

IPZ Bushing current transformers

DISTRIBUTION SOLUTIONS

Description

Current transformers, bushing, 1-phase, in resin insulation, are used for supplying measurement instruments and protection circuits of electric energy equipment with the highest permissible system voltages of 12 and 24 kV and frequency of 50 Hz. Range of rated primary currents between 200 and 2000 A.

Design and operating principle

Current transformers type IPZ are 1-phase low power transformers, that operate under conditions similar to short-circuit and transform primary current in a high potential circuit into low potential secondary current, while maintaining accuracy requirements. The basic design components are:

- primary terminals constituting the primary winding
- secondary winding
- magnetic cores

The entire transformer is coated with epoxy resin, which shapes the structure and constitutes the main insulation of the transformer.

Table of variants

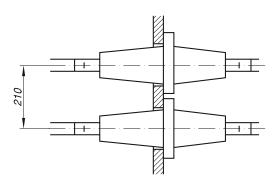
Туре	No. of cores	Rated primary current
IPZ 10 L2H	up to 3	200 - 800 A
IPZ 10 L4H	up to 3	1000 - 2000 A
IPZ 20 L2H	up to 3	200 - 800 A
IPZ 20 L4H	up to 3	1000 - 2000 A

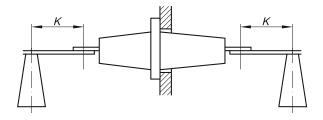
Features

Transformers type IPZ 10, 20 are current transformers, bushing, equipped with:

- flange for wall installation
- primary terminals with flat terminals for connecting buses

Compliance with standards


- IEC 185
- DIN/VDE 0414 Teil 1/01.94
- GOST 7746-89 (only IPZ 10)


Order example

Current transformer type IPZ 20 L2H 800/5/5 A 1 core: 15 VA cl. 0.5 FS10 2 core: 30 VA 5P10

Technical specifications

Туре	Ir	nsulation leve	s	Rated frequency		nort-term rent	Rated primary current	Rated short-time	Rated dynamic	Nearest support	Weight (approx.)
	Highest voltage for equipment	Power frequency withstand voltage (r.m.s)	Lighting impulse withstand voltage (peak)	-	thermal (1s)	dynamic		thermal current	current		
	[kV]	[kV]	[kV]	[Hz]	[kA]	[kA]	[A]	[kA]	[kA]	[mm]	[kg]
IPZ 10	12	28	75				200-800 1000-2000	60 80	150 200	300 0	20
IPZ 20	24	50	125	50	100 x I _{pn}	2.5 x I _{th}	200-800	60 80	150 200	300 0	- 28

Current circuit of the transformer IPZ 10, 20

 $\ensuremath{\mathsf{``K"}}\xspace$ – maximum distance to the nearest support

Extended range of parameters of secondary circuits of the transformers type IPZ 10, 20

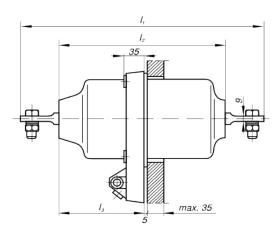
Total n	umber o	of filli	ngs L	Wc =	170 i ≥	≥∑LW															
	200						30	40	50	_				30	60	80	150	_			
	250						30	40	50	_				30	60	70	120		_		
	300			_			30	40	50		_			30	40	60	110	160		_	
	400	30	60	_			25	30	30	60	_			30	35	50	90	130	170	_	
ц	500	30	60	_			25	30	30	60				30	30	35	70	120	170	-	
urre	600	35	60		_		25	30	30	70				30	30	40	60	85	110		_
Rated primary current [A]	750	35	60	80	_		25	30	40	65	90			30	30	35	60	80	100	140	_
orim [/	800	30	50	70			25	30	40	65	80			30	30	40	60	70	95	135	
ted	1000	30	40	60	100		25	25	30	50	70	80	110	30	30	50	90	120	155	-	-
Ra	1200	40	50	60	100		30	30	35	60	70	90	120	35	40	50	80	100	140	-	-
	1250	40	50	60	100		30	30	35	60	70	90	120	35	40	50	80	100	140	-	-
	1500	35	50	60	100	140	30	30	40	60	70	90	120	30	35	40	60	90	110	150	170
	1600	35	50	60	100	140	40	40	40	70	80	100	150	30	35	40	60	90	110	150	170
	2000	50	60	80	110	150	40	40	45	60	90	110	150	30	35	50	60	90	110	150	170
Power	- [VA]	5	10	15	30	45	5	10	15	30	45	60	90	5	10	15	30	45	63	90	120
Accuracy 0.2 0.5 class			5	Ρ																	
Overc param	urrent neters						F	S10						10							

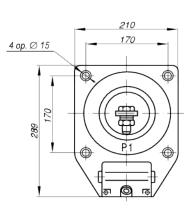
Secondary measurement windings are also made with the rated instrument safety coefficient FS5. Secondary protection windings are also made with the limit accuracy factor AFL = 5; 15; 20; 30. The values of rated secondary currents are: 5 A and 1 A.

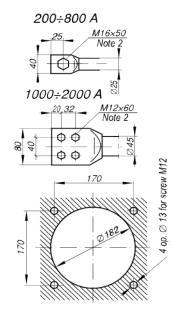
Transformers type IPZ 10, 20 may be made to special order with any set of secondary circuit parameters, provided that the sum of fillings LW indicated in the table of performance does not exceed the total number of fillings LWc = 170. Filling numbers LW of secondary circuits in serial production are given in bold. Transformers with other parameters may be made to special order. Example selection of secondary circuit parameters:

Type IPZ 10 L4H I_{pn} = 1500 A

4


Table of performance


1. 10 VA cl. 0.2 FS 10	LW = 50
2. 15 VA 5P10	LW = 40
3. 15 VA 5P10	LW = 60
	∑LW = 150


Since LWc = 170 > Σ LW = 150 - the transformer can be produced.

Dimensional Drawing

	IPZ	10 L	IPZ 20 L			
U _m [kV]	1	12	24			
I _{pn} [A]	200 - 800	1000 - 2000	200 - 800	1000 - 2000		
Weight [kg] (approx.)	25	30	28	34		
g [mm]	8	12	8	12		
l1 [mm]	510	610	710	810		
l2 [mm]	3	50	550			
l3 [mm]	1	78	260			

Notes:

- 1. Primary terminals: Cu Ag 12 μ m.
- 2. Spring washers: Fe (Cu 3 μ m + Sn 10 μ m) other standardised parts: Ms Ni 10 μ m.
- 3. Secondary terminals: Ms Ni 10 μm.

M6 standardised parts: as per sec. 2.

The deviations of non-tolerated dimensions are within ±3%.

CONTACT US ABB s.r.o. ELDS Brno Videnska 117, 619 00 Brno, Czech Republic Tel.: +420 547 152 021 +420 547 152 854 Fax: +420 547 152 626 E-mail: kontakt@cz.abb.com

NOTE

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document. We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents in whole or in parts - is forbidden without prior written consent of ABB.

Copyright© 2019 ABB All rights reserved

www.abb.com