

—
APPLICATION NOTE

AC500 V3 OOP KEYWORDS
DESCRIPTIONS AND EXAMPLES

2 3ADR010569, 1, en_US

Contents

1 Introduction .. 3
1.1 Scope of the document .. 3
1.2 Compatibility .. 3
1.3 Overview .. 3

2 Objects that can be added ... 4
2.1 Interfaces .. 4
2.2 Function Blocks ... 4
2.3 Action .. 4
2.4 Method ...5
2.5 Property ...5
2.6 Transition...5

3 Keywords .. 6
3.1 Inheritance ... 6

3.1.1 Extends .. 6
3.1.2 Implements .. 7
3.1.3 Final .. 8
3.1.4 Abstract ... 9
3.1.5 This & Super .. 9

3.2 Access Specifier ... 11
3.2.1 Public... 11
3.2.2 Protected ... 11
3.2.3 Internal.. 11
3.2.4 Private ... 11
3.2.5 Overview... 12

3.3 Reference instead Pointer .. 13
3.4 Operators .. 15

3.4.1 __ISVALIDREF .. 15
3.4.2 __QUERYINTERFACE .. 15
3.4.3 __TRY, __CATCH, __FINALLY and __ENDTRY ... 16
3.4.4 __VARINFO ... 19

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 3

1 Introduction

1.1 Scope of the document

This document explains the new keywords in CoDeSys V3 that can be used for Object Ori-

ented Programming (OOP), improving programming style, debugging, … Although there are

separate capters for each keyword, it is recommended that you also read the previous as they

might explain basic principles which are assumed later.

1.2 Compatibility

The application note explains the functionalities and Keywords that can be used with an

AC500 V3. Some features are linked to several Firmware versions. More information can be

found in the online help.

1.3 Overview

The main topic of this document is the Object Oriented Programming. This document is not

describing a real use case but more the possibilities which can be archived with OOP. De-

tailed descriptions can be found in the Automation Builder Online help.

As an addition to the Automation Builder online help three whitepapers from Plan Automa-

tion-Technology are used.1

• GOTO OOP

• Benefiting from OOP in IEC61131-3

• OOP in IEC61131-3 for experts

This document can give an overview how OOP can be realized in an AC500. Furthermore, it

explains some basics about OOP. In addition, other Keywords are described that can be used

to improve the programming style and the robustness.

1 Accessed on 2020-05-19

https://industry.plantautomation-technology.com/whitepapers/1485926434-goto-oop.pdf
https://industry.plantautomation-technology.com/whitepapers/1485926312-benefiting-from-oop-in-iec-61131-3.pdf
https://industry.plantautomation-technology.com/whitepapers/1485925902-oop-in-iec-061131-3-for-experts.pdf

4 3ADR010569, 1, en_US

2 Objects that can be added
This chapter focuses on the objects that can be added to an existing application, interface or

function block. Only a few objects are described in this note. In the Automation Builder online

help all objects can be found. This chapter is just an introduction and does not contain any

information about OOP or other keywords.

2.1 Interfaces

An interface can be added to an application.

An interface can itself have method and property prototypes. This means an interface con-

tains only declarations but no implementation. This allows different function blocks to have

the identical interface. This allows to use different function blocks in the same way. For more

information please refer to chapter 3.1.2.

2.2 Function Blocks

When adding an POU to the application Function Block can be selected.

The Function Block is the main Object for OOP and can be treated as class which can have

several instances. The new possibilities in V3 which extend the functionality in V2 are de-

scribed in chapter 3.1.

2.3 Action

An action can be added to any POU. The action is additional program code which doesn’t

have any own variables. The action is using the resources from its base implementation.

The Action can be programmed in another language as the Base fb. In addition the action can

be also called from other POUs by calling <fb_instance>.<action>;

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 5

2.4 Method

A Method is an extension for OOP for data encapsulation similar to Actions. The main differ-

ence is that Methods have own Input Variables, Local Variables and a Return. Furthermore, a

Method can also use the variables which are used in the base fb similar to the Action.

Similar to a function a method can return a value at the end of the call. It is not possible to

wait for a done flag or have an internal step chain inside a method. All local variables will be

initialized with the next program call. In contrast to functions Methods are linked to a func-

tion block or program.

Methods can also be called from other POU without calling the Base function block: <fb_in-

stance>.<method> or <POU>.<method>;

2.5 Property

A Property is an extension for OOP. It can be added to a POU or a global variable list. The be-

havior of a Property is similar to a variable. A Property can be read and written. In case the

property is read the get function is called. Here the definition of reading a variable can be re-

alized. By writing the set function is called.

The read and write via a Property has two advantages. The direct reading/writing of fb varia-

bles can be controlled. A set method can prohibit a write to the variables. In addition, a scal-

ing can be realized. Furthermore, two intern variables of the fb can be shown as one to the

instantiating POU. For example, a tank control function block has the property Tank_Filling-

Level. By reading the property the variable currentFillLevel is returned. By writing Tank_Filling-

Level the variable desiredFillLevel is changed.

2.6 Transition

Transitions are usually used for SFC programming. A transition is a condition which can be

True or False. In SFC the Transition is needed if multiple instructions are used. The transitions

are not highlighted in this document.

6 3ADR010569, 1, en_US

3 Keywords
This chapter gives an overview about new Keywords which can be user to program an AC500

V3.

3.1 Inheritance

Inheritance is the key feature of object oriented programming (OOP).

3.1.1 Extends

One Function Block can extend another one. Details to function blocks can be found in chap-

ter 2.2.

As shown above the POU_B extends the POU_A. Below a screenshot from the same imple-

mentation in Automation Builder is visible. By adding the POU_B the extension of POU_A can

be selected. On the left side the two function blocks with the method FOO or BAR are visible.

In the middle the implementation of POU_B is shown where the Extend of POU_A can be seen

in the first line. The local variable B is declared below. On the right side POU_B is instantiated

in PLC_PRG as instB. As visible this instance has not only the variable B and the Method BAR

as members but also the method BAR and the Variable A from POU_A. No reimplementation

in the extending function block is necessary.

As POU_B is extending POU_A it inherits all Attributes, Properties and Methods of POU_A.

Everything which is described here for the inheritance between two function blocks is the

same for interfaces. One interface can also extend another one and inherit the methods and

properties.

In OOP this is called parent and child class. The child will inherit all properties and methods of

his parent. A parent which has no parent itself is called root. A child which doesn’t have any

children itself is called leaf. Each Parent can have several children. But a child has only one par-

ent class. The described tree is shown in the picture below. In blue the root and the leaf are

highlighted. In red a not allowed class is shown. Because two parents are not allowed.

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 7

3.1.2 Implements

Similar to the function block which can extend another function block an Interface can be im-

plemented by a function block. The function block which implements an interface inherits all

methods and properties from the interface. As the interface is only a prototype the imple-

mentation has to be done in the function block. Detailed information about Interfaces can be

found in chapter 2.1.

The advantage of interfaces is, that all function blocks which implement one interface behave

the same way. As visible in the picture below the interface Shape can be implemented by dif-

ferent classes. As shape has the method area. All classes that implement Shape have also to

implement the method area. Even if the implementation of this method is different in Rectan-

gle, Triangle and Circle a POU which instantiates these function blocks can call the Method

area in the same way. Even an exchange of the function block would be possible as the inter-

face is still the same.

In contrast to the extending of function blocks one function block can implement multiple in-

terfaces. For example, the function block Button can implement the interface Clickable and

Shape.

8 3ADR010569, 1, en_US

Also a combination of Implementing and Extending is possible. Similar pictures shown above

a Button could also implement Clickable and extend Rectangle. Then the method area is pre-

defined in Rectangle.

When implementing an interface in Automation Builder the prototype Methods and Proper-

ties are added automatically to the function block. As visible in the picture below in the mid-

dle Rectangle Implements ITF_Shape. On the left the method area as well as the Color Prop-

erty is visible below Rectangle. By compiling some warnings are thrown. On the right the

Method Rectangle.area() is visible. In the first row the warning is thrown to remind the pro-

grammer to add an implementation and delete this warning afterwards.

3.1.3 Final

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 9

When adding a function block Final can be checked in addition to the extends and imple-

ments. This means that the function block is a leave and cannot be extended by another func-

tion block. When trying to extend a function block with the attribute Final the compiler

throws an error.

3.1.4 Abstract

Similar to Final also Abstract can be checked when adding a function block. An abstract func-

tion block is a prototype which cannot be instantiated directly. When trying to instantiate a

function block with the attribute Abstract the compiler throws an error.

Similar to an interface an abstract class cannot be instantiated directly. Another function

block is needed. Following table shows the differences between them.2

Interface Abstract class

A fb can implement multiple interfaces A fb can extend only one Abstract class

Can have abstract Methods and Properties Can have abstract or concrete Methods and

Properties

By changing the interface all implementing

fbs have to change the implementation of

this method / property

By changing the abstract class all extending

fbs. Inherit this changes by default.

Interfaces does not have access modifiers. Abstract classes can have access modifiers

Interfaces cannot have local variables Abstract classes can have local variables

3.1.5 This & Super

Each function block has a THIS pointer available. This is a Pointer to its own instance. In con-

trast to the THIS Pointer SUPER is a Pointer to the Parent function block.

As usage for the This pointer shadowing is used as example. A function block has the local

variables A and B which are assigned to 1 and 2.

The function block itself has a method which also has the variables A and B that are 3 and 4.

2 Cf. https://www.guru99.com/interface-vs-abstract-class-java.html Accessed 20.05.2020

https://www.guru99.com/interface-vs-abstract-class-java.html

10 3ADR010569, 1, en_US

By reading the variable A inside the Method the local variable is read as the variable A from

the function block is shadowed by the new variable in the Method. To access also the varia-

bles from the function block which are shadowed the This pointer has to be used. That is visi-

ble on the screenshot below.

The same shadowing can also be used for Methods itself. The screenshot below shows a im-

plementation in Automation Builder. The Parent function block has the Method FOO where

two integer values are added. The Children has also the Method Foo. But here the two values

are subtracted. Depending of the input variable xAdd in the Child function block either the

own Method (THIS) or the parent Method (Super is called).

When instantiating the child fb and running it the result will be the Sum when xAdd is TRUE

and the Difference when xAdd is FALSE.

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 11

3.2 Access Specifier

When adding a function block, method or property an Access specifier can by specified.

This can be INTERNAL and PUBLIC for function blocks and PUBLIC, PRIVATE, PROTECTED and

INTERNAL for Methods and Properties.

3.2.1 Public

Public is selected the default setting when no Access is specified. Public means the element

can be accessed from an extending function block and any instance.

3.2.2 Protected

Protected means the element can be accessed from an extending function block but not in

any instance.

3.2.3 Internal

Internal means the element cannot be accessed from an extending function block but in any

instance.

3.2.4 Private

Private means the element can neither be accessed from an extending function block nor in

any instance.

12 3ADR010569, 1, en_US

3.2.5 Overview

The table and the picture below are showing how methods with different access specifiers

can be accessed by extending or instantiating.

Access specifier Fb instance Extending fb

Public ✔ ✔

Protected ✖ ✔

Internal ✔ ✖

Private ✖ ✖

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 13

3.3 Reference instead Pointer

Pointers are usually used for arrays or structs to avoid copying many data. A Reference is also

a pointer, but it has some advantages.

To compare the usage of References with pointers two values B and C are used. B as Pointer

and C as Reference. As visible from the screenshot below pB and refC are the pointer/refer-

ence to the variables. Assigning a value to a reference variable can just be done without

dereferencing the value. This can be seen in line 7.

Furthermore functions with a Reference input can just be assigned to the value direct. No

ADR operation is necessary. This can be found in the example below in line 4.

The third advantage is the possibility to check references during compile. This is not possible

for pointers. As visible in the screenshot below B and C are integers, D and E are real varia-

bles. In line 10 a REAL POINTER is assigned to an INT POINTER. This gives no compile error.

Assigning a REAL REFERENCE to an INT REFERENCE like in line 11 is throwing a compiler Error.

14 3ADR010569, 1, en_US

Working with References instead of Pointers is much easier for programming and code read-

ability and furthermore safer to avoid invalid assignment and access.

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 15

3.4 Operators

3.4.1 __ISVALIDREF

The operator __ISVALIDREF can be used to check if a reference is valid to avoid an invalid ac-

cess. The usage can be seen in the screenshot below. refC is referencing C but refC2 is not

referencing a variable.

3.4.2 __QUERYINTERFACE

QueryInterface is an operator which should be only used by experienced users. The operator

can be used for a type conversation of an interface into another. The requirement for the ex-

plicit conversation is that both interfaces extend __System.IQueryInterface.

The operator itself is defined as __QUERYINTERFACE(<ITF_Source>,<ITF_Dest>);

and returns true if the interface conversation was successful. As an example, following layout

is used. A Base interface is extended by two other interfaces. One interface has also another

child. The tree resulting interfaces have all one implementing function block. In the Program

each function block has one instance.

16 3ADR010569, 1, en_US

As Inst1, Inst2 and Inst1_1 are all implementing Base following declaration is allowed.

iBase : ITF_BASE := Inst1;

Instead of Inst1 also the other instances can be used to define iBase.

With

 iBase : ITF_BASE := Inst1;

 i1 : ITF_1 := 0;

__QUERYINTERFACE(Inst1, i1);

Inst1 which is decelerated as ITF_BAASE can be assigned to i1 which is ITF_1

Following table shows the result of trying to convert the instances from ITF_BASE to other

interfaces.

✔ means the result is TRUE, ✖ means the result is false

Src/Dest ITF_BASE ITF_1 ITF_1_1 ITF2

Inst1 ✔ ✔ ✖ ✖

Inst1_1 ✔ ✔ ✔ ✖

Inst2 ✔ ✖ ✖ ✔

A use case for this function is a function which has a reference to an interface as input. De-

pending on the function block which is inputted to this function different actions can take

place.

Similar to this operator __QUERYPOINTER converts an interface to a Pointer.

3.4.3 __TRY, __CATCH, __FINALLY and __ENDTRY

These statements are used for exception handling in the IEC Code. If not allowed statements

like a division by 0 are executed an exception is thrown and the PLC goes to stop.

If a statement in TRY throws an exception the PLC executes CATCH instead of going to stop

to handle the exception. The statements in FINALLY are called independent if there was an ex-

ception or not. These statements are usually used to clean up a program or function block in

depended of the success of the execution.

To give a short example where different exceptions can happen a division function is used.

Inputted are A and B as well as a Pointer to the Variable C.

The main logic is in the try part. The C pointer is dereferenced and assigned to the quotient

of A and B.

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 17

An exception can either be thrown if the pointer to C is invalid and cannot be dereferenced or

B is 0 as a division is not possible. In this case the execution of the try part is stopped and

catch is called. Depending on the thrown exception a different system behavior is possible.

Here the exception name is returned as a string. Each time the Catch part is called iNrFailed is

incremented. Independent if the try was successful or the catch has been called finally will be

executed. Here iNrExecuted is incremented by 1.

In the main program the function is called

18 3ADR010569, 1, en_US

In line 6 A and B are set to 44 and 12. The function calculates the integer division 44/12 = 3

successfully. In line 11 B is set to 0. The program tries to divide 44/0 which causes an excep-

tion. As visible in the variable testResult at position 1 the reason for this exception was a divi-

sion by zero. In line 16 B is set to 12 again. In line 17 is visible that the pointer to C is not

ADR(C) anymore but 0. The function tries to dereference a zero pointer which causes an ex-

ception. As visible in the variable testResult at position 2 the reason for this exception was an

access violation.

In line 3 and 4 the counter variables are set to 0. As iNrExecuted is 3 now the finally statement

was called three times. Accordingly catch was called two times. Depending on the exceptions

the Program is still in run and has not stopped.

In the PLC Log the exceptions can be found for debugging.

During the development process it might be also necessary to find out state of different vari-

ables when the exception happens. Therefore, stop execution on handled exceptions can be

selected. This Command has to be added to Automation Builder.

Close all opened projects → Select Tools Customize… → In the Menu tab Online any position

can be selected. Click on Add command… → Select “Stop execution on handled exceptions”

in the Category “Online”.

When being logged into the PLC the command can be checked.

By running the same Program again, it will stop now. The PLC Log can be used to jump to the

source position. Now also the values that cause the exception are visible and the programmer

can try to check why B is 0 in this case.

 AC500 V3 OOP KEYWORD S

 3ADR010569, 1, en_US 19

3.4.4 __VARINFO

The operator __VARINFO returns a structure containing more information about the variable.

The information can be stored in a structure with the type __SYSTEM.VAR_INFO.

As an example, an Array with 10 bytes is used. The screenshot below shows the structure

which is be filled by calling infoArr := __VARINFO(bArrVar);

__

__

ABB Automation Products GmbH

Eppelheimer Straße 82

69123 Heidelberg, Germany

Phone: +49 62 21 701 1444

Fax: +49 62 21 701 1382

E-Mail: plc.support@de.abb.com

www.abb.com/plc

We reserve the right to make technical

changes or modify the contents of this

document without prior notice. With re-

gard to purchase orders, the agreed par-

ticulars shall prevail. ABB AG does not ac-

cept any responsibility whatsoever for

potential errors or possible lack of infor-

mation in this document.

We reserve all rights in this document and

in the subject matter and illustrations con-

tained therein. Any reproduction, disclo-

sure to third parties or utilization of its

contents – in whole or in parts – is forbid-

den without prior written consent of ABB

AG.

Copyright© 2020 ABB. All rights reserved

