Technical data 2CDC508138D0202

ABB i-bus ${ }^{\circledR}$ KNX

Fan Coil Actuator, 0-10V, MDRC FCA/S 1.2.1.2, 2CDG110196R0011

Product description

The device is a modular installation device (MDRC) in Pro M design. It is intended for installation in distribution boards on 35 mm mounting rails. The assignment of the physical addresses as well as the parameterization is carried out with ETS.

The device is powered via the ABB i-bus ${ }^{\circledR} \mathrm{KNX}$ and requires no additional auxiliary voltage supply. The device is ready for operation after connecting the bus voltage.

ABB i-bus ${ }^{\circledR}$ KNX

Fan Coil Actuator, 0-10V, MDRC
FCA/S 1.2.1.2, 2CDG110196R0011

Technical data

Supply	Bus voltage	21... 32 V DC	
	Current consumption, bus	< 12 mA	
	Leakage loss, bus	Maximum 250 mW	
	Leakage loss, device	Maximum $2 \mathrm{~W}^{*}$	
*The maximum power consumption of the device	KNX connection	0.25 W	
results from the following specifications:	Relay 16 A	1.0 W	
	Relay 6 A	0.6 W	
	Analog outputs	0.15 W	
Connections	KNX	Via bus connection terminal	
	Inputs/Outputs	Via screw terminals	
Connection terminals	Screw terminal	Screw terminal with universal head (PZ 1)	
		$0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$	
		$0.2 \ldots 6 \mathrm{~mm}^{2}$ single core, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$	
	Ferrules without/with plastic sleeves	Without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$	
		With: $0.25 \ldots 4 \mathrm{~mm}^{2}$	
	TWIN ferrules	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$	
		Contact pin length min. 10 mm	
	Tightening torque	Maximum 0.6 Nm	
	Grid	6.35	
Operating and display elements	Button/LED	For assignment of the physical address	
	Button © /, LED 气	For toggling between manual operation/ operation via ABB i-bus ${ }^{\circledR}$ KNX and displays	
Protection	IP 20	To DIN EN 60529	
Protection class	\\|	To DIN EN 61140	
Isolation category	Overvoltage category	III to DIN EN 60 664-1	
	Pollution degree	II to DIN EN 60 664-1	
KNX safety extra low voltage	SELV 24VDC		
Temperature range	Operation	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$	
	Transport	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	
	Storage	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$	
	Temperatures exceeding $+45^{\circ} \mathrm{C}$ reduce the service life!		
Ambient conditions	Maximum air humidity	93%, no condensation allowed	
Design	Modular installation device (MDRC)	Modular installation device, ProM	
	Dimensions	$108 \times 90 \times 64.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$	
	Mounting width in space units	$6 \times 18 \mathrm{~mm}$ modules	
	Mounting depth	64.5 mm	
Mounting	On 35 mm mounting rail	To DIN EN 60715	
Installation position	Any		
Weight	0.3 kg		
Housing/color	Plastic housing, gray		
Approvals	KNX to EN 50 090-1, -2	Certification	
CE mark	In accordance with the EMC guidelin low voltage guideline		

ABB i-bus ${ }^{\circledR}$ KNX
 Fan Coil Actuator, 0-10V, MDRC
 FCA/S 1.2.1.2, 2CDG110196R0011

| Device type | Application | Max. number of
 communication objects | Max. number of
 group addresses | Max. number of
 assignments |
| :--- | :--- | :--- | :--- | :--- | :--- |
| FCA/S 1.2.1.2 | Fan Coil Actuator $0-10 \mathrm{~V} / \ldots{ }^{*}$ | 70 | 254 | 255 |

*.. = Current version number of the application. Please refer to the software information on our website for this purpose.

Note
For a detailed description of the application see Fan Coil Actuators FCA/S product manual.
It is available free-of-charge at www.abb.com/knx.
ETS and the current version of the device application are required for programming.
The current version of the application is available on the Internet for download at www.abb.com/knx.
After import into ETS, it appears in the Catalogs window under Manufacturers/ABB/Heating,
Ventilation, Air Conditioning/Fan Coil Actuator O-10V.
The device does not support the locking function of a KNX device in ETS. If you use a BCU code to
inhibit access to all the project devices, it has no effect on this device. Data can still be read and pro-
grammed.

Outputs valve V1/2 analog

Rated values	Quantity	2, non-isolated, short-circuit proofed
	Control signal	$0 \ldots 10 \mathrm{VDC}$
Signal type	Analog	
	Output load	$>10 \mathrm{kohms}$
Output tolerance	$\pm 10 \%$	
	Current limitation	Up to 1.5 mA

Inputs

Rated values Contact scanning	Quantity	3
	Scanning current	Floating
Scanning voltage	1 mA	
Resistance		10 V
		PT100 2-conductor technology,
	PT1000 2-conductor technology,	
Cable length	Resolution, accuracy and tolerances	Selection of KT/KTY 1,000/2,000, user defined

ABB i-bus ${ }^{\circledR}$ KNX

Fan Coil Actuator, 0-10V, MDRC
FCA/S 1.2.1.2, 2CDG110196R0011

Resolution and accurancy and tolerances
Please note that the tolerances of the sensors which are used will need to be added to the listed values.

With sensors based on resistance measurement, it is also necessary to consider the cable error.

In the supplied state of the device, the stated accuracies will not be initially achieved. After initial commissioning, the device performs an autonomous calibration of the analogue measurement circuit. This calibration takes about an hour and is performed in the background. It is undertaken regardless of whether or not the device is parameterized and is independent of the connected sensors. The normal function of the device is not affected. After calibration has been completed, the calibration values which have been determined will be stored in the non-volatile memory. Thereafter, the device will achieve this level of accuracy every time it is switched on. If the calibration is interrupted by programming or bus voltage failure, it will recommence every time it is restarted. The ongoing calibration is displayed in the status byte by a 1 in bit 4.

Resistance signals

Sensor signal	Resolution	Accuracy at $25^{\circ} \mathrm{C}_{\mathrm{u}}{ }^{* 3}$	Accuracy at $0 . . .50^{\circ} \mathrm{C}_{\mathrm{u}}{ }^{* 3}$	Accuracy at $-20 \ldots 70{ }^{\circ} \mathrm{C}_{\mathrm{u}}{ }^{* 3}$	Remark
PT100*4	0.01 ohms	± 0.15 ohm	± 0.2 ohms	± 0.25 ohm	0.1 ohm $=0.25^{\circ} \mathrm{C}$
PT1000*4	0.1 ohms	± 1.5 ohms	± 2.0 ohms	± 2.5 ohms	1 ohm $=0.25^{\circ} \mathrm{C}$
KT/KTY 1,000*4	1 ohm	± 2.5 ohms	± 3.0 ohms	± 3.5 ohms	1 ohm $=0.125^{\circ} \mathrm{C} /$ at $25^{\circ} \mathrm{C}$
KT/KTY 2,000*4	1 ohm	± 5 ohms	± 6.0 ohms	± 7.0 ohms	1 ohm $=0.064{ }^{\circ} \mathrm{C} /$ at $25^{\circ} \mathrm{C}$

${ }^{{ }^{*} 3}$ in addition to current measured value at ambient temperature (T_{u})
*4 incl. cable and sensor errors

PT100

The PT100 is precise and exchangeable but subject to faults in the cables (cable resistance and heating of the cables). A terminal resistance of just 200 milliohms causes a temperature error of $0.5^{\circ} \mathrm{C}$.

PT1000

The PT1000 responds just like the PT100, but the influences of cable errors are lower by a factor of 10 . Use of this sensor is preferred.

KT/KTY

The KT/KTY has a low level of accuracy, can only be exchanged under certain circumstances and can only be used for very simple applications.
Please note that there are different tolerance classes for the sensors in the versions PT100 and PT1000.
The table indicates the individual classes according to IEC 60751 (date: 2008):

Description	Tolerance
Class AA	$0.10^{\circ} \mathrm{C}+(0.0017 \times \mathrm{t})$
Class A	$0.15^{\circ} \mathrm{C}+(0.002 \times \mathrm{t})$
Class B	$0.30^{\circ} \mathrm{C}+(0.005 \times \mathrm{t})$
Class C	$0.60^{\circ} \mathrm{C}+(0.01 \times \mathrm{t})$
$\mathrm{t}=$ Current temperature	

Example for class B:
At $100^{\circ} \mathrm{C}$, the deviations of the measurement value are reliable up to $\pm 0.8^{\circ} \mathrm{C}$

ABB i-bus ${ }^{\circledR}$ KNX
 Fan Coil Actuator, 0-10V, MDRC
 FCA/S 1.2.1.2, 2CDG110196R0011

Fan rated current 6 A

Rated values	Number	3 contacts
	$U_{n 1}$ rated voltage	250/440VAC ($50 / 60 \mathrm{~Hz}$)
	$\mathrm{I}_{\mathrm{n} 1}$ rated current (per output)	6 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	$6 \mathrm{~A} / 230 \mathrm{~V}$
	AC1*operation $(\cos \varphi=0.8)$ to DIN EN 60947 4-1	$6 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load to DIN EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{1)}$
	Minimum switching capacity	$20 \mathrm{~mA} / 5 \mathrm{~V}$
		$10 \mathrm{~mA} / 12 \mathrm{~V}$
		$7 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>10^{7}$
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{2)}$	Maximum relay position change per output and minute if only one relay is switched.	2,683

1) The maximum inrush current peak may not be exceeded.
${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .

*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications, have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).

Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:

AC1 - Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)

AC5a - Switching of electric discharge lamps

These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters - Electromechanical contactors and motor-starters.
The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Fan Coil Actuator, 0-10V, MDRC
FCA/S 1.2.1.2, 2CDG110196R0011

Fan lamp load 6 A

Lamps	Incandescent lamp load	1,200 W
Fluorescent lamps T5/T8	Uncompensated	800 W
	Parallel compensated	300 W
	DUO circuit	350 W
Low-voltage halogen lamps	Inductive transformer	800 W
	Electronic transformer	1,000 W
	Halogen lamps 230 V	1,000 W
Dulux lamp	Uncompensated	800 W
	Parallel compensated	800 W
Mercury-vapor lamp	Uncompensated	1,000 W
	Parallel compensated	800 W
Switching capacity (switching contact)	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	200 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	160 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(600 \mu \mathrm{~s})$	100 A
Number of electronic ballasts (T5/T8, single element) ${ }^{1 / 1}$	18 W (ABB EVG $1 \times 18 \mathrm{SF}$)	10
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	10
	36 W (ABB EVG $1 \times 36 \mathrm{CF})$	7
	58 W (ABB EVG $1 \times 58 \mathrm{CF})$	5
	80 W (Helvar EL 1×80 SC)	3

[^0]
ABB i-bus ${ }^{\circledR}$ KNX
 Fan Coil Actuator, 0-10V, MDRC
 FCA/S 1.2.1.2, 2CDG110196R0011

Output, rated current 16 A

Rated values	Quantity	1
	$\mathrm{U}_{\mathrm{n} 2}$ rated voltage	250/440 V AC ($50 / 60 \mathrm{~Hz}$)
	$\mathrm{I}_{\mathrm{n} 2}$ rated current	16 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ to DIN EN 60 947-4-1	$8 \mathrm{~A} / 230 \mathrm{~V}$
	AC1* operation $(\cos \varphi=0.8)$ to DIN EN 60947 4-1	$16 \mathrm{~A} / 230 \mathrm{~V}$
	Fluorescent lighting load AX as per EN 60 669-1	$16 \mathrm{~A} / 250 \mathrm{~V}(70 \mu \mathrm{~F}) 1$)
	Minimum switching capacity	$100 \mathrm{~mA} / 12 \mathrm{~V}$
		$100 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$16 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>3 \times 10^{6}$
	Electronic endurance of switching contacts to DIN IEC 60 947-4-1	
	AC1* ($240 \mathrm{~V} / \cos \varphi=0.8$)	$>10^{5}$
Switching times ${ }^{2}$	Maximum relay position change per output and minute if only one relay is switched.	313

${ }^{1)}$ The maximum inrush current peak may not be exceeded.
${ }^{2)}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. Typical delay of the relay is approx. 20 ms .

*What do the terms AC1, AC3 and AC5a mean?

In intelligent installation systems, different switching capacities and performance specifications that are dependent on the special applications, have become established in domestic and industrial installations. These performance specifications are rooted in the respective national and international standards. The tests are defined to simulate typical applications, e.g. motor loads (industrial) or fluorescent lamps (residential).

Specifications AC1 and AC3 are switching performance specifications which have become established in the industrial field.

Typical application:

AC1 - Non-inductive or slightly inductive load, resistive furnaces (relates to switching of ohmic/resistive loads)

AC3 - Squirrel-cage motors: starting, switching off motors during running (relates to (inductive) motor load)
AC5a - Switching of electric discharge lamps

These switching performances are defined in the standard EN 60947-4-1 Contactors and motor-starters - Electromechanical contactors and motor-starters.
The standard describes starters and/or contactors that were originally used primarily in industrial applications.

ABB i-bus ${ }^{\circledR}$ KNX

Fan Coil Actuator, 0-10V, MDRC
FCA/S 1.2.1.2, 2CDG110196R0011

Output, lamp load 16 A

Lamps	Incandescent lamp load	2,500 W
Fluorescent lamps T5/T8	Uncompensated	2,500 W
	Parallel compensated	1,500 W
	DUO circuit	1,500 W
Low-voltage halogen lamps	Inductive transformer	1,200 W
	Electronic transformer	1,500 W
	Halogen lamps 230 V	2,500 W
Dulux lamp	Uncompensated	1,100 W
	Parallel compensated	1,100 W
Mercury-vapor lamp	Uncompensated	2,000 W
	Parallel compensated	2,000 W
Switching capacity (switching contact)	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(150 \mu s)$	400 A
	Maximum peak inrush-current $\mathrm{I}_{\mathrm{p}}(250 \mu s)$	320 A
	Maximum peak inrush-current $I_{p}(600 \mu s)$	200 A
Number of electronic ballasts (T5/T8, single element) ${ }^{10}$	18 W (ABB EVG $1 \times 18 \mathrm{SF})$	23
	24 W (ABB EVG-T5 $1 \times 24 \mathrm{CY}$)	23
	36 W (ABB EVG $1 \times 36 \mathrm{CF})$	14
	58 W (ABB EVG $1 \times 58 \mathrm{CF})$	11
	80 W (Helvar EL 1×80 SC)	10

[^1]ABB i-bus ${ }^{\circledR}$ KNX
Fan Coil Actuator, 0-10V, MDRC
FCA/S 1.2.1.2, 2CDG110196R0011

Connection schematic

2CDC072018F0013

1 Label carrier
2 Programming button $\mathbf{0}$
3 Programming LED - (red)
4 Bus connection terminal
5 Inputs a, b, c
6 Valve V1 (e.g. heating)
7 Valve V2 (e.g. cooling)
8 Fan
9 Output H

Note

Terminals 1 and 4 on the FCA/S 1.2.1.2 are not used internally.

ABB i-bus ${ }^{\circledR}$ KNX

Fan Coil Actuator, 0-10V, MDRC

FCA/S 1.2.1.2, 2CDG110196R0011

All outputs can be controlled independently of one another.

The following table provides an overview of the functions possible with the outputs of the Fan Coil Actuator and the application:

Valve drives allocated to the Fan Coil unit

- Analog $(0 \ldots .10 \mathrm{~V})$	\square	\square		
-1 control value/1 valve	\square		free	
-2 control values/1 valve	\square		free	
-2 control values/2 valves	\square		\square	

Setting facilities for valve drives

- Analog (0... 10 V)

- Separate heating/cooling	$■$	\square	■	
- Direction	OPEN/CLOSE		OPEN/CLOSE	

- = Function is supported
= Function is not supported
free $=$ Is available and can be used separately

Functions of the output	E	F	G	
Switch function				
Normally closed/Normally open contact	\square	\square		
Time		\square		
Staircase lighting	\square			
Fan		\square	\square	
Level	1			

- = Function is supported
- = Function is not supported

ABB i-bus ${ }^{\circledR}$ KNX
Fan Coil Actuator, 0-10V, MDRC
FCA/S 1.2.1.2, 2CDG110196R0011

Dimension drawing

2CDC072015F0013

Contact

ABB STOTZ-KONTAKT GmbH
Eppelheimer Straße 82
69123 Heidelberg, Germany
Telefon: +49 (0)6221 701607
Telefax: +49 (0)6221701724
E-Mail: knx.marketing@de.abb.com

Further information and local contacts: www.abb.com/knx

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice.

The agreed properties are definitive for any orders placed. ABB AG shall not be liable for any consequences arising from errors or incomplete information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Reproduction, transfer to third parties or processing of the content - including sections thereof - is not permitted without prior expressed written permission from ABB AG.

Copyright® 2015 ABB
All rights reserved
n

[^0]: ${ }^{1)}$ For multiple element lamps or other types, the number of electronic ballasts must be determined using the peak inrush current of the ballasts.

[^1]: ${ }^{\text {1) }}$ For multiple element lamps or other types the number of electronic ballasts must be determined using the peak inrush current of the ballasts.

