Current monitoring relays CM-SRS.M1 For single-phase AC/DC currents

The CM-SRS.M1 is an electronic current monitoring relay that monitors single-phase mains (DC or AC) for over- and undercurrent from 3 mA to 1 A. All devices are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connecting terminals) and the completely tool-free Easy Connect Technology (push-in terminals).

- Monitoring of DC and AC currents (3 mA to 1 A)
- TRMS measuring principle
- One device includes 3 measuring ranges
- Over- or undercurrent monitoring configurable
- Open- or closed-circuit principle configurable
- Latching function configurable
- Hysteresis adjustable (3-30 %)
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- Start-up delay T_S adjustable (0 s; 0.1-30 s)
- Tripping delay T_V adjustable (0 s; 0.1-30 s)
- 2 c/o (SPDT) contacts
- 22.5 mm (0.89 in) width
- 3 LEDs for status indication

Approvals

UL 508, CAN/CSA C22.2 No.14

⑥ GL

[H[EAC

CCC ©

RMRS

Marks

CE CE

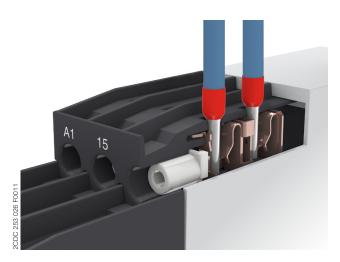
RCM

Order data

Current monitoring relays

Туре	Rated control supply voltage	Connection technology	Measuring ranges	Order code
CM-SRS.M1P	24-240 V AC/DC	Push-in terminals	3-30 mA, 10-100 mA, 0.1-1 A	1SVR740840R0600
CM-SRS.M1S		Screw type terminals		1SVR730840R0600

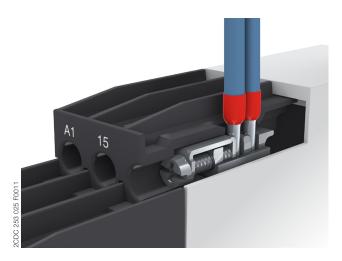
Accessories


Туре	Description	Order code
ADP.01	Adapter for screw mounting	1SVR430029R0100
MAR.12	Marker label for devices with DIP switches	1SVR730006R0000
COV.11	Sealable transparent cover	1SVR730005R0100

Connection technology

Maintenance free Easy Connect Technology with push-in terminals

Type designation CM-xxS.yyP

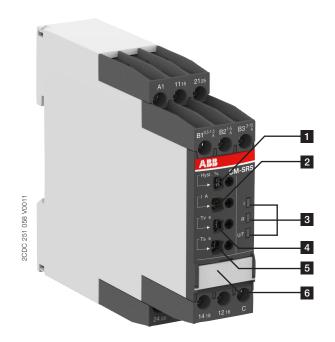


Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connecting terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connecting terminals

Type designation CM-xxS.yyS


Double-chamber cage connecting terminals

- Terminal spaces for different wire sizes
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with push-in terminals and screw connection technology with double-chamber cage connecting terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

- 1 Adjustment of the hysteresis (MIN = Default)
- 2 Adjustment of the threshold value (MIN = Default)
- 3 Indication of operational states

U/T: green LED - control supply voltage/timing

R: yellow LED - relay status

I: red LED - over- / undercurrent

- 4 Adjustment of the tripping delay T_v
- 5 Adjustment of the start-up delay T_S
- 6 DIP switches (see DIP switch functions)

Application

The multifunctional current monitoring relays CM-SRS.M2 are designed for use in single-phase AC and/or DC systems for over- or undercurrent monitoring. The devices operate over an universal range of supply voltages, provide an adjustable start-up as well as tripping delay and work according to the open- or closed-circuit principle.

Operating mode

The CM-SRS.M1 with 2 c/o (SPDT) contacts offer the following 3 selectable measuring ranges: 3-30 mA, 10-100 mA, 0.1-1 A. The measuring range is selected by connecting the monitored wire to the corresponding terminal B1/B2/B3-C.

The units are adjusted with front-face operating controls. The selection of over- \Box or undercurrent monitoring \Box , open- \Box or closed-circuit principle \Box and latching function ON \Box or OFF \Box is made with DIP switches. Potentiometers, with direct reading scale, allow the adjustment of the threshold value I, the hysteresis %, the tripping delay T_V and the start-up delay T_S . The hysteresis % is adjustable within a range of 3 to 30 % of the threshold value and the tripping delay T_V and the start-up delay T_S are adjustable over a range of instantaneous to a 30 s delay. Timing is displayed by a flashing green LED labelled U/T.

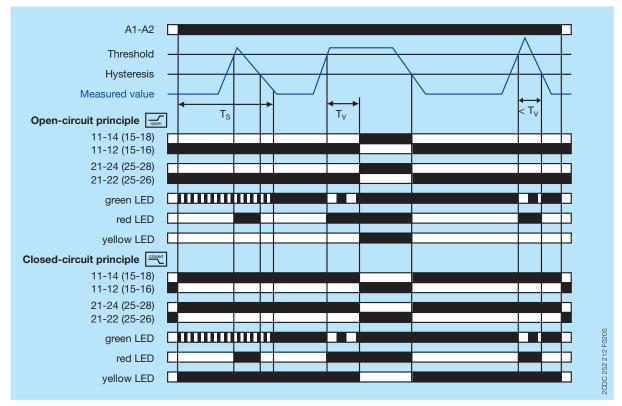
Function diagrams

Overcurrent monitoring without latching

Open-circuit principle open

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S overcurrent is only displayed by glowing of the red LED.

If the measured value exceeds the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED glows. Timing of T_V is displayed by the flashing Γ green LED. When T_V is complete and the measured value still exceeds the threshold value minus the adjusted hysteresis, the output relays energize and the yellow LED (relay energized) glows.


If the measured value decreases below the threshold value minus the hysteresis, the output relays de-energize and the red and yellow LEDs turn off. If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S overcurrent is only displayed by glowing of the red LED.

If the measured value exceeds the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED glows. Timing of T_V is displayed by the flashing Π green LED. When T_V is complete and the measured value still exceeds the threshold value minus the adjusted hysteresis, the output relays de-energize and the yellow LED turns off.

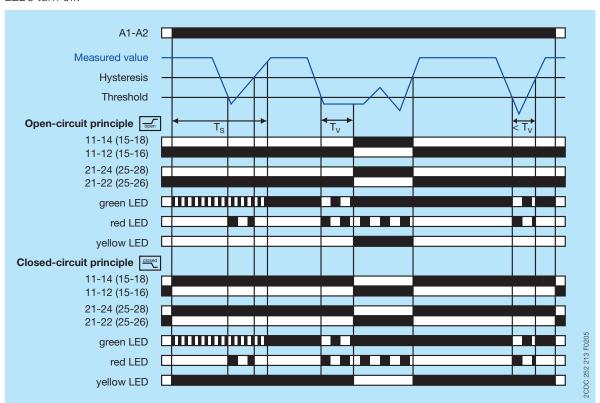
If the measured value decreases below the threshold value minus the hysteresis, the output relays re-energize, the yellow LED glows and the red LED turns off. If control supply voltage is interrupted, the output relays de-energize and the green and yellow LEDs turn off.

Undercurrent monitoring without latching

Open-circuit principle open

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S undercurrent is only displayed by flashing $\Pi\Pi\Pi$ of the red LED.

If the measured value decreases below the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED flashes \square . Timing of T_V is displayed by the flashing \square green LED. When T_V is complete and the measured value is still below the threshold value plus the adjusted hysteresis, the output relays energize and the yellow LED (relays energized) turns off.


If the measured value exceeds the threshold value plus the hysteresis, the output relays de-energize and the red and yellow LEDs turn off. If control supply voltage is interrupted, the green LED turns off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S undercurrent is only displayed by flashing $\Pi\Pi\Pi$ of the red LED.

If the measured value decreases below the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED flashes \square . Timing of T_V is displayed by the flashing \square green LED. When T_V is complete and the measured value is still below the threshold value plus the adjusted hysteresis, the output relays de-energize and the yellow LED turns off.

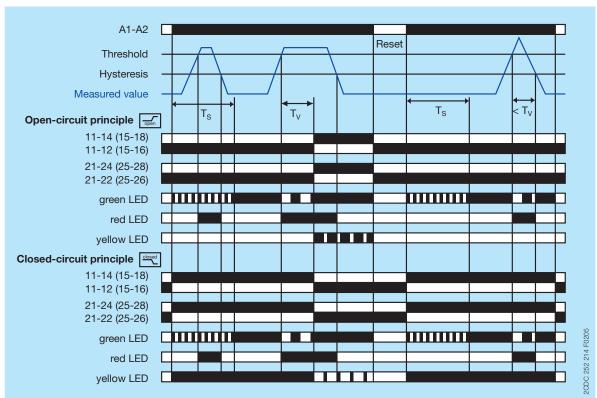
If the measured value exceeds the threshold value plus the hysteresis, the output relays re-energize, the yellow LEDs glows and the red LED turns off. If control supply voltage is interrupted, the output relays de-energize and the green and yellow LEDs turn off.

Overcurrent monitoring with latching

Open-circuit principle open

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S overcurrent is only displayed by glowing of the red LED.

If the measured value exceeds the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED glows. Timing of T_V is displayed by the flashing Γ green LED. When T_V is complete and the measured value still exceeds the threshold value minus the adjusted hysteresis, the output relays energize and the yellow LED (relay energized) flashes Γ


If the measured value decreases below the threshold value minus the hysteresis, the red LED turns off. The output relays remain energized (latching function). If control supply voltage is interrupted (reset), the output relays de-energize and the green and yellow LEDs turn off.

Closed-circuit principle

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S overcurrent is only displayed by glowing of the red LED.

If the measured value exceeds the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED glows. Timing of T_V is displayed by the flashing Γ green LED. When T_V is complete and the measured value still exceeds the threshold value minus the adjusted hysteresis, the output relays de-energize and the yellow LED flashes Γ

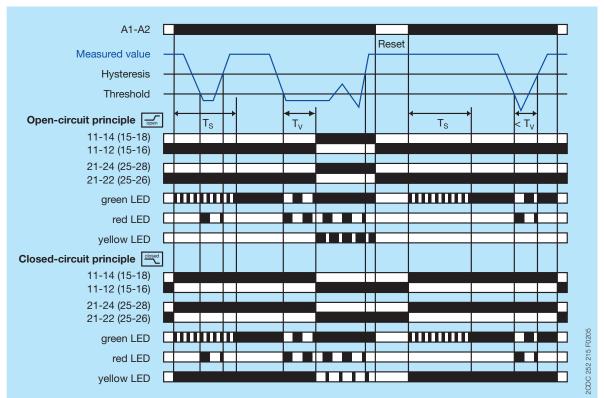
If the measured value decreases below the threshold value minus the hysteresis, the red LED turns off. The output relays remain de-energized (latching function). If control supply voltage is interrupted (reset), the green and yellow LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Undercurrent monitoring with latching

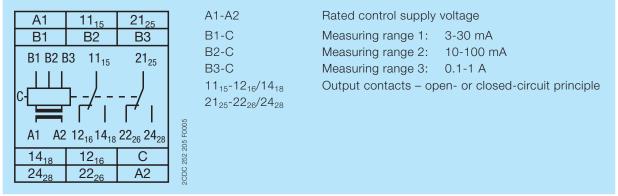
Open-circuit principle open

The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S undercurrent is only displayed by flashing $\Pi\Pi\Pi$ of the red LED.

If the measured value decreases below the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED flashes \square . Timing of T_V is displayed by the flashing \square green LED. When T_V is complete and the measured value is still below the threshold value plus the adjusted hysteresis, the output relays energize and the yellow LED (relays energized) flashes \square \square \square .


If the measured value exceeds the threshold value plus the hysteresis, the red LED turns off. The output relays remain energized (latching function). If control supply voltage is interrupted (reset), the output relays de-energize and the green and yellow LEDs turn off.

Closed-circuit principle


The current to be monitored (measured value) is applied to terminals B1/B2/B3-C. When control supply voltage is applied to terminals A1-A2, the start-up delay T_S begins, the output relays energize and the yellow LED (relays energized) glows. The green LED flashes $\Pi\Pi\Pi\Pi$ during the start-up delay T_S and then turns steady. During the start-up delay T_S undercurrent is only displayed by flashing $\Pi\Pi\Pi$ of the red LED.

If the measured value decreases below the adjusted threshold value, when T_S is complete, the tripping delay T_V starts and the red LED flashes $\square \square \square$. Timing of T_V is displayed by the flashing $\square \square \square$ green LED. When T_V is complete and the measured value is still below the threshold value plus the adjusted hysteresis, the output relays de-energize and the yellow LED flashes $\square \square \square \square$.

If the measured value exceeds the threshold value plus the hysteresis, the red LED turns off. The output relays remain deenergized (latching function). If control supply voltage is interrupted (reset), the green and yellow LEDs turn off. The output relays energize again when control supply voltage is re-applied.

Electrical connection

Connection diagram

DIP switches

Positio	on 4	1	3	2	1		1	ON	Undercurrent monitoring
ON				closed		273 F0005		OFF	Overcurrent monitoring
ON	T						2	ON	Closed-circuit principle
OFF						2 252		OFF	Open-circuit principle
				open		2CDC	3	ON	Latching function activated
								OFF	Latching function not activated
								OFF = Default	

Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

Input circuits

Supply circuit	A1-A2			
Rated control supply voltage U _s	24-240 V AC/E	24-240 V AC/DC		
Rated control supply voltage U _s tolerance	-15+10%			
Rated frequency	50/60 Hz or D0	С		
Typical current / power consumption 24 V DC		30 mA / 0.75 W		
115 V AC	17 mA / 1.9 VA	4		
230 V AC	11 mA / 2.6 VA	4		
Power failure buffering time	20 ms			
Transient overvoltage protection	varistors			
Measuring circuit	B1/B2/B3-C			
Monitoring function		current monitoring o	onfigurable	
Measuring method	TRMS measuri		gurabio	
Measuring inputs terminal connection	B1-C	B2-C	В3-С	
measuring range	3-30 mA	10-100 mA	0.1-1 A	
input resistance	3.3 Ω	1 Ω	0.1 Ω	
pulse overload capacity t < 1 s	500 mA	1 A	10 A	
continuous capacity	50 mA	150 mA	1.5 A	
Threshold value	adjustable with	nin the indicated me	asuring range	
Tolerance of the adjusted threshold value	10% of the range end value			
Hysteresis related to the threshold value	3-30% adjustable			
Measuring signal frequency range	DC / 15 Hz - 2 kHz			
Rated measuring signal frequency range	DC / 50-60 Hz			
Maximum response time AC	80 ms			
DC	120 ms			
Accuracy within the rated control supply voltage tolerance	Δ U ≤ 0.5 %			
Accuracy within the temperature range	ΔU ≤ 0.06 % /	°C		
Timing circuit				
Start-up time T _S	0 s or 0.1-30 s	s adjustable		
Time delay T _V	0 or 0.1-30 s a	adjustable		
Repeat accuracy (constant parameters)	±0.07 % of full	scale	••••••	
Tolerance of the adjusted time delay	-			
Accuracy within the rated control supply voltage tolerance	Δ t ≤ 0.5 %			
Accuracy within temperature range	Δ t ≤ 0.06 % / °	°C	•	

User interface

Indication of operational states		
Control supply voltage	U/T: green LED	: control supply voltage applied : start-up delay T _S active : tripping delay T _V active
Measured value	I: red LED	: overcurrent
Relay status	R: yellow LED	: output relay energized, no latching function : output relay energized, active latching function : output relay de-energized, active latching function

Output circuits

Kind of output	11 ₁₅ -12 ₁₆ /14 ₁₈	relay, 1st c/o (SPDT) contact
	21 ₂₅ -22 ₂₆ /24 ₂₈	relay, 2nd c/o (SPDT) contact
Operating principle		open- or closed-circuit principle configurable (open-
		circuit principle: output relays energize if the measured
		value exceeds 🗲 / falls below 🔁 the adjusted
		threshold value, closed-circuit principle: output relays
		de-energize if measured value exeeds 🛨 / falls
		below the adjusted threshold value)
Contact material		AgNi
Rated operational voltage U _e		250 V
Minimum switching voltage / Minimum	switching current	24 V / 10 mA
Maximum switching voltage / Maximum	n switching current	250 V AC / 4 A AC
Rated operational current I _e	AC-12 (resistive) at 230 V	4 A
	AC-15 (inductive) at 230 V	3 A
	DC-12 (resistive) at 24 V	4 A
	DC-13 (inductive) at 24 V	2 A
AC rating (UL 508)	utilization category (Control Circuit Rating Code)	B 300
	max. rated operational voltage	300 V AC
	max. continuous thermal current at B 300	5 A
	max. making/breaking	3600/360 VA
	apparent power at B 300	
Mechanical lifetime		30 x 10 ⁶ switching cycles
Electrical lifetime	AC-12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles
Maximum fuse rating to achieve	n/c contact	10 A fast-acting
short-circuit protection	n/o contact	10 A fast-acting

General data

MTBF	on request	on request		
Duty time	100 %			
Dimensions (W x H x D)		22.5 x 85.6 x 103.7 mm (0.89 x 3.37 x 4.08 in)		
	packaging dimensions	97 x 109 x 30 mm (3.82 x 4.29 x 1.18 in)		
Weight		Screw connection technology	Easy Connect Technology (Push-in)	
	net weight	0.153 kg (0.337 lb)	0.142 kg (0.313 lb)	
	gross weight	0.175 kg (0.386 lb)	0.164 kg (0.362 lb)	
Mounting		DIN rail (IEC/EN 60715) snap-on mounting with	out any tool	
Mounting position		any		
Material of housing		UL 94 V-0		
Degree of protection	housing			
	terminals	IP20		

Electrical connection

		Screw connection technology	Easy Connect Technology (Push-in)
Connecting capacity	fine-strand with(out)	1 x 0.5-2.5 mm ²	2 x 0.5-1.5 mm ²
	wire end ferrule	(1 x 18-14 AWG)	(2 x 18-16 AWG)
		2 x 0.5-1.5 mm ²	
		(2 x 18-16 AWG)	
	rigid	1 x 0.5-4 mm ²	2 x 0.5-1.5 mm ²
		(1 x 20-12 AWG)	(2 x 20-16 AWG)
		2 x 0.5-2.5 mm ²	
		(2 x 20-14 AWG)	
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm	-
		(7.08 lb.in)	

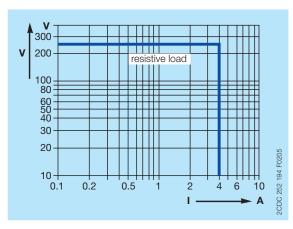
Environmental data

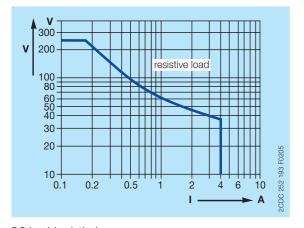
Ambient temperature ranges		-25+60 °C (-13+140 °F)
	storage	-40+85 °C (-40+185 °F)
Damp heat, cyclic (IEC/EN 60068-2-30)		55 °C, 6 cycles
Vibration, sinusoidal		Class 2
Shock		Class 2

Isolation data

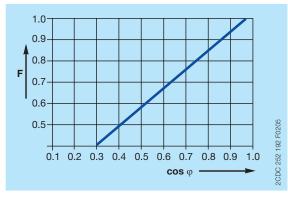
Rated insulation voltage U _i	supply / measuring circuit / output	
	output 1 / output 2	
Rated impulse withstand voltage U _{imp}	supply / measuring circuit / output	6 kV 1.2/50 μs
	output 1 / output 2	· ·
Pollution degree	3	
Overvoltage category		III

Standards / Directives

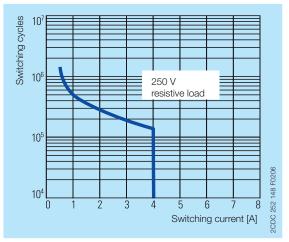

Standards	IEC/EN 60947-5-1, IEC/EN 60255-27, EN 50178	
Low Voltage Directive	2014/35/EU	
EMC Directive	2014/30/EU	
RoHS Directive	2011/65/EU	


Electromagnetic compatibility

Interference immunity to	IEC/EN 61000-6-2	
electrostatic discharge	IEC/EN 61000-4-2	
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3	Level 3
electrical fast transient / burst	IEC/EN 61000-4-4	2010.0
surge	IEC/EN 61000-4-5	
conducted disturbances, induced by	IEC/EN 61000-4-6	Level 3
radio-frequency fields		
Interference emission		IEC/EN 61000-6-3
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B
high-frequency conducted	IEC/CISPR 22, EN 55022	Class B

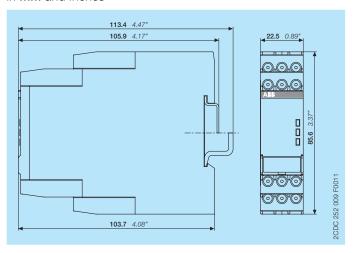

Technical diagrams

Load limit curves



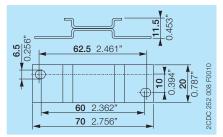
AC load (resistive)

DC load (resistive)



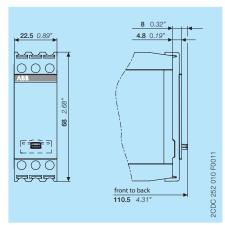
Derating factor F for inductive AC load

Contact lifetime


Dimensions

in mm and inches

Accessories


in mm and inches

ADP.01 - Adapter for screw mounting

MAR.12 - Marker label for devices with DIP switches

COV.11 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Technical catalogue	2CDC 110 004 C02xx
CM-SRS.M	Instruction manual	1SVC 730 620 M0000

You can find the documentation on the internet at www.abb.com/lowvoltage

-> Automation, control and protection -> Electronic relays and controls -> Measuring and monitoring relays.

CAD system files

You can find the CAD files for CAD systems at http://abb-control-products.partcommunity.com

-> Low Voltage Products & Systems -> Control Products -> Electronic Relays and Controls.

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 10 16 80

69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2016 ABB All rights reserved