0, the watchdog for this task is also ineffective.
However, this should not interfere with a sync task.
If more than one CM5xx are used in sync mode, the priority order must be defined. The sync
task of highest priority CM5xx receives IEC priority 0, the next priority 1 and so on.
In a mixed PLC configuration with communication modules with and without sync mode the
interrupts of the communication modules without sync mode will be handled on the priority
of the lowest sync task. Currently supported communication modules without sync mode are
CM579-PNIO PROFINET IO controller and SM560-S Safety PLC.

The “Onboard Ethernet” priority schema in “SystemFW” 3.4.1
The “Onboard Ethernet” priority schema has been established for priority for onboard Ethernet
communication (e. g. via Modbus TCP).

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4431

The Ethernet interrupt task has been moved
from non-real-time area to priority 59, means
inside the IEC task priority (real-time) area,
but below the external event task priorities.

This priority schema should be used for applications with much Ethernet communication, e. g.
Modbus TCP communication with a high number of Modbus TCP clients/servers.

NOTICE!
Since the Ethernet interrupt task is running in this mode in the real-time priority
area, the Ethernet communication can block IEC tasks with priorities 12-15.

Working with real-time priority at onboard Ethernet and using a high number of Modbus TCP
client connections can force high CPU load. To avoid this, it is recommended to call the Modbus
function blocks in steps.

100 Modbus TCP client connections shall be used in a 20 ms task.
Call 20 function blocks in a first cycle, 20 function blocks in a second cycle and so on.

Example

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4432

The „Default“ priority schema in “SystemFW” 3.5.0
The default value of the boot-parameter Communication Schema is the balanced priority for
communication via communication modules (CMs) and onboard Ethernet communication.
The following figure gives an overview about the main task priorities in the AC500 V3 midrange
PLCs in version “SystemFW” 3.5.0.

The highest IEC task priority 0 should be used
for high prior functions in the PLC with short
execution time.
The communication modules interrupts
(CM5xx), the I/O bus, the IEC scheduler
observer task and the CAA event task are pro-
cessed with higher priority than all user IEC
tasks.
Ethernet runs on non-real-time priority.
The CAN onboard interrupt is moved from
non-real-time priority to real-time priority 69,
one priority above the CAN transmit and
receive threads.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4433

The default setting of the priorities is suitable for most applications and corresponds to the
settings in the firmware versions 3.4.0 and before.

The “Communication modules” priority schema in “SystemFW” 3.5.0
The communication modules priority schema has been established for priority and high perform-
ance for communication module (CM) based communication via sync tasks. Lower priority for
onboard Ethernet and I/O bus.

The highest IEC task priority 0 should be used
for the sync task of the highest priority com-
munication module, e. g. CM579-ETHCAT, pri-
ority 1 for the sync task with second highest
priority, and so on.
Only the communication modules interrupts
(CM5xx) and the CAA Event task is processed
with higher priority than the IEC tasks.
The IEC scheduler observer task has been
moved to priority 66, means below IEC task
priority 0 and on the same level as IEC task
priority 1.
The priority of the I/O bus has been moved to
priority 59, means inside the IEC task priority
area, but below the external event task priori-
ties.
The CAN onboard interrupt has the same pri-
ority as the I/O bus and the CAN transmit and
receive threads one priority below, means 58.
Ethernet runs on non-real-time priority.

The priority schema communication module should be used in applications with one or more
communication modules CM5xx with sync mode. As of Automation Builder 2.4.1 these are the
CM579-ETHCAT EtherCAT master and CM598-CN CAN master communication modules.
The sync task with Prio 0 will be interrupted only by system interrupts. Since the IEC scheduler
observer task is located below IEC Prio 0, the watchdog for this task is also ineffective. How-
ever, this should not interfere with a sync task.
If more than one CM5xx are used in sync mode, the priority order must be defined. The sync
task of highest priority CM5xx receives IEC Prio 0, the next Prio 1 and so on.
In a mixed PLC configuration with communication modules with and without sync mode the
interrupts of the communication modules without sync mode will be handled on the priority
of the lowest sync task. Currently supported communication modules without sync mode are
CM579-PNIO PROFINET IO controller and SM560-S safety PLC.

The “Onboard Ethernet” priority schema in “SystemFW” 3.5.0
The “Onboard Ethernet” priority schema has been established for priority for onboard Ethernet
communication (e. g. via Modbus TCP).

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4434

The Ethernet interrupt task has been moved
from non-real-time area to priority 59, means
inside the IEC task priority (real-time) area,
but below the external event task priorities.
The CAN onboard interrupt is moved one pri-
ority below the Ethernet interrupt to priority 58
and the CAN transmit and receive threads one
priority below the CAN onboard interrupt to
priority 57.

This priority schema should be used for applications with much Ethernet communication, e. g.
Modbus TCP communication with a high number of Modbus TCP clients/servers.

NOTICE!
Since the Ethernet interrupt task is running in this mode in the real-time priority
area, the Ethernet communication can block IEC tasks with priorities 12-15.

Working with real-time priority at Onboard Ethernet and using a high number of Modbus TCP
client connections can force a high CPU Load. To avoid this, we recommend calling the Modbus
FB’s in steps.

100 Modbus TCP client connections shall be used in a 20 ms task.
Call 20 function blocks in a first cycle, 20 function blocks in a second cycle and so on.

Example

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4435

Communication schema onboard Ethernet/EtherCAT
General

Due to the broad variety of functionality which can run in parallel on AC500 V3 PLCs, it is
recommended, or even mandatory depending on the desired functionality, to adjust system
behavior to better match the needs of the individual application.
Due to hardware limitations and constraints, it’s necessary to prioritize functionality, especially if
it’s intended to execute multiple features in parallel. Prioritizing can be very difficult due to the
complexity of the underlying software components. Besides of task priorities, it might also be
necessary to adjust low level system configuration to achieve the best possible performance for
a specific feature.
To reduce complexity, and thus the risk of negative side-effects the CPU parameter
Communication schema has been introduced. This parameter enables the user to specifically
define the primary purpose of the corresponding PLC and lay focus on a specific functionality.
The following table shows the available communication schemas for both, PM50xx eCo and
PM56xx PLCs.

Schema PM50xx PM56xx Description
Default
Ä Chapter 6.8.2.2.1.8.2
“Communication schema
“Default”” on page 4438

X X Balanced priority for communication
via communication modules (CMs) and
onboard Ethernet communication.

Communication modules
Ä Chapter 6.8.2.2.1.8.3
“Communication
schema “Communication
modules” ” on page 4439

- X Priority and high performance for com-
munication module (CM) based com-
munication via sync tasks. Lower pri-
ority for onboard Ethernet and I/O bus.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4436

Schema PM50xx PM56xx Description
Onboard Ethernet
Ä Chapter 6.8.2.2.1.8.4
“Communication schema
“Onboard Ethernet””
on page 4441

X X Priority and high performance for com-
munication module (CM) based com-
munication via sync tasks. Lower pri-
ority for onboard Ethernet and I/O bus.

Onboard EtherCAT
Ä Chapter 6.8.2.2.1.8.5
“Communication schema
“Onboard EtherCAT”
since “SystemFW” 3.4.1”
on page 4442

X X Very high priority for onboard Ethernet
communication (e. g. EtherCAT,
PROFINET, EtherNet/IP). Low priority
for communication via communication
modules (CMs).

Changing communication schema might have significant impact on the behavior
of the user application and should therefore only be done if,

– a feature is configured which relies on a specific schema (e.g., onboard
EtherCAT).

– there’s need of optimization of system behavior in terms of performance
(decrease of reaction times, increase of throughput etc.).

Note that the increase of flexibility and freedom comes with an increase of
responsibility because IEC task configuration and IEC user code might block
important system functionality for too long. The following provided information
should help to identify appropriate settings to prevent runtime errors like timeout
exceptions or communication problems.

The functionality prioritized by each communication schema is grouped into 3 different classes:
● High priority real-time functionality
● IEC tasks with real-time priority
● Low priority non-real-time functionality

Functionality with strict timing requirements, e.g., drivers with hardware access or hardware
watchdog monitoring failures might lead to exception errors, loss of communication with hard-
ware and other problems which are non-recoverable and might cause a stop of the user applica-
tion.
Functionality of this class can’t be influenced by activity of user defined IEC tasks. As a result of
this, related functionality can interrupt or delay IEC tasks and therefore increase IEC task jitter
and the duration of IEC task cycles.

Priority classifi-
cations and
their purpose

High priority
real-time func-
tionality

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4437

This is the priority range of user defined real-time IEC tasks. Priorities 0 to 15 are real-time
priorities (IEC priority 16 is mapped to non-real-time priority) and can be used to define an IEC
task’s priority in Automation Builder.
Task in this range can be interrupted or delayed by high priority functionality. It’s not possible
for IEC user code to suppress high priority activity, thus increasing safety and reducing the risk
of negative side effects caused by bugs in IEC user code or libraries or misconfiguration of IEC
tasks.

The low priority range is intended for non-real-time functionality which doesn’t have any spe-
cific timing requirements and which is supposed to execute its activity without delaying or
interrupting the user application and its related functionality.
Activity assigned to this range can be suppressed by high priority and real-time IEC tasks.
Therefore might show high jitter, sporadic activity or large reaction times, depending on the
overall system load.
To avoid suppression of the tasks of this group, the system reserves a short time slot to process
low-priority functionality if the CPU load reaches nearly 100%. Under normal circumstances
(below an average system load of 80%), this mechanism shouldn’t be engaged. Although this
time slot could cause high priority tasks to jitter slightly (± 100 microseconds), it ensures that
the system remains responsive and will always be able to run fundamental jobs which must be
executed regularly. Note that tasks of low priority still play an important role and need to be
scheduled regularly to meet their individual timing requirements.

Ensure that the average CPU load doesn’t exceed 80% to ensure that there’s
enough time for the system to process low-priority functionality.

The functionality might not be important for the individual application, but it is
still necessary to keep alive other functionality like the Automation Builder login
or access to diagnosis data.

Once the CPU load exceeds 80%, it will be difficult for the system to correctly
schedule tasks.

Communication schema “Default”
Communication schema “Default” is the default schema selected when creating a new AC500
V3 application. It is the recommended setting to start with and suitable for most applications.
The schema leads to a well balanced task priority setup which lays focus on stability and low
risk of negative side effects caused by high IEC task load or hardware activity.
The highest IEC task priority 0 should be used for high prior functions in the PLC with short
execution time.
The communication modules interrupts (CM5xx), the I/O bus, the IEC scheduler observer task
and the CAA event task are processed with higher priority than all user IEC tasks.
Ethernet runs with non-real-time priority to avoid denial-of-service scenarios and system over-
load caused by devices located in the same network.
The default setting of the priorities is suitable for most applications and should be used unless
there are special requirements or performance issues.

In this schema, the range of IEC task priorities is only shared with tasks related to CM598-CN
(CAN communication module) and its CAN2A/2B IO POUs and common POU background job
handling. The priorities 9 and 15 can still be used though.
Note that tasks above IEC task priority 9 might have negative side effects on CAN communica-
tion in terms of reaction time and throughput, while IEC tasks with priority lower than 9 might be
interrupted or delayed by an active CAN communication.

IEC tasks with
real-time priority

Low priority
non-real-time
functionality

Features and
their priorities

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4438

POU background jobs are assigned the lowest IEC real-time priority to avoid negative side
effects on IEC tasks and thus on process data synchronization or user code. POUs usually are
related to tasks of lower priority and shall not have an impact on higher priority tasks.

Communication schema “Communication modules”

This communication schema is only available for PM56xx series AC500 V3
PLCs supporting communication modules.

The communication schema “Communication modules” is intended for users of a communica-
tion module which can be configured to synchronize its stack activity with the user application by
a dedicated (external event triggered IEC task) which is mapped to an event (“CouplerEventX”,
X = slot number of the communication module).
The bus synchronized IEC task is not scheduled by the PLC runtime system but the stack of
the communication module. As a result of this, it’s necessary for the PLC to quickly react on the
related event of the communication module. The schema ensures that negative side-effects on
the bus synchronized IEC task are reduced as much as possible by adjusting priorities of high
priority functionality.

The following figure shows the changes the schema applies to the available features of the
PLC. The primary goal of this schema is to reduce the number of tasks which are capable of
interrupting or delaying the bus synchronized IEC task, while providing as much flexibility as
possible. By making use of the priority range of IEC tasks, users can decide whether existing
IEC tasks will influence the corresponding features.

Features and
their priorities

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4439

● Use IEC priority 0 for the bus synchronized IEC task and a priority lower than 0. For all other
features to avoid negative side-effects on the bus synchronized IEC task.

● Use IEC priorities 1 to 5 for functionality which is more important than high priority features
like IO bus or CAN.

● To ensure that a high priority feature is not influenced by any IEC user code (besides of the
bus synchronized IEC task), use an IEC task priority which is lower than the priority of the
corresponding feature.

It is not forbidden to make use of IEC task priorities which are assigned to other
PLC functionality.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4440

NOTICE!
Be careful when using this schema to avoid unwanted side-effects on features
besides of the protocol realized by the corresponding communication module,
caused by violation of individual timing constraints or requirements!
I/O bus must be able to refresh all connected S500 I/O devices within 20 ms.
Otherwise, an exception will be raised which will lead to a stop of the applica-
tion. Use PLC shell command io-bus desc to dump information on the bus
timing. The output contains information on the IO bus cycle time:
--- I/O bus information —
Baud rate [baud]: 1714286
Min. cycle time [us]: 1037
Max. cycle time [us]: 10936
Last cycle time [us]: 1567
Ä Chapter 6.4.1.21.2.8.11 “Tab 'PLC Shell'” on page 2441

The maximum cycle time must be below 20 ms to ensure that the system runs
stable and won’t raise a timeout exception error.
If the cycle time reaches the limit, try to reduce the amount of code executed by
IEC user tasks of higher priority than I/O bus or adjust task priorities if possible.

Communication schema “Onboard Ethernet”
This schema is intended for users who make use of Ethernet protocols which rely on a lot of
parallel network connections, like Modbus TCP or IEC 61850.

As shown in the diagram below, Ethernet related tasks will be assigned a priority within IEC task
priority range to reduce reaction times and increase throughput to meet the requirements of pro-
tocols like Modbus TCP or IEC 61850. By making use of IEC task priority 8, users can decide
whether their IEC user tasks are capable of interrupting or delaying Ethernet communication or
not, depending on the individual requirements.

Features and
their priorities

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4441

Communication schema “Onboard EtherCAT” since “SystemFW” 3.4.1
Schema “Onboard EtherCAT” is intended for users who intend to make use of the EtherCAT
master protocol, configured at one of the available onboard Ethernet ports of the corresponding
AC500 V3 PLC.
Due to the special requirements of EtherCAT, it’s necessary to modify the configuration of
system components related to onboard Ethernet, and thus provide a low-latency Ethernet port.
In addition to that, priorities of various functionality are adjusted to reduce negative side-effects
on the EtherCAT IEC task and achieve best possible performance.

The following diagram shows the changes the schema applies to the available features of the
PLC. The primary goal of this schema is to reduce the number of tasks which are capable of
interrupting or delaying the Ethernet IEC task, while providing as much flexibility as possible. By
making use of the priority range of IEC tasks, users can decide whether existing IEC tasks will
influence the corresponding features.
● Use IEC priority 0 for the EtherCAT IEC task and a priority lower than 0 for all other features

to avoid negative side-effects on EtherCAT.
● Use IEC priorities 1 to 5 for functionality which is more important than high priority features

like IO bus or onboard I/O.
● To ensure that a high priority feature isn’t influenced by any IEC user code (besides of

EtherCAT), use an IEC task priority which is lower than the priority of the corresponding
feature.

It is not forbidden to make use of IEC task priorities which are assigned to other
PLC functionality.

Features and
their priorities

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4442

NOTICE!
Be careful when using this schema to avoid unwanted side-effects on features
other than EtherCAT, caused by violation of individual timing constraints or
requirements!
I/O bus must be able to refresh all connected S500 I/O devices within 20 ms.
Otherwise, an exception will be raised which will lead to a stop of the applica-
tion. Use PLC shell command io-bus desc to dump information on the bus
timing. The output contains information on the IO bus cycle time:
--- I/O bus information —
Baud rate [baud]: 1714286
Min. cycle time [us]: 1037
Max. cycle time [us]: 10936
Last cycle time [us]: 1567
Ä Chapter 6.4.1.21.2.8.11 “Tab 'PLC Shell'” on page 2441

The maximum cycle time must be well below 20 ms to ensure that the system
runs stable and won’t raise a timeout exception error.
If the cycle time reaches the limit, try to reduce the amount of code executed by
IEC user tasks of higher priority than I/O bus or adjust task priorities if possible.

Besides the adjustment of task priorities, schema “Onboard EtherCAT” also changes the low
level Ethernet driver configuration to offer a dedicated low latency port to the user.
Due to technical constraints, the port number of the low latency port depends on the type of
PLC which is used:

Low latency
port

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4443

PLC type ETH1 ETH2
PM50xx eCo V3 Low latency Maintenance and visualization

PM56xx V3 Maintenance and visualization Low latency

The other port remains on low priority to minimize the impact on the activity of the v protocol.
It is intended for login (Automation Builder), visualization services or similar (non-real-time)
activities.

When configuring eCo V3 CPU “Onboard EtherCAT” parameters, the ETH1
interface is set to the IP address 0.0.0.0. After switching to a different communi-
cation scheme than “Onboard EtherCAT”, IP configuration of the Ethernet port
used for Onboard EtherCAT remains invalidated (IP address 0.0.0.0). It needs
to be re-applied by the user should the port be required by the new application.

The “Onboard EtherCAT” functionality is only usable/visible for the eCo V3 CPU
from SystemFW 3.7.0.

6.8.2.2.2 Setting standard configuration
If the target setting configuration is changed, standard configuration can be restored:
1. Open CODESYS.
2. In the “Resources” tab, double-click “PLC Configuration”.
3. Select “Menu Extras è Standard Configuration”.

6.8.2.3 Real-time clock and battery
6.8.2.3.1 Real-time clock

The real-time clock is an optional function for AC500-eCo V3 Basic processor
modules (e.g. PM5012-x-ETH) require a TA5131-RTC. All other AC500-eCo V3
processor modules have an integrated real-time clock.

The real-time clock operates as a PC clock. It saves date and time to a DWORD in DT format
(DATE AND TIME FORMAT), i.e., in seconds passed since the start time: 1 January 1970 at
00:00.
For AC500-eCo V3, Basic CPU with TA5131-RTC buffers the real-time clock for 7 days, and
Standard/Pro CPU buffers the integrated real-time clock for 20 days. When the CPU is not
powered over the buffering time, the real-time clock data will be cleared.
If a battery is connected and full, the real-time clock continues to run even if the control voltage
is switched off.
If no battery is inserted or the battery is empty, the real-time clocks starts with the value 0
(=1970-01-01, 00:00:00).
When switching on the control voltage, the system clock of the operating system is set to the
value of the real-time clock.

The PLC browser/PLC shell commands date and time are used to set the real-time clock.

The commands date <ENTER> or time <ENTER> display the current date and time of the
real-time clock.
The command: date yyyy-mm-dd<ENTER> (year-month-day) sets the date.

The command: time hh-mm-ss<ENTER> (hours-minutes-seconds) sets the time.

Notes on real-
time clock

Real-time clock
with PLC
browser

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4444

Example:
The real-time clock should be set to 22 February 2005, 16:50.
1. Enter the date:

date 2005-02-22<ENTER>
ð Display: date 2005-02-22 Clock set to 2005-02-22 08:01:07

The time remains unchanged.
2. Enter the time:

time 16:50<ENTER>
ð Display: time 16:50 Clock set to 2005-02-22 16:50:00

The following function blocks located in the folder "Realtime clock" of the system library
ABB_ExtUtils_AC500.lib can be used to set and display the real-time clock (RTC) with help
of the user program:

Function block Function
CLOCK (V3) “Library Manager è ABB-AC500
è Use Cases è AC500 Utils
è PM<Version> (ABB) è Function Blocks
è Realtime clock”

Sets and displays the real-time clock with
values for year, month, day, hours, minutes
and seconds.
Also the day of week is indicated (Mo=1,
Tue=2, Wed=3, Thu=4, Fr=5, Sa=6, Su=0).
Note: The week of day cannot be set. It
is given by the real-time clock. The input
DAY_SET is ignored.

CLOCK_DT (V3) “Library Manager
è ABB-AC500 è Use Cases è AC500 Utils
è PM<Version> (ABB) è Function Blocks
è Realtime clock”

Sets and displays the real-time clock in DT
format, for example DT#2005-02-17-17:15:00.

Reference for function blocks, functions, structures etc. Ä Chapter 6.5.14 “Reference, function
blocks” on page 4086

6.8.2.3.2 AC500 battery
The AC500 battery buffers the following data in case of "control voltage off":
● Retentive variables in SRAM (VAR_RETAIN..END_VAR) Ä Chapter 6.8.2.1 “Handling of

remanent variables for AC500 V3 products” on page 4412
● Date and time of the real-time clock
Further information:
● Ä Chapter 6.9.3 “Diagnosis messages” on page 4655

To prevent data loss when using the AC500 battery, the battery status should be
periodically monitored by the user program.

The battery status can be monitored either with the help of a user program on the PLC or in
Automation Builder.

Real-time clock
with user pro-
gram

Battery status

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4445

In the PLC shell of Automation Builder the command "BATT" can be used. Ä Chapter 6.9.2.4.4
“PLC shell commands” on page 4647. The following is output:

0 Battery empty

20 Remaining battery charge below 20 %

100 Battery charge OK

In the user program, the battery status can be checked with the function BATT which is avail-
able in the folder "Battery" of the system library ABB_ExtUtils_AC500.lib (“Library Manager
è ABB-AC500 è Use Cases”). The following is output:

0 Battery empty

20 Remaining battery charge below 20 %, battery
must be replaced

100 Battery charge OK

On the device, the battery status can be checked with the function keys of a processor module.
Ä Chapter 6.8.2.5 “Display, LEDs and function keys on the front panel” on page 4452

Ä Chapter 6.8.2.5.5.3 “VAL - reading out state values” on page 4459

6.8.2.3.3 AC500-eCo V3 data buffering
The AC500-eCo V3 buffers the following data in case of "control voltage off":
● Retentive variables in FLASH (VAR_RETAIN..END_VAR) Ä Chapter 6.8.2.1 “Handling of

remanent variables for AC500 V3 products” on page 4412
● Date and time of the real-time clock are using an integrated gold-capacitor with a lower

retention time as a battery.

The AC500-eCo V3 has no battery but stores the remanent data in flash or
the real-time clock using a gold-capacitor, there is no battery or gold-capacitor
status or survey.

In case of “control voltage off”, the real-time clock is buffered for about 7 days
for Basic CPU with TA5131-RTC and about 20 days for Standard or Pro CPUs
at 40 °C using temperature.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4446

6.8.2.4 AC500-eCo V3 processor module, LEDs, RUN/STOP switch on front panel
6.8.2.4.1 Features

Fig. 358: Example: PM5072-T-2ETH

1 Micro memory card slot
2 5 LEDs to display the states of the processor module (Power, Error, Run, MC, MOD1)
3 RUN button
4 RJ45 female connector for Ethernet1 connection
5 RJ45 female connector for Ethernet2 connection (available for PM50x2-T-2ETH)
6 3-pin terminal block for power supply 24 V DC
7 2 holes for screw mounting
8 Option board slot cover for option board slot (the number of available slots varies according

to the CPU type)
9 Cable fixing
10 13-pin terminal block for onboard I/Os
11 12-pin terminal block for onboard I/Os (not available on PM5012-x-ETH)
12 12 LEDs to display the states of the signals
13 10 LEDs to display the states of the signals
14 Cable fixing accessory TA5301-CFA on the top of the housing (optional)

The processor module is shown with pluggable terminal blocks. These terminal
blocks must be ordered separately.

The cable fixing accessory on the top of the housing is optional.

Please use TA5301-CFA cable fixing accessory to provide strain relief.

It can also be used for AC500-eCo I/O modules.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4447

The PM50x2 processor modules are supplied with option board slot covers as
standard.

There are various TA51xx option boards for the processor modules that can be
ordered separately.

Which and how many option boards can be plugged, depends on the respective
processor module.

6.8.2.4.2 State LEDs and operating elements
The processor modules, PM50xx series, have a RUN/STOP button. By pressing the RUN/STOP
button, the processor modules switch between RUN mode and STOP mode. By long-pressing
RUN/STOP button during the processor module power on phase, the processor module will be
in MOD1.

The processor modules PM50xx indicate their states of operation via 5 LEDs located on the
upper left side of the processor module.

LED State Color LED = ON LED = OFF LED flashing
PWR Power supply Green Power supply

present
Power supply
missing

-

MC Micro memory
card indication

Yellow Micro memory
card is in the
socket

Micro memory
card is not in the
socket

Micro memory
card is in read/
write state: any
file on card is
opened, means
activity on card

ERR Error indication Red An error occurred No errors or only
warnings
encountered (E4
errors).
The LED
behavior for the
error classes 2 to
4 is configurable.

Fast flashing (4
Hz) displays
together with the
RUN LED a cur-
rently running
firmware-upgrade
or writing data to
the Flash-
EPROM. Slow
flashing (1 Hz)
alone displays
shutdown of
Request To
Send. Medium
flashing (2 Hz)
alone displays at
start of PLC if
reboot after
watchdog.

MOD1 Mode 1 indication Yellow Processor
module is in
mode 1 state

Processor
module is not in
mode 1 state

-

RUN/STOP
button

State LEDs

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4448

LED State Color LED = ON LED = OFF LED flashing
RUN RUN/STOP state Green Processor

module is in state
RUN

Processor
module is in state
STOP

Fast flashing (4
Hz):
The processor
module is
reading/writing
data from/to the
memory card.
If the ERR-LED
is also flashing,
data is being
written to the
Flash-EPROM.

Slow flashing (1
Hz):
The firmware
update from the
memory card has
been completed
successfully
or
Boot project is
being updated.
Slow flashing
(0.5 Hz) together
with
MOD1 LED ON:
Mode1: Boot
project is not
loaded.

Two LEDs below
“ERR” and
“MOD1”

Configurable Yellow Configurable Configurable Additional two
LEDs are
reserved and can
be controlled
from IEC user
code with FB
PmLedSet

The AC500-eCo V3 processor module also provides 2 LEDs below the state LEDs which can be
used by user and driven by an application.
The LEDs can be used into a project and controlled using special function blocks which are
contained in the PM AC500 library. The POU is PmLedSet located in folder LED control.

The processor module provides up to 10 LEDs (PM5012-x-ETH), 20 LEDs (PM5032-R-ETH,
PM5052-R-ETH), or 22 LEDs (PM5032-T-ETH, PM5052-T-ETH, PM5072-T-2ETH(W), PM5082-
T-2ETH) to display the states of the inputs and outputs.

Processor
module

LED State Color LED = ON LED = OFF

PM5012-x-ETH I0 ... I5 Digital input Yellow Input is ON Input is OFF

O0 ... O3 Transistor
output

Yellow Output is ON Output is OFF

User configu-
rable LEDs

I/O LEDs

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4449

Processor
module

LED State Color LED = ON LED = OFF

NO0 ... NO3 Relay output Yellow Output is ON Output is OFF

PM5032-x-ETH
PM5052-x-ETH

I0 ... I11 Digital input Yellow Input is ON Input is OFF

O0 ... O7 Transistor
output

Yellow Output is ON Output is OFF

NO0 ... NO5 Relay output Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

PM5072-
T-2ETH(W)
PM5082-T-2ETH

I0 ... I11 Digital input Yellow Input is ON Input is OFF

O0 ...O7 Transistor
output

Yellow Output is ON Output is OFF

C12, C13 Digital configu-
rable input/
output

Yellow Input/Output
is ON

Input/Output is
OFF

Table 810: State LEDs at Ethernet connector
LED Color OFF ON Flashing
Activity Yellow No activity --- Activity

Link Green No link Link ---

Ethernet state
LEDs

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4450

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4451

6.8.2.5 Display, LEDs and function keys on the front panel
6.8.2.5.1 Overview

The display of a processor module is equipped with a background-lighted 7-segment display.
This display consists of 6 digits for plain text or error codes.

Some functionalities may be not yet supported by the product. Please refer to
the release notes of the product at time of release.

● A black square () denotes the state/working activity of the corresponding object on the
left/right side of the display. The black square flashes according to the device's activity, e.g.
during data exchange on ETH1, ETH2, COM1, etc.

MC activity
For the activity of the memory card the black square () is shown as long as a
file is open on memory card.

● A black triangle () points to the selected item/interface on the left/right side of the display
to be configured or read. Further, it acts as a cursor for the count up/count down function
keys.

A black triangle () at the BATT item indicates a missing or uncharged battery.

Display indica-
tors

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4452

The indicators point to the following items on the left side of the display:

No. On the left side Description
1 MC (memory card) Refers to the memory card state.

2 SYS (system) Refers to the system state.

3 BATT (battery) Refers to the battery state.

4 I/O bus Refers to I/O bus connection.

The indicators point to the following items on the right side of the display:

No. On the right side Description
5 ETH1 Refers to the first Ethernet interface.

6 ETH2 Refers to the second Ethernet interface.

7 COM1 Refers to COM1 interface.

8 CAN Refers to CAN interface.

9 Function keys on front panel

Processor
module

Display variant Description

PM56xx-2ETH Display of a processor module
with support for 2 Ethernet
interfaces, CAN and COM1.

6.8.2.5.2 Text outputs of the display

Display Description
Display on system start (power on).

PLC is in boot mode.

Is shown on startup after boot, when a wrong
DisplayFW is detected, e.g. an old version.
Update display with DisplayFW 4.1 (or higher).
Ä Chapter 6.3.1.4.3 “Installation and update
of the AC500 V3 firmware” on page 1422

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4453

Display Description
PLC is in initialization mode.

PLC is in STOP mode.

No system firmware (SystemFW) available.
Start update firmware.
PLC is waiting for a firmware download via
Automation Builder or memory card.
Ä Chapter 6.3.1.4.3 “Installation and update
of the AC500 V3 firmware” on page 1422

PLC is in RUN mode.
Switch into RUN mode is only possible if a
valid boot project is available in the flash
memory.

Only in RUN mode and as of SystemFW
V3.2.0.
Reminder: demo license
PLC runs in „Demo mode“, since at least one
feature license is missing.
Will be displayed for 5 minutes at every
license check.
If „Demo time“ expires, PLC will go to „Stop“.

Only in RUN mode and as of SystemFW
V3.2.0.
10 minutes step reminder: license was
removed
PLC runs in „Grace mode“, since at least one
feature license which has been available dis-
appeard. PLC is waiting for this license.
Will be displayed for 5 minutes.
If „Grace time“ expires, PLC will go to „Stop“.

New as of SystemFW 3.3.1.103.
Text is shown if no communication between
CPU and display is possible due do very high
CPU load (e.g. endless loop in user program
and not activated task watchdog).

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4454

6.8.2.5.3 Startup procedure of the PLC
Startup procedure of a new PLC from factory

State Display Description
0 Display on system start (power on).

1 PLC is in boot mode.

2 PLC is in initialization mode.

3 No system firmware (SystemFW) available.
Start update firmware.
PLC is waiting for a firmware download via Automation
Builder or memory card.
Ä Chapter 6.3.1.4.3 “Installation and update of the
AC500 V3 firmware” on page 1422

Startup procedure of a PLC with system firmware
The startup procedure depends on the selected PLC mode.

PLC
mod
e

Display Startup behavior

00 The user program will be loaded and run.
PLC changes to mode „RUN“.

01 User program will not be loaded/run. PLC stay in mode
„STOP“.

02 Reserved for further development (currently like mode
00).

Mode 01 can be activated via function key CFG , or by pressing function key
RUN during startup of PLC until mode 01 is shown on display Ä Further infor-
mation on page 4453.

If an available update or a hotfix is displayed in the Automation Builder, it can
be installed as described in the “Automation Builder update notification” chapter.
Ä Chapter 4.8.3 “Execution of a hotfix” on page 151

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4455

State Display Description
0 Display on system start (power on).

1 PLC is in boot mode. Ä Further information
on page 4453

2 PLC is in initialization mode. Ä Further information
on page 4453

3 PLC is in STOP mode. Ä Further information
on page 4453

Same as state Stop in Automation Builder.
4 PLC is in RUN mode. Ä Further information

on page 4453

Switch into RUN mode is only possible if a valid
boot project is available in the flash memory.
Ä Chapter 6.3.1.4.5.2 “Firmware and/or application
installation and update” on page 1427

5 Only in RUN mode and as of SystemFW V3.2.0
Reminder: demo license
PLC runs in „Demo mode“, since at least one feature
license is missing.
Will be displayed for 5 minutes at every license check
If „Demo time“ expires, PLC will go to „Stop“.

6 Only in RUN mode and as of SystemFW V3.2.0
10 minutes step reminder: license was removed
PLC runs in „Grace mode“, since at least one feature
license which has been available disappeard. PLC is
waiting for this license.
Will be displayed for 5 minutes
If „Grace time“ expires, PLC will go to „Stop“.

6.8.2.5.4 Description of LEDs
The LEDs below the display indicate the state of the processor module:

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4456

LED State Color LED = ON LED = OFF LED flashes
Power LED
(PWR)

Denotes the power
supply state of the
processor module

Green Voltage is present
(24 V DC)

Voltage is
missing

-

Run LED
(RUN)

Denotes the
activity state of the
processor module

Green Processor module
is in RUN mode

Processor
module is in
STOP mode

If the LED flashes fast (4
Hz) a firmware update is
finished with no errors.
If the Run LED flashes fast
(4 Hz), alternating with a
flashing Run LED the firm-
ware is updated.
To enforce boot mode 1,
keep the RUN function
key pressed during the
boot procedure. In this
case, the Run LED flashes
slowly (1 Hz). A subsequent
project download (from
within Automation Builder)
cancels the blinking.

Error LED
(ERR)

Denotes an error Red An error has
occured.

No errors or
only warnings
have occurred.

If the Error LED flashes
slowly (1 Hz) a firmware
update from the memory
card is finished with errors.
If the Error LED flashes
fast with AC500 on display
a fatal system error has
occurred.
If the Error LED flashes fast
(4 Hz) alternating with a
flashing Run LED the firm-
ware is updated.

A running processor module is indicated with the state RUN on the display, a deactivated
processor module is indicated with the state STOP. In both cases the display's backlight is off.

6.8.2.5.5 Description of the function keys
Overview

The processor module can be operated manually using the function keys on the front panel:

Function key Description Description
Run Toggles between RUN and STOP mode. Switching

into RUN mode is only possible if an error free
project has been created and downloaded with
Automation Builder.

Value Shows different state values of the processor
module.

Escape Quits the current menu, submenu or function without
saving.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4457

Function key Description Description
OK/Acknowledgement Acknowledges the current value or selects a menu/

submenu. Changes that have been sent to the pro-
cessor module successfully are confirmed with donE
on the display.

Diagnostic Allows evaluation of error messages in detail.

Configuration Show/set IP configuration, PLC startup mode and
Ethernet address.
Enters submenus.

Count up/navigate in
submenu

Press the function key repeatedly in order to
increase the value each time by 1, or navigate in
submenu to previous entry.
Keep the function key pressed in order to count up
fast.

Count down/navigate in
submenu

Press the function key repeatedly in order to
decrease the value each time by 1, or navigate in
submenu to next entry.
Keep the function key pressed in order to count
down fast.

Backlight is switched on for about 20 seconds by pressing any function key.

RUN - start and stop PLC

State Description menu level 0 Result on pressing one of the function keys

0 Press short:
State 1 is
displayed.
Press long
(>5 sec):
State 2 is
displayed.

No action No action

1

PLC only in state RUN if a
correct project is in RAM of
PLC.

State 0 is
displayed.
STOP -
same as
Online stop
in
Automation
Builder
(Stop, no init
of variables)

2 RUN
LED=ON

Perform RESET same
as Online reset in
Automation Builder
(stop and init varia-
bles)
State 0 is displayed.

No RESET
State 0 is dis-
played.

Function key
RUN

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4458

VAL - reading out state values
Values with SystemFW 3.1.x and DisplayFW 3.0

The following settings of the processor module can be read out by pressing the function key
VAL repeatedly:
1. Displays time of the processor module (hh.mm.ss).
2. Displays date of the processor module (yy.mm.dd).
3. Displays state of battery (ub 100 = 100%, ub 020 = 20% or ub 000 = empty).
4. Displays version of display firmware (e.g. d 3.0 r (= display version 3.0 release)).
5. Displays version of CPU firmware (e.g. C 3.1.0r (= CPU version 3.1.0 release)).
6. Displays CPU type.
7. Displays default text (RUN/STOP).

Values with SystemFW >=V3.2.0 and DisplayFW >=V4.1
By pressing function key VAL state 1 is displayed.

Stat
e

Description menu
VAL

Result on pressing one of the function keys

1

Time of the pro-
cessor module
(hh.mm.ss).

No action State 2 is
displayed.

State 6 is
displayed.

Go back to main menue
RUN/STOP.

2

Date of the pro-
cessor module
(yy.mm.dd).

State 3 is
displayed.

State 1 is
displayed.

3

State of battery (ub
100 = 100%, ub 020
= 20% or ub 000 =
empty).

State 4 is
displayed.

State 2 is
displayed.

4

Version of display
firmware (e.g. d 4.1
r (= display version
4.1 release).

State 5 is
displayed.

State 3 is
displayed.

5

Version of CPU firm-
ware (e.g. C 3.2.0r
(= CPU version
3.2.0 release).

State 6 is
displayed.

State 4 is
displayed.

Function key
VAL

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4459

Stat
e

Description menu
VAL

Result on pressing one of the function keys

6

CPU type

State 1 is
displayed.

State 5 is
displayed.

DIAG - reading out diagnosis messages
Table 811: Example - no diagnosis message in state list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed.

- - - -

1 No action No action Return into RUN/STOP
mode.

Table 812: Example - diagnosis messages in state list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed.

- - - -

1

Number of diag-
nosis mes-
sages; here 4

 Go to first/
next diag-
nosis mes-
sage in state
list (e.g.,
state 2).

Go to last/
previous
diagnosis
message in
state list.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

2

Diagnosis mes-
sage example:
Error battery
empty or
missing.
Toggling
between state 2
and 3.

Selects
displayed
diagnosis
message
and
shows
details.
Ä Table 8
13 “Exam
ple - error
battery
empty or
missing”
on page 4461

Go to first/
next diag-
nosis mes-
sage in state
list.

Go to last/
previous
diagnosis
message in
state list.

Return into
RUN/STOP
mode.

Acknowl-
edge and
return into
RUN/STOP
mode.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4460

State Display Result on pressing one of the function keys

3

Error ID
example
Toggling
between state 2
and 3

Table 813: Example - error battery empty or missing
State Display Result on pressing one of the function keys

0

E4 = error
severity 4
bAt = subdevice
battery
Toggling
between state 0
and 1

State 2 is
displayed.

State 2 is
displayed.

State 6 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

1

Error ID
example
Toggling
between state 0
and 1.

2

Error number 8
Battery is
missing or
empty.

 State 3 is
displayed.

State 0 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Displays
state 0.
Return to
diagnosis
state list.

3

Detail 1
Subdevice 22:
battery

 State 4 is
displayed.

State 2 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

4

Detail 2
Error type 0:
device

 State 5 is
displayed.

State 3 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4461

State Display Result on pressing one of the function keys

5

Detail 3
Error type
number 0:
device itself

 State 6 is
displayed.

State 4 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed
Return to
diagnosis
state list.

6

Detail 4
Additional infor-
mation 0: none

 State 1 is
displayed.

State 5 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

CFG - configuration
Configuration with SystemFW V3.1.x and DisplayFW V3.0

Ä Chapter 6.3.2.9.3 “Switch functionality of Ethernet interfaces ETH1/ETH2” on page 1520

Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the 3 function keys a certain action is triggered. The result of this action is described in
the result columns of the tables.

State Description - main menu 1 Result on pressing one of the function keys

0 The processor module is in
RUN/STOP mode.

State 1 is
displayed.

Remains in RUN/
STOP mode.

Remains in RUN/
STOP mode.

1 State 2 is
displayed.

Return into RUN/
STOP mode.

Refers to sub-
menu 1.

2

Change the values with the
Count up/Count down func-
tion keys.

State 3 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

3 State 4 is
displayed.

Return into RUN/
STOP mode.

Refers to sub-
menu 1.

4

Change the values with the
Count up/Count down func-
tion keys.

State 5 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

Function key
CFG main menu
with ETH1/ETH2
mode:“Two
separate
interfaces”

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4462

State Description - main menu 1 Result on pressing one of the function keys
5

Change the values with the
Count up/Count down func-
tion keys.
Ä Further information
on page 4455

State 1 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

Ä Chapter 6.3.2.9.3 “Switch functionality of Ethernet interfaces ETH1/ETH2” on page 1520

Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the 3 function keys a certain action is triggered. The result of this action is described in
the result columns of the tables.

State Description - main menu 2 Result on pressing one of the function keys

0 The processor module is in
RUN/STOP mode.

State 1 is
displayed.

Remains in RUN/
STOP mode.

Remains in RUN/
STOP mode.

1 State 2 is
displayed.

Return into RUN/
STOP mode.

Refers to sub-
menu 1.

2

Change the values with the
Count up/Count down func-
tion keys.

State 3 is
displayed.

Return into RUN/
STOP mode.

Your settings are
saved. State 2 is
displayed.

3

Change the values with the
Count up/Count down func-
tion keys.
Ä Further information
on page 4455

State 1 is
displayed.

Return into RUN/
STOP mode.

Shows DONE,
your settings are
saved. Return
into RUN/STOP
mode.

Stat
e

Description - submenu 1 Result on pressing one of the function keys

1.1

IPETH1 or IPETH2

State 2 is
displayed.

Return into RUN/
STOP mode.

State 1.2 is dis-
played.

Function key
CFG main menu
with ETH1/ETH2
mode: “Switch
functionality
ETH1-ETH2”

Function key
CFG submenu
IPETH1 or
IPETH2; DHCP
not active

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4463

Stat
e

Description - submenu 1 Result on pressing one of the function keys

1.2

IP Configuration (address,
subnet mask, gateway)

State 1.3 is
displayed.

Aborts the menu
unchanged. Return to
state 1.1.

State 3.2 is dis-
played.

1.3

Reset to production data
(default settings).

State 1.4 is
displayed.

Aborts the menu
unchanged. Return to
state 1.1.

Activate RESET to
default by pressing
OK twice.
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

1.4

Activate DHCP
Sets a DHCP address.

State 1.2 is
displayed.

Aborts the menu
unchanged. Return to
state 1.1.

Activate DHCP to
default by pressing
OK twice.
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

Stat
e

Description - submenu 2 Result on pressing one of the function keys

2.1

IPETH1 or IPETH2

State 2 is
displayed.

Aborts the menu
unchanged. Return to
state 0.

State 2.2 is dis-
played.

2.2

DHCP active

State 2.3 is
displayed.

Aborts the menu
unchanged. Return to
state 2.1.

--

2.3

IP Configuration (address,
subnet mask, gateway)

State 2.4 is
displayed.

Aborts the menu
unchanged. Return to
state 2.1.

State 3.2 is dis-
played.

2.4

Reset to production data
(default settings)

-- Aborts the menu
unchanged. Return to
state 2.1.

Activate RESET to
default by pressing
OK twice.
Shows DONE,
your settings are
saved. Return into
RUN/STOP mode.

Function key
CFG submenu
IPETH1 or
IPETH2; DHCP
active

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4464

Stat
e

Description - submenu 3 Result on pressing one of the function keys

3.1

IP Configuration (address,
subnet mask, gateway)

State 2.4 is
displayed.

Aborts the menu
unchanged.
Return to state 1.1
(submenu IPETH1 or
IPETH2)

State 3.2 is dis-
played.

3.2

IP address A1-A4

 Number is blinking if value
has changed and is not yet
sent to CPU.

State 3.3 is
displayed.

Aborts the menu
unchanged.
Return to state 1.1
(submenu IPETH1 or
IPETH2)

Sends changed
values to CPU
and go to
default menue
RUN/STOP.
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

3.3

Subnet mask N1-N4

 Number is blinking if value
has changed and is not yet
sent to CPU.

State 3.4 is
displayed.

Aborts the menu
unchanged.
Return to state 1.1
(submenu IPETH1 or
IPETH2)

Sends changed
values to CPU
and go to
default menue
RUN/STOP.
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

3.4

Gateway G1-G4

 Number is blinking if value
has changed and is not yet
sent to CPU.

State 3.2 is
displayed
again.

Aborts the menu
unchanged.
Return to state 1.1
(submenu IPETH1 or
IPETH2)
Aborts the menu
unchanged. Return to
State 1.

Sends changed
values to CPU
and go to
default menue
RUN/STOP.
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Function key
CFG submenu
STATIC

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4465

Stat
e

Description - submenu 4 Result on pressing one of the function keys

4.1 State 4.2 is
displayed.

Aborts the menu
unchanged.
Return to state 1.

DHCP not active:
State 1.2 is dis-
played
DHCP active:
State 2.2 is dis-
played

4.2

Change the values with the
Count up/Count down func-
tion keys starting with current
value.

 Number is blinking if value
has changed and is not yet
sent to CPU.

State 2.3 is
displayed.

Aborts the menu
unchanged.
Return to state 4.1.

Sends changed
values to CPU
and go to
default menue
RUN/STOP.
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

4.3

Subnet mask N1-N4

 Number is blinking if value
has changed and is not yet
sent to CPU.

State 4.1 is
displayed.

Aborts the menu
unchanged.
Return to state 4.1

Sends changed
values to CPU
and go to
default menue
RUN/STOP.
Displays:
DONE
New settings
stored in CPU.
or:
FAIL
Failed to write new
settings to CPU.

Configuration with SystemFW >=V3.5.0 and DisplayFW >=V4.1
Ä Chapter 6.3.2.9.3 “Switch functionality of Ethernet interfaces ETH1/ETH2” on page 1520

Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the 5 function keys a certain action is triggered. The result of this action is described in
the result columns of the tables.

Function key
CFG submenu
ADR

Function key
CFG menu level
1, with ETH1/
ETH2 mode:
“Two separate
interfaces”

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4466

State Description - CFG
menu level 1

Result on pressing one of the function keys

0 The processor
module is in RUN/
STOP mode.

State 1 is
displayed.

 Remains in
RUN/STOP
mode.

Remains in
RUN/STOP
mode.

1

Switch is OFF

Refers to
submenu
level 2.
Ä “Func-
tion key
CFG sub-
menu
show/set
PLC ID ”
on page 4475

State 2
is dis-
played if
KNX
func-
tionality
is
active.
State 3
is dis-
played if
KNX
func-
tionality
is inac-
tive.

State 6 is
displayed.

Return into
RUN/STOP
mode.

2

KNX program
button (appears
if functionality is
active).

 State 3
is dis-
played.

State 1 is
displayed.

Return into
RUN/STOP
mode.

3 Refers to
submenu
level 2
Ä “Func-
tion key
CFG menu
level 2
(IPETH1 or
IPETH2); ”
on page 4470

State 4
is dis-
played.

State 2 is
displayed.

Return into
RUN/STOP
mode.

Only active
if no
changes in
CFG menu.
Return into
RUN/STOP
mode.

4 Refers to
submenu
level 2
Ä “Func-
tion key
CFG menu
level 2
(IPETH1 or
IPETH2); ”
on page 4470

State 5
is dis-
played.

State 3 is
displayed.

Return into
RUN/STOP
mode.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4467

State Description - CFG
menu level 1

Result on pressing one of the function keys

5

Note: COM1 mode
RS-232 (default) or
RS-485 can only
be shown but not
changed. This is
a PLC boot param-
eter Ä Chapter
6.3.2.14.1 “Setting
up a serial inter-
face” on page 1587
and must be set
in AB Ä Chapter
6.3.2.14.1.3
“Configuration”
on page 1587.
Mode is activated in
PLC boot process.

 State 6
is dis-
played.

State 4 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

6 Refers to
submenu
set startup
mode of
PLC.
Ä “Func-
tion key
CFG sub-
menu
show/set
startup
mode of
PLC ”
on page 4475

State 1
is dis-
played.

State 5 is
displayed.

Return into
RUN/STOP
mode.

Ä Chapter 6.3.2.9.3 “Switch functionality of Ethernet interfaces ETH1/ETH2” on page 1520

Navigation starts with the processor module being in RUN/STOP mode (State 0). By pressing
one of the 5 function keys a certain action is triggered. The result of this action is described in
the result columns of the tables.

Function key
CFG menu level
1, with ETH1/
ETH2 mode:
“Switch
functionality
ETH1-ETH2”

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4468

State Description - CFG
menu level 1

Result on pressing one of the function keys

0 The processor
module is in RUN/
STOP mode.

State 1 is
displayed.

 Remains in
RUN/STOP
mode.

Remains in
RUN/STOP
mode.

1

Switch is ON

 State 2 is
displayed
if KNX
function-
ality is
active.
State 3 is
displayed
if KNX
function-
ality is
inactive.

State 5 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

2

KNX program button
(appears if function-
ality is active).

 State 3 is
dis-
played.

State 1 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

3 Refers to
submenu
level 2.
Ä “Func-
tion key
CFG
menu
level 2
(IPETH1
or
IPETH2); ”
on page 4470

State 4 is
dis-
played.

State 2 is
displayed.

Return into
RUN/STOP
mode.

Only active
if no
changes in
CFG menu.
Return into
RUN/STOP
mode.

4

Note: COM1 mode
RS-232 (default) or
RS-485 can only
be shown but not
changed. This is
a PLC boot param-
eter Ä Chapter
6.3.2.14.1 “Setting
up a serial inter-
face” on page 1587
and must be set
in AB Ä Chapter
6.3.2.14.1.3
“Configuration”
on page 1587. Mode
is activated in PLC
boot process.

 State 5 is
dis-
played.

State 3 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4469

State Description - CFG
menu level 1

Result on pressing one of the function keys

5 Refers to
submenu
set startup
mode of
PLC.
Ä “Func-
tion key
CFG sub-
menu
show/set
startup
mode of
PLC ”
on page 4475

State 1 is
dis-
played.

State 4 is
displayed.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

State Description - CFG
menu level 2

Result on pressing one of the function keys

0

IPETH1 or IPETH2

State 1 is
displayed.

 Return into
RUN/STOP
mode.

Return into
RUN/
STOP
mode.

1

IP Configuration
(address, subnet
mask, gateway).

Refers to
submenu
StAtIC.
Ä “Func-
tion key
CFG menu
level 3,
show/set
STATIC”
on page 4471

State 2 is
dis-
played.

State 4 is
displayed.

Case 1, no
submenu is
entered:
Return into
RUN/STOP
mode.
Case 2, no
changes: State
0 is displayed.

Send all
changes to
CPU.
State 5 is
displayed.

2 Refers to
submenu
set dHCP.
Ä “Func-
tion key
CFG menu
level 2
Show/set
DHCP”
on page 4473

State 3 is
dis-
played.

State 1 is
displayed.

3

Activate DHCP
Sets a DHCP
address.

Refers to
submenu
set Id.
Ä “Func-
tion key
CFG menu
level 2
Show/set
Id”
on page 4473

State 4 is
dis-
played.

State 2 is
displayed.

State 1 is dis-
played.

Function key
CFG menu level
2 (IPETH1 or
IPETH2);

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4470

State Description - CFG
menu level 2

Result on pressing one of the function keys

4

Reset to production
data (default set-
tings).

Refers to
submenu
set rESEt.
Ä “Func-
tion key
CFG sub-
menu
show/set
RESET”
on page 4474

State 1 is
dis-
played.

State 3 is
displayed.

Send all
changes to
CPU.
State 5 is
displayed.

5 Remain all
changes.
State 1 is dis-
played.

State 6 is
displayed.

6 Changes applied
donE is displayed for 2 sec. then return into RUN/STOP mode.

Changes failed
FAILEd is displayed for 2 sec. then return into RUN/STOP mode.

State Description - sub-
menu STATIC

Result on pressing one of the function keys

0

IP Configuration
(address, subnet
mask, gateway).

State 1 is
dis-
played.

 Aborts the
menu
unchanged.
Return to
IPETH1 or
IPETH2

No changes:
return to
IPETH1 or
IPETH2
Changes:
(StAtIC
blinks) state
5 of previous
table is dis-
played.

1

IP address A1-A4
If submenu is
entered: Number is
blinking if value has
changed and is not
yet sent to CPU.

Refers to
submenu
of A1-A4

Count
down A1-
A4

Count up
A4-A1

Aborts the
menu
unchanged.
Return to
CFG menu
level 2
StAtIC.

Take over
new values,
but don´t
send to CPU.
Return to
CFG menu
level 2
StAtIC.

Function key
CFG menu level
3, show/set
STATIC

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4471

State Description - sub-
menu STATIC

Result on pressing one of the function keys

2

Subnet mask N1-N4
If submenu is
entered: Number is
blinking if value has
changed and is not
yet sent to CPU.

Refers to
submenu
of N1-N4

Count
down N1-
N4

Count up
N4-N1

Aborts the
menu
unchanged.
Return to
CFG menu
level 2
StAtIC.

Take over
new values,
but don´t
send to CPU.
Return to
CFG menu
level 2
StAtIC.

3

Gateway G1-G4
If submenu is
entered: Number is
blinking if value has
changed and is not
yet sent to CPU.

Refers to
submenu
G1-G4

Count
down G1-
G4

Count up
G4-G1

Aborts the
menu
unchanged.
Return to
CFG menu
level 2
StAtIC.

Take over
new values,
but don´t
send to CPU.
Return to
CFG menu
level 2
StAtIC.

State Description - CFG
menu level 4

Result on pressing one of the function keys

0

A4 is blinking if sub-
menu is entered.

No action Count
down
value.
Value is
blinking if
changed.

Count up
value.
Value is
blinking if
changed.

Aborts the
menu
unchanged.
Shows
unchanged
value.

Take over
new value,
but don´t
send to CPU.
Go back to
menu level 3
(here subnet
mask N1).

Function key
CFG menu level
4, Example: I/P
address A4

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4472

Stat
e

Description -
show/set DHCP

Result on pressing one of the function keys

0 State 1
is dis-
played.

 Aborts the
menu
unchanged.

1

IP address A1-A4

 Value is blinking
if value has changed
and is not yet sent to
CPU.

 State 2 is
displayed.

State 2 is
displayed.

Aborts the
menu
unchanged.
Go back to
CFG menu
level 1.

Take over
new values,
but don´t
send to CPU.
Text is
blinking if
value is
changed.
State 3 is
displayed.

2 State 1 is
displayed.

State 1 is
displayed.

Go to sub-
menu
StAtIC.

3 Remain all
changes
State 1 is
displayed.

State 4 is
displayed.

4 Changes applied
donE is displayed for 2 sec. then return into RUN/STOP mode.

Changes failed
FAILEd is displayed for 2 sec. then return into RUN/STOP mode.

Stat
e

Description -
show/set Id

Result on pressing one of the function keys

0 Count down
value:
255 ... 000,
starting with
current
value.

Count up
value: 000 ...
255, starting
with current
value.

Case 2, no
changes:
stop
blinking,
return to
menu.
Ä “Function
key CFG
menu level
2 (IPETH1
or
IPETH2); ”
on page 4470

Go toCFG
menu level 2
(IPETH1 or
IPETH2) state
5-6.

1

IP address A1-A4

 Number is blinking
if value has changed
and is not yet sent to
CPU.

 Count down
value:
255 ... 000,
starting with
current
value.

Count up
value: 000 ...
255, starting
with current
value.

Discard the
changes.
Stop
blinking.
Show pre-
vious value.

Go toCFG
menu level 2
(IPETH1 or
IPETH2) state
5-6.

Function key
CFG menu level
2 Show/set
DHCP

Function key
CFG menu level
2 Show/set Id

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4473

Stat
e

Description -
show/set Id

Result on pressing one of the function keys

2 Count down
value:
255 ... 000,
starting with
current
value.

Count up
value: 000 ...
255, starting
with current
value.

Discard the
changes.
Stop
blinking.
Show pre-
vious value.

Go toCFG
menu level 2
(IPETH1 or
IPETH2) state
5-6.

Stat
e

Description - sub-
menu show/set
RESET

Result on pressing one of the function keys

0 State
1 is
dis-
playe
d.

No action No action Aborts the
menu
unchanged.
Return to sub-
menu level 1

1

 Display is
blinking if value has
changed and is not
yet sent to CPU.

 Aborts the
menu
unchanged.
Return to sub-
menu level 1

Discard all
made
changes.
Stop
blinking.
Send com-
mand "reset
to factory
settings" to
CPU. Reset
ask confir-
mation. Go
back to
default
menue RUN/
STOP.
State 2 is
displayed.

2 Aborts the
menu
unchanged.
Return to sub-
menu STATIC

Sends
changed
values to
CPU, dis-
plays state
3.

3 Changes applied
donE is displayed for 2 sec. then return into RUN/STOP mode.

Changes failed
FAILEd is displayed for 2 sec. then return into RUN/STOP mode.

Function key
CFG submenu
show/set RESET

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4474

Stat
e

Description - sub-
menu show/set
startup mode of PLC

Result on pressing one of the function keys

Start Count down
value: 02 ...
0, starting
with current
value.

Count up
value: 00 ...
02, starting
with current
value.

Aborts the
menu.
Go back to
main menue
RUN/STOP.

Sends
changed
values to
CPU.
Displays 2
sec. donEor
FAILEd.
Go back to
main menue
RUN/STOP.

1

 Text is blinking if
value has changed and
is not yet sent to CPU.

 Count down
value: 02 ...
00, starting
with current
value.

Count up
value: 00 ...
02, starting
with current
value.

Aborts the
menu.
Go back to
main menue
RUN/STOP.

2

 Text is blinking if
value has changed and
is not yet sent to CPU.

 Count down
value: 02 ...
00, starting
with current
value.

Count up
value: 00 ...
02, starting
with current
value.

Aborts the
menu.
Go back to
main menue
RUN/STOP.

Stat
e

Description - sub-
menu show/set PLC
ID

Result on pressing one of the function keys

0

Switch is OFF

State
1 is
dis-
playe
d

 Return into
RUN/STOP
mode.

1

PLC ID

 State 2 is
displayed

State 2 is dis-
played

Return into
RUN/STOP
mode.

2

 Text PLC is blinking
if edit mode with keys
up/down is enabled.

 Number is blinking
if value has changed
and is not yet sent to
CPU.

 Count
down
value:
255®0,
starting
with current
value.

Count up
value:
000®255,
starting with
current value.

Aborts the
menu.
Go back to
main
menue
RUN/STOP.

Takes over
new value, if
changed.

6.8.2.5.6 Enable flashing of display
As of SystemFW 3.1.0 and AB 2.1.0 the blink functionality is implemented. “Blink” means –
activate flashing of backlight of AC500 display in Automation Builder via “IP-Configuration” tool.

Function key
CFG submenu
show/set
startup mode of
PLC

Function key
CFG submenu
show/set PLC ID

Blink function-
ality

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4475

As of SystemFW 3.1.0 and AB 2.0.0 the wink functionality is implemented. “Wink” means –
activate flashing of backlight of AC500 display in Automation Builder via communication settings
wink functionality.

6.8.2.5.7 Function blocks
This function block switches the ERR-LED ON and OFF.

With this function block a text can be displayed on the CPU.

Ä Chapter 6.5.14 “Reference, function blocks” on page 4086

6.8.2.6 Onboard technologies
6.8.2.6.1 Ethernet
Ethernet protocols and ports for AC500-eCo V3 processor modules
General

Supported as of Automation Builder V 2.4.1

Description ³ CPU
firmware

PM5012-
x-ETH

PM5032-
x-ETH

PM5052-
x-ETH

PM5072-
T-2ETH(W

)

³ CPU
firmware

PM5082-
T-2ETH

3)
ABB netConfig V3.4.1 x x x x V3.6.2 x

Online access with driver 3S
TCP/IP BlkDrvTcp

V3.4.1 x x x x V3.6.2 x

Modbus TCP server V3.4.1 x x x x V3.6.2 x

Modbus TCP client with POU
ModTcpMast

V3.4.1 x x x x V3.6.2 x

UDP out of user program with
library netBaseService.lib

V3.4.1 x x x x V3.6.2 x

UDP data exchange, Network
variables

V3.4.1 x x x x V3.6.2 x

TCP/IP out of user program with
library netBaseService.lib

V3.4.1 x x x x V3.6.2 x

Web server on PLC with web
visualization

V3.4.1 x x x V3.6.2 x

IEC60870-5-104 control station
incl. 2nd connection and 2nd port

-

IEC60870-5-104 substation incl.
2nd port

V3.4.1 x V3.6.2 x

FTP server V3.4.1 x x x V3.6.2 x

CODESYS network variables V3.4.1 x x x x V3.6.2 x

OPC DA server V3.4.1 x x x x V3.6.2 x

OPC UA server V3.4.1 x x x V3.6.2 x

ICMP – ping out of user project
with POU ETHx_ICMP_PING

V3.4.1 x x x x V3.6.2 x

Wink function-
ality

PmErrLedSet

PmDispSetText

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4476

Description ³ CPU
firmware

PM5012-
x-ETH

PM5032-
x-ETH

PM5052-
x-ETH

PM5072-
T-2ETH(W

)

³ CPU
firmware

PM5082-
T-2ETH

3)
DHCP client V3.4.1 x x x x V3.6.2 x

SNTP (Simple Network Time
Protocol) client system solution
Ä Chapter 6.3.4.4.2
“(S)NTP client configuration”
on page 1718

V3.4.1 x x x x V3.6.2 x

SNTP (Simple Network Time
Protocol) server system solution
Ä Chapter 6.3.4.4.3
“(S)NTP server configuration”
on page 1720

V3.4.1 x x x x V3.6.2 x

Maximum number of Input/
output allowed variable on
Ethernet for the protocol

V3.4.1 1 kB /1
kB

1 kB /1
kB

2 kB /2 kB V3.6.2 2 kB /2
kB

IEC 61850 (MMS server,
GOOSE) 2)

V3.4.1 x V3.6.2 x

EthernetIP Scanner 1, 2) AB 2.4.1/
FW 3.4.1

 x x x V3.6.2 x

EthernetIP Adapter 1, 2) AB 2.4.1/
FW 3.4.1

 x x x V3.6.2 x

EtherCAT Master
Ä EtherCAT configurator

V3.6.1 x V3.6.2 x

KNX - Building communication 2) V3.4.1 x x V3.6.2 x

BACnet-BC - Infrastructure com-
munication 2)

V3.3.1 x V3.6.2 x

HTTPS – secure web server on
PLC with CODESYS web visual-
ization
Ä Chapter 6.3.4.7.3.2 “Secure
web server” on page 1727

V3.4.1 x x x V3.6.2 x

 WebVisu for data visu-
alisation on webserver
HTML5

V3.4.1 x x x V3.6.2 x

FTPS – secure FTP
Ä Chapter 6.3.4.7.3.3 “Secure
FTP” on page 1728

V3.4.1 x x x V3.6.2 x

Secure online access with driver
3S TCP/IP BlkDrvTcp

V3.4.1 x x x x V3.6.2 x

ICMP – ping out of user project
with POU ETHx_ICMP_PING or
EthIcmpPing (PLCopen style)

V3.4.1 x x x x V3.6.2 x

Modbus TCP client (master) with
ModTcpMast (PLCopen style)

V3.4.1 x x x x V3.6.2 x

Remarks:
1): in preparation
2): feature is licensed
3): from ≥ AB 2.6.1 and CPU FW ≥ 3.6.2

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4477

Default open Ethernet ports of PM50xx-x-xETH
After startup without a PLC project the AC500-eCo V3 PM50xx-x-xETH contains the following
Ethernet ports and sockets:

Protocol Port

ABB NetConfig 1) UDP 24576

Online access with driver 3S Tcp/Ip BlkDrvTcp (no scan) TCP 11740

OPC UA server 2) TCP 4840

Remarks:
1): The port 24576 for ABB NetConfig protocol can be disabled via PLC configuration by
deleting the protocol node from configuration tree of Ethernet interfaces ETH1 and ETH2.
2): The port 4840 for OPC UA server is closed by default as of System FW V3.1.0.

All other ports are closed by default.

Overview of protocols, sockets and ports

Protocol Port Sockets
ABB netConfig 24576 1 permanent socket per interface

3S gateway client (e.g. CODESYS) to
gateway server

1217 1 permanent socket

Online access with driver 3S block driver
TCP/IP (no scan)

11740 1 socket per connection + 1
listen

Modbus TCP server 502 or config-
urable

1 socket listen + 1 socket per
server connection, number of
server connections is configu-
rable in AB

Modbus TCP client with POU ModTcpMast Random 1 socket per connection with
POU ModTcpMast

UDP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

TCP/IP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

Web server on PLC with web visualization 80 1 listen and 1 per connection

SNTP client 123 1 permanent socket

IEC60870-5-104 substation 2404 1 per connection

FTP server Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

CODESYS network variables 1202 (UDP broadcast)

OPC DA server (default 3S block driver) UDP = 1740
or
TCP/IP
=11740

1 socket per connection

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4478

Protocol Port Sockets
OPC UA server 4840 1 permanent socket

ICMP – ping out of user project with POU
ETHx_ICMP_PING DHCP

none No socket

DHCP 67 1 socket during startup

SNTP (Simple Network Time Protocol)
client system solution
Ä Chapter 6.3.4.4.2 “(S)NTP client config-
uration” on page 1718

123 1 permanent socket

SNTP (Simple Network Time Protocol)
server system solution
Ä Chapter 6.3.4.4.3 “(S)NTP server config-
uration” on page 1720

123 1 permanent socket

HTTPS – secure web server on PLC with
CODESYS web visualization
Ä Chapter 6.3.4.7.3.2 “Secure web server”
on page 1727

Not for PM5012-x-ETH!

443 1 listen and 1 per connection

FTPS – secure FTP
Ä Chapter 6.3.4.7.3.3 “Secure FTP”
on page 1728

Not for PM5012-x-ETH!

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

Secure online access with driver 3S
TCP/IP BlkDrvTcp

11740 1 socket per connection + 1
listen

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

None No socket

Modbus TCP client (master) with POU
ModTcpMast (PLCopen style)

Random 1 socket per connection with
POU ModTcpMast

Limitation of connections per protocol

Protocol ³ CPU
firmware

PM5012-
x-ETH

PM5032-
x-ETH

PM5052-
x-ETH

PM5072-
T-2ETH(W

)

³ CPU
firmware

PM5082-
T-2ETH

2)
Modbus TCP server (e.g. for
SCADA access)

3.4.1 3 8 10 15 3.6.2 15

Modbus TCP client with POU
ModTcpMast (PLCopen style)

3.4.1 8 13 20 30 3.6.2 30

IEC60870-5-104 control station
incl. 2nd connection and 2nd port

IEC60870-5-104 substation incl.
2nd port

3.4.1 5 3.6.2 5

AC500-eCo V3
processor
modules

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4479

Protocol ³ CPU
firmware

PM5012-
x-ETH

PM5032-
x-ETH

PM5052-
x-ETH

PM5072-
T-2ETH(W

)

³ CPU
firmware

PM5082-
T-2ETH

2)
IEC60870-5-104: No. of free
tags
+ additional license for exten-
sion 1)

3.4.1 1.000 3.6.2 1.000

FTP server 3.4.1 2 2 2 3.6.2 2

Online access with driver 3S
TCP/IP BlkDrvTcp

3.4.1 4 4 4 6 3.6.2 6

OPC DA server (number of con-
nections)

3.4.1 4 4 4 6 3.6.2 6

OPC UA server (number of con-
nections)

3.4.1 5 5 10 3.6.2 10

 No. of free tags
+ additional license for
extension 1)

3.4.1 125 250 1.000 3.6.2 3.000

 min sampling rate (limit) 3.4.1 1000 ms 1000 ms 500 ms 3.6.2 500 ms

Secure online access with driver
3S TCP/IP BlkDrvTcp

3.4.1 4 4 4 6 3.6.2 6

FTPS - secure FTP server 3.4.1 2 2 2 3.6.2 2

HTTPS – Integrated webserver
– number of connections

3.4.1 2 2 4 3.6.2 4

Ethernet/IP
Maximum number of Input/
Output

3.4.1 0.5
kB/0.5 kB

0.5
kB/0.5 kB

0.5 kB/0.5
kB

3.6.2 0.5
kB/0.5 kB

Remarks:
1): in preparation
2): from ≥ AB 2.6.1 and CPU FW ≥ 3.6.2

Ethernet protocols and ports for AC500 V3 products
General

The communication module CM5640-2ETH acts as a port extender of the used AC500 V3 CPU.
It is not offloading the CPU for the protocols.
● the stacks are still executed in CPU.
● the performance is slightly lower or the load is slightly higher than directly from the main

CPU, because each communication module and the communication module bus must also
be handled.

Each CM5640-2ETH provides:
● 2 additional independent onboard Ethernet interfaces controlled by the CPU and not

switched.
● all Ethernet ports, wherever located - on the communication module or on the CPU - must

be in different subnets.
Addressing is not done via slot numbers but via IP addresses.

The Ethernet limitations of the CPU used together with CM5640-2ETH apply to all onboard and
additional interfaces.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4480

All interfaces of the onboard and CM5640-2ETH modules need to be in dif-
ferent subnets. Overlapping of subnets must be avoided. The selection of the
used interface (ETH port) is done automatically according the match of the
IP-address of the server and the subnet of the interfaces.

Description ³ CPU
firm-
ware

PM563
0-2ET

H

PM565
0-2ET

H

PM567
0-2ET

H

PM567
5-2ET

H

³ CPU
firm-
ware

CM564
0-2ETH

ABB netConfig V3.0.0 x x x x V3.6.0 x

Online access with driver 3S TCP/IP BlkDrvTcp V3.0.0 x x x x V3.6.0 x

Modbus TCP server V3.0.3 x x x x V3.6.0 x

Modbus TCP client with POU ModTcpMast V3.0.1 x x x x V3.6.0 x

UDP out of user program with library netBaseSer-
vice.lib

V3.0.0 x x x x V3.6.0 x

UDP data exchange, Network variables V3.0.0 x x x x V3.6.0 x

TCP/IP out of user program with library netBase-
Service.lib

V3.0.0 x x x x V3.6.0 x

Web server on PLC with web visualization V3.0.0 x x x x V3.6.0 x

NTP/SNTP ((Simple) Network Time Protocol)
client with 3S licenced store package SNTPSer-
vice.package.
Library container: SNTPService

V3.0.0 x x x x V3.6.0 x

IEC60870-5-104 control station incl. 2nd connec-
tion and 2nd port

V3.0.0 x x x x V3.6.0 x

IEC60870-5-104 substation incl. 2nd port V3.0.0 x x x x V3.6.0 x

FTP server V3.0.0 x x x x V3.6.0 x

CODESYS network variables V3.0.0 x x x x V3.6.0 x

OPC DA server V3.0.0 x x x x V3.6.0 x

OPC UA server V3.0.0 x x x x V3.6.0 x

ICMP – ping out of user project with POU
ETHx_ICMP_PING

V3.0.0 x x x x V3.6.0 x

DHCP client V3.1.0 x x x x V3.6.0 x

NTP/SNTP ((Simple) Network Time Protocol)
client system solution
Ä Chapter 6.3.4.4.2 “(S)NTP client configuration”
on page 1718

V3.1.0 x x x x V3.6.0 x

NTP/SNTP ((Simple) Network Time Protocol)
server system solution
Ä Chapter 6.3.4.4.3 “(S)NTP server configura-
tion” on page 1720

V3.1.0 x x x x V3.6.0 x

Maximum number of Input/output allowed variable
on Ethernet for the protocol

V3.4.0 2 kB /2
kB

4 kB /4
kB

5 kB /5
kB

5 kB /5
kB

V3.6.0 Depen
ds on
used
CPU

IEC 61850 (MMS server, GOOSE) 2) V3.1.0 x x x x V3.6.0 x

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4481

Description ³ CPU
firm-
ware

PM563
0-2ET

H

PM565
0-2ET

H

PM567
0-2ET

H

PM567
5-2ET

H

³ CPU
firm-
ware

CM564
0-2ETH

EthernetIP Scanner 1, 2) AB
2.4.1/
FW
3.4.1

x x x x AB
2.6.0/
FW

3.6.0

EthernetIP Adapter 1, 2) AB
2.4.1/
FW
3.4.1

x x x x AB
2.6.0/
FW

3.6.0

x

KNX - Building communication 2) V3.2.x x x x x V3.6.0 x

BACnet-BC - Infrastructure communication 2) V3.3.1 x x x x V3.6.0 x

HTTPS – secure web server on PLC with
CODESYS web visualization
Ä Chapter 6.3.4.7.3.2 “Secure web server”
on page 1727

V3.1.0 x x x x V3.6.0 x

 WebVisu for data visualisation on web
server HTML5

V3.0.0 x x x x V3.6.0 x

FTPS – secure FTP
Ä Chapter 6.3.4.7.3.3 “Secure FTP”
on page 1728

V3.1.0 x x x x V3.6.0 x

Secure online access with driver 3S UDP
BlkDrvUdp

V3.1.0 x x x x V3.6.0 x

Secure online access with driver 3S TCP/IP
BlkDrvTcp

V3.1.0 x x x x V3.6.0 x

ICMP – ping out of user project with POU
ETHx_ICMP_PING or EthIcmpPing (PLCopen
style)

V3.1.0 x x x x V3.6.0 x

Modbus TCP client (master) with ModTcpMast
(PLCopen style)

V3.1.0 x x x x V3.6.0 x

Remarks:
1): in preparation
2): feature is licensed

Default open Ethernet ports of PM56xx-2ETH
After startup without a PLC project the PM56xx-2ETH contains the following Ethernet ports and
sockets:

Protocol Port

ABB NetConfig 1) UDP 24576

Online access with driver 3S Tcp/Ip BlkDrvTcp (no scan) TCP 11740

OPC UA server 2) TCP 4840

Remarks:
1): The port 24576 for ABB NetConfig protocol can be disabled via PLC configuration by
deleting the protocol node from configuration tree of Ethernet interfaces ETH1 and ETH2.
2): The port 4840 for OPC UA server is closed by default as of SystemFW V3.6.0.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4482

All other ports are closed by default.

Overview of protocols, sockets and ports

Protocol Port Sockets
ABB netConfig 24576 1 permanent socket per interface

3S gateway client (e.g. CODESYS) to
gateway server

1217 1 permanent socket

Online access with driver 3S block driver
TCP/IP (no scan)

11740 1 socket per connection + 1
listen

Modbus TCP server 502 or config-
urable

1 socket listen + 1 socket per
server connection, number of
server connections is configu-
rable in AB

Modbus TCP client with POU ModTcpMast Random 1 socket per connection with
POU ModTcpMast

UDP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

TCP/IP out of user program with library
SysLibSockets.lib

1 ... 65535 1 socket per connection

Web server on PLC with web visualization 80 1 listen and 1 per connection

NTP/SNTP client 123 1 permanent socket

IEC60870-5-104 control station Random 1 per connection

IEC60870-5-104 substation 2404 1 per connection

FTP server Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

CODESYS network variables 1202 (UDP broadcast)

OPC DA server (default 3S block driver) UDP = 1740
or
TCP/IP
=11740

1 socket per connection

OPC UA server 4840 1 permanent socket

ICMP – ping out of user project with POU
ETHx_ICMP_PING DHCP

none No socket

DHCP 67 1 socket during startup

NTP/SNTP ((Simple) Network Time Pro-
tocol) client system solution
Ä Chapter 6.3.4.4.2 “(S)NTP client config-
uration” on page 1718

123 1 permanent socket

NTP/SNTP ((Simple) Network Time Pro-
tocol) server system solution
Ä Chapter 6.3.4.4.3 “(S)NTP server config-
uration” on page 1720

123 1 permanent socket

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4483

Protocol Port Sockets
HTTPS – secure web server on PLC with
CODESYS web visualization
Ä Chapter 6.3.4.7.3.2 “Secure web server”
on page 1727

443 1 listen and 1 per connection

FTPS – secure FTP
Ä Chapter 6.3.4.7.3.3 “Secure FTP”
on page 1728

Command
port = 21
Data active
mode = 20
Data passive
mode =
random

1 per session, max. 4 allowed

Secure online access with driver 3S
TCP/IP BlkDrvTcp

11740 1 socket per connection + 1
listen

ICMP – ping out of user project with
POU ETHx_ICMP_PING or EthIcmpPing
(PLCopen style)

None No socket

Modbus TCP client (master) with POU
ModTcpMast (PLCopen style)

Random 1 socket per connection with
POU ModTcpMast

Limitation of connections per protocol
The limitation for each CPU apply to all onboard Ethernet interfaces either directly on the CPU
itself or also on all CM5640-2ETH interfaces that are added to this CPU.

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

Modbus TCP server (e.g. for SCADA
access)

30
40
15

100
40
25

100
40
50

100
40
50

3.0.3
3.1.0
3.1.3

Modbus TCP client with POU ModTcpMast
(PLCopen style)

30
30

100
50

100
120

100
120

3.1.0
3.1.3

IEC60870-5-104 control station incl. 2nd

connection and 2nd port
10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104 substation incl. 2nd port 10
5

10
10

10
20

10
20

3.1.0
3.4.0

IEC60870-5-104: No. of free tags

+ additional license for extension 1)

1.000 5.000 10.000 10.000 3.4.0

FTP server 4 4 4 4 3.1.0

Online access with driver 3S TCP/IP
BlkDrvTcp

n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC DA server (number of connections) n/a
8

4
8

n/a
8

n/a
8

3.0.0
3.1.0

OPC UA server (number of connections) 50
10

50
20

50
50

50
50

3.1.0
3.4.0

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4484

Protocol PM5630
-2ETH

PM565
0-2ETH

PM5670-
2ETH

PM5675-
2ETH

³ CPU
firm-
ware

 No. of free tags

+ additional license for extension 1)

1.000 5.000 30.000 30.000 3.4.0

 min sampling rate (limit) 500 ms 100 ms 50 ms 50 ms 3.4.0

Secure online access with driver 3S
TCP/IP BlkDrvTcp

8 8 8 8 3.1.0

FTPS - secure FTP server 4 4 4 4 3.1.0

HTTPS – Integrated webserver – number
of connections

4 8 12 12 3.4.0

Ethernet/IP
Maximum number of Input/Output

0.5
kB/0.5
kB

0.5
kB/0.5
kB

0.5
kB/0.5
kB

0.5
kB/0.5 kB

3.4.1

Remarks:
1): in preparation

The PLC types PM5630-2ETH, PM5670-2ETH and PM5675-2ETH are avail-
able as of SystemFW 3.1.0.

Default Ethernet configuration

Module IP Address Netmask Comment
PM5xx2-x-ETH ETH: 192.168.0.10 255.255.255.0

PM50x2-T-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

PM56xx-2ETH ETH1: 192.168.0.10
ETH2: 192.168.1.10

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

CM5640-2ETH SLOT1:
192.168.11.10,
192.168.12.10
SLOT2:
192.168.21.10,
192.168.22.10
...

255.255.255.0 The Ethernet ports
must be configured
in different sub net-
works.

Ä Changing the IP addresses using the Automation Builder

Ä Changing the IP addresses using the CFG key

Online access
3S TCP/IP block driver. This driver requires at least 2 sockets:

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4485

● 1x driver “BlkDrvTcp” on port 11740
● 1x listen on port 11740 if PLC has established online connection

Online access can be established from:

– Automation Builder command 'Login' Ä Chapter 6.4.1.21.3.7.2 “Command
'Login'” on page 2624

– CODESYS OPC DA server
– Panel CP600 series

Each established connection needs one socket. In addition one socket on port 11740 is lis-
tening.
1. Startup the PLC.

ð One socket on port 11740 (listen).

2. Login from Automation Builder via driver “BlKDrvTcp”.

ð 2 sockets on port 11740 (1x online, 1x listen)

3. Additional login out of OPC server with the same driver.

ð 3 sockets on port 11740 (2x online, 1x listen)

4. Additional connect CP600 via driver “BlkDrvTcp”.

ð 4 sockets on port 11740 (3x online, 1x listen)

SNTP client and server
As of version 3.1.0 the SystemFW provides a SNTP Protocol implementation which can be used
for time synchronization of PLC clock. It can be used as SNTP Client or / and SNTP Server. But
only one instance of each can be executed at the same time on one PLC .

The SNTP server is listening only on the Ethernet interface, which the protocol
is configured on. It is not possible to have an SNTP server on several Ethernet
interfaces.

To read diagnosis information from the SNTP protocol within an IEC application the function
block PmSntpInfo can be used. This Function block is part of the library ABB_Pm_AC500.lib. It
can also be used to determine the synchronization state of the PLC clock.

Using network variables in AC500 V3
When using network variables via UDP broadcast, the default broadcast address is set to
255.255.255.255.
This will not work on PLCs with multiple Ethernet interfaces, because of undecidable routing.
Set the broadcast address to a matching subnet broadcast address, depending on which inter-
face should be used to send the variables into the network.

● ETH1 with IP 192.168.0.10 netmask 255.255.255.0
● ETH2 with IP 192.168.1.10 netmask 255.255.255.0

Example

If you want the network variables to be broadcast on ETH1, use broadcast address
192.168.0.255.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4486

6.8.2.6.2 Onboard CAN configuration
AC500 V3 PLCs provide the following methods for CAN integration:
● Onboard CAN interface
● CANopen master-slave arrangement (with CM598-CN as a master device)

Table 814: Differences in supported protocols
 Onboard CAN CM598-CN
CANopen Manager X X

CAN 2A/2B X X

J1939 X

Onboard CAN interface is not available on AC500-eCo V3!

Onboard CAN interface supports the following protocols
● CANopen Manager: Connection of CI581 and CI582 without additional I/O modules
● CAN 2A/2B
● J1939
Configuration in Automation Builder is described in chapter 'CANopen' Ä Chapter 6.3.2.11.1.1
“CM598-CAN - CANopen Manager communication module” on page 1521.
Further information can be found in chapter 'CAN onboard' Ä Chapter 6.3.2.16 “CAN onboard”
on page 1594

Supported pro-
tocols

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4487

6.8.2.7 Hot swap
6.8.2.7.1 Preconditions for using hot swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4488

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4489

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

6.8.2.7.2 Compatibility of hot swap

Hot swap is not supported by AC500-eCo V3 CPU!

 Central I/O on V3 CPU
I/O module on TU5xx-H connected to I/O bus
master

AC500 V3 CPU types:
PM56xx-2ETH

Required version of I/O bus master Firmware as of V3.2.0

Fieldbus master when used as remote I/O with
AC500 V3

-

When used as remote I/O on third party
controller (PLC or DCS)

-

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4490

6.8.2.7.3 Hot swap behavior

Hot swap behavior Central I/O on V3 CPU
Start-up behavior with unplugged or damaged
I/O module on hot swap terminal unit TU5xx-H

System and I/O modules attached to the CPU
are starting (except unplugged or damaged
module when plugged on hot swap terminal
unit).
As soon as the correct and operational I/O
module is plugged on the terminal unit, the
module is configured and ready to start.
No specific setting needed.

Start-up behavior with wrong I/O module type
on any terminal unit

System and I/O modules are not starting

Diagnosis of presence of hot swap terminal
unit

Diagnosis using PLC browser command "io-
bus desc" in Automation Builder V3.
The PLC browser then provides an overview
of the modules on the I/O bus including the
position of hot swap terminal units in the
I/O bus.
In the application program this
can be detected with a func-
tion block "IoModuleHotSwapInfo"
(Library: AC500_Io/Function Blocks/I/O-Bus).
One instance of function block is needed per
terminal unit on the I/O bus. The function
block provides five outputs delivering infor-
mation about slut number, hot swap capa-
bility and plugged/unplugged state of the I/O
module

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

If module is pulled then diagnosis Err 9480
"Module removed from Hot Swap Terminal
Unit" is generated

Diagnosis after plugging the I/O module on
the hot swap terminal unit

Diagnosis Err 9480 is automatically
acknowledged

6.8.2.8 KNX IP integration
6.8.2.8.1 Introduction

KNX is a bus system used more on the room and floor level in buildings (e.g. for lighting,
shading and local HVAC devices).
The KNX as such doesn´t necessarily need a dedicated controller for simple connection of
sensor/switch to receiving/actuator devices.
The signals exchanged via the protocol are so called “group addresses” (“objects”), which are
downloaded via ETS to all the thereby linked (=grouped) devices.
On the room level it typically has a serial wiring called KNX TP (twisted pair), which then is
linked to floor or central building or management level via IP routers. On Ethernet it is called
KNXnet/IP abbreviated also as KNX IP.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4491

After the engineering in Automation Builder, the AC500 V3 PLC is a standard KNX device.
KNX communication is done via the IP network interface. The PLC is arranged topologically
on the area / main line of the KNX IP routers. The PLC communicates with the routers via the
KNXnet/IP protocol.

6.8.2.8.2 Engineering workflow
Both engineering software systems for AC500 V3 PLC (Automation Builder) and KNX (ETS) are
directly linked.
A data exchange for the group objects (hereinafter also called communication objects) from the
Automation Builder to ETS (via an XML file) and received by a DCA (Device configuration APP)
for ETS is available.
The AC500 V3 PLC is integrated into the ETS via a certified KNX “device” with the transferred
group objects as configured in Automation Builder and a physical KNX address (transferred via
ETS and KNX IP to the AC500 V3 PLC).

Programming and commissioning of the AC500 V3 PLC starts with Automation Builder:

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4492

Configuration of the AC500 V3 PLC, its communications, here KNX, and I/O modules and all
necessary parameters.
1. Configure programmable KNX controller in Automation Builder by adding group objects to

the device.
2. Use group objects as inputs and outputs in the IEC application.
3. Download of the above into the AC500 V3 PLC (via the engineering interface)
4. Export of the group objects for ETS via XML file.

The subsequent linking of the AC500 V3 PLC and the other KNX devices takes place with
the vendor independent KNX commissioning software ETS:

5. Install DCA Plugin and the AC500 V3 PLC device description in ETS
6. Connect group objects in ETS and assign group addresses.
7. KNX IP download to AC500 V3 PLC.
8. The physical KNX address of the AC500 V3 PLC must be set before or during download

of the KNX configuration.

The programming of the AC500 V3 PLC and the KNX commissioning can be done also by
different people at different times and with same or separate engineering PCs. Both projects
carry out their own download parts of their respective configurations to the AC500 V3 PLC.
The only data exchange between the two Engineering programs are the details about the
KNX group objects defined in the ABB Automation Builder. This is done flexibly via the XML
configuration file.

6.8.2.8.3 Prerequisites
● Basic AC500 and Automation Builder know-how.
● Basic experience and expertise in use of KNX and ETS (engineering software for KNX).
● PC(s) with Windows 7 or higher with administrator right(s)
● At least temporary network access to the internet for downloading and installing of:

– Automation Builder as of version AB 2.1.2, (and e.g. example .project)
– ETS5 and the necessary additional files (DCA .etsapp, device description .knxprod) plus

possibly an matching example .knxproj) to above Automation Builder .project
● Network access to the local network, were the AC500 V3 PLC and KNX devices are

connected.
● PS5604-KNX AC500 runtime license for each dedicated AC500 V3 PLC used in KNX

networks.
● The current IP address of the engineering PC(s) where Automation Builder and ETS are

located in same Network / masked IP range, as the AC500 V3 PLC to be used.

6.8.2.8.4 General settings and system behavior
The KNX interface at the AC500 V3 PLC is only active during the PLC is in RUN.
1. Download Automation Builder program.
2. Run PLC.
3. Set physical address or download KNX application Programm via ETS.

ð The bus status can be viewed in Online View of Automation Builder.

KNX communication is only working after download the matching ETS application to the AC500
V3 PLC. Until then, the AC500 V3 PLC KNX communication is deactivated and marked with a
warning symbol.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4493

Fig. 359: KNX Interface not ready

However in this state the AC500 V3 PLC can still be switched to the KNX programming mode
and the physical KNX address can be programmed. Also the device info can be read by ETS.
If the KNX interface is ready, this can be recognized by the green symbol on the KNX interface
in the Automation Builder.

Fig. 360: KNX Interface ready

6.8.2.8.5 Start-up behavior

KNX bus works only in RUN mode.

If the PLC is in "STOP" mode the KNX bus and the outputs are reset.

To avoid this behavior in "STOP" mode set the following preferences at the PLC_AC500_CPU:
1. Double-click PLC_AC500_V3 <...> and click PLC Settings.
2. Enable checkbox Update IO while in stop and select in dropdown-menu Behavior for

Outputs in Stop “Keep current values”.

If the PLC is reset also the connected objects will be reset on the KNX bus.

After Power ON the KNX Interface need approximately 1 s to start after the PLC program had
started. During this period no inputs will be recognized by the PLC and no outputs will be send
to the bus.

6.8.2.8.6 Engineering of KNX in Automation Builder
Creation of KNX group objects

Attention
This information refers to Automation Builder as of version 2.2.0.

The data exchange with the KNX bus is done via KNX group objects.

Start/Stop PLC

Warm start /
Cold start

Power ON/Off

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4494

1. Double-click node “KNX” in the device tree “click General è click Add”.

ð The window Communication object appears.

2. Enter your properties:
● Group Object Number:

The number of the KNX Group Object must match within the controller. It is displayed
in the ETS and influences the display order in the ETS and the Automation Builder.

● Type:
Selection of the communication direction.
– Input means that the controller receives values from the KNX bus.
– Output means that the controller sends values to the KNX bus.

● Data Point Type:
Specification of the KNX data point type (DPT) of the Group Object. This determines
the memory size, scaling and unit. For further information see the KNX Standard.

● Group Object Name:
The name of the KNX Group Object. It is freely selectable and is displayed in the ETS
under the field name.

● Group Object Function:
The name of the function of the Group Object. It is freely selectable and is displayed in
the ETS under the field Function.

Based on this selection, the flags of the KNX Group Object are set accordingly in the ETS.
You can use the [Export CSV...] button in the “General” tab menu bar to display the list of KNX
group objects in a spreadsheet program such as Excel and edit and extend it flexibly. Then you
can import them again via [Import CSV].
After you have created all the required KNX group objects, export them using the
[Export to ETS] button. This exported file contains the configuration of the KNX group objects of
the AC500 V3 PLC and is imported by ETS for linking to other KNX devices. If you have not yet
created project information under main menu “Project è Project Information”, the default values
will be used during the export.
To use these KNX group objects in your application program, you must assign them with
IEC61131-3 variables. This additional abstraction layer of an additional variable allows you to
create modular automation programs that are independent of the used bus system or input /
output modules.
The assignment is possible either via the parameter page “KNX I/O Mapping” or “I/O mapping
list”. Both editors offer the same function in different representations.
On the KNX I/O Mapping page, the KNX variables are shown hierarchically. Each KNX Group
Object consists of several channels with additional information. These differ depending on
whether it is an input or an output.
The view is structured as follows:
● Variable:

Enter the name of the IEC 61131-3 variable that you want to assign to this channel (KNX
Group Object).

● Mapping:
Shows if the channel is already linked

● Channel:
Name of the Channel (Channel name)

● Address:
The memory address under which the information is stored in the memory of the AC500 V3
PLC. Inputs start with %I and outputs start with %Q.

● Type:
Specification of the IEC 61131-3 variable type

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4495

● Default Value:
The value used after starting the controller.
– At a KNX Group Object input, this value is used by the automation program until a value

has been received from the KNX bus.
– At a KNX Group Object output, this value is sent to the bus when the controller is

started.
● Unit:

Specification of the KNX data point type (DPT)
● Description:

Note text
A KNX Group Object “input” consists of a status and a control part:
The Channel name of the status part consists of: Object Number + Object Name + Object
Function and include the following informations:
● UpdateFlag:

This status flag is set to the value “true” for one cycle as soon as a new KNX telegram has
been received. Even if the value of the telegram does not differ from the previous one.

● ValueChanged:
This status flag is set to the value “true” as soon as a new KNX telegram has been received
and the value differs from the previous one.

● ValueValid:
This status flag is set to the value “true” as soon as a KNX telegram has been received for
the first time after the controller has been started.

● WatchdogTimeout:
As of Automation Builder 2.2.1 it will be possible to define a Watchdog Timeout for each
input object. If a timeout occur this flag will be set to the value “true” for one cycle.

● Value:
The current value of the KNX Group Object received from the KNX bus.

The Channel name of the control part consists of: “Control” + Object Number + Object Name +
Object Function and include the following control possibilities:
● Reset status flags:

When this flag is set from “false” to “true” by the automation program then the above-men-
tioned status flags of the KNX Group Object are reset to the value “false”.

● Send value read:
When this flag is set from “false” to “true” by the automation program, a ValueRead telegram
is sent to the KNX bus. This causes the KNX remote device to send back its current value.

A KNX Group Object “output” is represented as follows:
The Channel name of the Group Object consists of: Object Number + Object Name + Object
Function
● Trigger Output:

When this flag is set from “false” to “true” by the automation program, the current value is
sent immediately to the KNX bus. The sending conditions that are may be activated in the
ETS (send on change and cyclic sending) will be restarted

● Disable Output:
As long this flag is set to “true” by the automation program, the sending conditions send on
change and cyclic sending in the ETS are deactivated.

● Value:
The current value of the KNX Group Object that is sent to the KNX bus.

The permanently defined Program LED Status represent the function as known in other KNX
devices, showing the status of the programming LED.

Create an application program
The KNX variables defined on the KNX I/O Mapping page are available programwide under
IoConfig_Globals_Mapping.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4496

These you can see if you click in to the programming window and either via right-click select
“Input Assistant” or press F2.

Export XML file
To exchange the configured KNX group objects the configuration has to be exported via XML
file.
If later both projects (from Automation Builder and ETS) are loaded on the PLC, the PLC checks
if the two projects have the same source and fit together. This will be done by an automatically
calculated Checksum. For calculating the Checksum the following information’s from the Project
information will be used:
● Company
● Title
● Version
● Timestamp
This Information will also be shown in the ETS after loading the XML file. If the user has not
entered any project information some default values will be set.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4497

6.8.2.8.7 Integration of the PLC in KNX
Insert controller

1. Start the ETS and insert the PS5604-KNX AC500 as controller from the ETS device
catalog into your ETS project.

2. Assign a physical KNX address to the controller.

ð The controller is placed topologically on the IP Main Area.

Import configuration

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4498

1. Select the “PS5604-KNX AC500” in the ETS explorer tree and click on “DCA” tab in the
editor window.

2. Click on Load Configuration and select the configuration XML file.

ð The KNX group objects defined in AC500 V3 PLC in Automation Builder are displayed
in the ETS.

Connect controller with KNX devices
1. Right-click on a “PS5604-KNX AC500” group object and assign a KNX group address or

drag and drop from group address window.
2. Interlink group objects by assigning the same KNX Group Address.

Parameters of the device
The following settings are possible in the ETS parameters of the PS5604-KNX AC500.

Tab General set-
tings

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4499

● Default Gateway:
The used KNXnet/IP broadcast address. This must match the KNX system (KNX IP router).
It is the default setting that is usually not changed.
– The entry field Default Gateway can contain another IP address for the Multicast com-

munication. The normal Multicast IP address for KNX ist 224.0.23.12.
– If another Multicast IP address is to be used, it can be chosen in the area from 239.0.0.0

to 239.255.255.255. This alternative Multicast IP address can be defined in the input
field Default Gateway.

● Telegram rate:
The maximum transmission rate of the AC500 V3 PLC can be limited in order to prevent an
excessive bus load and thus to avoid malfunction of the KNX system.
The KNX telegrams are buffered until they have been sent. New values which have been
calculated by the automation program in the meantime are updating the cached values. The
old cached value is discarded and not sent.

● Project Information:
At this point, the project information of the Automation Builder project is displayed.

For each KNX Group Object of the AC500 V3 PLC an Object entry is displayed in the device
parameters. This is named after the number of the KNX Group Object.
For outputs (controller sends to the KNX bus) the KNX transmission conditions can be set:

Tab Object 1 .. 3

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4500

● Communication direction:
Setting of the transmission direction of the object.
– Input (KNX to PLC): The controller receives values from the KNX bus.
– Output (PLC to KNX): The controller sends values to the KNX bus.

● Send condition (only for outputs):
Setting whether the Controller sends a telegram to the KNX bus automatically when the
object value is changed. The following options are available
– No automatic sending:

No automatic sending to the KNX bus. This must be done via the program code by the
Trigger Output flag.

– Send on change:
Every time the object value changes, a telegram is sent to the KNX bus. No matter how
minor this change is.

– Send on difference (only for group objects which are not DPT 1.* Boolean): Every time
the object value changes, this value is only sent to the KNX bus if it differs from the last
sent value at least by the settable difference.

● Sending difference (only if Send on difference is active):
Input of the difference by which the object value must change to be send. You can enter
numbers with decimal places.

● Cyclic sending (only for outputs):
Setting whether in addition the object value is sent cyclically repeatedly to the bus. This also
happens if this object value has not changed. Two different range of values for the cycle
time can be specified.

● Cycle time (only when Cyclic sending is active):
Specification of the cycle time for the cyclic transmission.
Input format:
hour:minute:second
Note: The cycle time of the KNX stack depends on the cycle time of the task that executes
the stack. A long task time causes long download times from ETS. Consider the CPU load
and cycle times of other processes running on the CPU when selecting a cycle time for the
KNX stack.

Regardless of the set transmission conditions, the program code can trigger by the flag Trigger
Output a sending of the value to the KNX bus at any time.
By activating the flag Read on Init of the KNX group objects in the right ETS properties panel,
the Controller sends a value read query to the connected KNX device at startup. This then
responds with its current object value.
In this properties panel you can also select the appropriate subdata point type of the KNX
Group Object. This defines the unit of the value in the KNX system. For example DPT 9.001
represents temperature in ° C.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4501

If for example the response of an actuator state is needed for an input "Aktor A Status", this
feature can be enabled in the parameter of the Switch Actuator (e.g. 1.1.6 SA/S4.10.1).

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4502

The current IP address as well as further information of the AC500 V3 PLC can be read via the
ETS Device Info function. For this the physical KNX address is necessary. You can determine
the address by the ETS function Programming Mode.
With the ETS function Group Monitor you can analyze the telegrams on the KNX bus. You can
also use it to write/read KNX telegrams.

Download ETS configuration to controller
The download of the ETS configuration to the AC500 V3 PLC is done via the ETS function
“Download” in the menu bar. This download happens via the KNX interface directly to the
AC500 V3 PLC.
Best you select in ETS the network interface of the computer as the bus interface. Thus, a fast
data exchange is possible and the data is not routed via the KNX TP bus.
At the first download, the physical KNX address of the controller is programmed. To do this, set
the AC500 V3 PLC to KNX programming mode.
This can be done either via the display or functions inside the application program of the
controller (e.g. connected to a Webvisu like done in the example program).

Ä Chapter 6.8.2.5.5.5.2 “Configuration with SystemFW >=V3.5.0 and DisplayFW >=V4.1”
on page 4466

Attention!
The activation of the KNX programming mode via the display only works with
Automation Builder as of version 2.2.0.

The KNX configuration of AC500-eCo V3 uses TA5130-KNXPB.

1. Press the CFG function key.

ð Switch is OFF (S OFF) is displayed.

2. Press the Arrow Down function key

ð Pbut 0 is displayed.

(Pbut is standing for progamming button, the 0 (or the 1) showing the status of the
programming LED (0=Off; 1 =ON))

3. Press the CFG function key.

ð The display shows Pbut 1 flashing.

4. Confirm this with the OK function key.

ð The display permanently shows Pbut 1. The AC500 V3 PLC is in KNX programming
mode.

1. Ensure the TA5130-KNXPB is plugged in during power up, PLC is in RUN mode.
2. Ensure that TA5130-KNXPB is configured inside Automation Builder configuration.

Via AC500 dis-
play

The AC500 V3
PLC must be in
RUN mode.

AC500-eCo V3
via TA5130-
KNXPB

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4503

3. Push the button on the TA5130-KNXPB.

ð The LED on the option board should turn ON. The AC500-eCo V3 is in KNX program-
ming mode.

The AC500 V3 PLC automatically terminates the KNX programming mode after the program-
ming of the physical KNX address.
Alternatively you can terminate the programming mode with Pbut 0 by pressing the CFG func-
tion key.
For AC500-eCo V3: push the button on the TA5130-KNXPB again to terminate the program-
ming mode, the LED should turn OFF.
You can exit the menu at any time with the ESC function key.

Please use the following variable for setting the KNX Program Button:
AC500_IoDrvKNX.GVL.IoDrvKNXCopyChannels.ProgramButton
The controller automatically terminates the programming mode after programming the physical
address with the ETS.
The AC500 V3 PLC has then besides the Automation Builder configuration also the appropriate
ETS configuration and starts its KNX communication.
Download all other linked KNX devices as well as the KNX IP routers. The ETS automatically
creates the filter tables of the KNX IP routers so that the KNX telegrams are routed from the
KNX TP lines to the IP line of the AC500 Controller.

6.8.2.8.8 Make changes
Changes can be made in the Automation Builder as well as in the ETS without the need for a
change in the other software or the need for a new data exchange.
Only if changes are made to the KNX group objects in the Automation Builder, a data exchange
with the ETS is again necessary. Afterwards, a download is required both in the Automation
Builder and in the ETS. Only when these two configurations have been downloaded again to the
AC500 V3 PLC, the KNX communication is in operation again.
The DCA detects changes to names and numbers of the KNX group objects when importing the
configuration file in the ETS and keeps the already made settings and linked Group Addresses
of these changed group objects.

6.8.2.8.9 Data conversion
The KNX standard defines a big-endian byte order while the IEC 61131-3 is based on the
little-endian byte order. Therefore, the controller automatically converts the data point types.
However, if you access the bits of the structured KNX data point types (DPT) for time, date
(DPT 10.* , DPT 16.* , DPT 19.*) in your program code, you have to note the reverse byte order.
Therefore, as of Automation Builder version 2.2.0, corresponding function libraries are available
that provide conversion functions for these data point types.

Via AC500 appli-
cation

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4504

6.8.2.8.10 Further information
● Example projects can be found in the example folder, “Help è Project examples”.

Prerequisite: Install the related library package with Automation Builder Installation Man-
ager - [Modify].

● Programming in IEC61131 is described in the application example
AC500 V3 KNX IP Integration.

● Further information can be found on the ABB website: ABB products and services.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4505

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011111&LanguageCode=en&DocumentPartId=&Action=Launch
https://new.abb.com/products/1SAP195800R0101/ps5604-knx-ac500-v3-ip-runtime-license

6.8.2.9 Communication with Modbus RTU
6.8.2.9.1 Protocol description

The Modbus RTU protocol is implemented in the AC500 processor modules. Modbus is a
master-slave (client-server) protocol. The client sends a request to the server and receives the
responses.
The Modbus operating mode of a serial interface is set in the PLC configuration Ä Chapter
6.3.2.14.2 “Configuring Modbus RTU on serial interface” on page 1588.

To use the AC500 V3 or AC500-eCo V3 as a Modbus RTU client two possible programming
methods can be used:
● ModRtuMast
● ModRtuToken with Read/Write function blocks

With this method the Modbus client function block ModRtuMast is used to program all read
and/or write jobs in a sequence. If more than one ModRtuMast function block is used, e.g. for
several sever connections, the sequence must take care that only one of those ModRtuMast
function blocks is active at a time.
A summary of the function codes that are supported for Modbus RTU communication with an
AC500 PLC is given in the application example Modbus RTU and function block ModRtuMast.

With this method the function block ModRtuToken is used along with ModRtuRead and/or
ModRtuWrite and/or ModRtuReadWrite23.

Instead of programming a sequence a simple connection via structure variables between the
function blocks is necessary to ensure the sequencial functionality of Modbus RTU.
A sample project for Modbus client and server in order to enable Modbus
RTU communication with an AC500 PLC is given in the application example
Modbus RTU and function block ModRtuMast.

To use Modbus RTU protocol on an AC500-eCo V3 PLC, the CPU must be
equipped with an option board for COMx serial communication TA5141-RS232I,
TA5142-RS485 or TA5142-RS485I option board. The type of the option board
adapter must be selected according to the type of physical serial interface
needed.

According to the CPU type, up to 3 option boards for COMx serial communica-
tion can be used Ä Chapter 6.3.2.8.4 “Attach an option board for COMx serial
communication” on page 1505.

Modbus RTU can be used for communication between an AC500-eCo V3 PLC and a control
panel. The connection principle is described using the CP604 control panel as an example:
CP604 connection via Modbus RTU.

In this operating mode, the telegram traffic with the server(s) is handled via the function block
ModRtuMast.
This function block sends Modbus request telegrams to the server(s) via the set interface and
receives Modbus response telegrams from the server(s) via this interface.
The Modbus blocks transferred by the server contain the following information:
● Modbus address of the interrogated server (1 byte)
● Function code that defines the request of the client (1 byte)

ModRtuMast

ModRtuToken
with Read/Write
function blocks

Modbus client

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4506

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010981&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010952&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010982&LanguageCode=en&DocumentPartId=&Action=Launch

● Data to be exchanged (n bytes)
● CRC16 control code (2 bytes)

In this operating mode, no function block is required for Modbus communication. Sending and
receiving Modbus telegrams is performed automatically.
The AC500 CPUs process the following Modbus operation codes:

Function code Description
DEC HEX
01 or 02 01 or 02 Read n bits

03 or 04 03 or 04 Read n words

05 05 Write one bit (encoded in one
word)

06 06 Write one word

15 0F Write n bits (encoded in one
byte)

16 10 Write n words

22 16 Mask write

23 17 Read/write multiple words in
one telegram

The following restrictions apply to the length of the data to be sent:

Function code Max. length
DEC HEX
01 or 02 01 or 02 2000 bits

03 or 04 03 or 04 125 words / 62 double words

05 05 1 bit

06 06 1 word

15 0F 2000 bits

16 10 123 words / 61 double words

22 16 Write: 1 word

23 17 Read: 125 words / 62 double
words
Write: 121 words / 60 double
words

6.8.2.9.2 Technical data
Ä Setting of the Modbus operating mode and the interface parameters

Modbus server

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4507

Table 815: Description of the Modbus protocol
Parameter Value
Supported standard Ä Chapter 6.3.2.14.2 “Configuring Modbus

RTU on serial interface” on page 1588

Number of connection points 1 client
Max. 1 server with RS-232 interface
Max. 31 servers with RS-485

Protocol Modbus

Operating mode Client/server

Address Server only

Data transmission control CRC16

Data transmission speed From 9,600 bits/s to 115,200 bits/s
Ä Chapter 6.3.2.14.2 “Configuring Modbus
RTU on serial interface” on page 1588

Encoding 1 start bit
8 data bits
1 or 2 stop bits
1 parity bit
Ä Chapter 6.3.2.14.2 “Configuring Modbus
RTU on serial interface” on page 1588)

Table 816: Max. cable length
Parameter Value
Max. cable length for RS-485 on COM1 for
AC500 CPU

1.200 m at 19.200 baud

6.8.2.9.3 Modbus addresses for AC500-eCo V3 processor modules PM50x2
A range of maximum 64 kB is allowed for the access via Modbus to the addressable flag area
(%M area). Thus, the complete address range 0000hex up to 7FFFhex is available for Modbus.
The availability of the segments depends on the CPU. The size of the %M area can be found in
the technical data of the CPUs and in the target system settings.
Inputs and outputs cannot be directly accessed using Modbus.
Following values apply:

 PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-
T-2ETH(W)

PM5082-T-2ETH

Size of the %M
area

4 kB 16 kB 16 kB 64 kB 64 kB

Modbus address range (Word accesses)

HEX 0000 … 07FF 0000 … 1FFF 0000 … 1FFF 0000 … 7FFF 0000 … 7FFF

DEC 0000 … 2047 0000 … 8191 0000 … 8191 0000 … 32767 0000 … 32767

Byte %MB0 …
%MB4097

%MB0 …
%MB16382

%MB0 …
%MB16382

%MB0 …
%MB65534

%MB0 …
%MB65534

Word %MW0 …
%MW2047

%MW0 …
%MW8191

%MW0 …
%MW8191

%MW0 …
%MW32767

%MW0 …
%MW32767

Modbus
address table

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4508

6.8.2.9.4 Modbus addresses for AC500 V3 processor modules PM56xx
Modbus address table

Table 817: Modbus addresses (word accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 ...
%MX0.7

%MW0 %MD0

%MB1 %MX1.0 ...
%MX1.7

0001 1 %MB2 %MX2.0 ...
%MX2.7

%MW1

%MB3 %MX3.0 ...
%MX3.7

0002 2 %MB4 %MX4.0 ...
%MX4.7

%MW2 %MD1

%MB5 %MX5.0 ...
%MX5.7

0003 3 %MB6 %MX6.0 ...
%MX6.7

%MW3

%MB7 %MX7.0 ...
%MX7.7

...

7FFE 32766 %MB65532 %MX65532.0
...
%MX65532.7

%MW32766 %MD16383

%MB65533 %MX65533.0
...
%MX65533.7

7FFF 32767 %MB65534 %MX65534.0
...
%MX65534.7

%MW32767

%MB65535 %MX65535.0
...
%MX65535.7

8000 32768 %MB65536 %MX65536.0
...
%MX65536.7

%MW32768 %MD16384

%MB65537 %MX65537.0
...
%MX65537.7

8001 32769 %MB65538 %MX65538.0
...
%MX65538.7

%MW32769

%MB65539 %MX65539.0
...
%MX65539.7

8002 32770 %MB65540 %MX65540.0
...
%MX65540.7

%MW32770 %MD16385

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4509

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

%MB65541 %MX65541.0
...
%MX65541.7

8003 32771 %MB65542 %MX65542.0
...
%MX65542.7

%MW32771

%MB65543 %MX65543.0
...
%MX65543.7

...

FFFE 65534 %MB131068 %MX131068.
0 ...
%MX131068.
7

%MW65534 %MD32767

%MB131069 %MX131069.
0 ...
%MX131069.
7

FFFF 65535 %MB131070 %MX131070.
0 ...
%MX131070.
7

%MW65535

%MB131071 %MX131071.
0 ...
%MX131071.
7

Table 818: Address assignment (bit accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 %MW0 %MD0

0001 1 %MX0.1

0002 2 %MX0.2

0003 3 %MX0.3

0004 4 %MX0.4

0005 5 %MX0.5

0006 6 %MX0.6

0007 7 %MX0.7

0008 8 %MB1 %MX1.0

0009 9 %MX1.1

000A 10 %MX1.2

000B 11 %MX1.3

000C 12 %MX1.4

000D 13 %MX1.5

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4510

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

000E 14 %MX1.6

000F 15 %MX1.7

0010 16 %MB2 %MX2.0 %MW1

0011 17 %MX2.1

0012 18 %MX2.2

0013 19 %MX2.3

0014 20 %MX2.4

0015 21 %MX2.5

0016 22 %MX2.6

0017 23 %MX2.7

0018 24 %MB3 %MX3.0

0019 25 %MX3.1

001A 26 %MX3.2

001B 27 %MX3.3

001C 28 %MX3.4

001D 29 %MX3.5

001E 30 %MX3.6

001F 31 %MX3.7

0020 32 %MB4 %MX4.0 %MW2 %MD1

0021 33 %MX4.1

0022 34 %MX4.2

...

0FFF 4095 %MB511 %MX511.7 %MW255 %MD127

1000 4096 %MB512 %MX512.0 %MW256 %MD128

...

7FFF 32767 %MB4095 %MX4095.7 %MW2047 %MD1023

8000 32768 %MB4096 %MX4096.0 %MW2048 %MD1024

...

FFFF 65535 %MB8191 %MX8191.7 %MW4095 %MD2047

Calculation of the bit variable from the hexadecimal address:

Formula:
 Bit variable (BOOL) := %MXBYTE.BIT

where: DEC Decimal address

 BYTE DEC / 8

 BIT DEC mod 8 (Modulo division)

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4511

● Address hexadecimal = 16#2002
DEC := 8194
BYTE := 8194 / 8 := 1024
BIT := 8194 mod 8 := 2
Bit variable: %MX1024.2

● Address hexadecimal = 16#3016
DEC := 12310
BYTE := 12310 / 8 := 1538,75 -> 1538
BIT := 12310 mod 8 := 6
Bit variable: %MX1538.6

● Address hexadecimal = 16#55AA
DEC := 21930
BYTE := 21930 / 8 := 2741,25 -> 2741
BIT := 21930 mod 8 := 2
Bit variable: %MX2741.2

Examples:

Calculation of the hexadecimal address from the bit variable:

● Bit variable := %MX515.4
DEC := 515 * 8 + 4 := 4124
Address hex := 16#101C

● Bit variable := %MX3.3
DEC := 3 * 8 + 3 := 27
Address hex := 16#001B

● Bit variable := %MX6666.2
DEC := 6666 * 8 + 2 := 53330
Address hex := 16#D052

Examples:

Peculiarities for accessing Modbus addresses
Peculiarities for bit access:
● A WORD in the %M area is assigned to each Modbus address 0000hex .. FFFFhex.
● Bit addresses 0000hex .. FFFFhex are contained in the word range %MW0 .. %MW4095

Areas protect from read/write access by Modbus client
As described in 'Protocols and special servers' Ä Chapter 6.3.4.3.2 “Configuration of Modbus
TCP/IP server” on page 1714, one write-protected and one read-protected area can be defined.
If you try to write to a write-protected area or to read from a read-protected area, an exception
response is generated.

6.8.2.9.5 Local data of the Modbus client
The address of the area from which data are to be read or to which data are to be written is
specified in the function block ModRtuMast at input "Data", via the ADR operator.

For the AC500, the following areas can be accessed using the ADR operator:
● Inputs area (%I area)
● Outputs area (%Q area)

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4512

● Area of non-buffered variables (VAR .. END_VAR or VAR_GLOBAL END_VAR)
● Addressable flag area (also protected areas for %M area)
● Area of buffered variables (VAR RETAIN .. END_VAR or VAR_GLOBAL RETAIN ..

END_VAR)

6.8.2.9.6 Modbus telegrams
General

The sending and receiving of telegrams shown in this section are not visible in the PLC.
However, the complete telegrams can be made visible using a serial data analyzer connected to
the connection line between server and client, if required.
The amount of user data depends on the capabilities of the server and the client.
For the following examples, it is assumed that one AC500 Modbus module is used as client
and another one is used as server. There may be different properties if modules of other
manufacturers are used.

FCT 1 or 2: Read n bits
Table 819: Client request
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low

Table 820: Server response
Server
address

Function
code

Number of Bytes ...Data... CRC

High Low

FCT 3 or 4: Read n words
Table 821: Client request
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low

Table 822: Server response
Server
address

Function
code

Number of Bytes Data CRC

High Low High Low

FCT 3 or 4: Read n double words
The function code "read double word" is not defined in the Modbus RTU standard. This is why
the double word is composed of a low word and a high word (depending on the manufacturer)
Ä Chapter 6.8.2.9.6.3 “FCT 3 or 4: Read n words” on page 4513.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4513

FCT 5: Write 1 bit
For the function code "write 1 bit", the value of the bit to be written is encoded in one word.
BIT = TRUE -> Data word = FF 00 HEX
BIT = FALSE -> Data word = 00 00 HEX

Table 823: Client request
Function
code

Server operand address Number of words CRC

High Low High Low High Low

Table 824: Server response
Function
code

Server operand address Data CRC

High Low High Low High Low

FCT 6: Write 1 word
Table 825: Server request
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low

Table 826: Server response
Server
address

Function
code

Server operand
address

Data CRC

High Low High Low High Low

FCT 15: Write n bits
Table 827: Client request
Server operand
address

Number of bits Number of
bytes

...Data... CRC

High Low High Low High Low

Table 828: Server response
Server
address

Function
code

Server operand
address

Number of bits CRC

High Low High Low High Low

FCT 16: Write n words
Table 829: Client request
Server operand
address

Number of words Number of
bytes

...Data... CRC

High Low High Low High Low

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4514

Table 830: Server response
Function
code

Server operand address Number of words CRC

High Low High Low High Low

FCT 16: Write n double words
The function code "write double word" is not defined in the Modbus RTU standard. This is why
the double word is composed of a low word and a high word (depending on the manufacturer).

Table 831: Client request
Server operand
address

Number of words Number of
bytes

...Data... CRC

High Low High Low High Low

Table 832: Server response
Server
address

Function
code

Server operand
address

Number of words CRC

High Low High Low High Low

FCT 22: Mask write register
Table 833: Client request
Server
address

Function
code

Server operand
address

AND Mask OR Mask CRC

High Low High Low High Low High Low

Table 834: Server response
Server
address

Function
code

Server operand
address

AND Mask OR Mask CRC

High Low High Low High Low High Low

FCT 23: Read/Write n words
Table 835: Client request
Server
addre
ss

Func-
tion
code

Operand
addr. read

Number of
words
read

Operand
addr. write

Number of
words write

Numb
er of
bytes
write

...Dat
a...

CRC

High Lo
w

High Lo
w

High Low High Low Hig
h

Lo
w

Table 836: Server response
Server
address

Function
code

Number of bytes
read

...Data... CRC

High Low

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4515

Exception response by server
In operating mode Modbus client, the AC500 does only send requests, if the parameters at the
ModRtuMast inputs are logically correct.
Nevertheless, it can happen that a server cannot process the request of the client or that the
server cannot interpret the request due to transmission errors or in case it’s capabilities are
exceeded in any way. In those cases, the server returns an exception response to the client.
In order to identify this response as an exception response, the function code returned by the
server is a logical OR interconnection of the function code received from the client and the value
80HEX.

Table 837: Server response
Server address OR 80HEX Error code CRC

High Low

Possible error codes of the client

Code Description
01DEC ILLEGAL FUNCTION

The server does not support the function requested by the client

02DEC ILLEGAL DATA ADDRESS
Invalid operand address in the server or operand area exceeded

03DEC ILLEGAL DATA VALUE
At least one value is outside the permitted range of values

04DEC SERVER DEVICE FAILURE
An unrecoverable error occurred while the server was attempting to
perform the requested action

05DEC ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server has accepted the request and is processing it, but a
long duration of time will be required to do so. This response is
returned to prevent a timeout error from occurring in the client.
The client can next issue a Poll Program Complete message to
determine if processing is completed

06DEC SERVER DEVICE BUSY
Specialized use in conjunction with programming commands.
The server is engaged in processing a long–duration program com-
mand. The client should retransmit the message later when the
server is free.

07DEC NEGATIVE ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server cannot perform the programming functions. Client
should request diagnostic or error information from server.

08DEC MEMORY PARITY ERROR
Specialized use in conjunction with function codes 20 and 21 and
reference type 6, to indicate that the extended file area failed to
pass a consistency check. The server attempted to read record file,
but detected a parity error in the memory. The client can retry the
request, but service may be required on the server device.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4516

Code Description
10DEC GATEWAY PATH UNAVAILABLE

Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

11DEC GATEWAY TARGET DEVICE FAILED TO RESPOND
Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means that
the device is not present on the network.

Table 838: Modbus request of the client
Function code: 01 Read n bits

Server operand address: 4000HEX = 16384DEC Area for read access disa-
bled in server

Table 839: Modbus response of the server
Function code: 81HEX

Error code: 03

Example

6.8.2.9.7 Processing bits
General

Some of the Modbus function codes are used to read or write bits (coils, discrete inputs). While
a variable of data type WORD can be accessed easily, accessing a stream of bits is complex.
Data type 'BIT' Ä Chapter 6.4.1.20.5.11 “Data Type 'BIT'” on page 2243 must not be mixed up
with data type 'BOOL' Ä Chapter 6.4.1.20.5.2 “Data type 'BOOL'” on page 2235. Variables of
both types may have values ‘TRUE’ or ‘FALSE’. But while BIT means one single bit only, BOOL
requires a byte (8 bit) of memory.

Modbus client
When accessing bits in a Server, the local data referred to at Client function blocks input data is
always expected to be of format BOOL.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4517

Modbus server
Using the bit offset

The simplest way to access a certain bit within a larger variable is to directly use the bit offset (0
based; Ä Chapter 6.4.1.20.4.11 “Bit Access in Variables” on page 2229).

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4518

Defining symbolic names for the bit offsets
A more convenient way to access bits e.g. within a word is to define a symbolic name for each
single offset Ä Chapter 6.4.1.20.4.11 “Bit Access in Variables” on page 2229.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4519

Defining a data type
A further alternative is to define your own data types Ä Chapter 6.4.1.21.2.9 “Object 'DUT'”
on page 2461 according to the requirements of your particular application Ä “Symbolic bit
access in structure variables” on page 2230.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4520

Defining a complex data type
In case your application requires some more complex data types you can combine data types
(DUT; Ä “Symbolic bit access in structure variables” on page 2230).

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4521

Pack/unpack BOOL variables
In case you prefer variables of type BOOL you can use the functions for packing
MEM_Pack_BitsToByte and unpacking MEM_UnpackWord of the CAA_Memory.library, which
can be found with the Library Manager Ä Chapter 6.5.3 “Library Manager functionality”
on page 3773.

6.8.2.9.8 Function block ModRtuMast
This function block is only required in the operating mode Modbus client. It handles the commu-
nication (transmission of telegrams to the servers and receipt of telegrams from the servers).
The function block can be used for the local serial interfaces of the controller. A separate
instance of the function block has to be used for each interface.
ModRtuMast is contained in the library AC500_ModRtuMast.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4522

6.8.2.10 Communication with Modbus TCP/IP
6.8.2.10.1 Protocol description

The Modbus TCP protocol is implemented in the AC500 processor modules. Modbus is a
master-slave (client-server) protocol. The client sends a request to the server and receives the
responses. Each Ethernet interface can work as Modbus client and server interface in parallel if
required.
The Modbus operating mode of an Ethernet interface is set in Modbus on TCP/IP protocol
Ä Chapter 6.3.4.3.1 “Modbus on TCP/IP protocol” on page 1713.

In this operating mode, the telegram traffic with the server(s) is handled via the function block
ModTcpMast, which can be found through the Library Manager Ä Chapter 6.5.3 “Library Man-
ager functionality” on page 3773. This function block sends Modbus request telegrams to the
server(s) via the set interface and receives Modbus response telegrams from the server(s) via
this interface.
The Modbus function blocks transferred by the client contain the following information:
● Transaction identifier for synchronization between messages of server and client (2 byte)
● Protocol identifier (0 for Modbus/TCP) (2 byte)
● Length field (Number of bytes in frame) (2 byte)
● Unit identifier (1 byte)
● Function code that defines the request of the client (1 byte)
● Data to be exchanged (n bytes)

In this operating mode, no function block is required for Modbus communication. Sending and
receiving Modbus telegrams is performed automatically.
The AC500 CPUs process the following Modbus operation codes:

Function code Description
DEC HEX
01 or 02 01 or 02 Read n bits

03 or 04 03 or 04 Read n words

05 05 Write one bit (encoded in one
word)

06 06 Write one word

15 0F Write n bits (encoded in one
byte)

16 10 Write n words

22 16 Mask write

23 17 Read/write multiple words in
one telegram

The following restrictions apply to the length of the data to be sent:

Function code Max. length
DEC HEX
01 or 02 01 or 02 2000 bits

03 or 04 03 or 04 125 words / 62 double words

Modbus client

Modbus server

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4523

Function code Max. length
DEC HEX
05 05 1 bit

06 06 1 word

15 0F 2000 bits

16 10 123 words / 61 double words

22 16 Write: 1 word

23 17 Read: 125 words / 62 double
words
Write: 121 words / 60 double
words

6.8.2.10.2 Technical data
Configuration of Modbus on TCP/IP is described in the chapter 'Protocols and special servers'
Ä Chapter 6.3.4.3 “Modbus protocol” on page 1713.

6.8.2.10.3 Modbus addresses for AC500-eCo V3 processor modules PM50xx
A range of maximum 64 kB is allowed for the access via Modbus to the addressable flag area
(%M area). Thus, the complete address range 0000hex up to 7FFFhex is available for Modbus.
The availability of the segments depends on the CPU. The size of the %M area can be found in
the technical data of the CPUs and in the target system settings.
Inputs and outputs cannot be directly accessed using Modbus.
Following values apply:

 PM5012-x-ETH PM5032-x-ETH PM5052-x-ETH PM5072-
T-2ETH(W)

PM5082-T-2ETH

Size of the %M
area

4 kB 16 kB 16 kB 64 kB 64 kB

Modbus address range (Word accesses)

HEX 0000 … 07FF 0000 … 1FFF 0000 … 1FFF 0000 … 7FFF 0000 … 7FFF

DEC 0000 … 2047 0000 … 8191 0000 … 8191 0000 … 32767 0000 … 32767

Byte %MB0 …
%MB4097

%MB0 …
%MB16382

%MB0 …
%MB16382

%MB0 …
%MB65534

%MB0 …
%MB65534

Word %MW0 …
%MW2047

%MW0 …
%MW8191

%MW0 …
%MW8191

%MW0 …
%MW32767

%MW0 …
%MW32767

Modbus
address table

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4524

6.8.2.10.4 Modbus addresses for AC500 V3 processor modules PM56xx
Modbus address table

Table 840: Modbus addresses (word accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 ...
%MX0.7

%MW0 %MD0

%MB1 %MX1.0 ...
%MX1.7

0001 1 %MB2 %MX2.0 ...
%MX2.7

%MW1

%MB3 %MX3.0 ...
%MX3.7

0002 2 %MB4 %MX4.0 ...
%MX4.7

%MW2 %MD1

%MB5 %MX5.0 ...
%MX5.7

0003 3 %MB6 %MX6.0 ...
%MX6.7

%MW3

%MB7 %MX7.0 ...
%MX7.7

...

7FFE 32766 %MB65532 %MX65532.0
...
%MX65532.7

%MW32766 %MD16383

%MB65533 %MX65533.0
...
%MX65533.7

7FFF 32767 %MB65534 %MX65534.0
...
%MX65534.7

%MW32767

%MB65535 %MX65535.0
...
%MX65535.7

8000 32768 %MB65536 %MX65536.0
...
%MX65536.7

%MW32768 %MD16384

%MB65537 %MX65537.0
...
%MX65537.7

8001 32769 %MB65538 %MX65538.0
...
%MX65538.7

%MW32769

%MB65539 %MX65539.0
...
%MX65539.7

8002 32770 %MB65540 %MX65540.0
...
%MX65540.7

%MW32770 %MD16385

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4525

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

%MB65541 %MX65541.0
...
%MX65541.7

8003 32771 %MB65542 %MX65542.0
...
%MX65542.7

%MW32771

%MB65543 %MX65543.0
...
%MX65543.7

...

FFFE 65534 %MB131068 %MX131068.
0 ...
%MX131068.
7

%MW65534 %MD32767

%MB131069 %MX131069.
0 ...
%MX131069.
7

FFFF 65535 %MB131070 %MX131070.
0 ...
%MX131070.
7

%MW65535

%MB131071 %MX131071.
0 ...
%MX131071.
7

Table 841: Address assignment (bit accesses)
Modbus address Byte

BYTE
Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

0000 0 %MB0 %MX0.0 %MW0 %MD0

0001 1 %MX0.1

0002 2 %MX0.2

0003 3 %MX0.3

0004 4 %MX0.4

0005 5 %MX0.5

0006 6 %MX0.6

0007 7 %MX0.7

0008 8 %MB1 %MX1.0

0009 9 %MX1.1

000A 10 %MX1.2

000B 11 %MX1.3

000C 12 %MX1.4

000D 13 %MX1.5

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4526

Modbus address Byte
BYTE

Bit (byte-ori-
ented)
BOOL

Word
WORD

Double word
DWORDHEX DEC

000E 14 %MX1.6

000F 15 %MX1.7

0010 16 %MB2 %MX2.0 %MW1

0011 17 %MX2.1

0012 18 %MX2.2

0013 19 %MX2.3

0014 20 %MX2.4

0015 21 %MX2.5

0016 22 %MX2.6

0017 23 %MX2.7

0018 24 %MB3 %MX3.0

0019 25 %MX3.1

001A 26 %MX3.2

001B 27 %MX3.3

001C 28 %MX3.4

001D 29 %MX3.5

001E 30 %MX3.6

001F 31 %MX3.7

0020 32 %MB4 %MX4.0 %MW2 %MD1

0021 33 %MX4.1

0022 34 %MX4.2

...

0FFF 4095 %MB511 %MX511.7 %MW255 %MD127

1000 4096 %MB512 %MX512.0 %MW256 %MD128

...

7FFF 32767 %MB4095 %MX4095.7 %MW2047 %MD1023

8000 32768 %MB4096 %MX4096.0 %MW2048 %MD1024

...

FFFF 65535 %MB8191 %MX8191.7 %MW4095 %MD2047

Calculation of the bit variable from the hexadecimal address:

Formula:
 Bit variable (BOOL) := %MXBYTE.BIT

where: DEC Decimal address

 BYTE DEC / 8

 BIT DEC mod 8 (Modulo division)

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4527

● Address hexadecimal = 16#2002
DEC := 8194
BYTE := 8194 / 8 := 1024
BIT := 8194 mod 8 := 2
Bit variable: %MX1024.2

● Address hexadecimal = 16#3016
DEC := 12310
BYTE := 12310 / 8 := 1538,75 -> 1538
BIT := 12310 mod 8 := 6
Bit variable: %MX1538.6

● Address hexadecimal = 16#55AA
DEC := 21930
BYTE := 21930 / 8 := 2741,25 -> 2741
BIT := 21930 mod 8 := 2
Bit variable: %MX2741.2

Examples:

Calculation of the hexadecimal address from the bit variable:

● Bit variable := %MX515.4
DEC := 515 * 8 + 4 := 4124
Address hex := 16#101C

● Bit variable := %MX3.3
DEC := 3 * 8 + 3 := 27
Address hex := 16#001B

● Bit variable := %MX6666.2
DEC := 6666 * 8 + 2 := 53330
Address hex := 16#D052

Examples:

Peculiarities for accessing Modbus addresses
Peculiarities for bit access:
● A WORD in the %M area is assigned to each Modbus address 0000hex .. FFFFhex.
● Bit addresses 0000hex .. FFFFhex are contained in the word range %MW0 .. %MW4095

Areas protect from read/write access by Modbus client
As described in 'Protocols and special servers' Ä Chapter 6.3.4.3.2 “Configuration of Modbus
TCP/IP server” on page 1714, one write-protected and one read-protected area can be defined.
If you try to write to a write-protected area or to read from a read-protected area, an exception
response is generated.

6.8.2.10.5 Local data of the Modbus client
The address of the area from which data are to be read or to which data are to be written is
specified in the function block ModTcpMast at input "Data", via the ADR operator.
For more information about the function blocks use the Library Manager Ä Chapter 6.5.3
“Library Manager functionality” on page 3773.

For the AC500, the following areas can be accessed using the ADR operator:

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4528

● Inputs area (%I area)
● Outputs area (%Q area)
● Area of non-buffered variables (VAR .. END_VAR or VAR_GLOBAL END_VAR)
● Addressable flag area (also protected areas for %M area)
● Area of buffered variables (VAR RETAIN .. END_VAR or VAR_GLOBAL RETAIN ..

END_VAR)

6.8.2.10.6 Modbus telegrams
For a detailed description of the Modbus TCP telegrams and their elements please see the
corresponding specifications on public websites.

Exception response by server
In operating mode Modbus client, the AC500 does only send requests, if the parameters at
the MODMAST inputs are logically correct. Nevertheless, it can happen that a server cannot
process the request of the client or that the server cannot interpret the request due to transmis-
sion errors or in case it’s capabilities are exceeded in any way. In those cases, the server
returns an exception response to the client. In order to identify this response as an exception
response, the function code returned by the server is a logical OR interconnection of the
function code received from the client and the value 80HEX.

Table 842: Server response
Error code CRC

High Low

Possible error codes of the client

Code Description
01DEC ILLEGAL FUNCTION

The server does not support the function requested by the client

02DEC ILLEGAL DATA ADDRESS
Invalid operand address in the server or operand area exceeded

03DEC ILLEGAL DATA VALUE
At least one value is outside the permitted range of values

04DEC SERVER DEVICE FAILURE
An unrecoverable error occurred while the server was attempting
to perform the requested action

05DEC ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server has accepted the request and is processing it, but a
long duration of time will be required to do so. This response is
returned to prevent a timeout error from occurring in the client.
The client can next issue a Poll Program Complete message to
determine if processing is completed

General tele-
gram descrip-
tion

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4529

Code Description
06DEC SERVER DEVICE BUSY

Specialized use in conjunction with programming commands.
The server is engaged in processing a long–duration program
command. The client should retransmit the message later when
the server is free.

07DEC NEGATIVE ACKNOWLEDGE
Specialized use in conjunction with programming commands.
The server cannot perform the programming functions. Client
should request diagnostic or error information from server.

08DEC MEMORY PARITY ERROR
Specialized use in conjunction with function codes 20 and 21 and
reference type 6, to indicate that the extended file area failed to
pass a consistency check. The server attempted to read record
file, but detected a parity error in the memory. The client can retry
the request, but service may be required on the server device.

09DEC UNDEFINED
Actually not defined by Modbus specification but might be used by
particular servers.

10DEC GATEWAY PATH UNAVAILABLE
Specialized use in conjunction with gateways, indicates that the
gateway was unable to allocate an internal communication path
from the input port to the output port for processing the request.
Usually means that the gateway is misconfigured or overloaded.

11DEC GATEWAY TARGET DEVICE FAILED TO RESPOND
Specialized use in conjunction with gateways, indicates that no
response was obtained from the target device. Usually means that
the device is not present on the network.

Table 843: Modbus request of the client
Function code: 01 Read n bits

Server operand address: 4000HEX = 16384DEC Area for read access disa-
bled in server

Table 844: Modbus response of the server
Function code: 81HEX

Error code: 03

Example

6.8.2.10.7 Processing bits
General

Some of the Modbus function codes are used to read or write bits (coils, discrete inputs). While
a variable of data type WORD can be accessed easily, accessing a stream of bits is complex.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4530

Data type 'BIT' Ä Chapter 6.4.1.20.5.11 “Data Type 'BIT'” on page 2243 must not be mixed up
with data type 'BOOL' Ä Chapter 6.4.1.20.5.2 “Data type 'BOOL'” on page 2235. Variables of
both types may have values ‘TRUE’ or ‘FALSE’. But while BIT means one single bit only, BOOL
requires a byte (8 bit) of memory.

Modbus client
When accessing bits in a Server, the local data referred to at Client function blocks input data is
always expected to be of format BOOL.

Modbus server
Using the bit offset

The simplest way to access a certain bit within a larger variable is to directly use the bit offset (0
based; Ä Chapter 6.4.1.20.4.11 “Bit Access in Variables” on page 2229).

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4531

Defining symbolic names for the bit offsets
A more convenient way to access bits e.g. within a word is to define a symbolic name for each
single offset Ä Chapter 6.4.1.20.4.11 “Bit Access in Variables” on page 2229.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4532

Defining a data type
A further alternative is to define your own data types Ä Chapter 6.4.1.21.2.9 “Object 'DUT'”
on page 2461 according to the requirements of your particular application Ä “Symbolic bit
access in structure variables” on page 2230.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4533

Defining a complex data type
In case your application requires some more complex data types you can combine data types
(DUT; Ä “Symbolic bit access in structure variables” on page 2230).

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4534

Pack/unpack BOOL variables
In case you prefer variables of type BOOL you can use the functions for packing
MEM_Pack_BitsToByte and unpacking MEM_UnpackWord of the CAA_Memory.library, which
can be found with the Library Manager Ä Chapter 6.5.3 “Library Manager functionality”
on page 3773.

6.8.2.10.8 Function block ModTcpMast
These function blockis only required for the operating mode Modbus client. It handles the
communication (transmission of telegrams to the servers and receipt of telegrams from the
servers). The function block can be used for the Ethernet interfaces of the controller.
ModTcpMast is contained in the library ABB_ModbusTcp_AC500.

6.8.2.11 Communication with PROFINET redundancy
In a high availability system one of the following redundancy solutions can be configured:
● AC500 High Availability CS31 redundancy (HA-CS31)
● AC500 High Availability Modbus redundancy (HA-Modbus TCP)
Ä Chapter 6.5.9.1.1 “The AC500 High Availability system” on page 3859

● PROFINET redundancy based on HA-Modbus TCP without CI52x modules.
Normally, two PROFINET IO controllers CM579-PNIO connect to the devices simultaneously.
One controller establishes a primary connection that is identical to a regular PROFINET connec-
tion. The second controller establishes a special ‘backup’ connection. This connection doesn’t
contain any valid output data and doesn’t allow the secondary controller to change any options
on the devices. If the primary controller fails, the second parallel controller takes over the tasks
of the first.

How to set-up and configure PROFINET redundancy communication based on HA-Modbus
TCP (without CI52xs modules) is described in the application example PROFINET redundancy.

The Media Redundancy Protocol allows in smaller systems rings of Ethernet switches to over-
come any single failure with a maximum recovery times in the following range: 10 ms, 30 ms,
200 ms and 500 ms.
Ä Chapter 6.3.4.1.2.2.7.4 “Network redundancy” on page 1660

Network redun-
dancy

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4535

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010851&LanguageCode=en&DocumentPartId=&Action=Launch

6.8.2.12 Fast counters in AC500 devices

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo V3 devices the function "fast counter" is available in onboard
I/Os of PM50x2 modules, according to the CPU type, the fast inputs have
different functionality or frequency.

Integrated fast counters are only available for digital I/O modules.
The digital I/O modules on the I/O bus contain two fast counters each.
If the counter is used, it needs up to 2 digital inputs and one digital output.
If the fast counter is deactivated, the inputs and outputs reserved for the counter can be used
for other tasks.
Ä Chapter 6.3.2.13.9 “Fast counter” on page 1574.
A fast counter is available in the following constellations:
● In digital I/O modules, connected to an AC500 processor module.
● In AC500-eCo V3 processor modules PM50x2 with onboard I/Os
● In CANopen communication interface modules.
● In Modbus, PROFIBUS and PROFINET communication interface modules and in the con-

nected digital I/O modules.
● In digital I/O modules, connected to an EtherCAT communication interface module.

The following table shows the S500 modules which contain a fast counter and which of the
digital inputs and outputs are reserved for the counter.

Module Assigned inputs 1) Assigned
output

Remarks

Channel A Channel B Channel C 2) or
(CF)

DA501 DC16 DC17 DC18 The counter func-
tion is not avail-
able if the
modules are
mounted on the
communication
interface
modules CI581-
CN or CI582-CN

DA502 DC16 DC17 DC18 - in mode 1
and mode 2
DO0 - in mode
101 and mode
102 3)

DC522 C8 C9 C10

DC523 C16 C17 C18

DC532 C24 C25 C26

DI524 I24 I25 No hardware
output available

DX522 I0 I1 The counter does
not activate any
relay output

Fast counter
integrated in
S500 modules

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4536

Module Assigned inputs 1) Assigned
output

Remarks

Channel A Channel B Channel C 2) or
(CF)

CI501‑PNIO,
CI541‑DP,
CI581‑CN,
CI521‑MODTCP

DI0 DI1 DO0

CI502‑PNIO,
CI542‑DP,
CI582‑CN;
CI522‑MODTCP

DI8 DI9 DO8

1) The two hardware inputs (channels A and B) are also and always available within the normal
process image, irrespective of the operating mode of the counter.
2) The hardware output channel C is activated by the fast counter only in the operating modes 1
and 2.
3) Especially for module DA502: The counter operating mode 101 is the same as mode 1, but
the assigned output is DO0 instead of DC18. Also the counter operating mode 102 is the same
as mode 2, but the assigned output is DO0 instead of DC18.

The counter function is performed within the communication interface module and, accordingly,
in the digital I/O module(s). It works independently of the user program and is therefore able
to respond quickly to external signals. A simultaneous counter operation of several digital I/O
modules is possible.
Each module counter can be configured for one out of 10 possible modes. The desired oper-
ating mode is selected in the PLC configuration using module parameters. After that, it is
activated during the initialization phase (power-on, cold start, warm start).
The data exchange to and from the user program is performed using input and output operands.
While integrating a module containing a fast counter in the PLC configuration, the necessary
operands are created and reserved immediately. Thus, a counter implementation carried out
later on does not cause an address shift.

● The pulses at the fast counters' inputs or the evaluated signals of the traces A and B in case
of incremental position sensors are counted.

● The counting frequencies of the communication interface modules of PROFINET,
PROFIBUS and CANopen are max. 200 kHz (in modes 1 to 6), max. 50 kHz (in mode
7), max. 35 kHz (in mode 9), and max. 20 kHz (in mode 10).

● If the modules DA501, DC522, DC523, DC532 are used, each counting input must be
circuited externally in series with a resistor of 470 W / 1 W, in order to safely avoid influences
from the deactivated module outputs to the connected sensors.

● The positive signal edges are counted, if not noted differently.
● By setting the operating mode 0, the counting function is switched off. In this case, the

reserved inputs and outputs can be used for other tasks. Simultaneous use of these termi-
nals for the fast counter and other signals must be avoided.

● The fast counter's actual value is provided as a double word (32 bits).
● The fast counter can count upwards in all operating modes. It counts beginning at the start

value (set value) up to the end value (max. from 0 to 4,294,967,295 or hexadecimal from
00 00 00 00 to FF FF FF FF. After reaching 4,294,967,295, the counter jumps with the next
pulse to 0. When the counter reaches the programmed end value, the counter output is
stored permanently as CF = TRUE (end value reached). Only when the fast counter is set
again (set value), CF is reset to FALSE.

● Operating modes of the fast counter Ä Chapter 6.3.2.13.9.1.3 “Operating modes”
on page 1577

● Configuration of the fast counter Ä Chapter 6.3.2.13.9 “Fast counter” on page 1574

Features inde-
pendent of the
fast counter
operating mode

Further informa-
tion

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4537

6.8.2.13 Fast counter in AC500-eCo V3

For AC500 devices the function "fast counter" is available in S500 I/O modules
as of firmware version V1.3.

For AC500-eCo V3 devices the function "fast counter" is available in onboard
I/Os of PM50xx.

The AC500-eCo V3 processor modules with onboard I/Os provide some special functionality on
the digital inputs or digital outputs. Fast counter, encoder inputs, interrupt inputs or PWM/PTO
outputs are available depending on the device used.
The fast counter functionality can be activated within the onboard I/O configuration.
The fast counter can work in pulse/direction mode or A/B track counter mode.
Ä Further information about the operating modes of the fast counter

Ä Further information about the configuration of the fast counter

As AC500-eCo V3 PLCs provide the fast counters via their onboard I/Os not only the cor-
rect power distribution to the PLC has to be made, but also the correct wiring to the signal
wires. How to connect and use fast counters in AC500-eCo V3 PLCs is described in an
application example.

The pulse/direction counter detects the rising edge of the counter input. It will increase or
decrease the count value (depending on the direction input) at every rising edge.
The A/B track counter is used to count the signal from an encoder.
The counter can count with quad phases. In the following the behavior of the A/B track counter
is described.

6.8.2.14 Onboard I/O on AC500-eCo V3 processor modules
6.8.2.14.1 Intended purpose

The AC500-eCo V3 processor modules have onboard I/Os which provide several functionalities.
According to the CPU type, the number or the functionality of the onboard I/Os can be different.

Table 845: Numbers and types of the onboard I/Os
Processor module No. and type of dig-

ital inputs
No. and type of dig-
ital outputs

No. and type of con-
figurable inputs/out-
puts

PM5012-T-ETH 6
24 V DC
(one isolation group)

4
0.5 A max., transistor
(one isolation group)

None

PM5012-R-ETH 6
24 V DC
(one isolation group)

4
2 A max., relay
(two isolation groups)

None

PM5032-T-ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4538

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011148&LanguageCode=en&DocumentPartId=&Action=Launch

Processor module No. and type of dig-
ital inputs

No. and type of dig-
ital outputs

No. and type of con-
figurable inputs/out-
puts

PM5032-R-ETH 12
24 V DC
(one isolation group)

6
2 A max., relay
(two isolation groups)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5052-T-ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5052-R-ETH 12
24 V DC
(one isolation group)

6
2 A max., relay
(two isolation groups)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5072-T-2ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5072-T-2ETHW 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

PM5082-T-2ETH 12
24 V DC
(one isolation group)

8
0.5 A max., transistor
(one isolation group)

2
24 V DC input or
0.5 A max., transistor
output
(one isolation group)

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4539

6.8.2.14.2 Functionality

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Digital inputs 6 12

Functionality of
digital inputs
(encoder, fast
counter, counter,
interrupt)

6 DI fast input 24 V DC (max. 5
kHz)
usable as
● 6 DI 24 V DC standard
● 2 channel 5 kHz encoder with

frequency measurement or
● 2 channel 5 kHz encoder with

frequency measurement and
with touch/reset using standard
DI or

● 2 fast counter (5 kHz)
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

4 DI fast input 24 V DC (max. 200
kHz)
usable as
● 4 DI 24 V DC standard or
● 4 fast counter (100 kHz) or
● 2 A/B encoder (200 kHz) with

frequency measurement or
● 2 full A/B encoders 0 and 1 (200

kHz) with frequency measure-
ment and with touch/reset using
standard highspeed (5 kHz) DI

● 1 full A/B encoder 0 (200 kHz)
with frequency measurement
and optional with touch/reset
using 2 touch/sync inputs with
A/B encoder 0

4 DI fast input 24 V DC (5 kHz)
usable as
● 4 DI 24 V DC standard or
● 4 DI as interrupt input with

1 dedicated interrupt task and
input information

● 4 touch/sync inputs with A/B
encoder 0 or 1

4 standard DI 24 V DC
Digital outputs 4 8 6

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4540

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Functionality of
digital outputs

4 fast output
DO-T
24 V DC/0.5 A
(max. 5 kHz)
usable as
● 4 DO-T

24 V DC/0.5 A
or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

● 4 limit switch

4 DO-R
24 V DC /
120/240 V AC 2A
in 2 groups

4 fast output
DO-T
24 V DC (100
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM (30
kHz, 2 µs
accuracy and
maximum
duty 95 %) or

● 2 PTO (200
kHz)
CW/CCW or
Pulse/Direc-
tion

● 4 PTO
(PWM)
100...200 kHz
Pulse/Direc-
tion using
standard
output

6 DO-R
24 V DC /
120/240 V AC 2A
in 2 groups

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4541

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

4 fast output
DO-T
24 V DC/0.5 A (5
kHz) (max. 5
kHz)
usable as
● 4 DO-T 24 V

DC/0.5 A
● 4 limit/ switch

outputs for
encoder/
counter or

● 4 PWM
Note: The
speed must
be limited
below 100
Hz. The low
speed PWM
can be used
for heating
control.

● 4 direction
outputs
together with
4 high speed
pulses for up
to 4 PTO
Pulse/Direc-
tion outputs
up to 200 kHz

Digital inputs/
outputs,
configurable

- - 2 2

Functionality of
digital inputs/
outputs,
configurable

- - 2 DC 24 V DC
● 2 standard

I/Os
configurable

2 DC 24 V DC
usable as
● 2 DC

standard (DI
24 V DC or
DO-T) or

● 2 PWM (30
kHz) or

● 1 PTO (200
kHz) as
Pulse/Direc-
tion or
CW/CCW

LED displays For signal states

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4542

Parameter Value
PM5012-T-ETH PM5012-R-ETH PM5032-T-ETH

PM5052-T-ETH
PM5072-
T-2ETH(W)
PM5082-T-2ETH

PM5032-R-ETH
PM5052-R-ETH

Internal power
supply

Via processor module

External power
supply

Via UP and ZP terminal

6.8.2.15 Simple motion
6.8.2.15.1 Introduction

The AC500-eCo V3 PLC provide several hardware and software features allowing to realize
some motion application.
Specific fast onboard I/O and dedicated software library function blocks (simple motion) are
available and can manage up to 2 axis on the CPU.
The simple motion capability is based on a library for the onboard I/O and some motion control
blocks allowing point-to-point or velocity control.
All the AC500-eCo V3 PLC from Basic, Standard or Pro type offer dedicated feature according
to their performance classes.

 Basic Standard Pro
PM5012-x-ETH PM5032-x-ETH / PM5052-x-ETH PM50x2-T-2ETH

Relay outputs Transistor
outputs

Relay outputs Transistor
outputs

Transistor
outputs

High-speed
counter (HSC)

Up to 2 (5 kHz) Up to 4 (100 kHz)

Frequency
measurement

Up to 2 (5 kHz) Up to 2 (200 kHz)

A/B encoder 1 A/B simple encoder (5 kHz) with
sync/reset

Up to 2 A/B encoder 200 kHz with sync/reset inputs

Interrupt inputs Up to 4 Up to 4

Pulse-train output
(PTO)

- 1
pulse/direction

or
CW/CCW

both mode with
200 kHz

Up to 2
pulse/direction

or
CW/CCW

both mode with 200 kHz

Up to 4
Pulse/direction with 100...200 kHz

using fast output channels for pulse
and standard outputs and for direc-

tion on software motion function
block.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4543

 Basic Standard Pro
PM5012-x-ETH PM5032-x-ETH / PM5052-x-ETH PM50x2-T-2ETH

Relay outputs Transistor
outputs

Relay outputs Transistor
outputs

Transistor
outputs

Pulse-width mod-
ulation (PWM)

- Up to 4 (100 Hz) Up to 2 (30 kHz) Up to 4 (30 kHz)

Limit switches - Up to 2 Up to 8

6.8.2.15.2 Hardware components for motion control
Basic CPU – PM5012-R-ETH and PM5012-T-ETH

Fig. 361: Example: PM5012-T-ETH

1 High-speed counter 5 kHz frequency measurement interrupt I/O
2 Pulse-width modulation output

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4544

Standard and Pro CPU - PM5032-x-ETH/PM5052-x-ETH/PM5072-T-2ETH(W)/PM5082-T-2ETH

Fig. 362: Example: PM5052-T-ETH

1 High-speed counter 100 kHz and 5 kHz A/B encoder 200 kHz interrupt I/O standard inputs
2 Pulse-train output 100 kHz/200 kHz pulse-width modulation 30 kHz limit switch standard

outputs
3 Drives, encoder, stepper motor
For PLC with relay outputs, the input features are identical.
The digital configurable inputs or outputs can be used for pulse-train output/pulse-width modula-
tion functions.

6.8.2.15.3 System technology
General

The following chapters describe the system technology of the AC500-eCo V3 using motion
examples.
The simple motion set of function blocks is standard part of the system libraries for AC500-eCo
V3.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4545

Use the onboard I/Os as encoder with A and B signals
Parameter configuration

The onboard I/O accept encoder signal A and B. When configure the encoder track A, the
encoder track B will be automatically inserted.
The user can configure the following input channel as encoder input.
● “Encoder 0 Track – A”: Input channel 4
● “Encoder 0 Track – B”: Input channel 5
● “Encoder 1 Track – A”: Input channel 6
● “Encoder 1 Track – B”: Input channel 7
After configuring the encoder input channel, the user can configure the touch/reset for the
respective encoder channel.

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Function block
OBIOEncoder
Counter

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4546

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one base
on the input.
If “Set” bit is TRUE, the “OBIOEncoderCounter” instruction moves the “CounterValueSet” to the
“CounterValue”.

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one
based on the input.
If “EnableLimit” bit is TRUE, the accumulated value continues incrementing.
After “CounterValue” reaches the “LimitValueMax”, the “OBIOEncoderCounter” instruction writes
0 to the “CounterValue”.

In this encoder counter mode, an increasing count results when input B is 90° ahead of input A.
The count is initiated on the rising edge of input A, and the direction of the encoder is clockwise
(positive).
The module produces a decreasing count when input A is 90° ahead of input B.
The count is initiated on the falling edge of input A, and the direction is counterclockwise
(negative).
By monitoring both the number of pulses and the phase relationships of input A and B, you can
accurately determine the position and direction of the rotation.

“Encoder
Counter Mode”:
0 = “90° Mode”

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4547

In this encoder counter mode, the count increases or decreases based on the state of input B,
which can be a random signal.
If input B is high, the counter will count down.
If input B is low the counter counts up.
Counting is done on the leading edge of input A.

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one
based on the input.
If “EnableRef” bit is TRUE, the “OBIOEncoderCounter” instruction is ready to receive the touch/
reset input.
If the “Touch/Reset” input is TRUE, the current “CounterValue” will be replaced by the
“CounterValueSet”.

“Encoder
Counter Mode”:
1 = “pulse/
direction”

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4548

If “Enable” is TRUE, the “OBIOEncoderCounter” instruction increments the counter by one
based on the input.
If “EnableTouch” bit is TRUE, the “OBIOEncoderCounter” instruction is ready to receive the
“Touch/Reset” input.
If the “Touch/Reset” input is TRUE, the current “CounterValue” will be captured and written to
the “CounterTouchValue”.

Use the onboard I/Os as forward counter
Parameter configuration

The onboard I/O accept pulse input as forward counter.
User can configure the following input channel as forward counter.
● “Forward Counter 0”: Input channel 4
● “Forward Counter 1”: Input channel 5
● “Forward Counter 2”: Input channel 6
● “Forward Counter 3”: Input channel 7

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4549

Function block

If “Enable” is TRUE, the “OBIOForwardCounter” instruction increments the counter by one
based on the input.
If “Set” bit is TRUE, the “OBIOForwardCounter” instruction moves the “CounterSetValue” to the
“CounterValue”.

If “Enable” is TRUE, the “OBIOForwardCounter” instruction increments the counter by one
based on the input.
If “EnableLimit” bit is TRUE, the accumulated value continues incrementing.
After “CounterValue” reaches the “LimitValueMax”, the “OBIOForwardCounter” instruction writes
0 to the “CounterValue”.

Use the onboard I/Os as interrupt input with dedicated interrupt task
Parameter configuration

The onboard I/O input can be configured as interrupt input to trigger the interrupt task.

OBIOForward
Counter

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4550

The user can configure the following input channel as interrupt input.
● “ Interrupt input 0” : Input Channel 0
● “ Interrupt input 1” : Input Channel 1
● “Interrupt input 2” : Input Channel 2
● “Interrupt input 3” : Input Channel 3

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

After configuring the parameter, the user need to create a new task with the “Type” set to
“External” and the “External event” set to “OnBoard_Binary_Input”.

Function block

The “OBIOInterruptPara” instruction is configured for 4 interrupt inputs.
If “EnableInterrupt” bit is TRUE, the “OBIOInterruptInfo” instruction is ready to receive the
interrupt input.
If the interrupt input is TRUE, the interrupt task will be executed.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4551

If the second interrupt is TRUE with the interval less than 10 ms (as set), the execution of the
interrupt task will be ignored.
If no interrupt occurred in 50 ms (as set), the interrupt task is executed automatically.

Use the onboard I/Os as output limit switch
Parameter configuration

The user can configure the following output channel as limit switch.
● “LimitSwitch 0”: Output channel 0
● “LimitSwitch 1”: Output channel 1
● “LimitSwitch 2”: Output channel 2
● “LimitSwitch 3”: Output channel 3
● “LimitSwitch 4”: Output channel 4
● “LimitSwitch 5”: Output channel 5
● “LimitSwitch 6”: Output channel 6
● “LimitSwitch 7”: Output channel 7

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Function block

If the counter value reaches the “LowerLimitOn” preset, it will write to the limit switch output
based on the signal until the “UpperLimitOn” preset is reached.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4552

Use the onboard I/Os as pulse-train output (PTO)
100 kHz frequency (max. 2 pulse-train outputs using pulse-train output hardware channels)
Parameter configuration

The user can configure the following output channels as pulse-train output (PTO).
● “PTO”: Output channel 4
● “PTO”: Output channel 5
● “PTO”: Output channel 6
● “PTO”: Output channel 7
If the user configures the output 4 or 6 as pulse-train output, the output 5 or 7 is automatically
configured as pulse-train output.
The input “CwCCw” of the function block “OBIOPulseTrainOutput” determines the output 5 and
7 as “CounterClockWise” or “Direction” if it is set as pulse-train output.

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Function block

If “Set” bit is TRUE, the instruction moves the “CounterSetValue” to the “CounterValue”.

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4553

If “EnableLimit” bit is TRUE, the accumulated value continues incrementing.
After “CounterValue” reaches the “LimitValueMax”, the instruction writes 0 to the
“CounterValue”.

If the input “CwCCw” of the “OBIOPulseTrainOutput” is set to FALSE, the pulse-train output
channel B is toggled based on the direction.

If the input “CwCCw” of the “OBIOPulseTrainOutput” is set to TRUE. The pulse-train output
channel A will lead by 90° or pulse-train output channel B will lead by 90° depending on
direction.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4554

200 kHz frequency (max. 2 pulse-train output using pulse-train output hardware channels) and simple
motion “OBIOMotionPTO” function block
Parameter configuration

Only the Standard and Pro processor modules can be used with pulse-train
outputs. The Basic processor modules PM5012 do not have pulse-train outputs.

The available pulse-train output can be used as pulse-train output with pulse/
direction or pulse-train output with CW/CCW mode when the channels have
been configured as pulse-train output.

The user can configure the following output channels as pulse-train output (PTO).
● “PTO”: Output channel 4
● “PTO”: Output channel 5
● “PTO”: Output channel 6
● “PTO”: Output channel 7
If the user configures the output 4 as pulse-train output, the output 5 is automatically configured
as pulse-train output.
If the user configures the output 6 as pulse-train output, the output 7 is automatically configured
as pulse-train output.
The input “CwCCw” of the function block “OBIOPulseTrainOutput” determines the output 5 and
7 as “CounterClockWise” or “Direction” if it is set as pulse-train output.

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4555

Function block

If the input “CwCCw” of the “OBIOMotionPTO” is set to FALSE, the pulse-train output channel B
is toggled based on the direction.

If the input “CwCCw” of the “OBIOMotionPTO” is set to TRUE. The pulse-train output channel A
will lead by 90° or pulse-train output channel B will lead by 90° depending on direction.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4556

100 kHz...200 kHz frequency (max. 4 pulse-train output using puls-width modulation (PWM) hardware
channels) and simple motion “OBIOMotionPWM” function block
Parameter configuration

It is possible to have also up to 4 pulse-train output channels only with pulse/direction mode
on the AC500-eCo V3 CPU by using the fast outputs O4…O7 configured as pulse-width mod-
ulation outputs and using a specific motion function block and standard outputs for direction
channel.

Only the Standard and Pro processor modules can be used with pulse-
train output or pulse-width modulation outputs. The Basic processor modules
PM5012 do not have pulse-train outputs.

The available software pulse-train outputs can be used as pulse-train output
with pulse/direction or pulse-train output with CW/CCW mode when the chan-
nels have been configured as PWM outputs.

The user must configure the following output channels as pulse-width modulation outputs and
use the “OBIOMotionPWM” function block.
● “PWM”: Output channel 4
● “PWM”: Output channel 5
● “PWM”: Output channel 6
● “PWM”: Output channel 7
If the user configures the output 4...7 as pulse-width modulation using the “OBIOMotionPWM”
function block, up to four software pulse-train output can be realized offering then only the
pulse/direction mode.
The pulse output will always use the fast output channels O4…O7 and the direction output of
the function block can be assigned to any other output e.g. O0…O3 or also outputs from a S500
I/O module.

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Function block

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4557

Use the onboard I/Os as output pulse-width modulation (PWM)
Parameter configuration

The user can configure the following output channels as pulse-width modulation (PWM).
● “PWM 0”: Output channel 0
● “PWM 1”: Output channel 1
● “PWM 2”: Output channel 2
● “PWM 3”: Output channel 3
● “PWM 4”: Output channel 4
● “PWM 5”: Output channel 5
● “PWM 6”: Output channel 6
● “PWM 7”: Output channel 7

More information about this topic can be found in the chapter 'Configuration the I/O channel'.
Ä Chapter 6.3.2.5 “Configure the onboard I/O channel” on page 1483

Function block

The complete cycle of the “PWM” is based on the “OnTime” and “OffTime”.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4558

The duty cycle ratio of the “PWM” is based on the formula = Ton / (Ton + Toff).

6.8.2.15.4 Function block description
Reference for function blocks, functions, structures etc. are available in the reference documen-
tation and in the Library Manager.
Ä Chapter 6.5.14 “Reference, function blocks” on page 4086

Ä Chapter 6.5.3.3 “View embedded documentation of all libraries” on page 3775

6.8.2.15.5 AC500-eCo V3 option board slots for processor modules PM50xx
General

Depending on the processor module type, up to three option board slots are available on the
CPU for different purpose like digital or analog I/O extension, serial interface or special module
for specific functionality.
The option board slots are not limited to one type of option board. The option boards can
be plugged and used in any slot. The only limitation is the number of slots available on the
processor module. All types of option boards can be mixed on all slots.
Ä Chapter 5.2.1.1.3 “Option boards” on page 218

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4559

Table 846: Option board slots
 Basic CPU Standard CPU Pro CPU

PM5012 PM5032 PM5052 PM5072 PM5082
Number of option
board slots

Usable option
boards on
AC500-eCo V3

TA5130-KNXPB - - - X 1) X 1)

TA5130-
KNXPBW

- - - X 1) 2) -

TA5131-RTC X - - - -

TA5101-4DI X X X X X

TA5101-4DIW - - - X 2) -

TA5105-4DOT X X X X X

TA5105-4DOTW - - - X 2) -

TA5110-2DI2DO
T

X X X X X

TA5110-2DI2DO
W

- - - X 2) -

TA5120-2AI-UI X X X X X

TA5120-2AI-UIW - - - X 2) -

TA5123-2AI-RTD X X X X X

TA5123-2AI-RTW - - - X 2) -

TA5126-2AO-UI X X X X X

TA5126-2AO-
UIW

- - - X 2) -

TA5141-RS232I X X X X X

TA5141-
RS232IW

- - - X 2) -

TA5142-RS485I X X X X X

TA5142-
RS485IW

- - - X 2) -

TA5142-RS485 X X X X X

TA5142-RS485W - - - X 2) -
1) Can be used only once per CPU
2) The W version of PM5072-T-2ETHW is mandatory

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4560

Option board for COMx serial communication
One of these option boards is always needed for serial communication like Modbus RTU.

Ä Information about selection and configuration

Ä More information on technical data and ordering information of the option boards

Option board for digital I/O extension
Ä Information about selection and configuration

Ä More information on technical data and ordering information of the option boards

Option board for analog I/O extension
Ä Information about selection and configuration

Ä More information on technical data and ordering information of the option boards

Option board for specific function

The TA5130-KNXPB can only be used on AC500-eCo V3 processor modules
Pro PM5072-T-ETH(W) and PM5082-T-2ETH.

The TA5131-RTC can only be used on AC500-eCo V3 processor modules
Basic PM5012-x-ETH.

These two option boards can only be used once on one slot at a time!

Ä More information on technical data and ordering information of the option boards

6.8.2.16 Access to digital I/Os transferred as bit strings WORD/DWORD
6.8.2.16.1 General

The AC500 V3 PLCs runs in little-endian mode, means uses little-endian byte order.

Address Addr Addr+1 Addr+2 Addr+3
16#xxxx x000 16#xxxx x001 16#xxxx x002 16#xxxx x003

BYTE 3 2 1 0
BOOL 7

 0
7
0

7
0

7
0

WORD 1 0
15
8

7
0

15
8

7
0

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4561

Address Addr Addr+1 Addr+2 Addr+3
DWORD 0

7
 0

15
8

23
16

31
24

The layout of the I/Os depends on the byte order of the I/O bus, fieldbus or protocol.

6.8.2.16.2 Bit strings transferred to PLC in little-endian byte order (Intel)
Access to bit strings transferred to PLC in little-endian byte order

If the fieldbus/protocol transfers the data in little-endian byte order, the access to the bits in a bit
string will be as followed:

Address Addr Addr+1 Addr+2 Addr+3
16#xxxx x000 16#xxxx x001 16#xxxx x002 16#xxxx x003

BYTE %IB3 %IB2 %IB1 %IB0
BOOL 7

0
7
0

7
0

7
0

%IX3.7
%IX3.0

%IX2.7
 %IX2.0

%IX1.7
%IX1.0

%IX0.7
%IX0.0

WORD %IW1 %IW0
15
8

7
0

15
8

7
0

DWORD %ID0
7
 0

15
 8

23
16

31
24

%IX1.0 := TRUE
%IB0 := 1 := 16#01 (Bit 0 = TRUE)
%IW1 := 1 := 16#0001 (Bit 0 = TRUE)
%ID0 := 1 := 16#00000001 (Bit 0 = TRUE)
%IX3.0 := TRUE
%IB3 := 1 := 16#01 (Bit 0 = TRUE)
%IW1 := 256 := 16#0100 (Bit 8 = TRUE)
%ID0 := 16777216 := 16#01000000 (Bit 24 = TRUE)

Example

The AC500 V3 PLCs support the following busses/protocols with little-endian byte order:
● EtherCAT
● CANopen
● EtherNet/IP

Representation of bitfields in I/O configuration transferred in little-endian byte order
The values of I/Os can be monitored and controlled in the I/O configuration of a device. If the
bit strings are transferred in little-endian byte order the bit channels will be displayed in the
following way:

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4562

In general, it is not recommended to use the “Address”, e.g. %QX5.2 directly in
the IEC application. Use always symbolic variables to avoid access to wrong I/O
channels.

6.8.2.16.3 Bit strings transferred to PLC in big-endian byte order (Motorola)
Access to bit strings transferred to PLC in big-endian byte order

If the fieldbus/protocol transfers the data in big-endian byte order, the access to the bits in a bit
string will be as followed:

Address Addr Addr+1 Addr+2 Addr+3
16#xxxx x000 16#xxxx x001 16#xxxx x002 16#xxxx x003

BYTE %IB0 %IB1 %IB2 %IB3
BOOL 7

0
7
0

7
0

7
0

%IX0.7
%IX0.0

%IX1.7
%IX1.0

%IX2.7
%IX2.0

%IX3.7
%IX3.0

WORD %IW0 %IW1
15
8

7
0

15
8

7
0

DWORD %ID0
31
24

23
 16

15
8

7
0

%IX0.0 := TRUE
%IB0 := 1 := 16#01 (Bit 0 = TRUE)
%IW1 := 256 := 16#0100 (Bit 8 = TRUE)
%ID0 := 16777216 := 16#01000000 (Bit 24 = TRUE)
%IX3.0 := TRUE
%IB3 := 1 := 16#01 (Bit 0 = TRUE)
%IW1 := 1 := 16#0001 (Bit 0 = TRUE)
%ID0 := 1 := 16#00000001 (Bit 0 = TRUE)

Example

Configuration and programming

System technology > System technology of CPU and overall system

2024/01/05 3ADR010583, 1, en_US 4563

The AC500 V3 PLCs support the following busses/protocols with little-endian byte order:
● Local I/O bus
● Modbus TCP
● PROFINET
● PROFIBUS

Representation of bitfields in I/O configuration transferred in big-endian byte order
The values of I/Os can be monitored and controlled in the I/O configuration of a device. If the bit
strings are transferred in big-endian byte order the bytes inside the word will be swapped.
Up to Automation Builder version 2.2 the bit channels will be displayed in the following way:

Input channel DI3 was set in bit string SafeDigi_W. Since the inputs are transferred in big-
endian byte order, the input channel SafeDigi_11 or SafeDigI_W.11 is set. User has to
swap the bytes in the IEC application.
As of Automation Builder version 2.3.0 the bit channels will be displayed in the following way:

The representation of a bitfield is changed by swapping the bytes correspondingly to the type
used in the IO configuration. Now the correct SafeDigI_3 or SafeDigI_W.3 is set in case of
DI3 is set.

Configuration and programming
System technology > System technology of CPU and overall system

2024/01/053ADR010583, 1, en_US4564

In general, it is not recommended to use the “Address”, e.g. %IX15.3 directly in
the IEC application. Use always symbolic variables to avoid access to wrong I/O
channels.

6.8.3 System technology of the AC500 communication modules
6.8.3.1 CANopen communication modules
6.8.3.1.1 Triggering of event tasks with CAN-IDs

For CM598-CAN module the execution of a PLC application task can be triggered automatically
by a certain event, i.e. by incoming CAN 2.0 A or CAN 2.0 B frames. For this, the PLC
application task is to be configured as external event task.

Prerequisites
– PLC firmware version 3.2.5 and Automation Builder as of version 2.2.5.
– Only one PLC application task can be assigned to a communication

module.
– Triggering of event tasks is only supported for the communication module

CM598-CAN.

Every incoming CAN frame on a CM598-CAN module processes an event in the AC500 PLC. If
the parameter "Trigger PLC Task" is set to TRUE, the CAN protocol task checks via the receive
buffer configuration and the corresponding CAN-ID of the CAN frame whether a CAN frame is to
be executed or not. Only those CAN-IDs that are configured in the protocol configuration will be
processed. All other CAN frames will be rejected. If a CAN frame is to be processed, the CAN
frame data is copied to the receive buffer and an event on the IEC event task is triggered.

The IEC event task will be executed for one cycle.

The IEC event task will be triggered continuously until all associated receive
buffers have been emptied. Hence, ensure that the buffers are emptied by the
task, otherwise the task will run into a loop.

Within the task the function block Cm598CanMsgRecEvt must be used to read the CAN frames
from the receive buffers. The function block Cm598CanMsgRec is not suitable as it requires
several task cycles for execution.

Configuration and programming

System technology > System technology of the AC500 communication modules

2024/01/05 3ADR010583, 1, en_US 4565

The following figure shows the sequence CAN frames processing when the triggering of event
task is used.

– Only one external event task can be assigned to a CM598-CAN.
– There is only one common event for an external event task and all selected

CAN-IDs. It must be evaluated which CAN-IDs have been received.
– It is possible that CAN frames are lost when necessary system resources

are in use or when the CAN frames could not be processed in time due
to high system load. So, the PLC application must monitor the task which
consumes the events of the CAN protocol with a watchdog mechanism or
something similar.

– Received CAN frames of the same CAN-ID are internally stored in FIFO
buffers. Reading and writing of the FIFO buffers is not possible at the same
time.

– Within an external event task the function block Cm598CanMsgRecEvt
must be used to read the received CAN frames. The function block
Cm598CanMsgRec is not suitable since its execution needs more than one
task cycle.

– The CAN-IDs that are enabled to trigger an external event task must be
read by the associated task. Otherwise the task is triggered again and
again, and the CPU load will be high.

CAN frame pro-
cessing

Configuration and programming
System technology > System technology of the AC500 communication modules

2024/01/053ADR010583, 1, en_US4566

Add the external event task that should be executed to the task configuration of the PLC
application:
1. Right-click on “Task Configuration”. Enter a name for the task and click “Add object”.
2. Right-click on the new task and append a “Program Call”. This contains the program code

that is executed by the task.
3. Double-click on the task and setup the task parameters.

A parameter description is given in the chapter 'Tab 'configuration'' Ä Chapter 6.4.1.21.2.30.2
“Tab 'Configuration'” on page 2538. Deviations are described in the following:

Parameter Default Value Description
Priority 16 0..16

Value '0' indicates the
highest priority

Priority of the task

Type n.a. External Specifies the task
type.

External Event n.a. CouplerEvent<slot
index of the
CM>_CAN

Specifies the event
that triggers execution
of the task.

Interval n.a. Cycle time Not used

Configuration of a CM598-CAN module is desribed in the configuration chapter Ä Chapter
6.3.2.11.1 “CANopen” on page 1521.

6.8.3.2 CM582-DP/CM592-DP PROFIBUS DP communication modules
Ä Chapter 6.3.2.11.4.2 “Parameterization of the CM592-DP/CM582-DP communication
modules” on page 1553 Ä Chapter 6.3.2.11.4.3.1 “Configuration of a PROFIBUS DP master”
on page 1554 Ä Chapter 6.3.2.11.4.3.2 “Configuration of a PROFIBUS DP slave” on page 1557

6.8.3.3 CM5640-2ETH Ethernet communication module
Ä Chapter 6.3.2.11.5.1 “CM5640-2ETH – Ethernet communication modul” on page 1562

Event task con-
figuration

Configuration and programming

System technology > System technology of the AC500 communication modules

2024/01/05 3ADR010583, 1, en_US 4567

6.8.4 System technology of the communication interface modules
6.8.4.1 Modbus communication interface module
6.8.4.1.1 Overview

The Modbus TCP communication interface module CI52x-MODTCP is used as decentralized
I/O module in Modbus TCP networks. The network connection is performed via 2 RJ45 connec-
tors which are integrated in the terminal unit.
Application examples

In AC500 V3 projects in which several Modbus connections are needed at the
same time, the number of Modbus sockets can be increased. How to increase the
socket number with an additional run time license is described in the application note
AC500 Line Mode with AC500 V3 CPU's.

A CI52x cluster can be used for the communication between the CPU and CI52x-MODTCP
modules. An example on how to create a CI52x cluster configuration using the bulk data
manager tool, is described in the application example CI52x-MODTCP cluster.

A summary of the function codes that are supported for Modbus TCP communication with a
PLC is given in the application example Modbus TCP and ModTcpMast2.

A description on how to establish a Modbus TCP communication with fixed and
dynamic register mapping in an AC500 PLC is given in the application example
Modbus TCP and register mapping.

To operate fast counter on CI52x devices in combination with a V3 PLC correctly via
Modbus TCP, a corresponding sample project is available. Setup and use are described in
an application example.

I/O channels properties:
● 4 analog inputs (1.0...1.3)
● 2 analog outputs (1.5...1.6)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

CI521-MODTCP

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4568

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010434&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010653&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010980&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010983&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011148&LanguageCode=en&DocumentPartId=&Action=Launch

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply from the process supply voltage UP

Supply of the electronic circuitry of the
I/O expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the last BYTE of the IP (00h to FFh)

Analog inputs 4 (configurable via software)

Analog outputs 2 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via software)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

I/O channels properties:
● 8 digital configurable inputs/outputs in 1 group (1.0...1.7)
● 8 digital inputs 24 V DC in 1 group (2.0...2.7)
● 8 digital outputs 24 V DC in 1 group (3.0...3.7)

Functionality

Parameter Value
Interface Ethernet

Protocol Modbus TCP

Power supply from the process supply voltage UP

Supply of the electronic circuitry of the
I/O expansion modules attached

Through the I/O bus interface (I/O bus)

Rotary switches For setting the last BYTE of the IP (00h to FFh)

Configurable digital inputs/outputs 8 (configurable via software)

Digital inputs 8 (24 V DC; delay time configurable via software)

Digital outputs 8 (24 V DC, 0.5 A max.)

LED displays For system displays, signal states, errors and
power supply

External supply voltage Via terminals ZP, UP and UP3 (process supply
voltage 24 V DC)

The inputs/outputs are galvanically isolated from the Ethernet network. There is no potential
separation between the channels.
The configuration of the inputs/outputs is performed by software.
For usage in enhanced ambient conditions (e.g. wider temperature and humidity range), a
special XC version of the device is available.

CI522-MODTCP

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4569

6.8.4.1.2 Modbus TCP registers
Register layout for CI52x-MODTCP

The registers can be divided in 4 sections:
● Information data section 0x0000 to 0x0D50 (for acyclic use)
● I/O data and diagnosis section 0x0FFA to 0x2B00 (for cyclic use)
● Parameter data section 0x3000 to 0x3B00 (for acyclic use)
● Special functionality section 0x5A00 to 0x6A00 (for acyclic use)

Information data section (acyclic data)
General

The information data section can be used to read out common and module specific information.
This section is read only.

Register
(hex)

Description Readable by
Modbus
function code

Writeable by
Modbus
function code

0 Device and FW information CI 3 x

50 Production data CI 3 x

100 Device and FW information 1. EXP 3 x

125 Device and FW information 1. Hot swap
terminal unit

3 *) x

150 Production data 1. EXP 3 x

175 Production data 1. Hot swap terminal unit 3 *) x

... ... x

A00 Device and FW information 10. EXP 3 x

A25 Device and FW information 10. Hot swap
terminal unit

3 *) x

A50 Production data 10. EXP 3 x

A75 Production data 10. Hot swap terminal
unit

3 *) x

D00 Common device information 3 x

*) supported from CI52x firmware version V3.2.0 (device index F0)
This section can be divided again in two sections:
● The module specific section (containing information for each module CI52x-MODTCP and

expansion modules and hot swap terminal units)
Ä Chapter 6.8.4.1.2.2.2 “Module specific information registers” on page 4570

● The common device information block
Ä Chapter 6.8.4.1.2.2.3 “Common device information registers” on page 4572

Module specific information registers
For each module (CI52x device, expansion modules and hot swap terminal units) the following
data can be read out:

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4570

● Device and FW information
This section consists of 20 WORDs per module and contains information on each module
using the following structure:

Data DATA TYPE Description
Module ID WORD The module ID of the requested module

Module name ARRAY [1..10] OF BYTE The module name of the requested module

Version 1st processor ARRAY [1..4] OF BYTE The version of the 1st processor of the
requested module

Version 2nd processor ARRAY [1..4] OF BYTE The version of the 2nd processor of the
requested module

Version 3rd processor ARRAY [1..4] OF BYTE The version of the 3rd processor of the
requested module

Version 4th processor ARRAY [1..4] OF BYTE The version of the 4th processor of the
requested module

Hardware version 1) ARRAY [1..4] OF BYTE The hardware version of the 4 processors

Reserved ARRAY [1..8] OF BYTE
ARRAY [1..4] OF BYTE
2)

Reserved

Number input data WORD Number of input data of the requested
module in BYTES

Number output data WORD Number of output data of the requested
module in BYTES

1) supported from CI52x firmware version V3.2.0 (device index F0)
2) from CI52x firmware version V3.2.0 (device index F0) “Reserved” is ARRAY [1..4] OF BYTE
● Production / Traceability data:

This section consists of 25 WORDs per module and contains the traceability data for each
module using following structure:
– Article number: Byte 01..15
– Index: Byte 16..17
– Name: Byte 18..29
– Production date: Byte 30..33
– Key number: Byte 34..38
– Site: Byte 39..40
– Year: Byte 41..42
– Serial number: Byte 41..50 (The serial number implies the year)

● Production / Traceability data from CI5x2 firmware version V3.2.0 (device index F0):
This section consists of 26 WORDs per module and contains the traceability data for each
module using following structure:
– Article number: Byte 01..15
– Index: Byte 16..17
– Name: Byte 18..31
– Production date: Byte 32..35
– Key number: Byte 36..40
– Site: Byte 41..42
– Year: Byte 43..44
– Serial number: Byte 42..52 (The serial number implies the year)

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4571

Common device information registers
This section consists of 80 WORDs (90 WORDs from CI52x firmware version V3.2.0 (device
index F0)) and contains cluster wide information (CI52x device and connected expansion
modules using the following structure:

Data DATA TYPE Description
Device state BYTE The actual state of the device:

0: STATE_PREOP (device booting)
1: STATE_OPERATION (device in operational,
no bus supervision active)
2: STATE_ERROR (device detected a bus
error, bus supervision active)
3: STATE_IP_ERROR (the device has a IP
address error)
4: STATE_CYCLIC_OPERATION (device in
operational, bus supervision active)

Parameter state BYTE The actual parameter state of the device:
0: PARA_STATE_NO_PARA (the device has
no parameters)
1: PARA_STATE_PARA_ACTIVE
(parameterization process running)
2: PARA_STATE_PARA_DONE (the uses valid
parameters)
3: PARA_STATE_ERROR (The device has
invalid

Module ID CI device WORD Module ID of the CI52x device itself

Module ID 1st expansion WORD Module ID of the 1st connected expansion
module

Module ID 2nd expansion WORD Module ID of the 2nd connected expansion
module

...

Module ID 10th expansion WORD Module ID of the 10th connected expansion
module

Expansion bus error count DWORD Global telegram error count over all expansion
modules

Good count onboard I/O DWORD Telegram good count onboard I/Os

Good count 1st expansion DWORD Telegram good count 1st expansion module

Good count 2nd expansion DWORD Telegram good count 2nd expansion module

...

Good count 10th expansion DWORD Telegram good count 10th expansion module

Error count onboard I/O DWORD Telegram error count onboard I/Os

Error count 1st expansion DWORD Telegram error count 1st expansion module

Error count 2nd expansion DWORD Telegram error count 2nd expansion module

...

Error count 10th expansion DWORD Telegram error count 10th expansion module

Common device
information
block

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4572

Data DATA TYPE Description
Input address onboard I/O WORD Modbus TCP register address for inputs of the

onboard I/Os

Input address 1st expansion WORD Modbus TCP register address for inputs of the
1st expansion module

Input address 2nd expansion WORD Modbus TCP register address for inputs of the
2nd expansion module

...

Input address 10th expansion WORD Modbus TCP register address for inputs of the
10th expansion module

Output address onboard I/O WORD Modbus TCP register address for outputs of
the onboard I/Os

Output address 1st

expansion
WORD Modbus TCP register address for outputs of

the 1st expansion module

Output address 2nd

expansion
WORD Modbus TCP register address for outputs of

the 2nd expansion module

...

Output address 10th

expansion
WORD Modbus TCP register address for outputs of

the 10th expansion module

Module ID 1st hot swap
terminal unit *)

WORD Module ID of the 1st connected hot swap
terminal unit *)

Module ID 2nd hot swap
terminal unit *)

WORD Module ID of the 2nd connected hot swap
terminal unit *)

...

Module ID 10th hot swap
terminal unit *)

WORD Module ID of the 10th connected hot swap
terminal unit *)

*) supported from CI52x firmware version V3.2.0 (device index F0)

I/O / Process data and diagnosis section (cyclic data)
General

Table 847: The cyclic data section for CI52x-MODTCP
Register

(hex)
Description Readable by

Modbus function
code

Writeable by
Modbus function
code

FCE *) Module state 3,4, 23 x

FFA Diagnosis 3,4, 23 x

1000 Inputs CI 3, 4, 23 x

1100 Inputs 1.EXP 3, 4, 23 x

... ... x

1A00 Inputs 10.EXP 3, 4, 23 x

2000 Outputs CI 3, 23 6, 16, 23

2100 Outputs 1.EXP 3, 23 6, 16, 23

... ...

2A00 Outputs 10.EXP 3, 23 6, 16, 23

2B00 Dummy output 3, 23 6, 16, 23

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4573

*) supported from CI52x firmware version V3.2.0 (device index F0)
This section can be divided again in three sections:
● Module state (containing the state of connected expansion modules and hot swap terminal

units)
Ä Chapter 6.8.4.1.2.3.2 “Module state” on page 4574

● Diagnosis data (containing diagnosis data in AC500 specific format)
Ä Chapter 6.8.4.1.2.3.3 “Diagnosis data” on page 4576

● Process data (containing I/O data)
Ä Chapter 6.8.4.1.2.3.4 “I/O data” on page 4576

Module state
The module state section consists of 44 WORDs and contains the module state of connected
expansion modules and hot swap terminal units using the following structure:

Data DATA TYPE Description
Module ID WORD Module ID of the CI52x

Expected module ID WORD Expected (configured) module ID of the CI52x

Module state BYTE The current module state of the CI52x:
0: NO_MOD (no module detected)
1: MOD_INIT (module detected, module is in
initialization phase)
2: MOD_RUN (module detected and running or in
failsafe state, input data are valid)
3: WRONG_MOD (wrong module detected, module ID
doesn’t match expected module ID)
4: MOD_REMOVED (module removed or defective on
hot swap terminal unit, no communication to module
possible)
5: MOD_ERROR (module defective on hot swap
terminal unit, no communication to module possible)
6: MOD_LOST (lost communication to module on not
hot swap capable terminal unit)
7: UNKNOWN (module detected but not configured)

Diagnosis flag BYTE Diagnosis flag for the CI52x:
0: NO_DIAG (no diagnosis evailable from CI52x I/O
cards)
1: DIAG_AVAILABLE (diagnosis available for CI52x I/O
cards)

Terminal unit state BYTE Terminal unit state for the CI52x:
0: NO_HOTSWAP_TU (not hot swap terminal unit
detected)
1: HOTSWAP_TU_RUNNING (hot swap terminal unit
detected and working)
2: HOTSWAP_TU_ERROR (hot swap terminal unit
detected, but communication errors for hot swap
terminal unit detected)

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4574

Data DATA TYPE Description
Parameter state BYTE Parameter state of the CI52x:

0: NO_PARA (module is in initialization phase and not
ready for parameterization)
1: WAIT_PARA (module awaits parameterization)
2: PARA_RUN (parameterization running)
3: LEN_ERR (length of parameters not correct)
4: ID_ERR (module ID inside parameters not correct)
5: PARA_DONE (parameterization finished without
errors)

Module ID WORD Module ID of the 1st connected expansion module

Expected module ID WORD Expected (configured) module ID of the 1st connected
expansion module

Module state BYTE The current module state of the 1st connected
expansion module

Diagnosis flag BYTE Diagnosis flag for the 1st connected expansion module
0: NO_DIAG (no diagnosis evailable for expansion
module)
1: DIAG_AVAILABLE (diagnosis available for expansion
module)

Terminal unit state BYTE Terminal unit state for the 1st connected expansion
module

Parameter state BYTE Parameter state of the 1st connected expansion module

...

Module ID WORD Module ID of the 10th connected expansion module

Expected module ID WORD Expected (configured) module ID of the 10th connected
expansion module

Module state BYTE The current module state of the 10th connected
expansion module

Diagnosis flag BYTE Diagnosis flag for the 10th connected expansion module

Terminal unit state BYTE Terminal unit state for the 10th connected expansion
module

Parameter state BYTE Parameter state of the 10th connected expansion
module

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4575

Diagnosis data
The diagnosis data section contains one diagnosis message with the following structure
(according to AC500 diagnosis):

Byte
Number

Description Possible Values

1 Diagnosis Byte,
slot number

31 = CI52x-MODTCP (e. g. error at integrated 8 DI / 8 DO)

1 = 1st connected S500 I/O Module

...

10 = 10th connected S500 I/O Module

2 Diagnosis Byte,
module number

According to the I/O bus specification passed on by
modules to the fieldbus master

3 Diagnosis Byte,
channel

According to the I/O bus specification passed on by
modules to the fieldbus master

4 Diagnosis Byte,
error code

According to the I/O bus specification Bit 7 and Bit 6, coded
error class
0 = E1
1 = E2
2 = E3
3 = E4
Bit 0 to Bit 5, coded error description

5 Diagnosis Byte,
flags

According to the I/O bus specification
Bit 7: 1 = coming error
Bit 6: 1 = leaving error

6 Reserved 0

If a diagnosis message is read out, the next one will be automatically filled in.
If no more diagnosis messages are available the buffer will be reset to zero.
This ensures that each diagnosis message can be delivered to the Modbus TCP client/slave
and no diagnosis will be lost.

I/O data
The I/O data section can use two different formats according to the module parameter “I/O
Mapping Structure”.
● Fixed I/O mapping

In case of fixed I/O mapping each module has a predefined register range for each Inputs
and Outputs.

● Dynamic I/O mapping
In case of dynamic I/O mapping the mapping is build according to the actual configuration.

The dummy output at the end of the I/O data section can be used to retrigger the bus supervi-
sion and has no effect on the HW outputs.

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4576

In case of fixed I/O mapping the following predefined register table is used:

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

1000 Inputs CI 3, 4, 23 x

1100 Inputs 1.EXP 3, 4, 23 x

... ... x

1A00 Inputs 10.EXP 3, 4, 23 x

2000 Outputs CI 3, 23 6, 16, 23

2100 Outputs 1.EXP 3, 23 6, 16, 23

... ...

2A00 Outputs 10.EXP 3, 23 6, 16, 23

2B00 Dummy output 3, 23 6, 16, 23

If a certain expansion module has no inputs or outputs the corresponding registers remain
empty.

In case of dynamic mapping only the start addresses of inputs and outputs are predefined:

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

1000 Inputs CI 3, 4, 23 x

... ... x

2000 Outputs CI 3, 23 6, 16, 23

... ...

2B00 Dummy output 3, 23 6, 16, 23

The register addresses of the connected expansion modules are calculated dynamically based
on the number of inputs and outputs of the previous modules (each module starts directly on the
next register after the previous module).
The register addresses of each module can be read out via the common device register
Ä Chapter 6.8.4.1.2.2.3 “Common device information registers” on page 4572.

Fixed I/O
mapping

Dynamic I/O
mapping

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4577

The difference between fixed I/O mapping and dynamic I/O mapping is shown in the following
table.
For this comparison a cluster with CI522, AX522, DC532, AX521, DC523, DC532, AO523,
AI523, DI524, AX522 and DC523 is used.

Fixed Mapping Dynamic Mapping
Register

(hex)
Description Type Data Register

(hex)
Description Type Data

1000 Inputs CI 8 DC, 8 DI,
FC

4 BYTE + 4
WORD

 1000 Inputs CI 8 DC, 8 DI,
FC

4 BYTE + 4
WORD

1100 Inputs AX522 8 AI 8 WORD 1006 Inputs AX522 8 AI 8 WORD

1200 Inputs DC532 16 DI, 16
DC

4 BYTE 100E Inputs DC532 16 DI, 16
DC

4 BYTE

1300 Inputs AX521 4 AI 4 WORD 1010 Inputs AX521 4 AI 4 WORD

1400 Inputs DC523 24 DC 3 BYTE 1014 Inputs DC523 24 DC 3 BYTE

1500 Inputs DC532 16 DI, 16
DC

4 BYTE 1016 Inputs DC532 16 DI, 16
DC

4 BYTE

1600 Inputs AO523 --- --- --- Inputs AO523 --- ---

1700 Inputs AI523 16AI 16 WORD 1018 Inputs AI523 16AI 16 WORD

1800 Inputs DI524 32 DI 4 BYTE 1028 Inputs DI524 32 DI 4 BYTE

1900 Inputs AX522 8 AI 8 WORD 102A Inputs AX522 8 AI 8 WORD

1A00 Inputs DC523 24 DC 3 BYTE 1032 Inputs DC523 24 DC 3 BYTE

2000 Outputs CI 8 DC, 8DO,
FC

4 BYTE + 8
WORD

2000 Outputs CI 8 DC, 8DO,
FC

4 BYTE + 8
WORD

2100 Outputs
AX522

8 AO 8 WORD 200A Outputs
AX522

8 AO 8 WORD

2200 Outputs
DC532

16 DC 2 BYTE 2012 Outputs
DC532

16 DC 2 BYTE

2300 Outputs
AX521

4 AO 4 WORD 2013 Outputs
AX521

4 AO 4 WORD

2400 Outputs
DC523

24 DC 3 BYTE 2017 Outputs
DC523

24 DC 3 BYTE

2500 Outputs
DC532

16 DC 2 BYTE 2019 Outputs
DC532

16 DC 2 BYTE

2600 Outputs
AO523

16 AO 16 WORD 201A Outputs
AO523

16 AO 16 WORD

2700 Outputs AI523 --- --- --- Outputs AI523 --- ---

2800 Outputs DI524 --- --- --- Outputs DI524 --- ---

2900 Outputs
AX522

8 AO 8 WORD 202A Outputs
AX522

8 AO 8 WORD

2A00 Outputs
DC523

24 DC 3 BYTE 2032 Outputs
DC523

24 DC 3 BYTE

Comparative
example

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4578

When commissioning a CI521 module with byte order "big endian" in combina-
tion with a V3 PLC. BYTE and DWORD data of inputs and outputs has to be
swapped by user, V3 PLC processor is using little endian as standard, high- and
low bytes are interchanged! Analog values do not have to be swapped.

Table 848: I/O data (Inputs 20 BYTEs)
Signal DATA TYPE Description

AI0 WORD Input value of the 1st analog input

AI1 WORD Input value of the 2nd analog input

AI2 WORD Input value of the 3rd analog input

AI3 WORD Input value of the 4th analog input

DI BYTE Input value of the DI channels

Fast counter actual value
counter 1

DWORD

Fast counter actual value
counter 2

DWORD

Fast counter state counter 1 BYTE

Fast counter state counter 2 BYTE

Additional reserve byte BYTE reserved, not used

Table 849: I/O data (Outputs 24 BYTEs)
Signal DATA TYPE Description
AO0 WORD Output value of the 1st analog output

AO1 WORD Output value of the 2nd analog
output

DO BYTE Output value of the DO channels

Fast counter start value
counter 1

DWORD

Fast counter end value
counter 1

DWORD

Fast counter start value
counter 2

DWORD

Fast counter end value
counter 2

DWORD

Fast counter control counter 1 BYTE

Fast counter control counter 2 BYTE

Additional reserve byte BYTE reserved, not used

Process data
structure CI521-
MODTCP

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4579

When commissioning a CI522 module with byte order "big endian" in combina-
tion with a V3 PLC. BYTE and DWORD data of inputs and outputs has to be
swapped by user, V3 PLC processor is using little endian as standard, high- and
low bytes are interchanged! Analog values do not have to be swapped.

Table 850: I/O data (Inputs 12 BYTEs)
Signal DATA TYPE Description

DC BYTE Input value of the DC channels

DI BYTE Input value of the DI channels

Fast counter actual value
counter 1

DWORD

Fast counter actual value
counter 2

DWORD

Fast counter state counter 1 BYTE

Fast counter state counter 2 BYTE

To operate fast counter on CI52x devices in combination with a V3 PLC correctly via
Modbus TCP, a corresponding sample project is available. Setup and use are described in
an application example.

Table 851: I/O data (Outputs 20 BYTEs)
Signal DATA TYPE Description

DC BYTE Output value of the DC channels

DO BYTE Output value of the DO channels

Fast counter start value
counter 1

DWORD

Fast counter end value
counter 1

DWORD

Fast counter start value
counter 2

DWORD

Fast counter end value
counter 2

DWORD

Fast counter control counter 1 BYTE

Fast counter control counter 2 BYTE

Process Data
Structure CI522-
MODTCP

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4580

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011148&LanguageCode=en&DocumentPartId=&Action=Launch

Parameter data (acyclic data)
General

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

3000 Parameters CI 3 6, 16

3080 Stored parameters CI 3 x

3100 Parameters 1. EXP 3 6, 16

3180 Stored parameters 1. EXP 3 x

...

3A00 Parameters 10. EXP 3 6, 16

3A80 Stored parameters 10. EXP 3 x

3B00 controlword/statusword 3 6, 16

For each connected module the following parameter data are defined (the parameters are
represented as ARRAY OF BYTE):
● Actual used parameter for each module

In these sections the actual parameters are stored. This section is also used to write
parameters to the module.
Ä Chapter 6.8.4.1.3.2 “Parameterization” on page 4587

● Stored parameters for each module
If the module has stored nonvolatile parameters these can be read out using the
corresponding registers.

The controlword/statusword is used to trigger a parameterization process.

Fig. 363: Meaning of the single bits

The direction of the first 8 bits is client to server (master to slave).
The direction of the second 8 bits is server to client (slave to master). Ä Description of the bits.

The parameter register sections (actual and stored parameters) have the structure as explained
in the documentation of the corresponding module.

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4581

Short description of the CI521-MODTCP parameters

Parameter Single
parameter

index

Description Additional Info

0 Module ID (high Byte) Fixed, must be 16#1C

1 Module ID (low Byte) Fixed, must be 16#E8

2 Ignore Module Reserved, must be 0

3 Length of following parameter
block

Fixed, must be 16#3F

4 0 Error LED / Failsafe

5 1 Master IP Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 45896 Master IP Byte 1

7 Master IP Byte 2

8 Master IP Byte 3

9 2 Master IP 1 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458910 Master IP 1 Byte 1

11 Master IP 1 Byte 2

12 Master IP 1 Byte 3

13 3 Master IP 2 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458914 Master IP 2 Byte 1

15 Master IP 2 Byte 2

16 Master IP 2 Byte 3

17 4 Master IP 3 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458918 Master IP 3 Byte 1

19 Master IP 3 Byte 2

20 Master IP 3 Byte 3

21 5 Master IP 4 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458922 Master IP 4 Byte 1

23 Master IP 4 Byte 2

24 Master IP 4 Byte 3

25 6 Master IP 5 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458926 Master IP 5 Byte 1

27 Master IP 5 Byte 2

28 Master IP 5 Byte 3

29 7 Master IP 6 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458930 Master IP 6 Byte 1

31 Master IP 6 Byte 2

32 Master IP 6 Byte 3

33 8 Master IP 7 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458934 Master IP 7 Byte 1

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4582

Parameter Single
parameter

index

Description Additional Info

36 Master IP 7 Byte 2

36 Master IP 7 Byte 3

37 9 Timeout Timeout for bus supervision
in 10ms steps
if set to 0 no bus supervision
is active

38 10 (read only) I/O Mapping Structure

39 11 Reserved Reserved, must be 0

40 12 Reserved Reserved, must be 0

41 13 Reserved Reserved, must be 0

42 14 Check supply

43 15 Analog data format Reserved, must be 0

44 16 Input delay

46 17 Fast counter

46 18 Short circuit detection

47 19 Behavior binary outputs at com.
fault

48 20 Substitute value binary outputs

49 21 Overvoltage monitoring

50 22 Behavior analog outputs

51 23 Channel Config AI0

52 24 Check Channel AI0

53 25 Channel Config AI1

54 26 Check Channel AI1

55 27 Channel Config AI2

56 28 Check Channel AI2

57 29 Channel Config AI3

58 30 Check Channel AI3

59 31 Channel Config AO0

60 32 Check Channel AO0

61 33 Substitute value AO0 (high Byte)

62 Substitute value AO0 (low Byte)

63 34 Channel Config AO1

64 35 Check Channel AO1

65 36 Substitute value AO1 (high Byte)

66 Substitute value AO1 (low Byte)

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4583

Short description of the CI522-MODTCP parameters

Parameter Single
parameter

index

Description Additional Info

0 Module ID (high Byte) Fixed, must be 16#1C

1 Module ID (low Byte) Fixed, must be 16#ED

2 Ignore Module Reserved, must be 0

3 Length of following parameter
block

Fixed, must be 16#2F

4 0 Error LED / Failsafe

5 1 Master IP Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 45896 Master IP Byte 1

7 Master IP Byte 2

8 Master IP Byte 3

9 2 Master IP 1 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458910 Master IP 1 Byte 1

11 Master IP 1 Byte 2

12 Master IP 1 Byte 3

13 3 Master IP 2 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458914 Master IP 2 Byte 1

15 Master IP 2 Byte 2

16 Master IP 2 Byte 3

17 4 Master IP 3 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458918 Master IP 3 Byte 1

19 Master IP 3 Byte 2

20 Master IP 3 Byte 3

21 5 Master IP 4 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458922 Master IP 4 Byte 1

23 Master IP 4 Byte 2

24 Master IP 4 Byte 3

25 6 Master IP 5 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458926 Master IP 5 Byte 1

27 Master IP 5 Byte 2

28 Master IP 5 Byte 3

29 7 Master IP 6 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458930 Master IP 6 Byte 1

31 Master IP 6 Byte 2

32 Master IP 6 Byte 3

33 8 Master IP 7 Byte 0 IP Address for write restric-
tions Ä “Configurable write
restriction” on page 458934 Master IP 7 Byte 1

36 Master IP 7 Byte 2

36 Master IP 7 Byte 3

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4584

Parameter Single
parameter

index

Description Additional Info

37 2 Timeout Timeout for bus supervision
in 10ms steps
if set to 0 no bus supervision
is active

38 3 (read only) I/O Mapping Structure

39 4 Reserved Reserved, must be 0

40 5 Reserved

41 6 Reserved

42 7 Check supply

43 8 Input delay

44 9 Fast counter

46 10 Short circuit detection

46 11 Behavior binary outputs at com.
fault

47 12 Substitute value binary outputs
(high byte)

48 Substitute value binary outputs
(low byte)

49 13 Voltage feedback monitoring

50 14 Overvoltage monitoring

Parameters of connected expansion modules
The parameters of the connected expansion modules are represented as byte array (the param-
eters valid for “CPU” in the corresponding module are used):

Parameter Description Additional Info
0 Module ID (high byte) Fixed, see corresponding module (the

module ID of FBP is used)

1 Module ID (low byte) Fixed, see corresponding module (the
module ID of FBP is used)

2 Ignore module Reserved must be 0

3 Length of following parameter block Fixed, see corresponding module

4... The rest of the parameter are
described in the corresponding
module

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4585

Special functionality
This section contains special services like firmware update or single parameterization.

Register
(hex)

Description Readable by
Modbus function
code

Writeable by
Modbus function
code

4000 Firmware download 3 16

4100 Firmware download state 3 x

5000 Write single parameterization of CI x 16

5100 Write single parameterization of 1.
EXP

x 16

...

5A00 Write single parameterization of 10.
EXP

x 16

6000 Read single parameterization of CI 3 16

6100 Read single parameterization of 1.
EXP

3 16

...

6A00 Read single parameterization of 10.
EXP

3 16

6.8.4.1.3 Behavior
IP address assignment
General

The delivery IP address of the CI52x-MODTCP is 192.168.0.xx. xx is the hardware address
switch position of the device.
The devices support BOOTP, DHCP and fixed IP address setting. These can be set individual or
together.
If BOOTP and DHCP are enabled the following priority takes place:
● If DHCP configuration fails, the device will fall back to BOOTP.
● In case of a BOOTP failure, the fixed IP address will be used.

A new IP address (or changing of BOOTP and DHCP) can be set in two different ways:
● With the address switches of the corresponding module
● With the IP configuration tool
Ä Chapter 6.3.2.9.2 “Configuration of the IP settings with the IP configuration tool”
on page 1506

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4586

Using the address switches
With the address switches only the last byte of the IP address can be changed.
The IP address can only be set via the address switches in case of factory default or in case of
the last byte of the IP address is set to zero.
Ä Chapter 6.3.2.9.2 “Configuration of the IP settings with the IP configuration tool”
on page 1506

The not allowed IP addresses are mapped as followed:
● Address switch position 255 is mapped to fixed IP 192.168.0.254 independent of other

stored settings (by IP Configuration Tool).
This is a backup so the module can always get a valid IP address and can be configured by
the IP Configuration Tool.

● Address switch position 0 is mapped to last byte equal 1 and DHCP enabled.

Using the IP configuration tool
With the 'Configuration of the IP settings with the IP configuration tool' a network scan can be
executed, and the found devices can be assigned with new settings, e.g. enable BOOTP or
DHCP and set a new fixed IP.
Ä Chapter 6.3.2.9.2 “Configuration of the IP settings with the IP configuration tool”
on page 1506

If the last byte of the IP address of the CI52x-MODTCP devices is set to 0 with the IP Configura-
tion Tool the address switch position is used instead.
Ä Chapter 6.8.4.1.3.1.2 “Using the address switches” on page 4587

Parameterization
The parameterization is done via the corresponding registers explained in the Modbus TCP
registers Ä Chapter 6.8.4.1.2.4 “Parameter data (acyclic data)” on page 4581.
In addition to that the parameters can be directly transferred via Automation Builder.
Ä Chapter 6.3.2.12.2 “Unbundled CI52x-MODTCP configuration” on page 1565

There are two different parameter sections with different behavior.
Actual used parameters
After startup this section contains the following data:
● Default parameters (only module id and parameter length set all others zero) if no valid

stored parameters are available (no or invalid parameters stored).
● Actual used / stored parameters if valid parameters are stored nonvolatile.
These parameters can be read out and changed by reading or writing of the corresponding reg-
isters, but will not be used automatically after writing them, the use of new written parameters
has to be triggered by writing the parameter control word with the corresponding bits set (see
below).
Stored parameters
This section always contains a copy of the nonvolatile stored parameters, if no parameters are
stored nonvolatile this sections will be 0.
Controlword/statusword parameter
This parameter can be used to trigger and save new parameters.
The direction of the first 8 bit is client to server (master to slave). The direction of the second 8
bits is server to client (slave to master).

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4587

Bit Description
0 Use parameters / start

parameterization
If this bit is set the CI Device starts the parameterization
with the parameters in the actual parameters registers.

1 Store parameters volatile If this bit is set the CI device will use the parameters
temporarily, which means after a bus error detection and
reconnection the parameters will be used again.
This bit should always be set.
This bit is only evaluated when bit 0 is set.

2 Store parameters
nonvolatile

If this bit is set the CI device will store the parameters
nonvolatile, which means after a power cycle the stored
parameter data will be used again.
This bit is only evaluated when bit 0 is set.

3 Reserved -

4 Delete nonvolatile stored
parameters

If this bit is set the CI device will delete its nonvolatile
stored parameters.
This bit is only evaluated when bit 0 is set.

5 Ignore parameter error
for nonvolatile parameter
storage

If this bit is set a parameter error during nonvola-
tile storage of parameters will be ignored, and the
parameters will be stored.
This bit can only be set in combination with bit 0 and
bit 2.

6 Reserved -

7 Reserved -

8 New diagnosis available The device will set this bit if new diagnosis data are
available in the diagnosis data section.

9 New parameters available The device will set this bit if new parameters are
available in the actual parameter data section and these
were not activated by setting bit 0 in the control word.

10...15 Reserved -

Cyclic I/O data exchange
The I/O data can be exchanged cyclic by the master by reading, writing the corresponding
registers.
I/O data exchange is only possible after successful parameterization of the device.
For writing of outputs bus failure detection can be activated by setting the corresponding
parameter. This bus failure detection is described in the following chapter.

If the parameter ““timeout”” in the module parameters of the CI52x-MODTCP is set, the module
will supervise the Modbus TCP "write telegrams".
After the first "write telegram" the bus will be supervised. If no new "write telegram" arrives
at the CI52x-MODTCP within the configured time, the module will detect a bus failure and
switch off its outputs or switch them to the configured failsafe state Ä Chapter 5.2.6.5.1.8
“Parameterization” on page 1090 Ä Chapter 5.2.6.5.2.8 “Parameterization” on page 1120.

Bus failure
detection

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4588

With the module parameters “Master IP”- “Master IP 7” it is possible to set write restrictions on
the CI52x-MODTCP device.
If none of the parameters is set, all masters / clients in the network have read and write rights on
the CI52x-MODTCP device and its connected expansion modules.
If at least one parameter is set only the configured masters / clients have write rights on the
CI52x-MODTCP device.
All other masters / clients still have read access to the CI52x-MODTCP device.

Diagnosis behavior
Each diagnosis message signals if this error is coming or going , so it is possible to create a list
in the master of actual pending diagnosis.
Diagnosis messages will be transferred again after a bus failure detection and reconnection.
Diagnosis messages can be read out with function code 3,4,23. Function codes 3 and 4 can
always read out diagnosis messages, function code 23 can only read out after successful
parameterization of the device. See also table 'Diagnosis data' Ä Chapter 6.8.4.1.2.3.3 “Diag-
nosis data” on page 4576.

Single parameterization
The single parameterization services can be used to read or write parameters during run time of
device without the need of triggering a new parameterization process.
For indexes used for single parameterization services see parameter lists in section Modbus
TCP registers of this document.
The read and write parameterization services are explained below, for each module
(CI52x-MODTCP and connected expansion modules) a different section for read and write is
defined see chapter Modbus TCP registers in this document). Both services are using the
following data structure:

The length of the read / write service depends on the count of parameters that should be
transferred (length = 4+ count*8).

The read single parameterization works in two steps:
● Writing of a request list containing the indexes that should be read using the structure

explained above.
Only CNT and PARA_IDX has to be set.
Up to 5 parameters can be requested with one telegram.
The length of the write service depends on the count of parameters that should be
transferred (length = 4+ count*8).

● Reading of the parameters list with the same length then the previous write request.
If the internal reading process inside the CI52x-MODTCP device is done the data will be
read out.
If the internal reading process inside the CI52x-MODTCP device is not yet finished the read
service will be rejected with Modbus TCP exception code 6 (device busy).

Configurable
write restriction

Reading of
single parame-
ters

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4589

For writing of single parameters only one step is necessary, the parameters are transferred with
one write request using the structure described above.
The length of the write service depends on the count of parameters that should be transferred
(length = 4+ count*8).
In case of write of single parameters the following values have to be set:
● CNT: number of parameters to be set
● And for each parameter:

Parameter index
Parameter length
New parameter value

Written single parameters are not stored volatile and not stored nonvolatile. That means after a
bus reconnection or power cycle the written parameters will be discarded.

6.8.4.1.4 Commissioning example
Set IP Address:
● The setting of the IP address is the first step to integrate the CI52x-MODTCP devices into a

running system.
● The setting of the IP address of the CI52x-MODTCP devices is described in the chapter 'IP

address assignment' Ä Chapter 6.8.4.1.3.1 “IP address assignment” on page 4586 in this
document.

Set Parameters (optional read parameters):
● The second step in configuring the CI52x-MODTCP devices is to set the module and

channel parameters.
● A read of parameters is optional but can be used the get the module IDs and the parameter

length.
● The reading and or writing of parameters is described in chapter 'Parameterization'
Ä Chapter 6.8.4.1.3.2 “Parameterization” on page 4587.

Set Control Word:
● After setting the parameter data these have to be activated by writing the control word.
● The meaning and usage of the control word is described in chapter 'Parameterization'
Ä Chapter 6.8.4.1.3.2 “Parameterization” on page 4587.

Exchange data:
● After setting and activating the parameters the CI52x-MODTCP device is ready for data

exchange.
● The registers for data exchange are described in chapter 'I/O / Process data and diagnosis

section (Cyclic data)' Ä Chapter 6.8.4.1.2.3 “I/O / Process data and diagnosis section (cyclic
data)” on page 4573.

6.8.4.1.5 Hot swap
Introduction

With hot swap for AC500 and S500 it is possible to exchange I/O modules (with same type)
during runtime.

Writing of single
parameters

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4590

Preconditions for using hot swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4591

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4592

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

Compatibility of hot swap

 Modbus remote I/O
I/O module on TU5xx-H connected to I/O bus
master

CI521-MODTCP or CI522-MODTCP

Required version of I/O bus master Module index as of F0
Firmware as of V3.2.3

Fieldbus master when used as remote I/O with
AC500 V3

Any AC500 V3 CPU with on-board Ethernet

When used as remote I/O on third party con-
troller (PLC or DCS)

No limitation known

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4593

Hot swap behavior
Table 852: Behavior in case of I/O attached to communication interface module for Modbus
TCP, CI521-MODTCP or CI522-MODTCP
Hot swap behavior Modbus TCP remote I/O
Start-up behavior with missing or damaged
I/O module on hot swap terminal unit TU5xx-H

Remote I/O station is not starting
As of device index F4 and Automation Builder
Version 2.4.1 it is possible to configure the
startup in case of missing modules on hot
swap terminal units. If configured, the remote
I/O station is starting up with missing or dam-
aged I/O module, if the module is plugged
later or replaced it will be automatically par-
ameterized and I/O data will be exchanged.
As the Automation Builder checks that all
modules are available during configuration
process, it is necessary that all I/O modules
are available and in working order during
configuration via Automation Builder. As the
parameters are stored nonvolatile inside the
CI52x devices later one the parameters have
effect for power cycle or reconnection opera-
tions.

Start-up behavior with wrong I/O module type
on any terminal unit

Remote I/O station is not starting

Diagnosis of presence of
hot swap terminal unit

Information is available in Modbus registers
of the communication interface module which
can be accessed by the application program
As of device index F4 and Automation Builder
Version 2.4.1 it is possible to configure a list of
required hot swap terminal units. If a required
hot swap terminal unit is missing (normal one
plugged) this will not prevent a normal oper-
ation but a diagnosis message will be gener-
ated for the corresponding slot.

Diagnosis of hot swap capability of I/O module
mounted on hot swap terminal unit

Information can be obtained by reading
Modbus registers in the communication inter-
face module. Those Modbus registers contain:
● Diagnosis in case that a not hot-swap-

pable I/O module is plugged on a hot
swap terminal unit

● Diagnosis In case that in a mixed configu-
ration with at least one hot swap terminal
unit an I/O module, that must not be used
in a hot swap configuration, is mounted on
any terminal unit of the configuration

● Production data and version index of the
modules

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

Diagnosis is available in Modbus registers in
the communication interface module

Input state in process image of controller while
module is pulled or module is not operational

Input = ZERO

Diagnosis after plugging the I/O module on
the hot swap terminal unit

Diagnose "diagnosis gone" is available in
Modbus registers in the communication
interface module

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4594

System behavior
If an expansion module is removed or defective during run time, the input data of this module
will be set to “0” and the module state will be set to the corresponding value (see Ä Chapter
6.8.4.1.2.3 “I/O / Process data and diagnosis section (cyclic data)” on page 4573). A diagnosis
message will be created in that case (see hardware description of CI521 Ä Chapter 5.2.6.5.1
“CI521-MODTCP” on page 1070 / CI522 Ä Chapter 5.2.6.5.2 “CI522-MODTCP” on page 1111
for diagnosis messages).
In case a module is replaced, the new module will automatically be parameterized with the last
parameters of the removed module (if single parameters were written to the previously removed
module, this parameters will be ignored).
During pulling or plugging of a certain module, all other module will continue to operate with one
limitation: The reaction time of modules connected to the right of the affected module will be
bigger in that case (up to 50 ms).
If the bus failure detection is active for CI52x and failsafe is configured Ä Chapter 6.8.4.1.3.3
“Cyclic I/O data exchange” on page 4588 the following behavior applies if a module is removed
and replugged during failsafe condition:
● Last value configured for output:

– After a bus failure is detected, failsafe will be activated and the output will remain at its
last value.

– If the module is removed and plugged again, the output will remain off, and not be kept
its last value, as the last value of the new module is “0” in that case.

● Substitute value configured for output:
– After a bus failure is detected, failsafe will be activated and the output will be according

to the configured substitute value.
– If the module is removed and plugged again now, the output will be set according to the

configured substitute value again.
● Substitute value for x seconds configured for output:

– After a bus failure is detected, failsafe will be activated and the output will be according
to the configured substitute value for the configured time.

– If the module is removed and plugged again now, the output will be set according to the
configured substitute value again, and the configured time starts again.

Mandatory rules for hot swapping
Mandatory rules for hot swapping:
● Between two pull and / or plug operations of I/O modules a pause of at least 1 second must

be observed.
– That means if a module is pulled or plugged there has to be at least a break of 1 second

before the next module is pulled or plugged.
● At boot up of CI52x all configured expansion modules have to be physically available.

– Start up with missing modules is not supported.
● In the application program it is possible to detect if a hot swap terminal unit is mounted

in a specific position on the I/O bus. The information is available in the common device
information registers. These can be accessed when the version of the communication inter-
face module supports hot swap.
– This has to be checked by application:

Best way for checking if a hot swap terminal unit is available or not, is reading out the
common device information registers Ä Chapter 6.8.4.1.2.2 “Information data section
(acyclic data)” on page 4570. If the CI52x rejects this read out the CI52x doesn’t support
hot swap at all.

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4595

6.8.4.2 PROFINET communication interface module
6.8.4.2.1 Hot swap
Introduction

With hot swap for AC500 and S500 it is possible to exchange I/O modules (with same type)
during runtime.

Preconditions for Using Hot Swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4596

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4597

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4598

Compatibility of hot swap

 PROFINET remote I/O
I/O module on TU5xx-H connected to I/O bus
master

CI501-PNIO or CI502-PNIO

Required version of I/O bus master Module index as of F0
Firmware as of V3.2.10

Fieldbus master when used as remote I/O with
AC500 V3

Not supported

When used as remote I/O on third party con-
troller (PLC or DCS)

Note: alarms must be acknowledged by
fieldbus master.
GSDML as of version
GSDML-V2.3-ABB-S500-CI501-
PNIO-20180822.xml or
GSDML-V2.3-ABB-S500-CI502-
PNIO-20180822.xml
needed for full scope of vendor specific
diagnosis.

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4599

Hot swap behavior
The following table describes the behavior in case of I/O attached to communication interface
module for PROFINET, CI501-PNIO or CI502-PNIO.

Hot swap behavior PROFINET remote I/O with AC500 V3 CPU
and CM579-PNIO controller
PROFINET remote I/O with third party
controller

Start-up behavior with missing or damaged
I/O module on hot swap terminal unit TU5xx-H

Remote I/O station is not starting
As of device index F1 and Automation Builder
Version 2.4.1 it is possible to configure the
startup in case of missing modules on hot
swap terminal units. If configured, the remote
I/O station is starting up with missing or dam-
aged I/O module, if the module is plugged
later or replaced it will be automatically para-
meterized and I/O data will be exchanged.

Start-up behavior with wrong I/O module type
on any terminal unit

Remote I/O station is not starting

Diagnosis of presence of hot swap terminal
unit

Information is available either:
● via acyclic services

or
● as cyclic state information in the process

image
As of device index F1 and Automation Builder
Version 2.4.1 it is possible to configure a list of
required hot swap terminal units. If a required
hot swap terminal unit is missing (normal one
plugged) this will not prevent a normal oper-
ation but a diagnosis message will be gener-
ated for the corresponding slot.

Diagnosis of hot swap capability of I/O module
mounted on hot swap terminal unit

Diagnosis is transmitted as vendor specific
PROFINET channel diagnosis:
● Diagnosis in case that a not hot-swap-

pable I/O module is plugged on a hot
swap terminal unit

● Diagnosis in case that in a mixed
configuration with at least one hot swap
terminal unit an I/O module, that must
not be used in a hot swap configuration,
is mounted on any terminal unit of the
configuration

Production data and version index of the
modules is accessible via acyclic services

Diagnosis while hot swap module is pulled or
module (mounted on hot swap terminal unit)
has stopped working

PROFINET channel diagnosis is generated
together with standard "pull alarm" which must
be acknowledged

Input state in process image of controller while
module is pulled or module is not operational

Input = ZERO
In addition a standard PROFINET state infor-
mation is transmitted saying "Inputs not valid"

Diagnosis after plugging of the I/O module on
the hot swap terminal unit

PROFINET channel diagnosis is generated
together with standard "plug alarm" which
must be acknowledged

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4600

System behavior
If an expansion module is removed or defective during run time, the input data of this module
will be set to “0” and the module state will be set to the corresponding value. A diagnosis
message will be created in that case (see hardware description of CI501 Ä Chapter 5.2.6.7.2
“CI501-PNIO” on page 1203 / CI502 Ä Chapter 5.2.6.7.3 “CI502-PNIO” on page 1244 for
diagnosis messages).
In case a module is replaced, the new module will automatically be parameterized with the last
parameters of the removed module (if single parameters were written to the previously removed
module, this parameters will be ignored).
During pulling or plugging of a certain module, all other module will continue to operate with one
limitation: The reaction time of modules connected to the right of the affected module will be
bigger in that case (up to 50 ms).
If the bus failure detection is active for CI50x and failsafe is configured the following behavior
applies if a module is removed and replugged during failsafe condition:
● Last value configured for output:

– After a bus failure is detected, failsafe will be activated and the output will remain at its
last value.

– If the module is removed and plugged again, the output will remain off, and not be kept
its last value, as the last value of the new module is “0” in that case.

● Substitute value configured for output:
– After a bus failure is detected, failsafe will be activated and the output will be according

to the configured substitute value.
– If the module is removed and plugged again now, the output will be set according to the

configured substitute value again.
● Substitute value for x seconds configured for output:

– After a bus failure is detected, failsafe will be activated and the output will be according
to the configured substitute value for the configured time.

– If the module is removed and plugged again now, the output will be set according to the
configured substitute value again, and the configured time starts again.

Mandatory rules for hot swapping
Mandatory rules for hot swapping:
● Between two pull and / or plug operations of I/O modules a pause of at least 1 second must

be observed.
– That means if a module is pulled or plugged there has to be at least a break of 1 second

before the next module is pulled or plugged.
● At boot up of CI50x all configured expansion modules have to be physically available.

– Start up with missing modules is not supported.
● In the application program it is possible to detect if a hot swap terminal unit is mounted

in a specific position on the I/O bus. The information is available in the process data area
or can be read out via acyclic read. These can be accessed when the version of the
communication interface module supports hot swap.
– This has to be checked by application:

Best way for checking if a hot swap terminal unit is available or not, is checking the
corresponding information inside the process image.

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4601

6.8.4.3 PROFIBUS communication interface module
6.8.4.3.1 Hot swap
Introduction

With hot swap for AC500 and S500 it is possible to exchange I/O modules (with same type)
during runtime.

Preconditions for using hot swap

WARNING!
Risk of explosion or fire in hazardous environments during hot swapping!
Hot swap must not be performed in flammable environments to avoid
life-threatening injury and property damage resulting from fire or explosion.

WARNING!
Electric shock due to negligent behavior during hot swapping!
To avoid electric shock
– make sure the following conditions apply:

– Digital outputs are not under load.
– Input/output voltages above safety extra low voltage/

protective extra low voltage (SELV/PELV) are switched off.
– Modules are fully interlocked with the terminal unit with both snap-fits

engaged before switching on loads or input/output voltage.
– Never touch exposed contacts (dangerous voltages).
– Stay away from electrical contacts to avoid arc discharge.
– Do not operate a mechanical installation improperly.

NOTICE!
Risk of damage to I/O modules!
Hot swapping is only allowed for I/O modules.
Processor modules and communication interface modules must not be removed
or inserted during operation.

H = Hot swap

Hot swap
System requirements for hot swapping of I/O modules:

– Types of terminal units that support hot swapping of I/O modules have the
appendix TU5xx-H.

– I/O modules as of index F0.

The following I/O bus masters support hot swapping of attached I/O modules:

– Communication interface modules CI5xx as of index F0.
– Processor modules PM56xx-2ETH with firmware version as of V3.2.0.

Hot swap is not supported by AC500-eCo V3 CPU!

Hot swap

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4602

The index of the module is in the right corner of the label.

NOTICE!
Risk of damage to I/O modules!
Modules with index below F0 can be damaged when inserted or removed from
the terminal unit in a powered system.

NOTICE!
Risk of damage to I/O modules!
Do not perform hot swapping if any I/O module with firmware version lower than
3.0.14 is part of the I/O configuration.
For min. required device index see table below.

Device Min. required device index for I/O module as of
FW Version 3.0.14

AC522(-XC) F0

AI523 (-XC) D2

AI531 D4

AI531-XC D2

AI561 B2

AI562 B2

AI563 B3

AO523 (-XC) D2

AO561 B2

AX521 (-XC) D2

AX522 (-XC) D2

AX561 B2

CD522 (-XC) D1

Configuration and programming

System technology > System technology of the communication interface modules

2024/01/05 3ADR010583, 1, en_US 4603

Device Min. required device index for I/O module as of
FW Version 3.0.14

DA501 (-XC) D2

DA502 (-XC) F0

DC522 (-XC) D2

DC523 (-XC) D2

DC532 (-XC) D2

DC562 A2

DI524 (-XC) D2

DI561 B2

DI562 B2

DI571 B2

DI572 A1

DO524 (-XC) A3

DO526 A2

DO526-XC A0

DO561 B2

DO562 A2

DO571 B3

DO572 B2

DO573 A1

DX522 (-XC) D2

DX531 D2

DX561 B2

DX571 B3

FM562 A1

CI54x-DP, index >= F1
To support the hot swap feature for PROFIBUS below V3 PLCs, new slaves are available for the
CI54x-DP - CI541-DP, index >= F1 and the CI542-DP, index >= F1.
To be able to configure and to use the hot swap functionalities for the S500 modules below
PROFIBUS of V3 PLCs, these slaves have to be configured. A double-click on a device object
in the device tree opens the associated device editor. The editor provides generic and device-
specific tabs for the device configuration.
Copy and paste of I/O modules between the CI54x-DP and the CI54x-DP, index >= F1 is
possible.
Drag and drop between the CI54x-DP and the CI54x-DP, index >= F1 is not possible.

If the I/O modules must be moved from one CI54x-DP to the other one, cut and
past must be executed. Drag and drop is not possible.

Configuration and programming
System technology > System technology of the communication interface modules

2024/01/053ADR010583, 1, en_US4604

6.9 Diagnosis and debugging
6.9.1 The diagnosis system
6.9.1.1 General

The diagnosis system enables uniform diagnosis of the CPU and its local interfaces, of the I/O
bus with the connected S500 I/O devices and of the fieldbuses connected via communication
modules, considering the special features of the various fieldbuses. The safety CPU is also
integrated into the diagnosis system.
Diagnosis data of the devices can be accessed by
● CPU display
● Automation Builder
● IEC application
To forward the information to notify them by, e.g., webserver or OPC UA server, the data
retrieved in IEC application can be stored in variables.

Fig. 364: Overview of the diagnosis system

All diagnosis data is assigned to a device. System diagnosis (e.g., battery low) is coming from
the CPU device or one of the child objects (e.g., watchdog diagnosis of a task object).
Diagnosis is available for devices with representation in the Automation Builder device tree.
Diagnosis messages include the severity of an error. Error severity can be used for defining
system behavior, e.g., activating the error LED or stop the PLC Ä Chapter 6.9.1.6.1 “Error
severity” on page 4638.

Details on how to integrate and use function blocks to receive diagnosis messages from the
CPU and fieldbus devices are given in the application examples:
● AC500 V3 diagnosis in IEC application
● AC500 V3 diagnosis

● An event describes the current state of the device. It does not have to be acknowledged.
● An alarm describes that at a certain point of time, there was a diagnosis message. It does

not say anything about the current state of the device.
Alarms must be acknowledged by the user. After acknowledging, the alarm disappears for
all consumers.

Types of diag-
nosis messages

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4605

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010852&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011072&LanguageCode=en&DocumentPartId=&Action=Launch

Every diagnosis message has a come time.

With reference to diagnosis, there are different device states:
● Device without events and without unacknowledged alarms.
● Device with events or unacknowledged alarms.
● Device does not respond and is not available for online connection.

Diagnosis messages are always available for all consumers.
● ABB AC500 V3 devices:

– Events and unacknowledged alarms.
– Every diagnosis message with come time, location, error number and text.

● 3rd party devices:
– Events and unacknowledged alarms.
– Every diagnosis message with come time, location and error number.
– Clear text information if available either from a standard or from the device description.
– If available: Extended diagnosis: Additional data coming from the device for manual

analysis.

Some devices are able to provide extended diagnosis. This additional device-dependant diag-
nosis will only be collected on request and will be device type specific (e.g. bus scan request
on PROFINET I/O controller). Main intention is to cover commissioning use cases, when very
specific information is required that typically cannot be stored in error numbers in a reasonable
way.

6.9.1.2 Access to diagnosis data
● Error LED on CPU Ä Chapter 6.9.1.3 “Diagnosis in CPU display” on page 4607
● Automation Builder device tree Ä Chapter 6.9.1.4 “Diagnosis in Automation Builder”

on page 4611
● IEC application via device name Ä Chapter 6.9.1.5.4 “Device diagnosis” on page 4628
● IEC application via list of all available diagnosis Ä Chapter 6.9.1.5.3 “System diagnosis”

on page 4619
● External access via global IEC variables Fig. 364

● CPU display Ä Chapter 6.9.1.3.2 “Diagnosis descriptions” on page 4607
(for CPU, I/O bus and connected S500 I/O modules, not for communication modules and
field buses)

● Automation Builder via “All messages” window Ä Chapter 6.9.1.4.2 “Diagnosis descriptions”
on page 4611:
– Support for (bulk) acknowledgement of alarm
– Access to extended diagnosis data of 3rd party devices devices (if available), without any

interpretation
● IEC application via a list of all current diagnosis either of a device (device object from the

Automation Builder tree) Ä Chapter 6.9.1.5.4 “Device diagnosis” on page 4628 or of the
complete PLC Ä Chapter 6.9.1.5.3 “System diagnosis” on page 4619:
– Navigation chronologically in both directions (starting either from the oldest or newest

diagnosis)
– Access to the diagnosis numerically (evaluation by IEC application), textual (use on

HMI) or to extended diagnosis data of 3rd party devices (if available)
– Acknowledgement of alarms

● External access via global IEC variables by using the IEC application features for getting all
relevant information

Device state

Diagnosis
descriptions

Extended diag-
nosis

Access to
device state

Access to diag-
nosis descrip-
tions

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4606

Extended diagnosis data will be displayed in Automation Builder via “All messages” window.
The data is displayed as it is provided from the device without any interpretation. Refer to e.g.,
the manual of the device to get information about the extended diagnosis data.

6.9.1.3 Diagnosis in CPU display
6.9.1.3.1 Device state

If there is at least one active diagnosis message, the error LED ERR is on.
The behavior of the error LED depends on the setting of CPU parameter “Error LED” Ä Table
on page 1474.

Diagnosis of AC500-eCo CPUs can only be shown by LED ERR at CPU. No
display is available.

General information on the LEDs, the display and the function keys can be found in chapter
'Displays, LEDs and function keys on the front panel' Ä Chapter 6.8.2.5 “Display, LEDs and
function keys on the front panel” on page 4452.

6.9.1.3.2 Diagnosis descriptions
Ä Chapter 6.9.1.3.3 “DIAG - reading out diagnosis messages” on page 4609.

Entry Length
[byte]

Values Description Display

Error severity 1 0 .. 255 Used values: 1, 2, 3, 4, 11 Ä Chapter
6.9.1.6.1 “Error severity” on page 4638

Ex abc

Hardware ID (HwId) 1 0 .. 255 Location of diagnosis, e.g., subdevice, as
three-letter word Ä Further information
on page 4608

Ex abc

Error code 2 1 .. 65535 Error number (low word) 12345

SubSysteminfo byte 1 1 0 .. 255 Depends on hardware ID d1 123

SubSysteminfo byte 2 1 0 .. 255 Depends on hardware ID d2 123

SubSysteminfo byte 3 1 0 .. 255 Depends on hardware ID d3 123

SubSysteminfo byte 4 1 0 .. 255 Depends on hardware ID d4 123

The display of the processor module does not show any communication
modules or fieldbus diagnosis. To view these diagnosis messages use
Automation Builder or IEC application.

Ä Chapter 6.9.1.4 “Diagnosis in Automation Builder” on page 4611

Ä Chapter 6.9.1.5 “Diagnosis in IEC application” on page 4615

This is valid for:

– all external communication modules including safety processor module
– CANopen on onboard CAN interface
– fieldbuses on Ethernet interfaces ETH1/ETH2 like PROFINET IO controller,

EtherCAT master, etc.

Access to
extended diag-
nosis

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4607

The location of a diagnosis is shown in the CPU display with 3 characters.

Display Location of diagnosis
CPU

CPU RAM

CPU flash

CPU flashdisk

CPU memory card

CPU display

CPU battery

Real-time clock (RTC)

Floating point unit (FPU)

Power supply

Communication module 1

Communication module 2

Communication module 3

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4608

Display Location of diagnosis
Communication module 4

Communication module 5

Communication module 6

COM1 serial interface 1

COM2 reserved for serial interface 2

CAN interface

I/O bus

Ethernet ETH1

Ethernet ETH2

6.9.1.3.3 DIAG - reading out diagnosis messages
Table 853: Example - no diagnosis message in state list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed.

- - - -

1 No action No action Return into RUN/STOP
mode.

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4609

Table 854: Example - diagnosis messages in state list
State Display Result on pressing one of the function keys

0 The processor
module is in
RUN/STOP
mode.

State 1 is
displayed.

- - - -

1

Number of diag-
nosis mes-
sages; here 4

 Go to first/
next diag-
nosis mes-
sage in state
list (e.g.,
state 2).

Go to last/
previous
diagnosis
message in
state list.

Return into
RUN/STOP
mode.

Return into
RUN/STOP
mode.

2

Diagnosis mes-
sage example:
Error battery
empty or
missing.
Toggling
between state 2
and 3.

Selects
displayed
diagnosis
message
and
shows
details.
Ä Table 8
55 “Exam
ple - error
battery
empty or
missing”
on page 4610

Go to first/
next diag-
nosis mes-
sage in state
list.

Go to last/
previous
diagnosis
message in
state list.

Return into
RUN/STOP
mode.

Acknowl-
edge and
return into
RUN/STOP
mode.

3

Error ID
example
Toggling
between state 2
and 3

Table 855: Example - error battery empty or missing
State Display Result on pressing one of the function keys

0

E4 = error
severity 4
bAt = subdevice
battery
Toggling
between state 0
and 1

State 2 is
displayed.

State 2 is
displayed.

State 6 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

1

Error ID
example
Toggling
between state 0
and 1.

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4610

State Display Result on pressing one of the function keys

2

Error number 8
Battery is
missing or
empty.

 State 3 is
displayed.

State 0 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Displays
state 0.
Return to
diagnosis
state list.

3

Detail 1
Subdevice 22:
battery

 State 4 is
displayed.

State 2 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

4

Detail 2
Error type 0:
device

 State 5 is
displayed.

State 3 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

5

Detail 3
Error type
number 0:
device itself

 State 6 is
displayed.

State 4 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed
Return to
diagnosis
state list.

6

Detail 4
Additional infor-
mation 0: none

 State 1 is
displayed.

State 5 is
displayed.

State 0 is
displayed.
Return to
diagnosis
state list.

State 0 is
displayed.
Return to
diagnosis
state list.

6.9.1.4 Diagnosis in Automation Builder
6.9.1.4.1 Device state

In Automation Builder, colored icons next to the devices’ nodes in the device tree indicate
the device state of each single device Ä Chapter 6.9.2.3 “Project tree in online mode”
on page 4641.

6.9.1.4.2 Diagnosis descriptions
For output of diagnosis messages in textual format Automation Builder and IEC application
use text lists. Both application use the same text lists. The text lists are part of the device
description. When inserting a new device in device tree of project, the corresponding text list is
loaded. This text lists are part of PLC program and will be downloaded into the PLC.

Displayed text

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4611

It is necessary to include a visualization, even if visualization will not be used.
Ä Chapter 6.4.5 “CODESYS Visualization” on page 2852

Without visualization the text lists will not be included.

The text lists are generated automatically. We recommend that you do not
change them manually because the changes can be overwritten automatically
and without prompting.

The text lists for 3rd party devices are created during reading of the device description sheets,
e.g., GSDML files for PROFINET I/O devices.
The name of a text list for a PROFINET I/O device is: Diag_PNIO_Vendor ID_Device ID

CI501-PNIO: Diag_PNIO_26_22
26 = vendor ID ABB, 22 = device ID CI501-PNIO

Example

The text list for the AC500 PROFINET I/O modules contains all text needed for PROFINET
standard diagnosis and AC500 process alarm handling.
Which texts are used, depends on parameter “Selection of diagnosis method”: Double-click on a
PROFINET I/O module and open tab “General”.

Displayed text
for 3rd party
devices

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4612

6.9.1.4.3 System diagnosis
In Automation Builder the system diagnosis is activated by default and can be deactivated in:
“Tools è Options è Diagnosis è Enable subtree diagnosis”

6.9.1.4.4 Device diagnosis
Each node in the device tree has a diagnosis view, which displays the diagnosis messages for
this device only.
The message consists of:
● Type Ä Chapter 6.9.1.4.5 “Diagnosis history” on page 4614
● Timestamp in date and time YYYY-MM-DD hh:mm:ss.ms
● Error severity
● Error code
● Diagnosis description
● Additional data
To view the diagnosis message:
1. Double-click on a device.
2. Select the tab “Diagnosis”.

Battery empty or missing.Example

Wrong module configured on I/O bus.Example

Device diagnosis is disabled by default.
To enable/disable device diagnosis:
1. Double-click on the PLC.
2. Select the tab “PLC Settings”.

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4613

3. Under “Additional Settings” enable/disable “Diagnosis for devices”.

ð When the device diganosis is disabled, this symbol will be displayed in the device
tree and no diagnosis messages will be shown.

6.9.1.4.5 Diagnosis history
The 'Diagnosis History' view provides an overview of the current and past system events that
resulted in a diagnosis event.
● Incoming diagnosis events are indicated with .

After the problem that causes a diagnosis event has been resolved, this diagnosis event is
indicated automatically with .

● Alarm events, e.g. PROFINET alarm are indicated with .
In the 'Diagnosis' view the user can acknowledge an alarm. Note that an alarm event can be
acknowledged though the problem that causes the alarm still persists.
The acknowledge action is indicated with on the concerning event entry. If the icon
changes to , the acknowledge action has been completed by the PLC.

The following buttons are available in the 'Diagnosis History' view:
● Start/Stop refresh:

Enables or disables the automatic refresh mode. In refresh mode new diagnosis events
will be displayed automatically. Only the last 100 entries are shown in this view, the latest
events on top of the list.

● Get next entries:
Adds the previous (older) 100 diagnosis events at the bottom of the list.

● Export complete history:
Creates a csv file with all events from the diagnosis history (not only the visible ones).

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4614

6.9.1.5 Diagnosis in IEC application
6.9.1.5.1 General

There are two possibilities for accessing the diagnosis messages in the IEC application:
● System diagnosis: Access to diagnosis messages of the whole PLC
● Device diagnosis: Access to the diagnosis messages of a device
For both possibilities common data types (structures and enumerations) are defined in
the library AC500_DiagTypesÄ Chapter 6.9.1.5.2 “Data types in library AC500_DiagTypes”
on page 4616. The library is automatically included in PLC project.

Details on how to integrate and use function blocks to receive diagnosis messages from the
CPU and fieldbus devices are given in the application examples:
● AC500 V3 diagnosis in IEC application
● AC500 V3 diagnosis

For output of diagnosis messages in textual format Automation Builder and IEC application
use text lists. Both application use the same text lists. The text lists are part of the device
description. When inserting a new device in device tree of project, the corresponding text list is
loaded. This text lists are part of PLC program and will be downloaded into the PLC.

It is necessary to include a visualization, even if visualization will not be used.
Ä Chapter 6.4.5 “CODESYS Visualization” on page 2852

Without visualization the text lists will not be included.

The text lists are generated automatically. We recommend that you do not
change them manually because the changes can be overwritten automatically
and without prompting.

Displayed text

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4615

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010852&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011072&LanguageCode=en&DocumentPartId=&Action=Launch

The text lists for 3rd party devices are created during reading of the device description sheets,
e.g., GSDML files for PROFINET I/O devices.
The name of a text list for a PROFINET I/O device is: Diag_PNIO_Vendor ID_Device ID

CI501-PNIO: Diag_PNIO_26_22
26 = vendor ID ABB, 22 = device ID CI501-PNIO

Example

The text list for the AC500 PROFINET I/O modules contains all text needed for PROFINET
standard diagnosis and AC500 process alarm handling.
Which texts are used, depends on parameter “Selection of diagnosis method”: Double-click on a
PROFINET I/O module and open tab “General”.

6.9.1.5.2 Data types in library AC500_DiagTypes
General

All data types regarding diagnosis are defined in the library AC500_DiagTypes.

Structure DIAG_VAL_TYPE
This data type specifies the format of all kinds of diagnosis messages in numeric format. It
consists of one element for each detail of a diagnosis message.

Name Type Initial Comment
diTimestamp DT DATE_AND_TIME#1970-1-1-0:0 RTC time of eDiagEvent_Occured

uiMs UINT 0 Milliseconds of event

eClass teClass teClass.eDiagClass_4_Warning Error severity of diagnosis message

szDevice STRING(80) "" Name of device, max. 80 characters

eHwInterfaceId teHwId teHwId_CPU Identifier of hardware interface

dwSubSysteminfo DWORD 0 Any number describing details or loca-
tion within device, device-specific

dwAdditional DWORD 0 Additional number describing details or
location within device, optional, device-
specific

dwErrorCode DWORD 0 Error code

wSizeExtDiag DWORD 0 Number of bytes of extended diagnosis
data

Displayed text
for 3rd party
devices

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4616

Structure DIAG_TXT_TYPE
This data type specifies the format of all kinds of diagnosis messages in textual format. It
consists of a single string containing all details of a diagnosis message.

Name Type Initial Comment
szDiag STRING(512) "" Diagnosis message as text, max. 512

characters

The text consists of the following data, separated by semicolon:
● Timestamp in Date_And_Time (DT) format of eDiagEvent_Occured and added milliseconds
● Error severity
● Device name (max. 80 characters) as defined in Automation Builder device tree
● The error text itself, composed of the interpretation of dwSubSysteminfo and dwAdditional

and the error text plus remedy (if available) from Automation Builder text list according
dwErrorCode. Displayed as: error text -> remedy.

Battery empty or missing.Example

Enumeration ERROR_ID
Type of the return values of all methods and functions to request information on diagnosis.

Name Type Comment Remedy
NO_ERROR 16#0 Execution successfully completed

ERR_PARAMETER 16#1 Invalid parameter value in function call Correct parameter

ERR_NO_SINK 16#2 Failed to register as sink

ERR_NO_TEXT_LIST 16#3 Failed to get a device text list Check text lists

ERR_NO_TEXT_
CONTENT

16#4 Failed to get at least one content from text
list

ERR_COMPETING 16#5 Failed due to competing access of other
method

Try again

ERR_ASYNC 16#6 Failed to create async process

ERR_INTERNAL 16#7 Any internal error during execution

BUSY 16#FFF Busy Call again to get final result

NO_ERROR_NO_DATA 16#FFFF Execution successfully completed, no more
diagnosis messages

All values except "BUSY" are final results. In case "NO_ERROR" is returned, the requested
action has been successfully performed. "NO_ERROR_NO_DATA" also indicates a successful
completion. The only difference to "NO_ERROR" is the fact, that there is one (more) data to
be provided. All other return values (except "BUSY") are final error states. In case a method or
function returns "BUSY", it has to be called again in the following cycles until it returns a final
result.

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4617

Enumeration teClass
Specifies the error severity of diagnosis messages Ä Chapter 6.9.1.6.1 “Error severity”
on page 4638.

Name Error severity
eDiagClass_2_SeriousError 2

eDiagClass_3_Error 3

eDiagClass_4_Warning 4

eDiagClass_Parameter 11

Enumeration teEvent
The enumeration teEvent specifies the severity of diagnosis messages.

Name Type Initial Comment
eDiagEvent_Occured DINT 1 Error occurred, remains "active" until

eDiagEvent_Disappeared

eDiagEvent_Disappeared DINT 2 Error disappeared, became "active" due to
eDiagEvent_Occured earlier on

eDiagEvent_Received DINT 4 Received a diagnosis message which cannot be analyzed in
detail, cannot disappear, needs to be acknowledged

eDiagEvent_Acknowledged DINT 8 Acknowledge a diagnosis message which has been received
by eDiagEvent_Received, removes diagnosis message from
diagnosis system although error may still be present

Enumeration teHwId
The enumeration teHwId specifies the hardware component as location of a diagnosis mes-
sage.

Name Initial Comment
eDiagHwId_CPU 0 Any diagnosis message regarding CPU itself, like "battery", "sd card",

etc.

eDiagHwId_Coupler1 1 Any diagnosis message regarding communication module at slot 1.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler2 2 Any diagnosis message regarding communication module at slot 2.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler3 3 Any diagnosis message regarding communication module at slot 3.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler4 4 Any diagnosis message regarding communication module at slot 4.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4618

Name Initial Comment
eDiagHwId_Coupler5 5 Any diagnosis message regarding communication module at slot 5.

May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_Coupler6 6 Any diagnosis message regarding communication module at slot 6.
May be indicated by any corresponding communication module driver
(instance) or a protocol driver (instance)

eDiagHwId_COM1 7 Any diagnosis message regarding COM1. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

eDiagHwId_COM2 8 Any diagnosis message regarding COM2. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

eDiagHwId_CAN 9 Any diagnosis message regarding CAN interface. May be indicated
by any corresponding interface driver (instance) or a protocol driver
(instance)

eDiagHwId_OnboardIO 10 Onboard I/O, AC500-eCo only

eDiagHwId_OptionBoard1 11 Option board 1, AC500-eCo only

eDiagHwId_OptionBoard2 12 Option board 2, AC500-eCo only

eDiagHwId_OptionBoard3 13 Option board 3, AC500-eCo only

eDiagHwId_IOBus 14 I/O bus

eDiagHwId_ETH1 15 Any diagnosis message regarding ETH1. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

eDiagHwId_ETH2 16 Any diagnosis message regarding ETH2. May be indicated by any corre-
sponding interface driver (instance) or a protocol driver (instance)

The hardware ID HwId is only used for diagnosis output in CPU display to identify the location of
a diagnosis message Ä Chapter 6.9.1.3 “Diagnosis in CPU display” on page 4607.

6.9.1.5.3 System diagnosis
Introduction

Library AC500_Diag provides several methods and functions to access the diagnosis messages
on all devices in the PLC application. It contains also a function to convert numeric diagnosis
into a textual format.
The variables and their assigned values can be referred to within the IEC application as well as
they can be used to transfer diagnosis messages to any visualization client.

Device state
General

The library contains a single function block named "Diag", providing several methods to process
the device state.

Method Description
NumTotal Provides the total number of currently active diagnosis messages

NumClass Provides the number of currently active diagnosis messages related to the
error severity

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4619

Method NumTotal
This method provides the total number of currently active diagnosis messages (including param-
eter errors, etc.).

Scope Name Type Comment
Return NumTotal DWORD Number of diagnosis messages

Example

Method NumClass
This method provides the number of currently active diagnosis messages related to the error
severity.

Scope Name Type Initial Comment
Return NumClass DWORD

Input DataInVal AC500_DiagTypes.teClass eClass.eDiagClass_2
_SeriousError

Error severity
of diagnosis
message

Example

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4620

Diagnosis descriptions
General

The library contains a single function block "Diag", providing several methods to process diag-
nosis descriptions.
All methods for system diagnosis start with "Get...". For device diagnosis the prefix "Diag" is
added: "DiagGet...". For better readability, only the method names for system diagnosis is used
in the descriptions of the methods.

Table 856: Methods for handling diagnosis entries
Method for system
diagnosis

Method for device
diagnosis

Description

Ack DiagAck Acknowledge a diagnosis alarm previ-
ously requested by using any Get... /
DiagGet... method Ä Chapter 6.9.1.5.3.3.2
“Method Ack / DiagAck: acknowledgement”
on page 4623

GetFirstVal DiagGetFirstVal Get the first (oldest) diagnosis message,
numeric values Ä Chapter 6.9.1.5.3.3.3
“Methods Get... / DiagGet...: get and sort diag-
nosis messages” on page 4623

GetNextVal DiagGetNextVal Get the next diagnosis message, numeric
values Ä Chapter 6.9.1.5.3.3.4 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4624

GetLastVal DiagGetLastVal Get the last (newest) diagnosis message,
numeric values Ä Chapter 6.9.1.5.3.3.4
“Method Get-xxx-Val / DiagGet-xxx-Val:
numeric values” on page 4624

GetPrevVal DiagGetPrevVal Get the previous diagnosis message, numeric
values Ä Chapter 6.9.1.5.3.3.4 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4624

GetFirstValExt DiagGetFirstValExt Get the first (oldest) diagnosis message,
numeric and extended numeric values
Ä Chapter 6.9.1.5.3.3.5 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4624

GetNextValExt DiagGetNextValExt Get the next diagnosis message, numeric
and extended numeric values Ä Chapter
6.9.1.5.3.3.5 “Method Get-xxx-ValExt / Dia-
gGet-xxx-ValExt: numeric values and
extended numeric values” on page 4624

GetLastValExt Diag GetLastValExt Get the last (newest) diagnosis message,
numeric and extended numeric values
Ä Chapter 6.9.1.5.3.3.5 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4624

GetPrevValExt DiagGetPrevValExt Get the previous diagnosis message,
numeric and extended numeric values
Ä Chapter 6.9.1.5.3.3.5 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4624

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4621

Method for system
diagnosis

Method for device
diagnosis

Description

GetFirstValAndTxt DiagGetFirstVa-
lAndTxt

Get the first (oldest) diagnosis message,
numeric values and text Ä Chapter
6.9.1.5.3.3.6 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4625

GetNextValAndTxt DiagGetNextVa-
lAndTxt

Get the next diagnosis message, numeric
values and text Ä Chapter 6.9.1.5.3.3.6
“Method Get-xxx-ValAndTxt / DiagGet-xxx-
ValAndTxt: numeric values and text”
on page 4625

GetLastValAndTxt DiagGetLastVa-
lAndTxt

Get the last (newest) diagnosis message,
numeric values and text Ä Chapter
6.9.1.5.3.3.6 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4625

GetPrevValAndTxt DiagGetPrevVa-
lAndTxt

Get the previous diagnosis message,
numeric values and text Ä Chapter
6.9.1.5.3.3.6 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4625

GetFirstValAndTxtExt DiagGetFirstVa-
lAndTxtExt

Get the first (oldest) diagnosis message,
numeric, extended numeric values and text
Ä Chapter 6.9.1.5.3.3.7 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4626

GetNextValAndTxtExt DiagGetNextVa-
lAndTxtExt

Get the next diagnosis message, numeric,
extended numeric values and text Ä Chapter
6.9.1.5.3.3.7 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4626

GetLastValAndTxtExt DiagGetLastVa-
lAndTxtExt

Get the last (newest) diagnosis mes-
sage, extended numeric values and text
Ä Chapter 6.9.1.5.3.3.7 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4626

GetPrevValAndTxtExt DiagGetPrevVa-
lAndTxtExt

Get the previous diagnosis message,
extended numeric values and text Ä Chapter
6.9.1.5.3.3.7 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4626

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4622

Method Ack / DiagAck: acknowledgement
This method can be used to acknowledge a diagnosis alarm previously requested by using any
Get... / DiagGet... method. Alternatively, you can acknowledge an alarm in Automation
Builder.
After acknowledgement, the alarm is deleted from the diagnosis system.

Scope Name for
device
diagnosis

Name for
device
diagnosis

Type Comment

Return Ack DiagAck AC500_DiagTypes.ERROR_ID

Input Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable containing
details of diagnosis
alarm to be acknowl-
edged

System diagnosis: acknowledge first diagnosis messageExample

Methods Get... / DiagGet...: get and sort diagnosis messages
All these methods can be used to get the first (oldest), next, last (newest) or previous diagnosis
message stored in diagnosis system. The only difference are the details the methods provide.
While, e.g., Get-xxx-Val just provides the basic information in numeric format, Get-xxx-
ValExt additionally provides this information by the extended diagnosis data of the entry.

The numeric format provided by these methods can be converted into textual format later on
if required Ä Chapter 6.9.1.5.3.3.8 “Function DiagValToTxt” on page 4627. Alternatively, the
methods Get-xxx-ValAndTxt and Get-xxx-ValAndTxtExt can be used for numeric and
textual format in parallel Ä Chapter 6.9.1.5.3.3.6 “Method Get-xxx-ValAndTxt / DiagGet-xxx-Val-
AndTxt: numeric values and text” on page 4625 Ä Chapter 6.9.1.5.3.3.7 “Method Get-xxx-Val-
AndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text”
on page 4626.
All methods may need multiple cycles to process the request. Therefore, they must be
called in successive cycles until they return a final result Ä Chapter 6.9.1.5.2.4 “Enumeration
ERROR_ID” on page 4617.
1. Call any GetFirst... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetNext... method as long as its
final result is "NO_ERROR".

1. Call any GetLast... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetPrev... method as long as its
final result is "NO_ERROR".

All diagnosis
messages
sorted by time,
ascending

All diagnosis
messages
sorted by time,
descending

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4623

Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
-xxx- = First, Next, Last, Prev. Example: GetFirstVal, DiagGetLastVal.

Scope Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Return Get-xxx-Val DiagGet-xxx-
Val

AC500_DiagTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write data
to

System diagnosis: get values for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
-xxx- = First, Next, Last, Prev. Example: GetNextValExt, DiagGetPrevValExt.

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4624

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-ValExt DiagGet-xxx-
ValExt

AC500_Dia-
gTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYP
E

Variable to write data
to

Input pExt pExt POINTER TO BYTE Address of buffer to
copy extended data to

Input Size Size WORD Size of buffer to copy
extended data to

Inout Length Length WORD Size of extended data
copied to buffer

System diagnosis: get numeric values and extended numeric values for first diagnosis mes-
sage

Example

Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
-xxx- = First, Next, Last, Prev. Example: GetFirstValAndTxt, DiagGetPrevValAndTxt

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-Val-
AndTxt

DiagGet-xxx-Val-
AndTxt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write
data to

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_TYPE

Variable to write
text to

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4625

System diagnosis: get numeric values and text for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and
text

-xxx- = First, Next, Last, Prev. Example: GetLastValAndTxtExt, DiagGetFirstValAndTxtExt

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Retur
n

Get-xxx-Val-
AndTxtExt

DiagGet-xxx-Val-
AndTxtExt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_
TYPE

 Variable to write
data to

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4626

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_
TYPE

 Variable to write
text to

Input pExt pExt POINTER TO BYTE 0 Address of buffer
to copy extended
data to

Input Size Size WORD 0 Size of buffer to
copy extended
data to

Inout Length Length WORD 0 Size of extended
data copied to
buffer

System diagnosis: get numeric values, extended numeric values and text of first diagnosis
message

Example

Function DiagValToTxt
Call this function to convert a numeric diagnosis message into a textual one at any time, in
case this has not yet been done using a method providing both types when requesting this
information.

Scope Name Type Comment
Return DiagValToTxt AC500_DiagTypes.ERROR_ID

Inout DataInVal AC500_DiagTypes.DIAG_VAL_TYPE Variable to convert

Inout DataOutTxt AC500_DiagTypes.DIAG_TXT_TYPE Variable to write text to

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4627

System diagnosis: convert first diagnosis message from numeric value to textExample

Battery empty or missingExample

6.9.1.5.4 Device diagnosis
Activate device diagnosis

While the notification of diagnosis messages at the display and the Automation Builder is ena-
bled by default, the functionality to access diagnosis messages from within the IEC application
needs to be explicitly enabled.
1. Double-click on the CPU in the device tree.
2. Select tab “PLC Settings”.
3. Under “Additional Settings” select “Enable Diagnosis for devices”.

ð Library CAA Device Diagnosis (namespace DED) is automatically included in the
project. This library is needed for displaying and processing the device state.

In case the functionality of diagnosis is no longer needed in IEC application, we recommend to
disable this setting.

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4628

Device state
1. Open one of the IEC application code editors.
2. Type the device's name as it is written in the device tree, followed by a dot (".").
3. Select the method GetDeviceState from the context menu or type the name of the

method on yourself.

4. Assign the function’s parameters.

Scope Name Type Comment
Return GetDeviceState DEVICE_STATE

Ä Further information
on page 4629

Current device state

Output xDiagnosisInfoAvailable BOOL If TRUE, diagnosis messages
are available regarding the
concerning device (= node).

Output eError ERROR Ä Fur-
ther information
on page 4630

Type of the return values of
all methods and functions of
library CAA Device Diagnosis

Table 857: Enumeration DEVICE_STATE (part of the library CAA Device Diagnosis (DED))
Name Type Initial Icon in AB Comment
UNKNOWN INT 0 The device is in state unknown.

Example: No supervision mechanism
active

STOPPED INT 1 The device is stopped.

RUNNING INT 2 The device is running.

ERROR INT 3 The device is in error state.

DISABLED INT 4 The device is disabled in device tree.

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4629

Name Type Initial Icon in AB Comment
NOT_CONFIG-
URED

INT 5 The device has not been yet configured by
the stack.
Example: Configuration phase not yet
started

CONFIGURED INT 6 The device has been configured by the
stack.
Example: Configuration phase finished but
the device is not in running state

NOT_FOUND INT 7 The device was not found on bus.

Table 858: Enumeration ERROR (part of the library CAA Device Diagnosis (DED))
Name Type Initial Comment
NO_ERROR INT 0 No error

FIRST_ERROR INT 1300 First library-specific error

TIME_OUT INT 1301 Timeout occured.

ABORT INT 1302 Operation was aborted.

REF_INVALID INT 1303 The interface reference was invalid.

NOT_SUPPORTED INT 1304 The function is not supported.

ERROR_IO INT 1305 A general I/O configuration error occured.

PARAM_INVALID INT 1306 Invalid parameter

NODE_NOT_EXISTING INT 1307 The specified node does not exist.

NO_MEMORY INT 1308 Dynamic memory allocation is disabled, or
system is out of memory.

ADR_NOT_FOUND INT 1309 The specified I/O address is not valid.

INST_NOT_FOUND INT 1310 There is no associated [Device] instance
for the specific I/O address.

NO_DATA INT 1311 There is no data available.

OPERATION_INVALID INT 1312 Operation not possible due to the current
state

FIRST_MF INT 1350 First manufacturer-specific error

LAST_ERROR INT 1399 Last error

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4630

Diagnosis descriptions
General

The library contains a single function block "Diag", providing several methods to process diag-
nosis descriptions.
All methods for system diagnosis start with "Get...". For device diagnosis the prefix "Diag" is
added: "DiagGet...". For better readability, only the method names for system diagnosis is used
in the descriptions of the methods.

Table 859: Methods for handling diagnosis entries
Method for system
diagnosis

Method for device
diagnosis

Description

Ack DiagAck Acknowledge a diagnosis alarm previ-
ously requested by using any Get... /
DiagGet... method Ä Chapter 6.9.1.5.4.3.2
“Method Ack / DiagAck: acknowledgement”
on page 4633

GetFirstVal DiagGetFirstVal Get the first (oldest) diagnosis message,
numeric values Ä Chapter 6.9.1.5.4.3.3
“Methods Get... / DiagGet...: get and sort diag-
nosis messages” on page 4633

GetNextVal DiagGetNextVal Get the next diagnosis message, numeric
values Ä Chapter 6.9.1.5.4.3.4 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4634

GetLastVal DiagGetLastVal Get the last (newest) diagnosis message,
numeric values Ä Chapter 6.9.1.5.4.3.4
“Method Get-xxx-Val / DiagGet-xxx-Val:
numeric values” on page 4634

GetPrevVal DiagGetPrevVal Get the previous diagnosis message, numeric
values Ä Chapter 6.9.1.5.4.3.4 “Method Get-
xxx-Val / DiagGet-xxx-Val: numeric values”
on page 4634

GetFirstValExt DiagGetFirstValExt Get the first (oldest) diagnosis message,
numeric and extended numeric values
Ä Chapter 6.9.1.5.4.3.5 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4634

GetNextValExt DiagGetNextValExt Get the next diagnosis message, numeric
and extended numeric values Ä Chapter
6.9.1.5.4.3.5 “Method Get-xxx-ValExt / Dia-
gGet-xxx-ValExt: numeric values and
extended numeric values” on page 4634

GetLastValExt Diag GetLastValExt Get the last (newest) diagnosis message,
numeric and extended numeric values
Ä Chapter 6.9.1.5.4.3.5 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4634

GetPrevValExt DiagGetPrevValExt Get the previous diagnosis message,
numeric and extended numeric values
Ä Chapter 6.9.1.5.4.3.5 “Method Get-xxx-
ValExt / DiagGet-xxx-ValExt: numeric values
and extended numeric values” on page 4634

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4631

Method for system
diagnosis

Method for device
diagnosis

Description

GetFirstValAndTxt DiagGetFirstVa-
lAndTxt

Get the first (oldest) diagnosis message,
numeric values and text Ä Chapter
6.9.1.5.4.3.6 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4635

GetNextValAndTxt DiagGetNextVa-
lAndTxt

Get the next diagnosis message, numeric
values and text Ä Chapter 6.9.1.5.4.3.6
“Method Get-xxx-ValAndTxt / DiagGet-xxx-
ValAndTxt: numeric values and text”
on page 4635

GetLastValAndTxt DiagGetLastVa-
lAndTxt

Get the last (newest) diagnosis message,
numeric values and text Ä Chapter
6.9.1.5.4.3.6 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4635

GetPrevValAndTxt DiagGetPrevVa-
lAndTxt

Get the previous diagnosis message,
numeric values and text Ä Chapter
6.9.1.5.4.3.6 “Method Get-xxx-ValAndTxt /
DiagGet-xxx-ValAndTxt: numeric values and
text” on page 4635

GetFirstValAndTxtExt DiagGetFirstVa-
lAndTxtExt

Get the first (oldest) diagnosis message,
numeric, extended numeric values and text
Ä Chapter 6.9.1.5.3.3.7 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4626

GetNextValAndTxtExt DiagGetNextVa-
lAndTxtExt

Get the next diagnosis message, numeric,
extended numeric values and text Ä Chapter
6.9.1.5.3.3.7 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4626

GetLastValAndTxtExt DiagGetLastVa-
lAndTxtExt

Get the last (newest) diagnosis mes-
sage, extended numeric values and text
Ä Chapter 6.9.1.5.3.3.7 “Method Get-xxx-
ValAndTxtExt / DiagGet-xxx-ValAndTxtExt:
numeric values, extended numeric values and
text” on page 4626

GetPrevValAndTxtExt DiagGetPrevVa-
lAndTxtExt

Get the previous diagnosis message,
extended numeric values and text Ä Chapter
6.9.1.5.3.3.7 “Method Get-xxx-ValAndTxtExt /
DiagGet-xxx-ValAndTxtExt: numeric values,
extended numeric values and text”
on page 4626

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4632

Method Ack / DiagAck: acknowledgement
This method can be used to acknowledge a diagnosis alarm previously requested by using any
Get... / DiagGet... method. Alternatively, you can acknowledge an alarm in Automation
Builder.
After acknowledgement, the alarm is deleted from the diagnosis system.

Scope Name for
device
diagnosis

Name for
device
diagnosis

Type Comment

Return Ack DiagAck AC500_DiagTypes.ERROR_ID

Input Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable containing
details of diagnosis
alarm to be acknowl-
edged

System diagnosis: acknowledge first diagnosis messageExample

Methods Get... / DiagGet...: get and sort diagnosis messages
All these methods can be used to get the first (oldest), next, last (newest) or previous diagnosis
message stored in diagnosis system. The only difference are the details the methods provide.
While, e.g., Get-xxx-Val just provides the basic information in numeric format, Get-xxx-
ValExt additionally provides this information by the extended diagnosis data of the entry.

The numeric format provided by these methods can be converted into textual format later on
if required Ä Chapter 6.9.1.5.3.3.8 “Function DiagValToTxt” on page 4627. Alternatively, the
methods Get-xxx-ValAndTxt and Get-xxx-ValAndTxtExt can be used for numeric and
textual format in parallel Ä Chapter 6.9.1.5.4.3.6 “Method Get-xxx-ValAndTxt / DiagGet-xxx-Val-
AndTxt: numeric values and text” on page 4635 Ä Chapter 6.9.1.5.4.3.7 “Method Get-xxx-Val-
AndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text”
on page 4636.
All methods may need multiple cycles to process the request. Therefore, they must be
called in successive cycles until they return a final result Ä Chapter 6.9.1.5.2.4 “Enumeration
ERROR_ID” on page 4617.
1. Call any GetFirst... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetNext... method as long as its
final result is "NO_ERROR".

1. Call any GetLast... method until it indicates a final result.

2. If the result is not "NO_ERROR_NO_DATA": Call any GetPrev... method as long as its
final result is "NO_ERROR".

All diagnosis
messages
sorted by time,
ascending

All diagnosis
messages
sorted by time,
descending

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4633

Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
-xxx- = First, Next, Last, Prev. Example: GetFirstVal, DiagGetLastVal.

Scope Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Return Get-xxx-Val DiagGet-xxx-
Val

AC500_DiagTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write data
to

System diagnosis: get values for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
-xxx- = First, Next, Last, Prev. Example: GetNextValExt, DiagGetPrevValExt.

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4634

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-ValExt DiagGet-xxx-
ValExt

AC500_Dia-
gTypes.ERROR_ID

Inout Data Data AC500_Dia-
gTypes.DIAG_VAL_TYP
E

Variable to write data
to

Input pExt pExt POINTER TO BYTE Address of buffer to
copy extended data to

Input Size Size WORD Size of buffer to copy
extended data to

Inout Length Length WORD Size of extended data
copied to buffer

System diagnosis: get numeric values and extended numeric values for first diagnosis mes-
sage

Example

Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
-xxx- = First, Next, Last, Prev. Example: GetFirstValAndTxt, DiagGetPrevValAndTxt

Scop
e

Name for
device diag-
nosis

Name for
device diag-
nosis

Type Comment

Retur
n

Get-xxx-Val-
AndTxt

DiagGet-xxx-Val-
AndTxt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_TYPE

Variable to write
data to

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_TYPE

Variable to write
text to

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4635

System diagnosis: get numeric values and text for first diagnosis messageExample

Online mode: battery empty or missingExample

Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and
text

-xxx- = First, Next, Last, Prev. Example: GetLastValAndTxtExt, DiagGetFirstValAndTxtExt

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Retur
n

Get-xxx-Val-
AndTxtExt

DiagGet-xxx-Val-
AndTxtExt

AC500_Dia-
gTypes.ERROR_ID

Inout DataVal DataVal AC500_Dia-
gTypes.DIAG_VAL_
TYPE

 Variable to write
data to

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4636

Scop
e

Name for device
diagnosis

Name for device
diagnosis

Type Initial Comment

Inout DataTxt DataTxt AC500_Dia-
gTypes.DIAG_TXT_
TYPE

 Variable to write
text to

Input pExt pExt POINTER TO BYTE 0 Address of buffer
to copy extended
data to

Input Size Size WORD 0 Size of buffer to
copy extended
data to

Inout Length Length WORD 0 Size of extended
data copied to
buffer

System diagnosis: get numeric values, extended numeric values and text of first diagnosis
message

Example

Function DiagValToTxt
Call this function to convert a numeric diagnosis message into a textual one at any time, in
case this has not yet been done using a method providing both types when requesting this
information.

Scope Name Type Comment
Return DiagValToTxt AC500_DiagTypes.ERROR_ID

Inout DataInVal AC500_DiagTypes.DIAG_VAL_TYPE Variable to convert

Inout DataOutTxt AC500_DiagTypes.DIAG_TXT_TYPE Variable to write text to

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4637

System diagnosis: convert first diagnosis message from numeric value to textExample

Battery empty or missingExample

6.9.1.6 Structure of error numbers
6.9.1.6.1 Error severity

Error severity Type Description Example
1 Fatal errors Safe operation of the

operating system is no
longer ensured.

Checksum error in
system flash, RAM error

2 Severe error The operating system
works correctly, but the
error-free execution of
the user program is not
ensured.

Checksum error in user
flash, task cycle times
exceeded

3 Minor errors It depends on the appli-
cation whether the user
program has to be
stopped by the operating
system or not. The user
decides which reaction is
to be done.

Flash memory cannot be
programmed, I/O module
failed

Configuration and programming
Diagnosis and debugging > The diagnosis system

2024/01/053ADR010583, 1, en_US4638

Error severity Type Description Example
4 Warnings Errors that occur on

peripheral devices or
that will have an effect
only in the future. The
user decides which reac-
tions are to be done.

Short circuit in an
I/O module, battery
empty/not installed

11 Parameter error Error occurred during
parameter setting

Different I/O devices in
PLC configuration and
hardware installation

Errors with error severitiy 1 - fatal errors
Errors with error severity 1 are not entered in the diagnosis system. These
errors do not allow normal operation of the PLC. These errors are detected
during PLC start-up and stop the PLC immediately.

Examples are RAM errors or checksum errors when starting the firmware.

Such errors are indicated by rapid flashing of the ERR LED.

6.9.1.7 Diagnosis history file
The diagnosis history file “DiagHistory.csv” collects diagnosis information. It is stored in the root
directory of the user disk and provides a maximum of 2.000 entries. When 2.000 entries are
reached, the oldest entry is overwritten. The maximum size of extended data is 32 bytes.
The diagnosis history can be accessed with the Automation Builder or with the IEC application.
Ä Chapter 6.9.1.4.5 “Diagnosis history” on page 4614

The diagnosis history file must be interpreted according to the device and/or the fieldbus. A
demonstration of how to read out and receive diagnosis history messages with the IEC applica-
tion is given in the application example AC500 V3 – Diagnosis History

An entry consists of following data:

Name Type Comment Example
timestamp ARRAYDT OF

BYTE
RTC time of event in milliseconds
consists of diTimestamp in DT
format and uiMs milliseconds.
See Ä Chapter 6.9.1.5.2.2
“Structure DIAG_VAL_TYPE”
on page 4616 STRUCT.

1603371910177

event BYTE Event type (1=comes, 2=gone).
See Ä Chapter 6.9.1.5.2.6 “Enu-
meration teEvent” on page 4618.

1

class BYTE Severity of error event.
Ä Chapter 6.9.1.5.2.5 “Enumera-
tion teClass” on page 4618.

4

compID UDINT Component ID 270540802

Example entry -
Diagnosis his-
tory file

Configuration and programming

Diagnosis and debugging > The diagnosis system

2024/01/05 3ADR010583, 1, en_US 4639

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011071&LanguageCode=en&DocumentPartId=&Action=Launch

Name Type Comment Example
conn UDINT Connector 0xb17777ac

connIdx UDINT Connector index 0

sub DWORD SubsystemID: Any number
describing detail/location within
device, device specific

369098752

addl DWORD AdditionalID: Additional number
describing detail/location within
device, optional, device specific

0

error DWORD Error code 9

extended data ARRAYDT OF
BYTE

Extended diagnosis data, max. 32
bytes

With the entries compID, conn and connID, the device generating the event is
clearly identified in the device tree.

If the PLC configuration is changed, the values of this entries may be changed
also.

Therefore, the diagnosis history will be deleted during each download.

6.9.2 Online diagnosis in Automation Builder
6.9.2.1 Short description and overview

To use the diagnosis system in Automation Builder, login to the online mode is required
Ä Chapter 6.9.2.2 “Entering/leaving the online mode” on page 4640. The online diagnosis in
Automation Builder consists of a set of partly animated, mostly read only views. They can be
invoked by a double-click on a project tree element which shows a circle indicating that this
element is able to show diagnosis messages Ä Chapter 6.9.2.3 “Project tree in online mode”
on page 4641.
Available online diagnosis and statistics:
● Diagnosis messages

When the Automation Builder is switched to online mode, incoming diagnosis messages are
displayed as plain-text Ä Chapter 6.9.1.4 “Diagnosis in Automation Builder” on page 4611.

● CPU/PLC diagnosis
Ä Chapter 6.9.2.4 “CPU diagnosis views” on page 4645.

● I/O module diagnosis
Ä Chapter 6.9.2.5 “Live values in views with I/O components” on page 4649.

● Communication module and fieldbus diagnosis
Ä Chapter 6.9.2.6 “Communication module and fieldbus diagnosis” on page 4649

● Diagnosis in IEC application
Ä Chapter 6.9.1.5 “Diagnosis in IEC application” on page 4615
For information on the disk status, diagnosis information can be read out with the function
blocks PmDiskStatus and PmDiskLifetimeUsed. Ä Chapter 6.8.2.2.1.4 “Health monitoring”
on page 4424

6.9.2.2 Entering/leaving the online mode
Prerequisite: Set the gateway before entering the online mode. Ä Chapter 6.3.2.15 “Gateway
configuration” on page 1593

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4640

Right-click the “Application” node and select “Login”.
The Automation Builder project login to online mode updates the latest changes of the project.

The online mode can be entered or left for each PLC in the project separately.

Right-click the “Application” node and select Logout.
When online mode is active, a thread is running on Automation Builder project which sends
cyclically a message to the PLC and expects a response. If the PLC does not respond, the
online mode is left programmatically.

6.9.2.3 Project tree in online mode
When Automation Builder enters the online mode internally, it shows the state of all configured
communication modules.
The connection status can be recognized by a symbol in the device tree:

● Device without diagnosis messages
● Device with diagnosis messages or device diagnosis is disabled Ä Chapter 6.9.2.4.6

“Device diagnosis” on page 4648
● Device without diagnosis messages, but with diagnosis messages on at least one device

in the branch below
● Device with diagnosis messages and with diagnosis messages on at least one device in

the branch below
● Device does not respond to identification message and is not available for online

connection

Enter the online
mode

Leave the online
mode

Configuration and programming

Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/05 3ADR010583, 1, en_US 4641

The identification is done in online mode.

● Double-click an element of the device-tree and select “Status” tab.
Diagnosis information will be available.

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4642

The user will be notified in the device tree with an exclamation mark beside the device having
diagnosis messages. The diagnosis messages are provided in the “Diagnosis” tab.
Alarms will be presented with a thunderbolt in the first column of the diagnosis grid.
1. Stop diagnosis refreshment by clicking [Stop refresh].
2. Select one or more alarms and click [Acknowledge selected alarms].

Diagnosis
descriptions

Acknowledging
an alarm

Configuration and programming

Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/05 3ADR010583, 1, en_US 4643

Some diagnosis messages contain additional data. Click [View] button to see the additional
diagnosis (in hex) for further analysis. If [View] button is not available, no additional data is
available for this diagnosis message.
You can copy the additional data to the clipboard with [CTRL] + [C].

When building an IEC application in Automation Builder, diagnosis text lists will be generated
and added to the device tree below the diagnosis folder. These text lists contain the device
type specific diagnosis texts which are used by the diagnosis functions in the PLC application to
show corresponding texts for error numbers.

The diagnosis text lists will only be downloaded to the PLC when a visualization
is present in the project.

The text lists will be downloaded automatically to the PLC with the visualization.
If there is a problem with downloading the text lists, make sure that the settings are correct:

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4644

1. Right-click on a text list and select “Properties”.
2. Open the “Text List” tab. The check box “Download by visualization” has to be selected.

6.9.2.4 CPU diagnosis views
6.9.2.4.1 Version information

Information on the firmware versions of the processor modules or communication modules, is
provided on the “Version information” tab.
Remarks:
● The “Version information” tab displays the version identified on the device and the version

provided with Automation Builder.
● The firmware on the devices must match to the Automation Builder supported versions. It

might be required to upgrade or downgrade the current firmware for using the PLC with the
current Automation Builder.

● The “Required Version” might contain more than one user selectable version (drop-down
list), this is indicated by an asterisk after the file name.

Configuration and programming

Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/05 3ADR010583, 1, en_US 4645

Firmware version on device matches version supplied with
Automation Builder.

Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Only for communication modules if CPU firmware must be updated
first. This happens when CPU firmware has version below 2.5.0.0.
Firmware version (or type) on device is different from version supplied
with Automation Builder. Upgrade/downgrade to version supplied with
Automation Builder is recommended.

Identified device is different from configured device, thus no firmware
update is possible. Happens only for Communication Modules.

No icon Firmware of device is not updateable or no newer firmware than the
initial version is available.

[Update Firmware] to download the new firmware is only enabled if there is
updateable firmware.

6.9.2.4.2 Statistics

The “Statistics” tab shows the following information:
● Date and time: The actual date and time of the PLC is shown. It can be set or synchronized

with the date/time of the PC via “Set PLC Date & Time” button.
● Overview resource usage: This tab shows all the required information (it is collected at latest

when the command “Generate Code” is executed, some of the information is not available
before then.)
For the limitation “User program code and data” a [Details] button will be available. Clicking
this button will open a modal window showing a more detailed view of the memory usage.

State icons

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4646

6.9.2.4.3 Log
You can view the PLC log in this tab. It lists the events that were recorded on the target system.
This concerns:
● Events during the startup and shutdown of the system (components loaded, with version)
● Application download and loading of the boot application
● Custom entries
● Log entries from I/O drivers
● Log entries from data sources

Offline logging : Default settings

: The PLC also records actions that are not related to the connection with the
controller.

UTC time : Standard setting; the time stamp is converted to the local time on the com-
puter as indicated by the time zone of the operating system.

: The time stamp of the runtime system is displayed.

Severity There are four categories for the severity of the event:

● : Message
● : Warning
● : Error
● : Debugging
You can show or hide each category with the help of the corresponding button
in the bar above the list. Each button shows the number of log entries of the
category concerned.

Time stamp Date and time (example: 12-01-2007 09:48)

Description Description of the event, for example Import function failed of
Component Name of the runtime system component concerned, e.g. CmpApp
Drop-down list with component
names

The log list displays only events that concern the selected component

Logger Drop-down list with all available recordings. The standard setting is the <Default
Logger> specified by the target system, at present identical to 'PlcLog' for the
CODESYS runtime system

Refreshes the log list

Exports the list contents to an XML file. You can select the file name and storage
directory.

Imports a log list from an XML file. The list is then displayed in a separate
window.

The displayed log list is emptied, i.e. all entries are deleted.

6.9.2.4.4 PLC shell commands
The PLC shell is used for requesting specific information from the controller. By entering a
device-specific command the response is returned in a result window. The PLC shell can be
issued without login.
1. Ensure the gateway is configured properly and a connection to the controller can be

established.
2. In Automation Builder double-click the PLC node and open the tab “PLC Shell”.
3. Enter "?" in the command line of the tab window. All available PLC commands are listed.

Proceed as fol-
lows:

Configuration and programming

Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/05 3ADR010583, 1, en_US 4647

If the gateway is able to establish a connection to the controller, an online connection to the
PLC is opened automatically.

The commands listed in online mode can differ from the commands shown
when pressing the button [...] as Automation Builder version and firmware ver-
sion can differ.

Ä Chapter 6.4.1.21.2.8.11 “Tab 'PLC Shell'” on page 2441

Ä Chapter 6.2.6 “Version information” on page 1384

Ä Chapter 6.3.1.4 “Firmware identification and update” on page 1419.

6.9.2.4.5 Status
This tab displays status information, for example 'Running' or 'Stopped', and specific diagnosis
messages from the respective device, also information about the card used and the internal bus
system.

6.9.2.4.6 Device diagnosis
Each node in the device tree has a diagnosis view, which displays the diagnosis messages for
this device only.
The message consists of:
● Type Ä Chapter 6.9.1.4.5 “Diagnosis history” on page 4614
● Timestamp in date and time YYYY-MM-DD hh:mm:ss.ms
● Error severity
● Error code
● Diagnosis description
● Additional data
To view the diagnosis message:
1. Double-click on a device.
2. Select the tab “Diagnosis”.

Battery empty or missing.Example

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4648

Wrong module configured on I/O bus.Example

Device diagnosis is disabled by default.
To enable/disable device diagnosis:
1. Double-click on the PLC.
2. Select the tab “PLC Settings”.
3. Under “Additional Settings” enable/disable “Diagnosis for devices”.

ð When the device diganosis is disabled, this symbol will be displayed in the device
tree and no diagnosis messages will be shown.

6.9.2.5 Live values in views with I/O components
“I/O mapping list” tab: In online mode, all Automation Builder views, which contain I/O compo-
nent mapping tables, show animated live values which are updated every second.

6.9.2.6 Communication module and fieldbus diagnosis
6.9.2.6.1 Fieldbus commissioning
General

Common online diagnosis views for all netX-based communication modules (e. g. CM579-
ETHCAT, CM579-PNIO) can be accessed whenever the related PLC is in online mode.
Ä Chapter 6.9.2.2 “Entering/leaving the online mode” on page 4640

Configuration and programming

Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/05 3ADR010583, 1, en_US 4649

Master/controller modules
Master/controller modules like CM579-ETHCAT or CM579-PNIO, provide the following diag-
nosis views:
● “Diagnostics main”: provides diagnosis messages which are common for all protocols (e.g.,

protocol state and error)
● “Diagnostics live list”: provides a list of connected slaves/devices and their state Ä Chapter

6.9.2.6.1.4 “ PROFINET scan and comparison view” on page 4651
● “Diagnostics eventlog”: provides diagnosis messages from the master/controller and its

connected slaves/devices

Slave/device communication modules
Diagnosis views for slave/device communication modules like CM589-PNIO:
● “Diagnostics main”: provides diagnosis messages which are common for all protocols
● “Diagnostics details”: provides protocol specific diagnosis messages

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4650

PROFINET scan and comparison view

1. After going online, double-click on “PNIO_Controller (PROFINET-IO-Controller)” in the
device tree.

ð The editor “PNIO_Controller” is displayed.

2. Select tab “Diagnostics live list” and click [Scan] to find all hardware devices that exist.

ð The found devices are listed in a table.

3. Click [Compare] to compare the found hardware I/O devices with the current project
configuration.

If any I/O hardware device is unknown:
● The devices will be marked with a red exclamation mark.
● A message box will be appear for each unknown device.
● Automation Builder generates a message with information about its vendor ID and device

ID.

1. To display the comparison view, install the device description for the unknown device.
2. After installing the device description, click [Scan] and click [Compare].

ð The message box informs you, that the application will go offline to display the com-
parison view.

PNIO_Controller

Unknown hard-
ware

Comparison
view

Configuration and programming

Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/05 3ADR010583, 1, en_US 4651

3. Click [Yes].

ð The “Project Comparison - Differences” tab displays the difference between the
PROFINET configuration in Automation Builder (left side) and the real hardware con-
figuration (right side).

4. Click [Accept Single] to accept only a part of the differences or [Accept Block] to accept all
differences.

ð After clicking on the Button [Accept Single] or [Accept Block] the found devices will be
moved from the right side to the left side.

5. Close tab “Project Comparison - Differences”.

ð A message will be displayed to ask if you want to commit the new changes into
project.

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4652

6. Click [Yes].

ð The changes will be saved and the devices will be added to the project.

6.9.2.6.2 CI52x Modbus diagnosis
1. Double-click node “CI52x_MODTCP” in the device tree.
2. Select “CI52x Diagnosis” tab.

ð The button [Get Diagnosis] appears in the tab view.

3. Click on the button [Get Diagnosis].

ð One of the following use cases will be displayed:

● Device not connected Ä “Device not connected” on page 4654
● No Errors on the device Ä “No errors on the device” on page 4654
● Diagnosis list Ä “Diagnosis list” on page 4654

Configuration and programming

Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/05 3ADR010583, 1, en_US 4653

If there is no device connected to the project, the following dialog will be displayed:

1. Select tab “Connection Settings” and enter the IP address for the device.
2. Click again button [Get Diagnosis].

If there are no errors on the device the following dialog will be displayed:

If the device is not correctly configured the errors will be displayed with “Error Code” and “Code
Description”.

6.9.2.6.3 EtherCAT diagnosis
Due to the nature of the EtherCAT bus, diagnostics cannot be standardized and must be
individually adapted to the requirements of the PLC system.

A guideline for EtherCAT diagnosis during commissioning and operation of the AC500 V3 series
in combination with Automation Builder diagnosis and the IEC programming is given in the
application note EtherCAT diagnosis guideline.

Device not con-
nected

No errors on the
device

Diagnosis list

Configuration and programming
Diagnosis and debugging > Online diagnosis in Automation Builder

2024/01/053ADR010583, 1, en_US4654

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010988&LanguageCode=en&DocumentPartId=&Action=Launch

6.9.3 Diagnosis messages
6.9.3.1 Read out the diagnosis messages via display

If the processor module has a display, you can access the diagnosis system via the display and
the buttons.
Diagnosis messages can also be accessed within the engineering suite Automation Builder or
with the IEC application.
Ä Chapter 6.9.1.4 “Diagnosis in Automation Builder” on page 4611

Ä Chapter 6.9.1.5 “Diagnosis in IEC application” on page 4615

Fig. 365: Example "battery is empty or missing"

Err 1 Total number of active diagnosis messages, here: 1
E4 bat Error severity, here: 4, and location of error, here: battery
Id 1 In the list of all errors, the position of the error, here: first error message
8, d1, d2, d3,
d4

Error code, here: 8, and system information to identify the error with the help
of the diagnosis lists

Ä E2 diagnosis messages

Ä E3 diagnosis messages

Ä E4 diagnosis messages

Ä E11 diagnosis messages

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4655

6.9.3.2 Error severity E2: Severe errors
Table 860: Error severity E2: Severe errors
Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E2 iob
(I/O bus)

2 14 0 0 0 Resource failure

E2 iob
(I/O bus)

3 14 0 0 0 Timeout

E2 CPU 11 0 0 0 0 Type scaling on PLC
startup failed

E2 FLd
(flash-
disk)

12 19 0 0..n 0..n Flash memory is
temporary protected
(read only, panic
mode)

E2 iob
(I/O bus)

17 14 0 0 0 Error setting I/O bus
master parameter

E2 diS
(display)

23 21 0 0 0 Wrong version of
display firmware

E2 CPU 27 0 2 0 0 Failed to set param-
eter "Reboot at pow-
erfail"

E2 CPU 29 0 0 0 0 Combination of
plugged option
boards is invalid

E2 CPU 49 0 0 0 0 Restore failed

E2 iob
(I/O bus)

8482 Module
number

0 - 0 Timeout, while initi-
alizing

E2 iob
(I/O bus)

9249 Module
number

0 - 0 Timeout while
waiting for Reset

E2 iob
(I/O bus)

9258 Module
number

0 - 0 Breakdown, commu-
nication lost

E2 iob
(I/O bus)

16129 0 0 0 0 Severe error, see
log

E2 iob
(I/O bus)

16130 0 0 0 0 Fatal error, see log

E2 iob
(I/O bus)

16194 0 0 0 0 Fatal error, not run-
ning any more

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4656

6.9.3.3 Error severity E3: Minor errors
Table 861: Error severity E3: Minor errors
Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E3 iob
(I/O bus)

3 Module
number

1 Channel
number

0 Discrepancy time
expired

Check dis-
crepancy
time value,
channel
wiring and
sensor.

E3 FLd
(flash-
disk)

10 19 5 0...n 0 Medium has almost
used its complete
spare capacity or is
already dead, action
required

E3 iob
(I/O bus)

12 Module
number

1 Channel
number

0 Test pulse error Check
wiring and
sensor

E3 iob
(I/O bus)

13 Module
number

1 Channel
number

0 Test pulse cross-talk
error

Check
wiring and
sensor. If
this error
persists,
replace I/O
module.
Contact
ABB tech-
nical sup-
port.

E3 iob
(I/O bus)

18 Module
number

1 Channel
number

0 Test error

E3 diS
(display)

22 21 0 0 0 Error at initialization
of display

E3 iob
(I/O bus)

25 Module
number

1 Channel
number

0 Stuck-at error Check I/O
module
wiring.
Restart I/O
module, if
needed. If
this error
persists,
replace I/O
module.

E3 iob
(I/O bus)

28 Module
number

1 Channel
number

0 Cross-talk error Check I/O
module
wiring.
Restart I/O
module, if
needed. If
this error
persists,
replace I/O
module.

E3 CPU 44 0 7 0 0 Loading boot project
failed due to failing
load of retain data

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4657

Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E3 CPU 45 0 7 0 0 Loading boot project
failed due to mis-
match of retain data

E3 CPU 46 0 7 0 0 Loading boot project
failed due to insuf-
ficient license for
application

E3 CPU 47 0 7 0 0 Loading boot project
failed due to unspe-
cified reason

E3 CPU 48 0 0 0 0 Backup failed

E3 FLd
(flash-
disk)

54 19 5 0 0 Root partition has
1% or less free
space left

E3 iob
(I/O bus)

273 Module
number

1 Channel
number

0 Test error

E3 iob
(I/O bus)

311 Module
number

1 Channel
number

0 Value difference too
high

Adjust toler-
ance
window for
channels.
Check
channel
wiring and
sensor con-
figuration.

E3 iob
(I/O bus)

524 Module
number

1 Channel
number

0 Stuck-at error

E3 iob
(I/O bus)

525 Module
number

1 Channel
number

0 Readback error Check I/O
module
wiring.
Restart I/O
module, if
needed. If
this error
persists,
replace I/O
module.

E3 iob
(I/O bus)

530 Module
number

1 Channel
number

0 Cross-talk error Check I/O
module
wiring.
Restart I/O
module, if
needed. If
this error
persists,
replace I/O
module.

E3 iob
(I/O bus)

540 Module
number

1 Channel
number

0 Test error

E3 iob
(I/O bus)

555 Module
number

1 Channel
number

0 Internal error

E3 iob
(I/O bus)

1037 Module
number

1 Channel
number

0 Test error

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4658

Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E3 iob
(I/O bus)

8480 Module
number

0 - 0 Not supported pro-
tocol variant

E3 iob
(I/O bus)

8707 Module
number

0 - 0 PROFIsafe
watchdog timed out

E3 iob
(I/O bus)

8708 Module
number

0 - 0 Overvoltage

E3 iob
(I/O bus)

8711 Module
number

0 - 0 Undervoltage

E3 iob
(I/O bus)

8722 Module
number

0 - 0 Internal error

E3 iob
(I/O bus)

8723 Module
number

0 - 0 Checksum error has
occured in iParame-
ters

E3 iob
(I/O bus)

8724 Module
number

0 - 0 PROFIsafe commu-
nication error

E3 iob
(I/O bus)

8732 Module
number

0 - 0 Internal error

E3 iob
(I/O bus)

8747 Module
number

0 - 0 Internal runtime error

E3 iob
(I/O bus)

8961 Module
number

0 - 0 Wrong parameter
value, check config-
uration

E3 iob
(I/O bus)

8979 Module
number

0 - 0 Checksum error has
occured in iPara-
meter or F-Parame-
ters

E3 iob
(I/O bus)

8986 Module
number

0 - 0 Invalid configuration Check
modules
and param-
eterization

E3 iob
(I/O bus)

8988 Module
number

0 - 0 F-Parameter config-
uration and address
switch value do not
match.

Check I/O
module F-
Parameter
configura-
tion and
module
address
switch
value.

E3 iob
(I/O bus)

16131 Module
number

0 - 0 Timeout Replace I/O
module

E3 iob
(I/O bus)

16137 Module
number

0 - 0 Overflow diagnosis
buffer

Restart

E3 iob
(I/O bus)

16138 Module
number

0 - 0 Non-safety I/O:
Voltage overflow on
outputs (above UP3
level),
Safety I/O: Process
voltage too high

Check ter-
minals/
process
voltage

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4659

Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E3 iob
(I/O bus)

16139 Module
number

0 - 0 Process voltage UP
or UP3 too low

Check
process
voltage

E3 iob
(I/O bus)

16146 Module
number

0 - 0 Plausibility check
failed (iParameter)

Check con-
figuration

E3 iob
(I/O bus)

16147 Module
number

0 - 0 Checksum error Non-safety
I/O: Replace
I/O module
Safety I/O:
Check
safety con-
figuration
and CRCs
for I- and F-
Parameters.

E3 iob
(I/O bus)

16148 Module
number

0 - 0 PROFIsafe commu-
nication error

Restart I/O
module. If
this error
persists,
contact ABB
technical
support.

E3 iob
(I/O bus)

16153 Module
number

0 - 0 PROFIsafe
watchdog timed out

Restart I/O
module. If
this error
persists,
increase
PROFIsafe
watchdog
time.

E3 iob
(I/O bus)

16154 Module
number

0 - 0 Parameter error Check con-
figuration.

E3 iob
(I/O bus)

16156 Module
number

0 - 0 F-Parameter config-
uration and address
switch value do not
match.

Check I/O
module F-
Parameter
configura-
tion and
module
address
switch
value.

E3 iob
(I/O bus)

16164 Module
number

0 - 0 Internal data inter-
change failure

Replace I/O
module

E3 iob
(I/O bus)

16168 Module
number

0 - 0 Different hard-/firm-
ware versions in the
module

Replace I/O
module

E3 iob
(I/O bus)

16171 Module
number

0 - 0 Internal error Replace I/O
module

E3 iob
(I/O bus)

16175 Module
number

0 - 0 Sensor voltage too
low

E3 iob
(I/O bus)

16128 0 0 0 0 Failed Max Wait Run

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4660

6.9.3.4 Error severity E4: Warnings
Table 862: Error severity E4: Warnings
Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E4 bAt
(battery)

8 22 0 0 0 Empty or missing

E4 FLd
(flash-
disk)

9 19 5 0...n 0 Medium has used
80 % of its spare
capacity

E4 FLd
(flash-
disk)

53 19 5 0 0 Root partition has
15% or less free
space left

E4 iob
(I/O bus)

257 Module
number

1 Channel
number

0 Wrong measure-
ment, false tempera-
ture at the compen-
sation channel

E4 iob
(I/O bus)

258 Module
number

1 Channel
number

0 AI531: wrong meas-
urement, potential
difference is too
high;
CD522: PWM duty
cycle out of duty
area

E4 iob
(I/O bus)

260 Module
number

1 Channel
number

0 Measurement over-
flow

Check
channel
wiring and
sensor
power
supply.

E4 iob
(I/O bus)

263 Module
number

1 Channel
number

0 Measurement under-
flow at analog input

Check
channel
wiring and
sensor
power
supply.

E4 iob
(I/O bus)

266 Module
number

1 Channel
number

0 Short circuit and cut
wire or "out of range"

E4 iob
(I/O bus)

267 Module
number

1 Channel
number

0 Output/process
voltage to small/low.

E4 iob
(I/O bus)

302 Module
number

1 Channel
number

0 External voltage
feeded at the output
clamps.

E4 iob
(I/O bus)

303 Module
number

1 Channel
number

0 Short circuit at the
analog input

Check
channel
wiring

E4 iob
(I/O bus)

304 Module
number

1 Channel
number

0 Analog value over-
flow or broken wire
at an analog input.

E4 iob
(I/O bus)

530 Module
number

1 Channel
number

0 Internal fuse at 0 V
is defect. 0 V
not connected with
GND.

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4661

Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E4 iob
(I/O bus)

559 Module
number

1 Channel
number

0 Short circuit at the
digital output

Check
channel
wiring

E4 iob
(I/O bus)

772 Module
number

1 Channel
number

0 Measurement over-
flow at an analog
output

Check
channel
wiring

E4 iob
(I/O bus)

775 Module
number

1 Channel
number

0 Measurement under-
flow at analog output

Check
channel
wiring

E4 iob
(I/O bus)

796 Module
number

1 0 0 Different configura-
tion

E4 iob
(I/O bus)

8482 Module
number

0 - 0 Timeout while
waiting for ready
status

E4 iob
(I/O bus)

8483 Module
number

0 - 0 Timeout during
parameterization

E4 iob
(I/O bus)

9480 Module
number

0 - 0 I/O module removed
from hot swap ter-
minal unit or defec-
tive module on hot
swap terminal unit.

Plug I/O
module,
replace I/O
module

E4 iob
(I/O bus)

9480 Module
number

0 0 0 Module removed
from hot swap ter-
minal unit

E4 iob
(I/O bus)

9500 Module
number

0 - 0 Wrong I/O module
replugged on hot
swap terminal unit

Remove
wrong I/O
module and
plug pro-
jected I/O
module

E4 iob
(I/O bus)

9514 Module
number

0 - 0 No communication
with I/O module on
hot swap terminal
unit

Replace I/O
module

E4 iob
(I/O bus)

9526 Module
number

0 - 0 I/O module does not
support hot swap

Power off
system and
replace I/O
module

E4 iob
(I/O bus)

9526 Module
number

0 0 0 Module on hot swap
terminal unit does
not support hot swap
functionality

E4 iob
(I/O bus)

9736 Module
number

0 - 0 Hot swap terminal
unit required, but not
found

E4 iob
(I/O bus)

9764 Module
number

0 0 0 Defective hot swap
terminal unit

E4 iob
(I/O bus)

9770 Module
number

0 - 0 No communication
with hot swap ter-
minal unit

Restart, if
error per-
sists replace
terminal unit

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4662

Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E4 iob
(I/O bus)

16172 Module
number

0 - 0 Has not passed fac-
tory test

E4 iob
(I/O bus)

16173 Module
number

0 - 0 No process voltage
UP or UP3

Check
process
voltage

6.9.3.5 Error severity E11: Parameter errors
Table 863: Error severity E11: Parameter errors
Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E11 CPU 18 0 2 0 0 At least one param-
eter not found

E11 CPU 19 0 2 0 0 Unable to read at
least one parameter
value

E11 CPU 20 0 2 0 1 (too
big) or
2 (too
small)

Invalid value of
parameter "LED"

E11 CPU 21 0 2 0 1 (too
big) or
2 (too
small)

Invalid value of
parameter "Battery"

E11 CPU 24 0 2 0 1 (too
big) or
2 (too
small)

Invalid value of
parameter "Diag-
nosis, stop on error
class"

E11 CPU 25 0 2 0 1 (too
big) or
2 (too
small)

Invalid value of
parameter "Diag-
nosis, add Plc name
to node name"

E11 CPU 26 0 2 0 1 (too
big) or
2 (too
small)

Invalid value of
parameter "Reboot
at powerfail"

E11 CPU 28 0 2 0 1 (too
big) or
2 (too
small)

Value of parameter
"Missed Cycle Task
behaviour" is not in
range

E11 CPU 30 0 2 0 1 (too
big) or
2 (too
small)

Value of parameter
"Priority Scheme" is
not in range

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4663

Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E11 CPU 40 0 2 0 1 (too
big) or
2 (too
small)

Value of parameter
"Reboot on E2" is
not in range

E11 CPU 50 0 2 0 1 (too
big) or
2 (too
small)

Invalid value of
parameter "Enable
diagnosis history"

E11 CPU 51 0 2 0 1 (too
big) or
2 (too
small)

Invalid value
of parameter "Max-
imum number of
entries in diagnosis
history"

E11 CPU 52 0 2 0 1 (too
big) or
2 (too
small)

Invalid value
of parameter "Max-
imum size of
extended diagnosis
data in diagnosis
history"

E11 iob
(I/O bus)

16133 Module
number

0 0 0 Output data size
mismatch

E11 iob
(I/O bus)

16134 Module
number

0 0 0 Input data size mis-
match

E11 iob
(I/O bus)

16145 0 0 0 0 Error setting I/O bus
master parameter

E11 iob
(I/O bus)

16146 0 0 0 0 Failed to start the
parameterization of
modules

E11 iob
(I/O bus)

16147 Module
number

0 0 0 Failed setting
parameters

E11 iob
(I/O bus)

16149 Module
number

0 0 0 No module data

E11 iob
(I/O bus)

16246 0 0 0 0 Failed to start the
parameterization of
modules

E11 iob
(I/O bus)

16247 1..20 0 0 0 Failed setting
parameters

E11 iob
(I/O bus)

16248 Module
number

0 0 0 Failed setting
expected module

E11 iob
(I/O bus)

16254 Module
number

0 0 0 Size of parameters
expected by module
differs from size pro-
vided by configura-
tion

E11 iob
(I/O bus)

16158 Module
number

0 0 0 Type of present
module does not
match configuration

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4664

Error
severity

Location Error
code

d1 d2 d3 d4 Description Remedy

E11 - 16159 0 0 - 0 Configured number
of modules differs
from found ones

E11 - 16160 0 0 - 0 At least one module
failed during configu-
ration

6.9.3.6 Communication modules diagnosis
6.9.3.6.1 Diagnosis display
Table 864: Diagnosis messages of communication modules or fieldbuses
Error severity Location Description

E‒ CMx (communication
module)
x = slot number

To view these diagnosis messages use Automation Builder
Ä Chapter 6.9.1.4 “Diagnosis in Automation Builder” on page 4611
or IEC application Ä Chapter 6.9.1.5 “Diagnosis in IEC application”
on page 4615.

Ex CAn (CAN interface)

Ex Et1 or Et2 (Ethernet
ETH1 or ETH2)

6.9.3.6.2 CM579-ETHCAT
The principle of the EtherCAT diagnosis system and its use in the IEC application of an AC500
V3 PLC is described in the application example AC500 EtherCAT - Diagnosis with AC500 V3.

Hexadecimal Value Definition Description
0x00000000 TLR_S_OK Status ok

0xC0650005 TLR_E_ETHERCAT_MASTER_ERR
OR_BUSSCAN_FAILED

Existing bus does not match config-
ured bus.

0xC0650006 TLR_E_ETHERCAT_MASTER_NOT
_ALL_SLAVES_AVAIL

Not all slaves are available.

0xC065000B TLR_E_ETHERCAT_MASTER_INV
ALID_BUSCYCLETIME

The requested bus cycle time is
invalid.

0xC065000C TLR_E_ETHERCAT_MASTER_INV
ALID_BROKEN_SLAVE_BEHAV-
IOUR_PARA

Invalid parameter for broken slave
behavior.

0xC065000F TLR_E_ETHERCAT_MASTER_CO
E_INVALID_SLAVEID

Invalid SlaveId was used for CoE.

0xC0650012 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_INDEX

Invalid Index on slave requested.

Application
example

Status codes

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4665

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010830&LanguageCode=en&DocumentPartId=&Action=Launch

Hexadecimal Value Definition Description
0xC0650013 TLR_E_ETHERCAT_MASTER_CO

E_INVALID_COMMUNICA-
TION_STATE

Invalid bus communication state for
CoE-Usage.

0xC0650014 TLR_E_ETHERCAT_MASTER_CO
E_FRAME_LOST

Frame with CoE data is lost.

0xC0650015 TLR_E_ETHERCAT_MASTER_CO
E_TIMEOUT

Timeout during CoE service.

0xC0650016 TLR_E_ETHERCAT_MASTER_CO
E_SLAVE_NOT_ADDRESSABLE

Slave is not addressable (not on bus
or power down?).

0xC0650017 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_LIST_TYPE

Invalid list type requested (during
GetOdList).

0xC0650018 TLR_E_ETHERCAT_MASTER_CO
E_SLAVE_RESPONSE_TOO_BIG

Data in slave response is too big for
confirmation packet.

0xC0650019 TLR_E_ETHERCAT_MASTER_CO
E_INVALID_ACCESSBITMASK

Invalid access mask selected (during
GetEntryDesc).

0xC065001A TLR_E_ETHERCAT_MASTER_CO
E_WKC_ERROR

Slave Working Counter Error during
CoE service.

0xC065001C TLR_E_ETHERCAT_MASTER_INV
ALID_COMMUNICATION_STATE

Command is not usable in the com-
munication state.

0xC065001E TLR_E_ETHERCAT_MASTER_BUS
_SCAN_CURRENTLY_RUNNING

The scan is already running. It
cannot be started twice at the same
time.

0xC065001F TLR_E_ETHERCAT_MASTER_BUS
_SCAN_TIMEOUT

Timeout during bus scan. But at
least a link is established.

0xC0650020 TLR_E_ETHERCAT_MASTER_BUS
_SCAN_NOT_READY_YET

The bus scan was not started before
or is not finish yet.

0xC0650021 TLR_E_ETHERCAT_MASTER_BUS
_SCAN_INVALID_SLAVE

The requested slave is invalid.

0xC0650022 TLR_E_ETHERCAT_MASTER_CO
E_INVALIDACCESS

Slave does not allow reading or
writing (CoE-Access).

0xC0650023 TLR_E_ETHERCAT_MASTER_CO
E_NO_MBX_SUPPORT

Slave does not support a mailbox.

0xC0650024 TLR_E_ETHERCAT_MASTER_CO
E_NO_COE_SUPPORT

Slave does not support CoE.

0xC0650025 TLR_E_ETHERCAT_MASTER_TAS
K_CREATION_FAILED

Task could not be created during run
time.

0xC0650026 TLR_E_ETHERCAT_MASTER_INV
ALID_SLAVE_SM_CONFIGURA-
TION

The Sync Manager configuration of
a slave is invalid.

0xC0650027 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TOGGLE

SDO abort code: Toggle bit not alter-
nated.

0xC0650028 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TIMEOUT

SDO abort code: SDO protocol
timed out.

0xC0650029 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_CCS_SCS

SDO abort code: Client/server com-
mand specifier not valid or unknown.

0xC065002A TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_BLK_SIZE

SDO abort code: Invalid block size
(block mode only).

0xC065002B TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_SEQNO

SDO abort code: Invalid sequence
number (block mode only).

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4666

Hexadecimal Value Definition Description
0xC065002C TLR_E_ETHERCAT_MASTER_SD

O_ABORTCODE_CRC
SDO abort code: CRC error (block
mode only).

0xC065002D TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_MEMORY

SDO abort code: Out of memory.

0xC065002E TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_ACCESS

SDO abort code: Unsupported
access to an object.

0xC065002F TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_WRITEONLY

SDO abort code: Attempt to read a
write only object.

0xC0650030 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_READONLY

SDO abort code: Attempt to write a
read only object.

0xC0650031 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_INDEX

SDO abort code: Object does not
exist in the object dictionary.

0xC0650032 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_PDO_MAP

SDO abort code: Object cannot be
mapped to the PDO.

0xC0650033 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_PDO_LEN

SDO abort code: The number and
length of the objects to be mapped
would exceed PDO length.

0xC0650034 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_P_INCOMP

SDO abort code: General parameter
incompatibility reason.

0xC0650035 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_I_INCOMP

SDO abort code: General internal
incompatibility in the device.

0xC0650036 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_HARDWARE

SDO abort code: Access failed due
to an hardware error.

0xC0650037 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE

SDO abort code: Data type does not
match, length of service parameter
does not match.

0xC0650038 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE1

SDO abort code: Data type does not
match, length of service parameter
too high.

0xC0650039 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_SIZE2

SDO abort code: Data type does not
match, length of service parameter
too low.

0xC065003A TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_OFFSET

SDO abort code: Sub-index does not
exist.

0xC065003B TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE

SDO abort code: Range of values of
parameter exceeded (only for write
access).

0xC065003C TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE1

SDO abort code: Value of parameter
written too high.

0xC065003D TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DATA_RANGE2

SDO abort code: Value of parameter
written too low.

0xC065003E TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_MINMAX

SDO abort code: Maximum value is
less than minimum value.

0xC065003F TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_GENERAL

SDO abort code: general error.

0xC0650040 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER

SDO abort code: Data cannot be
transferred or stored to the applica-
tion.

0xC0650041 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_TRANSFER1

SDO abort code: Data cannot be
transferred or stored to the applica-
tion because of local control.

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4667

Hexadecimal Value Definition Description
0xC0650042 TLR_E_ETHERCAT_MASTER_SD

O_ABORTCODE_TRANSFER2
SDO abort code: Data cannot be
transferred or stored to the applica-
tion because of the present device
state.

0xC0650043 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_DICTIONARY

SDO abort code: Object dictionary
dynamic generation fails or no object
dictionary is present (e.g. object dic-
tionary is generated from file and
generation fails because of an file
error).

0xC0650044 TLR_E_ETHERCAT_MASTER_SD
O_ABORTCODE_UNKNOWN

SDO abort code: unknown code.

0xC0CC0001 ECM_ERROR_LLD_TIMEOUT LLD: Timeout

0xC0CC0003 ECM_ERROR_LLD_UNSUP-
PORTED_COMMAND

LLD: Unsupported command

0xC0CC0004 ECM_ERROR_LLD_DUPLI-
CATE_FIXED_STATION_ADDRESS

LLD: Duplicate fixed station address

0xC0CC0005 ECM_ERROR_LLD_SII_CHECKSU
M_ERROR

LLD: SII Checksum Error

0xC0CC0006 ECM_ERROR_LLD_SII_EEPROM_
LOADING_ERROR

LLD: SII EEPROM Loading Error

0xC0CC0007 ECM_ERROR_LLD_SII_MISSING_
ERROR_ACK

LLD: SII Missing Error Ack

0xC0CC0008 ECM_ERROR_LLD_STATE_CHAN
GE_FAILED

LLD: State Change Failed

0xC0CC0009 ECM_ERROR_LLD_UNEX-
PECTED_AL_STATUS

LLD: Unexpected AL Status

0xC0CC000A ECM_ERROR_LLD_UNEX-
PECTED_WKC

LLD: Unexpected WKC

0xC0CC000B ECM_ERROR_LLD_MAILBOX_NO
T_AVAILABLE

LLD: Mailbox not available

0xC0CC000C ECM_ERROR_LLD_MAILBOX_ME
SSAGE_TOO_LARGE

LLD: Mailbox message too large

0xC0CC000D ECM_ERROR_LLD_CONFIGURA-
TION_IN_PROGRESS

LLD: Configuration in progress

0xC0CC000E ECM_ERROR_LLD_TOO_MANY_C
YCLIC_FRAMES

LLD: Too many cyclic frames

0xC0CC000F ECM_ERROR_LLD_CYCLIC_FRA
ME_EXCEEDS_MTU

LLD: Cyclic frame exceeds MTU

0xC0CC0010 ECM_ERROR_LLD_INVALID_CYCL
IC_TELEGRAM_CONFIG

LLD: Invalid cyclic telegram config

0xC0CC0011 ECM_ERROR_LLD_BUILDING_CO
PY_ROUTINES_FAILED

LLD: Building copy routines failed

0xC0CC0012 ECM_ERROR_LLD_UNSUP-
PORTED_SLAVE_STA-
TION_ADDRESS

LLD: Unsupported slave station
address

0xC0CC0013 ECM_ERROR_LLD_STA-
TION_ADDRESS_NOT_ALLOWED

LLD: Station Address not allowed

0xC0CC0014 ECM_ERROR_LLD_INVALID_STD_
TX_MBX_PHYS_OFFSET

LLD: Invalid Std TxMbx PhysOffset

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4668

Hexadecimal Value Definition Description
0xC0CC0015 ECM_ERROR_LLD_INVALID_STD_

RX_MBX_PHYS_OFFSET
LLD: Invalid Std Rx Mbx PhysOffset

0xC0CC0016 ECM_ERROR_LLD_INVALID_BOO
T_TX_MBX_PHYS_OFFSET

LLD: Invalid BOOT Rx Mbx Phys-
Offset

0xC0CC0017 ECM_ERROR_LLD_INVALID_BOO
T_RX_MBX_PHYS_OFFSET

LLD: Invalid BOOT Tx Mbx Phys-
Offset

0xC0CC0018 ECM_ERROR_LLD_INVALID_STD_
TX_MBX_SM_NO

LLD: Invalid Std Tx Mbx SmNo

0xC0CC0019 ECM_ERROR_LLD_INVALID_STD_
RX_MBX_SM_NO

LLD: Invalid Std Rx Mbx SmNo

0xC0CC001A ECM_ERROR_LLD_INVALID_BOO
T_TX_MBX_SM_NO

LLD: Invalid BOOT Tx Mbx SmNo

0xC0CC001B ECM_ERROR_LLD_INVALID_BOO
T_RX_MBX_SM_NO

LLD: Invalid BOOT Rx Mbx SmNo

0xC0CC001C ECM_ERROR_LLD_UNCON-
FIGURED_SLAVE_STA-
TION_ADDRESS

LLD: Unconfigured slave station
address

0xC0CC001D ECM_ERROR_LLD_WRONG_SLAV
E_STATE

LLD: Wrong slave state

0xC0CC001E ECM_ERROR_LLD_CYCLE_TIME_
TOO_SMALL

LLD: Cycle time too small

0xC0CC001F ECM_ERROR_LLD_REPETI-
TION_COUNT_NOT_SUPPORTED

LLD: Repetition count not supported

0xC0CC0020 ECM_ERROR_LLD_INVALID_CALL
BACK_TYPE

LLD: Invalid callback type

0xC0CC0021 ECM_ERROR_LLD_INVALID_CYCL
E_MULTIPLIER

LLD: Invalid cycle multiplier

0xC0CC0022 ECM_ERROR_LLD_UNKNOWN_E
RROR

LLD: Unknown Error

0xC0CC0023 ECM_ERROR_LLD_INVALID_REG
_LENGTH

LLD: Invalid reg length

0xC0CC0024 ECM_ERROR_LLD_INVALID_PARA
METER

LLD: Invalid parameter

0xC0CC0025 ECM_ERROR_LLD_IRQ_NOT_AVA
ILABLE

LLD: IRQ not available

0xC0CC0026 ECM_ERROR_LLD_IOMEM_IRQ_N
OT_AVAILABLE

LLD: IOMem Irq not available

0xC0CC0027 ECM_ERROR_LLD_HW_INIT_FAIL
ED

LLD: Hardware init failed

0xC0CC0028 ECM_ERROR_LLD_MUTEX_CRE-
ATION_FAILED

LLD: Mutex creation failed

0xC0CC0029 ECM_ERROR_LLD_DC_RX_LATC
H_COM-
MAND_REQUIRED_FOR_DC

LLD: DC Rx Latch command is not
configured within cyclic frames

0xC0CC002A ECM_ERROR_LLD_TX_PROCESS
_IMAGE_EXCEEDED

LLD: Transmit process image is
exceeded

0xC0CC002B ECM_ERROR_LLD_RX_PROCESS
_IMAGE_EXCEEDED

LLD: Receive process image is
exceeded

0xC0CC002C ECM_ERROR_LLD_MBX_STATE_I
MAGE_EXCEEDED

LLD: Mailbox State image is
exceeded

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4669

Hexadecimal Value Definition Description
0xC0CC002D ECM_ERROR_LLD_RESULT_DUP

LICATE_BWR_RX_LATCH_CMD
LLD: Duplicate BWR Rx DC Latch
command detected in cyclic frames

0xC0CC002E ECM_ERROR_LLD_RESULT_DUP
LICATE_EXT_SYSTIME_CON-
TROL_CMD

LLD: Duplicate External Sync Sys-
Time Control command detected in
cyclic frames

0xC0CC002F ECM_ERROR_LLD_CC_PROCESS
_IMAGE_EXCEEDED

LLD: Cross Communication Process
image exceeded

0x40CD0017 ECM_INFO_EMC_BUS_IS_OFF Bus is off

0xC0CD0001 ECM_ERROR_EMC_REQUEST_D
ESTINATION_PROBLEM

Request Destination Problem

0xC0CD0002 ECM_ERROR_EMC_INVALID_SLA
VE_STATION_ADDRESS

Invalid slave station address

0xC0CD0003 ECM_ERROR_EMC_CONFIGURA-
TION_BUFFER_IS_OPEN

Configuration buffer is open

0xC0CD0004 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURATION

Wrong state for reconfiguration

0xC0CD0005 ECM_ERROR_EMC_CONFIGURA-
TION_BUFFER_IS_NOT_OPEN

Configuration buffer is not open

0xC0CD0006 ECM_ERROR_EMC_SLAVE_STA-
TION_ADDRESS_ALREADY_IN_C
ONFIG

Slave station address already in
config

0xC0CD0007 ECM_ERROR_EMC_INVALID_STD
_MBX_PARAMETERS

Invalid Std Mbx parameters

0xC0CD0008 ECM_ERROR_EMC_INVALID_BOO
T_MBX_PARAMETERS

Invalid BOOT Mbx parameters

0xC0CD0009 ECM_ERROR_EMC_STD_MBX_S
M_ARE_OVERLAPPING

Std Mbx SMs are overlapping

0xC0CD000A ECM_ERROR_EMC_BOOT_MBX_
SM_ARE_OVERLAPPING

BOOT Mbx SMs are overlapping

0xC0CD000B ECM_ERROR_EMC_SM_PARAMS
_ALREADY_ADDED

SM Params already added

0xC0CD000C ECM_ERROR_EMC_INVALID_SM_
NUMBER

Nvalid SM number

0xC0CD000D ECM_ERROR_EMC_FMMU_PARA
MS_ALREADY_ADDED

FMMU params already added

0xC0CD000E ECM_ERROR_EMC_INVALID_FMM
U_NUMBER

Invalid FMMU number

0xC0CD000F ECM_ERROR_EMC_INVALID_MIN
_STATE

Invalid min state

0xC0CD0010 ECM_ERROR_EMC_CYCLE_FRA
ME_AMOUNT_EXCEEDED

Cycle frame amount exceeded

0xC0CD0011 ECM_ERROR_EMC_INVALID_CYC
LIC_FRAME_IN_CONFIGURATION

Invalid cycle frame in configuration

0xC0CD0012 ECM_ERROR_EMC_CYCLE_FRA
ME_INDEX_NOT_VALID

Cycle frame index not valid

0xC0CD0013 ECM_ERROR_EMC_INVALID_TEL
EGRAM_LENGTH

Invalid telegram length

0xC0CD0014 ECM_ERROR_EMC_CYCLE_FRA
ME_LENGTH_EXCEEDED

Cycle frame length exceeded

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4670

Hexadecimal Value Definition Description
0xC0CD0015 ECM_ERROR_EMC_AMOUNT_OF

_TELE-
GRAMS_IN_CYCLIC_FRAME_EXC
EEDED

Amount of telegrams in cyclic frame
exceeded

0xC0CD0016 ECM_ERROR_EMC_STATE_CHAN
GE_IN_PROGRESS

State change in progress

0xC0CD0018 ECM_ERROR_EMC_TOO_MANY_
SLAVES_GIVEN

Too many slaves given

0xC0CD0019 ECM_ERROR_EMC_DUPLI-
CATE_STA-
TION_ADDRESS_IN_LIST

Duplicate station address in list

0xC0CD001A ECM_ERROR_EMC_COM-
MAND_TYPE_NOT_ALLOWED_FO
R_SLAVE_FSM

Command type not allowed for slave
FSM

0xC0CD001B ECM_ERROR_EMC_CONFIGURA-
TION_DATA_INCORRECT

Configuration data incorrect

0xC0CD001C ECM_ERROR_EMC_VEN-
DORID_MISMATCH

VendorID mismatch

0xC0CD001D ECM_ERROR_EMC_PRODUCT-
CODE_MISMATCH

ProductCode mismatch

0xC0CD001E ECM_ERROR_EMC_REVI-
SIONNO_MISMATCH

Revision number mismatch

0xC0CD001F ECM_ERROR_EMC_SERI-
ALNO_MISMATCH

Serial number mismatch

0xC0CD0020 ECM_ERROR_EMC_LOST_CON-
NECTION

Lost connection

0xC0CD0021 ECM_ERROR_EMC_UNKNOWN_S
TATE_CHANGE_HAPPENED

Unknown state change happened

0xC0CD0022 ECM_ERROR_EMC_UNEX-
PECTED_STATE_CHANGE_HAP-
PENED

Unexpected state change happened

0xC0CD0023 ECM_ERROR_EMC_SLAVE_CHAN
GED_STATE

Slave changed state

0xC0CD0026 ECM_ERROR_EMC_DC_RX_TIME-
STAMP_ERROR

DC Rx Timestamp error

0xC0CD0027 ECM_ERROR_EMC_DC_MASTER
_PORT_TIMESTAMP_ERROR

DC master port timestamp error

0xC0CD0028 ECM_ERROR_EMC_INVALID_SLA
VE_INDEX

Invalid slave index

0xC0CD0029 ECM_ERROR_EMC_WRONG_MAS
TER_STATE

0xC0CD002A ECM_ERROR_EMC_INVALID_TRA
NSFER_ID

Invalid Transfer Id

0xC0CD002B ECM_ERROR_EMC_INVALID_SEG
MENTATION

Invalid Segmentation

0xC0CD002C ECM_ERROR_EMC_IP_PARAMS_
ALREADY_ADDED

EoE IP Params already added

0xC0CD002D ECM_ERROR_EMC_EOE_SUP-
PORT_NOT_AVAILABLE

EoE support not available

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4671

Hexadecimal Value Definition Description
0xC0CD002E ECM_ERROR_EMC_END_CON-

FIGURATION_IN_PROGRESS
End configuration in progress

0xC0CD002F ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_BUS_IS_ON

Wrong state for reconfiguration (Bus
Is On)

0xC0CD0030 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_BUS_SCAN_ACTIVE

Wrong state for reconfiguration (Bus
Scan Active)

0xC0CD0031 ECM_ERROR_EMC_WRONG_STA
TE_FOR_RECONFIGURA-
TION_IN_PROGRESS_TO_BU
SOFF

Wrong state for reconfiguration (In
Progress to Bus off)

0xC0CD0032 ECM_EROR_EMC_NO_DIAG_ENT
RY_AVAILABLE

No Diag Entry available

0xC0CD0033 ECM_ERROR_EMC_SLAVE_SYNC
_PARAMS_NOT_POS-
SIBLE_WITHOUT_WORKING_DC

A slave has been configured to have
SYNC0 and/or SYNC1 but does not
support DC at all.

0xC0CD0034 ECM_ERROR_EMC_MANDA-
TORY_SLAVE_MISSING

At least one required slave for boot
up is missing.

0xC0CD0035 ECM_ERROR_EMC_WRONG_SLA
VE_AT_POSITION

A wrong slave at a specific position
has been detected.

0xC0CD0036 ECM_ERROR_EMC_NO_DC_REF_
CLOCK

No DC reference clock

0xC0CD0037 ECM_ERROR_EMC_DC_REF_CLO
CK_DOES_NOT_PROVIDE_64BIT

DC Reference clock does not pro-
vide 64 Bit

0xC0CD0038 ECM_ERROR_EMC_INVALID_DC_
REF_CLOCK

Invalid DC Reference clock

0xC0CD0039 ECM_ERROR_EMC_COE_SUP-
PORT_NOT_AVAILABLE

CoE support not available

0xC0CD003A ECM_ERROR_EMC_SOE_SUP-
PORT_NOT_AVAILABLE

SoE support not available

0xC0CD003B ECM_ERROR_EMC_FOE_SUP-
PORT_NOT_AVAILABLE

FoE support not available

0xC0CD003C ECM_ERROR_EMC_AOE_SUP-
PORT_NOT_AVAILABLE

AoE support not available

0x40CD003E ECM_INFO_EMC_RECONNECTED Reconnected

0x80CD003F ECM_WARN_EMC_DC_STOPPED DC stopped

0xC0CD0040 ECM_ERROR_EMC_STOPPED_D
UE_SYNC_ERROR

Stopped due Sync Error

0xC0CD0041 ECM_ERROR_EMC_MANDA-
TORY_SLAVE_NOT_IN_OP

At least one mandatory slave is not
in OP

0xC0CD0042 ECM_ERROR_EMC_BUS_CYCLE_
TIME_NOT_POSSIBLE

Bus Cycle Time not possible

0xC0CD0043 ECM_ERROR_EMC_TOP-
OLOGY_ERROR_DETECTED

Topology error detected

0xC0CD0044 ECM_ERROR_EMC_TOP-
OLOGY_MISMATCH_DETECTED

Topology mismatch detected

0xC0CD0045 ECM_ERROR_EMC_NO_VALID_T
OPOLOGY_CONFIGURA-
TION_DATA

No valid topology configuration data

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4672

Hexadecimal Value Definition Description
0xC0CD0046 ECM_ERROR_EMC_UNEX-

PECTED_SLAVE_AT_PORT0
Unexpected slave at port 0 of slave.

0xC0CD0047 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1

Unexpected slave at port 1 of slave.

0xC0CD0048 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT2

Unexpected slave at port 2 of slave.

0xC0CD0049 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT3

Unexpected slave at port 3 of slave.

0xC0CD004A ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_RECONNECTED

-

0xC0CD004B ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT0

Missing slave at port 0 of slave.

0xC0CD004C ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT1

Missing slave at port 1 of slave.

0xC0CD004D ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT2

Missing slave at port 2 of slave.

0xC0CD004E ECM_ERROR_EMC_UNEX-
PECTED_MISSING_SLAVE_AT_PO
RT3

Missing slave at port 3 of slave.

0xC0CD004F ECM_ERROR_EMC_SLAVE_NOT_
CHECKED

Slave is not checked.

0xC0CD0050 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1

Unexpected slave at port 0 and 1 of
slave.

0xC0CD0051 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_2

Unexpected slave at port 0 and 2 of
slave.

0xC0CD0052 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_3

Unexpected slave at port 0 and 3 of
slave.

0xC0CD0053 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_2

Unexpected slave at port 1 and 2 of
slave.

0xC0CD0054 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_3

Unexpected slave at port 1 and 3 of
slave.

0xC0CD0055 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT2_3

Unexpected slave at port 2 and 3 of
slave.

0xC0CD0056 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1_2

Unexpected slave at port 0, 1 and 2
of slave.

0xC0CD0057 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_1_3

Unexpected slave at port 0, 1 and 3
of slave.

0xC0CD0058 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT0_2_3

Unexpected slave at port 0, 2 and 3
of slave.

0xC0CD0059 ECM_ERROR_EMC_UNEX-
PECTED_SLAVE_AT_PORT1_2_3

Unexpected slave at port 1, 2 and 3
of slave.

0xC0CD005A ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1

Missing slave at port 0 and 1 of
slave.

0xC0CD005B ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_2

Missing slave at port 0 and 2 of
slave.

0xC0CD005C ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_3

Missing slave at port 0 and 3 of
slave.

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4673

Hexadecimal Value Definition Description
0xC0CD005D ECM_ERROR_EMC_MISSING_SL

AVE_AT_PORT1_2
Missing slave at port 1 and 2 of
slave.

0xC0CD005E ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT1_3

Missing slave at port 1 and 3 of
slave.

0xC0CD005F ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT2_3

Missing slave at port 2 and 3 of
slave.

0xC0CD0060 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1_2

Missing slave at port 0, 1 and 2 of
slave.

0xC0CD0061 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_1_3

Missing slave at port 0, 1 and 3 of
slave.

0xC0CD0062 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT0_2_3

Missing slave at port 0, 2 and 3 of
slave.

0xC0CD0063 ECM_ERROR_EMC_MISSING_SL
AVE_AT_PORT1_2_3

Missing slave at port 1, 2 and 3 of
slave.

0xC0CD0065 ECM_ERROR_EMC_HC_PARTIC-
IPANT_NOT_ALLOWED_IN_MAN-
DATORY_SLAVE_LIST

A Hot Connect group participant is
not allowed to be configured a man-
datory slave

0xC0CD0066 ECM_ERROR_EMC_HC_PARTIC-
IPANT_NOT_ALLOWED_IN_MUL-
TIPLE_HC_GROUPS

A Hot Connect group participant is
not allowed to be configured in mul-
tiple Hot Connect groups

0xC0CD0067 ECM_ERROR_EMC_GC_GROUP_
HEAD_IS_NOT_LISTED_FOR_HC_
DETECTION

Hot Connect group head is not listed
for Hot Connect detection

0xC0CD0068 ECM_ERROR_EMC_DC_SETUP_C
ALCULATION_ERROR

DC Setup calculation has encoun-
tered an error

0xC0CD0069 ECM_ERROR_EMC_NON_DC_SL
AVE_MORE_THAN_2_PORTS_IN_
DC_SETUP

A slave, which does not support DC,
has more than 2 ports in a DC setup

0xC0CD006A ECM_ERROR_EMC_HC_GROUP_
CONTAINS_NOT_CONFIG-
URED_SLAVE

A Hot Connect group has been
defined to include a slave address
that has no configuration

0xC0CD006B ECM_ERROR_EMC_ALCON-
TROL_TIMEOUT

AL Control Timeout happened i.e.
a slave ESM state change was not
completed in time

0xC0CD006C ECM_ERROR_EMC_DC_MEAS-
UREMENT_ERROR

DC measurement encountered an
error

0xC0CD006D ECM_ERROR_EMC_RX_DESTINA-
TION_EXCEEDS_RX_IMAGE_SIZE

Receive destination exceeds receive
image size

0xC0CD006E ECM_ERROR_EMC_TX_SOURCE
_EXCEEDS_TX_IMAGE_SIZE

Transmit source exceeds transmit
image size

0xC0CD006F ECM_ERROR_EMC_WCSTA-
TEBIT_EXCEEDS_RX_IMAGE_SIZ
E

WcState bit placement exceeds
receive image size

0xC0CD0070 ECM_ERROR_EMC_WKC_MAP-
PING_EXCEEDS_RX_IMAGE_SIZE

Wkc value placement exceeds
receive image size

0xC0CD0071 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0

DC Latch Error detected at port 0 of
slave

0xC0CD0072 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1

DC Latch Error detected at port 1 of
slave

0xC0CD0073 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT2

DC Latch Error detected at port 2 of
slave

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4674

Hexadecimal Value Definition Description
0xC0CD0074 ECM_ERROR_EMC_DC_RX_LATC

H_ERROR_AT_PORT3
DC Latch Error detected at port 3 of
slave

0xC0CD0075 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1

DC Latch Error detected at ports 0
and 1 of slave

0xC0CD0076 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_2

DC Latch Error detected at ports 0
and 2 of slave

0xC0CD0077 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_3

DC Latch Error detected at ports 0
and 3 of slave

0xC0CD0078 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1_2

DC Latch Error detected at ports 1
and 2 of slave

0xC0CD0079 ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT1_3

DC Latch Error detected at ports 1
and 3 of slave

0xC0CD007A ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT2_3

DC Latch Error detected at ports 2
and 3 of slave

0xC0CD007B ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1_2

DC Latch Error detected at ports 0, 1
and 2 of slave

0xC0CD007C ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORT0_1_3

DC Latch Error detected at ports 0, 1
and 3 of slave

0xC0CD007D ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS0_2_3

DC Latch Error detected at ports 0, 2
and 3 of slave

0xC0CD007E ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS1_2_3

DC Latch Error detected at ports 1, 2
and 3 of slave

0xC0CD007F ECM_ERROR_EMC_DC_RX_LATC
H_ERROR_AT_PORTS0_1_2_3

DC Latch Error detected at ports 0,
1, 2 and 3 of slave

0xC0CD0080 ECM_ERROR_EMC_ASSIGN_PDO
_IS_MISSING_PDO_MAPPING

AssignPDO data is missing related
PDO mapping data

0xC0CD0081 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_TO_SAME_
SM

Parts of Ext Sync object are not
mapped to the same SyncManager

0xC0CD0082 ECM_ERROR_EMC_DUPLI-
CATE_EXT_SYNC_OBJ

Duplicate Ext Sync object mapping

0xC0CD0083 ECM_ERROR_EMC_UNSUP-
PORTED_EXT_SYNC_OBJ_RECO
RD

Unsupported Ext Sync object record
detected

0xC0CD0084 ECM_ERROR_EMC_UNSUP-
PORTED_MAP-
PING_OF_EXT_SYNC_OBJ_RECO
RD

Unsupported mapping of Ext Sync
object record detected

0xC0CD0085 ECM_ERROR_EMC_MISSING_MA
PPING_OF_EXT_SYNC_OBJ_REC
ORD

Missing mapping of Ext Sync object
record detected

0xC0CD0086 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_TO_SAME_
FMMU

Parts of Ext Sync object are not
mapped to the same FMMU

0xC0CD0087 ECM_ERROR_EMC_EXT_SYNC_O
BJ_INTERNAL_ERROR

Internal error detected regarding Ext
Sync object

0xC0CD0088 ECM_ERROR_EMC_EXT_SYNC_O
BJ_IS_NOT_MAPPED_IN_ONE_CY
CLIC_CMD

Parts of Ext Sync object are not
mapped within the same cyclic com-
mand

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4675

Hexadecimal Value Definition Description
0xC0CD0089 ECM_ERROR_EMC_UNSUP-

PORTED_FMMU_MAP-
PING_OF_EXT_SYNC_OBJ_RECO
RD

Unsupported FMMU mapping of Ext
Sync object detected

0xC0CD008A ECM_ERROR_EMC_EXT_SYNC_R
EQUIRES_ADJUST_EXT_SYNC_C
MD

Unicast Ext Sync control (APWR/
FPWR 0x910) is required

0xC0CD008B ECM_ERROR_EMC_EXT_SYNC_C
MD_DOES_NOT_MATCH_XRMW_
CMD

Unicast Ext Sync control does not
match xRMW command

0xC0CD008C ECM_ERROR_EMC_EXT_SYNC_R
EQUIRES_XRMW_CMD

Ext Sync requires DC configuration
(xRMW command to 0x910)

0xC0CD008D ECM_ERROR_EMC_EXPLICIT_DE
V_IDENT_FAILED_ALSTATUS

Explicit Device identification via
ALSTATUS failed

0xC0CD008E ECM_ERROR_EMC_EXPLICIT_DE
V_IDENT_FAILED_REG

Explicit Device identification via reg-
ister failed

0xC0CD008F ECM_ERROR_EMC_COPY_INFOS
_FOUND_AT_UNMAPPED_RECEIV
E_DATA

CopyInfos found at unmapped
receive data

0xC0CD0090 ECM_ERROR_EMC_COPY_INFO_
RECEIVE_DATA_AREA_NOT_MAT
CHING

CopyInfo receive data area is not
matching

0xC0CD0091 ECM_ERROR_EMC_SDO_UPLOA
D_TOO_LONG

SDO Upload data too long

0xC0CD0092 ECM_ERROR_EMC_SDO_UPLOA
D_TOO_SHORT

SDO Upload data too short

0xC0CD0093 ECM_ERROR_EMC_SDO_UPLOA
D_COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

SDO Upload compare does not
match expectation

0xC0CD0094 ECM_ERROR_EMC_SOE_READ_T
OO_LONG

SoE Read IDN data too long

0xC0CD0095 ECM_ERROR_EMC_SOE_READ_T
OO_SHORT

SoE Read IDN data too short

0xC0CD0096 ECM_ERROR_EMC_SOE_READ_
COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

SoE Read compare does not match
expectation

0xC0CD0097 ECM_ERROR_EMC_REG_INITCM
D_COM-
PARE_DOES_NOT_MATCH_EXPE
CTATION

Register read compare does not
match expectation

0xC0CD0098 ECM_ERROR_EMC_REDUN-
DANCY_PORT_ONLY_POS-
SIBLE_ONCE

Redundancy port can only be placed
once into configuration

0xC0CD0099 ECM_ERROR_EMC_STARTUP_SC
AN_SII_FAILED

Startup scan of SII failed

0xC0CD009A ECM_ERROR_EMC_STARTUP_VE
RIFY_SII_FAILED

Startup verification of SII failed

0xC0CD009B ECM_ERROR_EMC_MAIN_PORT_
NOT_CONNECTED

Main port not connected during top-
ology scan

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4676

Hexadecimal Value Definition Description
0xC0CD009C ECM_ERROR_EMC_BUS_SCAN_T

OO_MANY_SLAVES
Bus scan detects too many slaves

0xC0CD009D ECM_ERROR_EMC_BUS_SCAN_S
PLIT_RING_NOT_SUPPORTED

Bus Scan detects unsupported split
ring topology

0xC0CD009E ECM_ERROR_EMC_BUS_SHUT-
DOWN

Bus is shutting down

0xC0CD009F ECM_ERROR_EMC_MASTER_AD
DRESS_NOT_ALLOWED_AS_STA-
TION_ADDRESS

Master address (0) is not allowed as
station address

0xC0CD00A0 ECM_ERROR_EMC_FIRST_STA-
TION_HAS_INVALID_PORT_0

First station has invalid port 0

0xC0CD00A1 ECM_ERROR_EMC_STA-
TION_HAS_INVALID_PORT

Station has invalid port

0xC0CD00A2 ECM_ERROR_EMC_STA-
TION_HAS_NOT_LISTED_STA-
TION_ADDRESS_IN_PORT

Station has not listed station address
in port

0xC0CD00A3 ECM_ERROR_EMC_PORT_CON-
NECTION_BETWEEN_STA-
TIONS_DOES_NOT_MATCH

Port connection between stations
does not match

0xC0CD00A4 ECM_ERROR_EMC_STA-
TION_HAS_ALREADY_USED_STA-
TION_ADDRESS_IN_PORT

Station has already used station
address in port

0xC0CD00A5 ECM_ERROR_EMC_INVALID_SM_
PHYS_START_ADDRESS

Invalid Sm physical start address

0xC0CD00A6 ECM_ERROR_EMC_DC_TOP-
OLOGY_ON_REDUN-
DANCY_PORT_NOT_SUPPORTED

DC topology on redundancy port
connection not supported. DC
slaves having AutoIncrement posi-
tions behind redundancy port

0xC0CD00A7 ECM_ERROR_EMC_SM_ASSIGN_
PDO_ALREADY_ADDED

Sm AssignPdo already added

0xC0CD00A8 ECM_ERROR_EMC_BASE_SYNC_
OFFSET_PER-
CENTAGE_OUT_OF_RANGE

Base Sync Offset percentage out of
range

0xC0CF0001 ECM_ERROR_COE_INITIALIZA-
TION_ERROR

CoE: Initialization Error

0xC0CF0002 ECM_ERROR_COE_INVALID_TRA
NSFER_HANDLE

CoE: Invalid transfer handle used

0xC0CF0003 ECM_ERROR_COE_NO_MAILBOX
_AVAILABLE

CoE. No mailbox available

0xC0CF0004 ECM_ERROR_COE_INVALID_TRA
NSFER_STATE

CoE: Invalid transfer state

0xC0CF0005 ECM_ERROR_COE_TRANSFER_S
EGMENT_TOO_LONG

CoE: Transfer segment is too long

0xC0CF0006 ECM_ERROR_COE_SHUT-
TING_DOWN

CoE is shutting down.

0xC0CF0007 ECM_ERROR_COE_MAX_TOTAL_
BYTES_SMALLER_THAN_ACTUAL
_TOTAL_BYTES

CoE: Maximum total bytes is smaller
than actual total bytes.

0xC0CF0008 ECM_ERROR_COE_MAILBOX_TR
ANSMIT_FAILED

CoE: Mailbox transmit failed

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4677

Hexadecimal Value Definition Description
0xC0CF0009 ECM_ERROR_COE_TRANSFER_A

BORTED
CoE: Transfer has been aborted.

0xC0CF000A ECM_ERROR_COE_SDOINFO_INI-
TIALIZATION_ERROR

0xC0CF000B

0xC0CF000C ECM_ERROR_COE_PRO-
TOCOL_ERROR

CoE Protocol Error

0xC0CF000D ECM_ERROR_COE_NO_AOE_AVA
ILABLE

CoE: No AoE available

0xC0CF000F ECM_ERROR_COE_INVALID_SLA
VE_STATION_ADDRESS

CoE: Invalid slave station address

0xC0CF8000 ECM_ERROR_COE_ABORT-
CODE_TOGGLE_BIT_NOT_ALTER
NATED

SDO Abort Code: Toggle Bit not
alternated

0xC0CF8001 ECM_ERROR_COE_ABORT-
CODE_COMMAND_SPECI-
FIER_NOT_VALID

SDO Abort Code: Command speci-
fier not valid

0xC0CF8002 ECM_ERROR_COE_ABORT-
CODE_PROTOCOL_TIMEOUT

SDO Abort Code: Protocol Timeout

0xC0CF8003 ECM_ERROR_COE_ABORT-
CODE_OUT_OF_MEMORY

SDO Abort Code: Out Of Memory

0xC0CF8004 ECM_ERROR_COE_ABORT-
CODE_UNSUPPORTED_ACCESS

SDO Abort Code: Unsupported
access

0xC0CF8005 ECM_ERROR_COE_ABORT-
CODE_OBJECT_IS_WRITE_ONLY

SDO Abort Code: Object is write
only

0xC0CF8006 ECM_ERROR_COE_ABORT-
CODE_OBJECT_IS_READ_ONLY

SDO Abort Code: Object is read only

0xC0CF8007 ECM_ERROR_COE_ABORT-
CODE_SUB-
INDEX_CANNOT_BE_WRITTEN_SI
0_NZ

SDO Abort Code: Subindex cannot
be written if subindex 0 is not zero

0xC0CF8008 ECM_ERROR_COE_ABORT-
CODE_COM-
PLETE_ACCESS_NOT_SUP-
PORTED

SDO Abort Code: Complete access
not supported

0xC0CF8009 ECM_ERROR_COE_ABORT-
CODE_OBJECT_LENGTH_EXCEE
DS_MAILBOX_SIZE

SDO Abort Code: Object length
exceeds mailbox size

0xC0CF800A ECM_ERROR_COE_ABORT-
CODE_OBJECT_MAPPED_TO_RX
PDO_NO_WRITE

SDO Abort Code: Object mapped to
RxPDO, SDO Download blocked

0xC0CF800B ECM_ERROR_COE_ABORT-
CODE_OBJECT_DOES_NOT_EXIS
T

SDO Abort Code: Object does not
exist

0xC0CF800C ECM_ERROR_COE_ABORT-
CODE_OBJECT_CANNOT_BE_PD
O_MAPPED

SDO Abort Code: Object cannot be
mapped to PDO

0xC0CF800D ECM_ERROR_COE_ABORT-
CODE_PDO_LENGTH_WOULD_E
XCEED

SDO Abort Code: PDO Length
would exceed maximum size

0xC0CF800E ECM_ERROR_COE_ABORT-
CODE_GEN_PARAM_INCOMPATI-
BILITY

SDO Abort Code: General param-
eter incompatibility

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4678

Hexadecimal Value Definition Description
0xC0CF800F ECM_ERROR_COE_ABORT-

CODE_ACCESS_FAILED_DUE_TO
_HW_ERROR

SDO Abort Code: Access failed due
to hardware error

0xC0CF8010 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_DOES_NOT_MATCH

SDO Abort Code: Data type does
not match

0xC0CF8011 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_LENGTH_TOO_LONG

SDO Abort Code: Data type length
too long

0xC0CF8012 ECM_ERROR_COE_ABORT-
CODE_DATA-
TYPE_LENGTH_TOO_SHORT

SDO Abort Code: Data type length
too short

0xC0CF8013 ECM_ERROR_COE_ABORT-
CODE_SUB-
INDEX_DOES_NOT_EXIST

SDO Abort Code: Subindex does not
exist

0xC0CF8014 ECM_ERROR_COE_ABORT-
CODE_RANGE_OF_PARAM-
ETER_EXCEEDED

SDO Abort Code: Range of param-
eter exceeded

0xC0CF8015 ECM_ERROR_COE_ABORT-
CODE_VALUE_OF_PARAM_WRITT
EN_TOO_HIGH

SDO Abort Code: Value of param-
eter written too high

0xC0CF8016 ECM_ERROR_COE_ABORT-
CODE_VALUE_OF_PARAM_WRITT
EN_TOO_LOW

SDO Abort Code: Value of param-
eter written too low

0xC0CF8017 ECM_ERROR_COE_ABORT-
CODE_MIN_VALUE_IS_LESS_THA
N_MAX_VALUE

SDO Abort Code: Minimum value is
less than maximum value

0xC0CF8018 ECM_ERROR_COE_ABORT-
CODE_GENERAL_ERROR

SDO Abort Code: General Error

0xC0CF8019 ECM_ERROR_COE_ABORT-
CODE_NO_TRANSFER_TO_APP

SDO Abort Code: Data cannot be
transferred or stored to the applica-
tion

0xC0CF801A ECM_ERROR_COE_ABORT-
CODE_LOCAL_CONTROL

SDO Abort Code: Data cannot be
transferred or stored to the applica-
tion because of local control

0xC0CF801B ECM_ERROR_COE_ABORT-
CODE_NO_TRANSFER_DUE_TO_
CURRENT_STATE

SDO Abort Code: Data cannot be
transferred or stored to the applca-
tion because of the present device
state

0xC0CF801C ECM_ERROR_COE_ABORT-
CODE_NO_OBJECT_DIC-
TIONARY_PRESENT

SDO Abort Code: Object dictionary
dynamic generation fails or no object
dictionary is present

0xC0CF801D ECM_ERROR_COE_ABORT-
CODE_UNKNOWN_ABORT_CODE

SDO Abort Code: Unknown abort
code

0xC0CF801E ECM_ERROR_COE_ABORT-
CODE_GEN_INTERNAL_COMPAT

SDO Abort Code: General internal
incompatibility in the device

0xC0D00001 ECM_ERROR_EOE_INVALID_MAC
_ADDRESS

Invalid MAC address

0xC0D00002 ECM_ERROR_EOE_INVALID_CAL
LBACK_TYPE

Invalid callback type

0xC0D00003 ECM_ERROR_EOE_DESTINA-
TION_UNREACHABLE

Destination unreachable

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4679

Hexadecimal Value Definition Description
0xC0D00004 ECM_ERROR_EOE_INVALID_EOE

_RESPONSE
Invalid EoE Response

0xC0D00005 ECM_ERROR_EOE_UNKNOWN_E
RROR

SetIPParam/SetFilterParam:
Unknown error

0xC0D00006 ECM_ERROR_EOE_UNSPECI-
FIED_ERROR

SetIPParam/SetFilterParam: Unspe-
cified Error

0xC0D00007 ECM_ERROR_EOE_UNSUP-
PORTED_FRAME_TYPE

SetIPParam/SetFilterParam: Unsup-
ported frame type

0xC0D00008 ECM_ERROR_EOE_NO_IP_SUP-
PORT

SetIPParam/SetFilterParam: No IP
support

0xC0D00009 ECM_ERROR_EOE_DHCP_NOT_S
UPPORTED

SetIPParam/SetFilterParam: DHCP
not supported

0xC0D0000A ECM_ERROR_EOE_NO_FILTER_S
UPPORT

SetIPParam/SetFilterParam: No filter
supported

0xC0D0000B ECM_ERROR_EOE_TIMEOUT EoE Timeout

0xC0D0000C ECM_ERROR_EOE_SHUT-
TING_DOWN

EoE is shutting down

0xC0D0000D ECM_ERROR_EOE_MASTER_AD
DRESS_NOT_ALLOWED

EoE: Master address is not allowed
to use here

0xC0D0000E ECM_ERROR_EOE_CONFIGURA-
TION_IS_NOT_OPEN

EoE: Configuration is not open

0xC0D0000F ECM_ERROR_EOE_CONFIGURA-
TION_IS_ALREADY_OPEN

EoE: Configuration is already open

0xC0D00010 ECM_ERROR_EOE_DUPLI-
CATE_IP_ADDRESS

EoE: Duplicate IP address

0xC0D00011 ECM_ERROR_EOE_DUPLI-
CATE_MAC_ADDRESS_ON_MUL-
TIPLE_PORTS

EoE: Duplicate MAC address on
multiple ports

0xC0D00012 ECM_ERROR_EOE_FRAME_TOO_
LARGE

EoE: Frame too large

0xC0D00013 ECM_ERROR_EOE_IF_INITIALI-
ZATION_ERROR

EoE: Interface initialization error

0xC0D00014 ECM_ERROR_EOE_IF_NO_FRAM
E_AVAILABLE

EoE: No Frame available

0xC0D00015 ECM_ERROR_EOE_LINK_DOWN EoE: Link down

0xC0D10002 ECM_ERROR_FOE_ERROR_UNK
NOWN_ERROR

-

0xC0D10003 ECM_ERROR_FOE_INVALID_TRA
NSFER_HANDLE

FoE: Invalid transfer handle

0xC0D10004 ECM_ERROR_FOE_INVALID_TRA
NSFER_STATE

FoE: Invalid transfer state

0xC0D10005 ECM_ERROR_FOE_INVALID_SLA
VE_STATION_ADDRESS

FoE: Invalid slave station address

0xC0D10006 ECM_ERROR_FOE_WRONG_SLA
VE_STATE

FoE: Wrong slave state

0xC0D10007 ECM_ERROR_FOE_NO_MAILBOX
_AVAILABLE

FoE: No mailbox available

0xC0D10008 ECM_ERROR_FOE_TRANSFER_A
BORTED

FoE: Transfer has been aborted

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4680

Hexadecimal Value Definition Description
0xC0D10009 ECM_ERROR_FOE_PRO-

TOCOL_TIMEOUT
FoE: Protocol Timeout

0xC0D1000A ECM_ERROR_FOE_TRANSFER_S
EGMENT_TOO_LONG

FoE: Transfer segment is too long

0xC0D1000B ECM_ERROR_FOE_MAILBOX_TR
ANSMIT_FAILED

FoE: Mailbox transmit failed

0xC0D1000C ECM_ERROR_FOE_FILE-
NAME_TOO_LONG

FoE: Filename is too long

0xC0D1000D ECM_ERROR_FOE_BUFFER_EXC
EEDED

FoE: Buffer is exceeded

0xC0D1000E ECM_ERROR_FOE_FIRST_SEG-
MENT_SHOULD_NOT_BE_EMPTY

FoE: First segment should not be
empty

0xC0D1000F ECM_ERROR_FOE_SEG-
MENT_SHOULD_BE_EMPTY

FoE: Segment should be empty

0xC0D18000 ECM_ERROR_FOE_ERROR_NOT
_DEFINED

FoE: Error Response: not defined

0xC0D18001 ECM_ERROR_FOE_ERROR_NOT
_FOUND

FoE: Error Response: Not Found

0xC0D18002 ECM_ERROR_FOE_ACCESS_DEN
IED

FoE: Error Response: Access
Denied

0xC0D18003 ECM_ERROR_FOE_ERROR_DISK
_FULL

FoE: Error Response: Disk full

0xC0D18004 ECM_ERROR_FOE_ERROR_ILLE
GAL

FoE: Error Response: Illegal

0xC0D18005 ECM_ERROR_FOE_ERROR_PACK
ET_NUMBER_WRONG

FoE: Error Response: Packet
number is wrong

0xC0D18006 ECM_ERROR_FOE_ERROR_ALRE
ADY_EXISTS

FoE: Error Response: Already exists

0xC0D18007 ECM_ERROR_FOE_ERROR_NO_
USER

FoE: Error Response: No User

0xC0D18008 ECM_ERROR_FOE_ERROR_BOO
TSTRAP_ONLY

FoE: Acces to specified file is only
allowed in BOOT state

0xC0D18009 ECM_ERROR_FOE_ERROR_NOT
_BOOTSTRAP

FoE: Access to specified file is only
allowed when in PREOP, SAFEOP
or OP

0xC0D1800A ECM_ERROR_FOE_ERROR_NO_
RIGHTS

FoE: No Rights

0xC0D1800B ECM_ERROR_FOE_ERROR_PRO-
GRAM_ERROR

FoE: Program Error

0xC0D20001 ECM_ERROR_SOE_UNKNOWN_S
OE_ERROR

SoE: Unknown SoE Error

0xC0D20002 ECM_ERROR_SOE_INITIALIZA-
TION_ERROR

SoE: Initialization error

0xC0D20003 ECM_ERROR_SOE_INVALID_TRA
NSFER_HANDLE

SoE: Invalid transfer handle

0xC0D20004 ECM_ERROR_SOE_NO_MAILBOX
_AVAILABLE

SoE: No Mailbox available

0xC0D20005 ECM_ERROR_SOE_INVALID_TRA
NSFER_STATE

SoE: Invalid transfer state

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4681

Hexadecimal Value Definition Description
0xC0D20006 ECM_ERROR_SOE_TRANSFER_S

EGMENT_TOO_LONG
SoE: Transfer segment is too long

0xC0D20007 ECM_ERROR_SOE_SHUT-
TING_DOWN

SoE is shutting down

0xC0D20008 ECM_ERROR_SOE_MAX_TOTAL_
BYTES_SMALLER_THAN_ACTUAL
_TOTAL_BYTES

SoE: Maximum total bytes is smaller
than actual total bytes

0xC0D20009 ECM_ERROR_SOE_MAILBOX_TR
ANSMIT_FAILED

SoE: Mailbox transmit failed

0xC0D2000A ECM_ERROR_SOE_INVALID_SOE
_HEADER

SoE: Invalid SoE header

0xC0D2000B ECM_ERROR_SOE_PRO-
TOCOL_TIMEOUT

SoE: Protocol Timeout

0xC0D2000C ECM_ERROR_SOE_PRO-
TOCOL_ERROR

SoE: Protocol Error

0xC0D2000D ECM_ERROR_SOE_TRANSFER_A
BORTED

SoE: Transfer has been aborted

0xC0D2000E ECM_ERROR_SOE_WRONG_SLA
VE_STATE

SoE: Wrong slave state

0xC0D2000F ECM_ERROR_SOE_NO_AOE_AVA
ILABLE

SoE: No AoE available

0xC0D20010 ECM_ERROR_SOE_INVALID_SLA
VE_STATION_ADDRESS

SoE: Invalid slave station address

0xC0D21001 ECM_ERROR_SOE_SSC_NO_IDN SoE: No IDN

0xC0D21009 ECM_ERROR_SOE_SSC_INVALID
_ACCESS_TO_ELEMENT_1

SoE: Invalid access to element 1

0xC0D22001 ECM_ERROR_SOE_SCC_NO_NA
ME

SoE: IDN has no name

0xC0D22002 ECM_ERROR_SOE_SSC_NAME_T
RANSMISSION_IS_TOO_SHORT

SoE: Name transmission is too short

0xC0D22003 ECM_ERROR_SOE_SSC_NAME_T
RANSMISSION_IS_TOO_LONG

SoE: Name transmission is too long

0xC0D22004 ECM_ERROR_SOE_SSC_NAME_
CANNOT_BE_CHANGED

SoE: Name cannot be changed

0xC0D22005 ECM_ERROR_SOE_SSC_NAME_I
S_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Name is write protected at this
time

0xC0D23002 ECM_ERROR_SOE_SSC_ATTRIB
UTE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Attribute transmission is too
short

0xC0D23003 ECM_ERROR_SOE_SSC_ATTRIB
UTE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Attribute transmission is too
long

0xC0D23004 ECM_ERROR_SOE_SSC_ATTRIB
UTE_CANNOT_BE_CHANGED

SoE: Attribute cannot be changed

0xC0D23005 ECM_ERROR_SOE_SSC_ATTRIB
UTE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Attribute is write protected at
this time

0xC0D24001 ECM_ERROR_SOE_SSC_NO_UNI
T

SoE: IDN has no unit

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4682

Hexadecimal Value Definition Description
0xC0D24002 ECM_ERROR_SOE_SSC_UNIT_T

RANSMISSION_IS_TOO_SHORT
SoE: Unit transmission is too short

0xC0D24003 ECM_ERROR_SOE_SSC_UNIT_T
RANSMISSION_IS_TOO_LONG

SoE: Unit transmission is too long

0xC0D24004 ECM_ERROR_SOE_SSC_UNIT_C
ANNOT_BE_CHANGED

SoE: Unit cannot be changed

0xC0D24005 ECM_ERROR_SOE_SSC_UNIT_IS
_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Unit is write protected at this
time

0xC0D25001 ECM_ERROR_SOE_SSC_NO_MA
XIMUM_VALUE

SoE: IDN has no maximum value

0xC0D25002 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Minimum value transmission is
too short

0xC0D25003 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Minimum value transmission is
too long

0xC0D25004 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_CANNOT_BE_CHA
NGED

SoE: Minimum value cannot be
changed

0xC0D25005 ECM_ERROR_SOE_SSC_MIN-
IMUM_VALUE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Mimum value is write protected
at this time

0xC0D26001 ECM_ERROR_SOE_SSC_NO_MA
XIMUM_VALUE

SoE: IDN has no maximum value

0xC0D26002 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_SHORT

SoE: Maximum value transmission is
too short

0xC0D26003 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_TRANSMIS-
SION_IS_TOO_LONG

SoE: Maximum value transmission is
too long

0xC0D26004 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_CANNOT_BE_CHA
NGED

SoE: Maximum value cannot be
changed

0xC0D26005 ECM_ERROR_SOE_SSC_MAX-
IMUM_VALUE_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: Maximum value is write pro-
tected at this time

0xC0D27002 ECM_ERROR_SOE_SSC_OPDATA
_TRANSMIS-
SION_IS_TOO_SHORT

SoE: OpData transmission is too
short

0xC0D27003 ECM_ERROR_SOE_SSC_OPDATA
_TRANSMISSION_IS_TOO_LONG

SoE: OpData transmission is too
long

0xC0D27004 ECM_ERROR_SOE_SSC_OPDATA
_CANNOT_BE_CHANGED

SoE: OpData cannot be changed

0xC0D27005 ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_THIS_TIME

SoE: OpData is write protected at
this time

0xC0D27006 ECM_ERROR_SOE_SSC_OPDATA
_IS_LOWER_THAN_MIN-
IMUM_VALUE

SoE: OpData is lower than minimum
value

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4683

Hexadecimal Value Definition Description
0xC0D27007 ECM_ERROR_SOE_SSC_OPDATA

_IS_HIGHER_THAN_MAX-
IMUM_VALUE

SoE: OpData is higher than max-
imum value

0xC0D27008 ECM_ERROR_SOE_SSC_OPDATA
_IS_INVALID

SoE: OpData is invalid

0xC0D27009 ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_BY_PASSWORD

SoE: OpData is write protected by
password

0xC0D2700A ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_DUE_CYCLICALLY_CON-
FIGURED

SoE: OpData is write protected due
to being cyclically configured

0xC0D2700B ECM_ERROR_SOE_SSC_OPDATA
_INVALID_DIRECT_ADDRESSING

SoE: Invalid direct addressing

0xC0D2700C ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_DUE_OTHER_SETTINGS

SoE: OpData is write protected due
to other settings.

0xC0D2700D ECM_ERROR_SOE_SSC_OPDATA
_INVALID_FLOATING_POINT_NUM
BER

SoE: Invalid floating point number

0xC0D2700E ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_PARAMETERIZA-
TION_LEVEL

SoE: OpData is write protected at
parameterization level

0xC0D2700F ECM_ERROR_SOE_SSC_OPDATA
_IS_WRITE_PRO-
TECTED_AT_OPERATION_LEVEL

SoE: OpData is write protected at
operation level

0xC0D27010 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_ALREADY_ACTIVE

SoE: Procedure command already
active

0xC0D27011 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_INTERRUPTIBLE

SoE: Procedure command not inter-
ruptible

0xC0D27012 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_EXECUT-
ABLE_AT_THIS_TIME

SoE: Procedure command is not
executable at this time

0xC0D27013 ECM_ERROR_SOE_SSC_OPDATA
_PROCEDURE_COM-
MAND_NOT_EXECUT-
ABLE_INVALID_PARAM

SoE: Procedure command is not
executable due to invalid parameter

0xC0D4005C ECM_ERROR_ENI_NO_SLAVES_I
N_ENI

ENI does not contain any slaves

0xC0D50001 ECM_ERROR_ALSTAT-
CODE_UNSPECIFIED_ERROR

ALStatusCode: Unspecified error

0xC0D50002 ECM_ERROR_ALSTAT-
CODE_NO_MEMORY

ALStatusCode: No memory

0xC0D50003 ECM_ERROR_ALSTAT-
CODE_INVALID_DEVICE_SETUP

ALStatusCode: Invalid Device Setup

0xC0D50011 ECM_ERROR_ALSTAT-
CODE_INVALID_REQUESTED_ST
ATE_CHANGE

ALStatusCode: Invalid requested
state change

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4684

Hexadecimal Value Definition Description
0xC0D50012 ECM_ERROR_ALSTAT-

CODE_UNKNOWN_REQUESTED_
STATE

ALStatusCode: Unknown requested
state

0xC0D50013 ECM_ERROR_ALSTAT-
CODE_BOOTSTRAP_NOT_SUP-
PORTED

ALStatusCode: Bootstrap not sup-
ported

0xC0D50014 ECM_ERROR_ALSTAT-
CODE_NO_VALID_FIRMWARE

ALStatusCode: No valid firmware

0xC0D50015 ECM_ERROR_ALSTAT-
CODE_INVALID_BOOT_MAILBOX_
CONFIGURATION

ALStatusCode: Invalid BOOT
mailbox configuration

0xC0D50016 ECM_ERROR_ALSTAT-
CODE_INVALID_PREOP_MAILBOX
_CONFIGURATION

ALStatusCode: Invalid PREOP
mailbox configuration

0xC0D50017 ECM_ERROR_ALSTAT-
CODE_INVALID_SYNC_MAN-
AGER_CONFIGURATION

ALStatusCode: Invalid sync man-
ager configuration

0xC0D50018 ECM_ERROR_ALSTAT-
CODE_NO_VALID_INPUTS_AVAIL-
ABLE

ALStatusCode: No valid inputs avail-
able

0xC0D50019 ECM_ERROR_ALSTAT-
CODE_NO_VALID_OUTPUTS

ALStatusCode: No valid outputs

0xC0D5001A ECM_ERROR_ALSTAT-
CODE_SYNCHRONIZA-
TION_ERROR

ALStatusCode: Synchronization
error

0xC0D5001B ECM_ERROR_ALSTAT-
CODE_SYNC_MAN-
AGER_WATCHDOG

ALStatusCode: Sync Manager
watchdog

0xC0D5001C ECM_ERROR_ALSTAT-
CODE_INVALID_SYNC_MAN-
AGER_TYPES

ALStatusCode: Invalid Sync Man-
ager Types

0xC0D5001D ECM_ERROR_ALSTAT-
CODE_INVALID_OUTPUT_CON-
FIGURATION

ALStatusCode: Invalid output config-
uration

0xC0D5001E ECM_ERROR_ALSTAT-
CODE_INVALID_INPUT_CONFIGU-
RATION

ALStatusCode: Invalid input configu-
ration

0xC0D5001F ECM_ERROR_ALSTAT-
CODE_INVALID_WATCHDOG_CO
NFIGURATION

ALStatusCode: Invalid Watchdog
configuration

0xC0D50020 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_COLD_STA
RT

ALStatusCode: Slave needs cold
start

0xC0D50021 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_INIT

ALStatusCode: Slave needs INIT

0xC0D50022 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_PREOP

ALStatusCode: slave needs PREOP

0xC0D50023 ECM_ERROR_ALSTAT-
CODE_SLAVE_NEEDS_SAFEOp

ALStatusCode: slave needs
SAFEOP

0xC0D50024 ECM_ERROR_ALSTAT-
CODE_INVALID_INPUT_MAPPING

ALStatusCode: Invalid Input Map-
ping

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4685

Hexadecimal Value Definition Description
0xC0D50025 ECM_ERROR_ALSTAT-

CODE_INVALID_OUTPUT_MAP-
PING

ALStatusCode: Invalid Output Map-
ping

0xC0D50026 ECM_ERROR_ALSTAT-
CODE_INCONSISTENT_SET-
TINGS

ALStatusCode: Inconsistent settings

0xC0D50027 ECM_ERROR_ALSTAT-
CODE_FREERUN_NOT_SUP-
PORTED

ALStatusCode: FreeRun not sup-
ported

0xC0D50028 ECM_ERROR_ALSTAT-
CODE_SYNCMODE_NOT_SUP-
PORTED

ALStatusCode: SyncMode not sup-
ported

0xC0D50029 ECM_ERROR_ALSTAT-
CODE_FREERUN_NEEDS_3BUFF
ER_MODE

ALStatusCode: FreeRun needs
3Buffer mode

0xC0D5002A ECM_ERROR_ALSTAT-
CODE_BACK-
GROUND_WATCHDOG

ALStatusCode: Background
Watchdog

0xC0D5002B ECM_ERROR_ALSTAT-
CODE_NO_VALID_INPUTS_AND_
OUTPUTS

ALStatusCode: No valid Inputs and
Outputs

0xC0D5002C ECM_ERROR_ALSTAT-
CODE_FATAL_SYNC_ERROR

ALStatusCode: Fatal Sync error

0xC0D5002D ECM_ERROR_ALSTAT-
CODE_NO_SYNC_ERROR

ALStatusCode: No Sync error

0xC0D50030 ECM_ERROR_ALSTAT-
CODE_INVALID_DC_SYNC_CON-
FIGURATION

ALStatusCode: Invalid DC SYNC
configuration

0xC0D50031 ECM_ERROR_ALSTAT-
CODE_INVALID_DC_LATCH_CON-
FIGURATION

ALStatusCode: Invalid DC Latch
configuration

0xC0D50032 ECM_ERROR_ALSTAT-
CODE_PLL_ERROR

ALStatusCode: PLL error

0xC0D50033 ECM_ERROR_ALSTAT-
CODE_DC_SYNC_IO_ERROR

ALStatusCode: DC Sync IO error

0xC0D50034 ECM_ERROR_ALSTAT-
CODE_DC_SYNC_TIMEOUT_ERR
OR

ALStatusCode: DC Sync Timeout
Error

0xC0D50035 ECM_ERROR_ALSTAT-
CODE_DC_INVALID_SYNC_CYCL
E_TIME

ALStatusCode: DC Invalid Sync
Cycle Time

0xC0D50036 ECM_ERROR_ALSTAT-
CODE_DC_SYNC0_CYCLE_TIME

ALStatusCode: DC Sync0 Cycle
Time

0xC0D50037 ECM_ERROR_ALSTAT-
CODE_DC_SYNC1_CYCLE_TIME

ALStatusCode: DC Sync1 Cycle
Time

0xC0D50041 ECM_ERROR_ALSTAT-
CODE_MBX_AOE

ALStatusCode: MBX_AOE

0xC0D50042 ECM_ERROR_ALSTAT-
CODE_MBX_EOE

ALStatusCode: MBX_EOE

0xC0D50043 ECM_ERROR_ALSTAT-
CODE_MBX_COE

ALStatusCode: MBX_COE

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4686

Hexadecimal Value Definition Description
0xC0D50044 ECM_ERROR_ALSTAT-

CODE_MBX_FOE
ALStatusCode: MBX_FOE

0xC0D50045 ECM_ERROR_ALSTAT-
CODE_MBX_SOE

ALStatusCode: MBX_SOE

0xC0D5004F ECM_ERROR_ALSTAT-
CODE_MBX_VOE

ALStatusCode: MBX_VOE

0xC0D50050 ECM_ERROR_ALSTAT-
CODE_EEPROM_NO_ACCESS

ALStatusCode: EEPROM no access

0xC0D50051 ECM_ERROR_ALSTAT-
CODE_EEPROM_ERROR

ALStatusCode: EEPROM error

0xC0D50060 ECM_ERROR_ALSTAT-
CODE_SLAVE_RESTARTED_LOC
ALLY

ALStatusCode: Slave restarted
locally

0xC0D50061 ECM_ERROR_ALSTAT-
CODE_DEVICE_IDENTIFICA-
TION_VALUE_UPDATED

ALStatusCode: Device identificatin
value updated

0xC0D500F0 ECM_ERROR_ALSTAT-
CODE_APPLICATION_CON-
TROLLER_AVAILABLE

ALStatusCode: Application controller
available

0xC0D58000 ECM_ERROR_ALSTAT-
CODE_VENDOR_SPE-
CIFIC_CODE_START

Begin of vendor-specific ALStatus-
Code mapping

0xC0D5FFFF ECM_ERROR_ALSTAT-
CODE_VENDOR_SPE-
CIFIC_CODE_END

End of vendor-specific ALStatus-
Code mapping

0xC0D60001 ECM_ERROR_IF_COE_SUP-
PORT_NOT_AVAILABLE

CoE support is not configured

0xC0D60002 ECM_ERROR_IF_SOE_SUP-
PORT_NOT_AVAILABLE

SoE support is not configured

0xC0D60003 ECM_ERROR_IF_FOE_SUP-
PORT_NOT_AVAILABLE

FoE support is not configured

0xC0D60004 ECM_ERROR_IF_AOE_SUP-
PORT_NOT_AVAILABLE

AoE support is not configured

0xC0D60005 ECM_ERROR_IF_INVALID_TRANS
PORT_TYPE

Invalid transfer type

0xC0D60006 ECM_ERROR_IF_SOE_INVALID_D
RIVE_NO

SoE: Invalid drive number

0xC0D60007 ECM_ERROR_IF_SOE_INVALID_E
LEMENT_FLAGS

SoE: invalid element flags

0xC0D60008 ECM_ERROR_IF_INVALID_SOE_T
RANSFER_ID

SoE: Invalid transfer ID

0xC0D60009 ECM_ERROR_IF_TRANSFER_AB
ORTED

Transfer aborted

0xC0D6000A ECM_ERROR_IF_OUT_OF_PACKE
TS

Out of packets

0xC0D6000B ECM_ERROR_IF_OUT_OF_TRAN
SFER_CONTEXTS

Out of transfer contexts

0xC0D6000C ECM_ERROR_IF_INVALID_SUB-
INDEX_FOR_COMPLETE_ACCESs

CoE: Invalid subindex for Complete
Access

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4687

Hexadecimal Value Definition Description
0xC0D6000D ECM_ERROR_IF_INVALID_COE_T

RANSFER_ID
CoE: Invalid transfer ID

0xC0D6000E ECM_ERROR_IF_INVALID_COE_S
DOINFO_LISTTYPE

CoE: Invalid SDOINFO ListType

0xC0D6000F ECM_ERROR_IF_FILE_READ_ER
ROR

File Read Error

0xC0D60010 ECM_ERROR_IF_COULD_NOT_O
PEN_FILE

Could not open file

0xC0D60011 ECM_ERROR_IF_INVALID_CONFI
G_NXD

Invalid config.nxd detected

0xC0D60012 ECM_ERROR_IF_CONFIG_NXD_
WITHOUT_SLAVES

Config.nxd does not contain any
slaves

0xC0D60013 ECM_ERROR_IF_INVALID_FILE_N
AME

Invalid file name

0xC0D60014 ECM_ERROR_IF_INVALID_FOE_T
RANSFER_ID

Invalid FoE transfer id

0xC0D60015 ECM_ERROR_IF_INVALID_GET_T
OPOLOGY_TRANSFER_ID

Invalid GetTopology transfer id

6.9.3.6.3 CM589-PNIO(-4) errors
In PLC display the diagnosis messages of “CM589-PNIO” are not shown.
The following diagnosis messages are signaled by “CM589-PNIO”:

Error
severit
y

SubSyste-
minfo

Addi-
tional

Error code Meaning Remedy

3 0 0 1000 No communication
module or wrong
type found.

Plug the correct com-
munication module.

3 0 0 1001 Type of CM589-
PNIO not supported.

Exchange the com-
munication module.

3 0 0 1002 Firmware version of
CM589-PNIO not
supported.

Update firmware of
CM589-PNIO.

3 0 0 1003 Identification of com-
munication module
failed.

Exchange the com-
munication module or
plug the correct com-
munication module.

3 0 0 2000 Watchdog error

3 0 0 2001 CM589-PNIO is not
communicating.

Check bus connection
and configuration.

3 0 0 2002 CM589-PNIO signals
communication error.

Check bus connection
and configuration.

3 0 0 2003 Starting of CM589-
PNIO's protocol
stack failed.

Check bus connection
and configuration.

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4688

Error
severit
y

SubSyste-
minfo

Addi-
tional

Error code Meaning Remedy

3 0 0 2004 Stopping of CM589-
PNIO 's protocol
stack failed.

3 0 0 2005 PLC cannot be set to
run due to an error of
CM589-PNIO.

Check error log and
correct errors.

3 0 0 3000 Configuration error Check configuration
and correct errors.

3 0 0 3001 Configuration version
mismatch

Use matching CPU
firmware version.

3 0 0 4000 Ethernet link down Check Ethernet cable
connection.

3 0 0 10000 Wrong module is
configured.

Check configuration
and correct errors.

3 0 0 10001 Correct module
is configured but
locked by another
I/O controller.

Check configuration
and correct errors.

3 0 0 10002 Module is configured
but not used by I/O
controller.

Check configuration
and correct errors.

3 Slot/subslot 0 65636 Slot/subslot: No
module configured.

Check configuration
and correct errors.

6.9.3.6.4 CM598-CN CAN communication module diagnosis
In Automation Builder, diagnosis messages of communication module CM598-CN are displayed
at device tree node “CM598-CN” and all nodes below,CANopen remote devices and I/O
modules (for CI58x modules only).
Click tab “Diagnosis”.
Within PLC application, diagnosis messages can be read by diagnosis related methods of
function block type “Diag”, provided in library “Diag”.
In PLC display, diagnosis messages of CM598-CN are not shown.
Following diagnosis messages are signaled by CM598-CN.
CM598-CN communication module specific diagnosis messages:

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 0 0 6554600 CM598-CN
not found

Plug the cor-
rect communi-
cation module

3 0 0 6554601 Type of
CM598-CN
not supported

Exchange the
communica-
tion module

3 0 0 6554602 Firmware ver-
sion of
CM598-CN
not supported

Update firm-
ware of
CM598-CN

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4689

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 0 0 6554603 Identification
of CM598-CN
failed

Exchange the
communica-
tion module

3 0 0 6555600 Watchdog
error

4 0 0 6555601 CM598-CN is
not communi-
cating

Check bus
connection
and configura-
tion

4 0 0 6555602 CM598-CN
signals com-
munication
error

Check bus
connection
and configura-
tion

3 0 0 6555603 Starting of
CM598-CN's
protocol stack
failed

Check bus
connection
and configura-
tion

3 0 0 6555604 Stopping of
CM598-CN's
protocol stack
failed

3 0 0 6555605 PLC cannot
be set to run
due to an
error of
CM598-CN

Check error
log and cor-
rect errors

3 0 0 6556600 Configuration
error

Check config-
uration and
correct errors

3 0 0 6556601 Configuration
version mis-
match

Use matching
CPU firmware
version

3 0 0 6557600 Starting of
CM598-CN's
SYNC task
failed

3 0 0 6557600 Stopping of
CM598-CN's
SYNC task
failed

3 0 0 6558600 Starting CAN
2A/2B failed

3 0 0 6558601 Stopping CAN
2A/2B failed

CANopen common diagnosis, shown at CANopen remote device.

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4690

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 0 0 65536 SDO timeout

3 0 0 65537 Error during
SDO transfer

3 0 0 65538 Configuration
fault

Check config-
uration and
correct errors

3 0 NMT_state
0=unknown
1=initializing
2=stopped
3=operational
4=pre-opera-
tional
5=reset_appli-
cation
6=reset_com
m

65543 Node is in
unexpected
NMT state
<NMT state>

3 0 0 65545 Emergency
buffer over-
flow

3 0 0 65547 Unexpected
boot up mes-
sage from
node received

3 0 0 65548 Parameter set
of node is
invalid

Check param-
eter set and
correct errors

3 0 0 131073 Node configu-
ration error

Check config-
uration and
correct errors

3 0 0 131074 Node not
communi-
cating

Check bus
connection
and configura-
tion

CANopen EMCY messages, shown at CANopen remote devices.
Manufacturer specific data can be viewed as raw bytes.

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4691

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 0 Error register 200704 Generic error;
error register:
<error reg-
ister>

3 0 Error register 204800 Current -
generic error;
error register:
<error reg-
ister>

3 0 Error register 205056 Current,
CANopen
device input
side - generic;
error register:
<error reg-
ister>

3 0 Error register 205312 Current inside
the CANopen
device -
generic; error
register:
<error reg-
ister>

3 0 Error register 205568 Current,
CANopen
device output
side - generic;
error register:
<error reg-
ister>

3 0 Error register 208896 Voltage -
generic error;
error register:
<error reg-
ister>

3 0 Error register 209152 Mains voltage
- generic;
error register:
<error reg-
ister>

3 0 Error register 209408 Voltage inside
the CANopen
device -
generic; error
register:
<error reg-
ister>

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4692

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 0 Error register 209664 Ouput voltage
- generic;
error register:
<error reg-
ister>

3 0 Error register 212992 Temperatur -
generic error;
error register:
<error reg-
ister>

3 0 Error register 213248 Ambient tem-
perature -
generic error;
error register:
<error reg-
ister>

3 0 Error register 213504 Device tem-
perature -
generic; error
register:
<error reg-
ister>

3 0 Error register 217088 CANopen
device hard-
ware - generic
error; error
register:
<error reg-
ister>

3 0 Error register 221184 CANopen
device soft-
ware - generic
error; error
register:
<error reg-
ister>

3 0 Error register 211440 Internal soft-
ware -
generic; error
register:
<error reg-
ister>

3 0 Error register 221696 User software
- generic;
error register:
<error reg-
ister>

3 0 Error register 221952 Data set -
generic; error
register:
<error reg-
ister>

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4693

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 0 Error register 225280 Additional
modules -
generic error;
error register:
<error reg-
ister>

3 0 Error register 229376 Monitoring-
generic error;
error register:
<error reg-
ister>

3 0 Error register 229632 Communica-
tion - generic;
error register:
<error reg-
ister>

3 0 Error register 229684 CAN overrun
(objects lost);
error register:
<error reg-
ister>

3 0 Error register 229664 CAN in error
passive mode;
error register:
<error reg-
ister>

3 0 Error register 229680 Life guard
error or heart-
beat error;
error register:
<error reg-
ister>

3 0 Error register 229696 Recovered
from bus off;
error register:
<error reg-
ister>

3 0 Error register 229712 CAN-ID colli-
sion; error
register:
<error reg-
ister>

3 0 Error register 229888 Protocol error
- generic;
error register:
<error reg-
ister>

3 0 Error register 229904 PDO not pro-
cessed due to
length error;
error register:
<error reg-
ister>

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4694

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 0 Error register 229920 PDO length
exceeded;
error register:
<error reg-
ister>

3 0 Error register 229936 DAM MPDO
not pro-
cessed, desti-
nation object
not available;
error register:
<error reg-
ister>

3 0 Error register 229952 Unexpected
SYNC data
length; error
register:
<error reg-
ister>

3 0 Error register 229968 RPDO
timeout; error
register:
<error reg-
ister>

3 0 Error register 233472 External error
- generic
error; error
register:
<error reg-
ister>

3 0 Error register 258084 Additional
functions -
generic error;
error register:
<error reg-
ister>

3 0 Error register 261888 Device spe-
cific - generic
error; error
register:
<error reg-
ister>

ABB Communication Interface Module (CI58x) specific diagnosis messages, shown at I/O
modules directly instead of CANopen remote device.

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

3 255 0 8722 Internal error

3 255 0 8732 Internal error

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4695

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

4 255 0 9480 I/O module
removed from
hot swap ter-
minal unit or
defective
module on hot
swap terminal
unit

Plug I/O
module,
replace I/O
module

4 255 0 9500 Wrong I/O
module
plugged on
hot swap ter-
minal unit

Remove
wrong I/O
module and
plug projected
I/O module

4 255 0 9514 No communi-
cation with I/O
module on hot
swap terminal
unit

Replace I/O
module

4 255 0 9526 I/O module
does not sup-
port hot swap

Power off
system and
replace I/O
module

4 255 0 9736 Hot swap ter-
minal unit
required but
not found

Plug hot swap
terminal unit

4 255 0 9764 Defective hot
swap terminal
unit

4 255 0 9770 No communi-
cation with hot
swap terminal
unit

Restart, if
error persists
replace ter-
minal unit

3 255 0 16131 Timeout in the
I/O module

Replace I/O
module

3 255 0 16137 Overflow diag-
nosis buffer

Restart

4 255 0 16138 Voltage over-
flow at outputs
(above UP3
level)

Check termi-
nals/check
process
supply voltage

3/4 255 0 16139 Process
voltage UP or
UP3 too low

Check
process
supply voltage

3 255 0 16145 No communi-
cation with I/O
module

Replace I/O
module

3 255 0 16147 Checksum
error in the I/O
module

Replace I/O
module

3 255 0 16154 Parameter
error

Check master

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4696

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

4 255 0 16159 At least one
module does
not support
failsafe func-
tion

Check
modules and
parameteriza-
tion

3 255 0 16160 Wrong I/O
module type
on socket

Replace I/O
module /
check config-
uration

4 255 0 16162 No response
during initiali-
zation of the
I/O module

Replace I/O
module

3 255 0 16164 Internal data
exchange
failure

Replace I/O
module

3 255 0 16168 Different
hard-/ firm-
ware versions
in the module

Replace I/O
module

3 255 0 16171 Internal error
in the module

Replace I/O
module

3/4 255 0 16173 No process
voltage UP or
UP3

Check
process
voltage

4 255 0 16174 Voltage feed-
back on acti-
vated digital
outputs
DO0...DO7 on
UP3

Check termi-
nals

3 0 - 31 0 18 Test error

4 0 - 31 0 257 Wrong meas-
urement, false
temperature
at the com-
pensation
channel

4 0 - 31 0 258 AI531: Wrong
measurement;
potential dif-
ference is too
high; CD522:
PWM duty
cycle out of
duty area

4 0 - 31 0 260 Measurement
overflow

Check
channel wiring
and sensor
power supply

4 0 - 31 0 263 Measurement
underflow at
analog input

Check
channel wiring
and sensor
power supply

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4697

Severity SubSyste-
minfo

Additional Error code Meaning Remedy

4 0 - 31 0 266 Short circuit
and cut wire
or "out of
range"

4 0 - 31 0 267 Output/
process
voltage to
small/low

3 0 - 31 0 273 Test error

4 0 - 31 0 303 Short circuit at
an analog
input

Check
channel wiring

4 0 - 31 0 304 Analog value
overflow or
broken wire at
an analog
input

Check value
or check ter-
minals

4 0 - 31 0 530 Internal fuse
at 0V is
defect. 0V not
connected
with GND

Check I/O
module
wiring. Restart
I/O module, if
needed. If this
error persists,
replace I/O
module

3 0 - 31 0 540 Test error

3 0 - 31 0 555 Internal error

4 0 - 31 0 558 Externally
voltage
detected on
digital output
DO0...DO7

Check termi-
nals

4 0 - 31 0 559 Short circuit at
digital output

Check
channel wiring

4 0 - 31 0 772 Analog value
overflow at an
analog output

Check output
value

4 0 - 31 0 775 Analog value
underflow at
an analog
output

Check output
value

4 0 - 31 0 796 Different con-
figuration

3 0 – 31 0 1037 Test error

4 0 – 31 0 1070 Externally
voltage
detected on
digital output
DC0...DC7

Check termi-
nals

4 0 – 31 0 1071 Short circuit at
digital output

Check termi-
nals

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4698

6.9.3.6.5 CM582-DP PROFIBUS DP slave diagnosis
The diagnosis messages of the communication module CM582-DP are displayed in the tab
“Diagnosis ” of node “CM582-DP” in the device tree of the Automation Builder. Within PLC
application they can be read with the diagnosis methods of IO driver or function block “Diag”.
In the PLC display the diagnosis messages of CM582-DP are not shown.
The following diagnosis messages are signaled by CM582-DP:

Error
severity SubSysteminfo Additional Error code Meaning Remedy

3 0 0 1000x No communication module
or wrong type found

Plug the correct com-
munication module

3 0 0 1001 Type of CM582-DP not sup-
ported

Exchange the com-
munication module

3 0 0 1002 Firmware version of CM582-
DP not supported

Update firmware of
CM582-DP

3 0 0 1003 Identification of communica-
tion module failed

Exchange the com-
munication module or
plug the correct com-
munication module

3 0 0 2000 Watchdog error -

3 0 0 2001 CM582-DP is not communi-
cating

Check bus connection
and configuration

3 0 0 2002 CM582-DP signals commu-
nication error

Check bus connection
and configuration

3 0 0 2003 Starting of CM582-DP's pro-
tocol stack failed

Check bus connection
and configuration

3 0 0 2004 Stopping of CM582-DP's
protocol stack failed

-

3 0 0 2005 PLC cannot be set to run
due to an error of CM582-
DP

Check error log and
correct errors

3 0 0 3000 Configuration error Check configuration
and correct errors

3 0 0 3001 Configuration version mis-
match

Use matching CPU
firmware version

3 0 0 3002 Writing parameters to
CM582-DP failed

Check configuration
and correct errors

3 0 0 3003 Configuration of IM0 data
failed

Check configuration
and correct errors

3 0 0 3004 Reading of a parameter
failed

Check configuration
and correct errors

3 0 0 3005 Parameter value not sup-
ported or out of limits

Check configuration
and correct errors

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4699

6.9.3.6.6 AC500-S: errors from safety CPU and safety I/O modules
Table 865: Error messages for safety CPU
Severity Error code Description Remedy
2 8235 Internal error Replace module

2 8448 Operation finished Change Safety PLC switch
address setting or remove
memory card from non-safety
PLC. Restart Safety PLC. If this
error persists, replace Safety
PLC.

2 8449 Wrong user data Delete user data from Safety
PLC. Restart Safety PLC and
write user data again.

2 8450 Internal PROFIsafe initiali-
zation error

Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

2 8460 Flash read error Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

2 8466 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8476 Boot project download
error

Reload boot project. If this error
persists, replace Safety PLC.

2 8488 Wrong firmware version Update Safety PLC firmware.
Restart Safety PLC. If this error
persists, replace Safety PLC.

2 8491 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8496 Overvoltage or under-
voltage detected

Restart Safety PLC. Check
Safety PLC setting for power
supply error. If this error per-
sists, replace Safety PLC.

2 8500 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8704 User program triggered
safe stop

Check user program

2 8705 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8706 Internal PROFIsafe error Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

2 8707 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8714 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8717 Flash write error Restart Safety PLC. If this error
persists, replace Safety PLC.
Contact ABB technical support.

2 8721 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8722 Internal error Contact ABB technical support.
Replace Safety PLC.

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4700

Severity Error code Description Remedy
2 8723 Checksum error has

occured in Safety PLC
Restart Safety PLC. If this error
persists, replace Safety PLC.

2 8729 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8741 Cycle time error in Safety
PLC

Check Safety PLC watchdog
time.

2 8742 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8746 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8747 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8756 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8758 Internal error Contact ABB technical support.
Replace Safety PLC.

2 8990 PROFIsafe configuration
error

Check F-Parameter configura-
tion of I/O module and reload
boot project

3 12561 Safety source addresses
cannot be checked

Check PROFIsafe F-Host
library version (2.0.0 or above).
If this error persists, contact
ABB technical support.

3 12570 Error in configuration
data, safety PLC has
not accepted configura-
tion data, e.g., mismatch
between safety and non-
safety PLC configuration.

Create new configuration data
for both safety and non-safety
PLC again, re-create and down-
load boot projects to both safety
and non-safety PLC again.

3 12571 Error in configuration data,
Safety PLC cannot read
configuration data

Create boot project

3 12598 PROFIsafe F_Dest_Add
rules are violated

Check Safety PLC configu-
ration or switch address
setting against PROFIsafe
F_Dest_Add configuration
rules. Restart Safety PLC. If
this error persists, contact ABB
technical support.

3 32770 Watchdog error communi-
cation module

3 32771 Wrong firmware version of
communication module

Update firmware

3 32772 Initialisation of safety
module on slot failed.
More than one safety
module plugged

Remove this module or Only
that one safety module plugged
-> defective, replace this
module

3 32774 Invalid configuration data Check configuration

3 32775 Safety module not found Check configuration. At Safety
PLC: Check Safety PLC switch
address setting. Restart Safety
PLC. If this error persists,
replace Safety PLC.

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4701

Severity Error code Description Remedy
3 32776 Safety module has wrong

type
Check configuration

4 16640 Reserved switch address
setting.

Warning

4 16644 Boot project not loaded,
maximum power dip
reached

Restart Safety PLC

4 16648 Power dip data missed or
corrupted. Default power
dip data was flashed by
Safety PLC

Warning

4 16659 CRC error boot project Create new boot project and
restart Safety PLC

4 16909 Flash write error (produc-
tion data)

Warning

4 16935 More than one instance of
SF_WDOG_TIME_SET or
SF_MAX_POWER_DIP_S
ET

Warning

4 16922 No or wrong configuration
data from PM5x, run state
not possible

Create correct boot project at
PM5x

4 17421 Flash write error (boot
project)

Warning

4 17677 Flash write error (boot
code)

Warning

4 17933 Flash write error (firm-
ware)

Warning

4 18189 Flash write error (pass-
word)

Warning

4 18445 Flash write error (user
data)

Warning

4 18701 Flash write error (user
data)

Warning

4 18957 Flash write error (internal) Warning

4 19213 Flash write error (internal) Warning

4 19469 Flash write error (internal) Warning

4 32777 Program not started
because of configuration
error

Check configuration

4 32778 Program not started, no
application running in
safety module

Check configuration, download
safety application to safety
module

Table 866: Error messages for safety I/O modules (channel or module reintegration is possible)
Severity Error code Description Remedy
3 3 Discrepancy time expired Check discrepancy time value,

channel wiring and sensor.

3 12 Test pulse error Check wiring and sensor.

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4702

Severity Error code Description Remedy
3 13 Channel test pulse cross-

talk error
Check wiring and sensor. If
this error persists, replace I/O
module. Contact ABB technical
support.

3 25 Channel stuck-at error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 28 Channel cross-talk error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 260 Measurement overflow at
the I/O module

Check channel wiring and
sensor power supply.

3 263 Measurement underflow at
the I/O module

Check channel wiring and
sensor power supply.

3 311 Channel value difference
too high

Adjust tolerance window for
channels. Check channel wiring
and sensor configuration.

3 525 Channel readback error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 530 Channel cross-talk error Check I/O module wiring.
Restart I/O module, if needed.
If this error persists, replace I/O
module.

3 16138 Process voltage too high Check process voltage

3 16139 Process voltage too low Check process voltage

3 16148 PROFIsafe communica-
tion error

Restart I/O module. If this error
persists, contact ABB technical
support.

3 16153 PROFIsafe watchdog
timed out.

Restart I/O module. If this error
persists, increase PROFIsafe
watchdog time.

3 16171 Internal error in the device Replace I/O module

Table 867: Error messages for safety I/O modules (channel or module reintegration ist not
possible)
Severity Error code Description Remedy
3 16146 Plausibility check failed

(iParameter)
Check configuration

3 16147 Checksum error in the I/O
module

Check safety configuration and
CRCs for I- and F-Parameters.

3 16154 Parameter value Check master or configuration

3 16156 F-Parameter configuration
and address switch value
do not match.

Check I/O module F-Param-
eter configuration and module
address switch value.

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4703

6.9.3.6.7 CM579-PNIO – PROFINET I/O controller diagnosis
Diagnosis data for CM579-PNIO is not displayed in PLC display. In Automation Builder, we
recommend to use methods with text output to get diagnosis messages in clear text format.
E.g., DiagGetFirstValAndTxt.

Output string:
<timestamp>; <error severity>; <device name>; <error location>; error ID <id>: <error text>

If you need to access the diagnosis data directly, you have to interpret them manually.
Ä Chapter 6.9.3.6.8 “Advanced: Manual interpretation of CM579-PNIO diagnosis”
on page 4704

6.9.3.6.8 Advanced: Manual interpretation of CM579-PNIO diagnosis
General

Diagnosis messages are included in diagnosis text lists “Diag_PNIO_Controller” and
“Diag_PNIO_Vendor ID_Device ID”.
Ä We recommend that you refer to the example to learn how to perform the manual interpreta-
tion in the correct way.

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

 Sub1_ Sub2_ Add_Word 1_Word 2 Err_x or
Err_Word 1_Word 2
(Word1/2 in hex format)

3 tbd tbd 0 1 (general) Err_Gen_x General error,
<Err_Gen_x_text>

3 0 0 0 2 (runtime) Err_Rt_x General error,
<Err_Rt_x_text>

3 0 0 0 2 (runtime) 1 Runtime error; com-
munication module
watchdog error

3 0 0 0 2 (runtime) 2 Runtime error;
PROFINET controller
is not communicating

3 0 0 0 2 (runtime) 3 Runtime error;
PROFINET controller
signals communica-
tion error

4 0 0 0 2 (runtime) 4 Connection error;
No connection to
PROFINET I/O device

11 tbd tbd 0 3 (configu-
ration)

Err_Cfg_x Configuration error,
<Err_Cfg_x_text>

Advanced:
Direct access to
the diagnosis
data of CM579-
PNIO

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4704

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

 Sub1_ Sub2_ Add_Word 1_Word 2 Err_x or
Err_Word 1_Word 2
(Word1/2 in hex format)

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

1 (USI:
16#8000)
channel
diagnosis

4 (diag-
nosis
alarm)

0 Error type Subslot <subslot idx>,
channel <channel
idx>, channel diag-
nosis; <error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

1 (USI:
16#8000)
channel
diagnosis

4 (diag-
nosis
alarm)

0 Error type Subslot <subslot idx>,
channel diagnosis;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

2 (USI:
16#8002)
extended
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
channel <channel
idx>, extended
channel diagnosis;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

2 (USI:
16#8002)
extended
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
extended channel
diagnosis; <error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

3 (USI:
16#8003)
qualified
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
channel <channel
idx>, qualified channel
diagnosis; <error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

3 (USI:
16#8003)
qualified
channel

4 (diag-
nosis
alarm)

Extended
error Type

Error type Subslot <subslot idx>,
qualified channel diag-
nosis; <error text>

2, 3,
4 11

Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

0 5 (S500
process
alarm)

32 bit error code Subslot <subslot idx>,
channel <channel
idx>, S500 diagnosis;
<error text>

2, 3,
4 11

Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

0 5 (S500
process
alarm)

32 bit error code Subslot <subslot
idx>, S500 diagnosis;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= (14 .. 30)
& (32 ..)

6 (alarm) Alarm type = (14 .. 30) &
(32 ..)

Subslot <subslot idx>,
channel <channel
idx>, PNIO alarm;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= (14 .. 30)
& (32 ..)

6 (alarm) Alarm type = (14 .. 30) &
(32 ..)

Subslot <subslot idx>,
PNIO alarm; <error
text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= 1

6 (alarm) Alarm type = 1 Subslot <subslot idx>,
channel <channel
idx>, diagnosis alarm;
<error text>

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4705

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

 Sub1_ Sub2_ Add_Word 1_Word 2 Err_x or
Err_Word 1_Word 2
(Word1/2 in hex format)

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 1

6 (alarm) Alarm type = 1 Subslot <subslot
idx>, diagnosis alarm;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= 2

6 (alarm) Alarm type = 2 Subslot <subslot idx>,
channel <channel
idx>, process alarm;
<error text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 2

6 (alarm) Alarm type = 2 Subslot <subslot idx>,
process alarm; <error
text>

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 3

6 (alarm) Alarm type = 3 Subslot <subslot idx>,
pull alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 4

6 (alarm) Alarm type = 4 Subslot <subslot idx>,
plug alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 5

6 (alarm) Alarm type = 5 Subslot <subslot idx>,
status alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 6

6 (alarm) Alarm type = 6 Subslot <subslot idx>,
update alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 7

6 (alarm) Alarm type = 7 Subslot <subslot idx>,
rendundancy status
changed alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 8

6 (alarm) Alarm type = 8 Subslot <subslot idx>,
supervisor controlled
alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 9

6 (alarm) Alarm type = 9 Subslot <subslot idx>,
supervisor released
alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 10

6 (alarm) Alarm type = 10 Subslot <subslot idx>,
wrong submodule
plugged alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 11

6 (alarm) Alarm type = 11 Subslot <subslot idx>,
wrong submodule
returned alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

Alarm type
= 12

6 (alarm) Alarm type = 12 Subslot <subslot idx>,
channel <channel
idx>, diagnosis disap-
peared alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 12

6 (alarm) Alarm type = 12 Subslot <subslot idx>,
diagnosis disappeared
alarm

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4706

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

 Sub1_ Sub2_ Add_Word 1_Word 2 Err_x or
Err_Word 1_Word 2
(Word1/2 in hex format)

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 13

6 (alarm) Alarm type = 13 Subslot <subslot idx>,
port data changed
alarm

3 Subslot
index (0 –
16#9FFF)

Channel
index
(16#8000)

Alarm type
= 31

6 (alarm) Alarm type = 31 Used module pulled
alarm

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4707

Example
For better understanding, we show the manual interpretation of CM579-PNIO diagnosis with an
example.
System: AC500 CM579-PNIO + CI501-PNIO + optional S500 I/O inserted as PROFINET
standard device
Error: discrepancy time expired (class 3, error ID 3) at channel 4 of first attached S500 I/O
device on CI501-PNIO
For comparison: If a method with text output is used, e.g. DiagGetFirstValAndTxt the text
output will be the string: Timestamp; E3; device name; subslot 1, channel
4, extended channel diagnosis; error ID 3: discrepancy time expired
(class 3, error ID 3)
In Automation Builder the following error entry data is displayed:

Analyze the data in the following order: Element “dwAdditional” for the type of diagnosis, ele-
ment “Error Code”, element “SubSysteminfo”.
1. Analyze element “dwAdditional”, column "Additional" in error lists.

Convert the given value from decimal to hexadecimal format.
“dwAdditional” = 131076 = 16#20004

2. Interpretation:
Word 2 = 2
Word 1 = 4

3. Generate error text Add_Word 1_Word 2 = Add_4_2
4. Look up which error type it is.

Add_4_2 = extended channel diagnosis

1. Analyze element “Error Code”:
“dwErrorCode” = 196867 = 16#30103 ®

Word 2 (extended error type) = 16#0003
Word 1 (error type) = 16#0103
➔ Error text: Err_Word 1 (hex)_Word 2 (hex)
➔ Err_0103_0003 ®

Error ID 3 – discrepancy time expired (class 3, error ID 3)
2. Analyze “SubSysteminfo”

“dwSubSysteminfo” = 65540 = 16#10004 ®

Word 2 (subslot index) = 1
Word 1 (channel index) = 4

Type of diag-
nosis

Data analysis

Configuration and programming
Diagnosis and debugging > Diagnosis messages

2024/01/053ADR010583, 1, en_US4708

Erro
r
seve
rity

SubSysteminfo Additional Error code Meaning Rem
edyWord 2

(bit 16..31)
Word 1
(bit 0..15)

Word 2
(bit 16..31)
ADD_SUB
_TYPE

Word 1
(bit 0..15)
ADD_TYP
E

Word 2
(bit16...31)

Word 1
(bit0...15)

3 Subslot
index (0 –
16#9FFF)

Channel
index (0 –
16#7FFF)

2 (USI:
16#8002)
extended
channel
diagnosis

4 (diag-
nosis
alarm)

Extended
error type

Error type Subslot <subslot idx>,
channel <channel
idx>, extended
channel diagnosis;
<error text>

3 1 4 2 4 16#0003 16#0103 Subslot 1, channel
4, extended channel
diagnosis; <error text>

 dwSubSysteminfo Add_Word 1_Word 2 dwErrorCode Entries in Diag values

3 Sub2_ =
Subslot

Sub1_ =
Channel

Add_4_2 = extended
channel diagnosis

Err_Word 1_Word 2
Err_0103_0003 = error
ID 3: Discrepancy time
expired (class 3, error ID
3)

Text search criteria
(ID) in text list
Diag_PNIO_26_22
Text from Automation
Builder error list
(default) in text list
Diag_PNIO_26_22

Configuration and programming

Diagnosis and debugging > Diagnosis messages

2024/01/05 3ADR010583, 1, en_US 4709

—
7 Glossary
AC500 Standard PLCs
AC500-eCo Compact PLCs
AC500-S Safety PLCs
AC500-S
Program-
ming Tool

IEC 61131-3 editor, integrated in engineering suite Automation Builder

AC500-S-
XC

Safety PLCs suitable for extreme environmental conditions

AC500 V2 Range of AC500 and AC500-eCo CPUs
AC500 V3 Range of AC500 and AC500-eCo CPUs
AC500-XC Standard PLCs suitable for extreme environmental conditions
Alarm Diagnosis message which must be acknowledged by the user. The alarm will continue

to be displayed even if the issue has been resolved in the meantime until it is acknowl-
edged.

Automation
Builder

Engineering suite for configuration and programming of all PLCs

Cold start Note: The AC500-eCo V3 does not use a battery for buffering the operand areas speci-
fied below, hence the “cold start” mode does not exist in this product.
● A cold start is performed by switching power OFF/ON if no battery is connected.
● All RAM memory modules are checked and erased Ä Chapter 6.4.1.21.3.7.10 “Com-

mand 'Reset Cold'” on page 2633.
● If no user program is stored in the Flash EPROM, the default values (as set on

delivery) are applied to the interfaces.
● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

CP600 Control panels for application visualizations
Data buf-
fering

● Data buffering, i.e., maintaining data after power ON/OFF, is only possible, if a battery
is connected for AC500 CPU and the buffering will take place in FLASH with AC500-
eCo V3 CPU. The following data can be buffered completely or in parts:
– Data in the addressable flag area (%M area)
– RETAIN variable
– PERSISTENT variable (number is limited, no structured variables)
– PERSISTENT area (%R area)

● In order to buffer particular data, the data must be excluded from the initialization
process Ä Chapter 6.8.2.1 “Handling of remanent variables for AC500 V3 products”
on page 4412.

Download ● Download means loading the complete user program into the PLC's RAM. This
process is started by selecting the menu item "Online/Download" in the programming
system or after confirming a corresponding system message when switching to online
mode (menu item "Online/Login").

● Execution of the user program is stopped.
● In order to store the user program to the Flash memory, the menu item "Online/Create

boot project" must be called after downloading the program.
● Variables are set to their initialization values according to the initialization table.

Glossary

2024/01/053ADR010583, 1, en_US4710

● RETAIN variables can have wrong values as they can be allocated to other memory
addresses in the new project!

● A download is forced by the following:
– changed PLC configuration
– changed task configuration
– changed library management
– changed compile-specific settings (segment sizes)
– execution of the commands "Project/Clean all" and "Project/Rebuild All".

Event Diagnosis message which does not require acknowledgement. The event describes the
current status of the device. The event disappears once the issue has been resolved.

HMI Human machine interface
Online
change

● After a project has changed, only these changes are compiled when pressing the
key <F11> or calling the menu item "Project/Build". The changed program parts are
marked with a blue arrow in the block list.

● The term Online Change means loading the changes made in the user program into
the PLC's RAM using the programming system (after confirming a corresponding
system message when switching to online mode, menu item "Online/Login").

● Execution of the user program is not stopped. After downloading the program
changes, the program is re-organized. During re-organization, no further online
change command is allowed. The storage of the user program to the Flash memory
using the command "Online/Create boot project" cannot be initiated until re-organiza-
tion is completed.

● Online Change is not possible after:
– changes in the PLC configuration
– changes in the task configuration
– changes in the library management
– changed compile-specific settings (segment sizes)
– performing the commands "Project/Clean all" and "Project/Rebuild All".

Panel
Builder
PB610

Engineering tool for control panels, integrated in engineering suite Automation Builder

Reset ● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (exception: RETAIN varia-

bles) are set to their initialization values.
● Reset is performed using the menu item "Online/Reset" in the programming system

or pressing the function key RUN for ≥ 5 s in STOP mode.
Reset
(cold)

● Performs a START -> STOP process.
● Preparation for program restart, i.e., the variables (VAR) (also RETAIN variables) are

set to their initialization values.
● Reset (cold) is performed using the menu item "Online/Reset (cold)" in the program-

ming system.
Reset
(original)

● Resets the controller to its original state (deletion of Flash, SRAM (%M, area, %R
area, RETAIN, RETAIN PERSISTENT), Communication Module configurations and
user program!).

● Reset (original) is performed using the menu item "Online/Reset (original)" in the
programming system.

RUN ->
STOP

● RUN -> STOP means pressing the RUN function key on the PLC while the PLC is in
run mode (AC500 PLC display "run", AC500-eCo PLC "RUN LED" is ON).

● If a user program is loaded into RAM, execution is stopped.
● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP", AC500-eCo "RUN LED"

changes from ON to OFF.

Glossary

2024/01/05 3ADR010583, 1, en_US 4711

START ->
STOP

● START -> STOP means stopping the execution of the user program in the PLC's
RAM using the menu item "Online/Stop" in the programming system.

● All outputs are set to FALSE or 0.
● Variables keep their current values, i.e., they are not initialized.
● The AC500 PLC display changes from "run" to "StoP".

STOP ->
RUN

● STOP -> RUN means short pressing the RUN function key on the PLC while the PLC
is in STOP mode (AC500 PLC display "StoP", AC500-eCo "RUN LED" is ON). "RUN
LED" is OFF of the toggle switch of an AC500-eCo CPU.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be
set to their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo "RUN LED"
changes from OFF to ON.

STOP ->
START

● STOP -> START means continuing the execution of the user program in the PLC's
RAM using the menu item "Online/Start" in the programming system.

● If a user program is loaded into RAM, execution is continued, i.e., variables will not be
set to their initialization values.

● The AC500 PLC display changes from "StoP" to "run", AC500-eCo PLC "RUN LED"
changes from OFF to ON.

Warm start ● A warm start is performed by switching power OFF/ON with a battery connected.
● All RAM memory modules are checked and erased except of the buffered operand

areas and the RETAIN variables Ä Chapter 6.4.1.21.3.7.11 “Command 'Reset Warm'”
on page 2634.

● If there is a user program stored in the Flash EPROM, it is loaded into RAM.
● The default operating modes set by the PLC configuration are applied.

Glossary

2024/01/053ADR010583, 1, en_US4712

—
8 Index
1, 2, 3 ...
__AdrInst . 2335
__BitOffset . 2335
__Cast . 2335
__CATCH . 2206
__COMPARE_AND_SWAP 2212
__Copy . 2335
__CRC . 2335
__CURRENTTASK . 2211
__DELETE . 2198
__ENDTRY' . 2206
__FCall . 2335
__FINALLY . 2206
__Init . 2335
__ISVALIDREF . 2201, 2245
__Lazy . 2335
__Localoffset . 2335
__MaxOffset . 2335
__NEW . 2201
__POOL . 2217
__POSITION . 2214
__POUNAME . 2214
__PropertyInfo . 2335
__QUERYINTERFACE 2204
__QUERYPOINTER . 2205
__RefAdr . 2335
__RELOC . 2335
__System.ExceptionCode, data type 2206
__SystemScope . 2335
__TEST_AND_SET . 2215
__TRY . 2206
__TypeOf . 2335
__UXINT . 2243

convert . 2159
__UXINT_TO___XINT . 2159
__UXINT_TO___XWORD 2159
__UXINT_TO_BIT . 2159
__UXINT_TO_BOOL . 2159
__UXINT_TO_BYTE . 2159
__UXINT_TO_DATE . 2159
__UXINT_TO_DINT . 2159
__UXINT_TO_DT . 2159

__UXINT_TO_DWORD 2159
__UXINT_TO_INT . 2159
__UXINT_TO_LDATE . 2159
__UXINT_TO_LDT . 2159
__UXINT_TO_LINT . 2159
__UXINT_TO_LREAL . 2159
__UXINT_TO_LTIME . 2159
__UXINT_TO_LTOD . 2159
__UXINT_TO_LWORD . 2159
__UXINT_TO_REAL . 2159
__UXINT_TO_SINT . 2159
__UXINT_TO_STRING 2159
__UXINT_TO_TIME . 2159
__UXINT_TO_TOD . 2159
__UXINT_TO_UDINT . 2159
__UXINT_TO_UINT . 2159
__UXINT_TO_ULINT . 2159
__UXINT_TO_USINT . 2159
__UXINT_TO_WORD . 2159
__UXINT_TO_WSTRING 2159
__VarInfo . 2335
__VCADD . 2255

vector operator . 2255
__VCDIV . 2256

vector operator . 2256
__VCDOT . 2257

vector operator . 2257
__VCLOAD_LREAL . 2259

vector operator . 2259
__VCLOAD_REAL . 2259

vector operator . 2259
__VCMAX . 2258

vector operator . 2258
__VCMIN . 2258

vector operator . 2258
__VCMUL . 2256

vector operator . 2256
__VCSET_LREAL . 2259

vector operator . 2259
__VCSET_REAL . 2258

vector operator . 2258

Index

2024/01/05 3ADR010583, 1, en_US 4713

__VCSQRT . 2257
vector operator . 2257

__VCSTORE . 2260
vector operator . 2260

__VCSUB . 2255
vector operator . 2255

__VECTOR . 2253
__Wait . 2335
__XADD . 2213
__XINT . 2243

convert . 2159
__XINT_TO___UXINT . 2159
__XINT_TO___XWORD 2159
__XINT_TO_BIT . 2159
__XINT_TO_BOOL . 2159
__XINT_TO_BYTE . 2159
__XINT_TO_DATE . 2159
__XINT_TO_DINT . 2159
__XINT_TO_DT . 2159
__XINT_TO_DWORD . 2159
__XINT_TO_INT . 2159
__XINT_TO_LDATE . 2159
__XINT_TO_LDT . 2159
__XINT_TO_LINT . 2159
__XINT_TO_LREAL . 2159
__XINT_TO_LTIME . 2159
__XINT_TO_LWORD . 2159
__XINT_TO_REAL . 2159
__XINT_TO_SINT . 2159
__XINT_TO_STRING . 2159
__XINT_TO_TIME . 2159
__XINT_TO_TOD . 2159
__XINT_TO_UDINT . 2159
__XINT_TO_UINT . 2159
__XINT_TO_ULINT . 2159
__XINT_TO_USINT . 2159
__XINT_TO_WORD . 2159
__XINT_TO_WSTRING 2159
__XWORD . 2243

convert . 2159
__XWORD_TO__UXINT 2159
__XWORD_TO__XINT 2159
__XWORD_TO_BIT . 2159
__XWORD_TO_BOOL . 2159
__XWORD_TO_BYTE . 2159

__XWORD_TO_DATE . 2159
__XWORD_TO_DINT . 2159
__XWORD_TO_DT . 2159
__XWORD_TO_DWORD 2159
__XWORD_TO_INT . 2159
__XWORD_TO_LDATE 2159
__XWORD_TO_LDT . 2159
__XWORD_TO_LINT . 2159
__XWORD_TO_LREAL 2159
__XWORD_TO_LTIME 2159
__XWORD_TO_LWORD 2159
__XWORD_TO_REAL . 2159
__XWORD_TO_SINT . 2159
__XWORD_TO_STRING 2159
__XWORD_TO_TIME . 2159
__XWORD_TO_TOD . 2159
__XWORD_TO_UDINT 2159
__XWORD_TO_UINT . 2159
__XWORD_TO_ULINT 2159
__XWORD_TO_USINT 2159
__XWORD_TO_WORD 2159
__XWORD_TO_WSTRING 2159
_cnt.library . 2035
_Itfs.library . 2035
//---timestampingserverurl, command line 2034
//--compare, command line 2029
//--culture, command line 2028
//--enforcesignedcompiledlibraries, command line
. 2033

//--profile, command line 2028
//--project, command line 2029
//--projectarchive, command line 2029
//--runscript, command line 2030
//--signaturethumbprint, command line 2033
//--skipunlicensedplugins, command line 2033
% . 3329

format definition %c, %s for text variables . . . 3330
format definition in output text, visualization . 3329

%M . 4417
3rd party device diagnosis 4606
21 CFR part 11 standard 4398

A
AB (Automation Builder)

description . 95

Index

2024/01/053ADR010583, 1, en_US4714

ABS . 2194
AC500

connection and wiring 137
control cabinet assembly 104
description . 89
system structure . 86

AC500 V2/AC500 V3 . 6
AC500_Diag . 4621, 4631
AC500_DiagTypes 4615, 4616
AC500-eCo

connection and wiring 144
control cabinet assembly 104
description . 93
mounting and demounting the option boards
. 114, 127

system structure . 87
AC500-Safety . 94, 174
AC522 . 672

Analog I/O module . 672
Analog input/output module 672

access
symbol set . 1941

access control
properties . 2757

access protection
development system 2041
general information . 2039
runtime system / PLC 2041
user management . 2039
WebVisu . 2042

access right
device editor . 2453
object . 1822
visualization element 3366

accessor . 2493
access method . 2493
access method, interface 2490

accessories
AC500 . 126
AC500-eCo . 127

accessory . 1286
Ack . 4621, 4631
ACOS . 2198
ACS drives . 3781

action . 2075, 2497
SFC, do not display embedded objects 2684
SFC, duplication mode 2678
SFC, remove duplication 2683
SFC, set duplication 2683

ACTION . 2335
action association

insert, command . 2680
activate keyboard usage

command, visualization 3343
ActiveX . 3258, 3683

visualization element 3258, 3683
add

EN/ENO . 2686
file as text . 2566
input pin . 2695
language in a text list 2728
output pin . 2695

ADD . 2133
add all instance paths . 2720
add file as text . 2566
add folder . 2599
add POU

dialog . 2477
add user

device user management 2450
additional device-specific diagnosis 4606
address . 2231

absolute . 1939
assign variable . 1902
broadcast . 1941
I/O . 1841
network . 1939
node . 1939
relative . 1939
specification . 2231

addressing . 1937
relative . 1937

ADR . 2150, 2243
AI523 . 698

Analog input module . 698
AI531 . 725

Analog input module . 725
AI561 . 606
AI562 . 621

Index

2024/01/05 3ADR010583, 1, en_US 4715

AI563 . 632
AI581-S . 94, 174
alarm . 4605

visualization . 2909
alarm acknowledgement 3365
alarm banner . 3175, 3600

visualization element 3175, 3600
Alarm Class

Object . 2412
Alarm Configuration

Object . 2412
Alarm Group

Object . 2412
Alarm Storage

Object . 2412
alarm table . 3166, 3591

visualization element 3166, 3591
alias . 2245, 2267

data type . 2267
Identifier . 2245
object DUT . 2461

alignment
command, visualization editor 3344

alpha channel . 2914
alternative . 2679
analog I/O module . 606
analysis . 4228

attribute . 4228
pragma . 4228

analysis, attribute . 4229
analysis, pragma . 4228
analysis:report-multiple-instance-calls, attribute
pragma . 4231
analyzation

library . 1884
analyzation library . 2072

SFC . 2072
AND . 2139
AND_THEN . 2140
AND, pragma . 2326
ANDN . 2087
animation

visualization element 2912
ANY . 2239

data type . 2239

ANY_BIT . 2239
ANY_DATE . 2239
ANY_INT . 2239
ANY_NUM . 2239
ANY_REAL . 2239
ANY_STRING . 2239
AO523 . 764
AO561 . 644
application . 2410

activate on toolbar . 2623
backup application files 2435
build . 2619, 2627
build, options . 2759
clean . 2618
cold start . 2633
compare . 2626
compile . 2627
contents . 2626
delete . 2636
download . 2026, 2628
download with file . 2436
encrypt . 1820, 1915
encrypted transfer . 4207
encryption . 2754
encryption, instructions 1830
information . 2626
memory mapping . 2411
online change . 2629
rebuild . 2619
remove from PLC . 2627
reset . 1990
reset (cold) . 2633
reset (origin) . 2635
reset (warm) . 2634
reset origin . 2635
set active . 2603
warm start . 2634

application code
code generation . 1976
messages for code generation 1976

application composer
modules view . 2583

Application libraries . 3833
application update

control panel . 148

Index

2024/01/053ADR010583, 1, en_US4716

PLC . 148
applications, device editor 2434
arccosine . 2198
archive

save . 2557
send . 2557

arcsine . 2197
arctangent . 2198
array . 2247

access . 2228
declaration . 2247
declare . 1853
initialization . 2247
monitor . 1998
monitoring . 2048
of arrays . 2251
of function blocks . 2247
of variable length . 2252
structure . 2247
visualizing . 2917

ARRAY . 2247
OF . 2247

ascii . 1590
ASIN . 2197
assemblies

EtherNet/IP adapter 2828
assembly . 106

CM . 109
communication module 109
CPU . 109, 114
FM . 107
function module terminal base 107
I/O modules . 113, 123
option boards (AC500-eCo) 114, 127
processor module 109, 114
TA5301-CFA . 123
terminal base . 107
terminal block for onboard I/O (AC500-eCo) . . 116
terminal unit . 111

assembly and disassembly 106
assignment . 2054

FBD/LD/IL . 2092
output ST . 2052
ST operator . 2051

association
insert for SFC action, command 2680, 2681

AT . 1902
declaration . 1902

ATAN . 2198
attribute

for pragma . 2271
authentication

SVN . 4352
automatic formatting . 2581

ST code . 2581
Automation Builder

description . 95
device state diagnosis 4611
diagnosis description 4611, 4615
getting started . 16
installation . 16
licensing . 16

AX521 . 780
AX522 . 810
AX561 . 655

B
B . 2231

size prefix . 2231
background

designing the visualization 2884
placing, visualization 3349

backup . 2024, 2435
create backup file . 2435

backup and restore 2024, 2435
backup file . 2435

create, save . 2435
BACnet . 1734, 3833
BACnet Building Controller 1736, 3835
BACnet configuration 1738, 3838
BACnet libraries . 1748, 3847
BACnet network . 1736, 3835
BACnet server root object 1739, 3838
BACnet-BC System 1733, 3833
bar display . 3181, 3606

visualization element 3181, 3606
Basic CPU . 176
battery . 4445

Index

2024/01/05 3ADR010583, 1, en_US 4717

Bézier curve . 3012, 3437
visualization element 3012, 3437

BIBBs and services 1738, 3837
binary

display mode when monitoring 2654
number . 2220

binary number
format definition %b 3329

BIT . 2243
convert . 2159
structure . 2262

bit access . 2229
in integer variable . 2229
in structure variable . 2229

BIT_TO___UXINT . 2159
BIT_TO___XINT . 2159
BIT_TO___XWORD . 2159
BIT_TO_BOOL . 2159
BIT_TO_BYTE . 2159
BIT_TO_DATE . 2159
BIT_TO_DINT . 2159
BIT_TO_DT . 2159
BIT_TO_DWORD . 2159
BIT_TO_INT . 2159
BIT_TO_LDATE . 2159
BIT_TO_LDT . 2159
BIT_TO_LINT . 2159
BIT_TO_LREAL . 2159
BIT_TO_LTIME . 2159
BIT_TO_LTOD . 2159
BIT_TO_LWORD . 2159
BIT_TO_REAL . 2159
BIT_TO_SINT . 2159
BIT_TO_STRING . 2159
BIT_TO_TIME . 2159
BIT_TO_TOD . 2159
BIT_TO_UDINT . 2159
BIT_TO_UINT . 2159
BIT_TO_ULINT . 2159
BIT_TO_USINT . 2159
BIT_TO_WORD . 2159
BIT_TO_WSTRING . 2159
BITADR . 2151
bitmap, properties . 2758

block diagrams
grounding concept . 131

bookmarks
clear all . 2571
clear all in active editor 2571
next . 2570
next in active editor . 2570
previous . 2570
previous in active editor 2570
set . 1908
toggle . 2569
view . 2585

BOOL . 2235
constant . 2220
convert . 2154
data type . 2235

BOOL_TO___UXINT . 2154
BOOL_TO___XINT . 2154
BOOL_TO___XWORD . 2154
BOOL_TO_BIT . 2154
BOOL_TO_BYTE . 2154
BOOL_TO_DATE . 2154
BOOL_TO_DINT . 2154
BOOL_TO_DT . 2154
BOOL_TO_DWORD . 2154
BOOL_TO_INT . 2154
BOOL_TO_LDATE . 2154
BOOL_TO_LDT . 2154
BOOL_TO_LINT . 2154
BOOL_TO_LREA . 2154
BOOL_TO_LTIME . 2154
BOOL_TO_LTOD . 2154
BOOL_TO_LWORD . 2154
BOOL_TO_REAL . 2154
BOOL_TO_SINT . 2154
BOOL_TO_STRING . 2154
BOOL_TO_TIME . 2154
BOOL_TO_TOD . 2154
BOOL_TO_UDINT . 2154
BOOL_TO_UINT . 2154
BOOL_TO_ULINT . 2154
BOOL_TO_USINT . 2154
BOOL_TO_WORD . 2154
BOOL_TO_WSTRING . 2154

Index

2024/01/053ADR010583, 1, en_US4718

boot application
delete . 2636
encrypt . 1820, 4202
encrypted transfer . 4207
encryption . 1915
generate . 1978, 2627
options . 2759
properties . 2754
signing . 1915, 1917

Boot Support Package . 4397
box

CFC . 2110
clean, FBD/LD . 2710
FBD/LD/IL . 2092
FBD/LD/IL, empty box with en/eno 2702
insert parallel LD . 2702
insert, FBD/LD/IL . 2701
repair . 2710
with EN/ENO, FBD/LD/IL 2702

box input
insert, FBD/LD/IL . 2703

bracket, code . 2568
branch . 2078

add . 2679
closed . 2096
insert right . 2679
set end point . 2710
start/end . 2095

branch/tag
create . 4347

breakpoint . 1981
concept . 1981
condition . 2750
define condition . 1983
define execution point 1984
disable . 2646
edit . 2645
enable . 2646
execution point . 2751
new . 2645
position . 2752
set . 1983
toggle . 2646
view . 2586

broadcast address . 1941

browse . 1908
BSP . 4397
build

application . 2619
exclude . 2755
messages for code generation 1976
properties . 2755

build information . 2618
bulk data manager . 3862
bus cycle

EtherCAT . 1627
J1939 . 1603
PROFINET IO . 1642

bus cycle task
device editor . 2447

busy symbol . 3266, 3691
cube, visualization element 3266, 3691
flower, visualization element 3270, 3695

button . 3089, 3514
visualization element 3089, 3514

BY . 2056
byte

addressing mode . 2231
BYTE . 2235

convert . 2159
byte order . 2321
BYTE_TO___UXINT . 2159
BYTE_TO___XINT . 2159
BYTE_TO___XWORD . 2159
BYTE_TO_BIT . 2159
BYTE_TO_BOOL . 2159
BYTE_TO_DATE . 2159
BYTE_TO_DINT . 2159
BYTE_TO_DT . 2159
BYTE_TO_DWORD . 2159
BYTE_TO_INT . 2159
BYTE_TO_LDATE . 2159
BYTE_TO_LDT . 2159
BYTE_TO_LINT . 2159
BYTE_TO_LREAL . 2159
BYTE_TO_LTIME . 2159
BYTE_TO_LTOD . 2159
BYTE_TO_LWORD . 2159
BYTE_TO_REAL . 2159
BYTE_TO_SINT . 2159

Index

2024/01/05 3ADR010583, 1, en_US 4719

BYTE_TO_STRING . 2159
BYTE_TO_TOD . 2159
BYTE_TO_UDINT . 2159
BYTE_TO_UINT . 2159
BYTE_TO_ULINT . 2159
BYTE_TO_USINT . 2159
BYTE_TO_WORD . 2159
BYTE_TO_WSTRING . 2159
BYTEBIT_TO_TIME . 2159

C
C integration

IDE, path . 2756
properties . 2756

C stub file . 2619
C stub file for external library 2619
C0001 . 2344
C0002 . 2344
C0004 . 2345
C0005 . 2345
C0006 . 2346
C0007 . 2346
C0008 . 2346
C0009 . 2347
C0010 . 2347
C0011 . 2347
C0013 . 2348
C0015 . 2348
C0018 . 2348
C0020 . 2349
C0022 . 2349
C0023 . 2349
C0026 . 2350
C0027 . 2350
C0030 . 2350
C0031 . 2351
C0032 . 2351
C0033 . 2351
C0035 . 2352
C0036 . 2352
C0037 . 2352
C0038 . 2353
C0039 . 2353
C0040 . 2354
C0041 . 2354

C0042 . 2355
C0043 . 2355
C0044 . 2356
C0045 . 2356
C0046 . 2356
C0047 . 2357
C0048 . 2357
C0049 . 2358
C0050 . 2358
C0051 . 2358
C0053 . 2359
C0061 . 2359
C0062 . 2359
C0064 . 2360
C0065 . 2360
C0066 . 2360
C0068 . 2361
C0069 . 2361
C0070 . 2362
C0072 . 2362
C0074 . 2362
C0075 . 2363
C0076 . 2363
C0077 . 2363
C0078 . 2364
C0080 . 2364
C0081 . 2365
C0082 . 2365
C0084 . 2365
C0085 . 2366
C0086 . 2366
C0087 . 2367
C0089 . 2367
C0090 . 2368
C0091 . 2368
C0094 . 2368
C0096 . 2369
C0097 . 2369
C0098 . 2370
C0099 . 2370
C0101 . 2371
C0102 . 2371
C0104 . 2371
C0114 . 2371
C0115 . 2372

Index

2024/01/053ADR010583, 1, en_US4720

C0116 . 2372
C0117 . 2372
C0118 . 2372
C0119 . 2373
C0120 . 2373
C0122 . 2374
C0124 . 2374
C0125 . 2374
C0126 . 2375
C0130 . 2375
C0131 . 2376
C0132 . 2376
C0136 . 2376
C0138 . 2377
C0139 . 2377
C0140 . 2377
C0141 . 2378
C0142 . 2378
C0143 . 2378
C0144 . 2379
C0145 . 2379
C0149 . 2380
C0161 . 2380
C0162 . 2380
C0164 . 2381
C0165 . 2381
C0168 . 2382
C0169 . 2382
C0173 . 2383
C0174 . 2383
C0175 . 2383
C0177 . 2384
C0178 . 2384
C0179 . 2385
C0180 . 2385
C0182 . 2385
C0183 . 2386
C0185 . 2386
C0186 . 2386
C0188 . 2387
C0189 . 2387
C0190 . 2388
C0191 . 2388
C0195 . 2388
C0196 . 2388

C0197 . 2389
C0198 . 2389
C0199 . 2389
C0201 . 2390
C0203 . 2390
C0204 . 2391
C0205 . 2391
C0206 . 2391
C0207 . 2391
C0208 . 2392
C0209 . 2392
C0211 . 2392
C0212 . 2393
C0215 . 2393
C0216 . 2393
C0217 . 2393
C0218 . 2394
C0219 . 2394
C0221 . 2395
C0222 . 2395
C0224 . 2395
C0225 . 2396
C0227 . 2396
C0228 . 2397
C0230 . 2397
C0232 . 2397
C0233 . 2398
C0234 . 2398
C0235 . 2399
C0236 . 2399
C0237 . 2399
C0238 . 2400
C0239 . 2400
C0240 . 2401
C0241 . 2401, 2404
C0242 . 2401
C0243 . 2402
C0380 . 2402
C0509 . 2403
C0542 . 2404
C0543 . 2405
C0549 . 2405
C0550 . 2406
C0554 . 2406
C0555 . 2407

Index

2024/01/05 3ADR010583, 1, en_US 4721

CA-signed
certificate . 2044

CA-signed certificate . 1830
CAA library . 3849
CAA SerialCom . 1590
CAL . 2152
CALC . 2087
CALCN . 2087
call

function . 2482
function block, ST . 2060
program . 2478

call stack . 1994
view . 2590

call tree
show . 2572
view . 2590

call_after_global_init_slot 2273
pragma attribute . 2273

call_after_init . 2273
pragma attribute . 2273

call_after_online_change_slot 2274
pragma attribute . 2274

call_before_global_exit_slot
pragma attribute . 2275

call_on_type_change . 2275
pragma attribute . 2275

calls
function block . 2479

cam
object properties . 2763

CANbus
J1939 . 1603
parameters . 2433

CANopen . 336, 953
local device . 1602
modular device . 1597
non-modular device . 1597
remote device . 1597

Cartesian XY chart . 3296
visualization element 3296

CASE . 2057
CATCH . 2206
category

configure in visualization toolbox 3368

create for visualization elements 2873
CD522 . 907
central I/O extension . 86, 88
centralized I/O expansion 86, 88
centralized I/O extension . 86
centralized IO extension . 88
certificate . 1820

application . 1915
boot application, download, online change . . 4202
CA-signed 1820, 1830, 2044
controller . 4201
delete . 1830
encrypted communication 1915, 1967
encryption . 1820
encryption, instructions 1830
expiration date . 1967
expired . 2043
general information . 2040
issue more . 2043
project settings . 2772
request from PLC . 1830
Security Agent . 4201
sign boot application 1917
signing . 1820
time stamp by command line 2034
via PLC shell . 2044
Windows Certificate Store 1820

CFC . 1866
add input . 2695
add output . 2695
connect structure . 2698
connection mark . 2696
create control point . 2696
edit page size . 2686
edit parameters . 2692
edit worksheet . 2685
editor . 2098
end with selected elements 2689
force FB . 2697
group . 2696
keyboard shortcuts . 2102
move down . 2690
move up . 2689
order by data flow . 2691
order by topology . 2691

Index

2024/01/053ADR010583, 1, en_US4722

page-oriented 1867, 2098
parameter values . 2693
programming in CFC editor 1871
properties . 2761
reference . 2687
remove control point 2695
remove unused pins 2694
Reset . 2687
reset connecting line 2695
reset pins . 2694
route connections . 2695
select connected pins 2694
send to front . 2688
Set . 2687
set element number within execution order . 2690
show next collision . 2694
starting point in feedback network 1869
ungroup . 2697
unlock connection . 2693

CFC editor . 2098
breakpoint . 2103
debugging . 2103
monitoring . 2103
online mode . 2103
option . 2784
page-oriented . 2101
setting . 2784
toolbar . 2048

Change over to another module type 1414, 1475
change the language

font settings per language 2909
character string

with placeholder, visualization 3329
character string literal . 2221
chart . 2804, 3296

in trace editor . 2804
visualization element 3296

check
avoid implicit checks 2298

check box . 3156, 3577
visualization element 3156, 3577

CheckBounds . 2502
array . 2247

CheckDivInt . 2505
CheckDivLInt' . 2505

CheckDivLReal' . 2507
CheckDivReal . 2506
CheckLRangeSigned . 2510
CheckLRangeUnsigned 2512
CheckPointer . 2513
CheckRangeSigned 2268, 2508
CheckRangeUnsigned 2268, 2511
checks_in_libs . 2500
chromium browser . 4397
CI . 92
CI501 . 1203
CI501-PNIO . 1203
CI502 . 1244
CI502-PNIO . 1244
CI511 . 1018
CI512 . 1051
CI512-ETHCAT . 1051
CI521 . 1070
CI521-MODTCP . 1070
CI522 . 1111
CI522-MODTCP . 1111
CI541 . 1136
CI541-DP . 1136
CI542 . 1176
CI542-DP . 1176
CI581 . 953
CI581-CN . 953
CI582 . 993
clean all . 2618
clean gaps . 2719
clock

visualization element 3317, 3737
cloned code . 4216
closed branch, LD . 2096
CloseDialog . 3337
CloseDialog2 . 3337
CM . 89, 327
CM579 . 344, 365
CM579- EtherCAT master 344
CM579-ETHCAT

diagnosis . 4665
CM579-PNIO . 365
CM582 . 354
CM589 . 371
CM589-PNIO . 371

Index

2024/01/05 3ADR010583, 1, en_US 4723

CM589-PNIO-4 . 371
CM589-PNIO(-4) . 371
CM592 . 358
CM592- PROFIBUS DP Master 358
CM598 . 336
CM5610-2RS . 331
CM5610-2RS-XC . 331
CM5640-2ETH . 348
CM5640-2ETH-XC . 348
cmp libraries

app library . 3773
iec task library . 3773
log library . 3773

CmpTraceMgr
runtime system component 2008

CmpTraceMgr.library . 2007
code

analysis, pragmas . 4228
analyze . 1904
checks . 4218
collapse all . 2568
duplicate . 4216
encrypt . 1820
encryption . 1977
exclude from the static analysis 1905
expand all . 2568
format code . 2581
generate . 2618
generate, active application 2621
go to matching bracket 2568

code analysis
getting started . 4209
metrics . 4226
naming conventions 4219
prohibited symbols . 4227
rules . 4218

code check
metrics . 4226
prohibited symbols . 4227
rules . 4218
settings . 4217

code clone . 4216
code duplicate . 4216
code generation . 2618

application code . 1976

application in library project 2621
messages . 1976

coding guidelines . 1904
CoE online . 1622
coil . 2095

insert . 2704
reset . 2704
set . 2704

cold start . 2633
collapse all . 2568
color . 2914

code as hexadecimal number 2914
visualization . 2876

color animation
configure for visualization element 2878, 2916

color definition . 2914
byte order . 2914

color gradient
specify for visualization element 2877

color space . 2914
combo box, array 3079, 3497

visualization element 3079, 3497
combo box, integer 3072, 3503

visualization element 3072, 3503
command 'Go to instance' 2577
command icon . 2801

customize . 1805
command line . 2028

---timestampingserverurl 2034
--compare . 2029
--culture . 2028
--enforcesignedcompiledlibraries 2033
--ignorecomments . 2032
--ignoreproperties . 2033
--ignorewhitespace . 2032
--profile . 2028
--project . 2029
--projectarchive . 2029
--runscript . 2030
--signaturethumbprint 2033
--skipunlicensedplugins 2033

comment
CFC . 2111
library documentation 2061
ST . 2061

Index

2024/01/053ADR010583, 1, en_US4724

comment out . 2569
commit

ignore object, SVN . 4335
commit accepted changes 2611
communication

controller, encrypted 4201
device editor . 2427
edit . 1957
enable unencrypted . 2046
encrypt . 1820
encrypted . 1967
encryption, certificate 4201
setting, classic display 2786

Communication
Modbus TCP/IP . 4523

communication gateway 42, 2817
communication interface module 951

CANopen . 953
EtherCAT . 1018
Modbus . 1070
PROFIBUS . 1136
PROFINET . 1201

communication module . 327
CANopen . 336
EtherCAT . 343
Ethernet . 348
mounting and demounting 109
PROFIBUS . 354
PROFINET . 365
serial . 331

communication parameters
in Windows 19, 42, 1382, 2817

communication policy . 2427
compare . 4331

projects 1405, 1817, 2607
with HEAD revision, SVN 4331
with revision, SVN . 4331
working copy and base revision, SVN 4331
working copy and project in SVN repository . 4332

compare objects
command . 2607

compare view . 1405, 1817
detail . 1405, 1817
open detailed . 1407, 1818
project . 1405, 1817

COMPARE_AND_SWAP 2212
Comparison

AC500 V3 terminal bases 303
comparison view . 1406, 1818
compatibility

library . 2622
compiled libraries

signature . 2033
compiled library

save . 2556
compiled library, see compiled library 2517
compiled-library . 2035
compiled-library-v3 . 2035
compiler

options . 2769
version . 2778
warnings . 2770

compiler version
project environment . 2778

Compiling a project 42, 63, 67, 80
components

pumping library . 4059
composer

CFC . 2111
compression

project . 2791
condition

breakpoint . 2750
conditional compilation . 2318
conditionalshow, pragma 2276
conditionalshowsymbols, command-line command
. 2277, 2278

condtionalshow_all_locals pragma
pragma . 2277

configuration . 145
device . 1836
programming system 2745
task . 2538
trace . 2804

configuration tool for MODBUS 1565
configuration variable . 2121
connect

to device . 2640
connection

CFC, connect pins . 2693

Index

2024/01/05 3ADR010583, 1, en_US 4725

CFC, route . 2695
connection mark . 2696

Connection
AC522 . 674

connection and wiring
AC500 . 137
AC500-eCo . 144

connection mark
CFC . 2112

connections
EtherNet/IP adapter 2826

Connections
AC522 . 674

const_non_replaced, pragma 2278
const_replaced, pragma 2278
constant . 2219

BOOL . 2220
date . 2225
input/output variable 2117
LTIME . 2224
REAL and LREAL . 2221
string . 2221
time . 2223
TIME . 2223
time of day . 2225
variable . 2121

CONSTANT . 2219
variable . 2121

constants
numeric . 2220

contact . 2094
insert . 2707
ld . 2704
negated . 2706
negated, parallel . 2706
paste right after . 2707
right . 2705

Content of the memory card for application update
. 1432

Content of the memory card for firmware update 1432
Content of the memory card for firmware/applica-
tion update . 1432
Content of the SD card for firmware/application
update . 1432
content operator . 2151

CONTINUE . 2060
Continuous Function Chart 1866

page-oriented 1867, 2098
Continuous Function Chart (CFC) 1866
Continuous Function Chart (CFC) - page-oriented
. 1867, 2098

control cabinet . 134
control cabinet assembly 104
control elements . 148, 1338
control panel 3282, 3707, 4397

visualization element 3282, 3707
control panels . 95
control panels CP600 130, 145
control point

CFC . 2109
create . 2696
remove . 2695

control variable
IEC 61850 server . 1679

controller
communication, certificate-encrypted 1820
security . 2041
symbol access . 2458
unencrypted communication 2046
wink . 2640

conversion . 1394, 1799
convert

device . 2747
integer . 2159
library reference . 2746
strings . 2174
to FBD . 2711
to IL . 2711
to LD . 2711
TO_ . 2153
TRUNC . 2193
TRUNC_INT . 2193

convert V2 project to V3 project 1394, 1799
copied code . 4216
core dump

close . 2654
create . 2653
load . 2653
load device log . 2654
open memory view . 2592

Index

2024/01/053ADR010583, 1, en_US4726

COS . 2196
coupler . 91

mounting and demounting 109
cp 2nd generation . 157, 4398
CP-C.1 . 1327
CP6xx . 4397
CP6xx-eCo . 4397
CP6xx-Pro . 4397
CP64xx . 4397
CP66xx . 4397
CP600 . 95, 130, 145

converting a project . 157
runtime . 157

CPU
mounting and demounting 109, 114

CPU display
diagnosis description 4607

CPU load . 2014, 2537
CPU selection . 97
cpuload

trace . 2008, 2740
CpuLoad

DeviceTrace . 2015
create device list CSV

command . 2665
create localization template 2605
cross reference

browse . 2571
global . 2571

cross-reference . 2590
auto-update . 2796
IEC address . 2786

cross-reference list . 2587
classic view . 2590
collapse all . 2568
limit . 2744
occurrence location . 1906
view . 2587

CurrentVisu
Variable for visualization name 3398

custom data type . 2461
customize . 2800
cyber security . 1340
cyber security requirements 1349
cycle consistency . 1855

D
D . 2231

keyword . 2225
size prefix . 2231

DA501 . 840
DA502 . 874

Digital/Analog input/output module 874
dar file . 2453
data

exchange . 1936
record and trace . 2007

data breakpoint . 1981
condition . 2750
execution point . 2751

data logger . 3849
data logger library . 3849
data logging . 3849
data persistence . 1920
data record (see sample) 2007
data security . 1340, 1971
data set

IEC 61850 server . 1688
data source . 1947, 2414

add . 2413
add initially . 1949
choose variables . 2416
communication via address monitoring 2422
communication via symbols 2417
object . 2414
OPC UA Client 1960, 2424
symbolic access . 2418
type . 1947
type mapping . 2416
update rate . 2426
variables . 2415

data source manager
general . 1947

Data Source Manager
object . 2412

data source type
ApplicationV3 . 1948
symbolic . 1947

data type
__System.ExceptionCode 2207

Index

2024/01/05 3ADR010583, 1, en_US 4727

alias . 2267
ANY . 2239
BIT . 2243
date and time . 2238
enumeration . 2263
integer . 2235
LTIME . 2237
message . 2304
overflow underflow . 2129
reference . 2245
standard data types . 2234
structure . 2261
UNION . 2268
user defined . 2263
WSTRING . 2242

data unit type . 2461
dataflow, pragma attribute 2279
dataset

IEC 61850 server . 1688
date . 2238

constant . 2225
data type . 2238

DATE . 2238
convert . 2187
data type . 2238
keyword . 2225

date picker . 3311, 3730
visualization element 3311, 3730

date range picker 3301, 3721
visualization element 3301, 3721

DATE_AND_TIME . 2238
data type . 2238
keyword . 2225

DATE_TO___UXINT . 2187
DATE_TO___XINT . 2187
DATE_TO___XWORD . 2187
DATE_TO_BOOL . 2187
DATE_TO_BYTE . 2187
DATE_TO_DINT . 2187
DATE_TO_DT . 2187
DATE_TO_DWORD . 2187
DATE_TO_INT . 2187
DATE_TO_LDATE . 2187
DATE_TO_LDT . 2187
DATE_TO_LINT . 2187

DATE_TO_LREAL . 2187
DATE_TO_LTOD . 2187
DATE_TO_LWORD . 2187
DATE_TO_REAL . 2187
DATE_TO_SINT . 2187
DATE_TO_STRING . 2187
DATE_TO_TIME . 2187
DATE_TO_TOD . 2187
DATE_TO_UDINT . 2187
DATE_TO_UINT . 2187
DATE_TO_ULINT . 2187
DATE_TO_USINT . 2187
DATE_TO_WORD . 2187
DATE_TO_WSTRING . 2187
date/time formats . 3331

format definition %t . 3331
date/time picker . 3324, 3744

visualization element 3324, 3744
DC522 . 517
DC523 . 529

Digital input/output module 529
DC532 . 541

Digital input/output module 541
DC562 . 390
DCF file . 2663
DCS drives . 3782
debug . 1985

CFC editor . 2103
flow control . 1992
operating mode . 2642
run to cursor . 2648
set next statement . 2648
show next statement 2648
step out . 2647
using step into . 2647
using step over . 2646

debug mode . 1985
Debugging . 4209
decentral I/O extension 87, 88
decentralized I/O expansion 87, 88
decentralized I/O extension 87
decentralized IO extension 87, 88
decimal

display mode when monitoring 2654
number . 2220

Index

2024/01/053ADR010583, 1, en_US4728

decimal number
format definition %d, %i 3329

declaration . 4228
attribute, static analysis 4228
Auto Declare . 1886
change order . 1912
global variable . 1854
go to . 1908
refactoring . 1912

declaration editor 1851, 2047
edit declaration header 2717
option . 2785
show/hide . 2672
tabular/textual . 1851

declare . 1847
array . 1853
automatic . 2796
short form feature . 1887
task-local global variable list 1855
variable, command . 2572

Decommissioning . 157
default keyboard shortcuts

visualization manager 3402
define, pragma . 2318
Definitions: PLC system start-up 4420
DELETE . 2198
delete IL line . 2707
demounting . 106

CM . 109
communication module 109
FM . 107
function module terminal base 107
I/O modules . 113, 123
option boards (AC500-eCo) 114, 127
processor module 109, 114
terminal base . 107
terminal block for onboard I/O (AC500-eCo) . . 116
terminal unit . 111

demounting a processor module
on DIN rail . 120
on metal plate . 122

dereferencing . 2243
description

AC500 . 89
S500 . 89

design attribute . 2303
devdesc.xml . 2663
development system

appearance and behavior 1802
Development System

Features . 1800
device . 2427

add . 2599
application . 2434
configuration . 2427
configuration mode . 2616
configure . 1836
connect . 2427
connection . 2640
conversion . 2747
database . 2663
devices view . 2582
disable . 2614
encrypted communication 1967, 2427, 4201
favorite . 2427
files . 2437
function block instance 2449
I/O mapping . 2444
IEC objects . 2449
insert . 2614
install . 2038, 2663
interactive login . 2765
log . 2437
map I/Os . 1837
online config mode . 2616
options . 2765
PLC settings . 2439
PLC shell . 2022
plug . 2600
properties . 2765
scan . 2427
scan hardware 1607, 1628, 2600, 2832
security . 1967
send echo service . 2427
simulation mode 1980, 2640
symbol access . 2458
uninstall . 2663
update . 2602
user management 1971, 2450, 2453
wink . 2427

Index

2024/01/05 3ADR010583, 1, en_US 4729

device description
download . 2663
download, option . 2785
install . 2663

device diagnosis 2812, 4613, 4628, 4648
device ECAD data

command . 2665
device editor . 2447

access rights . 2453
add user . 2451
applications . 2434
backup and restore . 2435
communication . 2427
communication settings 2427
encrypted communication 2427
EtherCAT . 1610
files . 2027, 2437
generic . 2427
I/O mapping . 2444
IEC objects . 2449
information . 2460
KNX . 1730
log . 2437
options . 2786
parameters . 2433
PLC settings . 2439
PLC shell . 2441
status . 2460
symbol rights . 2458
synchronized file . 2436
task deployment . 2459
users and groups . 2450

device permission management file 2451, 2454
dm . 2451, 2454

device reader . 2668
device repository . 2663

renew . 2663
device state 4606, 4611, 4619, 4629
device user

add . 2637
change password . 2639
logout current user . 2637
remove . 2638

device user management 1971

device user management file 2451, 2454
dum2, dum . 2451, 2454

device version . 2779
DEVICE_STATE . 4629
devices view . 2582
DeviceTrace . 2007

CPU load . 2014
download . 2740
object . 2426

DI524 . 553
Digital input module . 553

DI561 . 402
Digital input module . 402

DI562 . 409
DI571 . 418

Digital input module . 418
DI572 . 428

Digital input module . 428
DI581-S . 94, 174
Diag (function block) 4621, 4631
DIAG_TXT_TYPE . 4617
DIAG_VAL_TYPE . 4616
Diag.NumClass . 4620
Diag.NumTotal . 4620
DiagAck . 4621, 4631
DiagGet... (method) 4621, 4631
diagnosis . 4605

acknowledge . 2602
device diagnosis 4613, 4648
fieldbus . 2812
PLC shell . 2022
subtree . 2602
system diagnosis 4613, 4619

Diagnosis
AC522 . 689
VisuDrvModbusRTUBroadcast 3822

diagnosis description 4606, 4607, 4611, 4615
diagnosis message

V3 . 4605, 4606
diagnosis messages list 4655

CM579-ETHCAT . 4665
CM579-PNIO . 4704
CM582-DP . 4699
CM589-PNIO . 4688
CM598-CN . 4689

Index

2024/01/053ADR010583, 1, en_US4730

diagnosis system . 4605
diagnostic messages list

CM579-ETHCAT . 4665
CM579-PNIO . 4704
CM589-PNIO . 4688
CM598-CN . 4689

diagnostic system . 4605
diagnostics history . 1621
diagram

autofit Y-trace axis . 2733
mouse zooming . 2737

DiagValToTxt . 4627, 4637
dialog . 2957, 2962

calling in a visualization 2957
close, input action . 3371
implement with interface 2962
open, input action . 3371
opening globally in a visualization 2959
user management for visualization 3400

dialog manager . 3335
methods . 3335

Differentiation AC500 V2/AC500 V3 6
digital I/O module . 390
digital/analog I/O module 840
DINT . 2235

convert . 2159
DINT_TO___UXINT . 2159
DINT_TO___XINT . 2159
DINT_TO___XWORD . 2159
DINT_TO_BIT . 2159
DINT_TO_BOOL . 2159
DINT_TO_BYTE . 2159
DINT_TO_DATE . 2159
DINT_TO_DT . 2159
DINT_TO_DWORD . 2159
DINT_TO_INT . 2159
DINT_TO_LDATE . 2159
DINT_TO_LDT . 2159
DINT_TO_LINT . 2159
DINT_TO_LREAL . 2159
DINT_TO_LTIME . 2159
DINT_TO_LTOD . 2159
DINT_TO_LWORD . 2159
DINT_TO_REAL . 2159
DINT_TO_SINT . 2159

DINT_TO_STRING . 2159
DINT_TO_TIME . 2159
DINT_TO_TOD . 2159
DINT_TO_UDINT . 2159
DINT_TO_UINT . 2159
DINT_TO_ULINT . 2159
DINT_TO_USINT . 2159
DINT_TO_WORD . 2159
DINT_TO_WSTRING . 2159
dip switch . 3231, 3656

visualization element 3231, 3656
disable breakpoint . 2646
disassembly . 106

CM . 109
communication module 109
CPU . 109, 114
FM . 107
function module terminal base 107
I/O modules . 113, 123
option boards (AC500-eCo) 114, 127
processor module 109, 114
terminal base . 107
terminal block for onboard I/O (AC500-eCo) . . 116
terminal unit . 111

disassembly file . 2622
disconnect

device . 2640
display . 148, 1338
display variant . 2973

configure . 2973
executing as integrated 2976
executing webvisu . 2974
maximum number . 3402
size of the paintbuffer 3401
TargetVisu . 3408
WebVisu . 3409

displaymode, pragma . 2280
DIV . 2136
division by zero 2505, 2506, 2507
dm file

device permission management file . . . 2451, 2454
DO . 2056
DO524 . 562

Digital output module 562
DO526 . 571

Index

2024/01/05 3ADR010583, 1, en_US 4731

DO561 . 437
Digital output module 437

DO562 . 447
Digital output module 447

DO571 . 457
Digital output module 457

DO572 . 468
Digital output module 468

DO573 . 478
Digital output module 478

document . 2606
dongle . 1825, 2659

encryption . 1915
project settings . 2772

dot product . 2257
download

command . 2637
device description from the server 2785
encrypt . 4202
encrypt code . 1915
library from server . 2790
multiple . 2631
source code, project setting 2770
trace . 2734
user data, visualization 3406

download manager
command . 2631

download to controller
multiple . 2631

Drive parameter settings 3811
DT . 2238

convert . 2187
data type . 2238
keyword . 2225

DT_TO___XWORD . 2187
DT_TO__UXINT . 2187
DT_TO__XINT . 2187
DT_TO_BOOL . 2187
DT_TO_BYTE . 2187
DT_TO_DATE . 2187
DT_TO_DINT . 2187
DT_TO_DWORD . 2187
DT_TO_INT . 2187
DT_TO_LDATE . 2187
DT_TO_LDT . 2187

DT_TO_LINT . 2187
DT_TO_LREAL . 2187
DT_TO_LTOD . 2187
DT_TO_LWORD . 2187
DT_TO_REAL . 2187
DT_TO_SINT . 2187
DT_TO_STRING . 2187
DT_TO_TIME . 2187
DT_TO_TOD . 2187
DT_TO_UDINT . 2187
DT_TO_UINT . 2187
DT_TO_ULINT . 2187
DT_TO_USINT . 2187
DT_TO_WORD . 2187
DT_TO_WSTRING . 2187
dum file . 2450
dum2 file, dum file

device user management file 2451, 2454
duplicated code . 4216
duplication . 2678

remove . 2683
SFC . 2678
SFC, set . 2683

duplication mode . 2678
DUT . 2461

add . 2462
DWORD . 2235

convert . 2159
DWORD_TO___UXINT 2159
DWORD_TO___XINT . 2159
DWORD_TO___XWORD 2159
DWORD_TO_BIT . 2159
DWORD_TO_BOOL . 2159
DWORD_TO_BYTE . 2159
DWORD_TO_DATE . 2159
DWORD_TO_DINT . 2159
DWORD_TO_DT . 2159
DWORD_TO_INT . 2159
DWORD_TO_LDATE . 2159
DWORD_TO_LDT . 2159
DWORD_TO_LINT . 2159
DWORD_TO_LREAL . 2159
DWORD_TO_LTIME . 2159
DWORD_TO_LTOD . 2159
DWORD_TO_LWORD . 2159

Index

2024/01/053ADR010583, 1, en_US4732

DWORD_TO_REAL . 2159
DWORD_TO_SINT . 2159
DWORD_TO_STRING . 2159
DWORD_TO_TIME . 2159
DWORD_TO_TOD . 2159
DWORD_TO_UDINT . 2159
DWORD_TO_UINT . 2159
DWORD_TO_ULINT . 2159
DWORD_TO_USINT . 2159
DWORD_TO_WORD . 2159
DWORD_TO_WSTRING 2159
DX522 . 581

Digital input/output module 581
DX531 . 594

Digital input/output module 594
DX561 . 491
DX571 . 503
DX581-S . 94, 174
dynamic memory allocation 2201

E
earthing concept

block diagrams . 131
echo service . 2427
Edge browser . 53, 57, 2855
edit code

format document . 2581
editing mode

graphical editor . 2048
editor

close all . 2669
close all (inactive applications) 2670
close all other . 2673
next . 2669
previous . 2669
visualization . 3393

Electrical Connection
AC522 . 674

element
selection, tab order . 3342

element list
command, visualization 3342
tab, visualization . 3342

element properties . 2584
SFC . 2080

element property
visualization . 3396

elements for alarms acknowledgement 3365
elimination of security risks 1345
ellipse . 2988, 3413

visualization element 2988, 3413
ELSE . 2055
ELSIF . 2055
EMC-conforming mounting and construction 132
empty box

insert . 2702
empty box with eno . 2702
EN/ENO

add . 2686
FBD/LD/IL . 2092

enable
breakpoint . 2646

enable_dynamic_creation, pragma 2281
encoder, counter and PWM module 907
encrypted communication

data source OPC UA Client 1960
device editor . 2427

encryption . 2039
application . 1915
boot application . 4207
boot application, download, online change, cer-
tificate . 4202
certificate . 1820
certificate, controller 4201
communication with PLC 1967
dialog, security screen 2592
dongle . 1915
download code . 1915
method . 2039
project . 1825
properties, application 2754
Security Agent . 4201
signature . 2039
with certificate, instructions 1830
wizard, boot application 4207

encryption wizard . 4207
boot application, download, online change . . 4202

END_ACTION . 2335
END_CASE . 2057
END_FOR . 2056

Index

2024/01/05 3ADR010583, 1, en_US 4733

END_FUNCTION . 2335
END_FUNCTION_BLOCK 2335
END_IF . 2055
END_PROGRAM . 2335
END_REPEAT . 2058
END_STRUCT . 2261
END_TYPE . 2263
END_UNION . 2268
END_VAR . 2113
END_WHILE . 2058
endianess . 2321
ENDTRY' . 2206
engineering software . 95
enlarging/reducing a pin group 2302
entry action . 2076

SFC, add . 2678
enumeration . 2263

conversion TO_STRING 2314
data type . 2263
default value . 2263
initialization . 2263
namespace . 2217
object DUT . 2461
pragma strict . 2265

EQ . 2149
ERROR . 4630
error list . 4655

CM579-PNIO . 4704
CM589-PNIO . 4688
CM598-CN . 4689

Error list
CM579-ETHCAT . 4665

error message
V3 . 4605, 4606

ERROR_ID . 4617
estimated-stack-usage, pragma 2281
EtherCAT 343, 1018, 1610, 4436

bus cycle . 1627
generate xml file . 2614
I/O mapping . 1610
IEC objects . 1610
information . 1610
parameters . 1610
status . 1610

EtherCAT Master
general . 1610
parameters . 1613

EtherCAT Master/Slave 1622
file transfer . 1621

EtherCAT module
startup parameters . 1624

EtherCAT Slave
CoE online . 1622
diagnostics history . 1621
Ethernet connection 1623
expert mode process data 1617
FMMU/sync . 1616
general . 1613
IDN . 1619
online . 1621
parameters . 1623
process data, inputs/outputs 1619
SDO . 1619
startup parameters . 1619

Ethernet . 348
EtherCAT connection 1623

Ethernet communication interface modules 1270
Ethernet over EtherCAT 1623
Ethernet protocols and ports for AC500 V3 prod-
ucts . 307, 4480
EtherNet/IP

NetX configuration . 2824
EtherNet/IP adapter

assemblies . 2828
connections . 2826
general . 2825, 2831
new connection . 2827
select parameters . 2830
user parameters . 2829

EtherNet/IP Scanner
general . 2824

EtherNet/IP scanner NetX
general . 2825

ETS5 parameters . 1732
event . 4605
example project with Automation Builder and
AC500 AC500 V3 products 24, 71
exception

stop execution . 2639

Index

2024/01/053ADR010583, 1, en_US4734

Exception
catch in IEC code . 2206

exception error, see exception 2206
exception handling . 2206

display variant . 2974
exchange localization files

project . 1833
execute . 2094

ST code in FBD/LD/IL 2094
execute command . 3373

input action . 3373
execution order . 1867

by data flow . 1867
CFC . 1867
end with selected elements 2689
move down . 2690
move up . 2689
order by data flow . 2691
selected elements to front 2688
set number of element 2690
set start of feedback in CFC POU 2688
show tags . 2688

execution point . 2751
EXIT . 2060
exit action . 2076

add, SFC . 2678
EXP . 2195
expand all . 2568
expandfully, pragma . 2284
expert mode process data

EtherCAT Slave . 1617
export

library . 2037
library from Library Manager 2716
library from repository 2657

export server
IEC 61850 . 1693, 1713

export/import
I/O mapping . 2616
PLCopen XML . 1815
PLCopenXML . 2612
text list . 2729
XML . 1815

Exportieren . 2611
expression, ST . 2050

EXPT . 2195
operator . 2195

ExST . 1879
reset . 2053
Set . 2052

EXT . 1885, 2755
extend memory profile . 2555
extend profile . 2555
extended diagnosis 4606, 4607
Extended Structured Text 1879
EXTENDS . 1930
external file . 2464

properties . 2757
external implementation 1885

configuration . 2755
external variable . 2120
extract archive . 2558

F
FALSE . 2220
FAQ . 1341
fast counters 210, 539, 910, 1135, 4538
FB_Exit . 2336

method . 2336
FB_Init . 2336

method . 2336
FB_Reinit . 2336

method . 2336
FBD . 1860

option . 2787
programming in . 1862

FBD/LD/IL
insert assignment, . 2701
insert box . 2701
insert empty box with en/eno 2702
insert input . 2703
insert jump . 2703
insert jump label . 2703
insert network . 2700
insert network below 2701
insert return . 2703
online operation . 2086
view as function block diagram 2711
view as instruction list 2711
view as ladder logic . 2711

Index

2024/01/05 3ADR010583, 1, en_US 4735

FBD/LD/IL editor . 2082
line branch . 2710
toolbar . 2048

Features
Development System 1800

fieldbus devices . 2812
fieldbus diagnosis . 2812
file

add . 2464
download during application download 2436
link to object . 2763
save . 1831
save as . 1831
to and from PLC . 2027
transfer, input action 3379

file transfer
configure mode . 2978
EtherCAT Master/Slave 1621
visualization - PLC . 3379

File transfer
on controller and visualization 3401

files
device editor . 2437

filing
project . 1822

FINAL . 2477
FINALLY . 2206
find . 2563

find next (selection) . 2565
find previous (selection) 2566
in help . 2674
next . 2565
previous . 2565

firewall protection . 1341
firmware update

control panel . 148
PLC . 148

Firmware update
with IP configuration tool 1463, 1513

flag memory . 2231
flash . 2411

external memory . 2411
flexconf . 1443
flexible configuration . 1443

floating-point number . 2236
constant . 2221
format definition %f, %e 3330

flow control . 1992, 2652
flow control mode . 4076
FM . 92
FMMU/sync

EtherCAT Slave . 1616
font

visualization manager 3407
visualization, language 2909

FOR . 2056
force . 1987

force values . 2649
handling in watch list 2584
in CFC . 2697
watch all forces . 1989

forcing
add all forces to watchlist 2585
prepare value . 2749

format definition
in output text, visualization 3329

format document . 2581
format code . 2581

frame . 3053, 3478
selection, visualization command 3348
switch visualization, input action 3377
switch visualizations in a frame via follow-up
actions . 2945
switch visualizations in a frame with a variable
. 2941

update parameters, visualization 3367
visualization element 3053, 3478

Frame
select visualizations 3348

frame visualization . 2941
FTP server . 1721
full screen mode . 2597
function . 2482

call . 2482
call via event . 2533
call with external implementation 1885
monitor . 2001
reaction to type change 2275

FUNCTION . 2482

Index

2024/01/053ADR010583, 1, en_US4736

function as operand . 2233
function block . 2479, 3773

add input, CFC . 2112
add output, CFC . 2112
assignment, info . 2293
call . 2479
call with external implementation 1885
call, ST . 2060
extend . 1930
I/O channel . 1840
I/O channel, mapping 2449
I/O mapping 1840, 2293, 2444
implement interface . 1932
initialization on call . 2290
map I/O channel . 2444
monitor . 1998
monitor with properties 2000
property . 2493
select for I/O mapping 2746
test, reflection . 2313

function block diagram . 1860
function extraction . 4215
function module . 907
function module terminal base

mounting and demounting 107, 111
FUNCTION_BLOCK . 2479
functionality

AC522 . 673

G
gateway

add . 2427
block driver . 2721
configuration . 2721
configuration file . 2721
manage . 2427

gateway.cfg . 2721
GE . 2149
general

EtherCAT Master . 1610
EtherCAT Slave . 1613
EtherNet/IP adapter 2825, 2831
EtherNet/IP Scanner 2824
EtherNet/IP scanner NetX 2825
KNX . 1730, 1731, 1732

generate code
IEC 61850 server . 1712

gesture
for operating a visualization 2887

get
access method, interface 2490

Get
accessor method . 2493

Get... (method) . 4621, 4631
GetClientInterface . 3336
GetDialog . 3336
getting started

display histogram . 2862
trend visualization . 2928

global namespace operator 2216
global network variable list 1946
global text list

add language and translate text 1891
check . 1894
compare and export differences 1893
create . 2728
create again with current IDs 1895
enter text in visualization element 1894
export . 1891
for static application 1894
import file . 1892
object . 2465
remove text list entries 1895
update ID . 1895
update with replacement file 1895

global variable . 2118
declare . 1854

global variable list . 2465
declare task-local . 1855
task-local . 2466

global variables list
namespace . 2216

global_init_slot, pragma 2285
GlobalImagePool . 1899
go to

definition, how to . 1908
line . 2567
matching bracket . 2568
network . 2712

Index

2024/01/05 3ADR010583, 1, en_US 4737

go to definition
command . 2576

go to source position . 2583
GOOSE publisher

IEC 61850 server . 1691
GOOSE subscriber

IEC 61850 server . 1694
gradient editor

visualization . 3369
graphical editor toolbar . 2048
grid

visualization . 3385
grounding concept

block diagrams . 131
group . 2450

CFC, create . 2696
CFC, remove . 2697
in the visualization editor 3347
user management . 1821
user management, visualization 3403

group box . 3101, 3526
visualization element 3101, 3526

grouping
ungrouping, visualization editor 3348

GSD file . 2663
GT . 2148
GVL . 2465

declare task-local . 1855
namespace . 2216
property . 2493
task-local . 2466

H
HA-Modbus TCP . 4535

System Technology . 3859
hardware protection . 1345
hasattribute, pragma . 2318
hasconstantvalue, pragma 2318
hastype, pragma . 2318
help

language . 2790
offline help . 2789
online help . 2789

hexadecimal
display mode when monitoring 2654

number . 2220
hexadecimal number

format definition %x, %llx 3329
hide windows . 1807
hide_all_locals, pragma 2289
hide, pragma . 2286
High Availability system 3859
High performance range 1327
histogram . 3216, 3641

configure . 2862
visualization element 3216, 3641

HMI . 95
hot swap behaviour . 157
HTTP library 1757, 1798, 3833
human machine interface . 95

I
I . 2231

memory range prefix 2231
I/O bus . 97
I/O channel

function block . 1840
IEC objects . 2449
map to function block 2444
map to variable . 2444
select function block 2746

I/O configuration
AC522 . 684

i/o faq . 303
I/O mapping 1405, 1836, 2812

all devices . 1843
change address . 1841
device editor . 2444
edit . 2615
EtherCAT . 1610
export to CSV . 2616
force . 1843
function block . 1840
import from CSV . 2615
KNX . 1730
monitoring . 1842
procedure . 1837
select function block 2746
task deployment . 1994
update . 1842

Index

2024/01/053ADR010583, 1, en_US4738

I/O module . 387
analog . 606
digital . 390
digital/analog . 840
function module . 907
general . 1644
mounting and demounting 113, 123

I/O selection . 97
Identifier

alias . 2245
identifiers

rules . 2327
search order . 2333

IEC 61850
export server . 1693, 1713

IEC 61850 server . 1671
dataset . 1688
generate code . 1712
GOOSE publisher . 1691
import server . 1713
options . 1713
properties . 1679
report . 1689
variable . 1679

IEC action
SFC . 2075

IEC application
device diagnosis . 4628
device state diagnosis 4619, 4629

IEC objects
device editor . 2449
EtherCAT . 1610
KNX . 1730

IEC task . 4425
IF . 2055

statement . 2055
if, pragma . 2318
IL . 1861

online operation . 2086
option . 2787

image . 3038, 3463
visualization element 3038, 3463

image file
insert . 2717
names and directories for visualization 3385

image pool . 1899, 2468
create . 1899
download . 2764
global . 1899
object . 2468
properties . 2764

image selection . 2469
image switcher . 3221, 3646

visualization element 3221, 3646
implement interfaces . 2744
IMPLEMENTS . 1932
import

I/O mapping . 2615
PLCopenXML . 2612
project in SVN . 4326

Import . 2612
import assistant

configuration programming system 2745
import server

IEC 61850 . 1713
import users

device user management 2450
index . 2674
index access . 2244
INDEXOF . 2137
information . 2675

device editor . 2460
EtherCAT . 1610
KNX . 1730

information model object 2473
information model OPC UA 2473
INI . 2218
init step, SFC . 2675
init_namespace, pragma attribute 2291
init_on_onlchange, pragma 2291
initialization . 1851

array . 2247
avoid, pragma . 2299
FB on call . 2290
input variable, pragma 2290
namespace, pragma 2291
online change, download 2291
order, pragma . 2285
vector . 2253
with FB_Init, FB_Reinit 2336

Index

2024/01/05 3ADR010583, 1, en_US 4739

initialize_on_call, pragma 2290
inline monitoring . 1996

enable . 2569
example . 1996

input
CFC . 2109
device . 1837

input action . 3370
visualization . 3370

input assistance . 1885
Auto Declare . 1886
behavior in visualization 3385
input assistant . 1886
List components . 1886
short form feature . 1887

input assistant . 2574
categories . 2575
dialog . 2575
text search . 2575

Input Assistant
options . 2796

input configuration . 3370
visualization . 3370

input event
visualization element 2886

input memory . 2231
input pin order . 2303
Input simulator . 1305
input variable . 2113

refactoring . 1911
input/output module

mounting and demounting 113, 123
input/output variable . 2114

constant . 2117
VAR_IN_OUT . 2114

insert . 2717
box parallel LD . 2702
branch above . 2709
branch below . 2709
branch, ld . 2709
coil . 2704
contact . 2707
contact parallel above 2705, 2706
contact parallel below 2705
contact right . 2705

contact, ld . 2704
contact, negated parallel 2706
empty box . 2702
image file . 2717
instruction line . 2707
line branch prallel . 2709
negated contact . 2706
set coil . 2704
text in a text list . 2729
variable declaration in the tabular editor 2717

insert action association
insert, command . 2681

insert assignment, FBD/LD/IL 2701
insert contact

parallel above 2705, 2706
parallel below . 2705

insert input
box, FBD/LD/IL . 2703

insert jump . 2703
insert jump label . 2703
insert network . 2700
insert network below . 2701
install

device . 2038, 2663
library . 2657

install additional license
command . 2655

instance path . 2720
add in global persistent variable list 2720
add in variables configuration 2720

instance variables . 2120
instance-path, pragma . 2292
instruction list . 1861
INT . 2235

convert . 2159
INT_TO___UXINT . 2159
INT_TO___XINT . 2159
INT_TO___XWORD . 2159
INT_TO_BIT . 2159
INT_TO_BOOL . 2159
INT_TO_BYTE . 2159
INT_TO_DATE . 2159
INT_TO_DINT . 2159
INT_TO_DT . 2159
INT_TO_DWORD . 2159

Index

2024/01/053ADR010583, 1, en_US4740

INT_TO_LDATE . 2159
INT_TO_LDT . 2159
INT_TO_LINT . 2159
INT_TO_LREAL . 2159
INT_TO_LTIME . 2159
INT_TO_LTOD . 2159
INT_TO_LWORD . 2159
INT_TO_REAL . 2159
INT_TO_SINT . 2159
INT_TO_STRING . 2159
INT_TO_TIME . 2159
INT_TO_TOD . 2159
INT_TO_UDINT . 2159
INT_TO_UINT . 2159
INT_TO_ULINT . 2159
INT_TO_USINT . 2159
INT_TO_WORD . 2159
INT_TO_WSTRING . 2159
integer

convert . 2159
integer data type . 2235
Intended purpose

AC522 . 673
interface . 2484

call visualization with interface 2952
command, visualization 3340
editor, visualization . 3340
extend . 1933
implement . 1932
property . 2490
update data source programmatically 1958
update, visualization 3367

INTERFACE . 2484
interface method . 2490
INTERNAL . 2485

method . 2485
property . 2493

Internal data exchange
AC522 . 684

interpretation of CM579-PNIO diagnosis 4704
invisible input . 3147, 3572

visualization element 3147, 3572
IO mapping . 1405
io modules . 94
IO modules . 91

io_function_block
pragma attribute . 2746

io_function_block_mapping 2293
pragma attribute 2293, 2746

IP address
change . 1461, 1511

IP configuration tool 1457, 1506
IP-configuration

command . 2655
is_connected . 2293

pragma attribute . 2293
IT security . 1341

J
J1939 . 1603

bus cycle . 1603
jitter . 1915

task configuration . 1915
JMP . 2059, 2087
JMPC . 2087
JMPCN . 2087
jump . 2079

add . 2681
CFC . 2110
insert after . 2681
insert, FBD/LD/IL . 2703

jump label
FBD/LD/IL . 2093
insert, FBD/LD/IL . 2703
ST . 2059

K
key

certificate . 2040
key combination . 1805
key file . 1814
keyboard

call for virtual input, visualization 2889
keyboard configuration

command, visualization 3341
tab, visualization . 3341

keyboard shortcut . 2802
customize . 1805

keyboard shortcuts . 1805
configure for elements 2892

Index

2024/01/05 3ADR010583, 1, en_US 4741

configure on visualization 2893
for default keyboard action, visualization 3338

keypad
visualization . 3399

keyword . 2335
uppercase . 2796

KNX . 1730
device editor . 1730
ETS5 . 1732
general 1730, 1731, 1732
I/O mapping . 1730
IEC objects . 1730
information . 1730
parameters . 1730
status . 1730

L
label . 2111, 3068, 3493

CFC . 2111
visualization element 3068, 3493

ladder diagram . 1860
lamp . 3226, 3651

visualization element 3226, 3651
language

current in the visualization 3399
help . 2790
project localization . 1833
switch input action . 3372
user interface, command line 2028
user interface, options 2790
visualization . 2906

language switching
configure, instructions 2906

latency . 1915
task configuration . 1915

LD . 1860, 2087
closed branch . 2096
keyword . 2225
online operation . 2086
option . 2787
programming in . 1864

LDATE . 2238
convert . 2187
data type . 2238
keyword . 2225

LDATE_AND_TIME . 2238
data type . 2238
keyword . 2225

LDATE_TO___UXINT . 2187
LDATE_TO___XINT . 2187
LDATE_TO___XWORD 2187
LDATE_TO_BOOL . 2187
LDATE_TO_BYTE . 2187
LDATE_TO_DATE . 2187
LDATE_TO_DINT . 2187
LDATE_TO_DT . 2187
LDATE_TO_DWORD . 2187
LDATE_TO_INT . 2187
LDATE_TO_LDT . 2187
LDATE_TO_LINT . 2187
LDATE_TO_LREAL . 2187
LDATE_TO_LTOD . 2187
LDATE_TO_LWORD . 2187
LDATE_TO_REAL . 2187
LDATE_TO_SINT . 2187
LDATE_TO_STRING . 2187
LDATE_TO_TIME . 2187
LDATE_TO_TOD . 2187
LDATE_TO_UDINT . 2187
LDATE_TO_UINT . 2187
LDATE_TO_ULINT . 2187
LDATE_TO_USINT . 2187
LDATE_TO_WORD . 2187
LDATE_TO_WSTRING 2187
LDN . 2087
LDT

convert . 2187
keyword . 2225

LDT_TO___XWORD . 2187
LDT_TO__UXINT . 2187
LDT_TO__XINT . 2187
LDT_TO_BOOL . 2187
LDT_TO_BYTE . 2187
LDT_TO_DATE . 2187
LDT_TO_DINT . 2187
LDT_TO_DT . 2187
LDT_TO_DWORD . 2187
LDT_TO_INT . 2187
LDT_TO_LDATE . 2187
LDT_TO_LINT . 2187

Index

2024/01/053ADR010583, 1, en_US4742

LDT_TO_LREAL . 2187
LDT_TO_LTOD . 2187
LDT_TO_LWORD . 2187
LDT_TO_REAL . 2187
LDT_TO_SINT . 2187
LDT_TO_STRING . 2187
LDT_TO_TIME . 2187
LDT_TO_TOD . 2187
LDT_TO_UDINT . 2187
LDT_TO_UINT . 2187
LDT_TO_ULINT . 2187
LDT_TO_USINT . 2187
LDT_TO_WORD . 2187
LDT_TO_WSTRING . 2187
LE . 2148
LEDs . 148, 1338
legend . 3254, 3679

visualization element 3254, 3679
level control mode . 4080
level-control mode . 4080
library . 3773

add . 2712
add to project . 2036
check compatibility . 2622
checks_in_libs . 2500
convert library reference 2746
create . 2852
download . 2469
download, option . 2790
export . 2037, 2657, 2716
install . 2657
integrate . 2469
integrate in project . 2471
Library Manager . 2469
library types . 2035
location . 2657
mapping definition . 2790
namespace 2217, 2469, 2470
options . 2790
outdated versions . 2778
placeholder . 2716
profile . 2657
properties . 2469, 2714
protected, signed . 2035
referenced libraries . 2469

reload . 2713
save as compiled library 2556
signing . 2556
summary . 2469
uninstall . 2657
use POUs . 1890

library development
information . 2035

Library Development Summary 2852
library documentation

comment . 2061
library manager . 3773
Library Manager . 2469

general . 2034
library project

category . 2515
compiled library . 2517
license . 1814
licensing . 2517
sign . 2517

library reference
conversion . 2746

library repository . 2657
adding a library . 2037
general . 2034

license
activate . 2659
information . 2675
manage . 2659
plug-in . 2675
request . 2659
restore . 2659
return . 2659
start development system without license
prompt . 2033

license Information
controller . 2668

License Manager . 2659
license repository . 2662
LIMIT . 2147
line . 3000, 3425

visualization element 3000, 3425
line branch . 2710

IL . 2093
open . 2093

Index

2024/01/05 3ADR010583, 1, en_US 4743

start point . 2709
start/end . 2095

linkalways . 2294
pragma . 2294

Lint . 1904
programming tool for code analysis 1904

LINT . 2235
convert . 2159
data type . 2235

LINT_tO___UXINT . 2159
LINT_tO___XINT . 2159
LINT_tO___XWORD . 2159
LINT_tO_BIT . 2159
LINT_tO_BOOL . 2159
LINT_tO_BYTE . 2159
LINT_TO_DATE . 2159
LINT_TO_DINT . 2159
LINT_TO_DT . 2159
LINT_TO_DWORD . 2159
LINT_TO_INT . 2159
LINT_TO_LDATE . 2159
LINT_TO_LDT . 2159
LINT_TO_LREAL . 2159
LINT_TO_LTIME . 2159
LINT_TO_LTOD . 2159
LINT_TO_LWORD . 2159
LINT_TO_REAL . 2159
LINT_TO_SINT . 2159
LINT_TO_STRING . 2159
LINT_TO_TIME . 2159
LINT_TO_TOD . 2159
LINT_TO_UDINT . 2159
LINT_TO_UINT . 2159
LINT_TO_ULINT . 2159
LINT_TO_USINT . 2159
LINT_TO_WORD . 2159
LINT_TO_WSTRING . 2159
List components . 1886
literal . 2219

character . 2221
date . 2225
time of day . 2225
typed . 2228

LN . 2194

load
project, option . 2791

loading to the controller 2026
local variable . 2113
localization

project . 1833
localization template

project localization . 1833
lock

get, SVN . 4336
steal, SVN . 4337

locked, operating mode 2642
log

device . 2654
open . 2437
PLC . 2021
SVN . 4337
VendorException . 2437

Log . 4647
LOG . 2195
log of the PLC

device editor . 2437
log-in to a CPU . 50
login . 2624

as user . 1828
via user account . 1827
with certificate only . 1820
wrong password . 2045

logout . 2627, 2637
LOWER_BOUND . 2252

array . 2252
lowercase . 2567
LREAL . 2236

constant . 2221
convert . 2171
literal . 2221

LREAL_TO___XWORD 2171
LREAL_TO__UXINT . 2171
LREAL_TO__XINT . 2171
LREAL_TO_BIT . 2171
LREAL_TO_BOOL . 2171
LREAL_TO_BYTE . 2171
LREAL_TO_DATE . 2171
LREAL_TO_DINT . 2171
LREAL_TO_DT . 2171

Index

2024/01/053ADR010583, 1, en_US4744

LREAL_TO_DWORD . 2171
LREAL_TO_INT . 2171
LREAL_TO_LINT . 2171
LREAL_TO_LREAL . 2171
LREAL_TO_LWORD . 2171
LREAL_TO_SINT . 2171
LREAL_TO_STRING . 2171
LREAL_TO_UDINT . 2171
LREAL_TO_UINT . 2171
LREAL_TO_ULINT . 2171
LREAL_TO_USINT . 2171
LT . 2148
LTIME . 2237

constant . 2224
convert . 2182
literal . 2224

LTIME_OF_DAY . 2238
data type . 2238
keyword . 2225

LTIME_TO___UXINT . 2182
LTIME_TO___XINT . 2182
LTIME_TO___XWORD 2182
LTIME_TO_BOOL . 2182
LTIME_TO_BYTE . 2182
LTIME_TO_DATE . 2182
LTIME_TO_DINT . 2182
LTIME_TO_DT . 2182
LTIME_TO_DWORD . 2182
LTIME_TO_INT . 2182
LTIME_TO_LDATE . 2182
LTIME_TO_LDT . 2182
LTIME_TO_LINT . 2182
LTIME_TO_LREAL . 2182
LTIME_TO_LTOD . 2182
LTIME_TO_LWORD . 2182
LTIME_TO_REAL . 2182
LTIME_TO_SINT . 2182
LTIME_TO_STRING . 2182
LTIME_TO_TIME . 2182
LTIME_TO_TOD . 2182
LTIME_TO_UDINT . 2182
LTIME_TO_UINT . 2182
LTIME_TO_ULINT . 2182
LTIME_TO_USINT . 2182
LTIME_TO_WORD . 2182

LTIME_TO_WSTRING . 2182
LTOD . 2238

convert . 2187
data type . 2238
keyword . 2225

LTOD_TO___XWORD . 2187
LTOD_TO__UXINT . 2187
LTOD_TO__XINT . 2187
LTOD_TO_BOOL . 2187
LTOD_TO_BYTE . 2187
LTOD_TO_DATE . 2187
LTOD_TO_DINT . 2187
LTOD_TO_DT . 2187
LTOD_TO_DWORD . 2187
LTOD_TO_INT . 2187
LTOD_TO_LDATE . 2187
LTOD_TO_LDT . 2187
LTOD_TO_LINT . 2187
LTOD_TO_LREAL . 2187
LTOD_TO_LWORD . 2187
LTOD_TO_REAL . 2187
LTOD_TO_SINT . 2187
LTOD_TO_STRING . 2187
LTOD_TO_TIME . 2187
LTOD_TO_TOD . 2187
LTOD_TO_UDINT . 2187
LTOD_TO_UINT . 2187
LTOD_TO_ULINT . 2187
LTOD_TO_USINT . 2187
LTOD_TO_WORD . 2187
LTOD_TO_WSTRING . 2187
LWORD . 2235

convert . 2159
LWORD_TO___UXINT . 2159
LWORD_TO___XINT . 2159
LWORD_TO___XWORD 2159
LWORD_TO_BIT . 2159
LWORD_TO_BOOL . 2159
LWORD_TO_BYTE . 2159
LWORD_TO_DATE . 2159
LWORD_TO_DINT . 2159
LWORD_TO_DT . 2159
LWORD_TO_DWORD . 2159
LWORD_TO_INT . 2159
LWORD_TO_LDATE . 2159

Index

2024/01/05 3ADR010583, 1, en_US 4745

LWORD_TO_LDT . 2159
LWORD_TO_LINT . 2159
LWORD_TO_LREAL . 2159
LWORD_TO_LTIME . 2159
LWORD_TO_LTOD . 2159
LWORD_TO_REAL . 2159
LWORD_TO_SINT . 2159
LWORD_TO_STRING . 2159
LWORD_TO_TIME . 2159
LWORD_TO_TOD . 2159
LWORD_TO_UDINT . 2159
LWORD_TO_UINT . 2159
LWORD_TO_ULINT . 2159
LWORD_TO_USINT . 2159
LWORD_TO_WORD . 2159
LWORD_TO_WSTRING 2159

M
M . 2231

memory range prefix 2231
M4 interface file for external library 2619
macro . 2079

add . 2682
insert after . 2682
SFC . 2079
zoom into . 2682
zoom out of . 2682

magnification tool . 2048
mail service . 4361
main action . 2076
manage localizations . 2605
map pool devices

command . 2611
mapping . 1836

I/O mapping . 1836
OPC UA to IEC . 2848

mapping (see I/O mapping) 1837
MAX . 2146
MC . 126, 129, 1426
MC5102 . 1286, 1309
MC5141 . 1315
Measuring ranges

AC522 . 692
mechanical installation . 104
mechanical planning . 104

mechanical planning and installation 104
memory

display memory snapshot 2592
dynamic allocation . 2201

memory card 126, 129, 1426
MC5102 (micro) 1286, 1309
MC5141 . 1315

memory range . 2231
memory reserve

function block . 2595
online change . 2595

memory view . 2592
menu . 2801

customize . 1802
merge changes . 4344
message

go to source position 2575
next . 2576
previous . 2576

message pragma . 2269
message view . 2583
meta-information . 1813

add to project . 1813
meter . 3201, 3626

90°, visualization element 3187, 3612
180°, visualization element 3194, 3619
visualization element 3201, 3626

method . 2485
call . 1933, 2486
call recursively . 1935
call with external implementation 1885
example of recursive call 2282
factorial calculation . 2282
FB_Init, FB_Reinit, FB_Exit 2336
interface . 2490
monitor . 2000
object-oriented programming 2485
reaction to type change 2275
recursive call . 2487
virtual call . 1933

METHOD . 2485
Methode . 2120
metrics

code analysis . 4226
static analysis 4213, 4226

Index

2024/01/053ADR010583, 1, en_US4746

micro browser . 4397
micro memory card

MC5102 . 1286, 1309
micro memory card adapter

TA5350-AD . 1286, 1309
migrate third party device

command . 2655
migration . 1394, 1799
MIN . 2146
MOD . 2137
Modbus . 1070

parameters . 2433
RTU protocol . 1716
TCP/IP protocol 1714, 4523

Modbus configurator . 1565
Modbus sockets . 4568
Modbus TCP . 3780
modifier. IL . 2087
ModRtuMast . 4506
ModRtuToken . 4506
ModTcpMast2 . 4568
module

call tree . 2572
monitoring . 1996

area for arrays 2048, 2752
CFC editor . 2103
display mode . 2654
enable inline monitoring 2569
encoding . 2297
function call . 2295
inline . 1996
interval . 2765
options . 2792
pragma . 2295, 2297
properties . 2766
property . 2295, 2297
SFC . 2063
using pous for implicit checks 1928

monitoring area . 2048
dialog . 2048

monitoring function
implicit . 2500

monitoring variable
IEC 61850 server . 1679

Motion control library . 3958

mounting . 106
CM . 109
communication module 109
FM . 107
function module terminal base 107
I/O modules . 113, 123
option boards (AC500-eCo) 114, 127
processor module 109, 114
TA5301-CFA . 123
TB . 107
terminal base . 107
terminal block for onboard I/O (AC500-eCo) . . 116
terminal unit . 111
TU . 111

mounting a processor module
on DIN rail . 119
on metal plate . 121

MOVE . 2137
move down . 2718
move up . 2718
MQTT . 1722
MQTT client library . 4048
MQTT_CONNECTION . 4050
MQTT_ERROR_ID . 4048
MQTT_MESSAGE . 4050
MQTT_QOS . 4050
MSSQL . 1757, 3833
MUL . 2134
multi online change

command . 2665
multicore . 2537

show CPU load . 2015
trace . 2014
use task-local global variable list 1855

multicore operator
__COMPARE_AND_SWAP 2212
__XADD . 2213
TEST_AND_SET . 2215

multitouch
for operating a visualization 2887
implement event handling 2888
visualization . 3401

MUX . 2147
MySQL . 1757, 3833

Index

2024/01/05 3ADR010583, 1, en_US 4747

N
name

convention, static analysis 4228
nameprefix . 4228

attribute . 4228
nameprefix, attribute . 4230
namespace . 2327

automatic . 2796
enumeration . 2217
GVL . 2216
library . 2217
of variables . 2327

naming . 4228
attribute . 4228

naming convention 2327, 4219
code analysis . 4219
disable . 4229
naming . 4229
static analysis . 4219
suppress . 4229

naming, attribute . 4229
NE . 2149
Negate . 2686
negated coil . 2095
negated contact . 2094
negation, fbd/ld/il . 2708
network . 1936

address . 1939
addressing . 1937
comment out . 2701
FBD/LD/IL . 2091
FBD/LD/IL, insert . 2700
FBD/LD/IL, insert below 2701
jump . 2712
scan . 2427
settings . 2761
topology . 1937

Network scan . 1459, 1509
network variable list (receiver) 2475

add . 2475
network variable list (sender) 2475

add . 2475
network variables . 1946

properties . 2760

NetX configuration
EtherNet/IP . 2824

NEW . 2201
new connection

EtherNet/IP adapter 2827
next message . 2583
no AC31 header . 1750
no_assign_warning, pragma 2298
no_assign, pragma . 2298
no_check, pragma . 2298
no_copy, pragma attribute 2299
no_fast_online_change 2291
no_init . 4417
no_instance_in_retain, pragma 2300
no_virtual_actions, pragma 2300
no-exit, pragma . 2299
node address . 1939
noinit, pragma . 2299
NOT . 2139
NOT, operator in pragma 2326
notification center . 2408
notifications . 2408
NTP . 1716
NumClass . 4620
numeric constants . 2220
numeric keypad

call, visualization . 2890
numpad

visualization . 3399
NumTotal . 4620
NVL (receiver) . 2475
NVL (sender) . 2475

O
object

access right . 1822
add, visualization . 3367
edit . 2603
edit (offline) . 2603
edit with . 2603
find . 2582
link to file . 2763
open detailed compare view 1407, 1818
select in device tree 2673
select parent object in device tree 2673

Index

2024/01/053ADR010583, 1, en_US4748

Object
add, command . 2598
Properties . 2753

Object-oriented programming 1929
obsolete, pragma . 2304
occurrence location

variable . 1906
octal

number . 2220
octal number

format definition %o 3329
OF . 2247

array . 2247
offline help

option . 2789
older versions of this document 10
onboard . 4436
Onboard I/Os

PM50x2 . 196
Onboard I/Os in processor module PM50x2 196
online

log in to application . 2624
logout from application 2627
multiple download . 2631
pointer reference . 2576

online change . 2629
active application . 2629
attribute . 2291
compiler definition . 2291
encrypt . 4202
selected application . 2629

online config mode . 2616
online help

option . 2789
online mode

task monitoring . 2536
OOP . 1929
OPC DA

Communication and protocols
. 307, 308, 310, 312, 4481, 4483, 4484

OPC DA server 1750, 1787, 2834
OPC UA

information model . 2473
information model repository 2665

OPC UA Client
data source . 2424

OPC UA companion information model 2846
OPC UA information model

use . 2846
OPC UA server . 1787, 2834
OPC UA types

IEC types . 2848
map to IEC . 2848

open . 1808
library projects . 1808
project . 1808
project archives . 1808
write-protected project 1808

open ports . 1349
open ports and service . 1349
OpenDialog . 3336
Operand . 2235
operating mode

debug . 2642
locked . 2642
operational . 2642

operation
description of LEDs 1431, 4456

operational, operating mode 2642
operator . 2129

binding strength . 2050
IL . 2087
precedence . 2050

option board . 218
analog input, TA5120-2AI-UI 240
analog input, TA5120-2AI-UIW 240
analog input, TA5123-2AI-RTD 255
analog input, TA5123-2AI-RTW 255
analog output, TA5126-2AO-UI 269
analog output, TA5126-2AO-UIW 269
COMx serial communication, TA5141-RS232I 285
COMx serial communication, TA5141-
RS232IW . 285
COMx serial communication, TA5142-RS485 296
COMx serial communication, TA5142-RS485I 289
COMx serial communication, TA5142-
RS485IW . 289
COMx serial communication, TA5142-RS485W
. 296

digital I/O, TA5110-2DI2DOT 231

Index

2024/01/05 3ADR010583, 1, en_US 4749

digital I/O, TA5110-2DI2DOW 231
digital input, TA5101-4DI 218
digital input, TA5101-4DIW 218
digital output, TA5105-4DOT 224
digital output, TA5105-4DOTW 224
KNX address push button, TA5130-KNXPB . . 280
KNX adress push button, TA5130-KNXPBW . . 280
real-time clock, TA5131-RTC 283

option board for processor modules PM50xx . . . 1504
options . 2667, 2668

development status . 1802
device editor . 2786
IEC 61850 server . 1713
import assistant . 2745
monitoring . 2792
SVN . 4349, 4350
visualization . 3384

OR . 2139
OR_ELSE . 2140
OR, pragma . 2326
order

command, visualization editor 3344
pin . 2303

Ordering data
AC522 . 698

ORN . 2087
output

assign ST . 2052
CFC . 2109
device . 1837
reset . 2687

output memory . 2231
output pin order . 2303
output text

with placeholder and format definition 3330
output variable . 2114
output/input module

mounting and demounting 113, 123
overflow data type . 2129
overlay icon . 4319

SVN . 4319
overloading . 2153
overview of product family 85

P
pack_mode, pragma . 2305
package

manage . 2655
uninstall . 2655

Package Manager . 2655
packages

import assistant . 2745
page

CFC . 2109
page oriented

CFC object . 2101
page size

edit . 2686
page-oriented . 2101
pane

next . 2671
previous . 2671

Panel Builder . 4397, 4398
Panel Builder 600 . 148
panning tool . 2048
parallel . 2678
parameter

update, fbd/ld/il cfc . 2710
parameter mode . 2616
Parameterization

AC522 . 685
I/O bus . 1569
IO bus . 1569

parameters
CANbus . 2433
device editor . 2433
edit . 2692
EtherCAT . 1610
EtherCAT Master . 1613
EtherCAT Slave . 1623
Modbus . 2433
PROFIBUS DP . 2433
PROFINET IO . 2433

parameterstringof
pragma, visualization 3338

parametrization
IEC 61850 server . 1679

Index

2024/01/053ADR010583, 1, en_US4750

Parametrization
I/O bus . 1569

PARAMS . 2335
pass parameters

pass pointer, visualization 2970
pass-by-reference parameter 2114
password

indicate at login . 1827
project . 1824
project settings . 2772
wrong . 2045

password manager . 1821
paste after . 2683
path3d

camera control 3281, 3706
Path3D . 3279, 3704
PB610 . 148
PB610 Panel Builder 600 4397
PDOs . 1599
persistence . 1920

clean gaps . 2719
rearrange list . 2719
save values . 2719

persistence editor . 2476
Persistence Manager

remanent variable . 1926
PERSISTENT . 2122

variable . 1923, 2122
persistent variable . 1920

declare . 1927
saving in a recipe . 1928

persistent variable list . 2476
PID controller . 4424
PID function blocks . 4424
pie . 3025, 3450

visualization element 3025, 3450
pin

reset . 2694
select . 2694

pin_presentation_order_inputs, pragma attribute
. 2303

pin_presentation_order_outputs, pragma attribute
. 2303

pingroup, pragma . 2302

pins
remove . 2694

placeholder . 2716
with format definition in character string, visual-
ization . 3329

planning . 97
Plastic labels . 1330
Plastic markers . 1330
PLC

read parameter file to configuration 2616
security . 2041

PLC behavior after voltage dip 1480
PLC behaviour after voltage dip 1480
PLC firmware . 1446
PLC load . 2014
PLC log . 2021, 4647
PLC runtime licensing . 1446
PLC settings

device editor . 2439
PLC shell . 2022

device editor . 2441
PLC system start-up . 4420
PLC_PRG . 34
plcload

trace . 2008, 2740
PlcLoad

DeviceTrace . 2015
PLCopenXML

export/import . 2612
import . 2612
option . 2793

PlcOperationControl . 2023
PLCs . 85
pluggable label mounting 1328
pluggable marker holder 1328
PM . 89, 93, 175
PM50xx . 175
PM5012-R-ETH . 175
PM5012-T-ETH . 175
PM5032-R-ETH . 175
PM5032-T-ETH . 175
PM5052-R-ETH . 175
PM5052-T-ETH . 175
PM5072-T-2ETH . 175, 4447
PM5072-T-2ETHW . 175

Index

2024/01/05 3ADR010583, 1, en_US 4751

PM5082-T-2ETH . 175
PM5630 . 313
PM5650 . 313
PM5670 . 313
PM5675 . 313
po file . 1833
pointer . 2243

index access . 2244
SUPER . 2125
THIS . 2126

Pointer
check function CheckPointer 2513

POINTER TO . 2243
pointers

Go To Reference . 2576
polygon . 3012, 3437

polygon, visualization element 3012, 3437
polyline . 3012, 3437

visualization element 3012, 3437
POOL . 2217
position

breakpoint . 2752
POSITION . 2214
pot file . 1833
potentiometer . 3208, 3633

visualization element 3208, 3633
POU . 2477

add . 2477
change type . 2717
cross references . 2571
global cross references 2571
implicit checks . 2500
monitor function call 2001
POUs view . 2583

POU locations . 2411
POU view

reference an object . 2217
syntax check . 2621

POUNAME . 2214
POUs for implicit checks 1928
POUs view . 2583
power function . 2195

operator . 2195
power switch . 3231, 3656

visualization element 3231, 3656

pragma . 2318
analysis:report-multiple-instance-calls 4231
attribute . 2271
conditional . 2318
dataflow . 2279
define . 2318
effect on symbol . 2315
enable_dynamic_creation 2281
hasattribute . 2318
hasconstantvalue . 2318
hastype . 2318
if . 2318
message . 2269
no_copy . 2299
parameterstringof . 3338
ProcessValue 2312, 2698
region . 2327
static analysis . 4228
undefine . 2318
use . 1888
VAR_IN_OUT_AS_POINTER 3337

pragmas . 2269
precedence, ST . 2050
preconditions

drives library . 3778
prefix

convention, static analysis 4228
prepare value . 2749
pressure control mode . 4070
pressure-control mode . 4070
previous message . 2583
print

input action . 3373
page setup . 2772

PRIVATE . 2485
method . 2485
property . 2493

private key . 2040
Pro CPU . 177
Pro Static Analysis tool . 4209
process data

EtherCAT Slave . 1619
processing order in SFC 2064
processing order, ST . 2050
processor load . 2740

Index

2024/01/053ADR010583, 1, en_US4752

processor module . 175
mounting and demounting 109, 114, 116

processor module selection 97
processor modules . 89
ProcessValue . 2312
PROFIBUS . 354, 1136
PROFIBUS DP

parameters . 2433
PROFIBUS DP slave . 354
PROFINET . 365, 1201, 3787
PROFINET Device

general . 1642
PROFINET Field Device

general . 1645, 1646
PROFINET IO

bus cycle . 1642
parameters . 2433

PROFINET IO controller
general . 1640

PROFINET IO device
general . 1644

PROFINET IO module
general . 1644

profinet redundancy . 4535
program . 2478

execute on client, input action 3373
execute on controller, input action 3373
property . 2493

PROGRAM . 2478
programmable logic controllers 85
programming . 145

reference, visualization 2986
progress bar . 3152, 3582

visualization element 3152, 3582
prohibited symbols

code check . 4227
static analysis . 4227

project . 1390, 1398, 1808
access protection . 1819
add folder . 2599
commit accepted changes 2611
compare 1405, 1817, 2607
comparison 1405, 1406, 1817, 1818
create property with key 1813
document . 2606

dongle . 1825
encryption . 1819, 1825
encryption, instructions 1830
export . 1815
export/import . 1815
file information . 2515
filing . 1822
functions for accessing properties 1813
include with source code management 1833
information . 2515
install in the library repository 2556
key for meta-information 2516
last used . 2561
localization . 2605
login data . 1827
manage localizations 2605
meta-information . 2515
migrate V2 project to V3 project 1394, 1799
new . 2552
object statistics . 2517
open . 2553
open by command line 2029
open V2.3 . 1809
open, option . 2791
password . 1824
password protection 1819
POUs for keys . 2516
project settings . 1814
protection . 1819
query information . 1813
released . 1823
restore . 2791
rights management . 1822
save . 1831
save as . 1831
save as compiled library 2556
save as, command . 2555
saving in project archive 1832
security . 1819
source code . 1980
template . 2552
toggle localization . 2606
transfer . 1815, 1816
update . 1394, 1799
user management . 1825

Index

2024/01/05 3ADR010583, 1, en_US 4753

VisuSymbolLibrary key 2516
write protection 1819, 1823

Project
close . 2554

project archive . 1832
extract by command line 2029

project compare
configuration . 2607
detail . 2609
differences . 2607

project compression . 2791
project documentation print 2606
project environment

symbol library in visualization 2780, 3386
visualization profile 2779, 3385
visualization style 2780, 3386

project localization . 1833
create template . 2605
localization template 1833
manage . 2605
toggle . 2606

project restore information 2791
project setting

command . 2603
project settings . 2514

command . 2604
make . 1814
object . 2514
rules, Static Analysis 4218
SFC . 2767
SVN . 4350
user management . 1825
users and groups . 2768
visualization . 2776, 3387

properties
access control . 2757
bitmap . 2758
boot application . 2754
build . 2755
build, C-integration . 2756
cam . 2763
common . 2753
device . 2765
external file . 2757
IEC 61850 server . 1679

image pool . 2764
link to file . 2763
monitoring . 2765, 2766
network settings . 2761
network variables . 2760
security . 2754
SFC . 2762
task configuration . 2533
text list . 2765

Properties
of an object . 2753

property
CFC execution order 2761
monitor . 1998
object . 2493
object-oriented programming 2493
SFC, do not display embedded objects 2684

PROPERTY . 2493
object . 2493

PROTECTED . 2485
method . 2485
property . 2493

protected environment . 1342
protection

data security . 1971
project . 1819

protocols
IEC 60870-5-104 (Telecontrol) 1647

Protocols
BACnet . 1733, 3833
Modbus RTU . 1716
Modbus TCP/IP 1714, 4523
MQTT . 1722
NTP . 1716
OPC UA . 1787, 2834
Secure . 1724
SNTP . 1716
UDP . 1750

proxy
access data . 2793
server option . 2793
server, setting . 2793

PUBLIC . 2485
method . 2485
property . 2493

Index

2024/01/053ADR010583, 1, en_US4754

public key . 2040
push switch . 3231, 3656

visualization element 3231, 3656
push switch LED . 3231, 3656

visualization element 3231, 3656
Python . 4362

Q
Q . 2231

memory range prefix 2231
qualified_only, pragma . 2312
qualifiers for SFC actions 2065
QUERYINTERFACE . 2204
QUERYPOINTER . 2205

R
R= . 2053

reset assignment . 2053
radio buttons . 3161, 3586

visualization element 3161, 3586
READ_ONLY . 2335
READ_WRITE . 2335
REAL . 2236

constant . 2221
convert . 2171
literal . 2221

REAL_TO___UXINT . 2171
REAL_TO___XINT . 2171
REAL_TO___XWORD . 2171
REAL_TO_BIT . 2171
REAL_TO_BOOL . 2171
REAL_TO_BYTE . 2171
REAL_TO_DATE . 2171
REAL_TO_DINT . 2171
REAL_TO_DT . 2171
REAL_TO_DWORD . 2171
REAL_TO_INT . 2171
REAL_TO_LINT . 2171
REAL_TO_LREAL . 2171
REAL_TO_LWORD . 2171
REAL_TO_SINT . 2171
REAL_TO_STRING . 2171
REAL_TO_UDINT . 2171
REAL_TO_UINT . 2171
REAL_TO_ULINT . 2171

REAL_TO_WORD . 2171
REAL_TO_WSTRING . 2171
real-time clock . 4444
Realization with centralized PLC based motion
control . 3982
realtime clock . 4444
rearrange list . 2719
recent projects . 2561
recipe . 2003, 2522

add . 2723
create, input action . 3373
delete, input action . 3373
insert variable . 2723
load . 2724
load and write . 2725
load from controller . 2006
load from device . 2727
load from file . 2005
load, input action . 3373
read . 2725
read and save . 2726
read, input action . 3373
remanent variable . 1926
remove . 2724
remove variables . 2726
save . 2724
save, input action . 3373
visualization . 2939
write . 2725
write, input action . 3373

recipe definition . 2522
recipe file

load . 2005
recipe management . 2003

controller . 2006
memory usage . 2006

Recipe Manager . 2519
recording, see data recording 2805
rectangle . 2988, 3413

visualization element 2988, 3413
Recycling . 158
redundancy . 4535
REF= . 2054, 2245
refactoring . 1910

add variable . 2578

Index

2024/01/05 3ADR010583, 1, en_US 4755

add/remove variable 1911
code clone . 4216
declaration order of variables 1912
duplicated code . 4216
function extraction . 4215
option . 2794
remove variable . 2580
rename . 2577
rename variable . 1910
reorder variables . 2581
update referenced pins 2578

reference . 2245
__ISVALIDREF . 2246
data type . 2245
test operator . 2246
valid . 2246

REFERENCE TO . 2245
reflection . 2293, 2313

pragma attribute . 2313
refresh

structured variables 2727
released . 1823
remanent . 2122

recipe . 1926
remanent variable of the Persistence Manager
. 1926

variable . 2122
remanent variables

AC500 V3 products . 4412
Remote Alarms

Object . 2412
remote data

visualize . 1959
remove

IL line . 2707
Reset . 2687
Set . 2687
unused parameters, FBD/LD 2710

remove force list . 2650
remove unused FB call parameters 2710
rename

refactoring . 2577
repair

box . 2710
REPEAT . 2058

replace . 1910
command . 2564

replace a module . 152
replacement of a module 152
replacement of an I/O module with hot swap 153
report

IEC 61850 server . 1689
repository . 2657, 4316

browse SVN repository 4322
information model OPC UA 2665
library . 2657
OPC UA information model 2665
SVN . 4316
visualization element 3361

reserve memory
online change . 2595

reset
application . 1990
application (reset cold) 2633
application (reset origin) 2635
application (reset warm) 2634
assignment ST . 2053
cold . 2633
device to origin . 2636
origin . 2635
origin device . 2636
SVN . 4339
warm . 2634

Reset
output . 2687
remove . 2687

reset coil . 2095
insert . 2704

reset origin . 2635
application . 2635

reset warm . 149
restore . 2024
restore values from recipe 2719
RET . 2087
RETAIN . 2124

remanent variable . 1925
variable . 2124

RETC . 2087
RETCN . 2087

Index

2024/01/053ADR010583, 1, en_US4756

return
CFC . 2111
FBD/LD/IL . 2093
insert, FBD/LD/IL . 2703

RETURN . 2059
revision

copy to branch/tag . 4347
select in SVN . 4351

RGB . 2914
color space . 2914

RGBA . 2914
color space extended with alpha channel . . . 2914

rights management . 1821
project . 1822

rising edge detection . 2708
rocker switch . 3231, 3656

visualization element 3231, 3656
ROL . 2143
ROR . 2144
rotary switch

visualization element 3235, 3660
rounded rectangle 2988, 3413

visualization element 2988, 3413
routing . 1937
RTC . 4444
run

stepping . 1985
to cursor . 2648
using step out . 2647

run static analysis . 4212
runtime

security . 2041
runtime licensing

command . 2617
runtime system files

generate . 2619
runtime system service

disable . 2022

S
S= . 2052

set assignment . 2052
S500

description . 89
system structure . 86

S500-eCo
description . 93
system structure . 87

SA0001 . 4234
SA0002 . 4234
SA0003 . 4235
SA0004 . 4235
SA0005 . 4263
SA0006 . 4236
SA0007 . 4237
SA0008 . 4237
SA0009 . 4238
SA0010 . 4239
SA0011 . 4239
SA0012 . 4240
SA0013 . 4240
SA0014 . 4241
SA0015 . 4242
SA0016 . 4242
SA0017 . 4243
SA0018 . 4243
SA0019 . 4258
SA0020 . 4244
SA0021 . 4245
SA0022 . 4245
SA0023 . 4246
SA0024 . 4246
SA0025 . 4247
SA0026 . 4247
SA0027 . 4248
SA0028 . 4248
SA0029 . 4249
SA0031 . 4249
SA0032 . 4250
SA0033 . 4250
SA0034 . 4252
SA0035 . 4251
SA0036 . 4251
SA0037 . 4252
SA0038 . 4253
SA0040 . 4254, 4296
SA0041 . 4255
SA0042 . 4256
SA0043 . 4256
SA0044 . 4257

Index

2024/01/05 3ADR010583, 1, en_US 4757

SA0046 . 4297
SA0047 . 4264
SA0048 . 4264
SA0051 . 4265
SA0052 . 4266
SA0053 . 4266
SA0054 . 4267
SA0055 . 4268
SA0056 . 4268
SA0057 . 4269
SA0058 . 4269
SA0059 . 4271
SA0060 . 4271
SA0061 . 4271
SA0062 . 4272
SA0063 . 4272
SA0064 . 4273
SA0065 . 4273
SA0066 . 4274
SA0072 . 4276
SA0073 . 4276
SA0075 . 4278
SA0076 . 4279
SA0077 . 4280
SA0078 . 4280
SA0080 . 4276
SA0081 . 4277
SA0090 . 4281
SA0095 . 4281
SA0100 . 4282
SA0101 . 4283
SA0102 . 4283
SA0103 . 4284
SA0105 . 4285
SA0106 . 4286
SA0107 . 4287
SA0111 . 4289
SA0112 . 4289
SA0113 . 4289
SA0114 . 4290
SA0115 . 4290
SA0117 . 4290
SA0118 . 4295
SA0119 . 4291
SA0120 . 4291

SA0121 . 4292
SA0122 . 4293
SA0123 . 4293
SA0124 . 4295
SA0125 . 4295
SA0130 . 4259
SA0131 . 4260
SA0132 . 4261
SA0133 . 4261
SA0134 . 4262
SA0140 . 4296
SA0145 . 4298
SA0147 . 4293
SA0148 . 4294
SA0150 . 4299
SA0160 . 4299
SA0161 . 4300
SA0162 . 4301
SA0163 . 4302
SA0164 . 4303
SA0165 . 4303
SA0166 . 4304
SA0167 . 4304
sa0168 . 4305
sa0169 . 4306
SAE J1939 . 1522
Safety devices . 94, 174
Safety instructions

drives library . 3778
safety notice . 10, 12
sample

show in the trace editor 2007
samples

save in trace file . 2009
save

project archive . 1832
project, option . 2791

Save
project . 1831

save current values to recipe 2719
save the project . 2554
save values to recipe . 2719
saving

project . 1822
scalar product . 2257

Index

2024/01/053ADR010583, 1, en_US4758

scan devices 1607, 1628, 2600, 2832
SCE in LD . 2096
scope . 2113
script

execute . 2667
Script

enable tracing . 2667
script file

run by command line 2030
scripting

execute . 2666
execute script file . 2666

Scripting
enable script tracing 2667

Scripts
Python . 4362

scroll bar . 3125, 3550
visualization element 3125, 3550

SD card . 126, 129
SD memory card 126, 129, 1426
sdcard . 1426
sdcard.ini . 1426
SDOs . 1601
search . 1910, 2565, 2566

object . 2582
search order

identifiers . 2333
variable name . 2333

Secure communication . 1724
secure operation . 1342
Secure protocols . 1724
security . 1340, 2039

add device user . 2637
certificate . 2040
certificate via PLC shell 2044
certificates . 1819, 2592
client . 2043
communication with controller 4201
data security . 1971
development system 2041
device . 1967
disable user management 2045
encrypt the boot application, download, and
online change . 4202
encrypted communication 2427

encryption, signing, certificates 1820
general information . 2039
password device user 2639
project encryption . 1819
project settings . 2772
remove device user . 2638
runtime system / PLC 2041
Security Agent . 4201
unencrypted communication 2046
WebVisu . 2042

Security Agent . 4201
certificate . 4201

security functions
certificate . 2040
development system 2041
general information . 2039
runtime system / PLC 2041
WebVisu . 2042

security notice . 10, 12
security screen . 2592
SEL . 2145
select matching bracket 2568
select none

of the seclected visualization elements 3365
selection

alarm class . 3389
alarm group . 3390

selector
CFC . 2111

semi-transparency
visualization . 3401

Sequence generator . 4063
sercos

generate xml . 2614
Server

FTP . 1721
services . 1349
set

access method, interface 2490
Set

accessor method . 2493
assignment ST . 2052
output . 2687
remove . 2687

Index

2024/01/05 3ADR010583, 1, en_US 4759

set coil . 2095
insert . 2704

set output connection, FBD/LD 2708
set/reset, FBD/LD/IL . 2708
settings

code check . 4217
static analysis . 4217

SFC . 1880
action . 2075
action qualifiers . 2065
analyzation library . 2072
analyzation, library . 1884
branch . 2078
build . 2763
code generation 2763, 2767
copy implementation 2678
copy reference . 2678
do not display embedded objects 2684
duplication mode . 2678
element properties . 2080
implicit variables . 2066
init step . 2675
jogging mode . 2067
jump . 2079
library . 2767
macro . 2079
online mode . 2063
processing order . 2064
programming . 1880
project settings . 2767
properties . 2762
step . 2073
step time . 2066
transition . 2073

SFC editor . 2062
character set . 2795
layout . 2795
online, step time . 2796
options . 2795
properties, visibility . 2796
settings . 2795
step actions, options 2795
toolbar . 2048

SFC flag . 2067
shadowing . 2333

shadowing rules . 2333
SHL . 2141
short form feature . 1887
short-circuit evaluation . 2096
show source position: . 2589
show windows . 1807
show/hide implementation view 2672
SHR . 2142
signature

compiled library . 2033
encryption . 2039
enforce signing of compiled libraries 2033

signing
boot application . 1915
certificate . 1820
library project . 2517
with certificate, instructions 1830

Simple motion . 4543
simulation . 1980

command . 2640
for testing . 1980

SIN . 2196
single cycle . 2645
SINT . 2235

convert . 2159
SINT_TO___UXINT . 2159
SINT_TO___XINT . 2159
SINT_TO___XWORD . 2159
SINT_TO_BIT . 2159
SINT_TO_BOOL . 2159
SINT_TO_BYTE . 2159
SINT_TO_DATE . 2159
SINT_TO_DINT . 2159
SINT_TO_DT . 2159
SINT_TO_DWORD . 2159
SINT_TO_INT . 2159
SINT_TO_LDATE . 2159
SINT_TO_LDT . 2159
SINT_TO_LINT . 2159
SINT_TO_LREAL . 2159
SINT_TO_LTIME . 2159
SINT_TO_LTOD . 2159
SINT_TO_LWORD . 2159
SINT_TO_REAL . 2159
SINT_TO_STRING . 2159

Index

2024/01/053ADR010583, 1, en_US4760

SINT_TO_TIME . 2159
SINT_TO_TOD . 2159
SINT_TO_UDINT . 2159
SINT_TO_UINT . 2159
SINT_TO_ULINT . 2159
SINT_TO_USINT . 2159
SINT_TO_WORD . 2159
SINT_TO_WSTRING . 2159
SIZEOF . 2138
slider . 3134, 3559

visualization element 3134, 3559
SM560-S . 94, 174
SM560-S-FD-1 . 94, 174
SM560-S-FD-4 . 94, 174
smart tag . 1888
SmartCoding . 1885
SmartCoding, options . 2796
SMTP/SMTPS . 4361
SNMP . 4362
SNTP . 1716

IEC 61850 server . 1707
software . 145
source code . 1980

download from controller 2559
download to controller 2560
download, project setting 2770
management . 1833
write, to connected device 2631

space character
in the text editor . 2799

spin box . 3140, 3565
visualization element 3140, 3565

SQRT . 2194
ST . 1878, 2087

assignment . 2051
expression . 2050
extended . 1879
format code . 2581
programming in . 1879
R= . 2053
reset assignment . 2053
S= . 2052
set assignment . 2052

ST code
execute, input action 3379

extract . 4215
ST code in FBD, LD . 2094
ST editor . 2049

automatic formatting 2049
browse . 2049
format code . 2581
online operation . 2050
option . 2798
syntax error . 2049

stack checking of recursive methods 2281
standard commands . 2562
Standard CPU . 176
standard data types . 2234
standard keyboard handling

activate, visualization 2895
standard metrics . 4213
start page . 2596
startup parameters

EtherCAT module . 1624
EtherCAT Slave . 1619

state
device state . 4606

state LEDs . 148, 1338
State LEDs

AC522 . 691
statement . 2055

IF . 2055
set next . 2648
show next . 2648

static
code analysis . 1904

static analysis
getting started . 4209
pragmas . 4228
run . 4212

Static Analysis Light . 1904
project settings . 2773

static variable . 2119
Statistic analysis . 4209
status

device editor . 2460
device state . 4606
EtherCAT . 1610
KNX . 1730
SFC actions . 2066

Index

2024/01/05 3ADR010583, 1, en_US 4761

SFC steps . 2066
status bar

IEC 61850 server . 1686
status LEDs . 148, 1338
status LEDs, display and control elements 148, 1338
step . 2073

add exit action, SFC 2678
insert . 2676
insert after . 2676
SFC, add entry action 2678
SFC, duplication mode 2678

step action
SFC . 2075

step into . 2647
run . 2647

step over . 2646
run . 2646

step status . 2066
step-transition

add . 2677
insert after . 2677

STN . 2087
strict

pragma for enumeration 2265
STRING . 2237

convert . 2175
data type . 2237
index access . 2244

string constants . 2221
STRING_TO___UXINT 2175
STRING_TO___UXWORD 2175
STRING_TO___XINT . 2175
STRING_TO_BIT . 2175
STRING_TO_BOOL . 2175
STRING_TO_BYTE . 2175
STRING_TO_DATE . 2175
STRING_TO_DINT . 2175
STRING_TO_DT . 2175
STRING_TO_DWORD . 2175
STRING_TO_INT . 2175
STRING_TO_LDATE . 2175
STRING_TO_LDT . 2175
STRING_TO_LINT . 2175
STRING_TO_LREAL . 2175
STRING_TO_LTIME . 2175

STRING_TO_LTOD . 2175
STRING_TO_LWORD . 2175
STRING_TO_REAL . 2175
STRING_TO_SINT . 2175
STRING_TO_TIME . 2175
STRING_TO_TOD . 2175
STRING_TO_UDINT . 2175
STRING_TO_UINT . 2175
STRING_TO_ULINT . 2175
STRING_TO_USINT . 2175
STRING_TO_WORD . 2175
STRING_TO_WSTRING 2175
strings

convert . 2174
StringUtils library . 3774
STRUCT . 2261
structure . 2261

access . 2228
BIT . 2262
data type . 2261
extend . 2261
EXTENDS . 2261
object DUT . 2461
symbolic bit access . 2262

Structure: DrvPdPrmDpv1DataType 3832
Structures and enumerations 4048
style color

select, visualization element 2877
visualization . 2876

style property
assign to a visualization element 2979
localize . 2985

SUB . 2135
subrange types . 2268
subsequent, pragma . 2313
Subversion

source management 1833
SUPER . 2125
suppress warning, pragma 2315
SVN . 1833, 4315

_VERSION_INFO . 4355
checkout . 4327
commands . 4320
info . 4335
overlay icon . 4319

Index

2024/01/053ADR010583, 1, en_US4762

project settings . 4350
repository . 4316
repository browser . 4322
version control . 4316
version Info . 4355

switch . 3231, 3656
visualization element 3231, 3235, 3656, 3660

symbol
access rights . 1941
access to controller . 2458
overlay . 4319

symbol configuration 1941, 2523
access rights . 2523
add . 2523
comments and attributes 2526
data layout . 2523
editor . 2523
OPC UA . 2523
symbol set . 1941
task synchronization 2527

symbol file . 2523
symbol library

project environment of visualization . . . 2780, 3386
update . 2780, 3386

symbol rights
device editor . 2458
symbol access . 1941

symbol set
symbol configuration 1941

symbol, pragma . 2314
synchronize

cycle-consistent variables 1855
file by application download 2436

syntax check . 2621
system diagnosis 4613, 4619
system event . 2533

function call . 2533
system libraries

cmp libraries . 3773
system protection . 1341
system structure

AC500 . 86
AC500-eCo . 87
S500 . 86
S500-eCo . 87

system time
output in visualization 3331

system variable . 2022
operation control . 2022

SYSTEM.VAR_INFO . 2208
data structure . 2208

T
T

constant . 2223
literal . 2223

TA521 . 1319
TA523 . 1328
TA524 . 1323
TA525 . 1330
TA526 . 1324, 1331
TA535 . 1332
TA5101-4DI

digital input option board 218
TA5101-4DIW

digital input option board 218
TA5105-4DOT

digital output option board 224
TA5105-4DOTW

digital output option board 224
TA5110-2DI2DOT

digital I/O option board 231
TA5110-2DI2DOW

digital I/O option board 231
TA5120-2AI-UI

analog input option board 240
TA5120-2AI-UIW

analog input option board 240
TA5123-2AI-RTD

analog input option board 255
TA5123-2AI-RTW

analog input option board 255
TA5126-2AO-UI

analog output option board 269
TA5126-2AO-UIW

analog output option board 269
TA5130-KNXPB

option board KNX address push button 280
TA5130-KNXPBW

option board KNX adress push button 280

Index

2024/01/05 3ADR010583, 1, en_US 4763

TA5131-RTC
option board for real-time clock 283

TA5141-RS232I
option board, COMx serial communication . . . 285

TA5141-RS232IW
option board, COMx serial communication . . . 285

TA5142-RS485
option board, COMx serial communication . . . 296

TA5142-RS485I
option board, COMx serial communication . . . 289

TA5142-RS485IW
option board, COMx serial communication . . . 289

TA5142-RS485W
option board, COMx serial communication . . . 296

TA5211-TSCL-B . 116, 1292
TA5211-TSPF-B . 116, 1292
TA5212-TSCL . 116, 1292
TA5212-TSPF . 116, 1292
TA5220-SPF5 . 116, 1292
TA5220-SPF6 . 116, 1292
TA5220-SPF7 . 116, 1292
TA5220-SPF8 . 116, 1292
TA5300-CVR . 1302
TA5350-AD . 1286, 1309
TA5400-SIM . 1305
TA5450-CASE . 21
tab

selection, visualization elements 3342
tab group

new horizontal . 2670
new vertical . 2670

tab order
element list . 3342

table . 3106, 3531
display structured variables 2864, 2918
visualization element 3106, 3531
visualizing data arrays 2917

table of contents . 2674
tabs . 3084, 3509

reference visualizations 2948
visualization element 3084, 3509

TAN . 2197
Target change . 1414, 1475
TargetVisu

object . 3408

task . 2538
check . 1994
configuration . 2538
cycle consistency . 1855
cycle times . 2021
jitter, latency . 1915
monitor . 2021
monitoring . 2536
processing order . 1914
statistics . 2021
task cycle time . 2538
task-local variables . 1855
type . 2538
watchdog . 2538

task configuration . 1914
basic settings . 2533
basics . 1914
create . 1914
jitter latency . 1915
object . 2533
properties . 2533

task deployment
check . 1994
device editor . 2459

task groups . 2537
task monitoring, online . 2536
task-local

declare GVL . 1855
GVL . 2466

TB . 90, 377
TB56xx . 377
TB511

Technical data . 383
TB521

Technical data . 383
TB523

Technical data . 383
TB541

Technical data . 383
TB5600 . 377

Technical data . 383
TB5610 . 377

Technical data . 383
TB5620 . 377

Technical data . 383

Index

2024/01/053ADR010583, 1, en_US4764

TB5640 . 377
Technical data . 383

TB5660 . 377
Technical data . 383

Technical data
AC522 . 694
TB511 . 383
TB521 . 383
TB523 . 383
TB541 . 383
TB5600 . 383
TB5610 . 383
TB5620 . 383
TB5640 . 383
TB5660 . 383

teClass . 4618
teEvent . 4618
teHwId . 4618
Telecontrol . 1647
template element . 3350

visualization . 3350
temporary variable . 2119
terminal base . 377

mounting and demounting 107, 111
terminal block for onboard I/O (AC500-eCo)

mounting and demounting 116
terminal unit

for communication modules 1270
for S500 I/O modules 938

Terminal unit for PROFINET communication inter-
face modules . 1282
terminal units for communication interface
modules . 1274, 1278
terminal units for I/O modules 938, 945
test functions . 2500

also in libraries . 2500
TEST_AND_SET . 2215
testing a program . 51, 82
text

display, visualization 2878
output configuration . 2881
translate and manage 1891
visualization, multi-language capability 2906

text display
animate in visualization 2883

animating with a visualization element 2914
text editor . 2569, 3274, 3699

option . 2798
show whitespace . 2566
visualization element 3274, 3699

Text Editor
configuring, visualization 2934

text field . 3113, 3538
configure dynamic text output 2880
configure input . 2882
visualization element 3113, 3538

text file
configuring the display, visualization 2934
configuring the processing, visualization 2934

text input
define for all visualizations throughout the
application . 2891

text list
add language . 2728
add language and translate text 1891
availability . 2765
check ID . 2731
compare and export differences 1893
display text dynamically 1898
download . 2765
DUT . 2732
export . 1891
export as unicode text 2729
export everything as text 2728
export/import . 2729
for dynamic application 1898
for input assistance . 1892
import file . 1892
insert text . 2729
names and directories for visualization 3385
object . 2532
properties . 2765
remove language . 2730
remove unused entries 2731
rename language . 2730
update ID . 2731
visualization . 2906

text list support
add . 2732
DUT . 2732

Index

2024/01/05 3ADR010583, 1, en_US 4765

remove . 2732
THEN . 2055
THIS . 2126
time . 2223

constant . 2223
duration . 2223
literal . 2223

TIME . 2237
constant . 2223
convert . 2182
keyword . 2237
literal . 2223

TIME function . 2233
time of day . 2238

constant . 2225
data type . 2238

time picker . 3306, 3726
visualization element 3306, 3726

time sync
IEC 61850 server . 1707

Time syncronisation 1746, 3845
TIME_OF_DAY . 2238

data type . 2238
keyword . 2225

TIME_TO___UXINT . 2182
TIME_TO___XINT . 2182
TIME_TO___XWORD . 2182
TIME_TO_BOOL . 2182
TIME_TO_BYTE . 2182
TIME_TO_DATE . 2182
TIME_TO_DINT . 2182
TIME_TO_DT . 2182
TIME_TO_DWORD . 2182
TIME_TO_INT . 2182
TIME_TO_LDATE . 2182
TIME_TO_LDT . 2182
TIME_TO_LINT . 2182
TIME_TO_LREAL . 2182
TIME_TO_LTIME . 2182
TIME_TO_LTOD . 2182
TIME_TO_LWORD . 2182
TIME_TO_REAL . 2182
TIME_TO_SINT . 2182
TIME_TO_STRING . 2182
TIME_TO_TOD . 2182

TIME_TO_UDINT . 2182
TIME_TO_UINT . 2182
TIME_TO_ULINT . 2182
TIME_TO_USINT . 2182
TIME_TO_WORD . 2182
TIME_TO_WSTRING . 2182
TIME() . 2233
TO___UXINT . 2153
TO___XINT . 2153
TO___XWORD . 2153
TO_BIT . 2153
TO_BOOL . 2153
TO_BYTE . 2153
TO_DATE . 2153
TO_DINT . 2153
TO_DT . 2153
TO_DWORD . 2153
TO_INT . 2153
TO_LDATE . 2153
TO_LDT . 2153
TO_LINT . 2153
TO_LREAL . 2153
TO_LTIME . 2153
TO_LTOD . 2153
TO_LWORD . 2153
TO_REAL . 2153
TO_SINT . 2153
to_string . 2314

pragma attribute . 2314
TO_STRING . 2153
TO_TIME . 2153
TO_TOD . 2153
TO_UDINT . 2153
TO_UINT . 2153
TO_ULINT . 2153
TO_USINT . 2153
TO_WORD . 2153
TO_WSTRING . 2153
TOD . 2238

convert . 2187
data type . 2238
keyword . 2225

TOD_TO___XWORD . 2187
TOD_TO__UXINT . 2187
TOD_TO__XINT . 2187

Index

2024/01/053ADR010583, 1, en_US4766

TOD_TO_BOOL . 2187
TOD_TO_BYTE . 2187
TOD_TO_DATE . 2187
TOD_TO_DINT . 2187
TOD_TO_DT . 2187
TOD_TO_DWORD . 2187
TOD_TO_INT . 2187
TOD_TO_LDATE . 2187
TOD_TO_LDT . 2187
TOD_TO_LINT . 2187
TOD_TO_LREAL . 2187
TOD_TO_LTOD . 2187
TOD_TO_LWORD . 2187
TOD_TO_REAL . 2187
TOD_TO_SINT . 2187
TOD_TO_STRING . 2187
TOD_TO_TIME . 2187
TOD_TO_UDINT . 2187
TOD_TO_UINT . 2187
TOD_TO_ULINT . 2187
TOD_TO_USINT . 2187
TOD_TO_WORD . 2187
TOD_TO_WSTRING . 2187
toggle localization . 2606
toggle subview . 2672
toggle/tap variable

couple with Button state variable 3098, 3523
toolbar . 2802

customize . 1804
toolbox . 2584
tooltip

visualization, multi-language capability 2906
total current consumption 101
trace . 2007

access all traces on controller 2014
add variable . 2732
advanced settings . 2803
advanced settings, visualization element 3391
assign task . 2011
CmpTraceMgr.library 2007
configuration . 2804
configure . 2733
configure data recording 2805
configure display . 2012
configure recording, visualization 3355

configure variable . 2011
configure variables, visualization 3356
configure, visualization 3355
control data recording 2014
convert to multi-channel 2737
convert to single-channel 2738
cpuload, plcload . 2740
create configuration . 2010
data of IEC variable . 2010
delete from runtime . 2740
delete variable . 2011
DeviceTrace . 2007
DeviceTrace object . 2426
display setting of visualization 3391
download configuration to controller 2734
editor . 2542
file formats . 2009
getting started . 2009
list . 2739
load file . 2737
load to trace editor . 2742
manage as file . 2016
navigate in data in diagrams 2015
navigate in diagram . 2544
object . 2541
online list . 2739
open statistics . 2742
processor load . 2740
read y-value . 2733
runtime buffer . 2803
runtime system component CmpTraceMgr . . 2008
save samples to file . 2009
save to file . 2741
show statistics . 2016
start . 2741
stop . 2741
trace cursor . 2733
trigger . 2008
upload . 2742
visualization element 3240, 3665

trace configuration
export . 3357
export symbolic . 2735

trace element
getting started . 2926

Index

2024/01/05 3ADR010583, 1, en_US 4767

insert elements for control, visualization 3358
record data of a variable 2927
wizard of visualization element 3358

trace graph
compress . 2733
reset to default view 2740
stretch . 2742

trace manager (see CmpTraceMgr) 2008
training case . 21
transfer parameters

update . 2952
transition . 2073, 2499

insert . 2677
insert after . 2676
SFC, do not display embedded objects 2684

trend
basis, visualization . 2928
configure display settings, command . . 3353, 3359
configure recording, visualization 2546
configure variables, visualization 2547
configure, visualization 3360
visualization element 3246, 3671

Trend
insert elements for control, command 3360

trend configuration
add parameters . 2020
add variable . 2019
assign tasks . 2018
configure additional buffering 2020
configure data buffering on RTS 2020
delete variable . 2019
start conditional . 2019

trend recording . 2016, 2545
configure . 2018
getting started . 2017
set additional buffer . 2810
storage configuration 2809
trend recording task 2548

trend recording manager 2545
trend visualization

edit . 2931
programming . 2931
sine-shaped curve of IEC variable, example 2929

Trend visualization
getting started . 2928

trigger
activate in trace configuration 2012
reset trace configuration 2740

trigger option
IEC 61850 terver . 1686

Trouble-shooting . 4209
TRUE . 2220
TRUNC . 2193
TRUNC_INT . 2193
TRY . 2206
TU . 91, 938, 1270
TU507 . 1270
TU508 . 1270
TU509 . 1274
TU510 . 1274
TU515 . 938
TU516 . 938
TU517 . 1278
TU518 . 1278
TU520 . 1282
TU531 . 945
TU532 . 945
TU541 . 938
TU542 . 938
TU582-S . 94, 174
type . 2461

object DUT . 2461
TYPE . 2263
typed literals . 2228

U
UDINT . 2235

convert . 2159
UDINT_TO___UXINT . 2159
UDINT_TO___XINT . 2159
UDINT_TO___XWORD 2159
UDINT_TO_BIT . 2159
UDINT_TO_BOOL . 2159
UDINT_TO_BYTE . 2159
UDINT_TO_DATE . 2159
UDINT_TO_DINT . 2159
UDINT_TO_DT . 2159
UDINT_TO_DWORD . 2159
UDINT_TO_INT . 2159
UDINT_TO_LDATE . 2159

Index

2024/01/053ADR010583, 1, en_US4768

UDINT_TO_LDT . 2159
UDINT_TO_LINT . 2159
UDINT_TO_LREAL . 2159
UDINT_TO_LTIME . 2159
UDINT_TO_LTOD . 2159
UDINT_TO_LWORD . 2159
UDINT_TO_REAL . 2159
UDINT_TO_SINT . 2159
UDINT_TO_STRING . 2159
UDINT_TO_TIME . 2159
UDINT_TO_TOD . 2159
UDINT_TO_UINT . 2159
UDINT_TO_ULINT . 2159
UDINT_TO_USINT . 2159
UDINT_TO_WORD . 2159
UDINT_TO_WSTRING 2159
UDP . 1750
UINT . 2235

convert . 2159
UINT_TO___UXINT . 2159
UINT_TO___XINT . 2159
UINT_TO___XWORD . 2159
UINT_TO_BIT . 2159
UINT_TO_BOOL . 2159
UINT_TO_BYTE . 2159
UINT_TO_DATE . 2159
UINT_TO_DINT . 2159
UINT_TO_DT . 2159
UINT_TO_DWORD . 2159
UINT_TO_INT . 2159
UINT_TO_LDATE . 2159
UINT_TO_LDT . 2159
UINT_TO_LINT . 2159
UINT_TO_LREAL . 2159
UINT_TO_LTIME . 2159
UINT_TO_LTOD . 2159
UINT_TO_LWORD . 2159
UINT_TO_REAL . 2159
UINT_TO_SINT . 2159
UINT_TO_STRING . 2159
UINT_TO_TIME . 2159
UINT_TO_TOD . 2159
UINT_TO_UDINT . 2159
UINT_TO_ULINT . 2159
UINT_TO_USINT . 2159

UINT_TO_WORD . 2159
UINT_TO_WSTRING . 2159
ULINT . 2235

convert . 2159
ULINT_TO___UXINT . 2159
ULINT_TO___XINT . 2159
ULINT_TO___XWORD 2159
ULINT_TO_BIT . 2159
ULINT_TO_BOOL . 2159
ULINT_TO_BYTE . 2159
ULINT_TO_DATE . 2159
ULINT_TO_DINT . 2159
ULINT_TO_DT . 2159
ULINT_TO_DWORD . 2159
ULINT_TO_INT . 2159
ULINT_TO_LDATE . 2159
ULINT_TO_LDT . 2159
ULINT_TO_LINT . 2159
ULINT_TO_LREAL . 2159
ULINT_TO_LTIME . 2159
ULINT_TO_LTOD . 2159
ULINT_TO_LWORD . 2159
ULINT_TO_REAL . 2159
ULINT_TO_SINT . 2159
ULINT_TO_STRING . 2159
ULINT_TO_TIME . 2159
ULINT_TO_TOD . 2159
ULINT_TO_UDINT . 2159
ULINT_TO_UINT . 2159
ULINT_TO_USINT . 2159
ULINT_TO_WORD . 2159
ULINT_TO_WSTRING . 2159
uncomment . 2569
undefine, pragma . 2318
underflow data type . 2129
unforce . 2650
unforce values . 2650
unicode

text list . 2729
Unicode

character string in visualization 3398
uninstall

device . 2663
library . 2657

Index

2024/01/05 3ADR010583, 1, en_US 4769

union
object DUT . 2461

UNION . 2268
unit conversion

link with variable . 2939
object . 2549

unlock connection . 2693
UNTIL . 2058
update

boot project . 1430
firmware . 1430
IDs in text list . 2731
parameters, fbd/ld/il cfc 2710
SVN project . 4340

update referenced pins
refactoring . 2578

update structured variables 2727
upgrade . 1394, 1799
UPPER_BOUND . 2252

array . 2252
uppercase . 2567

keyword . 2796
URL

open web page, input action 3373
USB . 148
user

login as this . 1828
user group . 1821, 3404

activate group hierarchy, visualization 3406
hierarchy for permissions, visualization 3404
import/export user groups, visualization 3404

user input
visualization element 2886

user input event
capture in application 2895

user interface
language . 2790

user management . 1821
controller, device . 1971
create for visualization 3400
device, enforce . 1967
disable . 2045
general information . 2039
input action, visualization 3370
options, visualization 3383

project . 1825
project settings . 2768
visualization . 3403

user-defined attributes . 2272
user-defined data type . 2461
user-defined parameters

EtherNet/IP adapter 2829
users and groups

device editor . 2450
project settings . 2768
visualization . 3403

USINT . 2235
convert . 2159

USINT_TO___UXINT . 2159
USINT_TO___XINT . 2159
USINT_TO___XWORD 2159
USINT_TO_BIT . 2159
USINT_TO_BOOL . 2159
USINT_TO_BYTE . 2159
USINT_TO_DATE . 2159
USINT_TO_DINT . 2159
USINT_TO_DT . 2159
USINT_TO_DWORD . 2159
USINT_TO_INT . 2159
USINT_TO_LDATE . 2159
USINT_TO_LDT . 2159
USINT_TO_LINT . 2159
USINT_TO_LREAL . 2159
USINT_TO_LTIME . 2159
USINT_TO_LTOD . 2159
USINT_TO_LWORD . 2159
USINT_TO_REAL . 2159
USINT_TO_SINT . 2159
USINT_TO_STRING . 2159
USINT_TO_TIME . 2159
USINT_TO_TOD . 2159
USINT_TO_UDINT . 2159
USINT_TO_UINT . 2159
USINT_TO_ULINT . 2159
USINT_TO_WORD . 2159
USINT_TO_WSTRING . 2159

V
V2.3 project . 1809
V2/V3 . 6

Index

2024/01/053ADR010583, 1, en_US4770

VAR . 2113
VAR_ACCESS . 2335
VAR_CONFIG . 2121
VAR_EXTERNAL . 2120
VAR_GLOBAL . 2118
VAR_IN_OUT . 2114

CONSTANT . 2117
input/output variable 2114

VAR_IN_OUT_AS_POINTER
pragma, visualization 3337

VAR_INFO . 2208
data structure, SYSTEM 2208

VAR_INPUT . 2113
VAR_INST . 2120
VAR_OUTPUT . 2114
VAR_STAT . 2119
VAR_TEMP . 2119
variable . 2219, 2220

access . 2228
add by refactoring . 2578
allocate memory . 2313
assign address . 1902
bit access . 2229
constant . 2121
declare . 1847, 1852
declare, command . 2572
declare, tabular . 1852
declare, textual . 1852
display format, pragma 2280
external . 2120
global . 2118
hide, pragma . 2286
IEC 61850 server . 1679
initialize . 1851
input . 2113
insert, tabular . 2717
local . 2113
monitor . 1996
occurrence location . 1906
operator for information 2208
output . 2114
Persistence Manager 1926
persistent . 1923
PERSISTENT . 2122
remanent . 2124

remove by refactoring 2580
rename . 1910
RETAIN . 1925, 2124
rules for names . 2327
short form feature . 1887
static . 2119
switch, input action . 3379
temporary . 2119
value in online mode 1996
write, input action . 3378

variable declaration . 1847
move down . 2718
move up . 2718

variable list . 2476
global, persistent . 2476

variable usage . 2537
variables configuration . 1901
VARINFO . 2208

operator . 2208
vector . 2253

declaration . 2253
initialization . 2253

VendorException . 2437
log . 2437

version
development System 2675
Info, SVN . 4355
information . 2675
operating system . 2675

view
bookmarks . 2585
breakpoints . 2586
call stack . 2590
call tree . 2590
cross-reference list . 2587
devices . 2582
element properties, visualization 3396
memory view . 2592
modules application composer 2583
POUs . 2583
standard menu bar . 2582

view indentation guides 2567
virtual mode

command . 2643

Index

2024/01/05 3ADR010583, 1, en_US 4771

virtual system testing
command . 2644

virus protection . 1341
visualization . 53

alarm management . 2909
calling with parameter transfer 2951
capture user input event 2895
change variable values 2884
design with elements 2872
display histogram . 2862
display variable values 2883
displaying data arrays 2917
executing as integrated 2976
folder containing image pool 2777, 3387
folder containing text list 2777, 3387
font . 3407
gradient editor . 3369
grouping elements . 3347
language . 3407
memory size . 3401
multiply element 2919, 3350
object . 3393
object properties . 3388
operate with gestures 2887
placing an element in the background 3349
project settings 2776, 3387
recipes . 2939
reference . 2941
refrigerator controller 2855
run . 2973
switch, input action . 3373
text list . 2906
text, tooltip . 2906
trace wizard . 3358
ungrouping elements 3348
variable values in tables, example 2864, 2918
web browser, example 2865

Visualization . 2852
Assignment of the visualizations to the display
variants . 3402

visualization editor
configuration . 3384

visualization element . 2987
add via command . 3364
animation . 2912

configuration with interface property . . 2777, 3387
configure size and position 2874
configuring an offset 2912
configuring while rotating 2913
design in color . 2876
element list . 3342
enter static text . 1894
in visualization toolbox view 3394
many of the same type 2919
multiple template . 2919
repository . 3361
select in visualization toolbox 2873
user input . 2886
view assignment in visualization toolbox 3368

visualization manager . 3398
activate multitouch . 3401
settings . 3398
user management . 3400
visualization styles editor 3399

visualization profile . 3385
project setting 2777, 3388
repository . 3361
version . 2779, 3385

visualization style . 2979
copy . 3749
create . 2984, 3749
determine the appearance 2979
edit . 2980
install . 2986
manage in repository 2985
manage repository . 2986
option . 3382
preview in the visualization manager 3399
preview of installed styles 3364
repository and contents 3364
selection in the visualization manager 3399
switch . 2980
uninstall . 2986
update version . 2980
version . 2780, 3386

visualization style editor 3750
open . 2983
open from development system 2983

visualization toolbox . 3394
VisualizationManager . 53

Index

2024/01/053ADR010583, 1, en_US4772

voltage sag . 1480
VUM_ChangePassword

user management dialog, visualization 3400
VUM_Login

user management dialog, visualization 3400
VUM_UserManagement

user management dialog, visualization 3400

W
W . 2231

size prefix . 2231
wall mounting accessory 1324, 1331
warm start . 2634
warning disable, pragma 2315
warning notices . 10, 12
warning restore, pragma 2315
watch

add all forces to watchlist 2585
open view . 2584
watch all forces . 1989

watch list . 2002
watch all forces . 2584

Watchdog . 4425
watchlist . 2584

add variable . 2743
web browser . 3262, 3687

visualization element 3262, 3687
visualization, example 2865

webvisu . 2974
calling a page in the browser 2976
execute . 2974

WebVisu
object . 3409
security . 2042

WHILE . 2058
whitespace . 2566

show in text editor . 2566
window

auto hide . 2671
dock . 2671
float . 2671
reset layout . 2670

window <n> . 2673
windows . 2672

hide . 1807

layout . 1806
move . 1806
resize . 1806
show . 1807
toggle . 1807

Windows Certificate Store 1820
Windows server 1594, 1647, 1799
wink . 2640
word

addressing mode . 2231
WORD . 2235

convert . 2159
WORD_TO___XWORD 2159
WORD_TO__UXINT . 2159
WORD_TO__XINT . 2159
WORD_TO_BIT . 2159
WORD_TO_BOOL . 2159
WORD_TO_BYTE . 2159
WORD_TO_DATE . 2159
WORD_TO_DINT . 2159
WORD_TO_DT . 2159
WORD_TO_DWORD . 2159
WORD_TO_INT . 2159
WORD_TO_LDATE . 2159
WORD_TO_LDT . 2159
WORD_TO_LINT . 2159
WORD_TO_LREAL . 2159
WORD_TO_LTIME . 2159
WORD_TO_LTOD . 2159
WORD_TO_LWORD . 2159
WORD_TO_REAL . 2159
WORD_TO_SINT . 2159
WORD_TO_STRING . 2159
WORD_TO_TIME . 2159
WORD_TO_TOD . 2159
WORD_TO_UDINT . 2159
WORD_TO_UINT . 2159
WORD_TO_ULINT . 2159
WORD_TO_USINT . 2159
WORD_TO_WSTRING 2159
worksheet . 2685
write . 1987
write protection . 1824

project . 1823

Index

2024/01/05 3ADR010583, 1, en_US 4773

writing values
command . 2649
prepare value . 2749

WSTRING . 2242
convert . 2175
index access . 2244

WSTRING_TO___UXINT 2175
WSTRING_TO___UXWORD 2175
WSTRING_TO___XINT 2175
WSTRING_TO_BIT . 2175
WSTRING_TO_BOOL . 2175
WSTRING_TO_BYTE . 2175
WSTRING_TO_DATE . 2175
WSTRING_TO_DINT . 2175
WSTRING_TO_DT . 2175
WSTRING_TO_DWORD 2175
WSTRING_TO_INT . 2175
WSTRING_TO_LDATE 2175
WSTRING_TO_LDT . 2175
WSTRING_TO_LINT . 2175
WSTRING_TO_LREAL 2175
WSTRING_TO_LTIME . 2175
WSTRING_TO_LTOD . 2175
WSTRING_TO_LWORD 2175
WSTRING_TO_REAL . 2175
WSTRING_TO_STRING 2175
WSTRING_TO_TIME . 2175
WSTRING_TO_TOD . 2175
WSTRING_TO_UDINT 2175
WSTRING_TO_UINT . 2175
WSTRING_TO_ULINT . 2175
WSTRING_TO_USINT . 2175
WSTRING_TO_WORD 2175

X
X . 2231

size prefix . 2231
XADD . 2213
XOR . 2140
XORN . 2087
XSIZEOF . 2138

Z
zoom

factor . 2048

graphical editor . 2048
zoom in/out

graphical editor . 2048

Index

2024/01/053ADR010583, 1, en_US4774

3A
D

R
01

05
83

, 1
, e

n_
U

S

—
© Copyright 2021-2024 ABB.

—
new.abb.com/plc

We reserve all rights in this document and in the information contained therein. Reproduction, use or disclosure to third parties without express
authority is strictly forbidden.

https://new.abb.com/plc

	 Table of contents
	1 Preface
	1.1 Documentation guide
	1.2 Do I use AC500 V2 or AC500 V3?
	1.3 Your tasks - documentation from the user's point of view
	1.4 Regulations
	1.5 Older revisions of this document
	1.6 Structure of safety notices

	2 Safety instructions
	3 Getting started with example projects
	3.1 Introduction
	3.2 Engineering software Automation Builder
	3.2.1 Purpose
	3.2.2 Installation of the Automation Builder
	3.2.3 Licensing procedure
	3.2.4 Setting up of communication parameters in Windows

	3.3 Hardware AC500 V3
	3.3.1 Configuration for example projects
	3.3.2 System assembly, construction and connection

	3.4 Example project for central I/O expansion
	3.4.1 Purpose
	3.4.2 Preconditions
	3.4.3 Creation, setting up and saving of your AC500 V3 project
	3.4.3.1 Creation of a project
	3.4.3.2 Configuration of your processor module
	3.4.3.3 Creation of folders in the device tree
	3.4.3.4 Saving the project

	3.4.4 Configuration of the I/O module
	3.4.4.1 General
	3.4.4.2 Adding an I/O bus module
	3.4.4.3 Variable mapping of the DA501
	3.4.4.4 Handling the digital input variables
	3.4.4.5 Handling the digital output variables

	3.4.5 Programming and compilation
	3.4.5.1 Task configuration
	3.4.5.2 Main program PLC_PRG
	3.4.5.3 Boolean logic "NOT"
	3.4.5.3.1 Application example "driller"
	3.4.5.3.2 Implementation
	Creation of a new program POU in the project
	Assigning the hardware DI signals to local variables
	Adding assignments and a Boolean NOT to the DO signals
	Calling the POU in the PLC_PRG

	3.4.5.3.3 Compilation of the project
	3.4.5.3.4 Saving the project

	3.4.6 Setting up the communication gateway
	3.4.7 Installation and update of the AC500 V3 firmware
	3.4.8 Logging in to CPU and downloading the program
	3.4.9 Testing the program
	3.4.9.1 Starting the program execution
	3.4.9.2 Testing the function
	3.4.9.3 Stopping the program execution

	3.4.10 Setting up a visualization
	3.4.10.1 General
	3.4.10.2 Adding the VisualizationManager
	3.4.10.3 Settin up the VisualizationManager
	3.4.10.4 Saving the project

	3.4.11 Creation of a visualization
	3.4.11.1 General
	3.4.11.2 Adding a folder for visualization screens
	3.4.11.3 Adding a screen for "_01_Assignment_NOT" POU
	3.4.11.4 Creation and configuration of a visualization
	3.4.11.4.1 Changing the background color
	3.4.11.4.2 Adding a screen title
	3.4.11.4.3 Further lines and labels
	3.4.11.4.4 Lamp element for signal indication
	3.4.11.4.5 Compilation of the project
	3.4.11.4.6 Saving the project

	3.4.11.5 Loading the project to the CPU
	3.4.11.6 Testing the program

	3.4.12 Enabling a web visualization
	3.4.12.1 Adding a web server object to the device tree
	3.4.12.2 Setting up the web server
	3.4.12.3 Compilation of the project
	3.4.12.4 Saving the project
	3.4.12.5 Loading the project to the CPU
	3.4.12.6 Creation of a boot project
	3.4.12.7 Reboot of the CPU
	3.4.12.8 Testing the web visualization

	3.4.13 Reset the CPU

	3.5 Example project for remote I/O expansion with PROFINET
	3.5.1 Purpose
	3.5.2 Preconditions
	3.5.3 Set-up PROFINET controller
	3.5.3.1 Add the CM579-PNIO to the device tree
	3.5.3.2 Set-up the general behavior
	3.5.3.3 Set-up the PROFINET IO controller

	3.5.4 Set-up PROFINET device
	3.5.4.1 Hardware preparation
	3.5.4.2 Add the CI502-PNIO to the device tree
	3.5.4.3 Configure the CI502-PNIO device
	3.5.4.3.1 Configure the CI502-PNIO PROFINET IO device
	3.5.4.3.2 Create CI502-PNIO I/O mapping to symbols

	3.5.5 Add remote I/O expansion to project
	3.5.5.1 Add a program POU to the project
	3.5.5.2 Create a POU logic
	3.5.5.3 Call the POU in PLC_PRG
	3.5.5.4 Compilation of the project
	3.5.5.5 Saving the project
	3.5.5.6 Loading the project to the CPU

	3.5.6 Test the program
	3.5.6.1 Starting the program execution
	3.5.6.2 Test the function

	3.5.7 Reset the CPU

	4 System overview, planning and operation
	4.1 System overview
	4.1.1 AC500 PLC product family
	4.1.2 AC500/S500 system structure
	4.1.3 AC500-eCo/S500-eCo system structure
	4.1.4 AC500/S500: Short description hardware
	4.1.5 AC500-eCo/S500-eCo: Short description hardware
	4.1.6 AC500-S
	4.1.7 CP600 control panels
	4.1.8 Automation Builder: Short description engineering software

	4.2 Application planning
	4.2.1 Safety instructions
	4.2.2 Processor module and I/O selection
	4.2.3 I/O bus - Communication within the PLC
	4.2.4 Fieldbus connectivity options
	4.2.5 Power supply dimensioning
	4.2.5.1 General
	4.2.5.2 Calculation of the total current consumption
	4.2.5.3 Dimensioning of the fuses

	4.2.6 Libraries, software packages and licensed features

	4.3 Mechanical planning and installation
	4.3.1 Control cabinet assembly (indoor use)
	4.3.2 Mounting and demounting - general information
	4.3.3 Mounting and demounting the terminal base
	4.3.4 Mounting and demounting the AC500 processor module
	4.3.5 Mounting and demounting the communication module
	4.3.6 Mounting and demounting the terminal unit
	4.3.7 Mounting and demounting the I/O module
	4.3.8 Mounting and demounting the AC500-eCo processor module
	4.3.8.1 Mounting and demounting the option boards
	4.3.8.1.1 Optimized mounting of the option boards
	4.3.8.1.2 Inserting the option board
	4.3.8.1.3 Removing the option board

	4.3.8.2 Mounting and demounting of the terminal blocks
	4.3.8.3 Mounting a processor module on a DIN rail
	4.3.8.4 Demounting a processor module mounted on a DIN rail
	4.3.8.5 Mounting a processor module on a metal plate
	4.3.8.6 Demounting a processor module mounted on a metal plate
	4.3.8.7 Mounting of the cable fixing accessory TA5301-CFA

	4.3.9 Mounting and demounting the S500-eCo I/O module
	4.3.10 Accessories for AC500 (Standard)
	4.3.10.1 Inserting and removing a memory card
	4.3.10.2 Further accessories

	4.3.11 Accessories for AC500-eCo
	4.3.11.1 Mounting and demounting the option boards
	4.3.11.1.1 Optimized mounting of the option boards
	4.3.11.1.2 Inserting the option board
	4.3.11.1.3 Removing the option board

	4.3.11.2 Inserting and removing a memory card
	4.3.11.3 Further accessories

	4.3.12 Control panels CP600

	4.4 Wiring
	4.4.1 Grounding concept
	4.4.2 EMC-conforming assembly and construction
	4.4.2.1 General principles
	4.4.2.2 Cable routing
	4.4.2.3 Cable shields
	4.4.2.4 Control cabinet
	4.4.2.5 Reference potential
	4.4.2.6 Equipotential bonding

	4.4.3 Connection and wiring of the PLC platform
	4.4.3.1 Safety instructions
	4.4.3.2 AC500
	4.4.3.2.1 Power supply for AC500 system
	4.4.3.2.2 Power supply for processor modules
	4.4.3.2.3 Connection of wires at the spring terminals
	4.4.3.2.4 Terminals for CANopen communication modules
	4.4.3.2.5 Ethernet connection details
	Ethernet interface
	Wiring
	Cable types

	4.4.3.3 AC500-eCo
	4.4.3.3.1 Power supply
	4.4.3.3.2 Ethernet
	Ethernet interface

	4.4.3.4 Control panels CP600

	4.4.4 Connection and wiring of the modules

	4.5 Configuration and programming
	4.6 Commissioning
	4.7 Operation
	4.7.1 Operating modes
	4.7.2 Diagnosis system
	4.7.3 Status LEDs, display and control elements
	4.7.4 PLC firmware/application update
	4.7.5 Control panel firmware/application update
	4.7.6 Reset Warm

	4.8 Troubleshooting
	4.8.1 General
	4.8.2 Possible malfunctions
	4.8.3 Execution of a hotfix

	4.9 Maintenance
	4.9.1 Maintenance intervals
	4.9.2 Replace an AC500 module
	4.9.3 Replace an I/O module with hot swap
	4.9.3.1 Preconditions for using hot swap
	4.9.3.2 Compatibility of hot swap
	4.9.3.3 Hot swap behavior

	4.9.4 Replace a CP600 control panel

	4.10 Decommissioning
	4.11 Recycling

	5 Hardware descriptions
	5.1 Technical data of the system
	5.1.1 System data AC500-eCo
	5.1.1.1 Environmental conditions
	5.1.1.2 Creepage distances and clearances
	5.1.1.3 Power supply units
	5.1.1.4 Electromagnetic compatibility
	5.1.1.5 Mechanical data
	5.1.1.6 Approvals and certifications

	5.1.2 System data AC500
	5.1.2.1 Environmental conditions
	5.1.2.2 Creepage distances and clearances
	5.1.2.3 Power supply units
	5.1.2.4 Electromagnetic compatibility
	5.1.2.5 Mechanical data
	5.1.2.6 Approvals and certifications

	5.1.3 System data AC500-XC
	5.1.3.1 Environmental conditions
	5.1.3.2 Creepage distances and clearances
	5.1.3.3 Power supply units
	5.1.3.4 Electromagnetic compatibility
	5.1.3.5 Mechanical data
	5.1.3.6 Approvals and certifications

	5.1.4 AC500-S
	5.1.5 CP600

	5.2 Device specifications
	5.2.1 Processor modules
	5.2.1.1 AC500-eCo
	5.2.1.1.1 PM50x2
	Features
	Short description
	Assortment
	Connections and interfaces
	General
	Modbus RTU connection details

	Power supply
	State LEDs and operating elements
	Diagnosis
	Technical data
	Dimensions
	Ordering Data

	5.2.1.1.2 Onboard I/Os in processor module PM50x2
	Functionality
	Connections
	General
	Connection of the digital inputs
	Connection of the digital transistor outputs (PM50xx-T-xETH only)
	Connection of the digital relay outputs (PM50xx-R-ETH only)

	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the digital inputs
	Technical data of the fast counter inputs
	Technical data of the interrupt inputs
	Technical data of the Touch/Reset inputs
	Technical data of the digital transistor outputs
	Technical data of the digital relay outputs
	Technical data of the limit switch outputs
	Technical data of the PTO outputs
	Technical data of the PWM outputs

	5.2.1.1.3 Option boards
	TA5101-4DI - Digital input option board
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	Technical data
	Dimensions
	Ordering data

	TA5105-4DOT - Digital output option board
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	Technical data
	Dimensions
	Ordering data

	TA5110-2DI2DOT - Digital I/O option board
	Features
	Intended purpose
	Functionality
	Connections
	I/O configurations
	Parameterization
	Diagnosis
	Technical data
	Dimensions
	Ordering data

	TA5120-2AI-UI - Analog input option board
	Features
	Intended purpose
	Functionality
	Connection
	I/O configuration
	Firmware update via memory card
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Dimensions
	Ordering data

	TA5123-2AI-RTD - Analog input option board
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Firmware update via memory card
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Dimensions
	Ordering data

	TA5126-2AO-UI - Analog output option board
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Firmware update via memory card
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Dimensions
	Ordering data

	TA5130-KNXPB - Option board KNX address push button
	Features
	Intended purpose
	Parameterization
	State LEDs
	Technical data
	Dimensions
	Ordering data

	TA5131-RTC - Option board for real-time clock
	Features
	Parameterization
	Technical data
	Dimensions
	Ordering data

	TA5141-RS232I - Option board for COMx serial communication
	Features
	Connections
	Parameterization
	State LEDs
	Technical data
	Dimensions
	Ordering data

	TA5142-RS485I - Option board for COMx serial communication
	Features
	Connections
	Parameterization
	State LEDs
	Technical data
	Dimensions
	Ordering data

	TA5142-RS485 - Option board for COMx serial communication
	Features
	Connections
	Parameterization
	State LEDs
	Technical data
	Dimensions
	Ordering data

	FAQs

	5.2.1.2 AC500 and AC500-XC
	5.2.1.2.1 Product overview and comparison
	Comparison of AC500 V3 terminal bases
	Comparison of features and protocols
	Ethernet protocols and ports for AC500 V3 products
	General
	Default open Ethernet ports of PM56xx-2ETH
	Overview of protocols, sockets and ports
	Limitation of connections per protocol
	Default Ethernet configuration
	Online access

	5.2.1.2.2 PM56xx-2ETH for AC500 V3 products
	Features
	Short description
	Connections
	Storage elements
	LEDs, display and function keys on the front panel
	Technical data
	Dimensions
	Ordering data

	5.2.2 Communication modules for AC500(-XC) processor modules
	5.2.2.1 Features
	5.2.2.2 Compatibility of communication modules and communication interface modules
	5.2.2.3 Technical data (Overview)
	5.2.2.4 Serial
	5.2.2.4.1 CM5610-2RS with 2 serial interfaces
	Features
	Purpose
	Connections
	Serial interfaces
	Bus cable for RS-485
	Cable lengths
	Bus termination (RS-485 only)

	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.2.5 CANopen
	5.2.2.5.1 CM598-CN - CANopen master
	Features
	Purpose
	Connections
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.2.6 EtherCAT
	5.2.2.6.1 CM579-ETHCAT - EtherCAT master
	Features
	Intended purpose
	Connections
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.2.7 Ethernet
	5.2.2.7.1 CM5640-2ETH - Communication module Ethernet
	Features
	Purpose
	Connections
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.2.8 PROFIBUS
	5.2.2.8.1 CM582-DP - PROFIBUS DP slave
	Features
	Purpose
	Connections
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.2.8.2 CM592-DP - PROFIBUS DP master
	Features
	Purpose
	Connections
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.2.8.3 PROFIBUS connection details

	5.2.2.9 PROFINET
	5.2.2.9.1 CM579-PNIO - PROFINET IO RT controller
	Features
	Intended purpose
	Functionality
	Connections
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.2.9.2 CM589-PNIO(-4) - PROFINET IO RT with 4 devices
	Features
	Functionality
	Connections
	Addressing
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.3 Terminal bases for AC500(-XC) processor modules and communication modules
	5.2.3.1 TB56xx for AC500 V3 products
	5.2.3.1.1 Features
	5.2.3.1.2 Short description
	5.2.3.1.3 Connections
	I/O bus
	Power supply
	Serial interface COM1
	Ethernet interface
	CAN interface

	5.2.3.1.4 Technical data
	5.2.3.1.5 Dimensions
	5.2.3.1.6 Ordering data

	5.2.4 I/O modules
	5.2.4.1 Safety instructions
	5.2.4.2 I/O bus - Data transfer
	5.2.4.3 Digital I/O modules
	5.2.4.3.1 S500-eCo
	DC562 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Dimensions
	Ordering data

	DI561 - Digital input module
	Features
	Intended purpose
	Functionality
	Connections
	I/O Configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs

	Dimensions
	Ordering data

	DI562 - Digital input module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs

	Dimensions
	Ordering data

	DI571 - Digital input module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs

	Dimensions
	Ordering data

	DI572 - Digital input module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs

	Dimensions
	Ordering data

	DO561 - Digital output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DO562 - Digital output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DO571 - Digital output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DO572 - Digital output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DO573 - Digital output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DX561 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DX571 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs

	Dimensions
	Ordering data

	5.2.4.3.2 S500 and S500-XC
	DC522 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O Configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	DC523 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Dimensions
	Ordering data

	DC532 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter

	Dimensions
	Ordering data

	DI524 - Digital input module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	DO524 - Digital output module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DO526 - Digital output module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital outputs

	Dimensions
	Ordering data

	DX522 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the relay outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	DX531 - Digital input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	I/O configuration
	Parameterization
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the relay outputs

	Dimensions
	Ordering data

	Fast counter

	5.2.4.4 Analog I/O modules
	5.2.4.4.1 S500-eCo
	AI561 - Analog input module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)

	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Technical data of the module
	Technical data of the analog inputs

	Dimensions
	Ordering data

	AI562 - Analog input module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Resistance temperature detectors
	Resistances

	Technical data
	Technical data of the module
	Technical data of the analog inputs

	Dimensions
	Ordering data

	AI563 - Analog input module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)

	Diagnosis
	State LEDs
	Measuring ranges
	Technical data
	Technical data of the module
	Technical data of the analog inputs
	Accuracy of thermocouple ranges at 25 °C (with cold junction compensation)

	Dimensions
	Ordering data

	AO561 - Analog output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Output channel (2x)

	Diagnosis
	State LEDs
	Output ranges
	Technical data
	Technical data of the module
	Technical data of the analog outputs

	Dimensions
	Ordering data

	AX561 - Analog input/output module
	Features
	Intended purpose
	Functionality
	Connections
	I/O configuration
	Parameterization
	Input channel (4x)
	Output channel (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Output ranges
	Technical data
	Technical data of the module
	Technical data of the analog inputs
	Technical data of the analog outputs

	Dimensions
	Ordering data

	5.2.4.4.2 S500 and S500-XC
	AC522 - Analog input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Dimensions
	Ordering data

	AI523 - Analog input module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector

	Technical data
	Technical data of the module
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs

	Dimensions
	Ordering data

	AI531 - Analog input module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply and series-connection of an additional input
	Connection of passive-type analog sensors (Current)
	Connection of passive-type analog sensors (Current) and series-connection of an additional analog sensor
	Connection of digital signal sources at analog inputs
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of resistance thermometers in 4-wire configuration
	Connection of resistors in 2-wire configuration
	Connection of a resistance measuring bridge with internal supply
	Connection of a resistance measuring bridge with external supply
	Connection of thermocouples
	Internal compensation
	External compensation with temperature input
	External compensation with compensation box
	External compensation with flanking channel

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Voltage input ranges
	Bipolar voltage input range, measuring bridge
	Unipolar voltage input range, measuring bridge, digital input

	Current input ranges
	Resistance thermometer input ranges
	Resistor input range
	Thermocouple input ranges
	Temperature-internal reference point ranges

	Technical data
	Technical data of the module
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs

	Dimensions
	Ordering data

	AO523 - Analog output module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Output ranges
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the analog outputs

	Dimensions
	Ordering data

	AX521 - Analog input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Dimensions
	Ordering Data

	AX522 - Analog input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)

	Internal data exchange
	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges of voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital Inputs
	Technical data of the analog outputs

	Dimensions
	Ordering data

	5.2.4.5 Digital/Analog I/O modules
	5.2.4.5.1 S500 and S500-XC
	DA501 - Digital/Analog input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of the digital inputs
	Connection of the configurable digital inputs/outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	I/O configuration
	Parameterization
	Group parameters for the digital part
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs
	Internal data exchange

	Dimensions
	Ordering data

	DA502 - Digital/Analog input/output module
	Features
	Intended purpose
	Functionality
	Connections
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	I/O configuration
	Parameterization
	Group parameters for the digital part
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Technical data of the fast counter
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Dimensions
	Ordering data

	5.2.4.6 Function modules
	5.2.4.6.1 S500 and S500-XC
	CD522 - Encoder, counter and PWM module
	Features
	Intended purpose
	Functionality
	Connections
	Internal data exchange
	From CD522 to PLC
	From PLC to CD522

	I/O configuration
	Parameterization
	Diagnosis
	State LEDs
	Technical data
	Dimensions
	Ordering data

	5.2.5 Terminal units for S500(-XC) I/O modules
	5.2.5.1 Safety instructions
	5.2.5.2 TU515, TU516, TU541 and TU542 for I/O modules
	5.2.5.2.1 Features
	5.2.5.2.2 Technical data
	5.2.5.2.3 Hot swap
	5.2.5.2.4 Dimensions
	5.2.5.2.5 Ordering data

	5.2.5.3 TU531 and TU532 for I/O modules
	5.2.5.3.1 Features
	5.2.5.3.2 Technical data
	5.2.5.3.3 Hot swap
	5.2.5.3.4 Dimensions
	5.2.5.3.5 Ordering data

	5.2.6 Communication interface modules
	5.2.6.1 Safety instructions
	5.2.6.2 Compatibility of communication modules and communication interface modules
	5.2.6.3 CANopen
	5.2.6.3.1 Comparison CI581 and CI582
	5.2.6.3.2 CI581-CN
	Features
	Intended purpose
	Functionality
	Connections
	General
	Possibilities of connection
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	5.2.6.3.3 CI582-CN
	Features
	Intended purpose
	Functionality
	Connections
	General
	Possibilities of connection
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	5.2.6.4 EtherCAT
	5.2.6.4.1 CI511-ETHCAT
	Features
	Intended purpose
	Functionality
	Connections
	General
	Connection of resistance thermometers in 2-wire configuration
	Connection of resistance thermometers in 3-wire configuration
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply
	Connection of active-type analog sensors (Current) with galvanically isolated power supply
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply
	Connection of passive-type analog sensors (Current)
	Connection of active-type analog sensors (Voltage) to differential inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage, current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Module parameter
	Group parameters of the cam switch
	Channel parameters for the cam switch (max. 32x)
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs

	Dimensions
	Ordering data

	5.2.6.4.2 CI512-ETHCAT
	Features
	Intended purpose
	Functionality
	Connections
	Assignment of the Ethernet ports
	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Module parameter
	Group parameters of the cam switch
	Channel parameters for the cam switch (max. 32x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs

	Dimensions
	Ordering data

	5.2.6.5 Modbus
	5.2.6.5.1 CI521-MODTCP
	Features
	Intended purpose
	Functionality
	Connections
	General
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	5.2.6.5.2 CI522-MODTCP
	Features
	Intended purpose
	Functionality
	Connections
	General
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	5.2.6.6 PROFIBUS
	5.2.6.6.1 CI541-DP
	Features
	Intended purpose
	Diagnosis settings
	Functionality
	Connections
	General
	Possibilities of connection
	Connection on terminal units TU509 or TU510
	Bus termination
	Mounting on terminal units TU517 or TU518
	Technical data bus cable
	Cable length

	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	General
	Channel configuration
	Channel monitoring

	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	5.2.6.6.2 CI542-DP
	Features
	Intended purpose
	Diagnosis settings
	Connections
	General
	Possibilities of connection
	Assignment
	Bus termination
	Technical data bus cable
	Cable length

	Connection of the digital inputs
	Connection of the digital outputs
	Connection of the configurable digital inputs/outputs

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs
	Technical data of the fast counter

	Dimensions
	Ordering Data

	5.2.6.7 PROFINET
	5.2.6.7.1 Comparison of the CI5xx-PNIO modules
	Characteristics of CI50x-PNIO
	Input/Output characteristics of CI501-PNIO
	Input/Output characteristics of CI502-PNIO
	Technical data of the serial interfaces of CI504-PNIO

	5.2.6.7.2 CI501-PNIO
	Features
	Intended purpose
	Functionality
	Connections
	General
	Connection of the digital inputs
	Connection of the digital outputs
	Connection of resistance thermometers in 2-wire configuration to the analog inputs
	Connection of resistance thermometers in 3-wire configuration to the analog inputs
	Connection of active-type analog sensors (Voltage) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Current) with galvanically isolated power supply to the analog inputs
	Connection of active-type analog sensors (Voltage) with no galvanically isolated power supply to the analog inputs
	Connection of passive-type analog sensors (Current) to the analog inputs
	Connection of active-type analog sensors (Voltage) to differential analog inputs
	Use of analog inputs as digital inputs
	Connection of analog output loads (Voltage)
	Connection of analog output loads (Current)
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the analog part
	Channel parameters for the analog inputs (4x)
	Channel parameters for the analog outputs (2x)
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Measuring ranges
	Input ranges voltage, current and digital input
	Input ranges resistance temperature detector
	Output ranges voltage and current

	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the analog inputs
	Technical data of the analog inputs, if used as digital inputs
	Technical data of the analog outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	5.2.6.7.3 CI502-PNIO
	Features
	Intended purpose
	Functionality
	Connections
	General
	Connection of the Digital inputs
	Connection of the Digital outputs
	Connection of the configurable digital inputs/outputs
	Assignment of the Ethernet ports

	Internal data exchange
	Addressing
	I/O configuration
	Parameterization
	Parameters of the module
	Group parameters for the digital part

	Diagnosis
	State LEDs
	Technical data
	Technical data of the module
	Technical data of the digital inputs
	Technical data of the digital outputs
	Technical data of the configurable digital inputs/outputs
	Technical data of the digital inputs/outputs if used as inputs
	Technical data of the digital inputs/outputs if used as outputs
	Technical data of the fast counter

	Dimensions
	Ordering data

	5.2.7 Terminal units for communication interface modules
	5.2.7.1 Safety instructions
	5.2.7.2 TU507-ETH and TU508-ETH for Ethernet communication interface modules
	5.2.7.2.1 Features
	5.2.7.2.2 Technical data
	5.2.7.2.3 Dimensions
	5.2.7.2.4 Ordering data

	5.2.7.3 TU509 and TU510 for communication interface modules
	5.2.7.3.1 Features
	5.2.7.3.2 Technical data
	5.2.7.3.3 Dimensions
	5.2.7.3.4 Ordering data

	5.2.7.4 TU517 and TU518 for communication interface modules
	5.2.7.4.1 Features
	5.2.7.4.2 Technical data
	5.2.7.4.3 Dimensions
	5.2.7.4.4 Ordering data

	5.2.7.5 TU520-ETH for PROFINET communication interface modules
	5.2.7.5.1 Features
	5.2.7.5.2 Technical data
	5.2.7.5.3 Dimensions
	5.2.7.5.4 Ordering data

	5.2.8 Accessories
	5.2.8.1 AC500-eCo
	5.2.8.1.1 MC5102 - Micro memory card with adapter
	5.2.8.1.2 TA52xx(-x) - Terminal block sets
	5.2.8.1.3 TA5300-CVR - Option board slot cover
	5.2.8.1.4 TA5400-SIM - Input simulator

	5.2.8.2 AC500 and AC500-XC
	5.2.8.2.1 MC5102 - Micro memory card with adapter
	5.2.8.2.2 MC5141 - Memory card
	5.2.8.2.3 TA521 - Battery
	5.2.8.2.4 TA524 - Dummy communication module
	5.2.8.2.5 TA526 - Wall mounting accessory

	5.2.8.3 S500 and S500-XC
	5.2.8.3.1 CP-E - Economic range
	5.2.8.3.2 CP-C.1 - High performance range
	5.2.8.3.3 TA523 - Pluggable label mounting
	5.2.8.3.4 TA525 - Plastic labels
	5.2.8.3.5 TA526 - Wall mounting accessory
	5.2.8.3.6 TA535 - Protective caps for XC devices

	5.2.9 Storage devices
	5.2.9.1 Overview
	5.2.9.2 Functionalities
	5.2.9.3 Memory sizes
	5.2.9.4 Storage device details
	5.2.9.4.1 SRAM
	5.2.9.4.2 Flash disk
	5.2.9.4.3 Memory card
	5.2.9.4.4 Further information

	5.3 Status LEDs, display and control elements

	6 Configuration and programming
	6.1 Cyber security
	6.1.1 General
	6.1.2 Defense in depth
	6.1.3 Secure operation
	6.1.4 Hardening
	6.1.5 Certificates factory default - no encryption
	6.1.6 Open Ports and Services
	6.1.6.1 Default open Ethernet ports of AC500 V3 and AC500-eCo V3 CPUs
	6.1.6.2 Open ports and services of the Automation Builder (Engineering PC)

	6.2 Engineering software Automation Builder
	6.2.1 Introduction
	6.2.2 Automation Builder updates
	6.2.3 Use of open source components
	6.2.4 Managing your licenses
	6.2.4.1 Identifying the installed license
	6.2.4.2 Selecting the license used on Automation Builder startup
	6.2.4.3 Checking licenses with “CodeMeter Control Center”
	6.2.4.4 Setting dedicated network servers in search list
	6.2.4.5 Restarting license check with a dongle bound license
	6.2.4.6 Removing trial license to remove expiring message
	6.2.4.7 Network licenses
	6.2.4.7.1 General
	6.2.4.7.2 Setting up a network license
	General
	Configuring a network license server
	Configuring the client side

	6.2.4.7.3 View network server licenses
	6.2.4.7.4 View network server license usage
	6.2.4.7.5 Controlling network server license usage

	6.2.4.8 License borrowing manager
	6.2.4.8.1 Introduction
	6.2.4.8.2 Borrowing a network license
	6.2.4.8.3 Returning a network license

	6.2.4.9 Transfering an Automation Builder license
	6.2.4.9.1 General
	6.2.4.9.2 Getting activation code
	6.2.4.9.3 Returning an Automation Builder license
	6.2.4.9.4 Online license transfer
	6.2.4.9.5 Offline license transfer
	6.2.4.9.6 Return of unconfirmed license

	6.2.4.10 Generating license information file for support
	6.2.4.11 Generating log files for support
	6.2.4.12 Further information

	6.2.5 Setting up of communication parameters in Windows
	6.2.6 Version information
	6.2.7 PLC runtime and demo licensing
	6.2.8 Create log files for support
	6.2.9 Menues, views, windows
	6.2.9.1 Display settings
	6.2.9.2 Start page and menus
	6.2.9.3 “All Messages” window

	6.2.10 Device repository
	6.2.11 Creating and configuring projects
	6.2.12 Handling of AC500 projects
	6.2.13 Connection of devices
	6.2.13.1 Configuring devices
	6.2.13.2 Symbolic names for variables, inputs and outputs
	6.2.13.3 Update of AC500 devices
	6.2.13.4 Comparing objects

	6.2.14 Connection of serial interfaces
	6.2.15 Converting an AC500 V2 project to an AC500 V3 project
	6.2.16 Automation Builder installation manager
	6.2.16.1 Introduction
	6.2.16.2 Installing customer specific package
	6.2.16.3 Adding or removing installed software packages
	6.2.16.4 Checking for updates
	6.2.16.5 Uninstalling Automation Builder

	6.3 Configuration in Automation Builder for AC500 V3 products
	6.3.1 General settings
	6.3.1.1 Project handling
	6.3.1.1.1 General
	6.3.1.1.2 Creating a new project
	6.3.1.1.3 Opening an existing project
	6.3.1.1.4 Exporting and importing a project
	6.3.1.1.5 Upgrade a project to a new Automation Builder version or profile
	6.3.1.1.6 I/O mapping export and import
	6.3.1.1.7 Comparing projects
	Introduction
	Creating a comparison view
	Opening the detailed compare view

	6.3.1.1.8 Project archive
	General
	Creation of an archive
	Extraction of an archive

	6.3.1.2 User and access rights management
	6.3.1.2.1 User and access rights
	General
	User management
	Access right management

	6.3.1.2.2 User management commands
	6.3.1.2.3 Project Settings - Users and groups
	General
	Users dialog
	Groups dialog
	Settings dialog

	6.3.1.3 Later change-over of a target system
	6.3.1.3.1 Changing the processor module type
	General
	Target change from a V2 processor module to a V3 processor module
	Target change from a V3 processor module to another V3 processor module

	6.3.1.3.2 Customer libraries

	6.3.1.4 Firmware identification and update
	6.3.1.4.1 General information
	6.3.1.4.2 Device state firmware version
	Introduction
	CPU firmware
	Version query via Automation Builder tab “Version information”
	Version information

	Version query via Automation Builder tab “PLC Shell”
	Version query via application
	Version query via IP configuration tool

	Communication modules
	Version query via Automation Builder tab “Version information”
	Version query via Automation Builder tab “PLC Shell”
	Version query via application

	AC500-eCo V3 option boards
	Version query via Automation Builder tab “Version information”
	Version query via Automation Builder tab “PLC Shell”
	Version query via application

	Field devices
	Version query via Automation Builder
	Version query via application
	Version query via IP configuration tool

	6.3.1.4.3 Installation and update of the AC500 V3 firmware
	6.3.1.4.4 AC500-eCo V3 firmware installation and update
	6.3.1.4.5 Firmware installation and update with memory card
	General
	Firmware and/or application installation and update
	Notes
	Preparation of memory card
	Execution of update via memory card
	Description of LEDs

	Advanced memory card handling for firmware/application update
	Memory card file content: Firmware version V3.x
	Command file SDCARD.INI for AC500 V3 Products
	Example: SDCARD.INI as of CPU firmware V3.x

	6.3.1.4.6 Update CI52x-Modbus firmware
	Precondition
	Installation of the IP configuration tool
	Firmware update procedure
	Troubleshooting

	6.3.1.5 Migration of third party devices
	6.3.1.6 Advanced IO device handling
	6.3.1.6.1 General
	6.3.1.6.2 Generating DUT
	6.3.1.6.3 Mapping to existing DUT
	6.3.1.6.4 Releasing DUT mapping
	6.3.1.6.5 Using DUT variables in CODESYS application
	6.3.1.6.6 Support for CI level node
	6.3.1.6.7 Configuration check
	6.3.1.6.8 Flexible Configuration

	6.3.2 PLC devices and components
	6.3.2.1 Device repository
	6.3.2.2 PLC start-up
	6.3.2.2.1 Initialization of AC500 V3 CPU
	6.3.2.2.2 PLC runtime licensing
	Introduction
	Activating a runtime license via license key
	General
	Activation without internet connection
	Offline activation

	Activating a demo license
	Licensing via memory card
	Returning a license
	View license information

	6.3.2.2.3 Connection of devices
	Configuring devices
	Update of AC500 devices
	Comparing objects

	6.3.2.2.4 IP settings
	Configuration of the IP address
	Configuration of the IP settings with the LED display
	Configuration of the IP settings with the IP configuration tool
	Introduction
	Stand-alone installation
	Network scan
	Changing the IP address
	Firmware update
	Blink functionality
	Troubleshooting for IP configuration tool

	Configuration of communication via Ethernet (TCP/IP)
	General
	Enter a known PLC IP address
	Enter PLC IP address by scanning devices
	Enter PLC IP address by [Advanced Settings...]

	Connect to PLC via hostname

	6.3.2.2.5 Online program modification

	6.3.2.3 Processor modules
	6.3.2.3.1 Configure a processor module in the device tree
	6.3.2.3.2 Changing the processor module type
	General
	Target change from a V2 processor module to a V3 processor module
	Target change from a V3 processor module to another V3 processor module

	6.3.2.3.3 Changing the processor module type for AC500-eCo V3 CPU
	6.3.2.3.4 Parameters of the processor module
	Automated reboot after E2 error
	PLC behaviour after voltage dip
	Floating point values

	6.3.2.4 AC500-eCo V3 onboard I/Os
	6.3.2.5 Configure the onboard I/O channel
	6.3.2.6 Mapping of the onboard I/O channels
	6.3.2.7 Configuration of the onboard I/Os of AC500-eCo V3 PLC
	6.3.2.7.1 Digital inputs from the onboard I/Os
	6.3.2.7.2 Fast counters in the onboard I/Os
	6.3.2.7.3 A/B Encoder in the onboard I/Os
	6.3.2.7.4 Configuration of interrupt inputs
	6.3.2.7.5 Creating an interrupt task
	6.3.2.7.6 Configuration of digital outputs
	6.3.2.7.7 Configuration of outputs as limit switch
	6.3.2.7.8 Operating the limit switch output with user program
	6.3.2.7.9 Configuration of PWM outputs (Pulse Width Modulation)
	6.3.2.7.10 Operating the PWM output with user program
	6.3.2.7.11 Configuration of PTO outputs (HW fast outputs for Pulse Train Output)
	6.3.2.7.12 Operating the PTO hardware output with user program
	6.3.2.7.13 Configuration of SW PTO (PWM) outputs (HW fast outputs and standard outputs with software dedicated function block)
	6.3.2.7.14 Operating the software PTO output channels with user program

	6.3.2.8 Option board for processor modules PM50xx
	6.3.2.8.1 Select the option board
	6.3.2.8.2 Attach an option board for digital I/O extension
	6.3.2.8.3 Attach an option board for analog I/O extension
	6.3.2.8.4 Attach an option board for COMx serial communication

	6.3.2.9 Onboard Ethernet configuration
	6.3.2.9.1 General
	6.3.2.9.2 Configuration of the IP settings with the IP configuration tool
	Introduction
	Stand-alone installation
	Network scan
	Changing the IP address
	Firmware update
	Blink functionality
	Troubleshooting for IP configuration tool

	6.3.2.9.3 Switch functionality of Ethernet interfaces ETH1/ETH2

	6.3.2.10 Onboard CAN configuration
	6.3.2.11 Communication modules
	6.3.2.11.1 CANopen
	CM598-CAN - CANopen Manager communication module
	Configuration of the communication module
	Configuration of the CANopen Manager
	Configuration of the CANopen remote devices
	Configuration of SYNC task
	Configuration of the protocols CAN 2.0 A / CAN 2.0 B
	Configuration of the CANopen manager

	6.3.2.11.2 PROFINET
	CM579-PNIO – PROFINET IO communication module
	Configuration of the communication module
	Configuration of the PROFINET IO controller
	PROFINET IO controller - Configuration
	PROFINET IO controller - Parameters

	Configuration of PROFINET IO devices
	Add PROFINET IO device
	PROFINET IO device - Configuration
	PROFINET IO device – PNIO parameters
	Configuration of 3rd party PROFINET IO devices

	I/O mapping of the PROFINET IO devices
	Provider and consumer status
	Remanent data
	Shared device

	CM589-PNIO / CM589-PNIO-4-PROFINET IO device communication module
	CM589-PNIO - PROFINET IO slave

	6.3.2.11.3 EtherCAT
	CM579-ETHCAT - EtherCAT I/O master
	EtherCAT-Master - ABB functionality for sync units
	EtherCAT diagnosis

	6.3.2.11.4 PROFIBUS
	General
	Parameterization of the CM592-DP/CM582-DP communication modules
	CM592-DP PROFIBUS DP master communication module
	Configuration of a PROFIBUS DP master
	Configuration of a PROFIBUS DP slave

	CM582-DP PROFIBUS DP slave communication module
	Configuration of PROFIBUS DP slave
	Configuration of I/O data objects
	Mapping of the I/Os

	6.3.2.11.5 Ethernet
	CM5640-2ETH – Ethernet communication modul

	6.3.2.12 Communication interface modules
	6.3.2.12.1 Configuration of communication interface modules
	6.3.2.12.2 Unbundled CI52x-MODTCP configuration

	6.3.2.13 I/O bus and I/O modules
	6.3.2.13.1 Hot swap configuration
	6.3.2.13.2 Parameterization of the I/O bus
	6.3.2.13.3 Parameter 'Ignore module'
	6.3.2.13.4 I/O bus - Bus cycle task
	6.3.2.13.5 Insertion of S500 I/O devices
	6.3.2.13.6 Configuring the input and output modules and channels
	6.3.2.13.7 Symbolic names for variables, inputs and outputs
	6.3.2.13.8 I/O mapping list
	Introduction
	Editing I/O mapping list
	Configuring I/O mapping list

	6.3.2.13.9 Fast counter
	Configuration for S500 I/O modules
	Configuring the fast counter
	Operands
	Operating modes

	Configuration for onboard I/Os
	Configuring the fast counter
	Counting modes

	Control of the fast counter

	6.3.2.14 Serial interface
	6.3.2.14.1 Setting up a serial interface
	General
	Supported protocols
	Configuration
	Comparison to AC500 V2 PLCs

	6.3.2.14.2 Configuring Modbus RTU on serial interface
	Enable Modbus RTU
	Parameters

	6.3.2.14.3 Configuring CAA SerialCom on serial interface
	Enable CAA_SerialCom
	Activate particular configuration parameters

	6.3.2.15 Gateway configuration
	6.3.2.15.1 Gateway settings on windows server

	6.3.2.16 CAN onboard
	6.3.2.16.1 CANopen
	General
	CANopen manager (master)
	General
	Tab 'CANopen Manager - General'

	CANopen remote device (slave)
	General
	Tab 'CANopen Remote Device - General'
	Tab 'CANopen Device - PDOs'
	Tab 'CANopen Remote Device - SDOs'
	CANopen module

	6.3.2.16.2 J1939
	General
	Bus Cycle Task
	J1939 manager
	General
	Tab 'J1939 Manager - General'

	J1939 ECU
	Tab 'J1939 ECU - General'
	Tab 'J1939 ECU - TX Signals'
	Tab 'J1939 ECU - P2P RX Signals'

	6.3.2.16.3 Command 'Scan for Devices'
	6.3.2.16.4 Tab 'CANbus - General'

	6.3.2.17 EtherCAT configurator
	6.3.2.17.1 General
	6.3.2.17.2 EtherCAT master
	Tab 'EtherCAT Master - General'
	Tab 'EtherCAT Master - Sync Unit Assignment'
	Tab 'EtherCAT Master - Parameters'

	6.3.2.17.3 EtherCAT slave
	Tab 'EtherCAT Slave - General'
	Tab 'EtherCAT Slave - FMMU/Sync'
	Tab 'EtherCAT Slave - Expert Mode Process Data'
	Tab 'EtherCAT Slave - Process Data'
	Tab 'EtherCAT Slave - Startup Parameters'
	Tab 'EtherCAT Slave - Diagnostics History'
	Tab 'EtherCAT Slave - Online'
	Tab 'EtherCAT Slave - CoE Online'
	Tab 'EtherCAT Slave - Parameters'
	Tab 'EtherCAT Slave - EoE Settings'

	6.3.2.17.4 EtherCAT module
	Tab 'EtherCAT Module - Startup Parameters'

	6.3.2.17.5 Bus Cycle Task - EtherCAT
	6.3.2.17.6 Command 'Scan for Devices'
	6.3.2.17.7 Diagnosis
	Diagnosis in the Application
	EtherCAT Status
	Emergency
	AL Status

	Diagnosis in the User Interface
	Device Tree
	EtherCAT – General (Master and Slave)
	Overview Page in the Master
	IEC Objects – Master
	IEC Objects – Slave
	Online Page for the Slave
	CoE Online Display for the Slave
	Diagnosis History for the Slave
	Status Page (Master and Slave)
	Logger Page (Master and Slave)

	6.3.2.17.8 Libraries

	6.3.2.18 PROFINET IO Configurator
	6.3.2.18.1 General
	6.3.2.18.2 PROFINET IO controller
	Controller – General
	PROFINET IO Controller - Bus Cycle Task
	PROFINET IO device
	Device – General

	PROFINET IO - Module
	Module – General

	6.3.2.18.3 PROFINET IO - Field Device
	General
	Field Device – General
	Field Device NetX – General

	6.3.3 Windows server
	6.3.4 Protocols and special servers
	6.3.4.1 IEC60870-5-104 (Telecontrol)
	6.3.4.1.1 General information IEC 60870
	Introduction
	Data flow control
	Data integrity
	Data transmission
	Send blocks
	Send via request pin
	Change-driven send of data
	Cyclic send
	Receive blocks

	6.3.4.1.2 Configuration
	Configuration changes >= Automation Builder 1.1/CBP 2.4
	Control station and substation configuration
	General
	“Link layer” tab
	Network settings
	“Application layer” tab
	Settings
	General inquiry
	Counter interrogation

	“Information objects” tab
	General
	Format of common addr and info obj addr

	Import options of information objects
	IEC60870-5-104 Multiple connections
	General
	Minimal structure
	Minimal redundancy structure
	Network redundancy
	General
	Network redundancy with 2 separate networks
	Network redundancy with 1 network and 2 Ethernet ports in substation
	Network redundancy with 1 network and 1 Ethernet port in substation
	Network redundancy with 2 Ethernet ports in substation

	Full control station redundancy
	Multiple control stations on the same network
	Multiple control stations on different networks
	Double connection
	Faulty configuration

	Export a CSV file

	Import/Export functionality
	Validity check of configuration

	6.3.4.1.3 IEC60870 compatibility list

	6.3.4.2 IEC 61850 Server
	6.3.4.2.1 Introduction to IEC 61850
	6.3.4.2.2 AC500 and IEC 61850
	General
	Capabilities
	Limits/technical data
	Installation
	Engineering workflow
	Examples
	Configuration of IEC 61850 server with logical nodes
	Monitoring - and control direction, reading and writing
	Status bar
	DataSet
	Report (MMS)
	GOOSE Publisher
	Export Server
	GOOSE Subscriber
	Generate IEC61850 code
	Generate the application

	Runtime and diagnosis
	General
	Operate and reporting
	MMS diagnosis
	GOOSE
	GOOSE diagnosis and troubleshooting
	Resend of GOOSE messages
	GOOSE performance optimization

	Advanced features
	Time sync
	Bulk data engineering
	Additional or new logical node types
	Disable GOOSE Publisher

	Menu Command sorted by Categorie
	Generate code
	Export Server
	Import Server
	Options

	6.3.4.3 Modbus protocol
	6.3.4.3.1 Modbus on TCP/IP protocol
	6.3.4.3.2 Configuration of Modbus TCP/IP server
	6.3.4.3.3 Configuration of Modbus TCP/IP client
	6.3.4.3.4 Modbus on RTU protocol

	6.3.4.4 NTP/SNTP protocol
	6.3.4.4.1 Introduction of the NTP/SNTP protocol
	6.3.4.4.2 (S)NTP client configuration
	6.3.4.4.3 (S)NTP server configuration

	6.3.4.5 FTP server
	6.3.4.6 MQTT client protocol
	6.3.4.6.1 System technology
	6.3.4.6.2 Application examples

	6.3.4.7 AC500 V3 secure protocols
	6.3.4.7.1 Introduction
	6.3.4.7.2 Certificate handling
	6.3.4.7.3 Configuring secure protocols
	Encrypted communication between Automation Builder and the PLC
	Secure web server
	Secure FTP
	OPC UA secure

	6.3.4.8 KNX configurator
	6.3.4.8.1 Introduction
	6.3.4.8.2 ETS5 Software - 'DCA' Plug-In
	6.3.4.8.3 Tab 'KNX - General'
	6.3.4.8.4 Tab 'I/O Mapping'
	6.3.4.8.5 ETS5 - Tab 'Parameter'

	6.3.4.9 BACnet-BC
	6.3.4.9.1 Introduction to BACnet
	6.3.4.9.2 AC500 and BACnet
	6.3.4.9.3 AC500 V3 as BACnet Building Controller (B-BC)
	General
	Supported BACnet networks
	Supported objects and properties
	Supported BIBBs and services
	BACnet configuration in Automation Builder
	General
	Configuration of BACnet server root object
	Adding BACnet server objects
	Adding BACnet client functionality
	Configuration of datalinks
	Time syncronisation

	Package content
	General
	BACnet libraries
	Application examples

	6.3.4.10 UDP protocol
	6.3.4.10.1 Contents of the UDP protocol configuration

	6.3.4.11 OPC UA

	6.3.5 Data transfer and programming
	6.3.5.1 Data exchange between AC500 V3 PLCs via network variables
	6.3.5.2 Data exchange between AC500 V3 PLCs via EtherCAT
	6.3.5.3 Source download/upload
	6.3.5.4 Programming and testing
	6.3.5.5 Configuration of communication via Ethernet (TCP/IP)
	6.3.5.5.1 General
	6.3.5.5.2 Enter a known PLC IP address
	6.3.5.5.3 Enter PLC IP address by scanning devices
	6.3.5.5.4 Enter PLC IP address by [Advanced Settings...]

	6.3.5.6 PLC shell commands
	6.3.5.7 Watchlists
	6.3.5.8 Reference to libraries
	6.3.5.9 Reference to application libraries

	6.3.6 Server installation
	6.3.6.1 OPC server for AC500 V3 products
	6.3.6.1.1 Introduction
	Architecture of the CODESYS OPC server
	Essential documents
	Work flow
	Consideration and preparation
	Commission OPC server
	Adjustment to target OPC client

	6.3.6.1.2 Hints
	Default folder and contents
	Windows 7, Windows Server 2008/2016 (64-bit)
	Windows 7 (32-bit), Windows Server 2008/2016 (32-bit)
	Windows Server 2008/2016 (32-bit)

	Installation of OPC server
	Prerequisites
	Installing with Automation Builder
	Manual registration and unregistration
	OPC clients for tests

	Symbol file
	Define symbols

	Configure OPC server
	Configure OPC Server V3
	Check OPC function with AC500
	Prerequisites
	Check OPC server V3
	Check processes with windows task manager

	Test OPC function without AC500
	AC500 project
	Configure OPC server V3
	Check OPC server with MatrikonOPCExplorer
	Check processes with windows task manager
	Summary

	Configure AlarmEvents
	Check AlarmEvents
	Further information

	Configure user account for OPC server
	OPC server V3 on Windows Server 2003/ 2008/ 2012/ 2016
	Further information

	6.3.6.1.3 Potential issues
	Session isolation

	6.3.6.2 OPC UA server for AC500 V3 products
	6.3.6.2.1 General
	6.3.6.2.2 Creating a project for OPC UA access
	6.3.6.2.3 Use node name
	6.3.6.2.4 Use UaExpert client
	6.3.6.2.5 Working with encryption
	Creating a certificate for the OPC UA server
	Encrypted connection with UaExpert client

	6.3.6.2.6 Changing variables via UaExpert client
	6.3.6.2.7 Configuring OPC UA client
	Operating modes
	Using OPC UA with subscription mode

	6.3.6.3 Web server
	6.3.6.4 Windows server

	6.3.7 Converting an AC500 V2 project to an AC500 V3 project

	6.4 Programming with CODESYS
	6.4.1 CODESYS Development System
	6.4.1.1 Introduction
	6.4.1.2 Configuring CODESYS
	6.4.1.2.1 Introduction
	Setting CODESYS options

	6.4.1.2.2 Customizing the user interface
	Introduction
	Customizing menus
	Customizing toolbars
	Customize command icon
	Customizing keyboard shortcuts
	Changing the window layout
	Resizing windows
	Auto-hiding windows
	Switching between windows

	6.4.1.3 Creating and Configuring a Project
	6.4.1.3.1 Introduction
	6.4.1.3.2 Opening a V3 Project
	6.4.1.3.3 Opening a V2.3 project
	6.4.1.3.4 Configuring a Project
	General
	Retrieving and Editing Project Information
	Making project settings

	6.4.1.4 Exporting and Transferring Projects
	6.4.1.4.1 General
	6.4.1.4.2 Exporting and importing projects
	6.4.1.4.3 Transferring Projects

	6.4.1.5 Comparing projects
	6.4.1.5.1 Introduction
	6.4.1.5.2 Creating a comparison view
	6.4.1.5.3 Opening the detailed compare view

	6.4.1.6 Protecting and Saving Projects
	6.4.1.6.1 Introduction
	6.4.1.6.2 Setting up write protection
	6.4.1.6.3 Assigning Passwords
	6.4.1.6.4 Protecting Projects Using a Dongle
	6.4.1.6.5 Setting up a user management
	6.4.1.6.6 Protecting Objects in the Project by Access Rights
	6.4.1.6.7 Logging in via User Account and Password Manager
	6.4.1.6.8 Encrypting Projects with Certificates
	6.4.1.6.9 Saving the Project
	6.4.1.6.10 Saving/Sending the project archive
	6.4.1.6.11 Linking a project to the source control system

	6.4.1.7 Localizing projects
	6.4.1.8 Configuring I/O Links
	6.4.1.8.1 General
	6.4.1.8.2 Configuring Devices and I/O Mapping

	6.4.1.9 Programming of Applications
	6.4.1.9.1 Introduction
	6.4.1.9.2 Designating identifiers
	6.4.1.9.3 UTF-8 Encoding
	6.4.1.9.4 Declaration of Variables
	General
	Using the declaration editor
	Using the 'Declare variable' dialog box
	Declaring arrays
	Declaring global variables
	Using Task-Local Variables

	6.4.1.9.5 Creating Source Code in IEC
	General
	FBD/LD/IL
	General
	Programming function block diagrams (FBD)
	Programming ladder diagrams (LD)
	Programming in instruction list (IL)

	Continuous Function Chart (CFC)
	General
	Automatic Execution Order by Data Flow
	Programming in the CFC editor

	Structured Text (ST), Extended Structured Text (ExST)
	General
	Programming structured text (ST)

	Sequential Function Chart (SFC)
	General
	Programming in SFC

	6.4.1.9.6 Function block — Calling functions or methods with external implementation
	6.4.1.9.7 Using input assistance
	6.4.1.9.8 Using Pragmas
	6.4.1.9.9 Using Library POUs
	6.4.1.9.10 Managing text in text lists
	General
	Adding a language and translating text
	Exporting a text list
	Preparing the exported file for input assistance
	Importing files with text list entries
	Comparing text lists with a file and exporting differences
	Managing static text in global text lists
	Managing dynamic text in text lists

	6.4.1.9.11 Using image pools
	6.4.1.9.12 Programmatic Access to I/Os
	General
	Variables configuration - VAR_CONFIG
	AT declaration

	6.4.1.9.13 Checking Syntax and Analyzing Code
	General
	Checking Syntax
	Analyzing code statically

	6.4.1.9.14 Orientation and Navigation
	Using the cross-reference list to find occurrences
	Finding declarations
	Setting and using bookmarks

	6.4.1.9.15 Searching and replacing in the entire project
	6.4.1.9.16 Refactoring
	6.4.1.9.17 Task Configuration
	General
	Creating a task configuration
	Definitions of Jitter and Latency

	6.4.1.9.18 Protecting an application
	6.4.1.9.19 Data Persistence
	General
	Preserving data with persistent variables
	Preserving data with retain variables
	Retaining data with variables of the persistence manager
	Preserving data with recipes
	Declaring VAR PERSISTENT Variables
	Saving the values of a persistent variable list in a recipe

	6.4.1.9.20 Alarm Management
	6.4.1.9.21 Using POUs for implicit checks
	6.4.1.9.22 Object-Oriented Programming
	General
	Extension of function blocks
	Implementing interfaces
	Extending interfaces
	Calling methods

	6.4.1.10 Working with Controller Networks
	6.4.1.10.1 General
	6.4.1.10.2 Network and Addressing
	General
	Network topology
	Addressing and Routing
	Address Structures

	6.4.1.10.3 Symbol Configuration
	6.4.1.10.4 IEC Symbol Set Configuration
	6.4.1.10.5 Network Variables
	6.4.1.10.6 Data Link with Data Sources
	General
	Initially Adding a Data Source
	Editing data source variables
	Editing Communication
	Updating data interfaces
	Using remote data
	Data Source OPC UA Client
	Establishing the Connection of a Data Source OPC UA Client to an OPC UA Server
	Error Messages
	Using a Dynamic Connection to an OPC UA Server

	6.4.1.10.7 Subordinate safety controller

	6.4.1.11 Downloading an Application to the PLC
	6.4.1.11.1 General
	6.4.1.11.2 Configuring the Connection to the PLC
	6.4.1.11.3 Encrypting Communication, Changing Security Settings
	6.4.1.11.4 Handling of Device User Management
	6.4.1.11.5 Generating Application Code
	6.4.1.11.6 Downloading the application code, logging in, and starting the PLC
	6.4.1.11.7 Generating boot applications
	6.4.1.11.8 Downloading source code to and from the PLC

	6.4.1.12 Testing and Debugging
	6.4.1.12.1 General
	6.4.1.12.2 Testing in simulation mode
	6.4.1.12.3 Using Breakpoints
	6.4.1.12.4 Stepping Through a Program
	6.4.1.12.5 Forcing and Writing of Variables
	6.4.1.12.6 Resetting applications
	6.4.1.12.7 Flow Control
	6.4.1.12.8 Determining the current processing position with the call stack
	6.4.1.12.9 Checking the Task Deployment

	6.4.1.13 Application at Runtime
	6.4.1.13.1 General
	6.4.1.13.2 Monitoring of Values
	General
	Calling of monitoring in programming objects
	Using watch lists
	Changing Values with Recipes
	Calling recipe commands in the CODESYS user interface
	Calling recipe commands programmatically or in a visualization
	Special functionality for floating-point numbers
	Creating a recipe
	Loading a recipe from a file
	Recipe management on the controller; memory usage
	Loading recipe values from the controller

	6.4.1.13.3 Data Recording with Trace
	General
	Getting started
	Creating trace configuration
	Operating the data recording
	Accessing All Traces on the Controller
	Navigating into trace data
	Managing trace
	Showing statistics

	6.4.1.13.4 Data Recording with Trend
	General
	Getting started with trend recording
	Configuring trend recording

	6.4.1.13.5 Monitoring tasks
	6.4.1.13.6 Reading the PLC log
	6.4.1.13.7 Using PLC shell for requesting information
	6.4.1.13.8 PLC operation control via system variables
	6.4.1.13.9 Backup and restore

	6.4.1.14 Updating an Application on the PLC
	6.4.1.14.1 General
	6.4.1.14.2 Executing the online change
	6.4.1.14.3 Execution of a download

	6.4.1.15 Copying files to/from PLC
	6.4.1.16 Using the Command-Line Interface
	6.4.1.17 Using Libraries
	6.4.1.17.1 Library repository
	6.4.1.17.2 Library Manager
	6.4.1.17.3 Information for Library Developers
	6.4.1.17.4 Adding a Library to the Application
	6.4.1.17.5 Adding a library to the repository
	6.4.1.17.6 Exporting library files

	6.4.1.18 Managing devices
	6.4.1.18.1 General
	6.4.1.18.2 Installing devices

	6.4.1.19 Security
	6.4.1.19.1 General
	6.4.1.19.2 General Information
	6.4.1.19.3 Security for the development system
	6.4.1.19.4 Security for the Runtime/PLC
	6.4.1.19.5 Security for CODESYS WebVisu
	6.4.1.19.6 FAQ
	Certificate expired
	New certificate (while the current one is still valid)
	Client does not support security feature
	CA-signed certificates preferred (PLC shell)
	Problems at login
	Disabling User Management
	Permitting encrypted communication again

	6.4.1.20 Reference, Programming
	6.4.1.20.1 Programming Languages and Editors
	Introduction
	Declaration Editor
	Common functions in graphical editors
	Structured Text and Extended Structured Text (ExST)
	ST Editor
	ST editor in online mode
	ST expressions
	Assignments
	ST assignment operator
	ST assignment operator for outputs
	ExST assignment 'S='
	ExST assignment 'R='
	ExST – Assignment as expression
	Assignment Operator 'REF='

	Statements
	ST statement 'IF'
	ST instruction 'FOR'
	ST instruction 'CASE'
	ST instruction 'WHILE'
	ST Statement 'REPEAT'
	ST statement 'RETURN'
	ST instruction 'JMP'
	ST instruction 'EXIT'
	EXST Statement 'CONTINUE'
	ST function block call
	ST – Comments

	Sequential Function Chart (SFC)
	SFC editor
	SFC Editor in Online Mode
	Processing order in SFC
	Qualifiers for Actions in SFC
	Implicit variables
	SFC Flags
	Library "Analyzation"
	Elements
	SFC elements 'Step' and 'Transition'
	SFC Element 'Action'
	SFC element 'Branch'
	SFC element 'Jump'
	SFC element 'Macro'
	SFC element properties

	Function Block Diagram / Ladder Diagram / Instruction List (FBD/LD/IL)
	FBD/LD/IL Editor
	FBD/LD/IL editor in online mode
	Modifiers and operators in IL
	Elements
	FBD/LD/IL element 'Network'
	FBD/LD/IL element 'Box'
	FBD/LD/IL element 'Assignment'
	FBD/LD/IL element 'Box with EN/ENO'
	FBD/LD/IL element 'Input'
	FBD/LD/IL element 'Label'
	FBD/LD/IL element 'Jump'
	FBD/LD/IL element 'Return'
	FBD/LD/IL element 'Branch'
	FBD/LD/IL element 'Execute'
	LD element 'Contact'
	LD element 'Coil'
	LD element 'Branch Start/End'
	Closed branch

	Continuous Function Chart (CFC) and Page-Oriented CFC
	General
	CFC Editor
	CFC editor, page-oriented
	Keyboard Shortcuts in the CFC Editors
	CFC Editor in Online Mode
	Elements
	CFC element 'Page'
	CFC element 'Control Point'
	CFC Element 'Input'
	CFC Element 'Output'
	CFC Element 'Box'
	CFC element 'Jump'
	CFC element 'Label'
	CFC element 'Return'
	CFC element 'Composer'
	CFC element 'Selector'
	CFC element 'Comment'
	CFC element 'Connection Mark - Source/Sink'
	CFC element 'Input Pin'
	CFC element 'Output Pin'

	6.4.1.20.2 Variables
	General
	Local variables - VAR
	Input variables - VAR_INPUT
	Output variables - VAR_OUTPUT
	Input/Output Variable (VAR_IN_OUT)
	Global variables - VAR_GLOBAL
	Temporary variable - VAR_TEMP
	Static variables - VAR_STAT
	External variables - VAR_EXTERNAL
	Instance variables - VAR_INST
	Configuration variables - VAR_CONFIG
	Constant Variables - 'CONSTANT'
	Persistent Variable - PERSISTENT
	Retain Variable - RETAIN
	SUPER
	THIS

	6.4.1.20.3 Operators
	General
	Operator 'ADD'
	Operator 'MUL'
	Operator 'SUB'
	Operator 'DIV'
	Operator 'MOD'
	Operator 'MOVE'
	Operator 'INDEXOF'
	Operator 'SIZEOF'
	Operator 'XSIZEOF'
	Operator 'NOT'
	Operator 'AND'
	Operator 'OR'
	Operator 'XOR'
	Operator 'AND_THEN'
	Operator 'OR_ELSE'
	Operator 'SHL'
	Operator 'SHR'
	Operator 'ROL'
	Operator 'ROR'
	Operator 'SEL'
	Operator 'MAX'
	Operator 'MIN'
	Operator 'LIMIT'
	Operator 'MUX'
	Operator 'GT'
	Operator 'LT'
	Operator 'LE'
	Operator 'GE'
	Operator 'EQ'
	Operator 'NE'
	Operator 'ADR'
	Operator 'Content Operator'
	Operator 'BITADR'
	Operator 'CAL'
	Overloading
	Boolean Conversion
	Integer Conversion
	Floating-Point Number Conversion
	String Conversion
	Time Conversion
	Date and Time Conversion
	Operator 'TRUNC'
	Operator 'TRUNC_INT'
	Operator 'ABS'
	Operator 'SQRT'
	Operator 'LN'
	Operator 'LOG'
	Operator 'EXP'
	Operator 'EXPT'
	Operator 'SIN'
	Operator 'COS'
	Operator 'TAN'
	Operator 'ASIN'
	Operator 'ACOS'
	Operator 'ATAN'
	Operator '__DELETE'
	Operator '__ISVALIDREF'
	Operator '__NEW'
	Operator '__QUERYINTERFACE'
	Operator '__QUERYPOINTER'
	Operators '__TRY', '__CATCH', '__FINALLY', '__ENDTRY'
	Operator '__VARINFO'
	Operator '__CURRENTTASK'
	Operator '__COMPARE_AND_SWAP
	Operator '__XADD'
	Operator '__POSITION'
	Operator '__POUNAME'
	Operator 'TEST_AND_SET'
	Operator - Global namespace
	Operator - Namespace for global variables lists
	Operator - Library namespace
	Operator - Enumeration namespace
	Operator '__POOL'
	Operator 'INI'

	6.4.1.20.4 Operands
	General
	BOOL constants
	Numeric constants
	REAL/LREAL constants
	String Constants
	Constant: UTF8# String
	TIME/LTIME Constant
	Date and Time Constants
	Typed literals
	Access to Variables in Arrays, Structures, and Blocks
	Bit Access in Variables
	Addresses
	Functions

	6.4.1.20.5 Data Types
	General
	Data type 'BOOL'
	Integer data types
	Data type 'REAL' / 'LREAL'
	Data Type 'STRING'
	Data Type 'TIME'
	Data Type 'LTIME'
	Date and Time Data Types
	Data Type 'ANY' and 'ANY_<type>'
	Data type 'WSTRING'
	Data Type 'BIT'
	Special Data Types '__UXINT', __XINT, and '__XWORD'
	Pointers
	Reference
	Data Type 'ARRAY'
	Data Type '__VECTOR'
	Structure
	Enumerations
	Alias
	Data type 'UNION'
	Subrange types

	6.4.1.20.6 Pragmas
	General
	Message Pragmas
	Attribute Pragmas
	General
	User-defined attributes
	Attribute 'call_after_global_init_slot'
	Attribute 'call_after_init'
	Attribute 'call_after_online_change_slot'
	Attribute 'call_before_global_exit_slot'
	Attribute 'call_on_type_change'
	Attribute 'conditionalshow'
	Attribute 'conditionalshow_all_locals'
	Attribute 'const_replaced', Attribute 'const_non_replaced'
	Attribute 'dataflow'
	Attribute 'displaymode'
	Attribute 'enable_dynamic_creation'
	Attribute 'estimated-stack-usage'
	Attribute 'ExpandFully'
	Attribute 'global_init_slot'
	Attribute 'hide'
	Attribute 'hide_all_locals'
	Attribute 'initialize_on_call'
	Attribute 'init_namespace'
	Attribute 'init_on_onlchange'
	Attribute 'instance-path'
	Attribute 'io_function_block', 'io_function_block_mapping'
	Attribute 'is_connected'
	Attribute 'linkalways'
	Attribute 'monitoring'
	Attribute 'monitoring_encoding'
	Attribute 'no_assign', Attribute 'no_assign_warning'
	Attribute 'no_check'
	Attribute 'no_copy'
	Attribute 'no-exit'
	Attribute 'noinit'
	Attribute 'no_instance_in_retain'
	Attribute 'no_virtual_actions'
	Attribute 'pingroup'
	Attribute 'pin_presentation_order_inputs/outputs'
	Attribute 'obsolete'
	Attribute 'pack_mode'
	Attribute 'ProcessValue'
	Attribute 'qualified_only'
	Attribute 'reflection'
	Attribute 'subsequent'
	Attribute 'symbol'
	Attribute 'to_string'
	Attribute 'warning disable', attribute 'warning restore'
	Effects of Pragmas on Symbols

	Conditional Pragmas
	Region Pragma

	6.4.1.20.7 Identifiers
	6.4.1.20.8 Shadowing Rules
	6.4.1.20.9 Keywords
	6.4.1.20.10 Methods 'FB_Init', 'FB_Reinit', and 'FB_Exit'
	6.4.1.20.11 Error Messages and Warnings
	Compiler error C0001
	Compiler error C0002
	Compiler error C0003
	Compiler Error C0004
	Compiler error C0005
	Compiler error C0006
	Compiler error C0007
	Compiler error C0008
	Compiler error C0009
	Compiler error C0010
	Compiler error C0011
	Compiler error C0013
	Compiler error C0016
	Compiler error C0018
	Compiler error C0020
	Compiler error C0022
	Compiler error C0023
	Compiler error C0026
	Compiler error C0027
	Compiler error C0030
	Compiler error C0031
	Compiler error C0032
	Compiler Error C0033
	Compiler error C0035
	Compiler Error C0036
	Compiler error C0037
	Compiler error C0038
	Compiler error C0039
	Compiler error C0040
	Compiler error C0041
	Compiler Error C0042 (Compiler Version <= 3.4.10)
	Compiler error C0043
	Compiler error C0044
	Compiler error C0045
	Compiler error C0046
	Compiler error C0047
	Compiler error C0048
	Compiler error C0049
	Compiler error C0050
	Compiler Error C0051
	Compiler Error C0053
	Compiler error C0061
	Compiler error C0062
	Compiler error C0064
	Compiler Error C0065
	Compiler error C0066
	Compiler error C0068
	Compiler error C0069
	Compiler error C0070
	Compiler error C0072
	Compiler error C0074
	Compiler error C0075
	Compiler error C0076
	Compiler error C0077
	Compiler Error C0078
	Compiler error C0080
	Compiler error C0081
	Compiler error C0082
	Compiler error C0084
	Compiler Error C0085
	Compiler error C0086
	Compiler error C0087
	Compiler error C0089
	Compiler error C0090
	Compiler error C0091
	Compiler error C0094
	Compiler error C0096
	Compiler error C0097
	Compiler error C0098
	Compiler Error C0099 (Compiler Version < 3.5.7.0)
	Compiler error C0101
	Compiler error C0102
	Compiler error C0104
	Compiler error C0114
	Compiler Error C0115
	Compiler error C0116
	Compiler error C0117
	Compiler error C0118
	Compiler error C0119
	Compiler error C0120
	Compiler error C0122
	Compiler error C0124
	Compiler error C0125
	Compiler error C0126
	Compiler error C0130
	Compiler error C0131
	Compiler error C0132
	Compiler error C0136
	Compiler Error C0138
	Compiler error C0139
	Compiler error C0140
	Compiler error C0141
	Compiler error C0142
	Compiler error C0143
	Compiler error C0144
	Compiler error C0145
	Compiler error C0149
	Compiler error C0161
	Compiler error C0162
	Compiler Error C0164
	Compiler Error C0165
	Compiler error C0168
	Compiler error C0169
	Compiler Error C0173
	Compiler error C0174
	Compiler error C0175
	Compiler error C0177
	Compiler error C0178
	Compiler Error C0179
	Compiler Error C0180
	Compiler error C0182
	Compiler Error C0183
	Compiler error C0185
	Compiler Error C0186
	Compiler Error C0188
	Compiler error C0189
	Compiler error C0190
	Compiler error C0191
	Compiler error C0195
	Compiler error C0196
	Compiler error C0197
	Compiler error C0198
	Compiler error C0199
	Compiler error C0201
	Compiler error C0203
	Compiler error C0204
	Compiler error C0205
	Compiler error C0206
	Compiler Error C0207
	Compiler error C0208
	Compiler Error C0209
	Compiler error C0211
	Compiler error C0212
	Compiler Error C0215
	Compiler error C0216
	Compiler error C0217
	Compiler error C0218
	Compiler error C0219
	Compiler error C0221
	Compiler error C0222
	Compiler error C0224
	Compiler Error C0225
	Compiler error C0227
	Compiler error C0228
	Compiler Error C0230
	Compiler Error C0232
	Compiler Error C0233
	Compiler error C0234
	Compiler error C0235
	Compiler error C0236
	Compiler error C0237
	Compiler error C0238
	Compiler error C0239
	Compiler error C0240
	Compiler error C0241
	Compiler error C0242
	Compiler error C0243
	Compiler Error C0380
	Compiler error C0509
	Compiler error C0511
	Compiler Error C0542
	Compiler Error C0543
	Compiler Error C0549
	Compiler Error C0550
	Compiler Error C0554
	Compiler Error C0555

	6.4.1.21 Reference, User Interface
	6.4.1.21.1 Notifications
	6.4.1.21.2 Objects
	General
	Object 'Application'
	Object 'POU Locations'
	Objects for Alarm Management
	Object 'Data Source Manager'
	Object 'Data Source'
	General
	Tab 'Variables'
	Tab 'Type Mappings'
	Tab 'Communication' via CODESYS Symbolic
	Tab 'Communication' via CODESYS ApplicationV3
	Tab 'Communication' via OPC UA Server
	Tab 'General and Diagnosis'

	Object 'DeviceTrace'
	Object 'Device' and Generic Device Editor
	General
	Generic device editor
	Tab 'Communication Settings'
	Tab 'Parameters'
	Tab 'Applications'
	Tab 'Backup and Restore'
	Tab 'Synchronized Files'
	Tab 'Files'
	Tab 'Log'
	Tab 'PLC Settings'
	Tab 'PLC Shell'
	Tab '<device name> I/O Mapping'
	Tab '<device name> IEC Objects'
	Tab 'Users and Groups'
	Tab 'Access Rights'
	Tab 'Symbol Rights'
	Tab 'Licensed Software Metrics'
	Tab 'Task deployment'
	Tab 'Status'
	Tab 'Information'

	Object 'DUT'
	Object 'External File'
	Object 'GlobalTextList'
	Object 'GVL' - Global Variable List
	Object 'GVL' - Global Variable List (task-local)
	Object: IEC Symbol Publishing
	Object 'Image Pool'
	Object 'Library Manager'
	Object 'OPC UA Information Model'
	Object 'Network Variable List (Sender)'
	Object 'Network Variable List (Receiver)'
	Object 'Persistent variable list'
	Object 'POU'
	General
	Object 'Program'
	Object 'Function Block'
	Object 'Function'
	Object 'Interface'
	Object 'Method'
	Object 'Interface Method'
	Object 'Interface Property'
	Object 'Property'
	Object 'Action'
	Object 'Transition'

	Object 'POUs for Implicit Checks'
	General
	POU 'CheckBounds'
	POU 'CheckDivInt'
	POU 'CheckDivLInt'
	POU 'CheckDivReal'
	POU 'CheckDivLReal'
	POU 'CheckRangeSigned'
	POU 'CheckLRangeSigned'
	POU 'CheckRangeUnsigned'
	POU 'CheckLRangeUnsigned'
	POU 'CheckPointer'

	Object 'Project Settings'
	Object 'Project Information'
	Object 'Recipe Manager'
	Object 'Recipe Definition'
	Object 'Symbol Configuration'
	Object 'Text List'
	Object 'Task Configuration'
	General
	Tab 'Properties'
	Tab 'System Events'
	Tab 'Monitor'
	Tab 'Variable Usage'
	Tab 'Task Groups'
	Tab 'CPU Load'
	Mapping of Task Priorities on a Linux System

	Object 'Task'
	General
	Tab 'Configuration'

	Object 'Trace'
	Object 'Trend Recording Manager'
	Object 'Trend Recording'
	Object 'Trend Recording Task'
	Object 'Unit Conversion'

	6.4.1.21.3 Menu Commands
	General
	Menu 'File'
	Command ‘New Project’
	Command 'Open Project'
	Command ‘Close Project’
	Command 'Save project'
	Command 'Save Project as'
	Command 'Save Project and Install into Library Repository'
	Command 'Save Project as Compiled Library'
	Command 'Save/Send Archive'
	Command 'Extract Archive'
	Command 'Source Upload'
	Command 'Source Download'
	Command 'Print'
	Command 'Print Preview'
	Command 'Page Setup'
	Command ‘Recent Projects’
	Command 'Exit'

	Menu 'Edit'
	Standard Commands
	Command 'Find', 'Find in Project'
	Command 'Replace', 'Replace in Project'
	Command 'Find Next'
	Command 'Find Next (Selection)'
	Command 'Find Previous'
	Command 'Find Previous (Selection)'
	Command 'Insert File as Text'
	Command 'Overwrite Mode'
	Command 'View Whitespace'
	Command 'View Indentation Guides'
	Command 'Go to Line'
	Command 'Make Uppercase'
	Command 'Make Lowercase'
	Command 'Go to Matching Bracket'
	Command 'Select to Matching Bracket'
	Command 'Expand All Folds'
	Command 'Collapse All Folds'
	Command 'Comment Out Selected Lines'
	Command 'Uncomment Selected Lines'
	Command 'Enable Inline Monitoring'
	Command 'Toggle Bookmark'
	Command 'Next Bookmark (Active Editor)'
	Command 'Next Bookmark'
	Command 'Previous Bookmark (Active Editor)'
	Command 'Previous Bookmark'
	Command 'Clear All Bookmarks (Active Editor)'
	Command 'Clear All Bookmarks'
	Command 'Browse Cross References'
	Command 'Browse Global Cross References'
	Command 'Browse Call Tree'
	Command 'Auto Declare'
	Command 'Input Assistant'
	Command 'Go to Source Position'
	Command 'Next Message'
	Command 'Previous Message'
	Command 'Go to Definition'
	Command 'Go To Reference'
	Command 'Go to Instance'
	Command 'Refactoring' - 'Rename <...>'
	Command 'Refactoring' - 'Update Referenced Pins'
	Command 'Refactoring' - 'Add Variable'
	Command 'Refactoring' - 'Remove <variable>'
	Command 'Refactoring' - 'Reorder Variables'
	Command 'Advanced' - 'Format Document'

	Menu 'View'
	Standard Menu in View 'Devices', 'POUs', 'Modules'
	Command 'Devices'
	Command ‘POUs’
	Command 'Modules'
	Command 'Messages'
	Command 'Element properties'
	Command 'ToolBox'
	Command 'Watch' - 'Watch <n>'
	Command 'Watch' - 'Watch All Forces'
	Command 'Add All Forces to Watchlist'
	Command 'Bookmarks'
	Command 'Breakpoints'
	Command 'Cross Reference List'
	Command 'Browse Cross References in Classic View'
	Command 'Call Stack'
	Command 'Call tree'
	Command 'Memory'
	Command 'Security Screen'
	Command 'Settings of Memory Reserve for Online Change'
	Command 'Start Page'
	Command 'Full Screen'
	Command 'Properties'

	Menu 'Project'
	Command ‘Add Object’
	Command ‘Add Folder’
	Command 'Insert Device'
	Command 'Plug Device'
	Command 'Scan for Devices'
	Command 'Update Device'
	Command 'Acknowledge Diagnosis', 'Acknowledge Diagnosis for Subtree'
	Command 'Edit Object'
	Command 'Edit Object with'
	Command 'Check integrity'
	Command 'Edit Object (Offline)'
	Command 'Set Active Application'
	Command 'Project information'
	Command 'Project Settings'
	Command 'Project Environment'
	Command 'Project Localization' - 'Create Localization Template'
	Command 'Project Localization' - 'Manage Localizations'
	Command 'Project Localization' - 'Toggle Localization'
	Command 'Document'
	Command 'Compare objects'
	Command 'Compare'
	Command 'Commit Accepted Changes'
	Command 'Map pool devices'
	Command 'Export'
	Command 'Import'
	Command 'Export PLCopenXML'
	Command 'Import PLCopenXML'
	Command 'User management' – 'Log in User'
	Command 'User management' – 'Log out User'
	Command 'User management' – 'Rights…'
	Command 'Insert Device'
	Command 'Generate EtherCAT XML'
	Command 'Generate Sercos SCI XML'
	Command 'Disable Device' – 'Enable Device'
	Command 'Edit I/O Mapping'
	Command 'Import Mappings from CSV'
	Command 'Export Mappings to CSV'
	Command 'Read PLC Parameter File to Configuration'
	Command 'Online Config Mode'
	Command 'Runtime licensing'

	Menu 'Build'
	Command 'Generate Code'
	Command 'Clean'
	Command 'Clean All'
	Command 'Build'
	Command 'Rebuild'
	Command 'Generate Runtime System Files'
	Command 'Check all Pool Objects'
	Command 'Generate Code for Active Application'
	Command 'Check All Application Objects'
	Command 'Check Library Compatibility'
	Command 'Generate Disassembly File'

	Menu 'Online'
	Command 'Choose Active Application'
	Command 'Login'
	Command 'Logout'
	Command 'Create Boot Application'
	Command 'Load'
	Command 'Online Change'
	Command 'Source Download to Connected Device'
	Command 'Download Manager'
	Command 'Multiple Download'
	Command 'Reset Cold'
	Command 'Reset Warm'
	Command 'Reset Origin'
	Command 'Reset Origin Device'
	Command 'Logoff Current Device User'
	Command 'Download'
	Command 'Add Device User'
	Command 'Remove Device User'
	Command 'Change Password Device User'
	Command 'Stop Execution on Handled Exceptions'
	Command 'Connect to Device'
	Command 'Disconnect from Device'
	Command 'Wink'
	Command 'Simulation
	Command 'Operating Mode'
	Command 'Virtual mode'
	Command 'Virtual system testing'

	Menu 'Debug'
	Command 'Start'
	Command 'Stop'
	Command 'Single Cycle'
	Command 'New Breakpoint'
	Command 'New Data Breakpoint'
	Command 'Edit Breakpoint'
	Command 'Enable Breakpoint'
	Command 'Disable Breakpoint'
	Command 'Toggle Breakpoint'
	Command 'Step Over'
	Command 'Step Into'
	Command 'Step Out'
	Command 'Run to Cursor'
	Command 'Set Next Statement'
	Command 'Show Next Statement'
	Command 'Force Values'
	Command 'Write Values'
	Command 'Unforce Values'
	Command 'Force All Values from <Device.Application>'
	Command 'Write All Values from <Device.Application>'
	Command 'Unforce All Values from <Device.Application>'
	Command 'Flow Control'
	Menu 'Core Dump'
	Command 'Load Core Dump'
	Command 'Create Core Dump'
	Command 'Close Core Dump'
	Command 'Load Device Log from Core Dump'

	Command 'Display Mode' - 'Binary', 'Decimal', 'Hexadecimal'

	Menu 'Tools'
	Command 'IP-Configuration'
	Command 'Install additional licence'
	Command 'Migrate third party devices'
	Command 'Package Manager'
	Command 'Library Repository'
	Command 'License Manager'
	Command ‘License Repository’
	Command 'Device Repository'
	Command 'Create Device list CSV'
	Command 'Multi Online Change'
	Command 'Device ECAD data'
	Command 'OPC UA Information Model Repository'
	Command 'Scripting' - 'Execute Script File'
	Command 'Scripting' - 'Enable Script Tracing'
	Command 'Scripting' - 'Scripts'
	Command 'Customize'
	Command 'Options'
	Command 'Import and Export Options'
	Command 'Device Reader'

	Menu 'Window'
	Command 'Next Editor'
	Command 'Previous Editor'
	Command 'Close All Editors'
	Command 'Close All Editors of Inactive Applications'
	Command 'Reset Window Layout'
	Command 'New Horizontal Tab Group'
	Command 'New Vertical Tab Group'
	Command 'Float'
	Command 'Dock'
	Command 'Auto Hide'
	Command 'Next Pane'
	Command 'Previous Pane'
	Command 'Toggle First Pane'
	Command 'Toggle Second Pane'
	Command 'Windows'
	Command 'Close All Editors But This'
	Command 'Select Object in Navigator'
	Command 'Select Parent Object in Navigator'
	Commands of the Submenu 'Window'

	Menu 'Help'
	Command 'Contents'
	Command 'Index'
	Command 'Find'
	Command 'About'

	Menu 'SFC'
	Command 'Init Step'
	Command 'Insert Step'
	Command 'Insert Step After'
	Command 'Insert Transition After'
	Command 'Insert Transition'
	Command 'Insert Step-Transition'
	Command 'Insert Step-Transition After'
	Command 'Add Entry Action'
	Command 'Add Exit Action'
	Command 'Parallel'
	Command 'Alternative'
	Command 'Insert Branch'
	Command 'Insert Branch Right'
	Command 'Insert Action Association'
	Command 'Insert Action Association After'
	Command 'Insert Jump'
	Command 'Insert Jump After'
	Command 'Insert Macro'
	Command 'Insert Macro After'
	Command 'Zoom Into Macro'
	Command 'Zoom Out of Macro'
	Command 'Paste After'
	Command 'Change Duplication' - 'Set'
	Command 'Change Duplication' - 'Remove'
	Command 'Do Not Display Embedded Objects'

	Menu 'CFC'
	Command 'Edit Worksheet'
	Command 'Edit Page Size’
	Command 'Negate'
	Command 'EN/ENO'
	Command 'None'
	Command 'R (Reset)'
	Command 'S (Set)'
	Command 'REF= (Reference Assignment)'
	Command 'Display Execution Order'
	Command 'Set Start of Feedback'
	Command 'Send to Front'
	Command 'Send to Back'
	Command 'Move Up'
	Command 'Move Down'
	Command 'Set Execution Order'
	Command 'Order by Data Flow'
	Command 'Order by Topology'
	Command 'Edit Parameters'
	Command 'Save Prepared Parameters to Project'
	Command 'Connect Selected Pins'
	Command 'Unlock Connection'
	Command 'Show Next Collision'
	Command 'Select Connected Pins'
	Command 'Reset Pins'
	Command 'Remove Unused Pins'
	Command 'Add Input Pin'
	Command 'Add Output Pin'
	Command 'Route All Connections'
	Command 'Remove Control Point'
	Command 'Create Control Point'
	Command 'Connection Mark'
	Command 'Create group'
	Command 'Ungroup'
	Command 'Prepare Box for Forcing'
	Command 'Force Function Block Input'
	Command 'Use Attributed Member as Input'

	Menu 'FBD/LD/IL'
	Command 'Insert Network'
	Command 'Insert Network (Below)'
	Command 'Toggle Network Comment State'
	Command 'Insert Assignment'
	Command 'Insert Box'
	Command 'Insert Box with EN/ENO'
	Command 'Insert Empty Box'
	Command 'Insert Empty Box with EN/ENO'
	Command 'Insert Box Parallel (Below)'
	Command 'Insert Jump'
	Command 'Insert Label'
	Command 'Insert Return'
	Command 'Insert Input'
	Command 'Insert Coil'
	Command 'Insert Set Coil'
	Command 'Insert Reset Coil'
	Command 'Insert Contact'
	Command 'Insert Contact (Right)'
	Command 'Insert Contact in Parallel (Below)'
	Command 'Insert Contact in Parallel (Above)'
	Command 'Toggle Parallel Mode'
	Command 'Insert Negated Contact'
	Command 'Insert Negated Contact Parallel (Below)'
	Command 'Paste Contacts: Paste Below'
	Command 'Paste Contacts: Paste Above'
	Command 'Paste Contacts: Paste Right (After)'
	Command 'Insert IL Line Below'
	Command 'Delete IL Line'
	Command 'Negation'
	Command 'Edge Detection'
	Command 'Set/Reset'
	Command 'Set Output Connection'
	Command 'Insert Branch'
	Command 'Insert Branch Above'
	Command 'Insert Branch Below'
	Command 'Set Branch Start Point'
	Command 'Set Branch End Point'
	Command 'Update Parameters'
	Command 'Remove Unused FB Call Parameters'
	Command 'Repair POU'
	Command 'View as Function Block Diagram'
	Command 'View as Ladder Logic'
	Command 'View as Instruction List'
	Command 'Go to'

	Menu 'Library'
	Command 'Add Library'
	Command 'Try to Reload Library'
	Command 'Properties'
	Command 'Placeholders'
	Command 'Export Library'

	Menu 'Image Pool'
	Command 'Insert Image'

	Menu 'Declarations'
	Command 'Insert'
	Command 'Edit Declaration Header'
	Command 'Move Down'
	Command 'Move Up'

	Menu 'Declarations' (Persistence)
	Command 'Reorder List and Clean Gaps'
	Command 'Save Current Values to Recipe'
	Command 'Restore Values from Recipe'
	Command 'Add all instance paths'

	Menu 'Device Communication', Gateway
	Command 'Add New Gateway'
	Command 'Configure the Local Gateway'

	Menu 'Recipes'
	Command 'Insert Variable'
	Command 'Add a New Recipe'
	Command 'Remove Recipe'
	Command ‘Load Recipe'
	Command 'Save Recipe'
	Command 'Read Recipe'
	Command 'Write Recipe'
	Command 'Load and Write Recipe'
	Command 'Read and Save Recipe'
	Command 'Remove Variables'
	Command 'Load Recipes from Device'
	Command 'Update Structured Variables'

	Menu 'Text List'
	Command 'Add Language'
	Command 'Create Global Text List'
	Command 'Export Everything as Text'
	Command 'Export All Unicode .txt Text List Files'
	Command 'Insert Text'
	Command 'Import/Export Text Lists'
	Command 'Remove Language'
	Command 'Rename Language'
	Command 'Remove Unused Text List Entries'
	Command 'Check Visualization Text IDs'
	Command 'Update Visualization Text IDs'
	Command 'Add Text List Support'
	Command 'Remove Text List Support'

	Menu 'Trace'
	Command 'Add Variable'
	Command 'AutoFit'
	Command 'Compress'
	Command 'Configuration'
	Command 'Cursor'
	Command 'Download Trace'
	Command 'Export Symbolic Trace Config'
	Command 'Load Trace'
	Command 'Mouse Zooming'
	Command 'Convert to Multi-Channel'
	Command 'Convert to Single-Channel'
	Command 'Online List'
	Command 'Reset Trigger'
	Command 'Reset View'
	Command 'Save Trace'
	Command 'Start Trace'
	Command 'Stop Trace'
	Command 'Stretch'
	Command 'Upload Trace'
	Command 'Statistics'

	Other
	Command 'Add Watch'
	Command 'Implement Interfaces'
	Command 'Limit Results to Current Declaration'

	6.4.1.21.4 Dialogs
	General
	Dialog 'Import Assistant'
	Dialog 'Library Reference Conversion'
	Dialog 'Select Function Block'
	Dialog 'Device Conversion'
	Dialog 'Breakpoint Properties'
	Dialog 'Permissions'
	Dialog Box 'Prepare Value'
	Dialog 'New Breakpoint'
	Dialog 'Monitoring Range'
	Dialog 'Properties'
	General
	Dialog Box 'Properties' - 'Common'
	Dialog 'Properties' - 'Boot Application'
	Dialog: Properties: Security
	Dialog 'Properties' - 'Build'
	Dialog 'Properties' – 'Build' (C-integration)
	Dialog 'Properties' - 'Access Control'
	Dialog 'Properties' - 'External file'
	Dialog Box 'Properties' - 'Bitmap'
	Dialog 'Properties - Application Build Options'
	Dialog 'Properties' - 'Target memory settings'
	Dialog 'Properties' - 'Network Variables'
	Dialog 'Properties' - 'Network Settings'
	Dialog 'Properties' - 'CFC Execution Order'
	Dialog 'Properties' - 'SFC Settings'
	Dialog 'Properties' – 'Link to File'
	Dialog 'Properties' - 'Cam'
	Dialog 'Properties' - 'Image Pool'
	Dialog 'Properties' - 'TextList'
	Dialog 'Properties' - 'Options'
	Dialog 'Properties' - 'Monitoring'

	Dialog 'Project Settings'
	General
	Dialog 'Project Settings' - 'SFC'
	Dialog 'Project Settings' - 'Users and Groups'
	Dialog Box 'Project Settings' - 'Compileoptions'
	Dialog Box 'Project Settings' - 'Compiler Warnings'
	Dialog 'Project Settings' – 'Source Download'
	Dialog 'Project Settings' - 'Page Setup'
	Dialog 'Project Settings' - 'Security'
	Dialog 'Project Settings' - 'Static Analysis Light'
	Dialog 'Project Settings' - 'Visualization'
	Dialog 'Project Settings' - 'Visualization Profile'

	Dialog 'Project Environment'
	General
	Dialog 'Project Environment' – 'Library Versions'
	Dialog 'Project Environment' - 'Compiler Version'
	Dialog 'Project Environment' - 'Device Versions'
	Dialog 'Project Environment' – 'Visualization Profile'
	Dialog 'Project Environment' – 'Visualization Styles'
	Dialog 'Project Environment' – 'Visualization Symbols'

	Dialog 'Options'
	General
	Dialog 'Options' - 'Automation Builder'
	Dialog 'Options' - 'C Compiler'
	Dialog 'Options' - 'CFC Editor'
	Dialog 'Options' – 'Declaration Editor'
	Dialog 'Options' – 'Device Description Download'
	Dialog 'Options' - 'Device Editor'
	Dialog 'Options' - 'Diagnosis'
	Dialog 'Options' - 'External tools'
	Dialog 'Options' - 'FBD, LD, and IL'
	Dialog 'Options' - 'Help'
	Dialog 'Options' - 'Help'
	Dialog 'Options' - 'IEC 60870-5-104'
	Dialog 'Options' – 'International Settings'
	Dialog 'Options' – 'Libraries'
	Dialog 'Options' – 'Library Download'
	Dialog 'Options' – 'Load and Save'
	Dialog 'Options' - 'Message View'
	Dialog 'Options' - 'Monitoring'
	Dialog 'Options' - 'PLCopenXML'
	Dialog 'Options' - 'Proxy Settings'
	Dialog 'Options' - 'Refactoring'
	Dialog 'Options' - 'SFC Editor'
	Dialog 'Options' - 'SmartCoding'
	Dialog 'Options' - 'Startup settings'
	Dialog 'Options' - 'Text Editor'

	Dialog 'Customize'
	General
	Dialog 'Customize' - 'Menu'
	Dialog 'Customize' - 'Command Icons'
	Dialog 'Customize' - 'Toolbars'
	Dialog Box 'Customize' - 'Keyboard'

	Dialog 'Trace Configuration'
	Dialog 'Advanced Trace Settings'
	Dialog 'Trace Configuration'

	Dialog Box 'Trend storage'
	Dialog Box 'Advanced Trend Settings'
	Dialog 'Certificate Selection'

	6.4.2 Fieldbus Support
	6.4.2.1 Device Diagnosis
	6.4.2.2 Fieldbus Devices and I/O Drivers
	6.4.2.3 Bus Cycle Task
	6.4.2.4 Symbolic Access to I/O Channels
	6.4.2.4.1 General
	6.4.2.4.2 Enable automatic mapping
	6.4.2.4.3 Online Mode

	6.4.2.5 EtherNet/IP
	6.4.2.5.1 Introduction
	6.4.2.5.2 Configuration EtherNet/IP adapter
	Setting up the communication gateway

	6.4.2.5.3 EtherNet/IP - Bus Cycle Task
	6.4.2.5.4 Tabs EtherNet/IP Scanner
	Tab EtherNet/IP Scanner - “General”
	Tab “NetX Configuration”
	Tab EtherNet/IP Scanner NetX - “General”

	6.4.2.5.5 Tabs EtherNet/IP Adapter
	Tab EtherNet/IP Adapter - “General”
	Tab EtherNet/IP Adapter - “Connections”
	Dialog “New Connection”
	Tab EtherNet/IP Adapter - “Assemblies”
	Tab EtherNet/IP Adapter - “User-Defined Parameters”
	Dialog “Select Parameters”
	Tab EtherNet/IP Adapter - “General”, local

	6.4.2.5.6 Application notes
	6.4.2.5.7 Command EtherNet/IP - “Scan for Devices”

	6.4.3 Runtime systems, OPC UA server
	6.4.3.1 OPC UA server for AC500 V3 products
	6.4.3.1.1 General
	6.4.3.1.2 Creating a project for OPC UA access
	6.4.3.1.3 Use node name
	6.4.3.1.4 Use UaExpert client
	6.4.3.1.5 Working with encryption
	Creating a certificate for the OPC UA server
	Encrypted connection with UaExpert client

	6.4.3.1.6 Changing variables via UaExpert client
	6.4.3.1.7 Configuring OPC UA client
	Operating modes
	Using OPC UA with subscription mode

	6.4.3.2 Using OPC UA Information Models
	6.4.3.3 Mapping of OPC UA Types to IEC Types

	6.4.4 Libraries
	6.4.4.1 General
	6.4.4.2 Guidelines for creating libraries

	6.4.5 CODESYS Visualization
	6.4.5.1 Introduction
	6.4.5.2 Tutorial
	6.4.5.2.1 CODESYS visualization - Getting started
	6.4.5.2.2 Show instance names
	6.4.5.2.3 Visualizing a Refrigerator Controller
	6.4.5.2.4 Displaying Array Data in a Histogram
	6.4.5.2.5 Displaying Array Variables in Tables
	6.4.5.2.6 Displaying Web Contents
	6.4.5.2.7 Using Client Animation

	6.4.5.3 Preparing CODESYS and projects
	6.4.5.4 Limitation of the number of usable web pages on AC500 V3 PLCs
	6.4.5.5 Designing a visualization with elements
	6.4.5.5.1 General
	6.4.5.5.2 Select Element
	6.4.5.5.3 Positioning the Element, Adapting Size and Layer
	6.4.5.5.4 Assigning a color
	6.4.5.5.5 Using texts
	6.4.5.5.6 How to display variable values in the visualization
	6.4.5.5.7 How to Change Variable Values via the Visualization
	6.4.5.5.8 Designing a background

	6.4.5.6 Configuring user inputs
	6.4.5.6.1 General
	6.4.5.6.2 Configuring user inputs for visualization elements
	6.4.5.6.3 Configuring gesture recognition
	6.4.5.6.4 Configuring text input with the virtual keyboard
	6.4.5.6.5 Configuring Keyboard Shortcuts
	6.4.5.6.6 Capturing user input events

	6.4.5.7 Setting Up User Management
	6.4.5.7.1 General
	6.4.5.7.2 Creating runtime-based user management initially
	6.4.5.7.3 Switch to legacy user management
	6.4.5.7.4 Creating a group with administrator rights for visualizations
	6.4.5.7.5 Setting up access control and login operation
	6.4.5.7.6 Group-dependent restriction of functionality

	6.4.5.8 Setting Up Multiple Languages
	6.4.5.9 Visualizing alarm management
	6.4.5.10 Animating visualization elements
	6.4.5.10.1 General
	6.4.5.10.2 Configuring rotations and offsets
	6.4.5.10.3 Animating a text display
	6.4.5.10.4 Animating a color display

	6.4.5.11 Displaying data arrays in tables
	6.4.5.11.1 General
	6.4.5.11.2 Displaying Array Variables in Tables
	6.4.5.11.3 Configuring and Multiplying Visualization Elements as Templates

	6.4.5.12 Displaying data curve with trace
	6.4.5.12.1 General
	6.4.5.12.2 Getting started with trace

	6.4.5.13 Displaying data curve with trend
	6.4.5.13.1 General
	6.4.5.13.2 Getting Started with Trend Visualization
	6.4.5.13.3 Programming a Trend Visualization

	6.4.5.14 Displaying and Editing Text Files
	6.4.5.14.1 General
	6.4.5.14.2 Configuring the Display of a Text File
	6.4.5.14.3 Configuring the Editing of a Text File

	6.4.5.15 Configuring a variable assignment with unit conversion
	6.4.5.16 Using recipes in visualization elements
	6.4.5.17 Creating a structured user interface
	6.4.5.17.1 General
	6.4.5.17.2 Displaying Multiple Visualizations in One Visualization
	6.4.5.17.3 Calling a Visualization with an Interface
	6.4.5.17.4 Calling a dialog in a visualization
	6.4.5.17.5 Calling a Dialog with an Interface

	6.4.5.18 Configuring and executing display variants
	6.4.5.18.1 General
	6.4.5.18.2 Executing as CODESYS WebVisu
	6.4.5.18.3 Executing as an Integrated Visualization
	6.4.5.18.4 Configure File Transfer Mode

	6.4.5.19 Applying Visualization Styles
	6.4.5.19.1 General
	6.4.5.19.2 Editing visualization styles in the visualization style editor
	6.4.5.19.3 Managing visualization styles in repositories

	6.4.5.20 Reference, Programming
	6.4.5.20.1 Visualization Elements
	Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
	Visualization Element 'Line'
	Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
	Visualization Element 'Pie'
	Visualization Element 'Image'
	Visualization Element 'Frame'
	Visualization Element 'Label'
	Visualization Element 'Combo Box, Integer'
	Visualization Element 'Combo Box, Array'
	Visualization Element 'Tabs'
	Visualization Element 'Button'
	Visualization Element 'Group Box'
	Visualization Element 'Table'
	Visualization Element 'Text Field'
	Visualization Element 'Scroll Bar'
	Visualization Element 'Slider'
	Visualization Element 'Spin Box'
	Visualization Element 'Invisible Input'
	Visualization Element 'Progress Bar'
	Visualization Element 'Check Box'
	Visualization Element 'Radio Buttons'
	Visualization Element 'Alarm Table'
	Visualization Element 'Alarm Banner'
	Visualization Element 'Bar Display'
	Visualization Element 'Meter 90°'
	Visualization Element 'Meter 180°'
	Visualization Element 'Meter'
	Visualization Element 'Potentiometer'
	Visualization Element 'Histogram'
	Visualization Element 'Image Switcher'
	Visualization Element 'Lamp'
	Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
	Visualization Element 'Rotary Switch'
	Visualization Element 'Trace'
	Visualization Element 'Trend'
	Visualization Element 'Legend'
	Visualization Element 'ActiveX'
	Visualization Element 'Web Browser'
	Visualization Element 'Busy Symbol, Cube'
	Visualization Element 'Busy Symbol, Flower'
	Visualization Element 'Text Editor'
	Visualization Element 'Path3D'
	Visualization Element 'Control Panel'
	Visualization Element 'Cartesian XY Chart'
	Visualization Element 'Date Range Picker'
	Visualization Element 'Time Range Picker'
	Visualization Element 'Date Picker'
	Visualization Element 'Analog Clock'
	Visualization Element 'Date/Time Picker'

	6.4.5.20.2 Placeholders with Format Definition in the Output Text
	6.4.5.20.3 Methods of the Dialog Manager
	6.4.5.20.4 Attribute 'VAR_IN_OUT_AS_POINTER'
	6.4.5.20.5 Attribute 'parameterstringof'

	6.4.5.21 Reference, user interface
	6.4.5.21.1 Keyboard Shortcuts for Default Keyboard Action
	6.4.5.21.2 Commands
	Command 'Interface Editor'
	Command 'Keyboard Configuration'
	Command 'Visualization Element List'
	Command 'Activate Keyboard Usage'
	Command 'Order'
	Command 'Alignment'
	Command 'Group'
	Command 'Ungroup'
	Command 'Frame Selection'
	Command 'Background'
	Command 'Multiply Visu Element'
	Command 'Configure Display Settings of Trend'
	Command 'Configure Trace'
	Command 'Export Trace Configuration'
	Command 'Insert Elements for Controlling Trace'
	Command 'Configure Display Settings of Trend'
	Command 'Edit Trend Recording'
	Command 'Insert Elements for Controlling the Trend'
	Command 'Visualization Element Repository'
	Command 'Visualization Style Repository'
	Command 'Add Visual Element'
	Command 'Select None'
	Command 'Add Elements for Alarm Acknowledgement'

	6.4.5.21.3 Dialog Boxes
	Dialog 'Access Rights'
	Dialog 'Add Visualization'
	Dialog 'Update Frame Parameters'
	Dialog 'Configure Categories and Items'
	Dialog 'Gradient Editor'
	Dialog 'Input Configuration'
	Dialog 'Options' - 'Visualization Styles'
	Dialog 'Options' - 'Visualization User Management'
	Dialog Box 'Options' - 'Visualization'
	Dialog 'Project Environment' - 'Visualization Profile'
	Dialog 'Project Environment' - 'Visualization Styles'
	Dialog 'Project Environment' – 'Visualization Symbols'
	Dialog 'Project Settings' - 'Visualization'
	Dialog ‘Project Settings’ - ‘Visualization Profile’
	Dialog 'Properties' of Visualization Objects
	Dialog 'Selected Alarm Class'
	Dialog 'Selected Alarm Group'
	Dialog 'Advanced Trace Settings'
	Dialog 'Display Settings'

	6.4.5.21.4 Objects
	Object 'Visualization' and visualization editor
	Visualization Editor
	View 'Visualization Toolbox'
	View 'Properties' of a visualization element

	Object 'Visualization manager'
	Tab 'Visualization Manager' - 'Default Hotkeys'
	Tab 'Visualization manager' – 'Visualizations'
	Tab 'Visualization manager' - 'User management'
	Tab 'Visualization Manager' - 'Font'
	Object 'TargetVisu'
	Object 'WebVisu'

	6.4.5.21.5 Visualization Elements
	Visualization Element 'Rectangle', 'Rounded Rectangle', 'Ellipse'
	Visualization Element 'Line'
	Visualization Element 'Polygon', 'Polyline', 'Bézier Curve'
	Visualization Element 'Pie'
	Visualization Element 'Image'
	Visualization Element 'Frame'
	Visualization Element 'Label'
	Visualization Element 'Combo Box, Array'
	Visualization Element 'Combo Box, Integer'
	Visualization Element 'Tabs'
	Visualization Element 'Button'
	Visualization Element 'Group Box'
	Visualization Element 'Table'
	Visualization Element 'Text Field'
	Visualization Element 'Scroll Bar'
	Visualization Element 'Slider'
	Visualization Element 'Spin Box'
	Visualization Element 'Invisible Input'
	Visualization Element 'Check Box'
	Visualization Element 'Progress Bar'
	Visualization Element 'Radio Buttons'
	Visualization Element 'Alarm Table'
	Visualization Element 'Alarm Banner'
	Visualization Element 'Bar Display'
	Visualization Element 'Meter 90°'
	Visualization Element 'Meter 180°'
	Visualization Element 'Meter'
	Visualization Element 'Potentiometer'
	Visualization Element 'Histogram'
	Visualization Element 'Image Switcher'
	Visualization Element 'Lamp'
	Visualization Element 'Dip Switch', 'Power Switch', 'Push Switch', 'Push Switch LED', 'Rocker Switch'
	Visualization Element 'Rotary Switch'
	Visualization Element 'Trace'
	Visualization Element 'Trend'
	Visualization Element 'Legend'
	Visualization Element 'ActiveX'
	Visualization Element 'Web Browser'
	Visualization Element 'Busy Symbol, Cube'
	Visualization Element 'Busy Symbol, Flower'
	Visualization Element 'Text Editor'
	Visualization Element 'Path3D'
	Visualization Element 'Control Panel'
	Visualization Element 'Date Range Picker'
	Visualization Element 'Time Range Picker'
	Visualization Element 'Date Picker'
	Visualization Element 'Analog Clock'
	Visualization Element 'Date/Time Picker'

	6.4.5.22 Reference, visualization style editor
	6.4.5.22.1 Dialog 'Create a New Visualization Style'
	6.4.5.22.2 Dialog 'Open Existing Style as a Copy'
	6.4.5.22.3 Editor 'Visualization Style Editor'

	6.4.6 CODESYS Visualization Support
	6.4.6.1 Using an Image Pool
	6.4.6.1.1 Creating an image pool
	6.4.6.1.2 Implementing access to an image
	6.4.6.1.3 Tab: Build
	6.4.6.1.4 Running the HMI application
	6.4.6.1.5 For experts
	6.4.6.1.6 Configuring a visualization background with an image
	6.4.6.1.7 Labeling an Image Element with Static Text

	6.4.6.2 Using a Text List
	6.4.6.2.1 Output of dynamic text by a variable
	6.4.6.2.2 Managing Languages and Translations
	Adding a language and translating text
	Exporting a text list
	Preparing the Exported File for the Input Assistant
	Importing files with text list entries
	Comparing text lists with a file and exporting differences

	6.4.6.2.3 Using static text in GlobalTextList
	Configuring visualization elements with static text
	Checking GlobalTextList
	Updating IDs in GlobalTextList
	Removing GlobalTextList and creating current IDs again
	Removing IDs from GlobalTextList
	Editing GlobalTextList with a replacement file

	6.4.6.2.4 Creating Text in Text Lists and Displaying Dynamically
	Creating text lists for dynamic text display
	Dynamically Displaying a Text

	6.4.6.2.5 Displaying a text dynamically

	6.4.6.3 Reference
	6.4.6.3.1 Objects
	Object: ImagePool
	Dialog: Select Image

	Object: GlobalTextList
	Object: Text List

	6.4.6.3.2 Menu Commands
	Image Pool
	Command: Insert Image

	Text List
	Command: Add Language
	Command: Create Global Text List
	Command: Export All Unicode .txt Text List Files
	Command: Insert Text
	Command: Import/Export Text Lists
	Dialog: Import/Export

	Command: Remove Language
	Command: Rename Language
	Command: Remove Unused Text List Entries
	Command: Check Visualization Text IDs
	Command: Update Visualization Text Ids
	Command: Remove text list support
	Command: Add text list support

	6.4.6.3.3 Dialogs
	Dialog: Properties – Image Pool
	Dialog: Properties – Text List

	6.5 Libraries and solutions
	6.5.1 Information on libraries
	6.5.2 Reference to CODESYS (V3)
	6.5.3 Library Manager functionality
	6.5.3.1 General
	6.5.3.2 Search for libraries and add libraries
	6.5.3.3 View embedded documentation of all libraries
	6.5.3.4 Access version history
	6.5.3.5 Download missing libraries

	6.5.4 ACS/DCS drives libraries
	6.5.4.1 Introduction
	6.5.4.1.1 Scope of the document
	6.5.4.1.2 Safety instructions and preconditions to use drives library
	6.5.4.1.3 Comparison of V2 and V3 drives library
	6.5.4.1.4 PLCs and drives: communication and control
	General
	Modbus TCP
	Preconditions
	ACS drives
	DCS drives

	Modbus RTU
	Preconditions
	ACS drives
	DCS drives

	PROFINET
	Preconditions
	ACS drives
	DCS drives

	EtherCAT
	Preconditions
	ACS drives
	DCS drives

	CANopen
	Preconditions
	ACS drives
	DCS drives

	CANopen with CAN CiA402 Profile for generic Drives
	Preconditions
	General drives with CAN CiA402 interface

	6.5.4.1.5 Compatibility

	6.5.4.2 Installation
	6.5.4.3 Hardware and software requirement
	6.5.4.4 Description of the library
	6.5.4.4.1 Function blocks
	DrvScaling
	DrvControlACS
	DrvControlDCS
	DrvControlModbusACS
	DrvControlModbusDCS
	DrvModbusRead
	DrvModbusWrite
	DrvModbusTcp
	Introduction
	ABB drives classic profile
	ABB drives enhanced profile
	Diagnosis
	Drive parameter settings

	DrvModbusRtu
	Introduction
	ABB drives classic profile
	ABB drives enhanced profile
	Reconnection pause
	Diagnosis
	Drive parameter settings

	DrvModbusRtuBroadcast
	Introduction
	ABB drives classic profile
	ABB drives enhanced profile
	Diagnosis
	Drive parameter settings

	DrvModbusReadWrite23
	DrvControlModbusEng
	DrvControlCANCiA402
	DrvPNRead
	DrvPnWrite

	6.5.4.4.2 Function: DrvModPara32Bit
	6.5.4.4.3 Structure: DrvDataType
	6.5.4.4.4 Structure: DrvPdPrmDpv1DataType

	6.5.4.5 Limits for the data read and write between AC500 and drives

	6.5.5 Application libraries
	6.5.6 BACnet-BC
	6.5.6.1 Introduction to BACnet
	6.5.6.2 AC500 and BACnet
	6.5.6.3 AC500 V3 as BACnet Building Controller (B-BC)
	6.5.6.3.1 General
	6.5.6.3.2 Supported BACnet networks
	6.5.6.3.3 Supported objects and properties
	6.5.6.3.4 Supported BIBBs and services
	6.5.6.3.5 BACnet configuration in Automation Builder
	General
	Configuration of BACnet server root object
	Adding BACnet server objects
	Adding BACnet client functionality
	Configuration of datalinks
	Time syncronisation

	6.5.6.3.6 Package content
	General
	BACnet libraries
	Application examples

	6.5.7 CAA library guidelines
	6.5.8 Data Logger Library
	6.5.8.1 Overview
	6.5.8.2 Operating modes
	6.5.8.3 Technical details
	6.5.8.4 File names
	6.5.8.5 Preconditions
	6.5.8.6 CSV file formats
	6.5.8.7 Comparison V2 and V3 Data Logger Library package
	6.5.8.8 Examples

	6.5.9 High Availability Modbus TCP
	6.5.9.1 HA-Modbus TCP - System technology
	6.5.9.1.1 The AC500 High Availability system
	6.5.9.1.2 Hardware, requirements and options overview
	Introduction
	CPU choice, system size and performance indications
	Hardware connections
	Hardware Example

	6.5.9.1.3 Functionality
	Failures and use cases
	Use case descriptions

	6.5.9.1.4 How to get and install the AC500 High Availability system package
	6.5.9.1.5 System structure
	Introduction
	Programming
	Task configuration recommendations for HA system
	Field I/O network topologies
	General
	Simple ring topology (smaller systems)
	Standard network topology (large systems)
	Parallel network topology (using PRP)
	HA Modbus system without communication interface modules in the network

	6.5.9.1.6 Getting started
	Quick start list and guidelines
	Workflow
	Configuration without communication interface modules to establish redundancy
	Configuration with communication interface modules and redundancy

	6.5.9.1.7 HA-Modbus TCP Limits
	6.5.9.1.8 Diagnosis
	General
	Diagnosis in HA-Modbus TCP library
	Diagnosis in CI52x library

	6.5.9.1.9 Library overview

	6.5.10 Motion Control
	6.5.10.1 Motion wizard
	6.5.10.1.1 Introduction to the project
	Understanding the “Motion Solution Project ”
	Understanding the “Motion Solution Wizard”
	Understanding the “Motion Specific Device” objects
	Understanding the motion axis objects

	6.5.10.1.2 Installing the latest “Motion Control Wizard” and libraries
	6.5.10.1.3 Introduction to the PLC capabilities
	Selection of the correct AC500 PLC type
	PTO operations
	PTO profiling cycle time limits
	PTO hardware limits
	Selection of different revision CPU’s
	EtherCAT operation limits
	Configuration minimum EtherCAT cycle time in each PLC type

	6.5.10.1.4 Creation a new “Motion Solution Project”
	Creation a “New Project”
	Addition of a PLC
	Addition of the PTO axes
	1 objects
	PTO axis settings

	Addition of an EtherCAT axes
	Differences of the AC500 and AC500-eCo wizard views
	AC500 CPU adding the EtherCAT master via CM579-ETHCAT
	AC500-eCo Pro CPU's adding the EtherCAT master onboard ETH1 port for AC500-eCo CPU’s

	Configuration of the EtherCAT master
	Configuration of the EtherCAT slave and axis
	EtherCAT slave drive object settings
	PDO mappings
	PDO and startup parameters (SDO)
	User defintion of PDO mappings

	EtherCAT axis settings
	Mapping (Axis control type and object mapping)

	Addition of an encoder axis
	Selection of the encoder source
	Using an EtherCAT drive based encoder source
	Using a PLC (OBIO) based encoder source (AC500-eCo only)
	Data source

	Addition of a virtual axis
	Important general PLC settings
	Generation the motion configuration
	Task configuration
	Tasks within the Motion Wizard
	MotionSolution_Task
	MotionSolution_Task in EtherCAT applications
	MotionSolution_Task in PTO only applications
	Function blocks must be called in the Motion Solution Task

	Cyclic tasks and created task “Task”
	Guidance for code distribution within tasks

	Motion solution libraries
	Axis program generated (Hidden by default)
	Axis parameters generated (GVL)
	Generation a program (PRG)

	6.5.10.1.5 Wiring application program

	6.5.10.2 Cams and Tappet tables
	6.5.10.2.1 Definition of a “Cam table”
	Definition of a Cam
	Definition of a Tappet

	6.5.10.2.2 Cam table
	Cam table types
	Differences in the objects
	Differences in using the two “Cam tables” types in application code

	6.5.10.2.3 Cam table object structure
	6.5.10.2.4 Cam tab
	6.5.10.2.5 Cam table tab
	6.5.10.2.6 Tappets tab
	6.5.10.2.7 Tappet table tab
	6.5.10.2.8 Cam additional settings
	Cam ToolBox
	Properties

	6.5.10.2.9 Display generated Code
	6.5.10.2.10 Creating Cams
	6.5.10.2.11 Setting up project
	6.5.10.2.12 Changing the Cam path
	Application program using a generated Cam and Tappet table
	Importing a Cam from 3rd party CODESYS controller
	Exporting the Cam for the the 3rd party PLC

	6.5.10.3 Motion control library
	6.5.10.3.1 Safety instructions
	6.5.10.3.2 Preconditions for the use of the libraries
	6.5.10.3.3 Overview
	Introduction
	PLC-based motion control
	Overview of PLCopen function blocks
	Overview of libraries
	Overview of data types
	Naming of function blocks and data structures

	6.5.10.3.4 PLCopen
	Introduction
	Programming guidelines
	Axis data type Axis_Ref
	The single axis state diagram
	Visualizations
	Error codes
	Error handling
	PLCopen parameter
	Limits
	General restrictions
	Behavior of the function block inputs and outputs
	General rules
	Why is the command input edge sensitive?
	The input ContinuousUpdate

	Unit of length
	Aborting versus buffered modes
	PLCopen examples

	6.5.10.3.5 PLC-based motion control
	PLC-based motion control architecture
	Basic functionalities
	How to connect a drive
	How to enable and disable a drive
	How to use the axis simulation
	How to perform a homing
	How to Use a CAM curve
	How to use an external axis
	How to use an encoder/drive with <> 32-bit position overrun
	How to do position correction “on the fly”
	How to limit the movement

	Programming guidelines
	Visualization
	Kernel function block
	Axis parameters
	General
	Supervision
	Position control loop
	PLC cycle time
	Roll-Over axis
	Scaling of the unit of length
	Scaling of the speed reference output
	Access and modify parameters

	ABB specific data structures
	General
	PositionPositionProfile
	PositionTimeProfile
	Interpolation types for profiles

	PLC-based motion control -– Load control / fluid power extensions
	Appendix

	6.5.10.3.6 Examples

	6.5.11 MQTT client library
	6.5.11.1 Structures and enumerations
	6.5.11.2 Global variables

	6.5.12 PLCopen libraries
	6.5.12.1 Common function block state machine
	6.5.12.1.1 General
	6.5.12.1.2 Edge triggered (AbbETrig)
	6.5.12.1.3 Level controlled (AbbLCon)
	6.5.12.1.4 Level controlled continous (AbbLConC)
	6.5.12.1.5 Error_ID
	6.5.12.1.6 Compatibility with V2 function blocks

	6.5.13 Pumping library V3
	6.5.13.1 Overview of the PS5608 pumping library
	6.5.13.2 Comparison of V2 and V3 pumping library
	6.5.13.3 Compontents of the library
	6.5.13.3.1 Overview
	6.5.13.3.2 Installation
	6.5.13.3.3 Compatibility
	6.5.13.3.4 Required sensors

	6.5.13.4 Control philosophy of pumping library
	6.5.13.4.1 Stage 1: Comparator
	6.5.13.4.2 Stage 2: Sequence generator
	6.5.13.4.3 Stage 3: Distributor
	6.5.13.4.4 Stage 4: DRIVE or DOL system

	6.5.13.5 Features in pumping library
	6.5.13.5.1 Types of pumping stations
	Multi pumping station
	Traditional pumping station
	Direct-on-line (DOL) pumping station

	6.5.13.5.2 Process control vs. pump combinations
	6.5.13.5.3 Process control types
	Pressure control function blocks
	Control philosophy of pressure control mode

	6.5.13.5.4 Flow control process flow diagram
	6.5.13.5.5 Using flow control
	6.5.13.5.6 Pump combinations for flow control
	6.5.13.5.7 Control philosophy of flow control mode
	6.5.13.5.8 Flow control with distributor
	6.5.13.5.9 Level control function blocks
	Level control process flow diagram
	Using level control
	Pump combinations for level control
	Control philosophy of level control mode

	6.5.13.6 Auxiliary functions
	6.5.13.6.1 Antijam overview
	6.5.13.6.2 Pump energy calculation functionality
	6.5.13.6.3 Pump flow calculation functionality using HQ and PQ curves
	6.5.13.6.4 Pump maintenance functionality
	6.5.13.6.5 Pump protection functionality using analog/binary inputs
	6.5.13.6.6 Pump sleep functionality
	6.5.13.6.7 Pump soft fill functionality

	6.5.13.7 Simulation functions
	6.5.13.7.1 Pump DOL simulation block
	6.5.13.7.2 Pump drive simulation block
	6.5.13.7.3 Pump tank simulation block

	6.5.14 Reference, function blocks

	6.6 Engineering interfaces and tools
	6.6.1 Export and import interfaces
	6.6.1.1 Exporting and importing ECAD data (PBF)
	6.6.1.1.1 Introduction
	6.6.1.1.2 Requirements on EPLAN electric P8
	6.6.1.1.3 Importing PLC data from the ECAD tool
	6.6.1.1.4 Importing third party devices
	6.6.1.1.5 Exporting PLC data to ECAD tool
	6.6.1.1.6 Exporting third party devices
	6.6.1.1.7 Importing ECAD PLC data to existing AB project
	6.6.1.1.8 Arrange or map devices imported to the device pool
	6.6.1.1.9 Limitations

	6.6.1.2 Exporting and importing I/O mapping (CSV)
	6.6.1.2.1 Exporting IO mapping data to CSV
	6.6.1.2.2 Importing I/O mapping data from CSV

	6.6.1.3 Exporting and importing device list (CSV)
	6.6.1.3.1 General
	6.6.1.3.2 Exporting device list to CSV
	6.6.1.3.3 Creating CSV device list
	6.6.1.3.4 Importing a device list from CSV
	6.6.1.3.5 Renaming devices

	6.6.2 CODESYS Security Agent
	6.6.2.1 Integration in CODESYS Development System
	6.6.2.2 Encrypted Communication with Devices via Controller Certificates
	6.6.2.3 Encryption of the Boot Application, Download, and Online Change
	6.6.2.4 Reference, User Interface
	6.6.2.4.1 View 'Security Screen' - 'Devices'
	6.6.2.4.2 Dialog 'Encryption Wizard'

	6.6.3 CODESYS Static Analysis
	6.6.3.1 Introduction
	6.6.3.2 Configuring and Running Static Analysis
	6.6.3.3 Reference, User Interface
	6.6.3.3.1 Commands
	Command 'Settings'
	Command 'Run Static Analysis'
	Command 'View Standard-Metrics'
	Command 'Extract function'
	Command 'Detect clones'

	6.6.3.3.2 Dialogs
	General
	Dialog 'Static Analysis Settings' - 'Settings'
	Dialog 'Static Analysis Settings' - 'Rules'
	Dialog 'Static Analysis Settings' - 'Naming Conventions'
	Dialog 'Static Analysis Settings' - 'Metrics'
	Dialog 'Static Analysis Settings' - 'Forbidden Symbols'

	6.6.3.4 Reference, Programming
	6.6.3.4.1 Pragmas and Attributes
	General
	Pragma 'analysis'
	Attribute 'analysis'
	Attribute 'naming'
	Attribute 'nameprefix'
	Attribute 'analysis:report-multiple-instance-calls'

	6.6.3.4.2 Rules
	SA0001: Unreachable code
	SA0002: Empty objects
	SA0003: Empty statements
	SA0004: Multiple write access on output
	SA0006: Write access from several tasks
	SA0007: Address operator on constants
	SA0008: Check subrange types
	SA0009: Unused return values
	SA0010: Arrays with only one component
	SA0011: Useless declarations
	SA0012: Variable which could be declared as constants
	SA0013: Declarations with the same variable name
	SA0014: Assignment of instances
	SA0015: Access to global data via FB_Init
	SA0016: Gaps in structures
	SA0017: Non-regular assignments
	SA0018: Unusual bit access
	SA0020: Possibly assignment of truncated value to REAL variable
	SA0021: Transporting the address of a temporary variable
	SA0022: (Possibly) unassigned return value
	SA0023: Complex return values
	SA0024: Untyped literals / constants
	SA0025: Unqualified enumeration constants
	SA0026: Possible truncated strings
	SA0027: Multiple uses of identifiers
	SA0028: Overlapping memory areas
	SA0029: Notation in code different to declaration
	Unused Objects
	SA0031: Unused signatures
	SA0032: Unused enumeration constants
	SA0033: Unused variables
	SA0035: Unused input variables
	SA0036: Unused output variables

	SA0034: Enumerations with incorrect assignment
	SA0037: Write access to input variable
	SA0038: Read access to output variable
	SA0040: Possible division by zero
	SA0041: Detect possible loop invariant code
	SA0042: Usage of different access paths
	SA0043: Use of a global variable in only one POU
	SA0044: Declarations with reference to interface
	Conversions
	SA0019: Implicit pointer conversions
	SA0130: Implicit expanding conversions
	SA0131: Implicit narrowing conversions
	SA0132: Implicit signed/unsigned conversions
	SA0133: Explicit narrowing conversions
	SA0134: Explicit signed/unsigned conversions

	Use of Direct Addresses
	SA0005: Invalid addresses and data types
	SA0047: Accesses to direct address
	SA0048: AT-declarations on direct addresses

	Rules for Operators
	SA0051: Comparison operations on BOOL variables
	SA0052: Unusual shift operation
	SA0053: Too big bitwise shift
	SA0054: Comparisons of REAL/LREAL for equality / inequality
	SA0055: Unnecessary comparisons of unsigned operands
	SA0056: Constant out of valid range
	SA0057: Possible loss of decimal places
	SA0058: Operations on enumeration variables
	SA0059: Comparison operations always returning TRUE or FALSE
	SA0060: Zero used as invalid operand
	SA0061: Unusual operation on pointer
	SA0062: Uses of TRUE or FALSE in expressions
	SA0063: Possibly not 16-bit-compatible operations
	SA0064: Addition of pointer
	SA0065: Incorrect pointer addition to base size
	SA0066: Uses of temporary results

	Rules for Statements
	SA0072: Invalid uses of counter variable
	SA0073: Uses of inadequate counter variable
	SA0080: Loop index variable for array index exeeds array range
	SA0081: Upper border is not a constant
	SA0075: Missing ELSE
	SA0076: Missing enumeration constant
	SA0077: Type mismatches with CASE expression
	SA0078: Missing CASE branches
	SA0090: Return statement before end of function

	SA0095: Assignments in conditions
	SA0100: Variables greater than <n> bytes...
	SA0101: Names with invalid length
	SA0102: Access to program/fb variables from the outside
	SA0103: Concurrent access on not atomic data
	SA0105: Multiple instance calls
	SA0106: Virtual method calls in FB_INIT
	SA0107: Missing formal parameters
	Checking Strict IEC Rules
	SA0111: Pointer variables
	SA0112: Reference variables
	SA0113: Variables with data type WSTRING
	SA0114: Variables with data type LTIME
	SA0115: Variables with data type UNION
	SA0117: Variables with data type BIT
	SA0119:Object-oriented features
	SA0120: Program calls
	SA0121: Missing VAR_EXTERNAL declarations
	SA0122: Array index defined as expression
	SA0123: Usages of INI, ADR or BITADR
	SA0147: Unusual shift operation - strict
	SA0148: Unusual bit access - strict
	SA0118: Initialisations not using constants
	SA0124: Pointer dereferences in declarations
	SA0125: References in initializations

	SA0140: Statements commented out
	Possible Use of Uninitialized Variables
	SA0039: Possible null-pointer deferences
	SA0046: Possible use of not initialised interface
	SA0145: Possible use of not initialised reference

	SA0150: Violations of lower or upper limits or the metrics
	SA0160: Recursive calls
	SA0161: Unpacked structure in packed structure
	SA0162: Missing comments
	SA0163: Nested comments
	SA0164: Multiline comments
	SA0165: Tasks calling other POUs than programs
	SA0166: Max. number of input/output/in-out variables...
	SA0167: Temporary function block instances
	SA0168: Unnecessary Assignments
	SA0169: Ignored outputs

	6.6.4 Multi download tool
	6.6.5 Tool Calling Interface (TCI) implementation
	6.6.6 Drive composer pro integration
	6.6.7 Professional Version Control
	6.6.7.1 SVN integration in CODESYS
	6.6.7.2 Getting Started
	6.6.7.3 Version control
	6.6.7.4 Using an SVN Repository
	6.6.7.5 Using Working Copies
	6.6.7.6 Reference, User Interface
	6.6.7.6.1 Overlay Icons
	6.6.7.6.2 Commands
	Availability of commands
	Command 'SVN Repository Browser'
	Command 'Edit SVN working copy'
	Command 'Import project to SVN'
	Command 'Checkout'
	Command 'Commit', Command 'Commit Project'
	Command 'Compare'
	Command 'Compare with HEAD revision'
	Command 'Compare with revision'
	Command 'Compare to remote project...'
	Command 'Include externals to project', Command 'Include externals'
	Command 'Ignore on commit'
	Command 'SVN Info'
	Command 'Show properties'
	Command 'Get lock'
	Command 'Steal locks'
	Command 'Release lock'
	Command 'Release locks recursively'
	Command 'Show log', Command 'Show project log'
	Command 'Revert', Command 'Revert project'
	Command 'Revert to revision', Command 'Revert project to revision'
	Command 'Update', Command 'Update project'
	Command 'Update to revision'
	Command 'Update only this'
	Command 'Disconnect project from SVN'
	Command 'Switch'
	Command 'Un-Ignore on commit'
	Command 'SVN Cleanup'
	Command 'Clear authentication data'
	Command 'Merge changes'
	Command 'Connect to existing project'
	Command 'Resolve conflict'
	Command 'Work in offline mode'
	Command 'Copy (Branch/Tag)'
	Command 'Pending Changes'

	6.6.7.6.3 Dialogs
	Dialog 'Options' - 'SVN Settings'
	Dialog 'Project Settings' - 'SVN Settings'
	Dialog 'Select revision'
	Dialog 'Subversion Authentication'
	Dialog 'Automatic locking failed'

	6.6.7.6.4 Objects
	Object 'SVN_VERSION_INFO'

	6.6.8 Subversion
	6.6.8.1 Project Version Control with Subversion
	6.6.8.1.1 Introduction
	6.6.8.1.2 Preconditions
	6.6.8.1.3 Working with Project Version Control
	6.6.8.1.4 Recommendations on Working with Project Version Control
	6.6.8.1.5 Known Issues and Troubleshooting

	6.6.8.2 SVN Support Examples
	6.6.8.2.1 Importing Automation Builder Project to SVN Repository
	6.6.8.2.2 Logging in User2
	6.6.8.2.3 Examples

	6.6.9 Mail service with SMTP/SMTPS
	6.6.10 SNMP
	6.6.11 Scripting with Python
	6.6.11.1 Python
	6.6.11.1.1 Python script support
	6.6.11.1.2 Working with script objects
	6.6.11.1.3 Execute Script
	Calling Scripts from Menu Commands
	Starting Scripts from the Command Line
	Calling Scripts from Toolbar Icons
	Configuration file
	Creating script calls for a toolbar button

	6.6.11.1.4 Python script editor
	6.6.11.1.5 Configure port number for python editor server
	6.6.11.1.6 Creating a Python Script
	Getting Started with Python for CODESYS
	Tips for Python Programmers about .NET API Documentation
	Basic Syntax of Python (with Examples)
	Variables and data types
	Numeric types and floating points
	Strings
	Lists and tuples (data sets)
	Dictionary

	Python Control Structures (with Examples)
	Loops
	IF / ELSE
	Functions, classes, and methods
	Modules and standard libraries

	Transitioning from Python 2 to Python 3
	Comparison of IronPython and cPython

	6.6.11.1.7 Using Scripts to Access CODESYS Functionalities
	Example: Printing the device tree of the current project
	Example: Reading of variables
	Example: Creating and editing of POUs
	Example: User interface / Interaction with the user
	Example: Manipulating the “Project Information” object
	Example: Calling external commands and importing PLCOpenXML files
	Advanced example: Calling a library from SVN and installing it in CODESYS

	6.7 Human machine interface
	6.7.1 Control panels
	6.7.2 Panel Builder interface
	6.7.2.1 General
	6.7.2.2 Adding desired AC500 PLC to the project
	6.7.2.3 Creating a Panel Builder project
	6.7.2.4 Configuring Panel Builder

	6.7.3 SCADA Integration
	6.7.3.1 General
	6.7.3.2 Creating Workspace and Project
	6.7.3.3 Loading existing Workspace and Project
	6.7.3.4 Checking the Gateway Settings in a Zenon Project
	6.7.3.5 Creating a symbol configuration
	6.7.3.6 Updating Standard Data Types
	6.7.3.7 Creating Data Types
	6.7.3.8 Importing Data Types in zenon Editor

	6.8 System technology
	6.8.1 General
	6.8.2 System technology of CPU and overall system
	6.8.2.1 Handling of remanent variables for AC500 V3 products
	6.8.2.1.1 Introduction
	6.8.2.1.2 Memory sizes
	6.8.2.1.3 Adding a global list of persistent/retain variables
	6.8.2.1.4 Declaring a new variable in global list
	6.8.2.1.5 Declaring a new persistent/retain variable in local POU
	6.8.2.1.6 Initialization of %M variables
	6.8.2.1.7 Behavior of retain variables
	6.8.2.1.8 PLC shell command for import and export of retain/persistent variables
	6.8.2.1.9 Import and export of retain/persistent variables by library functions
	General
	SRAM_IMPORT
	SRAM_EXPORT
	SRAM_CLEARED

	6.8.2.2 System processing
	6.8.2.2.1 System start-up / Program processing
	Definitions: PLC system start-up
	Start of the user program
	User flash memory for AC500 V3 products
	Health monitoring
	PID controller
	Task configuration
	General
	Watchdog handling in IEC tasks

	PLC utilization
	General
	Managing priorities by selecting the appropriate communication schema
	The „Default“ priority schema in “SystemFW” 3.4.1
	The “Communication modules” priority schema in “SystemFW” 3.4.1
	The “Onboard Ethernet” priority schema in “SystemFW” 3.4.1
	The „Default“ priority schema in “SystemFW” 3.5.0
	The “Communication modules” priority schema in “SystemFW” 3.5.0
	The “Onboard Ethernet” priority schema in “SystemFW” 3.5.0

	Communication schema onboard Ethernet/EtherCAT
	General
	Communication schema “Default”
	Communication schema “Communication modules”
	Communication schema “Onboard Ethernet”
	Communication schema “Onboard EtherCAT” since “SystemFW” 3.4.1

	6.8.2.2.2 Setting standard configuration

	6.8.2.3 Real-time clock and battery
	6.8.2.3.1 Real-time clock
	6.8.2.3.2 AC500 battery
	6.8.2.3.3 AC500-eCo V3 data buffering

	6.8.2.4 AC500-eCo V3 processor module, LEDs, RUN/STOP switch on front panel
	6.8.2.4.1 Features
	6.8.2.4.2 State LEDs and operating elements

	6.8.2.5 Display, LEDs and function keys on the front panel
	6.8.2.5.1 Overview
	6.8.2.5.2 Text outputs of the display
	6.8.2.5.3 Startup procedure of the PLC
	Startup procedure of a new PLC from factory
	Startup procedure of a PLC with system firmware

	6.8.2.5.4 Description of LEDs
	6.8.2.5.5 Description of the function keys
	Overview
	RUN - start and stop PLC
	VAL - reading out state values
	Values with SystemFW 3.1.x and DisplayFW 3.0
	Values with SystemFW >=V3.2.0 and DisplayFW >=V4.1

	DIAG - reading out diagnosis messages
	CFG - configuration
	Configuration with SystemFW V3.1.x and DisplayFW V3.0
	Configuration with SystemFW >=V3.5.0 and DisplayFW >=V4.1

	6.8.2.5.6 Enable flashing of display
	6.8.2.5.7 Function blocks

	6.8.2.6 Onboard technologies
	6.8.2.6.1 Ethernet
	Ethernet protocols and ports for AC500-eCo V3 processor modules
	General
	Default open Ethernet ports of PM50xx-x-xETH
	Overview of protocols, sockets and ports
	Limitation of connections per protocol

	Ethernet protocols and ports for AC500 V3 products
	General
	Default open Ethernet ports of PM56xx-2ETH
	Overview of protocols, sockets and ports
	Limitation of connections per protocol
	Default Ethernet configuration
	Online access

	SNTP client and server
	Using network variables in AC500 V3

	6.8.2.6.2 Onboard CAN configuration

	6.8.2.7 Hot swap
	6.8.2.7.1 Preconditions for using hot swap
	6.8.2.7.2 Compatibility of hot swap
	6.8.2.7.3 Hot swap behavior

	6.8.2.8 KNX IP integration
	6.8.2.8.1 Introduction
	6.8.2.8.2 Engineering workflow
	6.8.2.8.3 Prerequisites
	6.8.2.8.4 General settings and system behavior
	6.8.2.8.5 Start-up behavior
	6.8.2.8.6 Engineering of KNX in Automation Builder
	Creation of KNX group objects
	Create an application program
	Export XML file

	6.8.2.8.7 Integration of the PLC in KNX
	Insert controller
	Import configuration
	Connect controller with KNX devices
	Parameters of the device
	Download ETS configuration to controller

	6.8.2.8.8 Make changes
	6.8.2.8.9 Data conversion
	6.8.2.8.10 Further information

	6.8.2.9 Communication with Modbus RTU
	6.8.2.9.1 Protocol description
	6.8.2.9.2 Technical data
	6.8.2.9.3 Modbus addresses for AC500-eCo V3 processor modules PM50x2
	6.8.2.9.4 Modbus addresses for AC500 V3 processor modules PM56xx
	Modbus address table
	Peculiarities for accessing Modbus addresses
	Areas protect from read/write access by Modbus client

	6.8.2.9.5 Local data of the Modbus client
	6.8.2.9.6 Modbus telegrams
	General
	FCT 1 or 2: Read n bits
	FCT 3 or 4: Read n words
	FCT 3 or 4: Read n double words
	FCT 5: Write 1 bit
	FCT 6: Write 1 word
	FCT 15: Write n bits
	FCT 16: Write n words
	FCT 16: Write n double words
	FCT 22: Mask write register
	FCT 23: Read/Write n words
	Exception response by server

	6.8.2.9.7 Processing bits
	General
	Modbus client
	Modbus server
	Using the bit offset
	Defining symbolic names for the bit offsets
	Defining a data type
	Defining a complex data type
	Pack/unpack BOOL variables

	6.8.2.9.8 Function block ModRtuMast

	6.8.2.10 Communication with Modbus TCP/IP
	6.8.2.10.1 Protocol description
	6.8.2.10.2 Technical data
	6.8.2.10.3 Modbus addresses for AC500-eCo V3 processor modules PM50xx
	6.8.2.10.4 Modbus addresses for AC500 V3 processor modules PM56xx
	Modbus address table
	Peculiarities for accessing Modbus addresses
	Areas protect from read/write access by Modbus client

	6.8.2.10.5 Local data of the Modbus client
	6.8.2.10.6 Modbus telegrams
	Exception response by server

	6.8.2.10.7 Processing bits
	General
	Modbus client
	Modbus server
	Using the bit offset
	Defining symbolic names for the bit offsets
	Defining a data type
	Defining a complex data type
	Pack/unpack BOOL variables

	6.8.2.10.8 Function block ModTcpMast

	6.8.2.11 Communication with PROFINET redundancy
	6.8.2.12 Fast counters in AC500 devices
	6.8.2.13 Fast counter in AC500-eCo V3
	6.8.2.14 Onboard I/O on AC500-eCo V3 processor modules
	6.8.2.14.1 Intended purpose
	6.8.2.14.2 Functionality

	6.8.2.15 Simple motion
	6.8.2.15.1 Introduction
	6.8.2.15.2 Hardware components for motion control
	Basic CPU – PM5012-R-ETH and PM5012-T-ETH
	Standard and Pro CPU - PM5032-x-ETH/PM5052-x-ETH/PM5072-T-2ETH(W)/PM5082-T-2ETH

	6.8.2.15.3 System technology
	General
	Use the onboard I/Os as encoder with A and B signals
	Parameter configuration
	Function block

	Use the onboard I/Os as forward counter
	Parameter configuration
	Function block

	Use the onboard I/Os as interrupt input with dedicated interrupt task
	Parameter configuration
	Function block

	Use the onboard I/Os as output limit switch
	Parameter configuration
	Function block

	Use the onboard I/Os as pulse-train output (PTO)
	100 kHz frequency (max. 2 pulse-train outputs using pulse-train output hardware channels)
	Parameter configuration
	Function block

	200 kHz frequency (max. 2 pulse-train output using pulse-train output hardware channels) and simple motion “OBIOMotionPTO” function block
	Parameter configuration
	Function block

	100 kHz...200 kHz frequency (max. 4 pulse-train output using puls-width modulation (PWM) hardware channels) and simple motion “OBIOMotionPWM” function block
	Parameter configuration
	Function block

	Use the onboard I/Os as output pulse-width modulation (PWM)
	Parameter configuration
	Function block

	6.8.2.15.4 Function block description
	6.8.2.15.5 AC500-eCo V3 option board slots for processor modules PM50xx
	General
	Option board for COMx serial communication
	Option board for digital I/O extension
	Option board for analog I/O extension
	Option board for specific function

	6.8.2.16 Access to digital I/Os transferred as bit strings WORD/DWORD
	6.8.2.16.1 General
	6.8.2.16.2 Bit strings transferred to PLC in little-endian byte order (Intel)
	Access to bit strings transferred to PLC in little-endian byte order
	Representation of bitfields in I/O configuration transferred in little-endian byte order

	6.8.2.16.3 Bit strings transferred to PLC in big-endian byte order (Motorola)
	Access to bit strings transferred to PLC in big-endian byte order
	Representation of bitfields in I/O configuration transferred in big-endian byte order

	6.8.3 System technology of the AC500 communication modules
	6.8.3.1 CANopen communication modules
	6.8.3.1.1 Triggering of event tasks with CAN-IDs

	6.8.3.2 CM582-DP/CM592-DP PROFIBUS DP communication modules
	6.8.3.3 CM5640-2ETH Ethernet communication module

	6.8.4 System technology of the communication interface modules
	6.8.4.1 Modbus communication interface module
	6.8.4.1.1 Overview
	6.8.4.1.2 Modbus TCP registers
	Register layout for CI52x-MODTCP
	Information data section (acyclic data)
	General
	Module specific information registers
	Common device information registers

	I/O / Process data and diagnosis section (cyclic data)
	General
	Module state
	Diagnosis data
	I/O data

	Parameter data (acyclic data)
	General
	Short description of the CI521-MODTCP parameters
	Short description of the CI522-MODTCP parameters
	Parameters of connected expansion modules

	Special functionality

	6.8.4.1.3 Behavior
	IP address assignment
	General
	Using the address switches
	Using the IP configuration tool

	Parameterization
	Cyclic I/O data exchange
	Diagnosis behavior
	Single parameterization

	6.8.4.1.4 Commissioning example
	6.8.4.1.5 Hot swap
	Introduction
	Preconditions for using hot swap
	Compatibility of hot swap
	Hot swap behavior
	System behavior
	Mandatory rules for hot swapping

	6.8.4.2 PROFINET communication interface module
	6.8.4.2.1 Hot swap
	Introduction
	Preconditions for Using Hot Swap
	Compatibility of hot swap
	Hot swap behavior
	System behavior
	Mandatory rules for hot swapping

	6.8.4.3 PROFIBUS communication interface module
	6.8.4.3.1 Hot swap
	Introduction
	Preconditions for using hot swap
	CI54x-DP, index >= F1

	6.9 Diagnosis and debugging
	6.9.1 The diagnosis system
	6.9.1.1 General
	6.9.1.2 Access to diagnosis data
	6.9.1.3 Diagnosis in CPU display
	6.9.1.3.1 Device state
	6.9.1.3.2 Diagnosis descriptions
	6.9.1.3.3 DIAG - reading out diagnosis messages

	6.9.1.4 Diagnosis in Automation Builder
	6.9.1.4.1 Device state
	6.9.1.4.2 Diagnosis descriptions
	6.9.1.4.3 System diagnosis
	6.9.1.4.4 Device diagnosis
	6.9.1.4.5 Diagnosis history

	6.9.1.5 Diagnosis in IEC application
	6.9.1.5.1 General
	6.9.1.5.2 Data types in library AC500_DiagTypes
	General
	Structure DIAG_VAL_TYPE
	Structure DIAG_TXT_TYPE
	Enumeration ERROR_ID
	Enumeration teClass
	Enumeration teEvent
	Enumeration teHwId

	6.9.1.5.3 System diagnosis
	Introduction
	Device state
	General
	Method NumTotal
	Method NumClass

	Diagnosis descriptions
	General
	Method Ack / DiagAck: acknowledgement
	Methods Get... / DiagGet...: get and sort diagnosis messages
	Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
	Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
	Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
	Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text
	Function DiagValToTxt

	6.9.1.5.4 Device diagnosis
	Activate device diagnosis
	Device state
	Diagnosis descriptions
	General
	Method Ack / DiagAck: acknowledgement
	Methods Get... / DiagGet...: get and sort diagnosis messages
	Method Get-xxx-Val / DiagGet-xxx-Val: numeric values
	Method Get-xxx-ValExt / DiagGet-xxx-ValExt: numeric values and extended numeric values
	Method Get-xxx-ValAndTxt / DiagGet-xxx-ValAndTxt: numeric values and text
	Method Get-xxx-ValAndTxtExt / DiagGet-xxx-ValAndTxtExt: numeric values, extended numeric values and text
	Function DiagValToTxt

	6.9.1.6 Structure of error numbers
	6.9.1.6.1 Error severity

	6.9.1.7 Diagnosis history file

	6.9.2 Online diagnosis in Automation Builder
	6.9.2.1 Short description and overview
	6.9.2.2 Entering/leaving the online mode
	6.9.2.3 Project tree in online mode
	6.9.2.4 CPU diagnosis views
	6.9.2.4.1 Version information
	6.9.2.4.2 Statistics
	6.9.2.4.3 Log
	6.9.2.4.4 PLC shell commands
	6.9.2.4.5 Status
	6.9.2.4.6 Device diagnosis

	6.9.2.5 Live values in views with I/O components
	6.9.2.6 Communication module and fieldbus diagnosis
	6.9.2.6.1 Fieldbus commissioning
	General
	Master/controller modules
	Slave/device communication modules
	PROFINET scan and comparison view

	6.9.2.6.2 CI52x Modbus diagnosis
	6.9.2.6.3 EtherCAT diagnosis

	6.9.3 Diagnosis messages
	6.9.3.1 Read out the diagnosis messages via display
	6.9.3.2 Error severity E2: Severe errors
	6.9.3.3 Error severity E3: Minor errors
	6.9.3.4 Error severity E4: Warnings
	6.9.3.5 Error severity E11: Parameter errors
	6.9.3.6 Communication modules diagnosis
	6.9.3.6.1 Diagnosis display
	6.9.3.6.2 CM579-ETHCAT
	6.9.3.6.3 CM589-PNIO(-4) errors
	6.9.3.6.4 CM598-CN CAN communication module diagnosis
	6.9.3.6.5 CM582-DP PROFIBUS DP slave diagnosis
	6.9.3.6.6 AC500-S: errors from safety CPU and safety I/O modules
	6.9.3.6.7 CM579-PNIO – PROFINET I/O controller diagnosis
	6.9.3.6.8 Advanced: Manual interpretation of CM579-PNIO diagnosis
	General
	Example

	7 Glossary
	8 Index

