


INSTRUCTIONS

Ground fault protection systems Performance testing

Table of contents

05	General information
06	Checklist for ground fault performance testing
07 -08	Testing methods
09 -17	Test diagrams for systems with ground fault relays
18 -21	Test diagrams for systems with integral ground fault protection
22 –23	Ground fault protection with ground fault relays
24 –25	Ground fault protection with integral ground fault trips on circuit breaker

General information

The circuit diagrams included in this manual are for illustration of typical applications and are not intended as constructional information. Although reasonable care has been taken in their preparation to assure their technical correctness, no responsibility is assumed by ABB for any consequences of their use.

The devices and arrangements disclosed herein may be covered by patents of ABB or others. Neither the disclosure of any information herein nor the sale of devices by ABB conveys any license under patent claims covering combinations of devices with other devices or elements.

In the absence of any express written agreement to the contrary, ABB assumes no liability for patent infringement arising out of any use of the devices or elements by any purchaser of devices or others.

Purpose

The purpose of this publication is to provide instructions for testing ground fault protection (Ground fault protection) systems in ABB lowvoltage equipment.

These instructions are for use with equipment manufactured by ABB, in accordance with the National Electrical Code, Section 230-95.

NEC 230-95(c) reads as follows:

(c) The ground-fault protection system shall be performance tested when first installed on site. This testing shall be conducted by a qualified person(s) using a test process of primary current injection, in accordance with instructions that shall be provided with the equipment. A written record of this testing shall be made and shall be available to the authority having jurisdiction.

Instructions applicable to

Equipment	ReliaGear SB and LV SG
Circuit breakers	Power, insulated case, and molded case circuit breakers with EntelliGuard TU and and Ekip Dip and Touch/Hi-Touch trip units.
Fusible switch	HPCII with integral ground fault tripping
Ground fault relays & sensors	Ground-Break System or similar ground fault relays and sensors (CT's) used to trip any circuit breaker or switch with a shunt trip.

Testing by qualified personnel

Performance testing of the ground fault protection system should be undertaken only by qualified personnel. Particularly in the tests requiring the use of a high-current test set, it is usually necessary to obtain the services of a qualified testing organization. ABB's Maintenance and Field Services organization is qualified and equipped to provide this testing service.

Checklist for ground fault performance testing

Problems that may be encountered that can prevent	How to check for
proper GROUND FAULT PROTECTION operation	this condition
	By visual inspection.
	By measurement of resistance between
On 3-phase 4-wire systems, the neutral conductor should not have additional grounding connections made downstream from the main	neutral conductor and ground bus.
bonding jumper which must be located in the service entrance	In the high-current tests this condition may
section. (Refer to NEC 250-23). This condition may cause loss of	be the cause if it takes over 150% of ground fault
sensitivity in sensing ground fault current.	current setting to initiate tripping.
Neutral sensor in residual sensor arrangements or with integral Ground fault trip circuit breaker may be installed with incorrect polarity with respect to the associated phase sensors. This will cause false tripping by reading balanced load current as imbalanced and interpreting the error sIgnal as a fault situation.	By visual inspection.
Neutral conductor in a load circuit must pass through a zero-	
sequence sensor in the same direction as the phase conductors. Unbalanced signals cause false tripping.	In the high-current testing the "no-trip" tests will detect this condition.
When a given circuit is monitored by a zero-sequence sensor, none of the conductors shall be omitted from passing through the sensor. Unbalanced signals cause false tripping.	-
	Inspect load cables and grounding connections
An equipment bonding or grounding conductor must not be passed through the window of a ground fault sensor. This will cause	between conduits and the switchboard ground bus.
cancellation of error signals, and will prevent ground fault tripping when it is needed.	The grounding connections must not pass through a zero-sequence sensor with phase and neutral wires.
The ground fault protection may be rendered inoperable by damaged wiring or devices, blown or missing control fuses, or lack of tripping power when supplied from a remote source.	If the high-current tests do not produce expected tripping, check for control power at transformers, at fuses, and at relays.

Testing methods

General

There are two alternate test methods for evaluating ground fault protection (Ground fault protection) systems - by using simulated fault current or by high-current primary injection. Both test methods are applicable to ground-fault relay systems, but only the high-current primary injection method can be used to test a system with integral ground-fault trip circuit breakers.

If it is acceptable to the local inspection authorities, ground fault relay systems may be tested by the simulated fault current testing method combined with a thorough visual inspection. Otherwise, it will be necessary to use the high-current primary injection test method.

Ground fault protection testing with simulated fault current

In the simulated fault current method, a simulated fault current is generated by a coil around a window-type sensor or by means of a separate test winding in the sensor. When the monitor panel sends a small current through the test winding, it produces a secondary current in the sensor which the relay responds to as if it were caused by a primary current of 1600 amperes.

In an equivalent method which can be used with any window-type sensor supplying a ground fault relay, a number of turns of wire are wrapped around the sensor core, such as twenty turns of #14 wire. A current of approximately 125 percent of the pickup setting of the relay divided by the number of turns is passed through the wire to simulate the ground-fault current. By setting the relay pickup to the low end of the range, the test current may be kept to a minimum.

Testing with simulated fault current provides a means of demonstrating the operation of the sensor, relay and shunt trip and the adequacy of the control power supply. In addition to these items, the ground fault protection system must be checked to confirm that neutral ground points are located correctly with respect to sensors, that sensor polarities are correct when several are connected in parallel, and that conductors which pass through a sensor window all run in the same direction. If done thoroughly by a qualified person, a visual inspection can confirm that these items have been taken care of correctly.

The importance of supplementing simulated fault current testing with an adequate inspection is emphasized when one realizes that the first five items on the items on the checklist, from the previous page, are problems that can NOT be detected by simulated fault current testing alone.

Ground fault protection testing by high-current primary injection

The high-current injection test method may be used to test ground fault protection systems with either ground fault relays or integral ground fault trips on circuit breakers. With relays, it is an alternative to simulated fault-current testing supplemented by inspection. We recommend it as the best way to test the performance of ground fault protection systems with relays.

Integral ground fault protection in circuit breakers can be system-tested only by using the high-current injection test method. The internal electronics of these circuit breakers can be checked out with the Ekip TT or Ekip T&P for the Emax 2 and/or Tmax Xt circuit breakers. These sets are not suitable for making system tests, however.

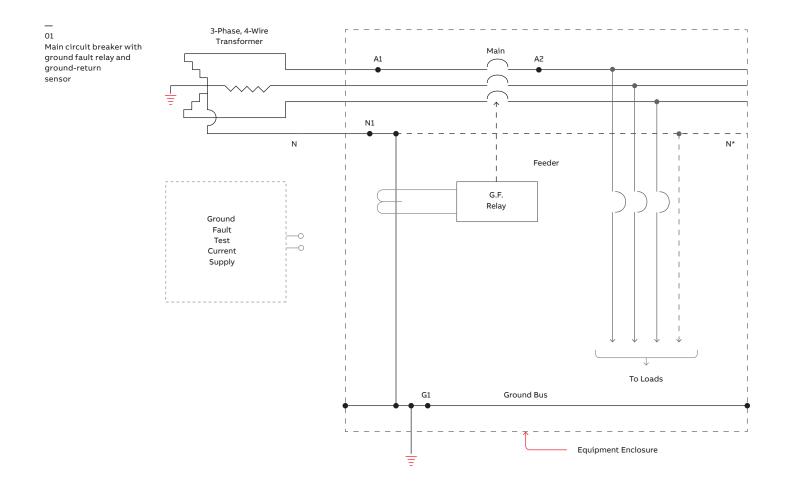
High-current testing of ground fault protection systems consists of injecting full-scale current into the equipment phase and neutral conductors to duplicate the flow of ground fault current under various conditions. The testing equipment required includes a high-current supply capable of delivering up to 1000 amperes or more at 2.5 volts, or similar. By using the lower ground fault current pickup settings on relays and circuit breakers or switches, the current required to trip can be kept to a minimum, such as 300 or 400 amperes or less. If inspection authorities require tests at full ground fault protection setting, a current supply capable of delivering 1200 amperes or more may be needed.

Connect the current supply as shown in the diagrams on the following pages, using flexible welding cable such as No. 2 AWG. Also connect jumpers between the points indicated in the tables accompanying the same referenced diagrams.

Ground fault protection in three-wire equipment

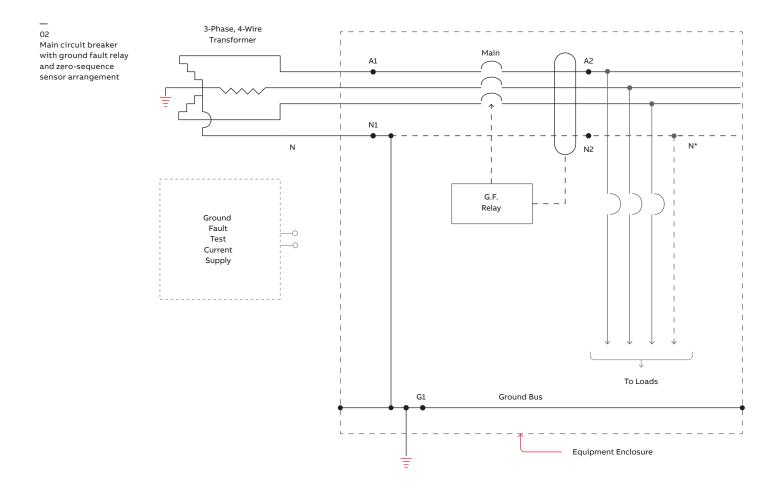
Ground fault protection can be provided for 3-wire and 4-wire equipment fed from a solidly grounded 4-wire supply, wye or delta. NEC Article 250-23(b) requires that whenever a service is derived from a grounded neutral system, the grounded neutral conductor must be brought into the service entrance equipment, and bonded to the equipment enclosure and ground bus, even if the grounded conductor is not needed for the load supplied by the service. This is required to provide a lowimpedance ground fault current return path to the neutral to assure operation of the overcurrent device.

Test diagrams for systems with ground fault relays


Figure	Description
1	Main circuit breaker with ground fault relay and ground return sensor
2	Main circuit breaker with ground fault relay and zero-sequence sensor arrangement
3	Main circuit breaker with ground fault relay and residual sensor arrangement
4	Feeder circuit breaker with ground fault Relay and zero- sequence sensor arrangement
5	Ground fault relay protection on normal and emergency main circuit breakers interlocked for automatic throwover
6	Ground fault relay protection on normal and emergency main circuit breakers with automatic transfer switch (3-pole)
7	Double-ended substation - (transformers not individually grounded) Single-point ground and ground fault relays
8	Double-ended equipment - (both sources grounded) Modified differential scheme with ground fault relays.

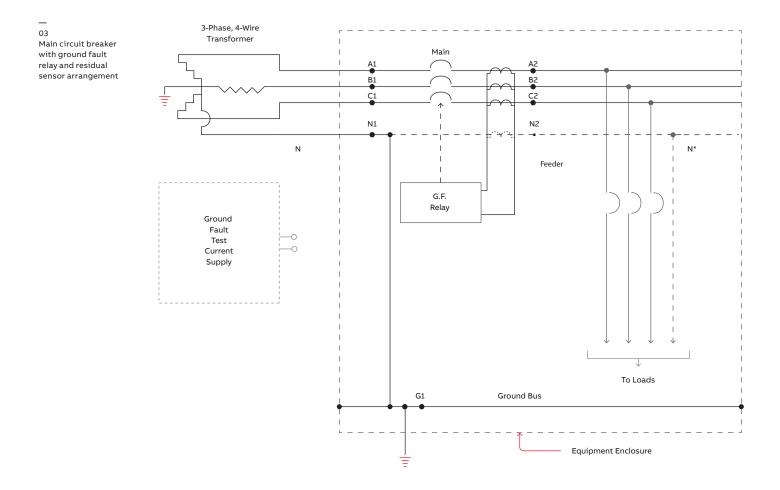
Test notes

- 1. All tests are for 3-phase, 4-wire unless noted as 3-phase 3-wire.
- 2. Notes on diagrams referring to tripping at ground fault setting are intended to imply nominal values. Consistent tripping may require 125% of pickup settings, and good time-delay figures may be obtained only at 150% and higher.
- 3. WARNING In all the illustrations the source transformer(s) must be deenergized when applying and using the test current.
- A temporary source of control power (usually 120 VAC) will be needed for operation of ground-break relays and shunt trip devices.

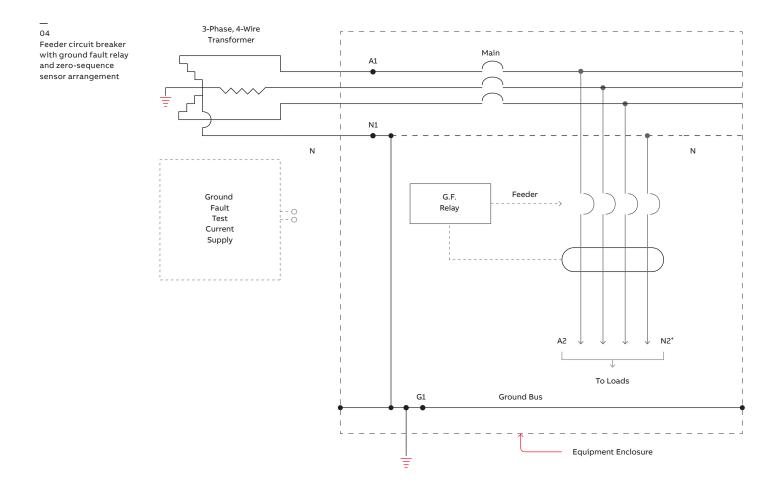


GROUND FAULT PROTECTION SYSTEMS PERFORMANCE TESTING

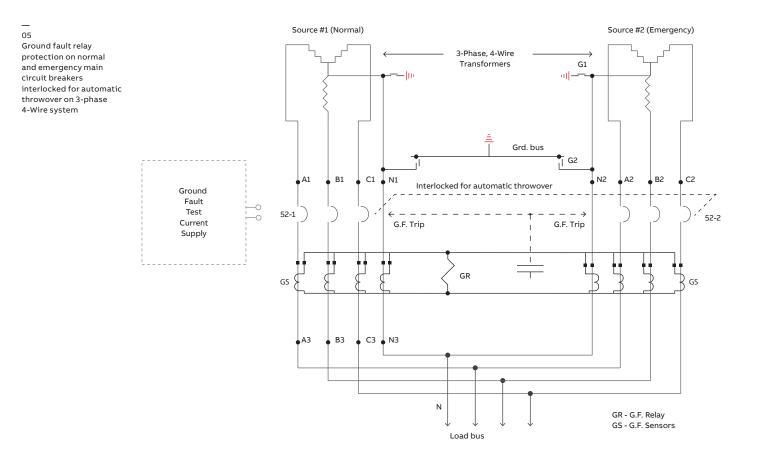
Test	Connect test current	Connect jumper	Results	
no.	supply to points	between points	expected	Comments
			Main circuit	
			breaker	Confirms continuity of ground path
1-1	A1 and N1	A2-G 1	should trip	from ground bus to neutral


* In 3-wire equipment the load neutral is not furnished.

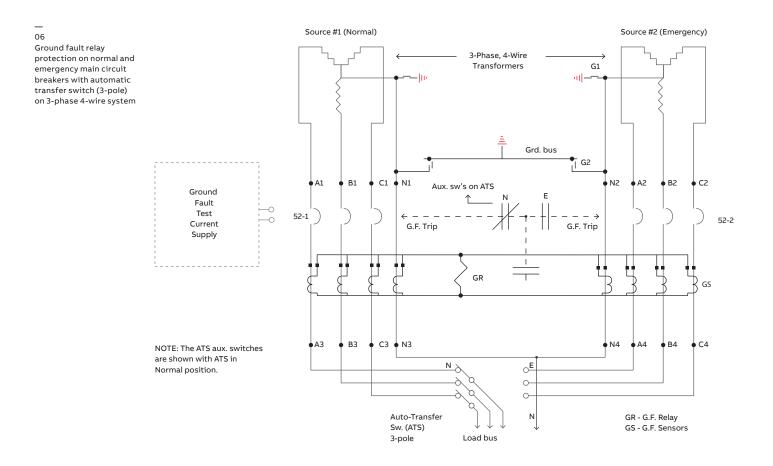
Test	Connect test current	Connect jumper	Results	
no.	supply to points	between points	expected	Comments
			Main circuit breaker	Confirms that neutral and phase conductors go through sensor
2-1	A1 and N1	A2-N2	shpold not trip	and in same direction
2-2	A1 and N1	A2-GI	Main circuit breaker should trip	Confirms continuity of ground path from ground bus to neutral


NOTE: It is not necessary to repeat the tests for each phase if a visual inspection confirms that all phases go through the sensor window. * In 3-wire equipment the load neutral is not furnished. Omit Test 2-1.

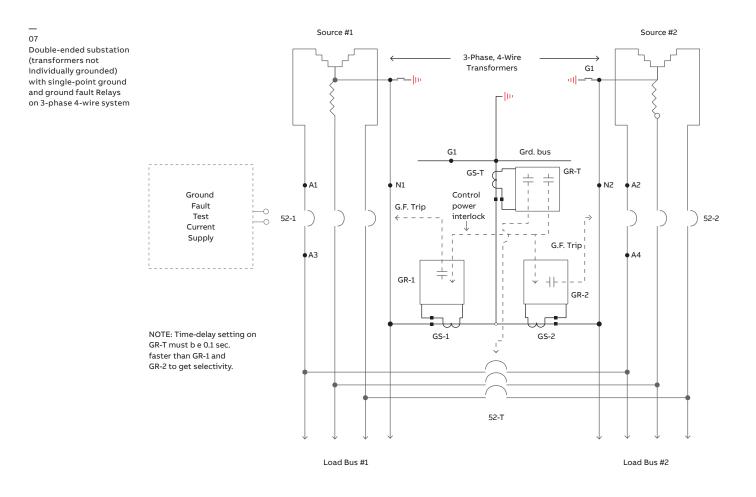
GROUND FAULT PROTECTION SYSTEMS PERFORMANCE TESTING

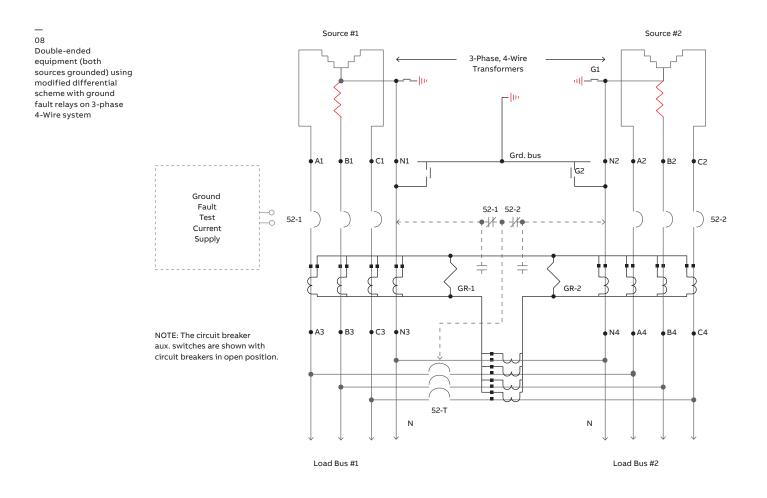

Test	Connect test current	Connect jumper	Results	
no.	supply to points	between points	expected	Comments
	A1 and N1	A2-N2	Circuit breaker	
	B1 and N1	B2-N2	should	Confirms correct polarity
3-1	C1 and N1	C2-N2	not trip	of sensor connections
	A1 and N1	A2-G1		Confirms continuity of
	B1 and N1	B2-G1	Circuit breaker	ground path from ground
3-2	C1 and N1	C2-G1	should trip	bus to neutral

* In 3-wire equipment, the load neutral and neutral sensor are not furnished. Omit Test 3-1.



	Results	Connect jumper	Connect test current	Test
Comments	expected	between points	supply to points	no.
	Circuit breaker		· · · ·	
Confirms correct polarity	should			
of sensor connections	not trip	A2-N2	A1 and N1	4-1
Confirms continuity of				
ground path from ground	Circuit breaker			
bus to neutral	should trip	A2-G1	A1 and N1	4-2


NOTE: It is not necessary to repeat the tests for each phase if a visual inspection confirms that all phases go through the sensor window. * On 3-wire equipment, the neutral conductor is not furnished. Omit Test 4-1.


		During the test		Connect test	
	Results	disconnect ground	Connect jumper	current supply	Test
Comments	expected	from neutral at points	between points	to points	no.
	Circuit breaker	G1 and G2	A3-N3	A1 and N1	
	52-1 should not	G1 and G2	B3-N3	B1 and N1	
	trip	G1 and G2	C3-N3	C1 and N1	5-1
Confirms correct	Circuit breaker	G1 and G2	A3-N3	A2 and N2	
polarity of sensor	52-2 should not	G1 and G2	B3-N3	B2 and N2	
connections.	trip	G1 and G2	C3-N3	C2 and N2	5-2
		G1 and G2	A3-N1	A2 and N2	
Confirms operation	Circuit breaker	G1 and G2	B3-N1	B2 and N2	
when ground return	52-2 should trip	G1 and G2	C3-N1	C2 and N2	5-3
path is through		G1 and G2	A3-N2	A1 and N1	
neutral from most	Circuit breaker	G1 and G2	B3-N2	B1 and N1	
distant ground.	52-1 should trip	G1 and G2	C3-N2	C1 and N1	5-4

		During the test disconnect ground	Connect jumper	Connect test	Transfer	
	Results	from neutral at	between	current supply	switch	Test
Comments	expected	points	points	to points	positlon	no.
	Circuit breaker	G1 and G2	A3-N3	A1 and N1	N	
	52-1 should not	G1 and G2	B3-N3	B1 and N1	N	
	trip	G1 and G2	C3-N3	C1 and N1	Ν	6-1
Confirms correct	Circuit breaker	G1 and G2	A4-N4	A2 and N2	E	
polarity of sensor	52-2 should not	G1 and G2	B4-N4	B2 and N2	E	
connections.	trip	G1 and G2	C4-N4	C2 and N2	E	6-2
		G1 and G2	A3-N1	A2 and N2	E	
Confirms operation	Circuit breaker	G1 and G2	B3-N1	B2 and N2	E	
when ground return	52-2 should trip	G1 and G2	C3-N1	C2 and N2	E	6-3
path is through		G1 and G2	A3-N2	A1 and N1	N	
neutral from most	Circuit breaker	G1 and G2	B3-N2	B1 and N1	N	
distant ground.	52-1 should trip	G1 and G2	C3-N2	C1 and N1	N	6-4

	Connect test current	Connect jumper	-	ircuit bi) or Clo			
Test	supply	between				Results	
no.	to points	points	52-1	52-T	52-2	expected	Comments
7-1	A1 and N1	A3-G1	С	0	с	Circuit breaker 52-1 should trip	52-1 trips for a ground fault on load bus #1
7-2	A2 and N2	A4-G1	С	0	С	Circuit breaker 52-2 should trip	52-2 trips for a ground fault on load bus #2
7-3	A2 and N2	A3-G1	0	С	С	Circuit breaker 52-T should trip and circuit breaker 52-2 should not trip (see note).	52-T trips for a ground fault on load bus #1, fed from source #2
7-4	A1 and N1	A4-G1	с	С	0	Circuit breaker 52-T should trip and circuit breaker 52-1 should not trip (see note).	52-T trips for a ground fault on load bus #2, fed from source #1

			During the test	Circu	uit bre	akers		
	Connect test	Connect	disconnect	Open (O) or				
	current	jumper	ground from		Close	ed (C)		
Test	supply	between	neutral at				Results	
no.	to points	points	points	52-1	52-T	52-2	expected	Comments
	A1 and N1	A4-N4	G1 and G2	С	С	0	Circuit breaker	
	B1 and N1	B4-N4	G1 and G2	С	С	0	52-1 and 52_T	
8-1	C1 and N1	C4-N4	G1 and G2	С	С	0	should not trip.	
	A2 and N2	A4-N4	G1 and G2	0	С	С	Circuit breaker	Confirms correct
	B2 and N2	B4-N4	G1 and G2	0	С	С	52-2 should	polarity of sensor
8-2	C2 and N2	C4-N4	G1 and G2	0	С	С	not trip	connections
	A2 and N2	A4-N1	G1 and G2	0	С	С	Circuit breaker	52-2 trips for a
	B2 and N2	84-N1	G1 and G2	0	С	С	52-2 should	ground fault on
8-3	C2 and N2	C4-N1	G1 and G2	0	С	С	trip	load bus #2
	A1 and N1	A3-N2	G1 and G2	С	С	0	Circuit breaker	52-1 trips for a
	B1 and N1	B3-N2	G1 and G2	С	С	0	52-1 should	ground fault on
8-4	C1 and N1	C3-N2	G1 and G2	С	С	0	trip	load bus #1
	A1 and N1	A4-N2	G1 and G2	С	С	0	Circuit breaker	52-T trips for a
	B1 and N1	B4-N2	G1 and G2	С	С	0	52-T should	ground fault on
8-5	C1 and N1	C4-N2	G1 and G2	С	С	0	trip	load bus #2

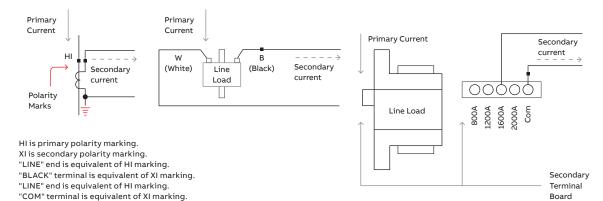
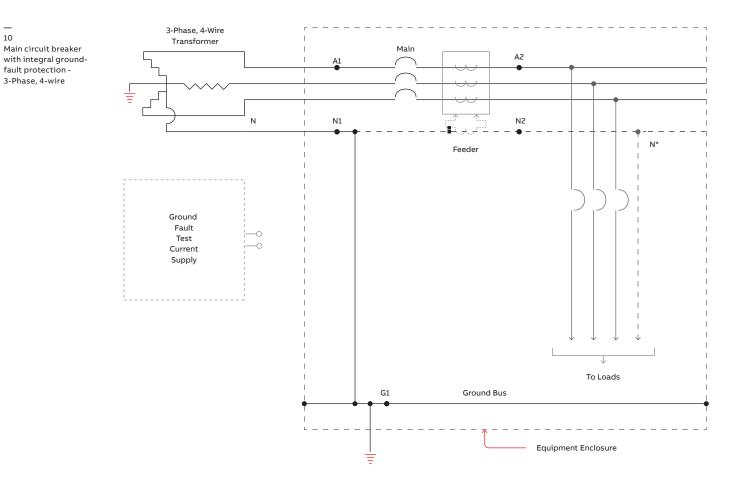

Test diagrams for systems with integral ground fault protection

Figure	Description
9	Neutral sensor polarity markings
10	Main circuit breaker with integral ground fault protection
11	Feeder circuit breaker with integral ground fault protection
12	Integral ground fault protection on main and tie circuit breakers of doubleended equipment - 3-Phase, 4-Wire

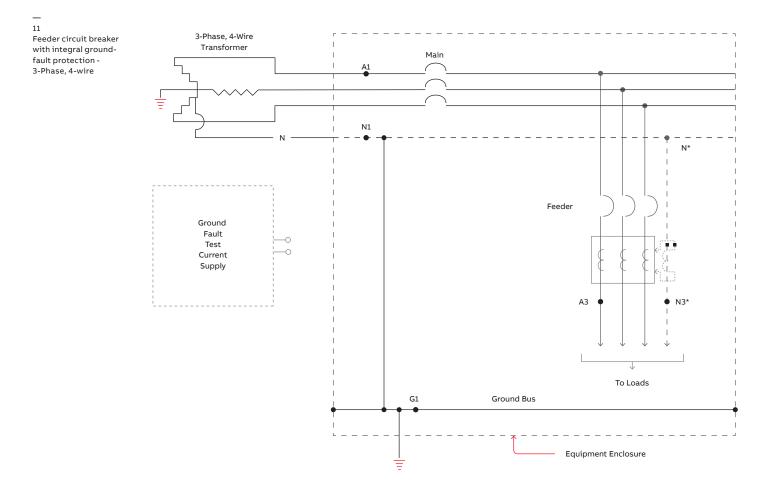
Neutral sensor polarity markings

In the accompanying integral ground fault protection circuit diagrams the neutral sensors are depicted using conventional current transformer symbols. The equivalent polarity markings for VersaTrip, SelecTrip, SST and Micro VersaTrip integral trip sensors are shown in the figure below.


09 This diagram shows the equivalent polarity markings for neutral sensors that are not marked like conventional current transformers

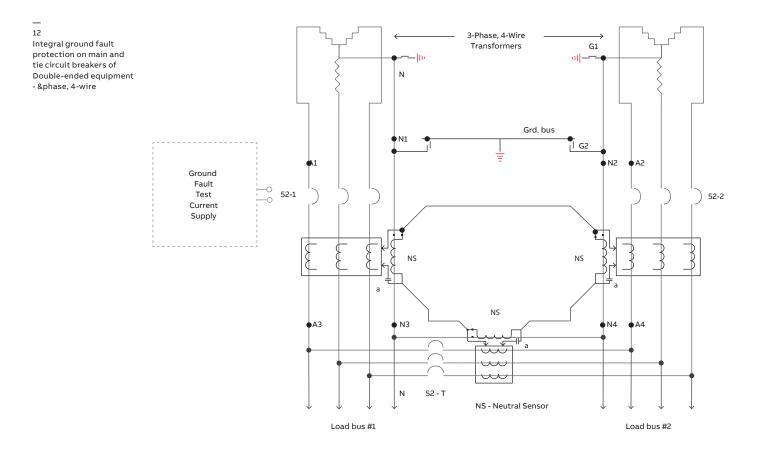
Note:

WARNING: In all the illustrations the source transformer(s) must be deenergized when applying and using the test current.



Test	Connect test current	Connect jumper	Results		
no.	supply to points	between points	expected	Comments	
10-1	A1 and N1	A2-N2	Circuit breaker should not trip	This confirms that polarity and ampere rating of the neutral sensor match those of the phase sensors in the circuit breaker.	
10-2	A1 and N1	A2-N2	Circuit breaker should trip at ground fault setting.	Confirms continuity of ground path from ground bus to neutral	

* In 3-wire equipment the load neutral is not furnished. Omit Test 10-1.


_

10

	Results	Connect jumper	Connect test current	Test
Comments	expected	between points	supply to points	no.
This confirms that polarity	Circuit			
and ampere rating of the neutral	breaker			
sensor match those of the phase	should			
sensors in the circuit breaker.	not trip	A3-N3	A1 and N1	11-1
	Circuit breaker			
Confirms continuity of	should trip			
ground path from ground	at ground			
bus to neutral	fault setting.	A3-G1	A1 and N1	11-2

* On 3-wire feeders the neutral conductor and neutral sensor are not furnished. Omit Test 11-1.

	Connect Connect				uit bre en or C			
Test	test current supply	jumper between	ground from ⁻ neutral at points	E2 1	52-T	52.2	Results	Comments
no. 12-1	A1 and N1	A4-N4	G1 and G2	52-1 C	52-1 C	0	expected Circuit breakers 52-1 and 52-T should not trip	comments
12-2	A2 and N2	A4-N4	G1 and G2	0	с	с	Circuit breaker 52-2 should not trip	Confirms that sensor polarity is correct
12-3	A2 and N2	A4-N1	G1 and G2	0	с	с	Circuit breaker 52-2 should trip	52-2 trips for a ground fault on load bus #2
12-4	A1 and N1	A3-N2	G1 and G2	С	с	0	Circuit breaker 52-1 should trip	52-1 trips for a ground fault on load bus #1
12-5	A1 and N1	A4-N2	G1 and G2	С	С	0	Circuit breaker 52-T should trip	52-T trips for a ground fault on load bus #2

Ground fault protection with ground fault relays Performance test record

This test form should be retained by those in charge of the building's electrical installation in order to be available to the authority having jurisdiction.

ABB Order/Requisition No.				
Customer Name				
Location Order No.				
Equipment	Ground fault protection			
ReliaGear SB	Circuit breaker (or switch) tripped by ground fault			
	relay:			
ReliaGear LV SG				
	Function: Main Feeder			
Other				
Datian	Circuit No			
Rating: Volts	Туре:			
Phase				
Wire				
Amps				
Hz	_			
	Trip			
Equipment arrangement	Ground fault relay and accessories			
Single-source	Ground-break System			
Double-ended	Other (explain)			
Unit-Substation	Relay Cat. No. Pickup Range (Amps)			
Transforrner(s) remote from equipment.	Sensor (C.T.) Cat. No.			
Other (explain)	Monitor Panel (if used) Cat. No			

 Sensor arrangement
 Double-ended:

 Ground-return Type
 Single-Point Ground Scheme

 Residual (sensor on each phase).
 Modified-Differential Scheme

 Zero-sequence (all conductors thru one window).
 Additional Description (if needed)

Test record Ground fault relay setting		lay setting	Test	Tripping re		
Test	Pickup	Delay	Current	BkrISw.	Measured Time	
number	(Amps)	(Sec.)	(Amps)	Trip?	For Bkr/Sw. to Open	

Conclusions

The test results are satisfactory.	
The test results are not satisfactory.	
(Explain)	

Tests performed by:	
Test Set Used:	
Test Date:	
Witnessed By	

Ground fault protection with integral ground fault trips on circuit breaker Performance test record

in order to be available to the authority having	jurisdiction.
ABB Order/Requisition No.	
Customer Name	
Location	
Order No.	
Equipment	Ground fault protection
ReliaGear SB	Circuit breaker tripped by integral ground fault
PolioCoor IVSC	trips:
ReliaGear LV SG	Function: Main Feeder
Other	Function: Main Feeder
Other	 Circuit No
Rating:	Type:
Volts	туре
Phase	Drawout Stationery
Wire	
Amps	Rating (Amps):
Hz	Frame
	Sensor/Tap
	3-Wire
	4-Wire
Equipment arrangement	
	Trip Type: EntelliGuard TU
Single-source	Ekip Dip
	Ekip Touch
Double-ended	Ekip Hi-Touch
Unit-Substation	Additional Description (if needed)
Transforrner(s) remote from equipment.	

Test record

	Ground fault Relay setting		Test		Tripping results	
Test	Pickup	Delay	Current	Bkr/Sw	Measured Time	
number	(Amps)	(Sec.)	(Amps)	Trip?	For Bkr/Sw. to Oper	
			× 12	•		
Conclusior	าร					
The test re	sults are satisfacto	ry				
The test re	sults are not satisfa	ctory.				
(Explain)						
Tests perfo	ormed by:					
-	sed:					
Test Date:						

ABB Inc.

305 Gregson Drive Cary, NC 27511 USA abb.com/contacts

abb.com/lowvoltage

The information contained in this document is for general information purposes only. While ABB strives to keep the information up to date and correct, it makes no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability or availability with respect to the information, products, services, or related graphics contained in the document for any purpose. Any reliance placed on such information is therefore strictly at your own risk. ABB reserves the right to discontinue any product or service at any time.