

Medium voltage products
PowerCube type PB
Preassembled modules and enclosures for constructing medium voltage
switchgear

Table of contents

[^0]
1. General characteristics

PowerCube module type PB/M

PowerCube enclosure type PB/E

General information

PowerCube modules can be used to make metal-clad medium voltage air-insulated switchgear with the same rated current values as the enclosure.
The rated currents of the enclosures refer to versions tested in ABB UniSafe switchgear.
Use of the 4000 A PB3 enclosure allows a switchgear with the same rated current to be made so long as a suitable fan is installed in the rear part of the switchgear itself (consult ABB for further details).
PowerCube units type PB are available in two different versions: $P B / M$ and $P B / E$.
PB / M : complete module that also includes the cable access cubicle, which can also be pre-engineered to house the withdrawable TV compartment.
PB/E: enclosure without cable access compartment thus unable to house the withdrawable VT which, being smaller in size, is more flexible and suitable for creating double-deck switchgear.

PowerCube modules are preassembled and tested in the factory. They can be used to make switchgear conforming to Standards IEC 62271-200, CEI 17-1, IEC 62271-1, CEI 17-6.

They are available with the following specifications:

Rated voltage (kV)	$\ldots 17.5$	24
Rated current (A)	$\ldots 4000$	$\ldots 2500$
Rated short-time withstand current of main circuit (kA)	$\ldots 40 \times 3 \mathrm{~s}$	$\ldots 31.5 \times 3 \mathrm{~s}$

The following apparatus can be installed in PowerCube modules:

- series VD4, VM1 and Vmax vacuum circuit-breakers
- series HD4 gas circuit-breakers
- series V-Contact VSC vacuum contactors
- service trolleys.

All the switching operations are carried out from the front of the module/enclosure.

Protection class

The protection classes of the PowerCube modules comply with IEC 60529 standards.

Interlocks

The PowerCube module is equipped with interlocks so as to prevent incorrect operations that could put the operators' safety at risk and compromise the efficiency and reliability of the actual equipment.
These interlocks inhibit the following operations:

- closing of the circuit-breaker unless the connected or isolated positions are reached
- plugging-out of the closed circuit-breaker
- plugging-in of the closed circuit-breaker
- door opening if the circuit-breaker is plugged in or halfway between being plugged in and isolated
- plugging-in of the circuit-breaker when the compartment door is open
- manual opening of the shutters.

Moreover, if the unit is equipped with an earthing switch:

- closing of the earthing switch if the circuit-breaker is plugged in or halfway between being plugged in and isolated
- plugging-in of the circuit-breaker with the earthing switch closed.
- opening of the feeder compartment door with the earthing switch open (PowerCube PB/M module only)
- opening of the earthing switch with the feeder compartment door open (PowerCube PB/M module only)

Note: some of the aorementioned interlocks are available on request or only available for certain versions.

Quality System

Conforms to ISO 9001 Standards, certified by an independent body.

Test laboratory

Conforms to ISO 45001 Standards, certified by an independent body.

Environmental Management System

Conforms to ISO 14001 Standards, certified by an independent body.

Health and Safety Management System

Conforms to OHSAS 18001 Standards, certified by an independent body.

1. General characteristics

A Circuit-breaker compartment
1 Voltage signalling device (on request - for PowerCube PB/M only)
Circuit-breaker/contactor/trolley
Metal shutters
Lower and upper monoblocs
Earthing switch (on request)
Door
Fan (only for PB3 size 3600 A and 4000 A and for PB5 size 2500 A)

B Feeder compartment
8 TV compartment (on request - for PowerCube PB/M only)
9 Door

Electrical specifications of PowerCube unit

Electrical specifications of the earthing switch (on request)

PowerCube Module/Enclosure			PB1	PB2	PB3	PB4	PB5	PB1/R	PB2/R	PB3/R	PB4/R	PB5/R	PB1/T	PB2/T	PB4/T
Module width		mm	600	750	1000	750	1000	600	750	1000	750	1000	600	750	750
Short-time withstand current / Short-circuit making capacity	25	kA (3s)	\square												
	31.5	kA (3s)	\square												
	40	kA (1s)		\square	\square				\square	\square				\square	
	50	kA (1s)		\square	\square				\square	\square				\square	
Peak current	63	kA	\square												
	79	kA	\square												
	100	kA		\square	\square				\square	\square				\square	
	125	kA		\square	\square				\square	\square				\square	

[^1]
2. Main components

Series HD4 gas circuit-breaker

Series VD4 vacuum circuit-breaker

Series VM1 vacuum circuit-breaker

Circuit-breakers

PowerCube Units can be equipped with HD4 series withdrawable gas circuit-breakers and VD4, VM1 and Vmax series withdrawable vacuum circuit-breakers.
The circuit-breakers come with a trolley that allows them to be racked in and out of the switchgear with the door closed. Both types feature an extremely sturdy, compact, light structure with excellent mechanical strength. The operating mechanism and poles are fixed to the metal structure, which also acts as a support for the mechanism that operates the moving contacts.

Series HD4 gas circuit-breakers

The series HD4 medium voltage circuit-breakers use sulphur hexafluoride gas to extinguish the electric arc and as an insulating medium. The interruption principle of HD4 circuitbreakers is based on the compression and self-blasting technique so as to obtain the best performance for all the current values used and ensure that the arc is extinguished gradually, with no restrikes, switching overvoltage or chopping current. These characteristics provide the circuit-breaker with long electrical life with limited dynamic, dielectric and thermal stress on the installation. The circuit-breaker poles, which form the interrupting part, are life-long sealed pressure devices (Standards IEC 62271-100 and CEI 17.1-1) and are maintenance-free. The mechanical operating device is the trip-free stored energy type with independent opening and closing regardless of the operator's action.

Series VD4 and VM1 vacuum circuit-breakers

VD4, and VM1 circuit-breakers use vacuum as breaking and insulating medium.
Thanks to the advanced manufacturing techniques with which they are made, vacuum circuit-breakers provide a high performance in all operating conditions. The vacuum interrupters are encapsulated in the poles. This construction protects the interrupters from shock, humidity and environmental pollution.
The circuit-breaker poles, which form the interrupting part, are life-long sealed pressure devices (Standards IEC 62271-100 and CEI 17.1-1) and are maintenance-free.
VD4 and eVD4 circuit-breakers feature a mechanical type of operating device while VM1 and eVM1 circuit-breakers have magnetic actuators. Both operating mechanisms are the tripfree stored energy type with independent opening and closing regardless of the operator's action.

Series Vmax/W vacuum circuit-breaker

Series V-Contact vacuum contactor

TV truck

Series Vmax/W vacuum circuit-breakers
Vmax circuit-breakers consist of an insulator block in which three vacuum interrupters are installed. The insulator block and operating mechanism are fixed to a frame. The vacuum interrupters house the contacts are form the circuit-breaker's arcing chamber. Vmax circuit-breakers feature a trip-free mechanical operating device of the stored energy type, with independent opening and closing regardless of the operator's action. The simply designed mechanical operating device is easy to use and can be customized with a wide range of easily and quickly installed accessories. All this makes the apparatus reliable, long-lasting and with little need for maintenance. Vmax circuit-breakers are used in electrical distribution systems to control and protect cables, overhead feeders, transformer and distribution substations, motors, tansformers, generators and capacitator banks. The circuitbreaker's vacuum interrupters, which form the interrupting part, are life-long sealed pressure devices (Standards IEC 62271-100 and CEI 17.1-1) and are maintenance-free.

Series V-Contact VSC vacuum contactors

V-Contact series withdrawable contactors are used in PowerCube PB1 Units up to 12 kV . The contactors are suitable for controlling a.c. devices that need to a considerable number of operations. They consist of a resin monobloc that houses the vacuum interrupters, the moving apparatus, the operating mechanism, the multivoltage feeder and the auxiliary accessories. The monobloc also acts as a support for fuses installation. Fuses of various different sizes can be used according to both DIN and BS Standards thanks to the relative adapters. The type of fuseholder (BS or DIN) must be specified at the time of order. The contactor is prevented from closing if even only one of the fuses is missing. Activation of one of the three fuses automatically opens the contactor. The compact, sturdy construction guarantees extremely long electrical and mechanical life.

TV trucks

PTT/W TV trucks are used in PB/T measuring units.
The TV trucks are supplied without voltage transformers but the customer can order them from $A B B$.
The ABB voltage transformers suitable for these units are:

- ABB TJP-F $4.0(12 \mathrm{kV})$
- ABB TJP-F 5.0 (17 kV)
- ABB TJP-F 6.0 (24 kV).

2. Main components

Service trolleys

The PowerCube range includes all the service trolleys required to complete the switchgear and to enable the service and maintenance operations to be carried out.
The trolleys come in four different versions:

- earthing without making capacity
- earthing with making capacity
- cable test
- isolation.

Note: earthing trolleys with making capacity and isolation are only available as versions derived from the HD4 series.

- Earthing trolley without making capacity "E"

These trolleys provide the same function as earthing switches without making capacity. They are therefore unable to close energized circuits in fault conditions. They are used to provide an additional fixed earth, as required by the running and servicing procedures of the installations, thus a further guarantee for the personnel. Use of these trolleys requires removal of the switching device from the switchgear (circuit-breaker or contactor) and its replacement with the trolley itself. Units pre-engineered for use of the earthing trolley can be equipped with key lock which, if activated, prevents the trolley from racking-in.
This trolley is available in two versions:

- earthing of the main busbar system (E/U series)
- earthing of the power cables (E/L series)

During the racking-in phase, the earthing trolley of the main busbars only activates the upper shutter and earths the contacts connected to the upper branches (and thus to the main busbar system) by means of the switchgear structure. During the racking-in phase, the earthing trolley of the power cables only activates the lower shutter and earths the contacts connected to the lower branches (and thus to the power cables) by means of the switchgear structure. These trolleys can be used in incoming or outgoing units, or in dedicated units.
They can also be used in bus-tie units. In this case, they earth one of the two sides of the main bus-bar system.

- Earthing trolley with making capacity "EM"

These trolleys act in the same way as earthing switches with making capacity. They consist of circuit-breakers with solely upper terminals (earthing of the main bus-bars) or lower terminals (earthing of the power cables). Contacts without terminals are short-citcuited by means of a copper bar earthed by means of the trolley of the device. They maintain all the characteristics of the circuit-breakers, such as full making capacity in energized circuits in fault conditions. They allow closing operations to be rapidly carried out with electrical remote controls.

Use of these trolleys requires removal of the switching device from the switchgear (circuit-breaker or contactor) and its replacement with the trolley itself. Units pre-engineered for use of the earthing trolley can be equipped with key lock which, if activated, prevents the trolley from racking-in.
This trolley is available in two versions:

- earthing of the main busbar system (EM/U series)
- earthing of the power cables (EM/L series)

During the racking-in phase, the earthing trolley of the main busbars only activates the upper shutter and arranges for the contacts connected to the upper branches (and thus to the main busbar system) to be earthed by means of a command. During the racking-in phase, the earthing trolley of the power cables only activates the lower shutter and arranges for the contacts connected to the lower branches (and thus to the power cables) to be earthed by means of a command. These trolleys can be used in incoming or outgoing units, or in dedicated units. They can also be used in bus-tie units. In this case, they earth one of the two sides of the main bus-bar system.

- Power cable test trolley "T"

These trolleys allow insulation tests to be conducted without having to access the power grid cubicle or to disconnect the cables from the switchgear. Use of these trolleys requires removal of the switching device from the switchgear (circuitbreaker or contactor) and its replacement with the trolley. During the racking-in phase, the trolley only lifts the lower shutter and, by means of the connectors with which it is

equipped, it allows the cables of the test apparatus to be connected by means of an insulating rod (the test apparatus and insulating rod are at the customer's charge). This trolley can only be used in incoming/outgoing units.

- Isolation trolley "S"

The isolation trolley allows the upper contacts of the switchgear to be directly connected to the lower ones. The connection is extremely safe since the poles of the circuit-breakers are used to insulate the connection bars from the outside environment. In incoming/outgoing units, the isolation trolley connects the main bus-bar system to the power cables while it connects the two sides of the bus-bar system in bus-tie units. This trolley can be used in switchgear for creating incoming/ outgoing units without circuit-breaker in radial power grids, for cable connections between two switchgear standing in front of eachother, for creating interconnection units and bus-tie/riser units with double insulation (in this case, both units consist of bus-ties, one equipped with circuit-breaker and the other with the isolation trolley). Units pre-engineered for use of the isolation trolley can be equipped with key lock which, if activated, prevents the trolley from racking-in.

2. Main components

Earth switches

PowerCube units type PB can be equipped with an earthing switch. The earthing switch possesses short-circuit making capacity. On request, the opening and closing operations can be inhibited by means of a key lock. The earthing switch is controlled from the front of the module by means of a manual operation appropriately interlocked with the circuit-breaker's position.
The available accessories are listed in the tables from page 22 on.

Fail-safe indication of the earthing switch (open/closed) visible from the front of the enclosure.

Insulator blocks and shutters

The insulator blocks consist of insulating bushings containing the upper and lower power connections of the circuit-breaker compartment, towards the power grid and busbar compartments respectively. TThe shutters are the metal type and are automatically activated when the circuit-breaker moves from the test/isolated position to the connected position and vice versa. They are always equipped with a fail-safe safety device to prevent them from being opened in the manual mode when the circuitbreaker has been removed. Each shutter can be locked by means of two separate padlocks (optional).

Segregating shutters with metal partitions

Insulator blocks (viewed from rear)

TV compartment (PB/M units only)

PowerCube modules can be equipped with a TV compartment with withdrawable voltage transformers.
The voltage transformers are the dedicated type and are protected by fuses. The fuses can be replaced when the switchgear is in service since the fuse compartment is segregated from the other compartments by metal partitions. The TV compartment is available for 750 mm and 1000 mm width PowerCube modules.

I trasformatori di tensione non sono forniti ma possono essere ordinati ad ABB direttamente dal cliente.
I trasformatori di tensione ABB adatti per queste unità sono:

- ABB TJP 4.3 (12 kV)
- ABB TJP 5.3 (17 kV)
- ABB TJP 6.3 (24 kV)

The available accessories are listed in the tables from page 22 on.

3. Available types and apparatus

Notes for use of PowerCube Units type PB

- PowerCube Units type PB1 ... PB5 are recommended for making switchgear units of the incoming, outgoing and bus-tie type.
- PowerCube Units type PR1 ... PR5 are recommended for making switchgear units of the riser, measurement and direct arrival in the busbar type.

Example of a PowerCube Unit type PB1 ... PB5
(front and rear views)

Example of a PowerCube Unit type PR1 ... PR5
(front and rear views)

1 Insulator blocks with contacts for rated current of up to 2500 A .
2 Insulator blocks with contacts for rated current of up to 4000 A .

3 Fan. Pre-installed in PB3 units size 3600 A and PB5 units size 2500 A. A further must be installed in the rear of the switchgear for 4000 A PB3 units (at the customer's charge).

Tab. 1 - VD4 withdrawable circuit-breakers for PowerCube units type PB(")

Rated current of VD4 circuit-breakers ($40{ }^{\circ} \mathrm{C}$) [A]											PowerCube
kV	Isc (kA)	Icw (kA)	$\begin{gathered} W=600 \\ p=150 \\ u / l=205 \\ H=260 \\ \varnothing=35 \end{gathered}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=280 \\ \varnothing=35 \end{gathered}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=280 \\ \varnothing=79 \end{gathered}$	$\begin{aligned} & W=1000 \\ & p=275 \\ & U / /=310 \\ & H=280 \\ & \varnothing=109 \end{aligned}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=325 \\ \varnothing=35 \end{gathered}$	$\begin{aligned} W & =1000 \\ p & =275 \\ u / l & =310 \\ H & =345 \\ \varnothing & =79 \end{aligned}$	Circuit-breaker		
$\begin{aligned} & 12 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \\ & 630 \\ & 630 \end{aligned}$						VD4/P 12.06.16 p150 VD4/P 12.06.20 p150 VD4/P 12.06.25 p150 VD4/P 12.06.32 p150	VD4/P 17.06.16 p150 VD4/P 17.06.20 p150 VD4/P 17.06.25 p150 VD4/P 17.06.32 p150	$\begin{aligned} & \text { PB 1/E } \\ & \text { PB 1/M } \end{aligned}$
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \end{aligned}$						VD4/P 12.12.16 p150 VD4/P 12.12.20 p150 VD4/P 12.12.25 p150 VD4/P 12.12.32 p150	VD4/P 17.12.16 p150 VD4/P 17.12.20 p150 VD4/P 17.12.25 p150 VD4/P 17.12.32 p150	
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$		$\begin{aligned} & 630 \\ & 630 \\ & 630 \\ & 630 \end{aligned}$					VD4/W 12.06.16 p210 VD4/W 12.06.20 p210 VD4/W 12.06.25 p210 VD4/W 12.06.32 p210	VD4/W 17.06.16 p210 VD4/W 17.06.20 p210 VD4/W 17.06.25 p210 VD4/W 17.06.32 p210	$\begin{aligned} & \text { PB 2/E } \\ & \text { PB 2/M } \end{aligned}$
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \\ 40 \\ 50 \end{gathered}$		$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \end{aligned}$					VD4/W 12.12.16 p210 VD4/W 12.12.20 p210 VD4/W 12.12.25 p210 VD4/W 12.12.32 p210 VD4/W 12.12.40 p210	VD4/W 17.12.16 p210 VD4/W 17.12.20 p210 VD4/W 17.12.25 p210 VD4/W 17.12.32 p210 VD4/W 17.12.40 p210	
	$\begin{array}{r} 40 \\ 50 \end{array}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$			$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$				VD4/P 12.12.40 p210 VD4/P 12.12.50 p210	VD4/P 17.12.40 p210 VD4/P 17.12.50 p210	
	$\begin{aligned} & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$			$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \\ & 1600 \\ & 1600 \end{aligned}$				VD4/P 12.16.20 p210 VD4/P 12.16.25 p210 VD4/P 12.16.32 p210 VD4/P 12.16.40 p210 VD4/P 12.16.50 p210	VD4/P 17.16.20 p210 VD4/P 17.16.25 p210 VD4/P 17.16.32 p210 VD4/P 17.16.40 p210 VD4/P 17.16.50 p210	
	$\begin{aligned} & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$			$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \end{aligned}$				VD4/P 12.20.20 p210 VD4/P 12.20.25 p210 VD4/P 12.20.32 p210 VD4/P 12.20.40 p210 VD4/P 12.20.50 p210	VD4/P 17.20.20 p210 VD4/P 17.20.25 p210 VD4/P 17.20.32 p210 VD4/P 17.20.40 p210 VD4/P 17.20.50 p210	
	$\begin{aligned} & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$				$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \end{aligned}$			VD4/P 12.25.20 p275 VD4/P 12.25.25 p275 VD4/P 12.25.32 p275 VD4/P 12.25.40 p275 VD4/P 12.25.50 p275	VD4/P 17.25.20 p275 VD4/P 17.25.25 p275 VD4/P 17.25.32 p275 VD4/P 17.25.40 p275 VD4/P 17.25.50 p275	$\begin{aligned} & \text { PB 3/E } \\ & \text { PB } 3 / \mathrm{M} \end{aligned}$
	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$				$\begin{aligned} & 3150 \\ & 3150 \\ & 3150 \end{aligned}$			VD4/W 12.32.32 p275 VD4/W 12.32.40 p275 VD4/W 12.32.50 p275	VD4/W 17.32.32 p275 VD4/W 17.32.40 p275 VD4/W 17.32.50 p275	
	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{gathered} 31.5 \\ 40 \\ 50 \end{gathered}$				$\begin{aligned} & 3600^{(1)} \\ & 3600^{(1)} \\ & 3600^{(1)} \end{aligned}$			VD4/W 12.32.32 p275 VD4/W 12.32.40 p275 VD4/W 12.32.50 p275	VD4/W 17.32.32 p275 VD4/W 17.32.40 p275 VD4/W 17.32.50 p275	
	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$							VD4/W 12.32.32 p275 VD4/W 12.32.40 p275 VD4/W 12.32.50 p275	VD4/W 17.32.32 p275 VD4/W 17.32.40 p275 VD4/W 17.32.50 p275	
24	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$					$\begin{array}{r} 630 \\ 630 \\ 630 \end{array}$		VD4/P 24.06.16 p210 VD4/P 24.06.20 p210 VD4/P 24.06.25 p210	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { PB 4/E } \\ & \text { PB 4/M } \end{aligned}$
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$					$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \end{aligned}$		VD4/P 24.12.16 p210 VD4/P 24.12.20 p210 VD4/P 24.12.25 p210 VD4/P 24.12.32 p210	$\begin{aligned} & - \\ & \text { - } \\ & \text { - } \end{aligned}$	
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$						$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	VD4/P 24.16.16 p275 VD4/P 24.16.20 p275 VD4/P 24.16.25 p275 VD4/P 24.16.32 p275	- - -	$\begin{aligned} & \text { PB 5/E } \\ & \text { PB 5/M } \end{aligned}$
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$						$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	VD4/P 24.20.16 p275 VD4/P 24.20.20 p275 VD4/P 24.20.25 p275 VD4/P 24.20.32 p275	- - -	
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \end{aligned}$						$\begin{aligned} & 2500^{(2)} \\ & 2500^{(2)} \\ & 2500^{(2)} \\ & 2500^{(2)} \end{aligned}$	VD4/P 24.25.16 p275 VD4/P 24.25.20 p275 VD4/P 24.25.25 p275 VD4/P 24.25.32 p275	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	

W = Width of PowerCube Units type PB.
$P=$ Horizontal center distance between the circuit-breaker poles.
U/L = Distance between the upper and lower terminal.
H = Distance between the lower terminal and earth.
$\varnothing=$ Diameter of the contacts in the insulator block of PowerCube Units type PB.
(") PowerCube units are not designed for the "powered trolley" application for VD4 circuit-breakers.
${ }^{(1)} 3600$ A with fan pre-installed in the PB3 units. A further fan must be installed in the rear of the switchgear for 4000 A versions (at the customr's charge).
${ }^{(2)} 2500$ A with fan pre-installed in the PB5 units.

3. Available types and apparatus

Tab. 2 - HD4 withdrawable circuit-breakers for PowerCube units type PB

Rated current of HD4 circuit-breakers ($40{ }^{\circ} \mathrm{C}$) [A]									Circuit-breaker		PowerCube
kV	Isc (kA)	Icw (kA)	$\begin{gathered} W=600 \\ p=150 \\ u / l=205 \\ H=260 \\ =0=35 \end{gathered}$	$\begin{aligned} W & =750 \\ p & =210 \\ u / l & =310 \\ H & =280 \\ \varnothing & =35 \end{aligned}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=280 \\ \varnothing=79 \end{gathered}$	$\begin{aligned} W & =1000 \\ p & =275 \\ u / l & =310 \\ H & =280 \\ \varnothing & =109 \end{aligned}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=325 \\ \varnothing=35 \end{gathered}$	$\begin{aligned} W & =1000 \\ p & =275 \\ \mathrm{U} / \mathrm{l} & =310 \\ \mathrm{H} & =345 \\ \varnothing & =79 \end{aligned}$			
$\begin{aligned} & \hline 12 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 630 \\ & 630 \\ & 630 \end{aligned}$						HD4/W 12.06.16 p150 HD4/W 12.06.25 p150 HD4/W 12.06.32 p150	HD4/W 17.06.16 p150 HD4/W 17.06.25 p150 HD4/W 17.06.32 p150	$\begin{aligned} & \text { PB 1/E } \\ & \text { PB 1/M } \end{aligned}$
	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \end{aligned}$						HD4/W 12.12.16 p150 HD4/W 12.12.25 p150 HD4/W 12.12.32 p150	HD4/W 17.12.16 p150 HD4/W 17.12.25 p150 HD4/W 17.12.32 p150	
	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \end{aligned}$		$\begin{aligned} & 630 \\ & 630 \\ & 630 \end{aligned}$					HD4/W 12.06.16 p210 HD4/W 12.06.25 p210 HD4/W 12.06.32 p210	HD4/W 17.06.16 p210 HD4/W 17.06.25 p210 HD4/W 17.06.32 p210	$\begin{aligned} & \text { PB 2/E } \\ & \text { PB 2/M } \end{aligned}$
	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \end{aligned}$					HD4/W 12.12.16 p210 HD4/W 12.12.25 p210 HD4/W 12.12.32 p210 HD4/W 12.12.40 p210 HD4/W 12.12.50 p210	HD4/W 17.12.16 p210 HD4/W 17.12.25 p210 HD4/W 17.12.32 p210 HD4/W 17.12.40 p210 HD4/W 17.12.50 p210	
	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{array}{r} 40 \\ 50 \end{array}$			$\begin{aligned} & 1250 \\ & 1250 \end{aligned}$				$-$	-	
	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$			$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \\ & 1600 \\ & 1600 \end{aligned}$				HD4/W 12.16.16 p210 HD4/W 12.16.25 p210 HD4/W 12.16.32 p210 HD4/P 12.16.40 p210 HD4/P 12.16.50 p210	HD4/W 17.16.16 p210 HD4/W 17.16.25 p210 HD4/W 17.16.32 p210 HD4/P 17.16.40 p210 HD4/P 17.16.50 p210	
	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 16 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$			$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \end{aligned}$				HD4/W 12.20.16 p210 HD4/W 12.20.25 p210 HD4/W 12.20.32 p210 HD4/P 12.20.40 p210 HD4/P 12.20.50 p210	HD4/W 17.20.16 p210 HD4/W 17.20.25 p210 HD4/W 17.20.32 p210 HD4/P 17.20.40 p210 HD4/P 17.20.50 p210	
	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$				$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \\ & 2500 \end{aligned}$			HD4/P 12.25.25 p275 HD4/P 12.25.32 p275 HD4/P 12.25.40 p275 HD4/P 12.25.50 p275	$\begin{aligned} & \text { HD4/P 17.25.25 p275 } \\ & \text { HD4/P 17.25.32 p275 } \\ & \text { HD4/P 17.25.40 p275 } \\ & \text { HD4/P 17.25.50 p275 } \end{aligned}$	PB 3/E PB 3/M
	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$				$\begin{aligned} & 3150 \\ & 3150 \\ & 3150 \end{aligned}$			HD4/W 12.32.32 p275 HD4/W 12.32.40 p275 HD4/W 12.32.50 p275	HD4/W 17.32.32 p275 HD4/W 17.32.40 p275 HD4/W 17.32.50 p275	
	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$				$\begin{aligned} & 3600^{(1)} \\ & 3600^{(1)} \\ & 3600^{(1)} \end{aligned}$			HD4/W 12.32.32 p275 HD4/W 12.32.40 p275 HD4/W 12.32.50 p275	HD4/W 17.32.32 p275 HD4/W 17.32.40 p275 HD4/W 17.32.50 p275	
	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 31.5 \\ & 40 \\ & 50 \end{aligned}$				$\begin{aligned} & 4000^{(1)} \\ & 4000^{(1)} \\ & 4000^{(1)} \end{aligned}$			HD4/W 12.32.32 p275 HD4/W 12.32.40 p275 HD4/W 12.32.50 p275	HD4/W 17.32.32 p275 HD4/W 17.32.40 p275 HD4/W 17.32.50 p275	
24	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$					$\begin{aligned} & 630 \\ & 630 \\ & 630 \end{aligned}$		HD4/W 24.06.16 p210 HD4/W 24.06.20 p210 HD4/W 24.06.25 p210	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { PB 4/E } \\ & \text { PB 4/M } \end{aligned}$
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31,5 \\ & 40^{(3)} \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31,5 \\ & 40^{(3)} \end{aligned}$					$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \end{aligned}$		HD4/W 24.12.16 p210 HD4/W 24.12.20 p210 HD4/W 24.12.25 p210 HD4/P 24.12.32 p210 HD4/P 24.12.40 p210	- - - -	
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40^{(3)} \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40^{(3)} \end{aligned}$						$\begin{aligned} & 1600 \\ & 1600 \\ & 1600 \\ & 1600 \\ & 1600 \end{aligned}$	HD4/P 24.16.16 p275 HD4/P 24.16.20 p275 HD4/P 24.16.25 p275 HD4/P 24.16.32 p275 HD4/P 24.16.40 p275	- - - -	$\text { PB } 5 / \Lambda$
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40^{(3)} \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40^{(3)} \end{aligned}$						$\begin{aligned} & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \\ & 2000 \end{aligned}$	HD4/P 24.20.16 p275 HD4/P 24.20.20 p275 HD4/P 24.20.25 p275 HD4/P 24.20.32 p275 HD4/P 24.20.40 p275	$\begin{aligned} & - \\ & - \\ & - \\ & - \\ & - \end{aligned}$	
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40^{(3)} \end{aligned}$	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40^{(3)} \end{aligned}$						$\begin{aligned} & 2500^{(2)} \\ & 2500^{(2)} \\ & 2500^{(2)} \\ & 2500^{(2)} \\ & 2500^{(2)} \end{aligned}$	HD4/P 24.25.16 p275 HD4/P 24.25.20 p275 HD4/P 24.25.25 p275 HD4/P 24.25.32 p275 HD4/P 24.25.40 p275	- - - - -	

W = Width of PowerCube Units type PB.
$P=$ Horizontal center distance between the circuit-breaker poles.
$U / L=$ Distance between the upper and lower terminal.
H = Distance between the lower terminal and earth.
$\varnothing=$ Diameter of the contacts in the insulator block of PowerCube Units type PB.
${ }^{(1)} 3600$ A with fan pre-installed in the PB3 modules. A further fan must be installed in the rear of the switchgear for 4000 A versions (at the customr's charge).
${ }^{(2)} 2500 \mathrm{~A}$ with fan pre-installed in the PB5 modules.
${ }^{(3)}$ Unit without earthing switch, with IP30 door.

Tab. 3 - VM1 withdrawable circuit-breakers for PowerCube units type PB

[^2]${ }^{(1)} 3600 \mathrm{~A}$ with fan pre-installed in the PB3 modules. A further fan must be installed in the rear of the switchgear for 4000 A versions (at the customr's charge).
${ }^{(2)} 2500 \mathrm{~A}$ with fan pre-installed in the PB5 modules.
${ }^{(3)}$ Ask ABB whether available.

3. Available types and apparatus

Tab. 4 - Vmax withdrawable circuit-breakers for PowerCube units type PB

			Rated current of the Vmax circuit-breakers ($40^{\circ} \mathrm{C}$) [A]						Vmax for PowerCube		
kV	Isc (kA) 3s	$\begin{aligned} & \text { Icw } \\ & \text { (kA) } \end{aligned}$	$\begin{aligned} W & =600 \\ p & =150 \\ u / l & =205 \\ H & =260 \\ \varnothing & =35 \end{aligned}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=280 \\ \varnothing=35 \end{gathered}$	$\begin{aligned} W & =750 \\ p & =210 \\ u / l & =310 \\ H & =280 \\ \varnothing & =79 \end{aligned}$	$\begin{aligned} W & =1000 \\ p & =275 \\ u / l & =310 \\ H & =280 \\ \varnothing & =109 \end{aligned}$	$\begin{aligned} & W=750 \\ & p=210 \\ & u / l=310 \\ & H=325 \\ & \varnothing=35 \end{aligned}$	$\begin{aligned} W & =1000 \\ p & =275 \\ U / l & =310 \\ H & =345 \\ \varnothing & =79 \end{aligned}$	Circuit-breaker type	Circuit-breaker type	PowerCube
	$\begin{array}{r} 16 \\ 20 \\ 25 \\ 31.5 \end{array}$	$\begin{array}{r} 16 \\ 20 \\ 25 \\ 31.5 \end{array}$	$\begin{aligned} & 630 \\ & 630 \\ & 630 \\ & 630 \end{aligned}$						Vmax/W 12.06.16 p150 Vmax/W 12.06.20 p150 Vmax/W 12.06.25 p150 Vmax/W 12.06.32 p150	Vmax/W 17.06.16 p150 ${ }^{(1)}$ Vmax/W 17.06.20 p150 ${ }^{(1)}$ Vmax/W 17.06.25 p150(1) Vmax/W 17.06.32 p150 ${ }^{(1)}$	$\begin{aligned} & \text { PB1/E } \\ & \text { PB1/M } \end{aligned}$
	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \end{gathered}$	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \end{gathered}$	$\begin{aligned} & 1250 \\ & 1250 \\ & 1250 \\ & 1250 \end{aligned}$						Vmax/W 12.12.16p150 Vmax/W 12.12.20 p150 Vmax/W 12.12.25 p150 Vmax/W 12.12.32 p150	Vmax/W 17.12.16 p150(1) Vmax/W 17.12.20 p150 ${ }^{(1)}$ Vmax/W 17.12.25 p150 ${ }^{(1)}$ Vmax/W 17.12.32 p150 ${ }^{(1)}$	

W = Width of PowerCube Units type PB.
${ }^{(1)}$ Ask ABB whether available.
P = Horizontal center distance between the circuit-breaker poles.
$\mathrm{U} / \mathrm{L}=$ Distance between the upper and lower terminal.
H = Distance between the lower terminal and earth.
$\varnothing=$ Diameter of the contacts in the insulator block of PowerCube Units type PB.

Tab. 5 - V-Contact withdrawable contactors for PowerCube units type PB

			Rated current of V-Contact circuit-breakers ($40^{\circ} \mathrm{C}$) [A]									
kV	$\begin{aligned} & \mathrm{Isc} \\ & (\mathrm{kA})^{(2)} \end{aligned}$	Icw (kA)	$\begin{aligned} W & =600 \\ p & =150 \\ u / l & =205 \\ H & =260 \\ \varnothing & =35 \end{aligned}$	$\begin{gathered} W=750 \\ p=210 \\ u / /=310 \\ H=280 \\ \varnothing=35 \end{gathered}$	$\begin{aligned} W & =750 \\ p & =210 \\ u / l & =310 \\ H & =280 \\ \varnothing & =79 \end{aligned}$	$\begin{gathered} W=1000 \\ p=275 \\ u / l=310 \\ H=280 \\ \varnothing=109 \end{gathered}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=325 \\ \varnothing=35 \end{gathered}$	$\begin{aligned} W & =1000 \\ p & =275 \\ u / l & =310 \\ H & =345 \\ \varnothing & =79 \end{aligned}$	Contactor	PowerCube		
7.2	$\begin{array}{r} 16 \\ 20 \\ 25 \\ 31.5 \end{array}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 400^{(3)} \\ & 400^{(3)} \\ & 400^{(3)} \\ & 400^{(3)} \end{aligned}$						VSC7/P	$\begin{aligned} & \text { PB 1/E } \\ & \text { PB 1/M } \end{aligned}$		
12	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \end{gathered}$	$\begin{aligned} & 6 \\ & 6 \\ & 6 \\ & 6 \\ & 6 \end{aligned}$	$\begin{aligned} & 400^{(3)} \\ & 400^{(3)} \\ & 400^{(3)} \\ & 400^{(3)} \\ & \hline \end{aligned}$						VSC12/P		(1)	Ask ABB whether available. Guaranteed, using suitable fuses. The rated current is
$\begin{aligned} & \mathrm{W} \\ & \mathrm{P} \\ & \mathrm{U} / \mathrm{L} \end{aligned}$	dth of P rizontal stance b	verCub nter d ween	nits type P ce betwee pper and	he circuiter terminal	eaker poles				een the lowe e contacts in Units type P	and earth. ator block		liable to be derated depending on the rated current of the fuses.

Tab. 6 - Isolation trolleys for PowerCube units type PB

W = Width of PowerCube Units type PB.
P = Horizontal center distance between the circuit-breaker poles.
U/L = Distance between the upper and lower terminal.
H = Distance between the lower terminal and earth.
$\varnothing=$ Diameter of the contacts in the insulator block of PowerCube Units type PB.
(1) 3600 A with fan preinstalled in the PB3 modules. A further fan must be installed in the rear of the switchgear for 4000 A versions (at the customr's charge).
${ }^{(2)} 2500$ A with fan preinstalled in the PB5 modules.

3. Available types and apparatus

Tab. 7 - Earthing trolleys with making capacity for PowerCube units type PB

Tab. 8 - Earthing trolleys without making capacity for PowerCube units type PB

3. Available types and apparatus

Tab. 9 - Cable test trolleys for PowerCube units type PB

kV	Isc (kA)	$\begin{aligned} & \text { Icw } \\ & (k A x 3 s) \end{aligned}$	Rated current of the cable test trolleys ($\mathrm{A}-40^{\circ} \mathrm{C}$)						Cable test trolley	PowerCube
			$\begin{aligned} & W=600 \\ & p=150 \\ & u /=205 \\ & H=260 \\ & \varnothing=35 \end{aligned}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=280 \\ \varnothing=35 \end{gathered}$	$\begin{aligned} W & =750 \\ p & =210 \\ u / l & =310 \\ H & =280 \\ \varnothing & =79 \end{aligned}$	$\begin{aligned} & W=1000 \\ & p=275 \\ & u / l=310 \\ & H=280 \\ & \varnothing=109 \end{aligned}$	$\begin{gathered} W=750 \\ p=210 \\ u / l=310 \\ H=325 \\ \varnothing=35 \end{gathered}$	$\begin{aligned} W & =1000 \\ p & =275 \\ u / l & =310 \\ H & =345 \\ \varnothing & =79 \end{aligned}$		
$\begin{aligned} & 12 \\ & 17.5 \end{aligned}$	$\begin{array}{r} 16 \\ 20 \\ 25 \\ 31.5 \end{array}$	$\begin{array}{r} 16 \\ 20 \\ 25 \\ 31.5 \end{array}$... 1250						T/W 17.12 p150	PB 1/E PB 1/M
	$\begin{aligned} & 16 \\ & 20 \\ & 25 \\ & 31.5 \\ & 40 \\ & 50 \end{aligned}$	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \\ 40 \\ 50 \end{gathered}$... 1250					T/W 17.12 p210 T/W 17.12 p210 ${ }^{(1)}$	$\mathrm{PB} 2 / \mathrm{E}$PB 2/M
	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \\ 40 \\ 50 \end{gathered}$	16 20 25 31.5 40 50			... 2000				T/W 17.20 p 210	
	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \\ 40 \\ 50 \end{gathered}$	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \\ 40 \\ 50 \end{gathered}$				2500			T/P 17.32 p275	$\begin{aligned} & \text { PB 3/E } \\ & \text { PB 3/M } \end{aligned}$
	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \\ 40 \\ 50 \end{gathered}$	$\begin{gathered} 16 \\ 20 \\ 25 \\ 31.5 \\ 40 \\ 50 \end{gathered}$				3150				
24	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$... 1250		T/W 24.12 p210	PB 4/E PB 4/M
	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$... 2000	T/W 24.20 p275	$\begin{aligned} & \text { PB 5/E } \\ & \text { PB 5/M } \end{aligned}$
	$\begin{array}{r} 16 \\ 20 \\ 25 \\ \hline \end{array}$	$\begin{array}{r} 16 \\ 20 \\ 25 \end{array}$...2500 ${ }^{(1)}$	T/P 24.25 p275	
$\begin{aligned} & W= \\ & P= \\ & U / L= \\ & H= \\ & \varnothing= \end{aligned}$	dth of P rizonta stance stance ameter	werCube enter distan ween the ween the the contac	nits type PB ce between pper and lo wer termin s in the insu	the circuit-b er terminal and earth. ator block	eaker poles PowerCub	Units type		1) Ask ABB.		

[^3]Tab. 10 - Trucks for measuring TV type TJP-F X. 3

kV	Isc/low	Dimensions	Truck type	PowerCube
$\begin{aligned} & 12 \\ & 17.5 \end{aligned}$	$\begin{array}{r} 16 \\ 20 \\ 25 \\ 31.5 \end{array}$	$\begin{aligned} & \mathrm{W}=600 \mathrm{~mm} \\ & \mathrm{P}=150 \mathrm{~mm} \\ & \mathrm{~h}=405 \mathrm{~mm} \end{aligned}$	PTT1/W	$\begin{aligned} & \text { PB1/TE } \\ & \text { PB1/TM } \end{aligned}$
$\begin{aligned} & 12 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{W}=750 \mathrm{~mm} \\ & \mathrm{P}=210 \mathrm{~mm} \\ & \mathrm{~h}=590 \mathrm{~mm} \end{aligned}$	PTT2/W	$\begin{aligned} & \text { PB2/TE } \\ & \text { PB2/TM } \end{aligned}$
24	$\begin{array}{r} 16 \\ 20 \\ 25 \\ 31.5 \end{array}$	$\begin{aligned} & \mathrm{W}=600 \mathrm{~mm} \\ & \mathrm{P}=210 \mathrm{~mm} \\ & \mathrm{~h}=635 \mathrm{~mm} \end{aligned}$	PTT4/W	$\begin{aligned} & \text { PB4/TE } \\ & \text { PB4/TM } \end{aligned}$

Tab. 11 - PowerCube Units type PB without apparatus

Characteristics of the enclosure/module				Configuration				
Rated voltage (kV)	Width (mm)	Rated current (A)	Isc $(\mathrm{kA})^{(1)}$	$\begin{gathered} \mathrm{lcw} \\ (\mathrm{kA} \times 3 \mathrm{~s} / 1 \mathrm{~s})^{(1)} \end{gathered}$	Riser or direct arrival with earthing switch	Riser or direct arrival	Measuring unit ${ }^{(2)}$ with withdrawable TV compartment	Measuring unit ${ }^{(2)}$ with withdrawable TV compartment and earthing switch
12-17.5	600	1250	31.5	31.5	PB1/RE - PB1/RM	PB1/RE - PB1/RM	PB1/RE - PB1/RM	PB1/RE - PB1/RM
12-17.5	750	2000	31.5	31.5	PB2/RE - PB2/RM	PB2/RE - PB2/RM	PB2/RE - PB2/RM	PB2/RE - PB2/RM
12-17.5	750	2000	40-50	40-50	PB2/RE - PB2/RM	PB2/RE - PB2/RM	PB2/RE - PB2/RM	PB2/RE - PB2/RM
12-17.5	1000	4000	31.5	31.5	PB3/RE - PB3/RM	PB3/RE - PB3/RM	PB3/RE - PB3/RM	PB3/RE - PB3/RM
12-17.5	1000	4000	40-50	40-50	PB3/RE - PB3/RM	PB3/RE - PB3/RM	PB3/RE - PB3/RM	PB3/RE - PB3/RM
24	750	1250	31.5	31.5	PB4/RE - PB4/RM	PB4/RE - PB4/RM	PB4/RE - PB4/RM	PB4/RE - PB4/RM
24	1000	2500	31.5	31.5	PB5/RE - PB5/RM	PB5/RE - PB5/RM	PB5/RE - PB5/RM	PB5/RE - PB5/RM

[^4]
3. Available types and apparatus

Accessories

1a Signalling contacts for circuit-breaker/contactor in connected/isolated position
The supply always comprises 10 contacts ($5 \mathrm{NO}+5 \mathrm{NC}$ in change-over configuration) for signalling the connected status and another ten for signalling the isolated status. A second group of 10 contacts is available on request as an accessory for both signals.

Specifications		
Rated voltage	V	up to 250 a.c. ($50-60 \mathrm{~Hz}$)/d.c.
Insulation voltage $50 \mathrm{~Hz} / 1 \mathrm{~min}$	V	2000 (towards earth)
Rated current	A	5
Rated thermal current	A	17.5
Breaking capacity of auxiliary contacts		
Resistive load		
48 V (d.c.)	A	3
110 V (d.c.)	A	0.8
220 V (d.c.)	A	0.5
Inductive load: $\mathrm{L} / \mathrm{R}=5 \mathrm{~ms}$		
48 V (d.c.)	A	1.5
110 V (d.c.)	A	0.5
220 V (d.c.)	A	0.3

1b Anti-racking-in lock for circuit-breakers with lower rated current than that of the cubicle or for apparatus not envisaged for the cubicle itself
Consists of a code on the socket that prevents the plug from being inserted if the rated current of the apparatus is incompatible with that of the PowerCube unit.
In order to function correctly, this lock requires a counterpart on the circuit-breaker, which consists of the code on the plug and the locking magnet on the trolley (-RL2). The plug cannot be removed when the apparatus is connected.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \mathrm{PB} / \mathrm{E} \\ & \mathrm{~PB} / \mathrm{M} \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{gathered} 17.5 \\ \mathrm{kV} \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		■		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

1c Lock to prevent racking-in with the door open Prevents withdrawable apparatus from being switched from the withdrawn position to the plugged-in position (and vice versa) with the door open. In order to function correctly, tis lock requires a counterpart on the circuit-breaker.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \text { PB/E } \\ & \text { PB/M } \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

Lock installed in internal part of door

Counterpart on the apparatus

1d Safety device for shutters (fail-safe)
It is a mechanical device that is always supplied and that prevents a person from opening the shutters in the manual mode in the absence of the isolatable apparatus.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
PB/E PB/M	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			■	\square		yes
PB1/R	600	\square	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			■		\square	yes

3. Available types and apparatus

Accessories that must be obligatorily indicated when ordering

2 Withdrawable VT compartment (includes VT trolley)
Can only be applied to module units (PB/M) for which the necessary presetting must be requested.
The voltage transformers (TV) are not included.
Use ABB VT:
TJP 4.3 - 12 kV units
TJP 5.3-17 kV units
TJP 6.3-24 kV units

| PowerCube unit | Rated voltage | Type of Unit | Available |
| :--- | :--- | :--- | :--- | :--- |
| accessory | | | |

3 Earthing switch ST/E with making capacity

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \text { PB/E } \\ & \text { PB/M } \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \text { kV } \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	■	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	■	\square			\square	yes
PB2/R	750	\square	\square			\square	yes
PB3/R	1000	\square	\square			\square	yes
PB4/R	750			\square		\square	yes
PB5/R	1000			\square		\square	yes
PB1/T	600	■	\square			\square	yes
PB2/T	750	■	\square			\square	yes
PB4/T	750			\square		\square	yes

4 Key locks on earthing switches
Two locks are available when the earthing switch is required:
a) Key lock released when switch is open
b) Key lock released when switch is closed

Only one of the two locks or both may be ordered.
The application can be supplied with a reinforced key on request.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \mathrm{PB} / \mathrm{E} \\ & \mathrm{~PB} / \mathrm{M} \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	yes
PB2/R	750	\square	\square			\square	yes
PB3/R	1000	\square	\square			\square	yes
PB4/R	750			\square		\square	yes
PB5/R	1000			\square		\square	yes
PB1/T	600	\square	\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \mathrm{PB} / \mathrm{E} \\ & \mathrm{~PB} / \mathrm{M} \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	yes
PB2/R	750	\square	\square			\square	yes
PB3/R	1000	\square	\square			\square	yes
PB4/R	750			\square		\square	yes
PB5/R	1000			\square		\square	yes
PB1/T	600	\square	\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

Rated voltage		
d.c.	V	$24-30-48-60-110-125-220-250$
a.c. 50 Hz	V	$110-220$
a.c. 60 Hz	V	$110-220$
Rated power		
d.c.	W	10.5 ± 1.5
a.c.	VA	20 ± 3

3. Available types and apparatus

6 Auxiliary contacts for the earthing switch Units equipped with earthing switches are available:
a) Pack of 5 auxiliary contacts
b) Pack of 10 auxiliary contacts.

The customer can easily change the settings of the auxiliary contacts from normally open to normally closed and vice versa.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \text { PB/E } \\ & \text { PB/M } \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	yes
$\mathrm{PB} 2 / \mathrm{R}$	750	\square	\square			\square	yes
PB3/R	1000	\square	\square			\square	yes
PB4/R	750			\square		\square	yes
$\mathrm{PB5} / \mathrm{R}$	1000			\square		\square	yes
PB1/T	600	\square	\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

Specifications		
Rated voltage	V	24-500 a.c. ($50-60 \mathrm{~Hz}$)/d.c.
Insulation voltage $50 \mathrm{~Hz} / 1 \mathrm{~min}$	V	2500
Rated thermal current	A	10
Breaking capacity of auxiliary contacts		
500 V (a.c. $50 / 60 \mathrm{~Hz}$); cos=0.4	A	5
220 V (a.c. $50 / 60 \mathrm{~Hz}$); cos=0.4	A	10
220 V (d.c.); L/R=10 ms	A	1
Number of operations	op/N ${ }^{\circ}$	8

7 Circuit-breaker anti-racking-in lock
(the apparatus cannot be switched from the isolated position to the racked-in position when the key has been removed).

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \text { PB/E } \\ & \text { PB/M } \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{gathered} 17.5 \\ k V \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	■			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

8 Voltage signalling lamps (VPIS)
These lamps indicate when the medium voltage side is being energized. They can be pre-assembled on PB/M modules with the appropriate presetting while for PB/E enclosures and PB/F fixed parts, they can be supplied loose for assembly in instrument compartments at the customer's charge.
The signal can be transmitted to the lamps by means of post insulators with capacitive sockets, by combisensors or current transformers.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \text { PB/E } \\ & \text { PB/M } \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	-	-		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	yes
PB2/R	750	\square	\square			\square	yes
PB3/R	1000	-	■			\square	yes
PB4/R	750			\square		\square	yes
PB5/R	1000			\square		\square	yes
PB1/T	600		\square			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

9 Opening or closing operations with the door closed This accessory can be supplied for circuit-breakers with mechanical control. It consists of either the sole opening button or the opening and closing button. This accessory requires different specific doors for VD4 or HD4 circuitbreakers. A specific door with an opening where a lever can be inserted for emergency operations is available for VM1 and eVM1 circuit-breakers and for V-Contact VSC/P contactors. This accessory is not available for 50 kA VD4 circuit-breakers.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \text { PB/E } \\ & \text { PB/M } \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{gathered} 17.5 \\ \mathrm{kV} \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	-	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	no
PB2/T	750	■	\square			\square	no
PB4/T	750			\square		\square	no

3. Available types and apparatus

10 Contacts for signalling when earthing trolleys are racked in
Signal when the earthing trolley is in the racked-in position. Two kits are available:
a) Group of 5 contacts
b) Group of 10 contacts

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \mathrm{PB} / \mathrm{E} \\ & \mathrm{~PB} / \mathrm{M} \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{gathered} 17.5 \\ \mathrm{kV} \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	■	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	no
PB2/T	750	\square	\square			\square	no
PB4/T	750			\square		\square	no

Specifications:		
Rated voltage	V	up to 250 a.c. ($50-60 \mathrm{~Hz}$)/d.c.
Insulation voltage $50 \mathrm{~Hz} / 1 \mathrm{~min}$	V	2000 (towards earth)
Rated current	A	5
Rated thermal current	A	17.5
Breaking power of auxiliary contacts		
Resistive load		
48 V (d.c.)	A	3
110 V (d.c.)	A	0.8
$220 \vee$ (d.c.)	A	0.5
Inductive load: L/R $=5 \mathrm{~ms}$		
48 V (d.c.)	A	1.5
110 V (d.c.)	A	0.5
220 V (d.c.)	A	0.3

11 Electromechanical door lock
The lock only allows the door to be opened if the relative coil is energized.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \text { PB/E } \\ & \text { PB/M } \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{gathered} 17.5 \\ \text { kV } \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	yes
PB2/T	750	■	\square			\square	yes
PB4/T	750			\square		\square	yes

Rated voltage
d.c.
a.c. 50 Hz
a.c. 60 Hz

Rated power

d.c.	W	10.5 ± 1.5
	VA	20 ± 3

Accessories that can be installed at the customer's charge

12 Anti-condensation heaters

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \mathrm{PB} / \mathrm{E} \\ & \mathrm{~PB} / \mathrm{M} \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{gathered} 17.5 \\ \mathrm{kV} \end{gathered}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	yes
PB2/R	750	\square	\square			\square	yes
PB3/R	1000	\square	\square			\square	yes
PB4/R	750			\square		\square	yes
PB5/R	1000			\square		\square	yes
PB1/T	600	\square	■			\square	yes
PB2/T	750	\square	\square			\square	yes
PB4/T	750			\square		\square	yes

Rated voltage

a.c. 50 Hz	V	$110-220$
a.c. 60 Hz	V	$110-220$
Rated power	W	150 ± 10

13 Shutter padlocks
Can be fitted to the upper, lower shutters, or both.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \mathrm{PB} / \mathrm{E} \\ & \mathrm{~PB} / \mathrm{M} \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	■	-			\square	no
PB2/R	750	\square	\square			-	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600		\square			\square	yes
PB2/T	750		\square			\square	yes
PB4/T	750			\square		■	yes

3. Available types and apparatus

14 Key lock to prevent earthing troller from being racked-in
Available in kits with two locks:
a) Key lock for earthing trolley with upper insulating bushings
b) Key lock for earthing trolley with lower insulating bushings.

PowerCube unit		Rated voltage			Type of Unit		Available accessory
$\begin{aligned} & \mathrm{PB} / \mathrm{E} \\ & \mathrm{~PB} / \mathrm{M} \end{aligned}$	Width (mm)						
		$\begin{aligned} & 12 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 17.5 \\ & \mathrm{kV} \end{aligned}$	$\begin{aligned} & 24 \\ & \mathrm{kV} \end{aligned}$	Bus tie/ incoming/ outgoing	Direct incoming/ riser/ measurements	
PB1	600	\square	\square		\square		yes
PB2	750	\square	\square		\square		yes
PB3	1000	\square	\square		\square		yes
PB4	750			\square	\square		yes
PB5	1000			\square	\square		yes
PB1/R	600	\square	\square			\square	no
PB2/R	750	\square	\square			\square	no
PB3/R	1000	\square	\square			\square	no
PB4/R	750			\square		\square	no
PB5/R	1000			\square		\square	no
PB1/T	600	\square	\square			\square	no
PB2/T	750	\square	\square			\square	no
PB4/T	750			\square		\square	no

15 Earth switch operating lever
1 is supplied per confirmation or 1 per group of enclosures for the same confirmation position. Extra levers are supplied o request as accessories. Can be applied to any PowerCube equipped with earth switch.

16 Lifting bolts
Allow the module to be lifted when positioned at its sides. Can be applied to any PowerCube PB/M module.

18 Circuit-breaker lifting and transporting unit
Allows the withdrawable apparatus to be lifted for insertion into the PowerCube unit. The sole lifting troller, the sole carrier plate or the two pre-assembled items can be ordered.
a) Carrier plate for lifting trolley
b) Lifting trolley
c) Complete kit (plate installed on trolley).

19 Padlock on earth switch
This is fitted to the operating seat of the earth switch and prevents this latter from being operated by means of a padlock.

3. Available types and apparatus

20 Emergency operating lever for V-Contact VSC contactors
This operating lever allows the contactor to be opened in an eergency if the specific door has been requested.

21 Rear fan to install at rear of switchgear When installed according to the instructions in the PowerCube manual, this fan allows panels with 4000 A rated current to be made in 3600 A PowerCube PB3 enclosures.

4. Overall dimensions and weights

Type PB/E units

Type PB/RE units

Module	Rated voltage [kV]	Rated current [A]	Isc Icw [kA]	Dimension table	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} B \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ {[\mathrm{~mm}]} \end{gathered}$	Weight $[\mathrm{kg}]^{(1)}$
PB1/E	12	630-1250	31.5	1VCD003369	600	1016	1120	180
	17.5	630-1250	31.5	1VCD003369	600	1016	1120	
PB2/E	12	630... 2000	31.5	1 VCD003370	750	1016	1120	200... 240
	12	1250... 2000	40-50	1 VCD003370	750	1016	1120	
	17.5	630... 2000	31.5	1 VCD003370	750	1016	1120	
	17.5	1250... 2000	40-50	1 VCD003370	750	1016	1120	
PB3/E	12-17.5	2500	31.5	1VCD003371	1000	1030	1120	300
	12-17.5	3150	31.5	1VCD003372	1000	1030	1120	320
	12-17.5	3600... 4000	31.5	1VCD003373	1000	1030	1120	350... 380
	12-17.5	2500	40-50	1VCD003371	1000	1030	1120	300
	12-17.5	3150	40-50	1VCD003372	1000	1030	1120	320
	12-17.5	3600-4000	40-50	1VCD003373	1000	1030	1120	350... 380
PB4/E	24	630-1250	31.5	1 VCD003374	750	1246	1230	250
PB5/E	24	1600-2000	31.5	1VCD003375	1000	1246	1230	310
	24	2500	31.5	1VCD003376	1000	1246	1230	340
PB1/RE	17.5	not applicable	31.5	1 VCD003377	600	$1016^{(2)}$	1120	165
PB2/RE	17.5		31.5	1VCD003378	750	$1016^{(2)}$	1120	$\begin{aligned} & 165 \ldots 215 \\ & 165 \ldots 215 \end{aligned}$
	17.5		40-50	1VCD003378	750	$1016^{(2)}$	1120	
PB3/RE	12-17.5		31.5	1VCD003379	1000	1030 ${ }^{(2)}$	1120	270
	12-17.5		40-50	1 VCD003379	1000	1030(2)	1120	270
PB4/RE	24		31.5	1 VCD003380	750	$1246{ }^{(2)}$	1230	215
PB5/RE	24		31.5	1VCD003381	1000	$1246^{(2)}$	1230	250
PB1/TE	12-17.5	not applicable	31.5	1VCD003636	600	1016	1120	165
PB2/TE	12-17.5		40-50	1VCD003637	750	1016	1120	200
PB4/TE	24		31.5	1VCD003638	750	1246	1230	220

${ }^{(1)}$ Weight without earth switch.
${ }^{(2)}$ Dimension with earth switch applied.

4. Overall dimensions and weights

Type PB/M units

Type PB/RM units

Module	Rated voltage [kV]	Rated current [A]	Isc Icw [kA]	Dimension table	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} B \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ {[\mathrm{~mm}]} \end{gathered}$	Weight $[\mathrm{kg}]^{(1)}$
PB1/M	12	630-1250	31.5	1 VCD000023	600	1016	1680	200
	17.5	630-1250	31.5	1VCD000028	600	1016	1680	
PB2/M	12	630... 2000	31.5	1VCD000024	750	1016	1680	220... 260
	12	1250... 2000	40-50	1VCD000027	750	1016	1680	
	17.5	630... 2000	31.5	1VCD000029	750	1016	1680	
	17.5	1250... 2000	40-50	1VCD000030	750	1016	1680	
PB3/M	12-17.5	2500	31.5	1VCD000025	1000	1030	1680	320
	12-17.5	3150	31.5	1VCD000026	1000	1030	1680	344
	12-17.5	3600... 4000	31.5	1VCD000043	1000	1030	1680	$370 \ldots 400$
	12-17.5	2500	40-50	1VCD000037	1000	1030	1680	320
	12-17.5	3150	40-50	1VCD000038	1000	1030	1680	344
	12-17.5	3600-4000	40-50	1VCD000039	1000	1030	1680	370... 400
PB4/M	24	630-1250	31.5	1VCD000031	750	1246	1745	270
PB5/M	24	1600-2000	31.5	1VCD000032	1000	1246	1745	330
	24	2500	31.5	1VCD000044	1000	1246	1745	360

Module	Rated voltage [kV]	Rated current [A]	Isc Icw [kA]	Dimension table	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} B \\ {[\mathrm{~mm}]^{(2)}} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ {[\mathrm{~mm}]} \end{gathered}$	Weight $[\mathrm{kg}]^{(1)}$
PB1/RM	17.5	not applicable	31.5	1VCD000033	600	1016	1745	185
PB2/RM	12		31.5	1VCD000034	750	1016	1745	185... 235
	17.5		40-50	1 VCD000040	750	1016	1745	185... 235
PB3/RM	12-17.5		31.5	1VCD000041	1000	1030	1680	290
	12-17.5		40-50	1 VCD000042	1000	1030	1680	290
PB4/RM	24		31.5	1VCD000035	750	1246	1745	270
PB5/RM	24		31.5	1 VCD000036	1000	1246	1745	270
PB1/TM	12-17.5	not applicable	31.5	1VCD003639	600	1016	1745	185
PB2/TM	12-17.5		40-50	1 VCD003640	750	1016	1745	185... 235
PB4/TM	24		31.5	1VCD003641	750	1246	1745	270

[^5]
5. Wiring diagrams

Application diagrams
*C)
\square

21

*B)				
22				

*D)

5. Wiring diagrams

Application diagrams

E)

5. Wiring diagrams

Reference designations

(in compliance with standard IEC 61346-2 and technical standard ABB 2NBA000001).

Designation	Description
\square	Figure number of the diagram
-BC	Current transformer
-BE	Auxiliary contacts of the earth switch (see note B)
-BT4	Contacts on switchgear for signalling trolley in racked-in position (see note C)
-BT5	Contacts on switchgear for signalling trolley in isolated position (see note C)
-BW1	Front fan position contact
-BW2	Rear fan position contact
-CC1	Capacitor for front fan
-CC2	Capacitor for rear fan
-KA3	Current metering relay
-KA4	Auxiliary contact for front fan operation
-KA5	Auxiliary contact for rear fan operation
-KT1, -KT2	Timed auxiliary relays for forced front fan operation
-KT3, -KT4	Timed auxiliary relays for forced rear fan operation
-KT5	Timed auxiliary relay for forced front ventilation failure alarm signal
-KT6	Timed auxiliary relay for forced rear ventilation failure alarm signal
-MV1	Front fan (see note E)
-MV2	Rear fan (see note E)
-PA	Ammeter
-PR1	Red lamp for forced front ventilation failure alarm signal
-PR2	Red lamp for forced rear ventilation failure alarm signal
-PT1	White lamp for forced front ventilation operation alarm signal
-PT2	White lamp for forced rear ventilation operation alarm signal

-RL3
-RL4
-SL
-SU3
-SU3
-XF1
-XF2
-XF3

Figure
Fig. 1
Fig. 3

Fig. 20

Fig. 21
Fig. 22
Fig. 23

Fig. 41
Fig. 43

Electromechanical lock on earth switch closing operation
Locking magnet. Mechanically inhibits door opening if de-energized
Contact for locking earth switch operation
Delay button for enabling earth switch operation (maximum permissible delay 1 minute)
Door release button
Connector for disconnecting the forced front ventilation circuits
Connector for the forced rear ventilation circuits
Connector for the forced front ventilation circuits

Description

Electrical signalling contacts for switch in plugged-in position (see note C)
Electrical signalling contacts for switch in isolated position (see note C)
Circuit of electromechanical lock on earth switch closing operation: the operation is only permitted with coil -RL3 energized First pack of auxiliary contacts of the earth switch (see note B)
Second pack of auxiliary contacts of the earth switch (see note B)
Circuit of electromechanical door opening lock: opening is only permitted with coil -RL3 energized
Forced front ventilation circuit
Forced front and rear ventilation circuit

Notes

A) The switchgear comes solely equipped with the specific applications in the order confirmation
B) The auxiliary contacts -BE are supplied in the position indicated in the diagram. However, the user can easily convert them from make contacts to break contacts or vice versa.
C) Position contacts -BT4 and BT5 are switch contacts. This means that the make contact and the break contact belonging to the same position contact cannot be powered with different voltage values.
D) When fig. 23 is required, the contact -BT5 (terminals $51-52-53-54$) of fig. 3 is not available
E) The fans must activate when at least one phase exceeds the following thresholds for 60 seconds:

- UniSafe 12-17.5 kV 3600 A = 3000 A (front fan)
- UniSafe 12-17.5 kV 4000 A $=3000$ A (front fan) and 3600 A (rear fan)
- UniSafe 24 kV 2500 A = 2250 A (front fan).

The fans must disconnect when the current of all three phases is lower than the following values for 300 seconds:

- UniSafe 12-17.5 kV 3600 A = 2900 A (front fan)
- UniSafe 12-17.5 kV 4000 A $=2900$ A (front fan) and 3500 A (rear fan)
- UniSafe 24 kV $2500 \mathrm{~A}=2150 \mathrm{~A}$ (front fan).

Symbols (in compliance with Standards IEC 60617 and CEI EN 60617)

Mechanical, pneumatic or hydraulic connection

Socket and plug (female and male)
Earth
(general symbol)

Earth, frame

Conductor connections

Terminal

Delayed movement (in the movement of the arc towards its center)

Pushbutton actuaor

Earth, fram

Capacitor (general symbol)

Semiconductor diode (general symbol)

Single-phase asynchronous otor, short-circuited rotor, terminals for aux. phase routed outside

Current transformer

Make contact
reak contact (limit)
 (limit)

Position change-over break before make contact (limit)

Control coil (general symbol)

Control coil with two separate windings

Control coil of a slow-releasing relay

Control coil of a slow-operating relay

Lamp (general symbol)

6. Switchgear completion

ABB can also supply the following components to complete the switchgear.
Please consult ABB for further details.

REF 601 switchgear protection device

Relay REF 601 is a device that protects against overcurrents, with tripping curves in compliance with standard IEC 255-3. It protects against overload (51), instantaneous and delayed short-circuits (50-51), instantaneous and delayed homopolar earth faults (50 N and 51 N). It also detects the magnetizing current of a threephase transformer to prevent it from tripping in an untimely way when a transformer switches in (68). elay REF 601 must be energized in order to function. The REF 601 relay can operate with up to 3 inputs from current sensors of the Rogowsky coil type and an input from an external toroidal current transformer. 4 rated current values can be entered via the keyboard: 40, 80, 250, 1250 A .
If the circuit-breaker is equipped with 3 current sensors, the 50 N and 51 N protection functions are accomplished with the vector sum of the phase currents. On the other hand, the external toroidal current transformer must be installed for the 50 N and 51 N functions if 2 current sensors are used. The external toroidal transformer can have either an openable or closed core and any transformer ratio, so long as there is 1 A secondary current.

Specific features of the REF 601 relay:

- Accurate interventions
- Wide setting ranges
- Single and contemporaneous adjustment of the three phases
- No limitation (due to the current sensors) to the rated breaking capacity or to the short-time withstand current of the circuit-breaker
- Local electric operating buttons
- 5 separate indicators: "relay operating", "relay at tripping threshold", "relay tripped", "relay tripped due to phase overcurrent", "relay tripped due to earth fault overcurrent"
- Interface consisting of an LCD display and by "arrow", "enter" and "esc" keys for user-friendly browsing amongst the "measuring", "data recording", "event recording", "settings", "configuration" and "test" menus
- Three user levels: "Operator" (display only, free access), "configurator" (same as the previous level, but with the ability to enter the protection parameters and, if applicable, the communication parameters - access limited by a password), "administrator" (same as the previous level but with the ability to enter the passwords and configure the settings according to the device access limited by a password)
- Continuous display of the current in the most loaded phase and the earth current
- Recording of the values of the currents that caused the device to trip
- Storage of the number of openings caused by the device
- Event recording (storage of the previously described parameters in the last 5 tripping actions of the device) in a non-volatile memory
- On request, version with RS485 serial link, 4 wires MODBUS RTU full duplex protocol
- $24 \ldots 240$ V CA/DC multivoltage feeder.

Relay REF 601 is also available in a specific version, in accordance with standard CEI 0-16 (for the Italian market), with reference to the point where MV energy is delivered to the distribution user.

Voltage transformers

The voltage transformers are insulated in resin and are used for powering measuring devices and protections. They are available for fixed assembly or for istallation on withdrawable trolleys.
They conform to standard IEC 60044-2.
The dimensions normally comply with Standard DIN 42600, while the transformers designed for installation on withdrawable trolleys are the dedicated type.
These transformers can have one or two poles and possess performance and accuracy classes that suit the functional requirements of the instruments to which they are connected. When they are installed on withdrawable trolleys, they are equipped with medium voltage protection fuses. The fuses can be replaced whilst the switchgear is in service.

Current transformers

The current transformers are insulated in resin and are used for powering measuring devices and protections. These transformers can have a wound core or bushing bar with one or more cores and come with performance and accuracy classes that suit the requirements of the installation.

They conform to standard IEC 60044-1.
The dimensions normally comply with standard DIN 42600. The current transformers can also be supplied with a capacitive socket for connection to voltage signalling lamps.

Measuring sensors (for applications with microprocessor protection units)

ABB KEDCD voltage-current combi-sensors

Use of digital technologies for electrical protection and measuring instruments has deeply modified the performance that transformers must provide.
The analog input levels of the instruments have become significantly lower than those of conventional systems.
This is why ABB has introduced a new range of sensors that meets the specifications of the new generation instruments in an optimal way.
The switchgear can be equipped with up to 24 kV ABB KEVCD Block Type sensors.
The current sensors comply with standards IEC 60044-8 (CDV), while the voltage sensors comply with standard IEC 60044-7.
The dimensions normally comply with standard DIN 42600 Narrow Type.
The resin casing can house current sensors and voltage sensors at the same time, or just the current sensor. A capacitive divider is also installed for connection to the voltage signalling lamps.
ABB multifunction units and measuring sensors comply with accuracy class CI.1.

6. Switchgear completion

Current sensor

The current sensor consists of a Rogowski coil without ferromagnetic core, thus unaffected by saturation phenomena. If a core is formed by a uniform winding over a non-magnetic closed core with a constant section, the voltage indiced in the secondary circuit will be directly proportional to the variations in the let-through current. This voltage must be integrated in order to obtain a signal proportional to the current provided. The multifunction devices accomplish this function and use the signal obtained for both the measurements and protections.

Main features of the current sensors

- Linear response over the entire measuring range;
- no saturation;
- no hysteresis;
- one single instrument for both protections and measurements;
- high accuracy class;
- high degree of immunity to electromagnetic disturbances;
- the output signal is a voltage (150 mV) proportional to the current variation over time. The current measurement is obtained by integrating the signal;
- two single coils cover the range from 0 to 3200 rated A;
- the winding can remain open even when the switchgear is under service conditions.

Voltage sensor

The voltage sensor consists of a resistive divider through which the signal is taken. This sensor is also the nonsaturable type and gives a linear response for the entire measuring range.
The output signal is a voltage directly proportional to the primary voltage. The resistive element consists of a bar of ceramic material. Voltage sensors are used at the same time to make measurements and energize the protections.

Main features of the voltage sensors

- Linear response over the entire measuring range;
- no saturation;
- no ferroresonance;
- one single instrument for both protections and measurements;
- high accuracy class;
- high degree of immunity to electromagnetic disturbances;
- the output signal is a voltage directly proportional to the primary voltage;
- the division ratio is 10000/1;
- one single divider covers the range from 0 to 24 rated kV .

Microprocessor-based REF542plus

The REF542plus unit provides all the secondary functions of a unit of the switchgear in a single module with watchdog function.
Thanks to its flexible software, the unit is able to meet the requirements of a vast range of installations: protection, measuring, monitoring and signalling.
The user interface is simple and easy to use.

REF542plus in kits for OEM

The integrated protection and monitoring unit is based on the REF542plus platform, multifunction unit for medium voltage switchgear.
The REF542plus unit includes all the latest innovations in the microelectronics and information technology fields.
The main functions provided by the REF542plus unit are:

- protection
- control
- measuring
- monitoring
- energy quality
- communication.

Thanks to the exceptional flexibility and scalability of this modern unit, all the functions are integrated in a single configurable environment.
Thus dedicated and intelligent solutions can be created with a limited use of wiring in situations where a conventional approach would be costly and inefficient.

Pre-configured solutions based on REF542plus

Some already configured solutions for protecting and monitoring the majority of the common medium voltage applications are described below.
These solutions are based on the REF542plus unit and do not need to be programmed in any way.
The REF542plus unit is supplied already programmed and ready for installation.
All that needs to be done is to enter the parameters of the protections.
The already configured REF542p/us unit can only be ordered as part of the medium voltage kit.
It cannot be sold separately.
The primary part is configured as indicated in the single-line diagram alongside.
The circuit-breaker can be the fixed or plug-in type. The earthing switch is manual. Configurations with a contactor instead of a circuit-breaker are available for motor switching. A certified ATEX version for explosive environments, conforming to directive 94/9/EC, is also available. Please consult ABB.

Note
Specific and customized protection solutions are layouts can also be supplied. Please consult ABB.

Single-line diagram of the primary part

Fuses

Fuses can be supplied for use with the contactor, for protecting lines, motors, capacitors, voltage transformers for measuring functions, etc.
The fuses comply with DIN or BS standards.
Consult technical catalogue 1VCP000049 for the contactorfuse matches and coordination.

Surge arresters

MWD

Over-voltage protective device:

- Transformers
- Motors
- Cables
- Cable sheath.

Medium voltage switchgear:

- Alternating current applications (AC)
- For indoor use.

Technical specifications

Surge arrester against over-voltage with metal oxide resistor without stark-gap (MO surge arresters), enclosure in moulded silicone rubber, grey colour, designed and tested in accordance with standard IEC 60099-4.

Contact us

ABB S.p.A.
ABB SACE Division
Medium Voltage Products
Via Friuli, 4
I-24044 Dalmine
Tel: +39 0356952111
Fax: +39 0356952874
E-mail: info.mv@it.abb.com

ABB AG

Calor Emag Medium Voltage Products
Oberhausener Strasse 33
D-40472 Ratingen
Phone: +49(0)2102/12-1230
Fax: $\quad+49(0) 2102 / 12-1916$
E-mail: powertech@de.abb.com
www.abb.com

The data and illustrations are not binding. We reserve
the right to make modifications following technical developments to the product.
© Copyright 2016 ABB.

[^0]: 2 1. General characteristics
 6 2. Main components
 12 3. Available types and apparatus
 33 4. Overall dimensions and weights
 35 5. Wiring diagrams
 40
 6. Switchgear completion

[^1]: ${ }^{(1)}$ With forced ventilation in the circuit-breaker compartment: a further fan is required at the rear of the switchgear for 4000 A versions.

[^2]: W = Width of PowerCube Units type PB.
 P = Horizontal center distance between the circuit-breaker poles.
 $U / L=$ Distance between the upper and lower terminal.
 H = Distance between the lower terminal and earth.
 $\varnothing=$ Diameter of the contacts in the insulator block of PowerCube Units type PB.

[^3]: W = Width of PowerCube Units type PB.
 Horizontal center distance between the circuit-breaker poles.
 H = Dis
 $\varnothing=$ Diameter of the contacts in the insulator block of PowerCube Units type PB.

[^4]: On earthing switch, if requested.
 ${ }^{(2)}$ The TV cubicle cannot be supplied for any of the PB/RE units or for the PB1/RM unit. Construction is at the customer's charge.

[^5]: ${ }^{(1)}$ Weight without earth switch and without TV compartment.
 ${ }^{(2)}$ Dimension with earth switch applied.

