ABB i－bus ${ }^{\circledR}$ KNX
 Room Master Premium，MDRC
 RM／S 2．1，2CDG 110095 R0011

The Room Master Premium is a modular installation device（MDRC）in pro M de－ sign．It is intended for installation in the distribution board on 35 mm mounting rails．The assignment of the physical addresses as well as the parameteriza－ tion is carried out with the ETS and the current application program．

The RM／S is powered via the ABB i－bus ${ }^{\circledR}$ and does not require and additional auxiliary voltage supply．
The RM／S 2.1 is operational after con－ nection of the bus voltage．

Technical data

Supply	Bus voltage	21．．． 32 V DC
	Current consumption，bus	Maximum 24 mA（Fan－In 2）
	Leakage loss，bus	Maximum 500 mW
	Leakage loss，device	Maximum 7．65 W＊
＊The maximum power consumption of the device results from the following specifications：	KNX bus connection	0．25 W
	Relay 20 A	3.0 W
	Relay 16 A	1.0 W
	Relay 6 A	2.4 W
	Electronic outputs 0.5 A	1.0 W
Connections	KNX	via bus connection terminals 0.8 mm Ø，single core
	Load circuits	Screw terminal with universal head（PZ 1） $0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded， $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$ $0.2 \ldots 6 \mathrm{~mm}^{2}$ single core， $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without／with plastic sleeves	without： $0.25 \ldots 2.5 \mathrm{~mm}^{2}$ with： $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrules	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$ Contact pin length min． 10 mm
	Tightening torque	Maximum 0．6 Nm
	Fans／valves／inputs	Screw terminal，slot head $0.2 \ldots 2.5 \mathrm{~mm}^{2}$ stranded $0.2 \ldots 4 \mathrm{~mm}^{2}$ solid core
	Tightening torque	Maximum 0.6 Nm
Operating and display elements	Button／LED－ 0	For assignment of the physical address
Enclosure	IP 20	to EN 60529
Safety class	II	to EN 61140
Insulation category	Overvoltage category	III to EN 60 664－1
	Pollution degree	2 to EN 60 664－1
KNX safety extra low voltage	SELV 24 V DC	
Temperature range	Operation	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
	Transport	$-25^{\circ} \mathrm{C} \ldots+70{ }^{\circ} \mathrm{C}$
	Storage	$-25{ }^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Ambient conditions	Maximum air humidity	93% ，no condensation allowed

ABB i-bus ${ }^{\circledR}$ KNX

Room Master Premium, MDRC
RM/S 2.1, 2CDG 110095 R0011

Design	Modular installation device (MDRC)	Modular installation device, Pro M
	Dimensions	$90 \times 216 \times 64.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$
Mounting width in space units	12 modules at 18 mm	
Installation	Mounting depth	64.5 mm
Mounting position	On 35 mm mounting rail	to EN 60715
Weight	As required	
Housing/colour	0.7 kg	Certificate
Approvals	Plastic housing, grey	
CE mark	KNX to EN 50 090-1, -2	

Important

The maximum permissible current of a KNX line may not be exceeded.
During planning and installation ensure that the KNX line is correctly dimensioned.
The device features a maximum current consumption of 24 mA (Fan-In 2).

Electronic outputs

Rated values	Number	4, non-isolated, overload-proof
	U_{n} rated voltage	24... 230 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current (per output pair)	0.5 A
	Continuous current	0.5 A resistive load at T_{u} up to $20^{\circ} \mathrm{C}$ 0.3 A resistive load at T_{u} up to $60^{\circ} \mathrm{C}$
	Inrush current	Maximum 1,6 A, 10 s at T_{u} up to $60^{\circ} \mathrm{C}$

$\mathrm{T}_{\mathrm{u}}=$ ambient temperature

Binary inputs

Rated values	Number	$18^{1)}$
	U_{n} scanning voltage	32 V , pulsed
I_{n} scanning current	0.1 mA	
	Scanning current In at switch on	Maximum 355 mA
	Permissible cable length	$\leq 100 \mathrm{~m}$ one-way, at cross-section $1.5 \mathrm{~mm}^{2}$

[^0]
ABB i-bus ${ }^{\oplus}$ KNX
 Room Master Premium, MDRC
 RM/S 2.1, 2CDG 110095 R0011

Rated current output 6 A

Rated values	Number	13 contacts
	U_{n} rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current	6 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ To EN 60 947-4-1	6 A/230 V
	AC1* operation $(\cos \varphi=0.8)$ To EN 60 947-4-1	$6 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load $A X$ to EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{2}$
	Minimum switching performance	$\begin{aligned} & 20 \mathrm{~mA} / 5 \mathrm{~V} \\ & 10 \mathrm{~mA} / 12 \mathrm{~V} \\ & 7 \mathrm{~mA} / 24 \mathrm{~V} \end{aligned}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical endurance	$>10^{7}$
	Electronic endurance to IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8)$	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{11}$	Maximum relay position change per output and minute if only one relay is switched	2,683

[^1]
* What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems, different switching capacity and performance specifications, which are dependent on the special application, have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.

The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of oh-mic/resistive loads)
AC3 - Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) mo-tor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters - Electromechanical contactors and motor-starters. The standard describes starters and/or contactors that previously were preferably used in industrial applications.

ABB i-bus ${ }^{\oplus}$ KNX

Room Master Premium, MDRC
RM/S 2.1, 2CDG 110095 R0011

Output lamp load 6 A

Lamps	Incandescent lamp load	1200 W
Fluorescent lamps T5/T8	Uncorrected	800 W
	Parallel compensated	300 W
	DUO circuit	350 W
Low-voltage halogen lamps	Inductive transformer	800 W
	Electronic transformer	1000 W
	Halogen lamps 230 V	1000 W
Dulux lamp	Uncorrected	800 W
Mercury-vapour lamp	Parallel compensated	800 W
Switching performance (switching contact)	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	1000 W
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	800 W
	200 A	
Number of electronic ballasts	160 A	
(T5/T8, single element)	100 A	
	18 W (ABB EVG $1 \times 18 \mathrm{CF})$	10

[^2]
ABB i-bus ${ }^{\circledR}$ KNX
 Room Master Premium, MDRC
 RM/S 2.1, 2CDG 110095 R0011

Rated current output 16 A

Rated values	Number	1
	U_{n} rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	I_{n} rated current	16 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ To EN 60 947-4-1	$8 \mathrm{~A} / 230 \mathrm{~V}$
	AC1* operation $(\cos \varphi=0.8)$ To EN 60 947-4-1	$16 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load AX to EN 60 669-1	$16 \mathrm{~A} / 250 \mathrm{~V}(70 \mu \mathrm{~F})^{2}$
	Minimum switching performance	$\begin{aligned} & 100 \mathrm{~mA} / 12 \mathrm{~V} \\ & 100 \mathrm{~mA} / 24 \mathrm{~V} \end{aligned}$
	DC current switching capacity (resistive load)	$16 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>3 \times 10^{6}$
	Electrical endurance to IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi 0.8$)	$>10^{5}$
Switching times ${ }^{10}$	Maximum relay position change per output and minute if only one relay is switched.	313

[^3]
* What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems, different switching capacity and performance specifications, which are dependent on the special application, have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.

The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:
AC1 - Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) motor load)

AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters - Electromechanical contactors and motor-starters. The standard describes starter and/or contactors that previously were preferably used in industrial applications.

ABB i-bus ${ }^{\oplus}$ KNX

Room Master Premium, MDRC
RM/S 2.1, 2CDG 110095 R0011
Output lamp load 16 A

Lamps	Incandescent lamp load	2500 W
Fluorescent lamps T5/T8	Uncorrected	2500 W
	Parallel compensated	1500 W
	DUO circuit	1500 W
Low-voltage halogen lamps	Inductive transformer	1200 W
	Electronic transformer	1500 W
	Halogen lamps 230 V	2500 W
Dulux lamp	Uncorrected	1100 W
	Parallel compensated	1100 W
Mercury-vapour lamp	Uncorrected	2000 W
	Parallel compensated	2000 W
Switching performance (switching contact)	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	400 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	320 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	200 A
Number of electronic ballasts (T5/T8, single element) ${ }^{11}$	18 W (ABB EVG $1 \times 18 \mathrm{CF}$)	23
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	23
	36 W (ABB EVG $1 \times 36 \mathrm{CF}$)	14
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	11
	80 W (Helvar EL 1×80 SC)	10

[^4]
ABB i-bus ${ }^{\circledR}$ KNX
 Room Master Premium, MDRC
 RM/S 2.1, 2CDG 110095 R0011

Rated current output 20 A

${ }^{1)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms.
${ }^{\text {2) }}$ The maximum inrush-current peak may not be exceeded.

* What do the terms AC1, AC3 and AC5a mean?

In Intelligent Installation Systems, different switching capacity and performance specifications, which are dependent on the special application, have become established in industrial and residential systems. These performance specifications are rooted in the respective national and international standards. The tests are defined so that typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential) are simulated.
The specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.
Typical application:
AC1 - Non-inductive or slightly inductive loads, resistive furnaces (relates to switching of oh-mic/resistive loads)

AC3 - Squirrel-cage motors: Starting, switching off motors during running (relates to (inductive) mo-tor load)
AC5a - Switching of electric discharge lamps
These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters - Electromechanical contactors and motor-starters. The standard describes starter and/or contactors that previously were preferably used in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX
 Room Master Premium, MDRC
 RM/S 2.1, 2CDG 110095 R0011

Output lamp load 20 A

Lamps	Incandescent lamp load	3680 W
Fluorescent lamps T5/T8	Uncorrected	3680 W
	Parallel compensated	2500 W
	DUO circuit	3680 W
Low-voltage halogen lamps	Inductive transformer	2000 W
	Electronic transformer	2500 W
	Halogen lamps 230 V	3680 W
Dulux lamp	Uncorrected	3680 W
	Parallel compensated	3000 W
Mercury-vapour lamp	Uncorrected	3680 W
	Parallel compensated	3680 W
Switching performance (switching contact)	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	600 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	480 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	300 A
Number of electronic ballasts (T5/T8, single element) ${ }^{1)}$	18 W (ABB EVG $1 \times 18 \mathrm{SF}$)	$26^{2)}$
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	$26^{2)}$
	36 W (ABB EVG $1 \times 36 \mathrm{CF})$	22
	58 W (ABB EVG $1 \times 58 \mathrm{CF}$)	$12^{2)}$
	80 W (Helvar EL 1×80 SC)	$10^{2)}$

${ }^{1)}$ For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.
${ }^{2}$) Limited by protection with B16 automatic circuit-breakers.

Device type	Application program	Max. number of Communication objects	Max. number of group addresses	Max. number of associations
RM/S 2.1	Room Master, Premium/...*	255	255	255

* ... = current version number of the application program. Please observe the software information on our homepage for this purpose.

> Note
> For a detailed description of the application program see "Room Master Premium RM/S 2.1" product manual. It is available free-of-charge at www.abb.com/knx. The ETS and the current version of the device application program are required for programming.
> The current version of the application program is available for download on the internet as www.abb.com/knx. After import it is available in the ETS under ABB/ ABB/Room automation/Room Master/Premium.
> The device does not support the locking function of a KNX device in the ETS. If you inhibit access to all devices of the project with a BCU code, it has no effect on this device. Data can still be read and programmed.

ABB i-bus ${ }^{\circledR}$ KNX
 Room Master Premium, MDRC
 RM/S 2.1, 2CDG 110095 R0011

Connection schematics

Hotel room example

RM/S 2.1 with electromotor valve drives

```
1 Label carrier
2 \text { Button Programming =0}
3 LED Programming \bullet (red)
4 \text { Bus connection terminal}
5 \text { Switch position display and manual operation, output (A, B, C) 20 A (16 AX)}
6 \text { Switch position display and manual operation, output (D) 16 A (10 AX)}
L Load circuits, with }2\mathrm{ terminals each
8 Outputs, 3 contacts, 1 screw terminal for phase connection (E, F, G)
9 Outputs, 3 contacts, 1 screw terminal for phase connection (H,I, J)
1 0 \text { Blind (K)}
11 Fan (L, M, N)
1 2 \text { Valve HEATING (O, P)}
13 Valve COOLING (Q, R)
14 Outputs, 3 contacts, 1 screw terminal for phase connection (S, T, U)
1 5 \text { Binary inputs (j, k, l, m, n, o, p, q, r)}
1 6 \text { Binary inputs (a, b, c, d, e, f, g, h, i)}
```


ABB i-bus ${ }^{\circledR}$ KNX
 Room Master Premium, MDRC
 RM/S 2.1, 2CDG 110095 R0011

Hotel room example

2CDC 072068 F0411

RM/S 2.1 with electromotor valve drives

1 Label carrier
2 Button Programming 0
3 LED Programming \bullet (red)
4 Bus connection terminal
5 Switch position display and manual operation, output (A, B, C) 20 A (16 AX)
6 Switch position display and manual operation, output (D) 16 A (10 AX)
7 Load circuits, with 2 terminals each
8 Outputs, 3 contacts, 1 screw terminal for phase connection (E, F, G)
9 Outputs, 3 contacts, 1 screw terminal for phase connection (H, I, J)
10 Blind (K)
11 Fan (L, M, N)
12 Valve HEATING (O, P)
13 Valve COOLING (Q, R)
14 Outputs, 3 contacts, 1 screw terminal for phase connection ($\mathrm{S}, \mathrm{T}, \mathrm{U}$)
15 Binary inputs (j, k, l, m, n, o, p, q, r)
16 Binary inputs (a, b, c, d, e, f, g, h, i)

ABB i-bus ${ }^{\circledR}$ KNX

Room Master Premium, MDRC
RM/S 2.1, 2CDG 110095 R0011
Dimension drawing

ABB i-bus ${ }^{\circledR}$ KNX

Room Master Premium, MDRC
RM/S 2.1, 2CDG 110095 R0011

Notes

[^0]: ${ }^{1)}$ All binary inputs are internally connected to the same potential.

[^1]: ${ }^{1)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms.
 ${ }^{2)}$ The maximum inrush-current peak may not be exceeded.

[^2]: ${ }^{1)}$ For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.

[^3]: ${ }^{1)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .
 ${ }^{2)}$ The maximum inrush-current peak may not be exceeded.

[^4]: ${ }^{1)}$ For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the electronic ballasts.

