Current monitoring relay CM-SFS.2 For single-phase AC/DC currents

relay that monitors single-phase mains (DC or AC) for over- and undercurrent from 3 mA to 15 A.

All devices are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connecting terminals) and the completely tool-free Easy Connect Technology (push-in terminals).

The CM-SFS.2 is an electronic current monitoring

Characteristics

- Monitoring of DC and AC currents (3 mA to 15 A)
- TRMS measuring principle
- One device includes 3 measuring ranges
- Over- and undercurrent monitoring
- ON- or OFF-delay configurable
- Open- or closed-circuit principle configurable
- Latching function configurable
- Threshold values for >I and <I adjustable
- Fixed hysteresis (5 %)
- Start-up delay T_S adjustable (0 s; 0.1-30 s)
- Tripping delay T_V adjustable (0 s; 0.1-30 s)
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- 1x2 c/o (SPDT) contacts (common signal) or
 2x1 c/o (SPDT) contact (separate signals for >I and <I) configurable
- 22.5 mm (0.89 in) width
- 3 LEDs for status indication

Approvals

€ UL 508, CAN/CSA C22.2 No.14

(GL)

EMI EAC

© CCC

RMRS

Marks

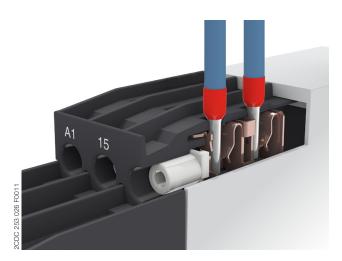
C€ CE

RCM

Order data

Current monitoring relays

Type	Rated control supply voltage	Connection technology	Measuring ranges	Order code
	24-240 V AC/DC	:	3-30 mA, 10-100 mA, 0.1-1 A	:
CM-SFS.21S		Screw type terminals		1SVR730760R0400
CM-SFS.22S			0.3-1.5 A, 1-5 A, 3-15 A	1SVR730760R0500

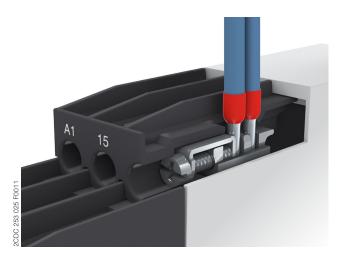

Accessories

Туре	Description	Order code
ADP.01	Adapter for screw mounting	1SVR430029R0100
MAR.12	Marker label for devices with DIP switches	1SVR730006R0000
COV.11	Sealable transparent cover	1SVR730005R0100

Connection technology

Maintenance free Easy Connect Technology with push-in terminals

Type designation CM-xxS.yyP

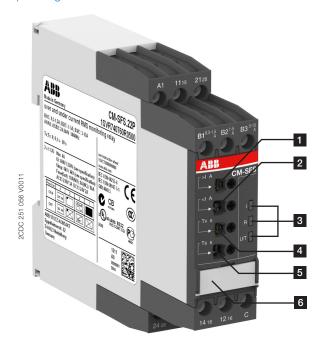

Push-in terminals

Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connecting terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connecting terminals

Type designation CM-xxS.yyS


Double-chamber cage connecting terminals

- Terminal spaces for different wire sizes
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with push-in terminals and screw connection technology with double-chamber cage connecting terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

- 1 Adjustment of the threshold value >I for overcurrent
- 2 Adjustment of the threshold value <I for undercurrent
- 3 Indication of operational states

U/T: green LED - control supply voltage/timing

R: yellow LED - relay status

I: red LED - over- / undercurrent

- 4 Adjustment of the tripping delay T_V
- 5 Adjustment of the start-up delay T_s
- 6 DIP switches (see DIP switch functions)

Application

The current monitoring relays CM-SFS.2 are designed for use in single-phase AC and/or DC systems for the simultaneous monitoring of over- and undercurrents. Depending on the configuration, one c/o (SPDT) contact each or both c/o (SPDT) contacts in parallel can be used for the over- and undercurrent monitoring. The devices operate over an universal range of supply voltages, provide an adjustable start-up as well as tripping delay and work according to the open- or closed-circuit principle.

Operating mode

The CM-SFS.2 with 2 c/o (SPDT) contacts is available in 2 versions with 3 measuring ranges: 3-30 mA, 10-100 mA, 0.1-1 A (CM-SFS.21) and 0.3-1.5 A, 1-5 A, 3-15 A (CM-SFS.22). The measuring range is selected by connecting the monitored wire to the corresponding terminal B1/B2/B3-C.

The units are adjusted with front-face operating controls. The selection of: ON-delay \square or OFF-delay \square , open-or closed-circuit principle \square , latching function ON \square or OFF \square and 2x1 c/o \square or 1x2 c/o (SPDT) contacts \square is made with DIP switches. Potentiometers, with direct reading scale, allow the adjustment of the threshold value_{max} (>I) for overcurrent, the threshold value_{min} (<I) for undercurrent, the tripping delay T_v and the start-up delay T_s . The tripping delay T_v and the start-up delay T_s are adjustable over a range of instantaneous to a 30 s delay. The hysteresis is fixed at 5 %. Timing is displayed by a flashing green LED labelled U/T.

Function diagrams

Current window monitoring 1x2 c/o (SPDT) contacts 200 ON-delayed without latching

Open-circuit principle open

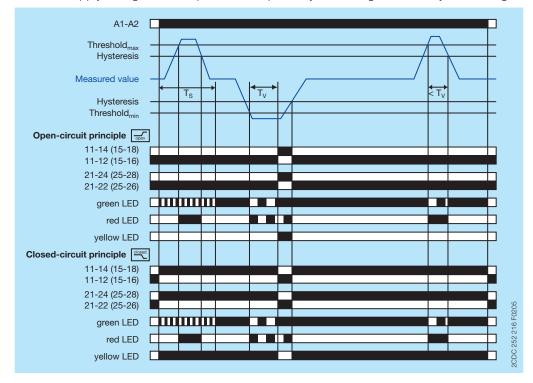
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the red and yellow LEDs turn off.

If control supply voltage is interrupted, the green LED turns off.


Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes $\square \square \square$ respectively. Timing of T_V is displayed by the flashing $\square \square \square$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) turns off.

If the measured value decreases below the threshold value $_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold value $_{min}$ plus the fixed hysteresis (5 %), the output relays re-energize, the yellow LED glows and the red LED turns off.

Current window monitoring 1x2 c/o (SPDT) contacts OFF-delayed without latching

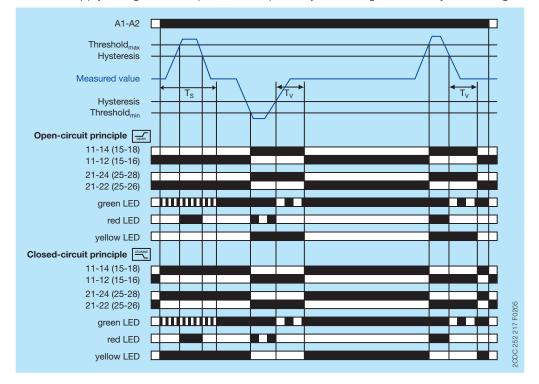
Open-circuit principle open

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relays energize, the yellow LED (relays energized) glows and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off.

Timing of T_V is displayed by the flashing Γ green LED. When T_V is complete, the output relays de-energize and the yellow LED (relay energized) turns off.


If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relays de-energize, the yellow LED turns off and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off. Timing of T_V is displayed by the flashing T_V green LED. When T_V is complete, the output relays energize and the yellow LED (relay energized) glows.

Open-circuit principle

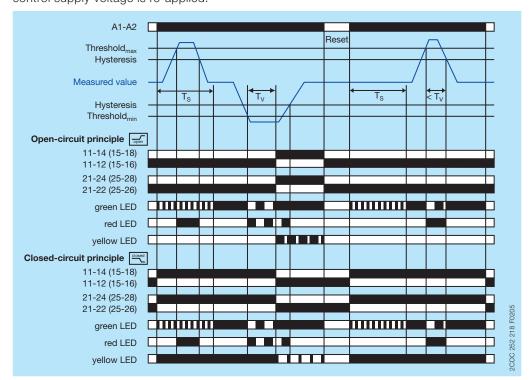
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays energize and the yellow LED (relay energized) flashes $\Pi\Pi\Pi\Pi$.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.


Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relays de-energize and the yellow LED (relays energized) flashes ILILIL.

If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function). If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

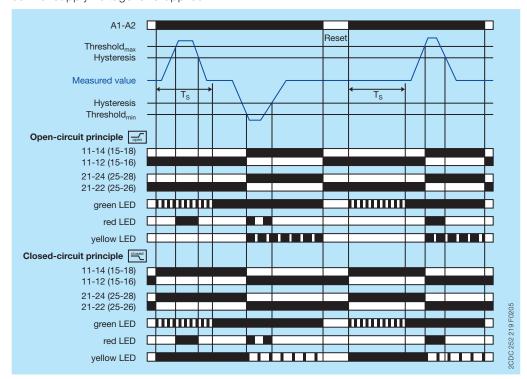
Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relays energize, the yellow LED (relays energized) flashes $\Pi\Pi\Pi\Pi$ and the red LED glows (overcurrent), or flashes $\Pi\Pi\Pi\Pi$ (undercurrent) respectively.

If the measured value decreases below the threshold value $_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold value $_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.


Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value $_{max}$ (>I) or drops below the threshold value $_{min}$ (<I) when T_S is complete, the output relays de-energize, the yellow LED (relays energized) flashes ILILIL and the red LED glows (overcurrent), or flashes ILILIL (undercurrent) respectively.

If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the red LED turns off. The output relays remain de-energized (latching function).

If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Current window monitoring 2x1 c/o (SPDT) contact <a>™ o ON-delayed <a>™ without latching <a>™

Open-circuit principle open

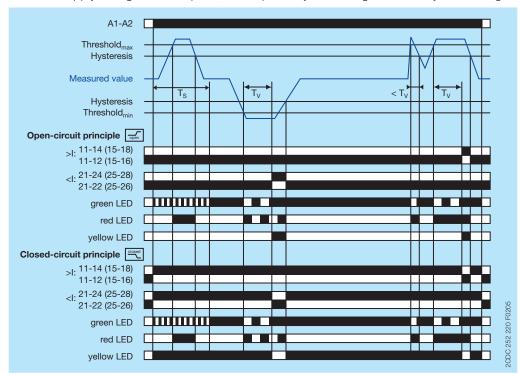
The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows (overcurrent), or flashes Γ (undercurrent) respectively. Timing of T_V is displayed by the flashing Γ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes and the yellow LED (relay energized) glows.

If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the red and yellow LEDs turn off.

If control supply voltage is interrupted, the green LED turns off.


Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows (overcurrent), or flashes $\square \square \square$ (undercurrent) respectively. Timing of T_V is displayed by the flashing $\square \square \square$ green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the yellow LED (relays energized) turns off.

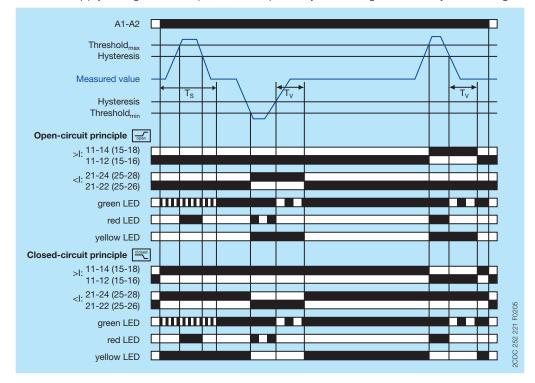
If the measured value decreases below the threshold $value_{max}$ minus the fixed hysteresis (5 %) or exceeds the threshold $value_{min}$ plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, re-energizes, the yellow LED glows and the red LED turns off.

Open-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes, the yellow LED (relays energized) glows and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off. Timing of T_V is displayed by the flashing Π green LED. When T_V is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the yellow LED (relay energized) turns off.


If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes, the yellow LED turns off and the red LED glows (overcurrent), or flashes \square (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the tripping delay T_V starts and the red LED turns off. Timing of T_V is displayed by the flashing $T_V = 12_{16}/14_{18}$ (>I), or $21_{25}-22_{26}/24_{28}$ (<I) respectively, energizes and the yellow LED (relay energized) glows.

O +	the second second second	a/a/(CDDT)		^{2x1 c/o} ON-delayed ≥	المصلحا ملائيين	
Gurreni window	moniiorina zx i	C/O (SPL) [1	contact	Period Characetaved	✓ with fatching	
0 0111 01111 1111101011	mornioning Ext	0, 0 (0. 2.)	00			

Open-circuit principle open

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

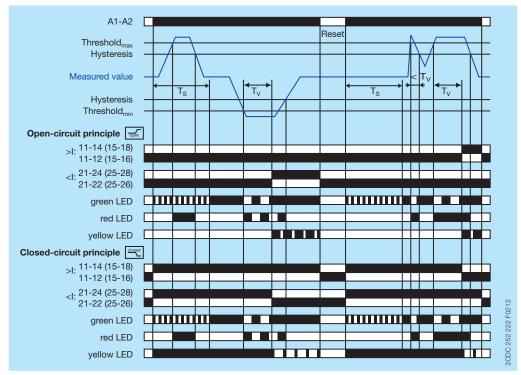
If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes and the yellow LED (relay energized) flashes $\Pi\Pi\Pi\Pi$.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains energized (latching function).

If control supply voltage is interrupted (reset), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, deenergizes and the yellow and green LEDs turn off.

Closed-circuit principle


The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the tripping delay T_V starts and the red LED glows, or flashes \square respectively. Timing of T_V is displayed by the flashing \square green LED.

When T_V is complete and the measured value still exceeds the threshold value_{max} minus the fixed hysteresis (5 %) or is still below the threshold value_{min} plus the fixed hysteresis (5 %), the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes and the yellow LED (relays energized) flashes ILILL.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains de-energized (latching function).

If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Current window monitoring 2x	1 c/o (SPDT) contact 2x1 c/o OFF-delayed	with latching
------------------------------	-------------	-------------------------------	---------------

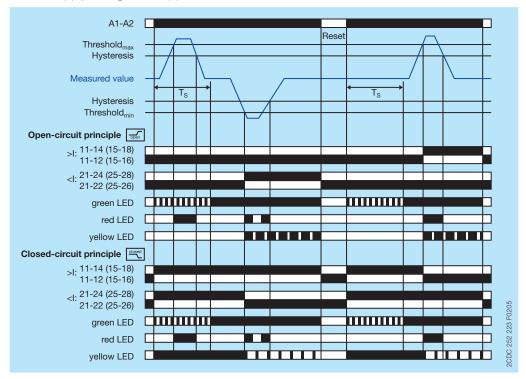
Open-circuit principle open

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.

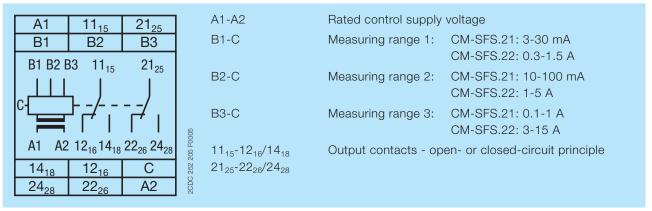
If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, energizes, the yellow LED (relays energized) flashes $\Pi\Pi\Pi\Pi$ and the red LED glows (overcurrent), or flashes $\Pi\Pi\Pi\Pi$ (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains energized (latching function).

If control supply voltage is interrupted (reset), the output relays de-energize and the yellow and green LEDs turn off.


Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S under- or overcurrent is only displayed by glowing (overcurrent) or flashing $\Pi\Pi\Pi\Pi$ (undercurrent) of the red LED.


If the measured value exceeds the threshold value_{max} (>I) or drops below the threshold value_{min} (<I) when T_S is complete, the output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, de-energizes, the yellow LED (relays energized) flashes ILLLL and the red LED glows (overcurrent), or flashes ILLL (undercurrent) respectively.

If the measured value decreases below the threshold value_{max} minus the fixed hysteresis (5 %) or exceeds the threshold value_{min} plus the fixed hysteresis (5 %), the red LED turns off. The output relay 11_{15} - 12_{16} / 14_{18} (>I), or 21_{25} - 22_{26} / 24_{28} (<I) respectively, remains de-energized (latching function).

If control supply voltage is interrupted (reset), the yellow and green LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Electrical connection

Connection diagram

DIP switches

Position	4	3	2	1		1	ON	OFF-delay
ON †	2x1 c/o		closed		2CDC 252 274 F0005	2	OFF ON OFF ON	ON-delay Closed-circuit principle Open-circuit principle Latching function activated Latching function not activated
						4		2x1 c/o (SPDT) contact 1x2 c/o (SPDT) contacts

Technical data

Data at $T_a = 25$ °C and rated values, unless otherwise indicated

Input circuits

Supply circuit	A1-A2						
Rated control supply voltage U _s		24-240 V AC/DC					
Rated control supply voltage U _s tolerance		-15+10%					
Rated frequency	50/60 H	z or DC					
Typical current / power consumption	30 mA /	0.75 W					
	115 V AC	17 mA /	1.9 VA				
	230 V AC	11 mA /	2.6 VA				
Power failure buffering time		20 ms					
Transient overvoltage protection		varistors					
Measuring circuit		B1/B2/E	33-C				
Monitoring function		over- and	d undercu	rrent mo	nitoring		
Measuring method		TRMS m	easuring	orinciple	•	••••••	
Measuring inputs		CM-SFS	.21		CM-SFS	S.22 ¹⁾	
	terminal connection	B1-C	B2-C	В3-С	B1-C	B2-C	B3-C
	measuring range	3-30 mA	10-100 mA	0.1-1 A	0.3-1.5 A	1-5 A	3-15 A
	input resistance	3.3 Ω	1 Ω	0.1 Ω	0.05 Ω	0.01 Ω	0.0025 Ω
	pulse overload capacity t < 1 s	500 mA	1 A	10 A	15 A	50 A	100 A
	continuous capacity	50 mA	150 mA	1.5 A	2 A	7 A	17 A
Threshold value		>I and <	l adjustab	le within	the indica	ted	
		measuring range					
Tolerance of the adjusted threshold value		10% of the range end value					
Hysteresis related to the threshold value		5% fixed					
Measuring signal frequency range		DC / 15 Hz - 2 kHz					
Rated measuring signal frequency range		DC / 50-60 Hz					
Maximum response time	AC	80 ms					
	DC	120 ms					
Accuracy within the rated control supply voltage	e tolerance	Δ U ≤ 0.5 %					
Accuracy within the temperature range		ΔU ≤ 0.0	06%/°C				
Timing circuit							
Start-up delay T _S	0 s or 0.1-30 s adjustable						
Time delay T _V	0 s or 0.1-30 s adjustable						
Repeat accuracy (constant parameters)	±0.07%	of full sca	ıle		••••		
Tolerance of the adjusted time delay		-					
Accuracy within the rated control supply voltage	tolerance	Δ t ≤ 0.5	%			•••••	
Accuracy within temperature range	Δt ≤ 0.06 % / °C						

User interface

Indication of operational states		
Control supply voltage	U/T: green LED	: control supply voltage applied :: start-up delay T _S active :: tripping delay T _V active
Measured value	I: red LED	: overcurrent
Relay status	R: yellow LED	: output relay energized, no latching function : output relay energized, active latching function : output relay de-energized, active latching function

¹⁾ For usage of the current monitoring relays according to UL, following limitations for the measuring circuits are applicable: The load on any single measuring circuit should not exceed 15 A at 51-150 V, 10 A at 151-300 V or 5 A at 301-600 V.

This limitation is only valid for application according to UL and not for IEC applications.

Output circuits

Kind of output	11-12/14	relay, 1st c/o (SPDT) contact
	21-22/24	relay, 2nd c/o (SPDT) contact
		1 x 2 c/o (SPDT) contacts (common signal) or
		2 x 1 c/o (SPDT) contact (separate signal for >I and <i)< td=""></i)<>
		configurable
Operating principle		open- or closed-circuit principle configurable (open-
		circuit principle: output relays energize if the measured
		value exceeds 🗲 / falls below 🔁 the adjusted
		threshold value, closed-circuit principle: output relays
		de-energize if measured value exceeds 🗲 / falls
		below the adjusted threshold value)
Contact material		AgNi
Rated operational voltage U _e		250 V
Minimum switching voltage / Minimum	switching current	24 V / 10 mA
Maximum switching voltage / Maximur	n switching current	250 V AC / 4 A AC
Rated operational current I _e	AC-12 (resistive) at 230 V	4 A
	AC-15 (inductive) at 230 V	3 A
	DC-12 (resistive) at 24 V	4 A
	DC-13 (inductive) at 24 V	2 A
AC rating (UL 508)	utilization category (Control Circuit Rating Code)	B 300
	max. rated operational voltage	300 V AC
	max. continuous thermal current at B 300	5 A
	max. making/breaking	3600/360 VA
	apparent power at B 300	
Mechanical lifetime		30 x 10 ⁶ switching cycles
Electrical lifetime	AC-12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles
Maximum fuse rating to achieve	n/c contact	6 A fast-acting
short-circuit protection	n/o contact	10 A fast-acting
		I.

General data

MTBF			on request		
Duty time			100 %		
Dimensions (W x H x D)		product	22.5 x 85.6 x 103.7 mm	n (0.89 x 3.37 x 4.08 in)	
		dimensions			
		packaging	97 x 109 x 30 mm (3.82	2 x 4.29 x 1.18 in)	
	_	dimensions			
Weight			Screw connection	Easy Connect	
			technology	Technology (Push-in)	
	net weight	CM-SFS.21	0.150 kg (0.331 lb)	0.139 kg (0.306 lb)	
		CM-SFS.22	0.158 kg (0.348 lb)	-	
	gross weight	CM-SFS.21	0.173 kg (0.381 lb)	0.162 kg (0.371 lb)	
		CM-SFS.22	0.180 kg (0.397 lb)	-	
Mounting	•••••		DIN rail (IEC/EN 60715),		
			snap-on mounting with	out any tool	
Mounting position			any		
Minimum distance to other units			10 mm (0.39 in) at measured current > 10 A		
Material of housing	•		UL 94 V-0		
Degree of protection	•	housing	IP50		
		terminals	IP20	••••••	

Electrical connection

		Screw connection technology	Easy Connect Technology (Push-in)
Connecting capacity	fine-strand with(out)	1 x 0.5-2.5 mm ²	2 x 0.5-1.5 mm ²
	wire end ferrule	(1 x 18-14 AWG)	(2 x 18-16 AWG)
		2 x 0.5-1.5 mm ²	
		(2 x 18-16 AWG)	
	rigid	1 x 0.5-4 mm ²	2 x 0.5-1.5 mm ²
		(1 x 20-12 AWG)	(2 x 20-16 AWG)
		2 x 0.5-2.5 mm ²	
		(2 x 20-14 AWG)	
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm	-
		(7.08 lb.in)	

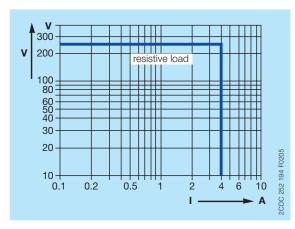
Environmental data

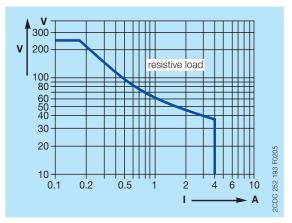
Ambient temperature ranges		-25+60 °C (-13+140 °F)
	storage	-40+85 °C (-40+185 °F)
Damp heat, cyclic (IEC/EN 60068-2-30)		55 °C, 6 cycles
Vibration, sinusoidal		Class 2
Shock		Class 2

Isolation data

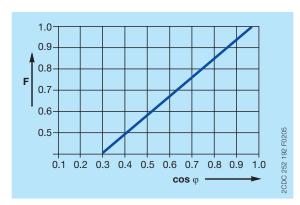
Rated insulation voltage U _i	supply / measuring circuit / output	
	output 1 / output 2	
Rated impulse withstand voltage U _{imp}	supply / measuring circuit / output	6 kV 1.2/50 μs
	output 1 / output 2	· ·
Pollution degree		3
Overvoltage category		III

Standards / Directives

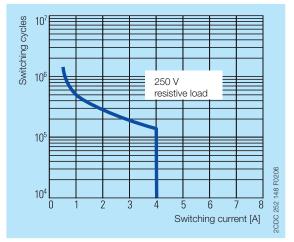

Standards	IEC/EN 60947-5-1, IEC/EN 60255-27, EN 50178
Low Voltage Directive	2014/35/EU
EMC Directive	2014/30/EU
RoHS Directive	2011/65/EU


Electromagnetic compatibility

Interference immunity to		IEC/EN 61000-6-2
electrostatic discharge	IEC/EN 61000-4-2	Level 3
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3
electrical fast transient / burst	IEC/EN 61000-4-4	Level 3
surge	IEC/EN 61000-4-5	Level 3
conducted disturbances, induced by	IEC/EN 61000-4-6	Level 3
radio-frequency fields		
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

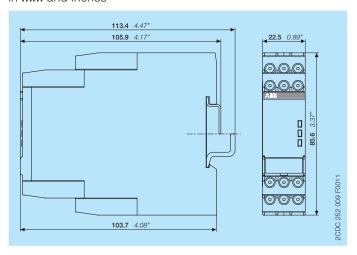

Technical diagrams

Load limit curves



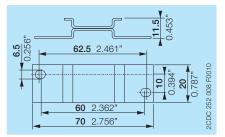
AC load (resistive)

DC load (resistive)

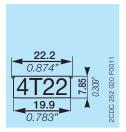


Derating factor F for inductive AC load

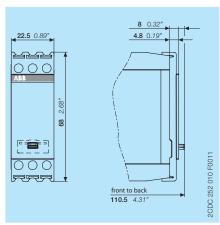
Contact lifetime


Dimensions

in mm and inches



Accessories


in mm and inches

ADP.01 - Adapter for screw mounting

MAR.12 - Marker label for devices with DIP switches

COV.11 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Technical catalogue	2CDC 110 004 C02xx
CM-SFS.2	Instruction manual	1SVC 730 580 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage -> Control Products -> Electronic Relays and Controls -> Single Phase Monitors

CAD system files

You can find the CAD files for CAD systems at

http://abb-control-products.partcommunity.com/portal/portal/abb-control-products

- -> Low Voltage Products & Systems -> Control Products -> Electronic Relays and Controls
- -> Single Phase Monitors -> CM-SFx Single Phase Monitors.

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 10 16 80

69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2016 ABB All rights reserved