

2021

Insulation Monitors in Energy Storage

Matt Darroch

Product Marketing Manager

Why you need insulation monitoring

Energy storage system

Application

- Energy storage systems (ESSs) utilize ungrounded battery banks to hold power for later use
- NEC 706.30(D) For BESS greater than 100V between conductors, circuits can be ungrounded if a ground fault detector is installed.
- *UL 9540:2020 Section 14.8* For BESS greater than 100V between conductors, circuits can be ungrounded if ground fault detector is installed.

Ground fault issue

- Since they are ungrounded, ESSs have lessened protection against ground faults
- Ground fault = lower performance
- Ground fault = safety/ fire risk

Insulation monitoring

- Insulation monitoring devices (IMDs) help enhance safety by monitoring earth leakage
 - Detect unwanted leakage values before a fault occurs
 - Detect insulation deterioration in real time

How it works

Energy storage system

Operating principle

- IMDs superimpose a test signal which measures the resistance to ground
- A resistance threshold is determined
- IMDs detect values outside the threshold

Product Selection

Insulation monitoring relays

General Purpose (CM-IWS and CM-IWN)

Performance

- Up 0-400V AC or 0-600 V DC
- Up to 20μf Ce
- 1 SPDT contact each for pre-warning and warning
- Coupling unit CM-IVN allows monitoring at 690V AC or 1000V DC

Dimension

45mm width (90mm with CM-IVN)

Features

- LED status indication
- Adjustment/ DIP switches via front panel

Advanced Applications (CM-IWM)

Performance

- Up to 1500V DC or 1100V AC network voltage
- Up to 3000μf Ce
- High adjustable range up to 250kΩ
- 1 SPDT contact each for pre-warning and warning

Dimension

90mm width

Features

- LED status indication
- LED indication for R
- Auto self test

Why Insulation Monitoring

and not Residual Current Devices?

Principle

- A floating delta system cannot create the fault current magnitude needed for low impedance ground return path
- The system charging current is lower than the operating point of most RCDs
- The RCD device will never trip, not even if a bolted fault* existed for multiple days

$$I_{\mathsf{F}} = \frac{V_{\mathsf{3G}}}{R_{\mathsf{GF}} + R_{\mathsf{GR}} + R_{\mathsf{NG}}}$$

I_F = Fault Current, an amperes

 V_{3G} = Voltage between faulted phase and ground, in volts

 R_{GF} = Resistance of the ground fault, in ohms

R_{GR} = Resistance of the ground-return path

R_{NG} = Resistance of neutral-to-ground bonding jumper

Why Insulation Monitoring

and not Residual Current Devices?

Principle

- Ground fault detection in ungrounded arrays is typically achieved by measuring the insulation resistance of each pole relative to ground
- Resistance values are measured in hundreds or thousands of kiloohms
- Ground fault is detected when the impedance to ground of either pole drops to a low level (pre-warning and warning settings on IMDs)

#