

REX640 Product Guide

RELION[®] PROTECTION AND CONTROL

Contents

1	Description3	26
2	Application packages3	27
3	Relay hardware5	28
4	Human-machine interface7	29
5	Local HMI10	30
6	Switchgear HMI 11	31
7	Application13	
8	Supported ABB solutions 20	
9	Control 21	
10	High-speed transfer device (HSTD)22	35
11	Arc flash protection	36
12	Power transformer differential protection 26	
13	Measurements27	
14	Power quality27	
15	Fault locator	
16	Disturbance recorder28	
17	Event log28	
18	Recorded data29	
19	Load profile29	
20	Trip circuit supervision 29	
21	Self-supervision	
22	Access control and cybersecurity	
23	Station communication	
24	Protection communication and supervision 34	
25	Technical data	

26	Mounting methods	141
27	Selection and ordering data	141
28	Modification Sales	141
29	Accessories and ordering data	141
30	Tools	144
31	Module diagrams	145
32	Certificates	159
33	References	159
34	Functions, codes and symbols	160
35	Contents of application packages	
36	Document revision history	174

Disclaimer

The information in this document is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this document.

© Copyright 2023 ABB

All rights reserved.

Trademarks

ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders.

Conformity

This product complies with following directive and regulations.

Directives of the European parliament and of the council:

- Electromagnetic compatibility (EMC) Directive 2014/30/EU
- Low-voltage Directive 2014/35/EU
- RoHS Directive 2011/65/EU

UK legislations:

- Electromagnetic Compatibility Regulations 2016
- Electrical Equipment (Safety) Regulations 2016
- The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

These conformities are the result of tests conducted by the third-party testing in accordance with the product standard EN / BS EN 60255-26 for the EMC directive / regulation, and with the product standards EN / BS EN 60255-1 and EN / BS EN 60255-27 for the low voltage directive / safety regulation.

The product is designed in accordance with the international standards of the IEC 60255 series.

1. Description

REX640 is a powerful all-in-one protection and control relay for use in advanced power distribution and generation applications with unmatched flexibility available during the complete life cycle of the device – from ordering of the device, through testing and commissioning to upgrading the functionality of the modular software and hardware as application requirements change.

The modular design of both hardware and software elements facilitates the coverage of any comprehensive protection application requirement that may arise during the complete life cycle of the relay and substation. REX640 makes modification and upgrading easy and pushes the limits of what can be achieved with a single device.

2. Application packages

REX640 offers comprehensive base functionality. However, it is possible to further adapt the product to meet special installation needs by including any number of the available optional application packages into a single REX640 relay. For the selected application packages, the functionality can be extended by including the related add-on package. The REX640 connectivity package guides the engineer in optimizing the application configuration and its performance.

	APP1	Feeder earth-fault protection extension package	1	
	APP2	Feeder fault locator package	i -	
	APP3	Line distance protection package	i -	
	APP4	Line differential protection package		
	APP5	Shunt capacitor protection package	i -	
BASE	APP6	Interconnection protection package		
FUNCTIONALITY	APP7	Machine protection package	ADD1	Synchronous machine add-on
Basic protection funtions Supervision functions Measurement functions	APP8	Power transformer protection package	ADD2	Three-winding transformer add-on
Circuit breaker control fuction Disconnector control function Other functions	APP9	Busbar protection package		
	APP10	Tap-changer control package	i -	
	APP11	Generator autosynchronizer package		
	APP12	Network autosynchronizer package		
	APP13	Petersen coil control package		
	APP14	Diesel generator monitoring	í –	
		High-speed transfer device		
	stand	1 for one -by feeder APP52 for two stand-by feeders APP53 for three equal feeders e APP5x to be selected		

Figure 1: REX640 base and optional functionality

3. Relay hardware

an optional slot may be empty, depending on the composition variant ordered.

The relay has mandatory and optional slots. A mandatory slot always contains a module but

Table 1: Module slots

Module	Slot A1	Slot A2	Slot B	Slot C	Slot D	Slot E	Slot F	Slot G
ARC1001	0							
COM1001		•						
COM1002		•						
СОМ1003		•						
COM1004		•						
COM1005		•						
BIO1001			•	0	0			
BIO1002			•	0	0			
BIO1003						0		
BIO1004						0		
RTD1001				0	0			
RTD1002				0	0			
AIM1001						0	•	
AIM1002						o	•	
SIM1901						0	•	
SIM1902						0	•	
PSM1001								•
PSM1002								•
PSM1003								•

• = Mandatory to have one of the allocated modules in the slot

o = Optional to have one of the allocated modules in the slot. The population (order) of the modules in the optional slots depends on the composition variant ordered.

The REX640 relay can also be ordered as a conformal coated variant. Visit ABB Relays-Online *https://relays.protection-control.abb* for more information about the product and assistance in ordering.

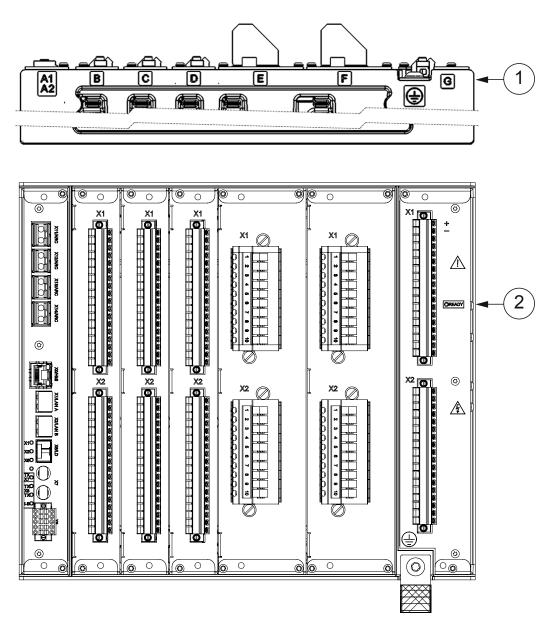


Figure 2: Hardware module slot overview of the REX640 relay

1 Slot markings in enclosure (top and 2 Ready LED bottom)

Table 2: Module description

Module	Description	
ARC1001	4 × ARC sensor inputs (lense, loop or mixed)	
COM1001	1 × RJ-45 (LHMI port) + 3 × RJ-45 + 1 × LD-SFP ¹	

Table continues on the next page

¹ Line distance/line differential protection communication + binary signal transfer, optical multimode or single-mode LC small form-factor pluggable transceiver (SFP)

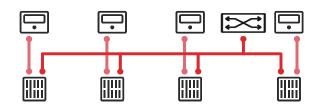
Module	Description
COM1002	1 × RJ-45 (LHMI port) + 2 × LC + 1 × RJ-45 + 1 × LD-SFP
COM1003	1 × RJ-45 (LHMI port) + 3 × LC + 1 × LD-SFP
COM1004	1 × RJ-45 (LHMI port) + 2 × RJ-45 + 1 × LD-SFP + 1 × RS-485/IRIG-B + 1 × FO UART
СОМ1005	1 × RJ-45 (LHMI port) + 2 × LC + 1 × LD-SFP + 1 × RS-485/IRIG-B + 1 × FO UART
BIO1001/ BIO1003	14 × BI + 8 × SO
BIO1002/ BIO1004	6 × SPO + 2 × SPO (TCS) + 9 × BI
RTD1001	10 × RTD channels + 2 × mA channels (input/output)
RTD1002	3 x RTD channels + 6 x mA channels (input or output) + 12 x BI
AIM1001	4 x CT (1/5A) + 1 x CT (0.2/1A for residual current only) + 5 x VT
AIM1002	6 x CT (1/5A) + 4 x VT
SIM1901	3 x combi sensor inputs (RJ-45, IEC 60044) + 1 x CT (0.2/1A for residual current only)
SIM1902	3 x combi sensor inputs (RJ-45, IEC 61869) + 1 x CT (0.2/1A for residual current only)
PSM1001	2460 VDC, 3 × PO (TCS) + 2 × PO + 3 × SO + 2 × SSO
PSM1002	48250 VDC / 100240 VAC, 3 × PO (TCS) + 2 × PO + 3 × SO + 2 × SSO
PSM1003	110/125 VDC (77150 VDC), 3 × PO (TCS) + 2 × PO + 3 × SO + 2 × SSO
PO = Power Output	
CO - Signal Output	

SO = Signal Output

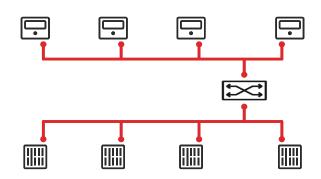
SPO = Static Power Output

SSO = Static Signal Output

The relay has a nonvolatile memory which does not need any periodical maintenance. The nonvolatile memory stores all events, recordings and logs to a memory which retains data if the relay loses its auxiliary supply.


4. Human-machine interface

REX640 offers different possibilities for creating a humanmachine interface.


- Local HMI (LHMI)
- Switchgear HMI (SHMI)
- Web HMI (WHMI)

The optimum HMI solution can be freely selected. The considerations can cover, for example, the physical installation location, frequency of usage or operators' preference.

LHMI can be connected directly to a dedicated port on the relay's communication module. If a longer distance between the relay and the LHMI is required, the LHMI can be connected into the station Ethernet communication network. In both cases, an LHMI is dedicated to a certain relay and only one LHMI can be connected to one relay.

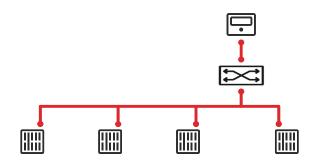


Figure 3: Local HMIs connected directly to the relays

Figure 4: Local HMIs connected to the relays via a communication network

SHMI can be connected into a station Ethernet communication network. A single SHMI can serve up to 20 relays. The SHMI provides switchgear level status information as well as an access point to the LHMI level relay information. LHMI and SHMI panels cannot be connected simultaneously to the same relay.

Figure 5: Switchgear HMI connected to the relays

The REX640 relays are fully operational even without any connection to a physical HMI. The relays include a Web server enabling access by the WHMI. The Web server is disabled by default and must be enabled by a parameter change. The WHMI can also be used even if the relay is connected to a physical HMI.

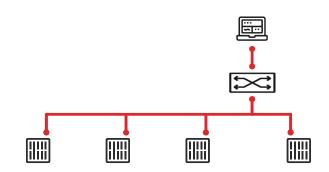
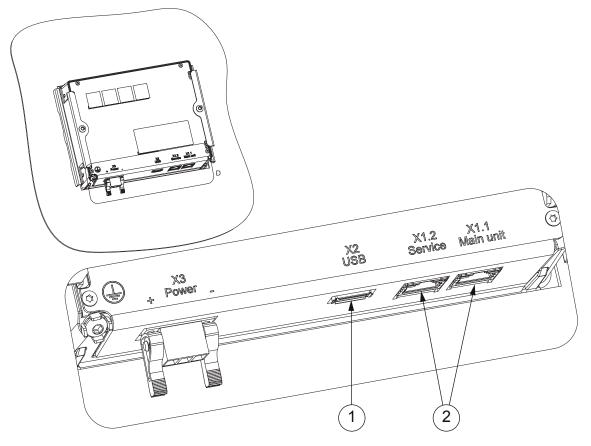
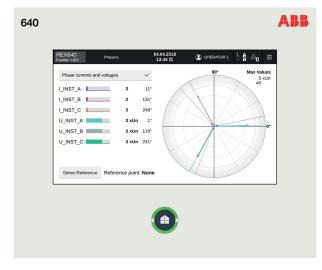


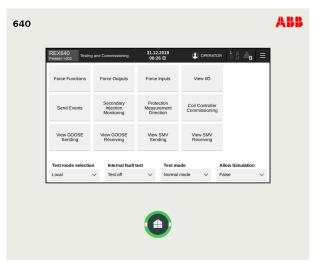
Figure 6: Web HMI connected to the relays




Figure 7: HMI connectors

- 1 USB port
- 2 RJ-45 ports

The main unit port X1.1 is used to connect the LHMI directly to the relay. In case of a remotely installed LHMI or SHMI, the connector X1.1 is used for Ethernet switch connection. The service port X1.2 is used for PCM600 or WHMI connection. The USB port X2 is used for inserting a USB memory stick to enable data retrieval from the relay.


5. Local HMI

The LHMI uses rugged 7-inch high resolution color screen with capacitive touch sensing technology. The user interface has been carefully designed to offer the best situational awareness to the user. Visualization of the primary process measurements, events, alarms and switching objects' statuses makes the local interaction with the relay extremely easy and self-evident. The LHMI provides a control point for the selected primary devices via pop-up operator dialogs.

Figure 8: Phasor presentation of measurements as an example of local HMI pages

Additionally, the LHMI supports the engineer during the relay's testing, commissioning and troubleshooting activities. The information, traditionally accessible through different paths within the menu structure, is provided in collectively grouped and visualized format.

Figure 9: Test and commissioning support in the local HMI

The Home button at the bottom of the LHMI indicates the relay's status at a glance. In normal situations, the Home button shows a steady green light. Any other situation that requires the operator's attention is indicated with a flashing light, a red light or a combination of these.

The LHMI presents pages in two categories: the Operator pages and the Engineer pages. The Operator pages include the ones which are typically required as a part of an operator's normal activities, such as a singleline diagram, controls, measurements, events, alarms, and so on. The Engineer's pages include specifically designed pages supporting relay parametrization, troubleshooting, testing and commissioning activities.

The Operator pages can be used as such or customized according to the project's requirements using Graphical Display Editor (GDE) within the PCM600 software tool. The Engineer pages are fixed and cannot be customized.

The Operator pages can be scrolled either by tapping the Home button or by swiping the actual pages. The Engineer pages are accessible by touching the upper horizontal section of the screen.

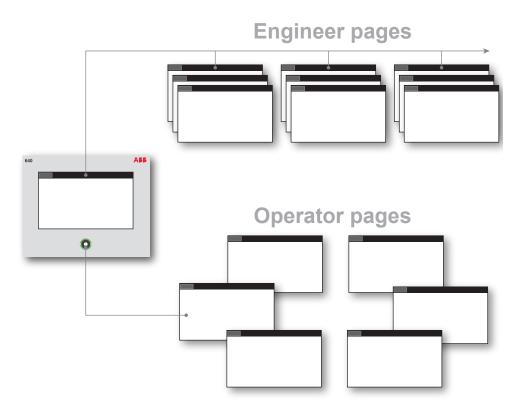


Figure 10: Local HMI pages

The LHMI is an accessory for the relay which is fully operational even without the LHMI. The relay communication card has a dedicated port where the LHMI is connected using an RJ-45 connector and a CAT6 S/FTP cable. The LHMI can be connected to the relay also via station communication network if a longer distance is required between the relay and the LHMI.

Additionally, the LHMI contains one Ethernet service port with an RJ-45 connector and one USB port. The service port can be used for the PCM600 connection or for WHMI connection. Data transfer to a USB memory is enabled via the USB port. By default the USB port is disabled and has to be taken into use with a specific parameter.

REX640 can be used as a centralized alarm annunciator. 66pcs of programmable LED functions are available within the graphical application configuration. The LED functions can be controlled by any physical input, GOOSE based or relay's internal binary signal. The Graphical Display Editor (GDE) tool component in PCM600 offers ready made pages for alarm visualization covering 64 alarm channels.

REX64 +NSL-J	0 Alarm Annund	ciator	19.12.2022 10:55 🕉	ADMINISTRATOR	
(الله)	Group 1	O+J01	O +J02	O +J03	O +J04
	Group 2	31>	31>	31>	31>
(♣)	Group 2	Operate	Operate	Operate	Operate
(\$)	Group 3	O+J01	O +J02	O +J03	O+J04
	Group 4	31>>	31>>	31>>	31>>
		Operate	Operate	Operate	Operate
		O+J01	O+J02	O+J03	O+J04
		31>>>	31>>>	31>>>	31>>>
		Operate	Operate	Operate	Operate
		O+J01	O +J02	O+J03	O+J04
		10>>	10>>	10>>	10>>
Ack	knowledge all	Operate	Operate	Operate	Operate

Figure 11: Alarm annunciator visualization on HMI

6. Switchgear HMI

The SHMI uses the same rugged 7-inch high resolution color screen with capacitive touch sensing technology as the LHMI. The user interface has been carefully designed to offer the best situational awareness to the user. SHMI navigation page provides an overview of the complete switchgear lineup. Four switchgear panels can be shown simultaneously on the navigation page, and the other panels can be seen by tapping the SHMI panel Home button or by swiping the screen. A single SHMI can support up to 20 relays, and an installation can include several non-overlapping SHMI panels.

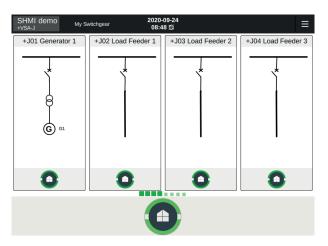


Figure 12: Switchgear HMI navigation page

On the navigation page, each switchgear panel can be represented by a dynamic single-line diagram, static figure or even by a photo of the actual panel. The panel-wise representation includes a virtual home button indicating the status of the relay within the panel. The SHMI's physical Home button indicates the common status of the complete switchgear lineup. After tapping on selected switchgear panel on the navigation page, the SHMI connects to the relay. When the connection is established, the SHMI provides all the same features as the LHMI.

If the switchgear lineup on the navigation page is presented by a dynamic single-line diagram, the actual primary switching device's actual positions are shown. To control a primary object, the panel must first be selected from the navigation page. When the SHMI is connected to the selected relay, the control can be carried out in a similar manner as with the LHMI.

SHMI automatically stores backups of the connected relays' configurations. If a relay needs to be replaced with a spare relay that has at least same capabilities as the original one, the relay configuration and parameters can be restored from the SHMI panel.

7. Application

30 N°	REX640 PROTECTION AND CONTROL RELAY Example of a combination of application	packages for feeder protection	
		LOCAL HMI (OPTIONAL)	ALSO AVAILABLE - Disturbance and fault recorders
	Master Trip 94/86 5x 3U< 27 27 27 5x 3U< 27R 3x 3U< 37 3x 3I< 37 46M		- Sequence event recorder - Relay self-supervision - User management and logging - Logical and mathematical functions - WebHMI
0 ³¹	$\begin{bmatrix} 12/11 \\ 46PD \end{bmatrix} \xrightarrow{31+1} 49F \xrightarrow{31+1/0-8} BF \xrightarrow{52} 50G/50N$ $\begin{bmatrix} 51 \\ 31+1/0-8 \\ 50BF \\ 50BF \\ 50B \\ 51D \\ 51D \\ 51P-1 \\ 51P-1 \\ 51P-2 $	- 7 inch IP65 color touch screen - Ready-made pages and customizable pages - Increased situational awareness towards process - Supports Relay testing and commissioning - Graphical editing of pages with PCM600 tool	
-© ^u	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	CONDITION MONITORING AND SUPERVISION	COMMUNICATION FPN: Flexible Product Naming Protocols:
	2x 12x 12x 12x 12x 12x 12x 12x 11x	3x 5x 11x CBCM MCS 31 ESDCCM 52CM ESDCCM 29CM	IEC 61850-8-1/-9-2LE Modbus* IEC 60870-5-103 IEC 60870-5-104 DNP3 Interfaces:
*	dioLo> gTNLI AFD MAP CVPSOF LB Z2→ gTNLI AFD MAP SOFT 21HB Z2→ Z2Q	OPTS OPTM TCM VCM,60	Ethernet: TX (RJ45), FX (LC) Serial: Serial glass fiber (ST), RS-485 Redundant protocols: HSR PRP
	$\begin{array}{c} \begin{array}{c} 3 \times \\ Y_{O} \rightarrow \\ 21YN \end{array} \end{array} \xrightarrow{3\times} \\ \begin{array}{c} 3 \times \\ Y_{O} \rightarrow \\ 22YN \end{array} \end{array} \xrightarrow{3\times} \\ \begin{array}{c} 1_{O} \rightarrow \\ 32N \end{array} \xrightarrow{1_{O} \rightarrow } \\ \begin{array}{c} 1_{O} \rightarrow \\ 51NH \end{array} \xrightarrow{3\times} \\ \begin{array}{c} 1_{O} \rightarrow \\ 1_{O} \rightarrow \\ 51NH \end{array} \xrightarrow{3\times} \\ \begin{array}{c} 3 \times \\ 1_{O} \rightarrow \\ 67N-TC \end{array} \xrightarrow{3\times} \\ \begin{array}{c} 3 \times \\ 1_{O} \rightarrow \\ 465NQ \\ 465NQ \\ 58N \end{array} \xrightarrow{3\times} \\ \begin{array}{c} 3 \times \\ 465NQ \\ 465NQ \\ 465NQ \\ 58N \end{array} \xrightarrow{3\times} \\ \end{array}$	PCS A) PCS APP3 / APP4	Time synchronization: SNTP PTPv2 IRIG-B
	Z× Io>→EF G7NTEF/NIEF G7NTH HIZ APP1	CONTROL AND INDICATION Object Ctrl ⁰ Ind ⁰ CB 3 - DC, 3 state 6 6	MEASUREMENT - I, U, Io, Uo, P, Q, E, pf, f - Sequence current/voltage measuren - Limit value supervision - RTD/M measurement and MA outp
	APPLICATION PACKAGE FOR FEEDER FAULT LOCATOR	DC 8 8 ES 3 3 a Control and status indication function for primary object a Status indication function for primary object	Analog interface types AIM1 Current transformer 5 ¹⁰ Voltage transformer 5 ¹⁰ One of available current transformer inputs is sensitive (0.2/1 A)
	APPLICATION PACKAGE FOR LINE DISTANCE PROTECTION LAL Z 21LAL 21P,21N 0 S21CREV,WEI	$\begin{bmatrix} 4 \times \\ SYNC \\ 25 \end{bmatrix} \begin{bmatrix} 25 \\ AUTO_{*} \\ SYNC \end{bmatrix} \begin{bmatrix} 2 \times \\ O \rightarrow I \\ 79 \end{bmatrix}$	
	CL 85 21SCHLGC CLN 85 67G/N SCHLGC CLCRW 85 67G/N SCHLGC CLCRW 85 67G/N SCHLGC CLCRW 85 67G/N SCHLGC CLCRW 85 7 80 87 87 87 87 87 87 87 87 87 87	REMARKS [3x] Total nr. of instances A) One instance available, common for Line Distance (APP3) and Line Differential (APP4) application	PQM3IH PQM ITHD, HDC PQM VTHD, VDC 2x PQMU PQMV SWE,SAG,
	APPLICATION PACKAGE FOR LINE DIFFERENTIAL PROTECTION 3Id/l> 87L BST BST	packages B) Four instances available, common for Line Distance (APP3) and Line Differential (APP4) application packages	2x PQUUB PQMV UB

Figure 13: Feeder application

Figure 13 presents REX640 in a feeder application. The base functionality is enhanced with application packages providing both line distance and line differential protections. To provide additional protection against earth faults along the feeder, an additional application package has been selected. Conventional measuring transformers are used in the example case. The AIM1 analog input card provides the best match for them with

Ó S PROTECTION AND CONTROL RELAY **REX640** Example of a combination of application packages for transformer protection PROTECTION LOCAL HMI (OPTIONAL) ALSO AVAILABLE - Disturbance and fault recorders Sequence event recorde Master Trip 94/86 Relay self-supervision
 User management and logging
 Logical and mathematical functions WebHMI 3U< 27 U1< 27PS 3U<R 27R 3I< 37 I2>M 46M 0 3I (HV) 7 inch IP65 color touch scre 3Ith>F 49F I2/I1> 46PD 3I>/Io>BF 50BF 10>>> Ready-made pages and customizable pages
 Increased situational awareness towards process
 Supports Relay testing and commissioning
 Graphical editing of pages with PCM600 tool 50G/50 COMMUNICATION mA/Ω 5× lo> 51G/ 51N-1 3I>> 51P-2 3I>>> 50P lo>> 3I> 51P-1 FPN 51N-2 Flexible Product Naming rotocols: IEC 61850-8-1/-9-2LE Modbus® lo 3I(U) 51V 3U> 59 Uo> , U2> U1> 59PS Modbus* IEC 60870-5-103 IEC 60870-5-104 DNP3 **Iterfaces**: Ethernet: TX (RJ45), FX (LC) Serial: Serial glass fiber (ST), RS-485 tedundant protocols: 47.59N 96/59 CONDITION MONITORING AND SUPERVISION 5× 31> l2>→ 67Q 31>→ 67P/ 51P-1 67P/ 51P-2 67G/N 7G/N-3 3× 11x t protocols MCS 3 CCM 3I2f> 68HB свсм SDCC f>/f<,df/dt , JFLS/I . dloHi> 29CM HSR PRP 52CM 81LSH 87NHI 31 Time sync SNTP OPTS TCS TCM FUSEF VPSO SOFT LB 21LB ARC AFD MAP MAP PTPv2 dioLo> 87NLI OPTM /CM, 60 IRIG-B 3U 3× Z2→ Z2Q , 11→ 57P-TC 3lhp>T 26/49HS MCS 31,12 CCM 31,12 MEASUREMENT - I, U, Io, Uo, P, Q, E, pf, f APP8 - Sequence current/voltage measurement - Limit value supervision - RTD/mA measurement and mA output 2, Master Trip 94/86 CONTROL AND INDICATION Analog interface types 2x AIM2 + RTD1 Ind²⁾ Object Ctrl¹⁾ Master Trip 94/86 Current transforme 12 CB DC, 3 state 6 6 Voltage transformer 8 DC 8 8 RTD measurement 10 ES mAinput/output 2 P Control and status indication function for primary object
 P Status indication function for primary object LOADPROF LOADPROF APPLICATION PACKAGE FOR POWER TRANSFORMER PROTECTION 25 AUTO SYNC Z< GT 21GT U/f> 24 ____ P>/Q> 32R/32 SYNC 25 0→I 79 PQM3IH PQM ITHD, IDC 320 3lth>T/G/C IHi_A: 87A Hi B PQM3VH PQM VTHD, VDC 49T/G/C 87B APPLICATION PACKAGE FOR OLTC CONTROL PQMU PQMV SWE,SAG, INT dHi_C> 87C 3dI>T 87T COLTO 11→ 90 67P-TC LGAP APP8 APP10/APP8 PQUUB PQMV UB 3 WINDING ADD-ON PACKAGE FOR TRANSFORMER PROTECTION REMARKS 3× Total nr. of instances 8dI>3W 87T3 TPOSM 84T ADD2 APP10/APP8

five voltage and five current inputs, one being a sensitive input.

Figure 14: Transformer application

Figure 14 presents REX640 in a three-winding power transformer application. The base functionality is enhanced with a power transformer application package and the related three-winding add-on package. In the example case, REX640 also manages the on-

load tap changer's manual and automatic control. For this purpose, the application package for OLTC control has been selected as well. Best match for current and voltage measurement can be managed by selecting two AIM2 cards for the relay. This combination offers 12 current and 8 voltage channels to be freely allocated for the relay functionalities. The OLTC control function requires information on the tap-changer's actual position. To be able to provide this information, the relay is equipped with an RTD card which can measure the OLTC position either as a resistance value or as an mA signal.

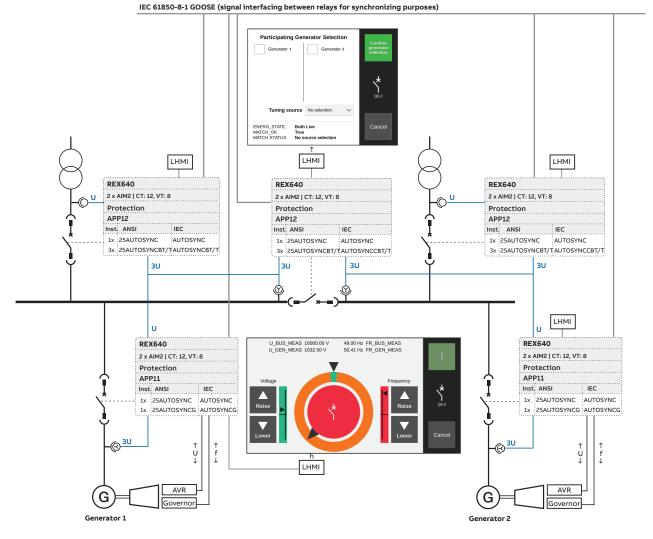

Figure 15: Motor application

Figure 15 presents REX640 in a synchronous motor application. The base functionality is enhanced with a machine protection application package and the related synchronous machine add-on package. Best

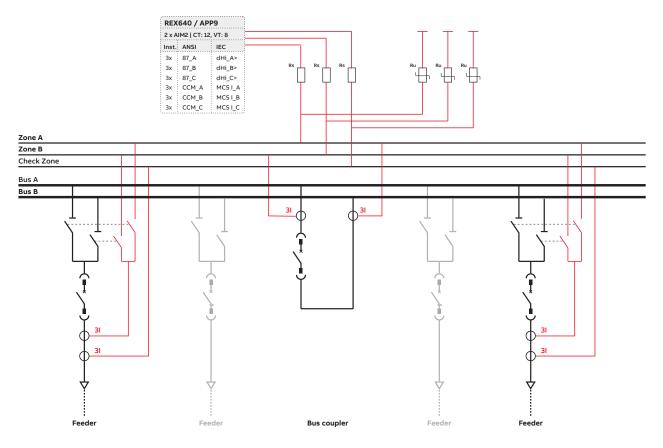
match for current and voltage measurement can be managed by selecting both AIM1 and AIM2 cards for the relay. This combination offers 11 current and 9 voltage channels to be freely allocated for the relay functionalities. The

stator winding temperatures are monitored via the temperature sensors in the motor. These

sensors are connected to the RTD card within the relay.

Figure 16: Autosynchronizer application

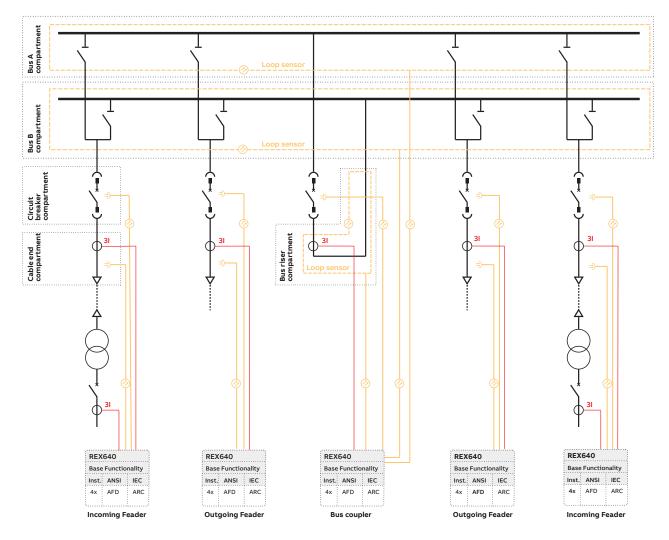
In addition to conventional protection, control, measurement and supervision duties, REX640 can perform both generator (APP11) and nongenerator (APP12) circuit breaker synchronizing. Successful synchronization of two alternating power sources can be done by matching their voltage, frequency, phase sequence and phase angle. The circuit breaker (CB) connects the two sources after a period of CB closing time from the instant of a given close command. Hence, all the conditions of synchronization need to be met at the instant of CB close operation for successful synchronization.

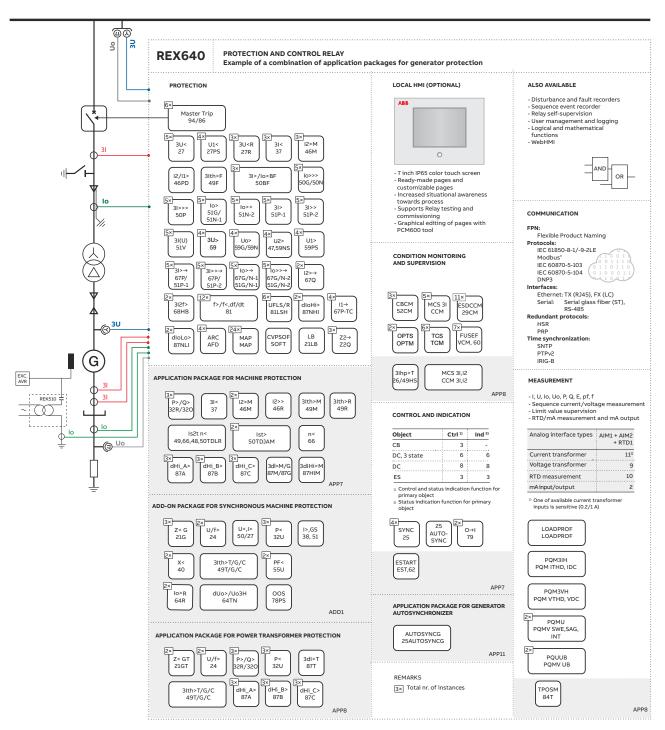

Each REX640, being part of the overall synchronizing scheme, contains its own synchronizer function. When a generator CB is to be synchronized, the related REX640 controls the generator's voltage, frequency and angle difference by requesting the generator's AVR and prime mover's governor to change the set-points accordingly. The generator circuit breaker synchronizing does not require information exchange between other REX640 relays within the scheme.

When a non-generator CB is to be synchronized, all the REX640 relays within the scheme exchange information between themselves in order to identify suitable generator(s) for the voltage and frequency matching. Once the generators are identified and selected, the REX640 related to the circuit breaker to be synchronized sends a request to the selected generator(s) REX640 for the required voltage and frequency corrections. When the voltage, frequency and the angle difference across the CB under synchronization are within the set limits, REX640 closes the circuit breaker. The information exchange between the REX640s takes place using IEC 61850-8-1 binary and analog GOOSE signaling over Ethernet.

The LHMI panels of REX640 can be used as local user interface for circuit breaker

synchronization. The upper-level remote control systems like SCADA, DCS or PMS can interact with the synchronizing scheme using MMS or Modbus protocols. The REX640-based synchronizing scheme supports manual, semimanual and automatic synchronizing modes.


When the synchronizing scheme includes both generator and non-generator CBs, the maximum size of the supported system is eight generator and 17 non-generator CBs.


Figure 17 presents REX640 in a phase-dedicated highimpedance busbar protection application for a double busbar switchgear. The relay's base functionality is enhanced with the busbar protection application package (APP9). The two AIM2 cards in the relay provide a total of 12 current channels. In the example, 9 out of the 12 current channels are used to create three busbar protection zones. Zones A and B provide selective protection for Bus A and

Bus B, respectively. The third zone, called check zone, covers both busbars. The check zone works as the final trip release condition for the selective zones; it provides security against false trip commands initiated by the selective zones, for example, due to a fault within the disconnector's auxiliary switch circuitry. The current transformers' secondary buswires for the three protection zones are supervised by dedicated functions within the relay.

Figure 18: Arc flash protection application

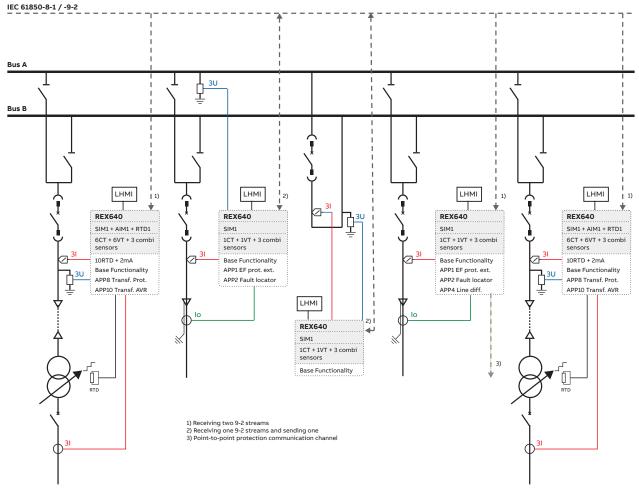

Figure 18 presents an installation-wide arc flash protection scheme for a double busbar switchgear. REX640 protection relays are equipped with arc flash sensor card. The card supports a maximum of four pieces of either loop or lens sensors or a combination thereof. By using suitable sensor combinations for different bays, we can build up a selective arc flash protection scheme for the complete switchgear. The selective operation of the arc flash protection scheme limits the power outage caused by the arc fault to the smallest possible section of the switchgear. The arc flash protection operation is not dependent on light detection only; it is also supervised by arc fault current measurement. Since the arc flash protection operation should be as fast as possible, the use of static power outputs for tripping circuits is highly recommended. The functional condition of the arc flash sensor is continuously supervised and if a problem is detected, an alarm is triggered; this applies to both loop and lens sensors.

Figure 19: Generator application

Figure 19 presents REX640 in a synchronous generator application including a block transformer. The base functionality is enhanced with the machine protection and transformer protection application packages. The synchronous machine add-on package supports the related protection functions for a synchronous generator. Generator

autosynchronizer application packages support the generator's synchronized connection into the busbars, in both manual and auto modes. The relay's LHMI works as the local operator interface for controlling the autosynchronizing sequence. An external injection device (REK 510) enables the generator's excitation circuit supervision against earth faults. Best match for current and voltage measurement needs can be managed by selecting both AIM1 and AIM2 cards for the relay. This combination offers 11 current and 9 voltage channels to be freely allocated to the functionalities in the relay. The generator's stator winding temperatures are monitored using RTD sensors.

Figure 20: Digital switchgear application

REX640 is perfectly aligned with the needs of digital switchgear. Sensors are used for the local phase current and voltage measurements, apart from the high-voltage side current measurement used for power transformer protection, which is carried out by conventional current transformers. For the outgoing cable feeders, the earth-fault protection uses core balance current transformers. The Bus A voltage is measured by the relay in panel +J2, whereas the Bus B voltage is measured by the relay in panel +J3. Both relays send the measured bus voltages to the Ethernet bus as sampled measured values (SMV) according to IEC 61850-9-2 LE. Depending on the type of the feeder, it receives either one or two SMV streams. The feeders receiving two SMV

streams automatically switch between the streams based on the position of the busbar disconnectors. All interlocking signals between the panels use binary GOOSE messaging according to IEC 61850-8-1. The incoming power transformer feeders measure also the cable side voltages to enable automatic voltage regulation (tap changer control) and synchronizing check functionality for circuit breaker closing.

8. Supported ABB solutions

The REX640 protection relay together with the ABB Ability Electrification Monitoring and Control ZEE600 constitutes a genuine IEC 61850 solution for reliable power distribution in utility and industrial power systems. To facilitate the system engineering, ABB's relays are supplied with connectivity packages. The connectivity packages include a compilation of software and relay-specific information, including single-line diagram templates and a full relay data model. The data model includes event and parameter lists. With the connectivity packages, the relays can be readily configured using PCM600 and integrated with the ZEE600.

REX640 offers native support for IEC 61850 Edition 2.1 including binary and analog horizontal GOOSE messaging. In addition, a process bus enabling sending and receiving of sampled values of analog currents and voltages is supported.

Unlike the traditional hardwired, inter-device signaling, peer-to-peer communication over a switched Ethernet LAN offers an advanced and versatile platform for power system protection. Among the distinctive features of the protection system approach, enabled by the full implementation of the IEC 61850 substation automation standard, are fast communication capability, continuous supervision of the protection and communication system's integrity, and flexible reconfiguration and upgrades. This protection relay series is able to optimally use the interoperability provided by the IEC 61850 Edition 2.1 features.

At substation level, ZEE600 uses the data content of the bay level devices to enhance the substation level functionality.

ZEE600 features a Web browser-based HMI, which provides a customizable graphical display for visualizing single-line mimic diagrams for switchgear bay solutions. Substation devices and processes can also be remotely accessed through the Web HMI, which improves personnel safety.

In addition, ZEE600 can be used as a local data warehouse for the substation's technical documentation and for the network data collected by the devices. The collected network data facilitates extensive reporting and analyzing of network fault situations by using the data historian and event handling features of ZEE600. The historical data can be used for accurate monitoring of process and equipment performance, using calculations based on both real-time and historical values. A better understanding of the process dynamics is achieved by combining time-based process measurements with production and maintenance events.

ZEE600 can also function as a gateway and provide seamless connectivity between the substation devices and network-level control and management systems.

9. Control

REX640 integrates functionality for controlling objects such as circuit breakers, disconnectors, earthing switches, on-load tap changers and Petersen coils via the LHMI or by means of remote controls. The relay includes three circuit breaker control blocks. In addition, the relay features 14 disconnector control blocks intended for the motor-operated control of disconnectors or a circuit breaker truck and three control blocks intended for the motor-operated control of the earthing switch. Furthermore, the relay includes eight additional disconnector position indication blocks and three earthing switch position indication blocks that can be used with disconnectors and earthing switches that are only manually controlled.

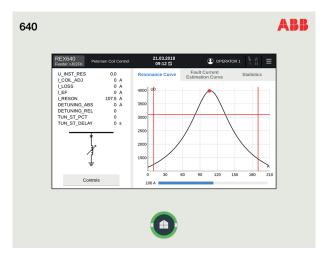


Figure 21: Petersen Coil control page

The touch screen LHMI supports a singleline diagram with control points and position indication for the relevant primary devices. Interlocking schemes required by the application are configured using Signal Matrix or Application Configuration in PCM600. REX640 includes two autoreclosing functions, each with up to five programmable autoreclosing shots of desired type and duration. A load-shedding function performs load shedding based on underfrequency and the rate of change of the frequency.

To validate correct closing conditions for a circuit breaker, REX640 contains a synchrocheck function. For installations including synchronous generators, REX640 introduces a synchronizer that actively controls the generator's voltage and frequency in order to reach a synchronous situation across the circuit breaker. The synchronizer functionality is available for a generator circuit breaker as well as for a nongenerator (network) circuit breaker. A complete installationwide synchronizing system can be built using the REX640 relays. The maximum size of the synchronizing system is eight generator breakers and 17 non-generator breakers.

Synchronization of a generator circuit breaker can be implemented using a single REX640 relay including the ASGCSYN function block. The relay interfaces the external measurement and control circuitry via hardwired binary and analog signals. The excitation and prime mover control signals are based on pulse commands, either with fixed or variable length. The synchronizer function block has three different function modes: manual, semi-automatic and automatic. In each of these modes, the LHMI acts as the local user interface. The LHMI includes the necessary command, indication and measurement features for each of the modes, thus rendering the conventional dedicated synchronizing panel unnecessary.

REX640 also supports systems in which nongenerator circuit breakers are synchronized. The prerequisite is that all the feeders within the system are equipped with REX640 relays. The generator relays have to contain the ASGCSYN function block and all the non-generator relays need to contain the ASNSCSYN function block. In addition, all the REX640 relays have to contain the coordinator function block ASCGAPC. The role of ASCGAPC is to model the system primary circuit connection state to involve the correct generators for the synchronization of a non-generator breaker and to interact between the ASGCSYN and ASNSCSYN function blocks. The information exchange between ASCGAPC, ASGCSYN and ASNSCSYN is carried

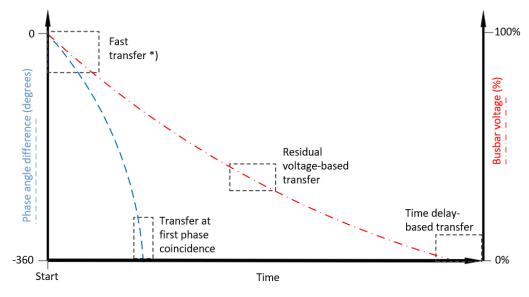
out via binary and analog GOOSE signalling as per IEC 61850-8-1. The LHMI dedicated to the relay (breaker) works as the local user interface for a nongenerator breaker synchronizing. The available synchronizing modes are "automatic" and "semi-automatic". A manual synchronization of the non-generator breaker can be carried out as a back-up solution in situations where the communication system (IEC 61850-8-1) is not available. This requires operator actions from two LHMIs, namely from the LHMI of the concerned non-generator breaker and the LHMI of the manually selected generator relay.

10. High-speed transfer device (HSTD)

REX640 can perform automatic high-speed transfer functionality utilizing APP51 or APP52 or APP53 application packages. In the industry the functionality is also referred as high-speed busbar transfer (HSBT), motor bus transfer (MBT), high-speed motor bus transfer (HSMBT) and automatic bus transfer (ABT).

The high-speed transfer is typically required in processes where the electrical supply for the critical system parts must be secured by connecting alternative (stand-by) feeder online. Such processes are typically be found in petrochemical, pharmaceutical, semiconductor manufacturing industries and in electrical power generation plants. Common feature for these examples is that there are motors fed by the switchgear, these motors will back-feed the busbar once the grid connection is lost. The declining busbar voltage and frequency must be considered carefully to determine the correct closing moment for the alternative feeder.

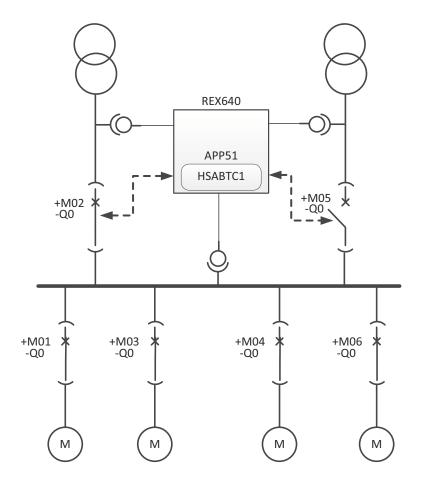
The supported transfer modes are:


- Fast transfer
- Transfer at first phase coincidence
- Residual voltage-based transfer
- · Time delay-based transfer

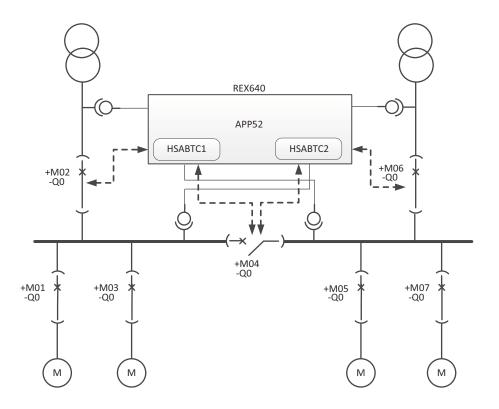
The fast transfer mode can be further divided into simultaneous and sequential circuit breaker control schemes. Selection of the transfer mode takes place dynamically considering the set parameters and the prevailing network conditions. Typically, the fast transfer mode is the preferred one, but in case the network conditions do not allow this mode to be executed, the next one would be the first phase coincident mode followed by residual and time delayed modes.

The triggering of transfer functionality can happen internally in the REX640 by the HSABTC transfer function, or it can be based on external triggering signal, or it can be manually initiated.

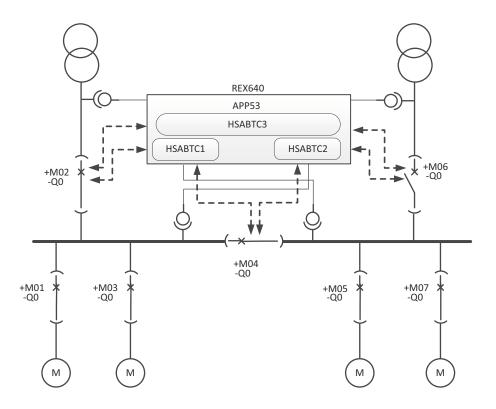
In addition to necessary voltage measurements, the REX640 can be connected to measure main and alternative feeders phase currents. The current measurements are necessary only if the automatic circuit breaker travel time calculation is based on current measurement, instead of circuit breaker position information.


While engineering a REX640 based HSTD scheme, couple of hardware related performance issues must be considered to enable the fast transfer and transfer at first phase coincident operation modes. The static power output module(s) in REX640 must be used for circuit breaker controls within the scheme. The closing delay of the involved circuit breakers must be less than 100 ms.

*) The fast transfer mode offers two circuit breaker control schemes; simultaneous and sequential (break-before-make).


Figure 22: Conceptual overview of transfer modes

Each of the APP51, APP52 and APP53 application packages support all the different transfer modes. The difference between the packages is in the number of actual transfer functions (HSABTC) instances, resulting higher scheme flexibility and increase in the number of supported circuit breakers.


Figure 23: Example case in using APP51

In the above example the motor control switchgear is supplied by two incoming feeders +M02 and +M05. Under normal conditions the switchgear is supplied by +M02 feeder only, whereas the feeder +M05 works as the standby feeder. In case the HSTD functionality is triggered by supply disturbances in the +M02 feeder, the REX640 will automatically transfer the supply over to +M05 feeder. Once the +M02 feeder is available again, the transfer back to the original configuration can be initiated manually. Cases where the feeder +M05 works as the main feeder and the +M02 as the standby feeder, are supported as well.

Figure 24: Example case in using APP52

In the above example the motor control switchgear is supplied by two incoming feeders +M02 and +M06. Under normal conditions both the incoming feeders are closed, while the bus-sectionalizer +M04 remains open. In case the HSTD functionality is triggered by supply disturbances in either of the incoming feeders, +M02 or +M06, the REX640 will automatically transfer the concerned bus-section supply to the healthy incoming feeder by closing the bussectionalizer +M04 circuit breaker. Once the failed incoming feeder is available again, the transfer back to the original configuration can be initiated manually.

Figure 25: Example case in using APP53

The above example of utilizing APP53 application package is very similar to the earlier presented APP52 example case. However, the third instance of HSABTC function enables higher flexibility with the transfer scheme. Let us consider a situation where the switchgear is supplied by one incoming feeder, let's say +M02, and the bus-sectionalizer +M04 is closed. Let us further assume that the other incoming feeder +M06 is available, even though not closed. In case supply disturbances are recognized with the +M02 incoming feeder, the HSTD functionality resulting a transfer from +M02 incoming feeder to +M06 incoming feeder can be initiated. Manually triggered configuration changes between the incoming feeders and the bus-sectionalizer are fully supported.

11. Arc flash protection

The arc flash protection is available on the optional hardware module. The module

supports connection of up to four sensors. The sensors can be of lens or loop types, or a free mixture. Both sensor types are supervised against sensor failure. Fast tripping increases staff safety and limits material damage, therefore it is recommended to use static power outputs (SPO) instead of normal power outputs (PO). This typically decreases the total operating time with 4..6 ms compared to the normal power outputs.

12. Power transformer differential protection

The relay offers low-impedance differential protection for two-winding (two restraints) and three-winding (three restraints) power transformers. The power transformer protection application package includes the protection for a two-winding power transformer. If support for three-winding power transformer is needed, the corresponding

protection add-on package can be selected. Both low-impedance differential functions feature three-phase multi-slope stabilized stages and an instantaneous stage to provide fast and selective protection against short circuits, winding interturn faults and bushing flash-overs. A second harmonic restraint with advanced waveform-based blocking ensures stability at transformer energization. The fifth harmonic based blocking and unblocking limits stabilize the protection performance in moderate overexcitation situations. In case of three-winding differential protection, the connection group phase shift matching can be done with 0.1 degree resolution supporting cycloconverter applications. If the tap-changer position information is available, it is possible to further increase the protection sensitivity by compensating the tap-changer position error within the measured differential current.

The power transformer protection application package also includes high-impedance differential functions for a phasesegregated protection scheme. If this scheme is applied, the related current transformers have to be correctly selected and the necessary secondary circuit components, external to the relay, defined.

13. Measurements

The base functionality of the REX640 relay contains a number of basic measurement functions for current, voltage, frequency, symmetrical components of currents and voltages, power, power factor and energy. These measurement functions can be freely connected to the measured secondary quantities available in the relay. The relay can also measure various analog signals via RTD and mA inputs. All these measurements can be used within the relay configuration for additional logics. The measurements are available locally on the HMI and can be accessed remotely via communication. The information is also accessible via WHMI.

The relay is also provided with a load profile recorder. The load profile feature stores the selected load measurement data captured periodically (demand interval). The records can be viewed on the LHMI and are available in COMTRADE format.

14. Power quality

In the EN standards, power quality is defined through the characteristics of the supply voltage. Transients, shortduration and longduration voltage variations and unbalance and waveform distortions are the key characteristics describing power quality. The distortion monitoring functions are used for monitoring the current total demand distortion and the voltage total harmonic distortion.

Power quality monitoring is an essential service that utilities can provide for their industrial and key customers. A monitoring system can provide information about system disturbances and their possible causes. It can also detect problem conditions throughout the system before they cause customer complaints, equipment malfunctions and even equipment damage or failure. Power quality problems are not limited to the utility side of the system. In fact, the majority of power quality problems are localized within customer facilities. Thus, power guality monitoring is not only an effective customer service strategy but also a way to protect a utility's reputation for quality power and service.

The protection relay has the following power quality monitoring functions.

- Voltage variation
- Voltage unbalance
- Current harmonics
- Voltage harmonics

The voltage unbalance and voltage variation functions are used for measuring shortduration voltage variations and monitoring voltage unbalance conditions in power transmission and distribution networks.

The voltage and current harmonics functions provide a method for monitoring the power quality by means of the current waveform distortion and voltage waveform distortion. The functions provide selectable short-term 3- or 60- or 300-second sliding average and a long-term demand for total demand distortion (TDD) and total harmonic distortion (THD). The phase-specific harmonic content is measured for voltages and currents, as well as DC component and fundamental content. The dedicated harmonics measurement page in the LHMI presents the measurements in a userfriendly manner.

15. Fault locator

The relay features an optional impedancemeasuring fault location function suitable for locating short circuits in radial distribution systems. Earth faults can be located in effectively and low-resistance earthed networks, as well as in compensated networks. When the fault current magnitude is at least of the same order of magnitude or higher than the load current, earth faults can also be located in isolated neutral distribution networks. The fault location function identifies the type of the fault and then calculates the distance to the fault point. The calculations provide information on the fault resistance value and accuracy of the estimated distance to the fault point.

16. Disturbance recorder

The relay is provided with a disturbance recorder featuring up to 24 analog and 64 binary signal channels. The analog channels can be set to record either the waveform or the trend of the currents and voltages measured.

The analog channels can be set to trigger the recording function when the measured value

falls below or exceeds the set values. The binary signal channels can be set to start a recording either on the rising or the falling edge of the binary signal or on both.

The binary channels can be set to record external or internal relay signals, for example, the start or trip signals of the relay stages, or external blocking or control signals. The recorded information is stored in a nonvolatile memory in COMTRADE format and can be uploaded for subsequent fault analysis.

17. Event log

To collect sequence-of-events information, the relay has a nonvolatile memory capable of storing 1024 events with the associated time stamps. The event log facilitates detailed preand post-fault analyses of feeder faults and disturbances. The considerable capacity to process and store data and events in the relay supports the growing information demand of future network configurations.

The sequence-of-events information can be accessed either via the LHMI or remotely via the communication interface of the relay. The information can also be accessed locally or remotely using the WHMI.

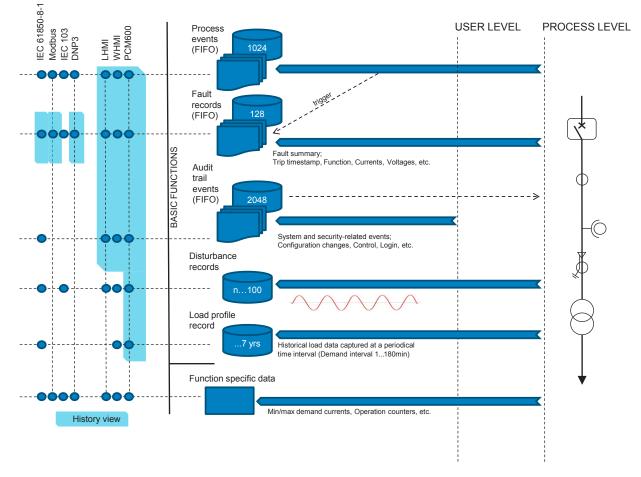


Figure 26: Event recording

18. Recorded data

The relay can store the records of the latest 128 fault events. The records can be used to analyze the power system events. Each record includes, for example, current, voltage and angle values and a time stamp. The fault recording can be triggered by the start or the trip signal of a protection block, or by both. The available measurement modes include DFT, RMS and peak-to-peak. Fault records store relay measurement values when any protection function starts. In addition, the maximum demand current with time stamp is separately recorded. The records are stored in the nonvolatile memory.

19. Load profile

The load profile recorder stores the historical load data captured periodically (demand interval). Up to 12 load quantities can be selected for recording and storing in the nonvolatile memory. The recordable quantities include currents, voltages, power and power factor values. The recording time depends on a settable demand interval parameter and the amount of quantities selected. The quantities' type and amount to be recorded are determined in the application configuration. The recorded quantities are stored in the COMTRADE format.

20. Trip circuit supervision

The trip circuit supervision continuously monitors the availability and operability of the trip circuit. It provides opencircuit monitoring both when the circuit breaker is in closed and in open position. It also detects loss of circuitbreaker control voltage.

21. Self-supervision

The relay's built-in self-supervision system continuously monitors the state of the relay hardware and the operation of the relay software. Any fault or malfunction detected is used for alerting the operator.

A permanent relay fault blocks the protection functions to prevent incorrect operation.

22. Access control and cybersecurity

Cybersecurity measures are implemented to secure safe operation of the protection and control functions. The relay supports these measures with configuration hardening capabilities, encrypted communication, Ethernet filter and rate limiter, security event logging and user access control.

The relay supports role-based user authentication and authorization with individual user accounts as defined in IEC 62351-8. All user activity is logged as security events to an audit trail in a nonvolatile memory and sent as messages to the SysLog server. The nonvolatile memory does not need battery backup or regular component exchange to maintain the memory storage. File transfer and WHMI use communication encryption protecting the data in transit. Also, the communication link between the relay configuration tool PCM600 and the relay is encrypted. All rear communication ports and optional protocol services can be activated according to the required system setup.

User accounts can be managed by PCM600 or centrally. A central account management is an authentication infrastructure that offers a secure solution for enforcing access control to relays and other systems within a substation. This incorporates management of user accounts, roles and certificates and the distribution of such, a procedure completely transparent to the user. The central server handling user accounts can be, for example, an Active Directory (AD) server such as Windows AD.

The relay supports full Public Key Infrastructure as defined by IEC 62351-9. With this,

the user can ensure that the certificates used in secured communication are from a userapproved provider instead of device selfsigned certificates.

23. Station communication

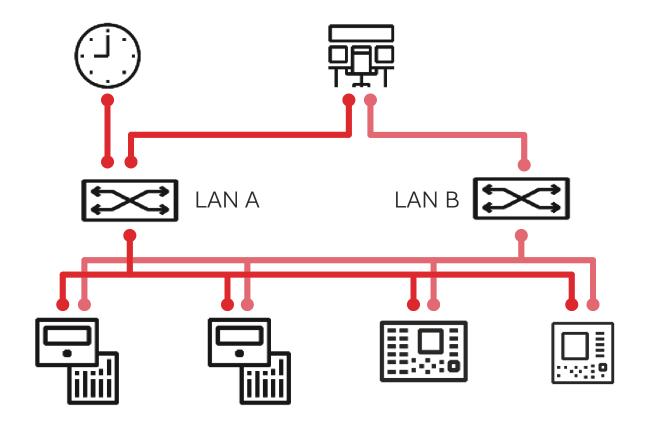
Operational information and controls are available through a wide range of communication protocols including IEC 61850 Edition 2.1, IEC 61850-9-2 LE, IEC 60870-5-103, IEC 60870-5-104, Modbus[®] and DNP3. The Profibus DPV1 communication protocol is supported via the protocol converter SPA-ZC 302. Full communication capabilities, forexample, horizontal communication between the relays, are only enabled by IEC 61850.

The relay provides the possibility for a second IP address and a second subnetwork when the communication modules with three Ethernet ports (COM1001...1003) are used. However, only one IP network can be used as the default route. Using two IP addresses, communication networks can be separated based on the dominant user's needs. For example, one IP address can serve the dispatchers and the other one can serve the service engineers' needs.

The IEC 61850 protocol is a core part of the relay as the protection and control application is fully based on standard modelling. The relay supports Edition 2.1 and Edition 1 versions of the standard. With Edition 2.1 support, the relay has the latest functionality modelling for substation applications and the best interoperability for modern substations. The relay supports flexible product naming (FPN) facilitating the mapping of relay's IEC 61850 data model to a customer defined IEC 61850 data model.

The IEC 61850 communication implementation supports monitoring and control functions. Additionally, parameter settings, disturbance recordings and fault records can be accessed using the IEC 61850 protocol. Disturbance recordings are available to any Ethernet-based application in the standard COMTRADE file format. The relay supports simultaneous event reporting to five different clients on the station bus.

The relay can send binary and analog signals to other devices using the IEC 61850-8-1 GOOSE (Generic Object Oriented Substation Event) profile. Binary GOOSE messaging can, for example, be used for protection and interlocking-based protection schemes. The relay meets the GOOSE performance requirements for tripping applications in distribution substations, as defined by the IEC 61850 standard (class P1, <3 ms data exchange between the devices). The relay also supports the sending and receiving of analog values using GOOSE messaging. Analog GOOSE messaging enables easy transfer of analog measurement values over the station bus, thus facilitating, for example, the sending of measurement values between the relays when controlling transformers running in parallel.


The relay also supports IEC 61850 process bus concept by sending and receiving sampled values of currents and voltages. With this functionality the galvanic interpanel wiring can be replaced with Ethernet communication. The analog values are transferred as sampled values using the IEC 61850-9-2 LE protocol. REX640 supports publishing of one and subscribing of four sampled value streams. The intended application for sampled values are current-based differential protection functions or sharing the voltage values with the relays that have voltage-based protection or supervision functions. The relay can receive up to four sampled value streams and totally 16 measurements can be connected into the protection relay application.

Relays with process bus based applications use IEEE 1588 edition 2 for high-accuracy time synchronization.

For redundant Ethernet communication in station bus, the relay offers either two optical or two galvanic Ethernet network interfaces. An optional third port with optical or galvanic Ethernet network interface is also available. The relay also provides an optional fiber-optic port for dedicated protection communication which can be used for up to 50 km distances depending on the selected fiber transceiver. The intended teleprotection applications for this port are line differential and line distance protection communication or binary signal transfer. The optional third Ethernet interface provides connectivity for any other Ethernet device to an IEC 61850 station bus inside a switchgear bay, for example connection of a remote I/O. Ethernet network redundancy can be achieved using the high-availability seamless redundancy (HSR) protocol or the parallel redundancy protocol (PRP), or with a self-healing ring using RSTP in the managed switches. Ethernet redundancy can be applied to the Ethernet-based IEC 61850, Modbus and DNP3 protocols.

The IEC 61850 standard specifies network redundancy which improves the system availability for the substation communication. The network redundancy is based on two complementary protocols defined in the IEC 62439-3 standard: PRP and HSR protocols. Both protocols are able to overcome a failure of a link or switch with a zero switchover time. In both protocols, each network node has two identical Ethernet ports dedicated for one network connection.

The protocols rely on the duplication of all transmitted information and provide a zero switchover time if the links or switches fail, thus fulfilling all the stringent real-time requirements of substation automation.

Figure 27: Parallel redundancy protocol (PRP) solution

In PRP, each network node is attached to two independent networks operated in parallel. The networks are completely separated to ensure failure independence and can have different topologies. As the networks operate in parallel, they provide zero-time recovery and continuous checking of redundancy to avoid failures.

HSR applies the PRP principle of parallel operation to a single ring. For each message sent, the node sends two frames, one through each port. Both frames circulate in opposite directions over the ring. Every node forwards the frames it receives from one port to another to reach the next node. When the originating sender node receives the frame it sent, the sender node discards the frame to avoid loops. The HSR ring supports the connection of up to 30 relays. If more than 30 relays are to be connected, it is recommended to split the network into several rings to guarantee the performance for real-time applications.

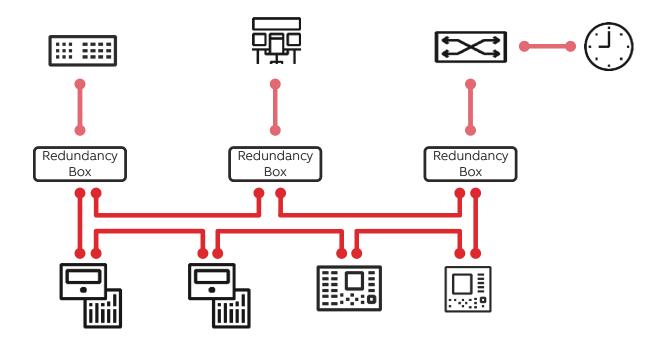


Figure 28: High-availability seamless redundancy (HSR) solution

The relay can be connected to Ethernet-based communication systems in a station bus using the RJ-45 connector (100Base-TX) or the multimode fiber optic LC connector (100Base-FX). A dedicated protection communication port uses a pluggable multimode or single mode fiber optic LC connector (100Base-FX). If connection to a serial bus is required, the RS-485 or fiber-optic serial communication ports can be used.

Modbus implementation supports RTU, ASCII and TCP modes. Besides standard Modbus functionality, the relay supports retrieval of time-stamped events, changing the active setting group and uploading of the latest fault records. If a Modbus TCP connection is used, five clients can be connected to the relay simultaneously. Further, Modbus serial and Modbus TCP can be used in parallel, and, if required, both IEC 61850 and Modbus can be run simultaneously.

The IEC 60870-5-103 implementation supports two parallel serial bus connections to two different masters. Besides basic standard functionality, the relay supports changing of the active setting group and uploading of disturbance recordings in IEC 60870-5-103 format. Further, IEC 60870-5-103 can be used at the same time with the IEC 61850 protocol.

Table 3: Time synchronization methods supported by the relay

Methods	Time-stamping resolution
SNTP (Simple network time protocol) ²	1 ms
IRIG-B (Inter-Range Instrumentation Group - Time Code Format B) ³	4 μs
PTPv2 (IEEE 1588) with Power profile (IEEE Std C37.238-2011) and Utility profile (IEC 61850-9-3)	4 µs ⁴

² Ethernet-based

³ With special time synchronization wiring

⁴ Required especially in process bus applications

DNP3 supports both serial and TCP modes for the connection of up to five masters. Changing the active setting and reading fault records are supported. DNP serial and DNP TCP can be used in parallel. If required, both IEC 61850 and DNP can be run simultaneously.

The relay supports Profibus DPV1 with support of SPA-ZC 302 Profibus adapter. If Profibus is required, the relay must be ordered with Modbus serial options. Modbus implementation includes SPA protocol emulation functionality. This functionality enables connection to SPA-ZC 302.

When the relay uses the RS-485 bus for the serial communication, both two- and four-wire connections are supported. Termination and pull-up/down resistors can be configured with DIP switch on the communication card so that external resistors are not needed.

PTPv2 features:

PTPv2 Power profile and PTPv2 Utility profile

- Receive (slave): 1-step/2-step
- Transmit (master): 1-step
- Layer 2 mapping
- Peer-to-peer delay calculation and monitoring
- Multicast operation
- Ordinary Clock with Best Master Clock
 algorithm
- One-step Transparent Clock for Ethernet ring topology
- Slave-only mode

The required accuracy of the grandmaster clock is $+/-1 \mu$ s to guarantee performance of protection applications. The relay can work as a backup master clock per BMC algorithm if the external primary grandmaster clock is not available for short term.

In addition, the relay supports time synchronization via Modbus, DNP3 and IEC 60870-5-103 serial communication protocols.

	Ethernet			Serial	
Interfaces/Protocols	100BASE-TX RJ-45	100BASE-FX LC	RS-485	Fiber optic ST	
IEC 61850-8-1	•	•	-	-	
IEC 61850-9-2 LE	•	•	-	-	
MODBUS RTU/ASCII	-	-	•	•	
MODBUS TCP/IP	•	•	-	-	
DNP3 (serial)	-	-	•	•	
DNP3 TCP/IP	•	•	-	-	
IEC 60870-5-103	-	-	•	•	
IEC 60870-5-104	•	•	-	-	

Table 4: Supported station communication interfaces and protocols

• = Supported

24. Protection communication and supervision

The protection communication between the relays is enabled by means of a dedicated fiber optic communication channel; 1310 nm multimode or single-mode fibers with LC connectors are used. The communication link transfers analog and binary information between line ends for line differential, line distance and transfer trip functions. No external devices, such as GPS clocks, are needed for the line differential protection communication. Additionally, the link can be used to transfer any freely selectable binary data between line ends. In total, 16 binary signals can be transferred between two REX640 protection relays.

Each REX640 communication card variant contains an SFP rack for dedicated point-to-

point protection communication via an SFP plug-in module. Three variants of SFP plug-in modules can be selected. The variants support optical communication for distances typically up to 2 km (multimode), 20 km (single-mode) and 50 km (single-mode). The SFP plugin unit can be ordered together with the relay or later on when the need to establish the link arises. The line differential protection can be realized between two REX640 relays or between REX640 and RED615 relays. If the line differential protection is to be realized between REX640 and RED615 relays, the SFP plug-in module has to match the RED615 communication card variant. Additionally, the RED615 relay version must be Ver.5.0 FP1 or later and phase current measurements should be realized with conventional current transformers that have 1 A as the nominal secondary current.

The protection communication supervision continuously monitors the protection communication link. The line differential protection function can be blocked if severe interference in the communication link, risking

the correct operation of the function, is detected. If the interference persists, an alarm signal is triggered indicating permanent failure in the protection communication.

Communication module COM1003 gives the possibility to assign the third optical Ethernet communication port (interlink port) as an extra dedicated point-to-point protection communication channel. The second channel can transfer up to 16 additional binary signals between two REX640 relays, or alternatively eight additional binary signals between one REX640 and one RED615 relay. Analogue signals, needed for line differential protection, are transferred via the first protection communication channel only. This feature becomes handy in cases where REX640 relays are used in protection and control schemes for ring type RMU installations where a single REX640 must be able transfer binary signals to two different directions within the ring. Both protection communication channels are supervised.

25. Technical data

25.1 Dimensions of the relay

Table 5: Dimensions of the relay

Description		Value
Width		304.0 mm (11.9685 in)
Height		264.8 mm (10.4252 in)
Depth	With compression type CT/VT connectors	242.2 mm (9.5354 in)
	With ring lug type CT/VT connectors	254.1 mm (10.0039 in)
	With grounding bar	274.0 mm (10.7874 in)
Weight box		6.98.8 kg (15.219.4 lb)

25.2 Dimensions of the HMI

Table 6: Dimensions of the HMI

Description	Value
Width	212.5 mm (8.3661 in)
Height	177.5 mm (6.9882 in)
Depth	57.6 mm (2.2677 in)
Weight	1.6 kg (3.5 lb)
Display element size	Seven inches
Display element resolution	800 x 480 pixels

25.3 Power supply for the relay

Table 7: Power supply for the relay

Description	PSM1001	PSM1002	PSM1003
Nominal auxiliary voltage U _n	24, 30, 48, 60 V DC	100, 110, 120, 220, 240 V AC, 50 and 60 Hz	110, 125 V DC
		48, 60, 110, 125, 220, 250 V DC	-
Maximum interruption time in the auxiliary DC voltage with- out resetting the relay	50 ms at U _n		
Auxiliary voltage variation	50120% of U _n (1272 V DC)	38110% of U _n (38264 V AC)	70120% of U _n (77150 V DC)
		80120% of U _n (38.4300 V DC)	-
Start-up threshold	16 V DC (24 V DC × 67%)		77 V DC (110 V DC × 70%)
Burden of auxiliary voltage supply under quiescent (P _q)/ operating condition	DC <18.0 W (nominal)/<25.0 W (max.)	DC <20.0 W (nominal)/<25.0 W (max.)	DC <17.0 W (nominal)/<25.0 W (max.)
		AC <20.0 W (nominal)/<25.0 W (max.)	
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)		
Fuse type	T8A/250 V	T4A/250 V	
Permissible frequency band	50/60Hz +-10%		

25.4 Power supply for the HMI

Table 8: Power supply for the HMI

Description	Value
Nominal auxiliary voltage U _n	100, 110, 120, 220, 240 V AC, 50 and 60 Hz
	24, 48, 60, 110, 125, 220, 250 V DC
Auxiliary voltage variation	38110% of U _n (38264 V AC)
	80120% of U _n (19.2300 V DC)
Start-up threshold	19.2 V DC (24 V DC × 80%)
Burden of auxiliary voltage supply under quiescent	DC <6.0 W (nominal)/<14.0 W (max.)
(Pq)/operating condition	AC <7.0 W (nominal)/<12.0 W (max.)
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)
Fuse type	T3.15A/250V

25.5 Energizing inputs

Table 9: Energizing inputs

Description		Value		
Rated frequency		50/60 Hz		
Current inputs	Rated current, I _n	0.2/1 A	1/5 A ⁵	
	Thermal withstand capability:	4 A	20 A	
	ContinuouslyFor 1 s	100 A	500 A	
	Dynamic current withstand: • Half-wave value	250 A	1250 A	
	Input impedance	<100 mΩ	<20 mΩ	
Voltage inputs	Rated voltage	57240 V AC		
	Voltage withstand:	288 V AC		
	ContinuousFor 10 s	360 V AC		
	Burden at rated voltage	<0.05 VA		

⁵ Residual current and/or phase current

25.6 Energizing inputs (sensors)

Table 10: Table 9: Energizing Inputs (SIM1901)

Description		Value	
Current sensor input	Rated current voltage	75 mV 9000 mV ⁶	
	Continuous voltage withstand	125 V	
	Input impedance at 50/60Hz	23 MΩ ⁷	
Voltage sensor input	Rated secondary voltage	346 mV1733 mV ⁸	
	Continuous voltage withstand	50 V	
	Input impedance at 50/60Hz	3 ΜΩ	

Table 11: Energizing Inputs (SIM1902)

Description		Value
Current sensor input	Rated current voltage	75 mV 9000 mV ⁹
	Continuous voltage withstand	125 V
	Input impedance at 50/60Hz	2 ΜΩ
Voltage sensor input	Rated secondary voltage	346 mV2339 mV ¹⁰
	Continuous voltage withstand	50 V
	Input impedance at 50/60Hz	2 ΜΩ

25.7 Binary inputs

Table 12: Binary inputs

Value
±20% of the rated voltage
24250 V DC
1.61.9 mA
31.0570.0 mW
16176 V DC

 $^{^{\}rm 6}~$ Equals the current range of 40 \dots 4000 A with 80A, 3mV/Hz Rogowski

⁷ Depending on the used nominal current (hardware gain)

⁸ Covers 6 kV ... 30 kV sensors with division ratio of 10 000:1. Secondary voltages $600 \text{mV}/\sqrt{3} \dots 3$ V / $\sqrt{3}$. Range up to 2 x Rated.

⁹ Equals the current range of 40 ... 4000 A with 80A, 3mV/Hz Rogowski

¹⁰ Covers 6 kV … 40.5 kV sensors with division ratio of 10 000:1. Secondary voltages 600mV/√3 … 4.05V / √3. Range up to 2 x Rated.

Description	Value	
Ripple in the DC auxiliary voltage	Max 15% of the DC value (at frequency of 100 Hz)	
Wetting current	220 mA, impulse period 5ms	
	0120 mA ¹¹ , impulse period 8ms	

25.8 RTD/mA inputs and mA outputs

Table 13: RTD/mA inputs and mA outputs

Description		Value	
RTD inputs	RTD inputs Supported RTD sensors		TCR 0.00385 (DIN 43760)
		250 Ω platinum	TCR 0.00385
		100 Ω nickel	TCR 0.00618 (DIN 43760)
		120 Ω nickel	TCR 0.00618
		250 Ω nickel	TCR 0.00618
	Supported resistance range	04 kΩ	
	Maximum lead resistance (three-wire measurement)	100 Ω per lead	
	Isolation 2 kV (inputs to protective earth)		earth)
	Response time	<1 s	
	RTD/resistance sensing cur- rent	<1 mA rms	
	Operation accuracy	Resistance	Temperature
		± 2.0% or ±1 Ω	±1°C
mA inputs	Supported current range	±020 mA 44 Ω ±0.1%	
	Current input impedance		
	Operation accuracy	±0.5% or ±0.01 mA	
mA outputs	Supported current range	±020 mA	
	Maximum loop impedance	700 Ω	
	Operation accuracy	±0.1 mA	

¹¹ Adjustable only in RTD1002 module

25.9 Signal outputs and IRF output

Table 14: Signal outputs and IRF output

Description	Value
Rated voltage	250 V AC/DC
Maximum continuous burden (resistive load, AC)	1250 VA
Continuous contact carry	5 A
Make and carry for 3.0 s	10 A
Make and carry 0.5 s	15 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC	1 A/0.25 A/0.15 A
Minimum contact load	10 mA at 5 V AC/DC

25.10 Single-pole power output relays

Table 15: Single-pole power output relays

Description	Value
Rated voltage	250 V AC/DC
Maximum continuous burden (resistive load, AC)	2000 VA
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC

25.11 Static signal output (SSO) relays

Table 16: Static signal output (SSO) relays

Description	Value
Rated voltage	250 V AC/DC
Maximum continuous burden (resistive load, AC)	250 VA
Continuous contact carry	1 A
Make and carry for 3.0 s	5 A

Description	Value
Breaking capacity when the control-circuit time constant L/R<40 ms, at 110 V DC $$	0.25 A
Minimum load current	1 mA
Maximum operation frequency at 50% duty cycle	10 Hz

25.12 Double-pole power output relays with TCS function

Table 17: Double-pole power output relays with TCS function

Description	Value
Rated voltage	250 V AC/DC
Maximum continuous burden (resistive load, AC)	2000 VA
Continuous contact carry	8 A
Make and carry for 3.0 s	15 A
Make and carry for 0.5 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC (two contacts connected in series)	5 A/3 A/1 A
Minimum contact load	100 mA at 24 V AC/DC
 Trip-circuit supervision (TCS): Control voltage range Current drain through the supervision circuit Minimum voltage over the TCS contact 	20250 V AC/DC ~1.5 mA 20 V AC/DC (1520 V)

25.13 Static power output (SPO) relays

Table 18: Static power output (SPO) relays

Description	Value
Rated voltage	250 V AC/DC
Maximum continuous burden (resistive load, AC)	2000 VA
Continuous contact carry	5 A, 60 s
	5 A continuous (one output active at a time per module)
	1 A continuous (multiple outputs simultaneously active in the same module)
Make and carry for 0.2 s	30 A
Breaking capacity when the control-circuit time constant L/R<40 ms, at 48/110/220 V DC two contacts connected in series	16 A/6 A/3 A

Description	Value
Minimum load current	1 mA
Trip-circuit supervision (TCS) SP06 and SP08:	20250 V DC
Control voltage rangeCurrent drain through the supervision circuit	~1.5 mA
 Current drain through the supervision circuit Minimum voltage over the TCS contact 	20 V DC
SP05 and SP07:	~3 mA
Current drain through the circuit	

25.14 Serial interface

Table 19: Serial interface

Туре	Connector
Screw terminal X8	10-pin 2-row connector
Serial port X7	Optical ST-connector

25.15 USB interface, HMI

Table 20: USB interface, HMI

Туре	Description
USB	Hi-Speed USB Type A

25.16 Ethernet interfaces (connectors X0, X1, X2 and X3)

Table 21: Ethernet interfaces (connectors X0, X1, X2 and X3)

Connector	Media	Reach ¹²	Rate	Wavelength	Permitted path attenuation ¹³
RJ-45	CAT 6 S/FTP	100 m	100 mbits/s	-	-
LC	MM 62.5/125 or 50/125 μm glass fi- ber core	2 km	100 mbits/s	1300 nm	<8 dB

¹² Maximum length depends on the cable attenuation and quality, the amount of splices and connectors in the path

¹³ Maximum allowed attenuation caused by connectors and cable together

25.17 Protection communication link (connector X6)

Table 22: Protection communication link (connector X6)

Connector	Part number ¹⁴	Fiber type	Reach ¹⁵	Wavelength	Permitted path attenuation ¹⁶
LC (SFP)	2RCA045621	MM 62.5/125 or 50/125 μm	2 km	1310 nm	<8 dB
LC (SFP)	2RCA045622	SM 9/125 μm	20 km	1310 nm	<13 dB
LC (SFP)	2RCA045623	SM 9/125 μm	50 km	1310 nm	<26 dB

25.18 IRIG-B (connector X8)

Table 23: IRIG-B (connector X8)

Description	Value
IRIG time code format	B004, B005 ¹⁷
Isolation	500V 1 min
Modulation	Unmodulated
Logic level	5 V TTL
Current consumption	<1.0 mA
Power consumption	<0.5 W

25.19 Lens sensor and optical fiber for arc protection

Table 24: Lens sensor and optical fiber for arc protection

Description	Value
Normal service temperature range of the lens	-40+100°C
Maximum service temperature range of the lens, max 1 h	+140°C
Minimum permissible bending radius of the connection fiber	100 mm
Arc sensor loop maximum attenuation	25dB

¹⁴ Only these ABB verified SFP modules are supported in the protection communication link (port X6 in the communication module).

¹⁵ Maximum length depends on the cable attenuation and quality, the amount of splices and connectors in the path

¹⁶ Maximum allowed attenuation caused by connectors and cable together

¹⁷ According to the 200-04 IRIG standard

25.20 Degree of protection of the protection relay

Table 25: Degree of protection of the protection relay

Description	Value
Front/connector side	IP 20 (with ring-lug signal connectors IP 00 or IP 10 depending on wiring)
Top and bottom	IP 30
Rear	IP 40

25.21 Degree of protection of the HMI

Table 26: Degree of protection of the HMI

Description	Value
Front	IP 54
Other sides	IP 20

25.22 Environmental conditions

Table 27: Environmental conditions

Description	Value
Operating temperature range	-25+55°C (continuous)
Short-time service temperature range	-40+85ºC (<16 h) ^{18, 19}
Relative humidity	Up to 95%, non-condensing
Atmospheric pressure	86106 kPa
Altitude	Up to 2000 m
Transport and storage temperature range	-40+85°C

¹⁸ Degradation in MTBF and HMI performance outside the temperature range of -25...+55 °C

 $^{^{19}\,}$ For relays with an LC communication interface the maximum operating temperature is +70 $^{\rm o}{\rm C}\,$

25.23 Electromagnetic compatibility tests

Table 28: Electromagnetic compatibility tests

Description	Type test value	Reference
1 MHz/100 kHz burst disturbance test	2.5 kV	IEC 61000-4-18
Common mode	2.5 kV	IEC 60255-26, class III
 Differential mode 		IEEE C37.90.1-2012
3 MHz, 10 MHz and 30 MHz burst disturb-	2.5 kV	IEC 61000-4-18
ance test		IEC 60255-26, class III
Common mode		
Electrostatic discharge test	8 kV	IEC 61000-4-2
Contact discharge	15 kV	IEC 60255-26
• Air discharge		IEEE C37.90.3-2001
Radio frequency interference test	10 V (rms)	IEC 61000-4-6
	f = 150 kHz80 MHz	IEC 60255-26, class III
	10 V/m (rms)	IEC 61000-4-3
	f = 802700 MHz	IEC 60255-26, class III
	10 V/m	ENV 50204
	f = 900 MHz	IEC 60255-26, class III
	20 V/m (rms)	IEEE C37.90.2-2004
	f = 801000 MHz	
Fast transient disturbance test	2 kV	IEC 61000-4-4
Communication		IEC 60255-26
Other ports	4 kV	IEEE C37.90.1-2012
Surge immunity test		IEC 61000-4-5
Communication	1 kV, line-to-earth	IEC 60255-26
• Other ports	4 kV, line-to-earth	
	2 kV, line-to-line	
Power frequency (50 Hz) magnetic field	300 A/m	IEC 61000-4-8
immunity test	1000 A/m	IEC 60255-26
 Continuous 13 s 		
Pulse magnetic field immunity test	1000 A/m	IEC 61000-4-9
	6.4/16 μs	
Damped oscillatory magnetic field im- munity test	100 A/m	IEC 61000-4-10
2 s	400 transients/s	
1 MHz		
Voltage dips and short interruptions	0%/50 ms Criterion A	IEC 61000-4-11
, , ,	40%/200 ms Criterion C	IEC 61000-4-29
	70%/500 ms Criterion C	IEC 60255-26
	0%/5000 ms Criterion C	

Description	Type test value	Reference
Power frequency immunity test	Binary inputs only	IEC 61000-4-16
Common mode	300 V rms	IEC 60255-26, class A
Differential mode	150 V rms	
Emission tests		EN 55011, class A
Conducted	<79 dB (µV) quasi peak	IEC 60255-26
0.15. 0.50 MHz	<66 dB (µV) average	CISPR 11
0.13. 0.30 1112	<73 dB (μV) quasi peak	CISPR 12
0.530 MHz	<60 dB (µV) average	
Radiated		
30230 MHz	<40 dB (µV/m) quasi peak, measured at 10 m distance	
2301000 MHz	<47 dB (μV/m) quasi peak, measured at	
13 GHz	10 m distance	
36 GHz	<76 dB (µV/m) peak	
	<56 dB (µV/m) average, measured at 3 m distance	
	<80 dB (µV/m) peak	
	<60 dB (µV/m) average, measured at 3 m distance	

25.24 Safety-related tests

Table 29: Safety-related tests

Description	Type test value	Reference
Overvoltage category	III	IEC 60255-27
Pollution degree	2	IEC 60255-27
Insulation class	Class I	IEC 60255-27
Dielectric tests	500 V, 50 Hz, 1 min, RS-485 and IRIG-B 1 kV, 50 Hz, 1 min, across open contacts 1.5 kV, 50 Hz, 1 min, Ethernet RJ-45 2 kV, 50 Hz, 1 min, all other circuits	IEC 60255-27
Impulse voltage test	1 kV, 1.2/50 μs, 0.5 J, RS-485 and IRIG-B 2.4 kV, 1.2/50 μs, 0.5 J, Ethernet RJ-45 5 kV, 1.2/50 μs, 0.5 J, all other circuits	IEC 60255-27
Insulation resistance measurements	>100 MΩ, 500 V DC	IEC 60255-27
Protective bonding resistance	<0.1 Ω, 4 A, 60 s	IEC 60255-27
Maximum temperature of parts and materials	Tested	IEC 60255-27
Flammability of insulating materials, components and fire enclosures	Evaluated / Tested	IEC 60255-27
Single-fault condition	Tested	IEC 60255-27

25.25 Mechanical tests

Table 30: Mechanical tests

Description	Requirement	Reference
Vibration tests (sinusoidal)	Class 2	IEC 60068-2-6 (test Fc) IEC 60255-21-1
Shock and bump test	Class 2	IEC 60068-2-27 (test Ea shock) IEC 60068-2-29 (test Eb bump) IEC 60255-21-2
Seismic test	Class 2	IEC 60255-21-3

25.26 Environmental tests

Table 31: Environmental tests

Description	Type test value	Reference
Dry heat test	 96 h at +55°C 16 h at +85°C ²⁰ 	IEC 60068-2-2
Dry cold test	 96 h at -25°C 16 h at -40°C 	IEC 60068-2-1
Damp heat test	 6 cycles (12 h + 12 h) at +25+55°C, humidity >93% 	IEC 60068-2-30
Change of temperature test	 5 cycles (3 h + 3 h) at -25+55°C 	IEC60068-2-14
Storage test	 96 h at -40°C 96 h at +85°C 	IEC 60068-2-1 IEC 60068-2-2

25.27 Product safety

Table 32: Product safety

Description	Reference
LV directive	2006/95/EC
Standard	EN 60255-27 (2014)
	EN 60255-1 (2009)
UL listed (E-file: E225502)	UL508

²⁰ For relays with an LC communication interface the maximum operating temperature is +70°C

25.28 EMC compliance

Table 33: EMC compliance

Description	Reference
EMC directive	2014/30/EU
Standard	EN 60255-26 (2013)

25.29 RoHS compliance

Table 34: RoHS compliance

Description

Complies with RoHS Directive 2011/65/EU

25.30 Protection functions

25.30.1 Distance protection (DSTPDIS)

Table 35: Distance protection (DSTPDIS)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	Current:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
	Voltage:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
	Impedance:
	±2.5% of the set value or ±0.05 Ω Phase angle: ±2°
Shortest operate time ²¹ SIR ²² : 0.150	25 ms
Transient overreach SIR = 0.150	<8.5%
Reset time	Typically 45 ms
Reset ratio	Typically 0.96/1.04
Operate time accuracy	±1.0% of the set value or ±20 ms

²¹ Measured with static power output (SPO)

²² SIR = Source impedance ratio

25.30.2 Distance protection (DSTPDIS) main settings

Table 36: Distance protection (DSTPDIS) main settings

Parameter	Function	Value (Range)	Step
Phase Sel mode GFC	DSTPDIS	1 = Overcurrent	-
		2 = Vol Dep Overcur	
		3 = Under impedance	
		4 = OC AND Und impe- dance	
EF detection Mod GFC	DSTPDIS	1 = lo	-
		2 = Io OR Uo	
		3 = Io AND Uo	
		4 = Io AND IoRef	
Operate delay GFC	DSTPDIS	10060000 ms	10
Z Chr Mod Ph Sel GFC	DSTPDIS	1 = Quadrilateral	-
		2 = Mho (circular)	
Directional mode Zn1	DSTPDIS	2 = Forward	-
		3 = Reverse	
		1 = Non-directional	
R1 zone 1	DSTPDIS	0.003000.00 Ω	0.01
X1 zone 1	DSTPDIS	0.003000.00 Ω	0.01
X1 reverse zone 1	DSTPDIS	0.003000.00 Ω	0.01
Z1 zone 1	DSTPDIS	0.013000.00 Ω	0.01
Z1 angle zone 1	DSTPDIS	15.090.0°	0.1
Z1 reverse zone 1	DSTPDIS	0.003000.00 Ω	0.01
PP operate delay Zn1	DSTPDIS	2060000 ms	1
R0 zone 1	DSTPDIS	0.003000.00 Ω	0.01
X0 zone 1	DSTPDIS	0.003000.00 Ω	0.01
Factor K0 zone 1	DSTPDIS	0.005.00	0.01
Factor K0 angle Zn1	DSTPDIS	-179180°	1
Gnd operate DI Zn1	DSTPDIS	2060000 ms	1
Directional mode Zn2	DSTPDIS	1 = Non-directional	-
		2 = Forward	
		3 = Reverse	

Parameter	Function	Value (Range)	Step
R1 zone 2	DSTPDIS	0.003000.00 Ω	0.01
X1 zone 2	DSTPDIS	0.003000.00 Ω	0.01
X1 reverse zone 2	DSTPDIS	0.003000.00 Ω	0.01
Z1 zone 2	DSTPDIS	0.013000.00 Ω	0.01
Z1 angle zone 2	DSTPDIS	15.090.0°	0.1
Z1 reverse zone 2	DSTPDIS	0.003000.00 Ω	0.01
PP Op delay Mod Zn2	DSTPDIS	2060000 ms	1
R0 zone 2	DSTPDIS	0.003000.00 Ω	0.01
X0 zone 2	DSTPDIS	0.003000.00 Ω	0.01
Factor K0 zone 2	DSTPDIS	0.005.00	0.01
Factor K0 angle Zn2	DSTPDIS	-179180°	1
Gnd operate DI Zn2	DSTPDIS	2060000 ms	1
Directional mode Zn3	DSTPDIS	1 = Non-directional	-
		2 = Forward	
		3 = Reverse	
R1 zone 3	DSTPDIS	0.003000.00 Ω	0.01
X1 zone 3	DSTPDIS	0.003000.00 Ω	0.01
X1 reverse zone 3	DSTPDIS	0.003000.00 Ω	0.01
Z1 zone 3	DSTPDIS	0.013000.00 Ω	0.01
Z1 angle zone 3	DSTPDIS	15.090.0°	0.1
Z1 reverse zone 3	DSTPDIS	0.003000.00 Ω	0.01
PP operate delay Zn3	DSTPDIS	2060000 ms	1
R0 zone 3	DSTPDIS	0.003000.00 Ω	0.01
X0 zone 3	DSTPDIS	0.003000.00 Ω	0.01
Factor K0 zone 3	DSTPDIS	0.005.00	0.01
Factor K0 angle Zn3	DSTPDIS	-179180°	1
Gnd operate DI Zn3	DSTPDIS	2060000 ms	1
Table continues on the n			

Parameter	Function	Value (Range)	Step
Directional mode Zn4	DSTPDIS	1 = Non-directional 2 = Forward 3 = Reverse	-
R1 zone 4	DSTPDIS	0.003000.00 Ω	0.01
X1 zone 4	DSTPDIS	0.003000.00 Ω	0.01
X1 reverse zone 4	DSTPDIS	0.003000.00 Ω	0.01
Z1 zone 4	DSTPDIS	0.013000.00 Ω	0.01
Z1 angle zone 4	DSTPDIS	15.090.0°	0.1
Z1 reverse zone 4	DSTPDIS	0.003000.00 Ω	0.01
PP operate delay Zn4	DSTPDIS	2060000 ms	1
R0 zone 4	DSTPDIS	0.003000.00 Ω	0.01
X0 zone 4	DSTPDIS	0.003000.00 Ω	0.01
Factor K0 zone 4	DSTPDIS	0.005.00	0.01
Factor K0 angle Zn4	DSTPDIS	-179180°	1
Gnd operate DI Zn4	DSTPDIS	2060000 ms	1
Directional mode Zn5	DSTPDIS	1 = Non-directional 2 = Forward 3 = Reverse	-
R1 zone 5	DSTPDIS	0.003000.00 Ω	0.01
X1 zone 5	DSTPDIS	0.003000.00 Ω	0.01
X1 reverse zone 5	DSTPDIS	0.003000.00 Ω	0.01
Z1 zone 5	DSTPDIS	0.013000.00 Ω	0.01
Z1 angle zone 5	DSTPDIS	15.090.0°	0.1
Z1 reverse zone 5	DSTPDIS	0.003000.00 Ω	0.01
PP operate delay Zn5	DSTPDIS	2060000 ms	1
R0 zone 5	DSTPDIS	0.003000.00 Ω	0.01
X0 zone 5	DSTPDIS	0.003000.00 Ω	0.01
Factor K0 zone 5	DSTPDIS	0.005.00	0.01
Factor K0 angle Zn5	DSTPDIS	-179180°	1

Parameter	Function	Value (Range)	Step
Gnd operate DI Zn5	DSTPDIS	2060000 ms	1
Select active zones	DSTPDIS	1 = Zone 1	-
		2 = Zones 1-2	
		3 = Zones 1-3	
		4 = Zones 1-4	
		5 = All 5 zones	

25.30.3 Local acceleration logic (DSTPLAL)

Table 37: Local acceleration logic (DSTPLAL)

Characteristic	Value	
Operation accuracy	At the frequency f = f _n	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$	
Operate time accuracy	±1.0% of the set value or ±20 ms	
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

25.30.4 Local acceleration logic (DSTPLAL) main settings

Table 38: Local acceleration logic (DSTPLAL) main settings

Parameter	Function	Value (Range) Step	
Load current value	DSTPLAL	0.011.00 × I _n	0.01
Minimum current	DSTPLAL	0.011.00 × I _n 0.01	
Load release off Tm	DSTPLAL	060000 ms 10	
Minimum current time	DSTPLAL	060000 ms 10	
Operation mode	DSTPLAL	1 = Zone extension -	
		2 = Loss of load	
		3 = Both	
Load release on time	DSTPLAL	060000 ms 10	

25.30.5 Scheme communication logic (DSOCPSCH)

Table 39: Scheme communication logic (DSOCPSCH)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

25.30.6 Scheme communication logic (DSOCPSCH) main settings

Table 40: Scheme communication logic (DSOCPSCH) main settings

Parameter	Function	Value (Range)	Step
Scheme type	DSOCPSCH	1 = None	-
		2 = Intertrip	
		3 = Permissive Underreac	h
		4 = Permissive Overreach	
		5 = Blocking	
Carrier Min Dur	DSOCPSCH	060000 ms	1
Coordination Time	DSOCPSCH	060000 ms	1

25.30.7 Current reversal and weak-end infeed logic (CRWPSCH)

Table 41: Current reversal and weak-end infeed logic (CRWPSCH)

Characteristic	Value
Operation accuracy	At the frequency $f = f_n$
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
Operate time accuracy	±1.0% of the set value or ±20 ms

25.30.8 Current reversal and weak-end infeed logic (CRWPSCH) main settings

Table 42: Current reversal and weak-end infeed logic (CRWPSCH) main settings

Parameter	Function	Value (Range) Step	
Reversal mode	CRWPSCH	1 = Off -	
		2 = On	
Wei mode	CRWPSCH	1 = Off	-
		3 = Echo	
		4 = Echo and Operate	
PhV level for Wei	CRWPSCH	0.100.90 × U _n 0.01	
PPV level for Wei	CRWPSCH	0.100.90 × U _n 0.01	
Reversal time	CRWPSCH	060000 ms 10	
Reversal reset time	CRWPSCH	060000 ms 10	
Wei Crd time	CRWPSCH	060000 ms 10	

25.30.9 Communication logic for residual overcurrent (RESCPSCH)

Table 43: Communication logic for residual overcurrent (RESCPSCH)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

25.30.10 Communication logic for residual overcurrent (RESCPSCH) main settings

Table 44: Communication logic for residual overcurrent (RESCPSCH) main settings

Parameter	Function	Value (Range)	Value (Range) Step	
Scheme type	RESCPSCH	1 = None	1 = None -	
		2 = Intertrip	2 = Intertrip	
		3 = Permissive Underreac	h	
		4 = Permissive Overreach		
		5 = Blocking		
Carrier Min Dur	RESCPSCH	060000 ms	1	
Coordination time	RESCPSCH	060000 ms	1	

25.30.11 Current reversal and weak-end infeed logic for residual overcurrent (RCRWPSCH)

Table 45: Current reversal and weak-end infeed logic for residual overcurrent (RCRWPSCH)

Characteristic	Value
Operation accuracy	At the frequency f = f _n ±1.5% of the set value or ±0.002 × I _n
Operate time accuracy	±1.0% of the set value or ±20 ms

25.30.12 Current reversal and weak-end infeed logic for residual overcurrent (RCRWPSCH) main settings

Table 46: Current reversal and weak-end infeed logic for residual overcurrent (RCRWPSCH) main settings

Parameter	Function	Value (Range)	Step	
Reversal mode	RCRWPSCH	1 = Off	1 = Off -	
		2 = On		
Wei mode	RCRWPSCH	1 = Off	-	
		3 = Echo		
		4 = Echo and Operate		
Residual voltage Val	RCRWPSCH	0.050.70 × U _n	0.01	
Table continues on the next page				

Parameter	Function	Value (Range)	Step
Reversal time	RCRWPSCH	060000 ms	10
Reversal reset time	RCRWPSCH	060000 ms	10
Wei Crd time	RCRWPSCH	060000 ms	10

25.30.13 Line differential protection with in-zone power transformer (LNPLDF)

Table 47: Line differential protection with in-zone power transformer (LNPLDF)

Characteristics	Value			
Operation accuracy ²³	Depending on the frequency of the measured current: fn ± 2 Hz			
	Low stage	±2.5% of the set v	value	
	High stage	±2.5% of the set v	value	
High stage, operate time ^{24, 25}	Minimum	Typical	Maximum	
	20 ms	23 ms	27 ms	
Reset time	Typically 40 ms			
Reset ratio	Typically 0.96			
Retardation time	<40 ms			
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms			
Operate time accuracy in inverse time mode	±5.0% of the set value or ±20 ms ²⁶			
Suppression of harmonics	RMS: No suppression			
	DFT: -50 dB at f = n × fn, where n = 2, 3, 4, 5,			
	Peak-to-Peak: No suppression			

25.30.14 Line differential protection with in-zone power transformer (LNPLDF) main settings

Table 48: Line differential protection with in-zone power transformer (LNPLDF) main settings

Parameter	Function	Value (Range)	Step
Low operate value	LNPLDF	10200 % I _r	1
High operate value	LNPLDF	2004000 % I _r	1
Start value 2.H	LNPLDF	1050%	1
Time multiplier	LNPLDF	0.0515.00	0.01

Table continues on the next page

²³ With the symmetrical communication channel (as when using dedicated fiber optic).

²⁴ Without additional delay in the communication channel (as when using dedicated fiber optic).

²⁵ Measured with static power output. When differential current = $2 \times High$ operate value and $f_n = 50$ Hz with galvanic pilot wire link + 5 ms.

²⁶ Low operate value multiples in the range of 1.5...20

Parameter	Function	Value (Range)	Step	
Operating curve type	LNPLDF	1 = ANSI Ext. inv.	-	
		3 = ANSI Norm. inv.		
		5 = ANSI Def. Time		
		9 = IEC Norm. inv.		
		10 = IEC Very inv.		
		12 = IEC Ext. inv.		
		15 = IEC Def. Time		
Operate delay time	LNPLDF	45200000 ms	1	
CT ratio correction	LNPLDF	0.2005.000	0.001	

25.30.15 Binary signal transfer (BSTGAPC)

Table 49: Binary signal transfer (BSTGAPC)

Characteristic		Value
Signalling delay	Fiber optic link	<5 ms
	Galvanic pilot wirelink	<10 ms

25.30.16 Switch-onto-fault protection (CVPSOF)

Table 50: Switch-onto-fault protection (CVPSOF)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: $f_n\pm 2Hz$
	Current: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ Voltage: $\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
Operate time accuracy	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.30.17 Switch-onto-fault protection (CVPSOF) main settings

Table 51: Switch-onto-fault protection (CVPSOF) main settings

Parameter	Function	Value (Range)	Step
SOTF reset time	CVPSOF	060000 ms	10

25.30.18 Three-phase non-directional overcurrent protection (PHxPTOC)

Table 52: Three-phase non-directional overcurrent protection (PHxPTOC)

Characteristic		Value			
Operation accuracy	PHLPTOC	Depending on the frequency of the measured current: $f_{n}\pm 2Hz$			
		±1.5% of the set	value or ±0.002 × I _n		
	РННРТОС	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of 0.110 $\times I_n$)			
	and PHIPTOC				
		±5.0% of the set	value		
		(at currents in th			
Start time ²⁷	PHIPTOC ²⁸ :	Minimum	Typical	Maximum	
	I _{Fault} = 2 × set <i>Start val-</i> <i>ue</i>	8 ms	12 ms	15 ms	
	I _{Fault} t = 10 × set <i>Start</i> <i>value</i>	7 ms	9 ms	12 ms	
	PHHPTOC and PHLPTOC ²⁹ :	23 ms	26 ms	29 ms	
	I _{Fault} = 2 × set <i>Start val-</i> <i>ue</i>				
Reset time		Typically <40 ms			
Reset ratio		Typically 0.96			
Retardation time		<30 ms			
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Operate time accuracy in inverse time mode		±5.0% of the theoretical value or ±20 ms			
Suppression of harmonics		RMS: No suppression			
		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,			
		Peak-to-Peak: No suppression P-to-P+backup: No suppression			

25.30.19 Three-phase non-directional overcurrent protection (PHxPTOC) main settings

Table 53: Three-phase non-directional overcurrent protection (PHxPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	PHLPTOC	0.0510.00 × I _n	0.01
	PHHPTOC and PHIPTOC	0.1040.00 × I _n	0.01
Time multiplier	PHLPTOC and PHHPTOC	0.02515.000	0.005

Table continues on the next page

²⁷ Set Operate curve type = IEC definite time, Measurement mode = default (depends on stage), current before fault = 0.0 × In, fn = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

²⁸ Measured with static signal output (SSO)

²⁹ Includes the delay of the signal output contact (SO)

Parameter	Function	Value (Range)	Step
Operate delay time	PHLPTOC and PHHPTOC	40300000 ms	10
	PHIPTOC	20300000 ms	10
Operating curve type ³⁰ PHLPTOC Definite or inverse		Definite or inverse time	
		Curve type: 1, 2, 3, 4, 5, 6, 20	7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19,
	РННРТОС	Definite or inverse time	
		Curve type: 1, 3, 5, 9, 10, 1	12, 15, 17
	PHIPTOC	Definite time	

25.30.20 Three-phase directional overcurrent protection (DPHxPDOC)

Table 54: Three-phase directional overcurrent protection (DPHxPDOC)

Characteristic		Value			
Operation accuracy	DPHLPDOC	Depending on the f	voltage measured: f _n ±2 Hz		
		Current:			
		±1.5% of the set val	ue or ±0.002 × I _n		
		Voltage:			
		±1.5% of the set val	ue or ±0.002 × U _n		
		Phase angle: ±2°			
	DPHHPDOC	Current:			
		$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $0.110 \times I_n$)			
		±5.0% of the set value			
		(at currents in the range of $1040 \times I_n$)			
		Voltage:			
		±1.5% of the set val	ue or ±0.002 × U _n		
		Phase angle: ±2°			
Start time ^{31, 32}	I _{Fault} = 2.0 × set <i>Start value</i>	Minimum	Typical	Maximum	
		39 ms	43 ms	47 ms	
Reset time		Typically 40 ms			
Reset ratio		Typically 0.96			
Retardation time		<35 ms			
Operate time accuracy	/ in definite time mode	±1.0% of the set val	ue or ±20 ms		
Table continues on the	a next nade				

Table continues on the next page

 $^{\rm 30}\,$ For further reference, see the Operation characteristics table

³¹ Measurement mode and Pol quantity = default, current before fault = $0.0 \times I_n$, voltage before fault = 1.0 \times U_n, f_n = 50 Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements ³² Includes the delay of the signal output contact

Characteristic	Value
Operate time accuracy in inverse time mode	$\pm 5.0\%$ of the theoretical value or ± 20 ms 33
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.30.21 Three-phase directional overcurrent protection (DPHxPDOC) main settings

Parameter	Function	Value (Range)	Step
Start value	DPHLPDOC	0.0510.00 × I _n	0.01
	DPHHPDOC	0.1040.00 × I _n	0.01
Time multiplier	DPHxPDOC	0.02515.000	0.005
Operate delay time	DPHxPDOC	40300000 ms	10
Directional mode	DPHxPDOC	1 = Non-directional	-
		2 = Forward	
		3 = Reverse	
Characteristic angle	DPHxPDOC	-179180°	1
Operating curve type ³⁴	DPHLPDOC	Definite or inverse time	
		Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9	9, 10, 11, 12, 13, 14, 15, 17, 18, 19
	DPHHPDOC	Definite or inverse time	
		Curve type: 1, 3, 5, 9, 10, 12, 15,	17

25.30.22 Non-directional earth-fault protection (EFxPTOC)

Table 56: Non-directional earth-fault protection (EFxPTOC)

Characteristic		Value			
Operation accuracy	EFLPTOC		Depending on the frequency of the measured current: fn ±2 Hz ±1.5% of the set value or ±0.002 × ${\sf I}_{\sf n}$		
	EFHPTOC and EFIPTOC	±1.5% of the set value or ±0.002 × I _n (at currents in the range of 0.110 × I _n) ±5.0% of the set value (at currents in the range of 1040 × I _n)			
Start time ³⁵	EFIPTOC ³⁶ :	Minimum	Typical	Maximum	

Table continues on the next page

 33 Maximum Start value = 2.5 × $I_{\rm n},$ Start value multiples in range of 1.5...20

³⁴ For further reference, see the Operating characteristics table

³⁵ *Measurement mode* = default (depends on stage), current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

 $^{\rm 36}\,$ Measured with static signal output (SSO)

Characteristic		Value		
	I _{Fault} = 2 × set <i>Start val-</i> <i>ue</i>	8 ms	11 ms	14 ms
	I _{Fault} = 10 × set <i>Start val-</i> <i>ue</i>	8 ms	9 ms	11 ms
	EFHPTOC and EFLPTOC ³⁷ :	Minimum	Typical	Maximum
	I _{Fault} = 2 × set <i>Start val-</i> <i>ue</i>	23 ms	26 ms	29 ms
Reset time		Typically <40 ms		
Reset ratio		Typically 0.96		
Retardation time		<30 ms		
Operate time accuracy in	n definite time mode	±1.0% of the set value o	r ±20 ms	
Operate time accuracy in	n inverse time mode	±5.0% of the theoretical	l value or ±20 ms ³⁸	
Suppression of harmonics		RMS: No suppression		
		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		
		Peak-to-Peak: No suppre	ession	

25.30.23 Non-directional earth-fault protection (EFxPTOC) main settings

Table 57: Non-directional earth-fault protection (EFxPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	EFLPTOC	0.01010.000 × I _n	0.005
	EFHPTOC	0.1040.00 × I _n	0.01
	EFIPTOC	1.0040.00 × I _n	0.01
Time multiplier	EFLPTOC and EFHPTOC	0.02515.000	0.005
Operate delay time	EFLPTOC and EFHPTOC	40300000 ms	10
	EFIPTOC	20300000 ms	10
Operating curve type ³⁹	EFLPTOC	Definite or inverse time	
		Curve type: 1, 2, 3, 4, 5, 6, 7, 18, 19	8, 9, 10, 11, 12, 13, 14, 15, 17,
	EFHPTOC	Definite or inverse time	
		Curve type: 1, 3, 5, 9, 10, 12,	15, 17
	EFIPTOC	Definite time	

³⁷ Includes the delay of the signal output contact (SO) ³⁸ Maximum *Start value* = $2.5 \times I_n$, *Start value* multiples in the range of 1.5...20

³⁹ For further reference, see the Operation characteristics table

25.30.24 Directional earth-fault protection (DEFxPDEF)

Table 58: Directional earth-fault protection (DEFxPDEF)

Characteristic		Value			
Operation accuracy	DEFLPDEF	Depending on the	frequency of the measur	red current: f _n ±2 Hz	
		Current:			
		$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$			
		Voltage			
		±1.5% of the set va	alue or ±0.002 × U _n		
		Phase angle:			
		±2°			
	DEFHPDEF	Current:			
		±1.5% of the set va	alue or ±0.002 × I _n		
		(at currents in the	range of 0.110 × I _n)		
		±5.0% of the set v			
		(at currents in the range of 1040 × I _n) Voltage:			
		±1.5% of the set va	alue or ±0.002 × U _n		
		Phase angle:			
		±2°			
Start time ^{40, 41}	DEFHPDEF	Minimum	Typical	Maximum	
	I _{Fault} = 2 × set <i>Start val-</i> ue	42 ms	46 ms	49 ms	
	DEFLPDEF	Minimum	Typical	Maximum	
	I _{Fault} = 2 × set <i>Start val-</i> ue	58 ms	62 ms	66 ms	
Reset time		Typically 40 ms			
Reset ratio		Typically 0.96			
Retardation time		<30 ms			
Operate time accuracy	ı in definite time mode	±1.0% of the set value or ±20 ms			
Operate time accuracy	ı in inverse time mode	$\pm 5.0\%$ of the theoretical value or ± 20 ms 42			
Suppression of harmo	nics	RMS: No suppression			
		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,			
		Peak-to-Peak: No s	suppression		

⁴⁰ Set *Operate curve type* = IEC definite time, *Measurement mode* = default (depends on stage), current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

⁴¹ Includes the delay of the signal output contact

⁴² Maximum *Start value* = $2.5 \times I_n$, *Start value* multiples in range of 1.5...20

25.30.25 Directional earth-fault protection (DEFxPDEF) main settings

Table 59: Directional earth-fault protection (DEFxPDEF) main settings

Parameter	Function	Value (Range)	Step
Start value	DEFLPDEF	0.01010.000 × I _n	0.005
	DEFHPDEF	0.1040.00 × I _n	0.01
Directional mode	DEFxPDEF	1 = Non-directional	-
		2 = Forward	
		3 = Reverse	
Time multiplier	DEFxPDEF	0.02515.000	0.005
Operate delay time	DEFLPDEF	50300000 ms	10
	DEFHPDEF	40300000 ms	10
Operating curve type ⁴³	DEFLPDEF	Definite or inverse time	
		Curve type: 1, 2, 3, 4, 5, 6,	7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19
	DEFHPDEF	Definite or inverse time	
		Curve type: 1, 3, 5, 15, 17	
Operation mode	DEFxPDEF	1 = Phase angle	-
		2 = IoSin	
		3 = IoCos	
		4 = Phase angle 80	
		5 = Phase angle 88	

25.30.26 Three-phase power directional element (DPSRDIR) main settings

Table 60: Three-phase power directional element (DPSRDIR) main settings

Parameter	Function	Value (Range)	Step
Release delay time	DPSRDIR	01000 ms	1
Characteristic angle	DPSRDIR	-179180°	1
Directional mode	DPSRDIR	1 = Non-directional	-
		2 = Forward	
		3 = Reverse	

⁴³ For further reference, see the Operating characteristics table

25.30.27 Neutral power directional element (DNZSRDIR) main settings

Table 61: Neutral power directional element (DNZSRDIR) main settings

Parameter	Function	Value (Range)	Step	
Release delay time	DNZSRDIR	01000 ms	10	
Directional mode	DNZSRDIR	1 = Non-directional 2 = Forward 3 = Reverse	-	
Characteristic angle	DNZSRDIR	-179180°	1	
Pol quantity	DNZSRDIR	3 = Zero seq. volt. 4 = Neg. seq. volt.	-	

25.30.28 Load blinder (LBRDOB)

Table 62: Load blinder (LBRDOB)

Characteristic	Value
Operation accuracy	Depending on the frequency of the current measured: f _n
	Current:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
	Voltage:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
	Impedance accuracy:
	±3% of the set value
	(In range load angle<75 deg)
	±4.5% of the set value
	(In range 75 deg <load angle<83="" deg)<="" td=""></load>
	±8% of the set value
	(In range load angle>83 deg)
	Phase angle: ±2°
Reset ratio	Typically 0.96
Operation time ^{44, 45}	Typically 30 ms
Reset time	Typically 25 ms

 f_n = 50Hz, results based on statistical distribution of 1000 measurements Includes the delay of the signal output contact

25.30.29 Load blinder (LBRDOB) main settings

Table 63: Load blinder (LBRDOB) main settings

Parameter	Function	Value (Range)	Step
Resistive reach Fw	LBRDOB	1.006000.00 Ohm	0.01
Resistive reach Rv	LBRDOB	1.006000.00 Ohm	0.01
Max impedance angle	LBRDOB	585 Deg	1
Min impedance angle	LBRDOB	-855 Deg	1
Directional mode	LBRDOB	1= Non-directional 2= Forward 3= Reverse	-

25.30.30 Admittance-based earth-fault protection (EFPADM)

Table 64: Admittance-based earth-fault protection (EFPADM)

Characteristic	Value				
Operation accuracy ⁴⁶	n accuracy ⁴⁶ At the frequency f = f _n				
	±1.0% or ±0.01 m				
	(In range of 0.5]	100 mS)			
Start time ⁴⁷	Minimum	Typical	Maximum		
	56 ms	60 ms	64 ms		
Reset time	40 ms				
Operate time accuracy	±1.0% of the set v	value of ±20 ms			
Suppression of harmonics	-50 dB at f = n × f	_n , where n = 2, 3, 4, 5,			

 $^{^{46}}$ Uo = 1.0 × U_n

⁴⁷ Includes the delay of the signal output contact, results based on statistical distribution of 1000 measurements

25.30.31 Admittance-based earth-fault protection (EFPADM) main settings

Table 65: Admittance-based earth-fault protection (EFPADM) main settings

Parameter	Function	Value (Range)	Step	
Voltage start value	EFPADM	0.012.00 × U _n	0.01	
Directional mode	EFPADM	1 = Non-directional	-	
		2 = Forward		
		3 = Reverse		
Operation mode	EFPADM	1 = Yo	-	
		2 = Go		
		3 = Bo		
		4 = Yo, Go		
		5 = Yo, Bo		
		6 = Go, Bo		
		7 = Yo, Go, Bo		
Operate delay time	EFPADM	60300000 ms	10	
Circle radius	EFPADM	0.05500.00 mS	0.01	
Circle conductance	EFPADM	-500.00500.00 mS	0.01	
Circle susceptance	EFPADM	-500.00500.00 mS	0.01	
Conductance forward	EFPADM	-500.00500.00 mS	0.01	
Conductance reverse	EFPADM	-500.00500.00 mS	0.01	
Susceptance forward	EFPADM	-500.00500.00 mS	0.01	
Susceptance reverse	EFPADM	-500.00500.00 mS	0.01	
Conductance tilt Ang	EFPADM	-3030°	1	
Susceptance tilt Ang	EFPADM	-3030°	1	

25.30.32 Multifrequency admittance-based earth-fault protection (MFADPSDE)

Table 66: Multifrequency admittance-based earth-fault protection (MFADPSDE)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured voltage: $f_n\pm 2$	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$	
Start time ⁴⁸	Typically 35 ms	
Reset time	Typically 40 ms	
Operate time accuracy	±1.0% of the set value or ±20 ms	

⁴⁸ Includes the delay of the signal output contact, results based on statistical distribution of 1000 measurements

25.30.33 Multifrequency admittance-based earth-fault protection (MFADPSDE) main settings

Table 67: Multifrequency admittance-based earth-fault protection (MFADPSDE) main settings

Parameter	Function	Value (Range)	Step	
Directional mode	MFADPSDE	2 = Forward	-	
		3 = Reverse		
Voltage start value	MFADPSDE	0.011.00 × U _n	0.01	
Operate delay time	MFADPSDE	601200000 ms	10	
Operating quantity	MFADPSDE	1 = Adaptive	-	
		2 = Amplitude		
		3 = Resistive		
Min operate current	MFADPSDE	0.0055.000 × I _n	0.001	
Operation mode	MFADPSDE	1 = Intermittent EF	-	
		2 = Transient EF		
		3 = General EF		
		4 = Alarming EF		
Peak counter limit	MFADPSDE	220	1	

25.30.34 Touch voltage based earth-fault current protection IFPTOC (ANSI 46SNQ/59N)

Table 68: Touch voltage based earth-fault current protection IFPTOC (ANSI 46SNQ/59N)

Characteristics	Value	
Operation accuracy	Depending on the frequency of the measured current $f_n \pm 2 Hz$	
	Earth-fault current and touch voltage:	
	±1% of the set value or ±0.005 × In for I_F^{est}	
	Accuracy of U_{EPR}^{est} follows I_{F}^{est} accuracy.	
	Residual voltage:	
$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$		
	Residual current:	
±1.5% of the set value or ±0.002 × I _n (at currents ≤10 x I _n , when Uo is nominal)		
	$\pm 5.0\%$ of the set value (at currents > 10 x I _n)	
Start time ⁴⁹	Typically 30 ms	
Reset time	<30 ms	
Reset ratio	Typically 0.96	
Retardation time	<50 ms	
Operate time accuracy	±1.0% of the set value or ±20 ms (DT)	
	±3% of the theoretical value or ±40 ms (IDMT)	

⁴⁹ Measured with static signal output (SSO)

25.30.35 Touch voltage based earth-fault current protection IFPTOC (ANSI 46SNQ/59N) main settings

Table 69: Touch voltage based earth-fault current protection IFPTOC (ANSI 46SNQ/59N) main set-
tings

Parameter	Function	Value (Range) Step	
Operation mode	IFPTOC	1=Alarming EF	
		2=Tripping EF	
Voltage start value	IFPTOC	0.011.00 xUn	0.01
XC stage PP V Val	IFPTOC	0.011.00 xUn	0.01
XC stage PP Chg Val	IFPTOC	0.001.00 xUn	0.01
Operating curve type	IFPTOC	15=Definite time	
		18=Inverse time EN50522	
		19=Inverse time IEEE80	
EF current Str Val	IFPTOC	0.0051.000 xln 0.001	
IEEE multiplier	IFPTOC	50.05000.0 0.1	
IDMT stage Min Op Tm	IFPTOC	506000 ms 10	
IDMT stage Max Op Tm	IFPTOC	5007200000 ms 10	
Touch Vol Str Val	IFPTOC	10.02900.0 V 0.1	
Operation principle	IFPTOC	1=EF current based	
		2=Touch voltage based	
UTp multiplier	IFPTOC	0.105.00 0.01	
Ena RF compensation	IFPTOC	0=Disable	
		1=Enable	
CB delay Comp	IFPTOC	0200 ms 1	
Intr EF counter Lim	IFPTOC	320 1	

25.30.36 Wattmetric-based earth-fault protection (WPWDE)

Table 70: Wattmetric-based earth-fault protection (WPWDE)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_n\pm 2Hz$
	Current and voltage:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
	Power:
	$\pm 3\%$ of the set value or $\pm 0.002 \times P_n$
Start time ^{50, 51}	Typically 63 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in IDMT mode	±5.0% of the set value or ±20 ms
Suppression of harmonics	-50 dB at f = n × f _n , where n = 2,3,4,5,

25.30.37 Wattmetric-based earth-fault protection (WPWDE) main settings

Table 71: Wattmetric-based earth-fault protection (WPWDE) main settings

Parameter	Function	Value (Range) Step	
Directional mode	WPWDE	2 = Forward	-
		3 = Reverse	
Current start value	WPWDE	0.0105.000 × I _n	0.001
Voltage start value	WPWDE	0.0101.000 × U _n	0.001
Power start value	WPWDE	0.0031.000 × S _n 0.001	
Reference power	WPWDE	0.0501.000 × S _n 0.001	
Characteristic angle	WPWDE	-179180° 1	
Time multiplier	WPWDE	0.0252.000 0.005	
Operating curve type ⁵²	WPWDE	Definite or inverse time Curve type: 5, 15, 20	
Operate delay time	WPWDE	60300000 ms 10	
Min operate current	WPWDE	0.010. 1.000 × I _n 0.001	
Min operate voltage	WPWDE	0.01. 1.00 × U _n 0.01	

⁵⁰ Io varied during the test, $U_o = 1.0 \times U_n$ = phase to earth voltage during earth fault in compensated or un-earthed network, the residual power value before fault = 0.0 pu, $f_n = 50$ Hz, results based on statistical distribution of 1000 measurements

⁵¹ Includes the delay of the signal output contact

⁵² For further reference, see the Operating characteristics table

25.30.38 Transient/intermittent earth-fault protection (INTRPTEF)

Table 72: Transient/intermittent earth-fault protection (INTRPTEF)

Characteristic	Value
Operation accuracy (Uo criteria with transient protection)	Depending on the frequency of the measured current: $f_n\pm 2Hz$
	±1.5% of the set value or ±0.002 × Uo
Operate time accuracy	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5

25.30.39 Transient/intermittent earth-fault protection (INTRPTEF) main settings

Table 73: Transient/intermittent earth-fault protection (INTRPTEF) main settings

Parameter	Function	Value (Range) Step	
Directional mode	INTRPTEF	1 = Non-directional	-
		2 = Forward	
		3 = Reverse	
Operate delay time	INTRPTEF	401200000 ms	10
Voltage start value	INTRPTEF	0.050.50 × U _n 0.01	
Operation mode	INTRPTEF	1 = Intermittent EF	-
		2 = Transient EF	
Peak counter limit	INTRPTEF	220 1	
Min operate current	INTRPTEF	0.01. 1.00 × I _n 0.01	

25.30.40 Harmonics-based earth-fault protection (HAEFPTOC)

Table 74: Harmonics-based earth-fault protection (HAEFPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_n\pm 2Hz$
	\pm 5% of the set value or \pm 0.004 × I _n
Start time ^{53, 54}	Typically 77 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96

⁵³ Fundamental frequency current = $1.0 \times I_n$, harmonics current before fault = $0.0 \times I_n$, harmonics fault current $2.0 \times Start$ value, results based on statistical distribution of 1000 measurements

⁵⁴ Includes the delay of the signal output contact

Characteristic	Value
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in IDMT mode ⁵⁵	±5.0% of the set value or ±20 ms
Suppression of harmonics	-50 dB at f = f _n
	-3 dB at f = 13 × f _n

25.30.41 Harmonics-based earth-fault protection (HAEFPTOC) main settings

Table 75: Harmonics-based earth-fault protection (HAEFPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	HAEFPTOC	0.05. 5.00 × I _n	0.01
Time multiplier	HAEFPTOC	0.02515.000	0.005
Operate delay time	HAEFPTOC	100300000 ms	10
Operating curve type ⁵⁶	HAEFPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
Minimum operate time	HAEFPTOC	100200000 ms	10

25.30.42 Negative-sequence overcurrent protection (NSPTOC)

Table 76: Negative-sequence overcurrent protection (NSPTOC)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: $f_{n}\pm 2\text{Hz}$		
		\pm 1.5% of the set value or \pm 0.002 × I _n		
Start time ^{57, 58}		Minimum	Typical	Maximum
	I _{Fault} = 2 × set <i>Start val-</i> ue	23 ms	26 ms	28 ms
	I _{Fault} = 10 × set <i>Start val-</i> ue	15 ms	18 ms	20 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		

Table continues on the next page

⁵⁸ Includes the delay of the signal output contact

⁵⁵ Maximum *Start value* = 2.5 × I_n, *Start value* multiples in range of 2...20

⁵⁶ For further reference, see the Operation characteristics table

 $^{^{57}}$ Negative sequence current before fault = 0.0, $\rm f_n$ = 50 Hz, results based on statistical distribution of 1000 measurements

Characteristic	Value
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Operate time accuracy in inverse time mode	±5.0% of the theoretical value or ±20 ms ⁵⁹
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.30.43 Negative-sequence overcurrent protection (NSPTOC) main settings

Table 77: Negative-sequence overcurrent protection (NSPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	NSPTOC	0.015.00 × I _n	0.01
Time multiplier	NSPTOC	0.02515.000	0.005
Operate delay time	NSPTOC	40200000 ms	10
Operating curve type ⁶⁰	NSPTOC	Definite or inverse time Curve type: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	

25.30.44 Phase discontinuity protection (PDNSPTOC)

Table 78: Phase discontinuity protection (PDNSPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_n\pm 2Hz$
	±2% of the set value
Start time	<70 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

⁵⁹ Maximum *Start value* = $2.5 \times I_n$, *Start value* multiples in range of 1.5...20

 $^{^{60}\,}$ For further reference, see the Operation characteristics table

25.30.45 Phase discontinuity protection (PDNSPTOC) main settings

Table 79: Phase discontinuity protection (PDNSPTOC) main settings

Parameter	Function	Value (Range)	Step	
Start value	PDNSPTOC	10100%	1	
Operate delay time	PDNSPTOC	10030000 ms	1	
Min phase current	PDNSPTOC	0.050.30 × I _n	0.01	

25.30.46 Residual overvoltage protection (ROVPTOV)

Table 80: Residual overvoltage protection (ROVPTOV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured voltage: $f_n \pm 2 Hz$		
		$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$		
Start time ^{61, 62}	U _{Fault} = 2 × set <i>Start val-</i> ue	Minimum	Typical	Maximum
	ue	48 ms	51 ms	54 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

25.30.47 Residual overvoltage protection (ROVPTOV) main settings

Table 81: Residual overvoltage protection (ROVPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	ROVPTOV	0.0101.000 × U _n	0.001
Operate delay time	ROVPTOV	40300000 ms	1

⁶² Includes the delay of the signal output contact

⁶¹ Residual voltage before fault = $0.0 \times U_n$, $f_n = 50$ Hz, residual voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

25.30.48 Three-phase undervoltage protection (PHPTUV)

Table 82: PHPTUV Technical data

Characteristic		Value		
Operation accuracy		Depending on the frequency of the voltage measured: $f_n \pm 2 Hz$		
		±1.5% of the set value	or ±0.002 × U _n	
Start time		Minimum	Typical	Maximum
	U _{Fault} = 0.85 × set <i>Start value</i> ^{63, 64}	17 ms	20 ms	23 ms
	U _{Fault} = 0.85 × set <i>Start value</i> ^{65, 66}	51 ms	55 ms	58 ms
Reset time		Typically 40 ms		
Reset ratio		Depends on the set Re	elative hysteresis	
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value	or ±20 ms	
Operate time accuracy in inverse time mode		±5.0% of the theoretic	al value or ±20 ms ⁶⁷	
Suppression of harm	onics	DFT: -50 dB at f = n × f	_n , where n = 2, 3, 4, 5,	
Suppression of harm	onics	DFT: -50 dB at $f = n \times f$	_n , where n = 2, 3, 4, 5,	

25.30.49 Three-phase undervoltage protection (PHPTUV) main settings

Table 83: Three-phase undervoltage protection (PHPTUV) main settings

Parameter	Function	Value (Range)	Step
Start value	PHPTUV	0.051.20 × U _n	0.01
Time multiplier	PHPTUV	0.0515.00	0.01
Operate delay time	PHPTUV	20300000 ms	10
Operating curve type ⁶⁸	PHPTUV	Definite or inverse time Curve type: 5, 15, 21, 22, 23	

- ⁶³ Start value = 0.97 × U_n, voltage level before fault = 1 × U_n, f_n = 50 Hz, undervoltage in one phaseto-phase voltage injected from random phase angle, results based on statistical distribution of 1000 measurements, includes the delay (≈0ms) of the static signal output (SSO) contact
- ⁶⁴ Start time is accelerated when set *Operate delay time* < 60ms. The shorter the set delay, the shorter the start time. Here measurements done for *Operate delay time* = 20ms
- ⁶⁵ Start value = 0.97 × U_n, voltage level before fault = 1 × U_n, f_n = 50 Hz, undervoltage in one phaseto-phase voltage injected from random phase angle, results based on statistical distribution of 1000 measurements, includes the delay (≈0ms) of the static signal output (SSO) contact
- ⁶⁶ Valid when set *Operate delay time* \geq 60ms or inverse time curve selected
- ⁶⁷ Minimum *Start value* = 0.50, *Start value* multiples in range of 0.90...0.20
- ⁶⁸ For further reference, see the Operation characteristics table

25.30.50 Three-phase overvoltage variation protection (PHVPTOV)

Table 84: Three-phase overvoltage variation protection (PHVPTOV)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage: f_n
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
Reset ratio	Depends on the set <i>Relative hysteresis</i>
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms

25.30.51 Three-phase overvoltage variation protection (PHVPTOV) main settings

Table 85: Three-phase overvoltage variation protection (PHVPTOV) main settings

Parameter	Function	Value (Range)	Step	
Start value	ΡΗνρτον	0.053.00 × U _n	0.01	
Time interval	ΡΗνρτον	1120 min	1	
Num of start phases	PHVPTOV	1 = 1 out of 3	-	
		2 = 2 out of 3		
		3 = 3 out of 3		
Voltage selection	PHVPTOV	1 = phase-to-earth	-	
		2 = phase-to-phase		

25.30.52 Three-phase overvoltage protection (PHPTOV)

Table 86: Three-phase overvoltage protection (PHPTOV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured voltage: $f_n \pm 2 Hz$		
	±1.5% of the set value or ±0.002 × U _n		J _n	
Start time ^{69, 70}		Minimum	Typical	Maximum
	U _{Fault} = 1.1 × set <i>Start value</i>	23 ms	27 ms	31 ms
Reset time		Typically 40 ms		
Reset ratio		Depends on the set <i>Relative hysteresis</i>		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		$\pm 5.0\%$ of the theoretical value or ± 20 ms 71		
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

⁶⁹ Start value = $1.0 \times U_n$, Voltage before fault = $0.9 \times U_n$, $f_n = 50$ Hz, overvoltage in one phase-tophase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

 $^{\rm 70}\,$ Includes the delay of the signal output contact

⁷¹ Maximum *Start value* = 1.20 × U_n, *Start value* multiples in range of 1.10...2.00

25.30.53 Three-phase overvoltage protection (PHPTOV) main settings

Table 87: Three-phase overvoltage protection (PHPTOV) main settings

Parameter	Function	Value (Range)	Step	
Start value	PHPTOV	0.051.60 × U _n	0.01	
Time multiplier	PHPTOV	0.0515.00	0.01	
Operate delay time	PHPTOV	40300000 ms	10	
Operating curve type ⁷²	PHPTOV	Definite or inverse time		
		Curve type: 5, 15, 17, 18, 19	20	

25.30.54 Positive-sequence overvoltage protection (PSPTOV)

Table 88: Positive-sequence overvoltage protection (PSPTOV)

Characteristic		Value				
Operation accuracy		Depending on the frequency of the measured current: $f_n \pm 2 Hz$				
		±1.5% of the set	value or ±0.002 × U _n			
	U _{Fault} = 1.1 × set <i>Start</i>	Minimum	Typical	Maximum		
	<i>value</i> U _{Fault} = 2 × set <i>Start val-</i>	29 ms	32 ms	34 ms		
	ue	32 ms	24 ms	26 ms		
Reset time		Typically 40 ms				
Reset ratio		Typically 0.96				
Retardation time		<35 ms				
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms				
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,				

25.30.55 Positive-sequence overvoltage protection (PSPTOV) main settings

Table 89: Positive-sequence overvoltage protection (PSPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	PSPTOV	0.4001.600 × U _n	0.001
Operate delay time	PSPTOV	40120000 ms	10

⁷² For further reference, see the Operation characteristics table

⁷³ Positive-sequence voltage before fault = $0.0 \times U_n$, $f_n = 50$ Hz, positive-sequence overvoltage of nominal frequency injected from random phase angle

⁷⁴ Measured with static signal output (SSO)

25.30.56 Positive-sequence undervoltage protection (PSPTUV)

Table 90: Positive-sequence undervoltage protection (PSPTUV)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured voltage: $f_n \pm 2 H_2$		
		±1.5% of the se	t value or ±0.002 × L	J _n
Start time ^{75, 76}		Minimum	Typical	Maximum
	U _{Fault} = 0.99 × set <i>Start value</i>	52 ms	55 ms	58 ms
	U _{Fault} = 0.9 × set <i>Start value</i>	44 ms	47 ms	50 ms
Reset time		Typically 40 ms	5	
Reset ratio		Depends on the set <i>Relative hysteresis</i>		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Suppression of harmonics		DFT: -50 dB at 1	f = n × f _n , where n = 2	2, 3, 4, 5,

25.30.57 Positive-sequence undervoltage protection (PSPTUV) main settings

Table 91: Positive-sequence undervoltage protection (PSPTUV) main settings

Parameter	Function	Value (Range)	Step	
Start value	PSPTUV	0.0101.200 × U _n	0.001	
Operate delay time	PSPTUV	40120000 ms	10	
Voltage block value	PSPTUV	0.011.00 × U _n	0.01	

25.30.58 Negative-sequence overvoltage protection (NSPTOV)

Table 92: Negative-sequence overvoltage protection (NSPTOV)

Characteristic		Value		
Operation accuracy		Depending on t	he frequency of the	voltage measured: f _n
		$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$		
Start time ⁷⁷ , ⁷⁸		Minimum	Typical	Maximum
	U _{Fault} = 1.1 × set <i>Start value</i>	33 ms	35 ms	37 ms
	U _{Fault} = 2.0 × set <i>Start value</i>	24 ms	26 ms	28 ms
Reset time		Typically 40 ms	,	
Reset ratio		Typically 0.96		
Retardation time		<35 ms		

Table continues on the next page

⁷⁵ Start value = $1.0 \times U_n$, positive-sequence voltage before fault = $1.1 \times U_n$, $f_n = 50$ Hz, positive sequence undervoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

⁷⁶ Includes the delay of the signal output contact

⁷⁷ Negative-sequence voltage before fault = $0.0 \times U_n$, $f_n = 50$ Hz, negative-sequence overvoltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

⁷⁸ Includes the delay of the signal output contact

Characteristic	Value
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.30.59 Negative-sequence overvoltage protection (NSPTOV) main settings

Table 93: Negative-sequence overvoltage protection (NSPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	NSPTOV	0.0101.000 × U _n	0.001
Operate delay time	NSPTOV	40120000 ms	1

25.30.60 Frequency protection (FRPFRQ)

Table 94: Frequency protection (FRPFRQ)

Characteristic		Value	
Operation accuracy	f>/f<	±5 mHz	
	df/dt	±50 mHz/s (in range df/dt <5 Hz/s)	
		±2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)	
Start time	f>/f<	<80 ms ⁷⁹	
	df/dt	<120 ms	
Reset time		<150 ms	
Operate time accuracy		±1.0% of the set value or ±30 ms	

⁷⁹ Applies to sudden frequency change of ≤ 0.2 Hz or to frequency slope of ≤ 5 Hz/s. When frequency change is outside of these limits, start may be delayed by additional 100 ms to prevent false starts when connecting / disconnecting heavy loads.

25.30.61 Frequency protection (FRPFRQ) main settings

Table 95: Frequency protection (FRPFRQ) main settings

Parameter	Function	Value (Range)	Step	
Operation mode	FRPFRQ	1 = Freq<	-	
		2 = Freq>		
		3 = df/dt		
		4 = Freq< + df/dt		
		5 = Freq> + df/dt		
		6 = Freq< OR df/dt		
		7 = Freq> OR df/dt		
Start value Freq>	FRPFRQ	0.90001.2000 × f _n	0.0001	
Start value Freq<	FRPFRQ	0.80001.1000 × f _n	0.0001	
Start value df/dt	FRPFRQ	-0.20000.2000 × f _n /s	0.0001	
Operate Tm Freq	FRPFRQ	805400000 ms	10	
Operate Tm df/dt	FRPFRQ	120200000 ms	10	

25.30.62 Three-phase voltage-dependent overcurrent protection (PHPVOC)

Table 96: Three-phase voltage-dependent overcurrent protection (PHPVOC)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured current and voltage:	
	f _n ±2 Hz	
	Current:	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$	
	Voltage:	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$	
Start time ^{80, 81}	Typically 26 ms	
Reset time	Typically 40 ms	
Reset ratio	Typically 0.96	
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms	
Operate time accuracy in inverse time mode	±5.0% of the set value or ±20 ms	
Suppression of harmonics	-50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

⁸⁰ *Measurement mode* = default, current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

⁸¹ Includes the delay of the signal output contact

25.30.63 Three-phase voltage-dependent overcurrent protection (PHPVOC) main settings

Table 97: Three-phase voltage-dependent overcurrent protection (PHPVOC) main settings

Parameter	Function	Value (Range)	Step
Start value	PHPVOC	0.055.00 × I _n	0.01
Start value low	PHPVOC	0.051.00 × I _n	0.01
Voltage high limit	PHPVOC	0.011.00 × U _n	0.01
Voltage low limit	PHPVOC	0.011.00 × U _n	0.01
Start value Mult	PHPVOC	0.810.0	0.1
Time multiplier	PHPVOC	0.0515.00	0.01
Operating curve type ⁸²	PHPVOC	Definite or inverse time	
		Curve type: 1, 2, 3, 4, 5, 6, 7, 18, 19	8, 9, 10, 11, 12, 13, 14, 15, 17,
Operate delay time	PHPVOC	40200000 ms	10

25.30.64 Accidental energization protection (GAEPVOC)

Table 98: Accidental energization protection (GAEPVOC)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured current and voltages: $f_n \pm 2 \text{ Hz}$	
	Current:	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$	
	Voltage:	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$	
Start time ^{83, 84}	Typically 20 ms	
Reset time	Typically 35 ms	
Reset ratio	Typically 0.96	
Operate time accuracy	±1.0% of the set value or ±20 ms	
Suppression of harmonics	Voltage: -50 dB at f = n × f _n , where n = 2, 3, 4, 5, Current: No suppression	

⁸² For further reference, see the Operation characteristics table

⁸³ Results based on statistical distribution of 1000 measurements

⁸⁴ Measured with static signal output (SSO)

25.30.65 Accidental energization protection (GAEPVOC) main settings

Table 99: Accidental energization protection (GAEPVOC) main settings

Parameter	Function	Value (Range)	Step	
Start value	GAEPVOC	0.059.00 × I _n	0.01	
Arm set voltage	GAEPVOC	0.051.00 × U _n	0.01	
Disarm set voltage	GAEPVOC	0.501.50 × U _n	0.01	
Operate delay time	GAEPVOC	20300000 ms	10	
Arm delay time	GAEPVOC	40300000 ms	10	
Disarm delay time	GAEPVOC	40300000 ms	10	
Operation	GAEPVOC	1 = on		
		5 = off		
Reset delay time	GAEPVOC	060000 ms	1	

25.30.66 Overexcitation protection (OEPVPH)

Table 100: Overexcitation protection (OEPVPH)

Characteristic	Value		
Operation accuracy	Depending on the frequency of the measured current: $f_{n}\pm 2\text{Hz}$		
	±3.0% of the set value		
Start time ⁸⁵	Frequency change:		
	Typically 200 ms		
	Voltage change:		
	Typically 40 ms		
Reset time	Typically 40 ms		
Reset ratio	Typically 0.96		
Retardation time	<35 ms		
Operate time accuracy in definite-time mode	±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse-time mode	±5.0% of the theoretical value or ±50 ms		

⁸⁵ Includes the delay of the signal output contact

25.30.67 Overexcitation protection (OEPVPH) main settings

Table 101: Overexcitation protection (OEPVPH) main settings

Parameter	Function	Value (Range)	Step
Start value	OEPVPH	100200%	1
Operating curve type ⁸⁶	ОЕРVPH	Definite or inverse time Curve type: 5, 15, 17, 18, 19, 20	
Time multiplier	OEPVPH	0.1100.0	0.1
Operate delay time	OEPVPH	200200000 ms	10
Cooling time	OEPVPH	510000 s	1

25.30.68 Three-phase thermal protection for feeders, cables and distribution transformers (T1PTTR)

Table 102: Three-phase thermal protection for feeders, cables and distribution transformers (T1PTTR)

Characteristic	Value
Operation accuracy Depending on the frequency of the measured	
	Current measurement: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of 0.01. 4.00 $\times I_n$)
Operate time accuracy ⁸⁷	±2.0% of the theoretical value or ±0.50 s

25.30.69 Three-phase thermal protection for feeders, cables and distribution transformers (T1PTTR) main settings

Table 103: Three-phase thermal protection for feeders, cables and distribution transformers (T1PTTR) main settings

Parameter	Function	Value (Range)	Step
Env temperature Set	T1PTTR	-50100°C	1
Current reference	T1PTTR	0.054.00 × I _n	0.01
Temperature rise	T1PTTR	0.0200.0°C	0.1
Time constant	T1PTTR	6060000 s	1
Maximum temperature	T1PTTR	22.0200.0°C	0.1
Alarm value	T1PTTR	20.0150.0°C	0.1
Reclose temperature	T1PTTR	20.0150.0°C	0.1

Table continues on the next page

⁸⁶ For further reference, see the Operation characteristics table

⁸⁷ Overload current > 1.2 × Operate level temperature

Parameter	Function	Value (Range)	Step
Current multiplier	T1PTTR	15	1
Initial temperature	T1PTTR	-50.0. 100.0°C	0.1

25.30.70 Three-phase thermal overload protection, two time constants (T2PTTR)

Table 104: Three-phase thermal overload protection, two time constants (T2PTTR)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_n \pm 2 \text{ Hz}$
	Current measurement: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 $\times I_n$)
Operate time accuracy ⁸⁸	$\pm 2.0\%$ of the theoretical value or ± 0.50 s

25.30.71 Three-phase thermal overload protection, two time constants (T2PTTR) main settings

Table 105: Three-phase thermal overload protection, two time constants (T2PTTR) main settings

Parameter	Function	Value (Range)	Step
Temperature rise	T2PTTR	0.0200.0°C	0.1
Max temperature	T2PTTR	0.0200.0°C	0.1
Operate temperature	T2PTTR	80.0120.0%	0.1
Short time constant	T2PTTR	660000 s	1
Weighting factor p	T2PTTR	0.001.00	0.01
Current reference	T2PTTR	0.054.00 × I _n	0.01
Operation	T2PTTR	1 = on	-
		5 = off	

25.30.72 Three-phase overload protection for shunt capacitor banks (COLPTOC)

Table 106: Three-phase overload protection for shunt capacitor banks (COLPTOC)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured current: fn ±2 Hz, and no harmonics	
	5% of the set value or 0.002 × I _n	

Table continues on the next page

⁸⁸ Overload current > 1.2 x Operate level temperature

Characteristic	Value
Start time for overload stage ^{89, 90}	Typically 75 ms
Start time for under current stage ^{80, 91}	Typically 26 ms
Reset time for overload and alarm stage	Typically 60 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	1% of the set value or ±20 ms
Operate time accuracy in inverse time mode	10% of the theoretical value or ±20 ms
Suppression of harmonics for under current stage	DFT: -50 dB at f = n × f _n , where n = 2,3,4,5,

25.30.73 Three-phase overload protection for shunt capacitor banks (COLPTOC) main settings

Table 107: Three-phase overload protection for shunt capacitor banks (COLPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value overload	COLPTOC	0.30 1.50 × I _n	0.01
Alarm start value	COLPTOC	80120%	1
Start value Un Cur	COLPTOC	0.10 0.70 × I _n	0.01
Time multiplier	COLPTOC	0.052.00	0.01
Alarm delay time	COLPTOC	5006000000 ms	100
Un Cur delay time	COLPTOC	100120000 ms	100

25.30.74 Current unbalance protection for shunt capacitor banks (CUBPTOC)

Table 108: Current unbalance protection for shunt capacitor banks (CUBPTOC)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured current: fn ±2 Hz	
Start time ^{92, 93}	1.5% of the set value or 0.002 × I _n	
	Typically 26 ms	
Reset time	Typically 40 ms	

Table continues on the next page

⁸⁹ Harmonics current before fault = $0.5 \times I_n$, harmonics fault current $1.5 \times Start$ value, results based on statistical distribution of 1000 measurements

⁹⁰ Includes the delay of the signal output contact

⁹¹ Harmonics current before fault = 1.2 × I_n, harmonics fault current 0.8 × *Start value*, results based on statistical distribution of 1000 measurements

⁹² Fundamental frequency current = $1.0 \times I_n$, current before fault = $0.0 \times I_n$, fault current = $2.0 \times Start$ value, results based on statistical distribution of 1000 measurements

 $^{^{93}\,}$ Includes the delay of the signal output contact

Characteristic	Value
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	1% of the theoretical value or ±20 ms
Operate time accuracy in inverse definite minimum time mode	5% of the theoretical value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2,3,4,5,

25.30.75 Current unbalance protection for shunt capacitor banks (CUBPTOC) main settings

Parameter	Function	Value (Range)	Step
Alarm mode	CUBPTOC	1 = Normal	-
		2 = Element counter	
Start value	CUBPTOC	0.011.00 × I _n	0.01
Alarm start value	CUBPTOC	0.011.00 × I _n	0.01
Time multiplier	CUBPTOC	0.0515.00	0.01
Operating curve type ⁹⁴	CUBPTOC	Definite or inverse time	
		Curve type: 1, 2, 3, 4, 5, 6, 7, 18, 19	8, 9, 10, 11, 12, 13, 14, 15, 17,
Operate delay time	CUBPTOC	50200000 ms	10
Alarm delay time	CUBPTOC	50200000 ms	10

25.30.76 Three-phase current unbalance protection for shunt capacitor banks (HCUBPTOC)

Table 109: Three-phase current unbalance protection for shunt capacitor banks (HCUBPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_n\pm 2Hz$
	1.5% of the set value or 0.002 × I _n
Start time ^{95, 96}	Typically 26 ms
Reset time	Typically 40 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	1% of the theoretical value or ±20 ms
Operate time accuracy in IDMT mode	5% of the theoretical value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × fn, where n = 2,3,4,5,

⁹⁴ For further reference, see the Operating characteristics table

⁹⁵ Fundamental frequency current = $1.0 \times I_n$, current before fault = $0.0 \times I_n$, fault current = $2.0 \times Start$ value, results based on statistical distribution of 1000 measurements

⁹⁶ Includes the delay of the signal output contact

25.30.77 Three-phase current unbalance protection for shunt capacitor banks (HCUBPTOC) main settings

Table 110: Three-phase current unbalance protection for shunt capacitor banks (HCUBPTOC) main settings

Parameter	Function	Value (Range)	Step	
Start value	HCUBPTOC	0.011.00 × I _n	0.01	
Alarm start value	НСИВРТОС	0.011.00 × I _n	0.01	
Time multiplier	HCUBPTOC	0.0515.00	0.01	
Operating curve type ⁹⁷	HCUBPTOC	Definite or inverse time	Definite or inverse time	
		Curve type: 1, 2, 3, 4, 5, 6	5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19	
Operate delay time	HCUBPTOC	40200000 ms	10	
Alarm delay time	HCUBPTOC	40200000 ms	10	

25.30.78 Shunt capacitor bank switching resonance protection, current based (SRCPTOC)

Table 111: Shunt capacitor bank switching resonance protection, current based (SRCPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_{n}\pm 2Hz$
	Operate value accuracy:
	$\pm 3\%$ of the set value or $\pm 0.002 \times I_n$ (for 2 nd order Harmonics)
	$\pm 1.5\%$ of the set value or ± 0.002 × $\rm I_n$ (for 3^{rd} order < Harmonics < 10^{th} order)
	$\pm 6\%$ of the set value or $\pm 0.004 \times I_n$ (for Harmonics >= 10^{th} order)
Reset time	Typically 45 ms or maximum 50 ms
Retardation time	Typically 0.96
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms
Suppression of harmonics	-50 dB at f = f _n

⁹⁷ For further reference, refer to the Operating characteristics table

25.30.79 Shunt capacitor bank switching resonance protection, current based (SRCPTOC) main settings

Table 112: Shunt capacitor bank switching resonance protection, current based (SRCPTOC) main settings

Parameter	Function	Value (Range)	Step
Alarm start value	SRCPTOC	0.03. 0.50 × I _n	0.01
Start value	SRCPTOC	0.03. 0.50 × I _n	0.01
Tuning harmonic Num	SRCPTOC	111	1
Operate delay time	SRCPTOC	120360000 ms	1
Alarm delay time	SRCPTOC	120360000 ms	1

25.30.80 Compensated neutral unbalance voltage protection (CNUPTOV)

Table 113: Compensated neutral unbalance voltage protection (CNUPTOV)

Characteristic		Value
Operation accuracy		Depending on the frequency of the measured voltage: $f_n^{}$ ±2 Hz
		\pm 1.5% of the set value or \pm 0.002 × U _n
Start time ^{98, 99}	U _{Fault} = 1.1 × set Start val- ue	Typically 75 ms
Reset time		Typically 40 ms
Reset ratio		Typically 0.96
Retardation time		<35 ms
Operate time accuracy		±1.0% of the set value or ±20 ms
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.30.81 Compensated neutral unbalance voltage protection (CNUPTOV) main settings

Table 114: Compensated neutral unbalance voltage protection (CNUPTOV) main settings

Parameter	Function	Value (Range)	Step
Start value	CNUPTOV	0.011.00 × U _n	0.01
Operate delay time	CNUPTOV	100300000 ms	100

⁹⁸ Start value = $0.1 \times U_n$, Voltage before fault = $0.9 \times U_n$, $f_n = 50$ Hz, overvoltage in one phase-toearth with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

⁹⁹ Measured with static signal output (SSO)

25.30.82 Directional negative-sequence overcurrent protection (DNSPDOC)

Table 115: Directional negative-sequence overcurrent protection (DNSPDOC)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: $f_n \pm 2 Hz$		
		Current:		
		±1.5% of the set	value or ±0.002 × I _n	
		Voltage:		
		±1.5% of the set	value or ±0.002 × U _n	
		Phase angle:		
		±2°		
Start time ^{100, 101}	I _{Fault} = 2 × set <i>Start val-</i> ue	Minimum	Typical	Maximum
	ue	31 ms	34 ms	37 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Suppression of harmonics		RMS: No suppression		
		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		
		Peak-to-Peak: No	suppression	

25.30.83 Directional negative-sequence overcurrent protection (DNSPDOC) main settings

Table 116: Directional negative-sequence overcurrent protection (DNSPDOC) main settings

Parameter	Function	Value (Range)	Step
Start value	DNSPDOC	0.055.00 × I _n	0.01
Directional mode	DNSPDOC	1 = Non-directional 2 = Forward 3 = Reverse	-
Operate delay time	DNSPDOC	40300000 ms	10
Characteristic angle	DNSPDOC	-179180°	1

 $^{101}\,$ Measured with static signal output (SSO)

¹⁰⁰ Measurement mode NPS, NPS current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, fault NPS current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

25.30.84 Low-voltage ride-through protection (LVRTPTUV)

Table 117: Low-voltage ride-through protection (LVRTPTUV)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured voltage:	
	f _n ±2 Hz	
	\pm 1.5% of the set value or \pm 0.002 × U _n	
Start time ^{102, 103}	Typically 40 ms	
Reset time	Based on maximum value of <i>Recovery time</i> setting	
Operate time accuracy	±1.0% of the set value or ±20 ms	
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

25.30.85 Low-voltage ride-through protection (LVRTPTUV) main settings

Table 118: Low-voltage ride-through protection (LVRTPTUV) main settings

Parameter	Function	Value (Range)	Step	
Voltage start value	LVRTPTUV	0.05. 1.20 × U _n	0.01	
Num of start phases	LVRTPTUV	4 = Exactly 1 of 3	-	
		5 = Exactly 2 of 3		
		6 = Exactly 3 of 3		
Voltage selection	LVRTPTUV	1 = Highest Ph-to-E	-	
		2 = Lowest Ph-to-E		
		3 = Highest Ph-to-Ph		
		4 = Lowest Ph-to-Ph		
		5 = Positive Seq		
Active coordinates	LVRTPTUV	110	1	
Voltage level 1	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 2	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 3	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 4	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 5	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 6	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 7	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 8	LVRTPTUV	0.00 1.20 xU _n	0.01	
Voltage level 9	LVRTPTUV	0.00 1.20 xU _n	0.01	
-				

Table continues on the next page

¹⁰² Tested for Number of Start phases = 1 out of 3, results based on statistical distribution of 1000 measurements

¹⁰³ Includes the delay of the signal output contact

Parameter	Function	Value (Range)	Step
Voltage level 10	LVRTPTUV	0.00 1.20 xU _n	0.01
Recovery time 1	LVRTPTUV	0300000 ms	1
Recovery time 2	LVRTPTUV	0300000 ms	1
Recovery time 3	LVRTPTUV	0300000 ms	1
Recovery time 4	LVRTPTUV	0300000 ms	1
Recovery time 5	LVRTPTUV	0300000 ms	1
Recovery time 6	LVRTPTUV	0300000 ms	1
Recovery time 7	LVRTPTUV	0300000 ms	1
Recovery time 8	LVRTPTUV	0300000 ms	1
Recovery time 9	LVRTPTUV	0300000 ms	1
Recovery time 10	LVRTPTUV	0300000 ms	1

25.30.86 Voltage vector shift protection (VVSPPAM)

Table 119: Voltage vector shift protection (VVSPPAM)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured voltage:	
	f _n ±1 Hz	
	±1°	
Operate time ^{104, 105}	Typically 53 ms	

25.30.87 Voltage vector shift protection (VVSPPAM) main settings

Table 120: Voltage vector shift protection (VVSPPAM) main settings

Parameter	Function	Value (Range)	Step
Start value	VVSPPAM	2.030.0°	0.1
Over Volt Blk value	VVSPPAM	0.40 1.50 × U _n	0.01
Under Volt Blk value	VVSPPAM	0.15. 1.00 × U _n	0.01
Phase supervision	VVSPPAM	7 = Ph A + B + C	-
		8 = Pos sequence	

 $f_n = 50$ Hz, results based on statistical distribution of 1000 measurements Includes the delay of the signal output contact

25.30.88 Directional reactive power undervoltage protection (DQPTUV)

Table 121: Directional reactive power undervoltage protection (DQPTUV)

Characteristic	Value	
Operation accuracy	Depending on the frequency of the measured current and volt- age:	
	f _n ±2 Hz	
	Reactive power range PF <0.71	
	Power:	
	$\pm 3.0\%$ or $\pm 0.002 \times Q_n$	
	Voltage:	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$	
Start time ^{106, 107}	Typically 46 ms	
Reset time	<50 ms	
Reset ratio	Typically 0.96	
Operate time accuracy	±1.0% of the set value or ±20 ms	
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

25.30.89 Directional reactive power undervoltage protection (DQPTUV) main settings

Table 122: Directional reactive power undervoltage protection (DQPTUV) main settings

Parameter	Function	Value (Range)	Step
Voltage start value	DQPTUV	0.20 1.20 × U _n	0.01
Operate delay time	DQPTUV	100300000 ms	10
Min reactive power	DQPTUV	0.01. 0.50 × S _n	0.01
Min Ps Seq current	DQPTUV	0.02. 0.20 × I _n	0.01
Pwr sector reduction	DQPTUV	010°	1

Start value = 0.05 × S_n, reactive power before fault = 0.8 × Start value, reactive power overshoot 2 times, results based on statistical distribution of 1000 measurements
 Includes the delay of the signal output contact

25.30.90 Reverse power/directional overpower protection (DOPPDPR)

Table 123: Reverse power/directional overpower protection (DOPPDPR)

Characteristic	Value
Operation accuracy ¹⁰⁸	Depending on the frequency of the measured current and volt- age:
	$f = f_n \pm 2 Hz$
	Power measurement accuracy ±3% of the set value or ±0.002 \times S_{n}
	Phase angle: ±2°
Start time ^{109, 110}	Typically 45 ms
Reset time	Typically 30 ms
Reset ratio	Typically 0.94
Operate time accuracy	±1.0% of the set value of ±20 ms
Suppression of harmonics	-50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.30.91 Reverse power/directional overpower protection (DOPPDPR) main settings

Table 124: Reverse power/directional overpower protection (DOPPDPR) main settings

Parameter	Function	Value (Range)	Step	
Start value	DOPPDPR	0.012.00 × S _n	0.01	
Operate delay time	DOPPDPR	40300000 ms	10	
Directional mode	DOPPDPR	2 = Forward	-	
		3 = Reverse		
Power angle	DOPPDPR	-9090°	1	

25.30.92 Underpower protection (DUPPDPR)

Table 125: Underpower protection (DUPPDPR)

Characteristic	Value
Operation accuracy ¹¹¹	Depending on the frequency of the measured current and voltage:
	f _n ±2 Hz
	Power measurement accuracy ±3% of the set value or ±0.002 \times S_{n}
	Phase angle: ±2°

Table continues on the next page

- 109 U = U_n, f_n = 50 Hz, results based on statistical distribution of 1000 measurements
- ¹¹⁰ Includes the delay of the signal output contact

¹⁰⁸ *Measurement mode* = "Pos Seq" (default)

¹¹¹ *Measurement mode* = "Pos Seq" (default)

Characteristic	Value
Start time ^{112, 113}	Typically 45 ms
Reset time	Typically 30 ms
Reset ratio	Typically 1.04
Operate time accuracy	±1.0% of the set value of ±20 ms
Suppression of harmonics -50 dB at f = n × f _n , where n = 2, 3, 4, 5,	

25.30.93 Underpower protection (DUPPDPR) main settings

Table 126: Underpower protection (DUPPDPR) main settings

Parameter	Function	Value (Range)	Step
Start value	DUPPDPR	0.01. 2.00 × S _n	0.01
Operate delay time	DUPPDPR	40300000 ms	10
Pol reversal	DUPPDPR	0 = False	-
		1 = True	
Disable time	DUPPDPR	060000 ms	1000

25.30.94 Three-phase underimpedance protection (UZPDIS)

Table 127: Three-phase underimpedance protection (UZPDIS)

Characteristic	Value		
Operation accuracy	Depending on the frequency of the measured current and voltage: $f_{\rm n}$ ±2 Hz		
	±3.0% of the set value or ±0.2 %Zb		
Start time ^{114, 115}	Typically 50 ms		
Reset time	Typically 40 ms		
Reset ratio	Typically 1.04		
Retardation time	<40 ms		
Operate time accuracy	±1.0% of the set value or ±20 ms		

25.30.95 Three-phase underimpedance protection (UZPDIS) main settings

Table 128: Three-phase underimpedance protection (UZPDIS) main settings

Parameter	Function	Value (Range)	Step
Percentage reach	UZPDIS	16000% Z _n	1
Operate delay time	UZPDIS	40200000 ms	10

¹¹² U = U_n , f_n = 50 Hz, results based on statistical distribution of 1000 measurements

¹¹³ Includes the delay of the signal output contact

 $f_n = 50$ Hz, results based on statistical distribution of 1000 measurements Includes the delay of the signal output contact

25.30.96 Three-phase underexcitation protection (UEXPDIS)

Table 129: Three-phase underexcitation protection (UEXPDIS)

Characteristic	Value		
Operation accuracy	Depending on the frequency of the measured current and voltage:		
	$f = f_n \pm 2 Hz$		
	±3.0% of the set value or ±0.2% Zb		
Start time ^{116, 117}	Typically 45 ms		
Reset time	Typically 30 ms		
Reset ratio	Typically 1.04		
Retardation time	Total retardation time when the impedance returns from the operating circle <40 ms		
Operate time accuracy	±1.0% of the set value or ±20 ms		
Suppression of harmonics	-50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

25.30.97 Three-phase underexcitation protection (UEXPDIS) main settings

Table 130: Three-phase underexcitation protection (UEXPDIS) main settings

Parameter	Function	Value (Range)	Step
Diameter	UEXPDIS	16000 %Z _n	1
Offset	UEXPDIS	-10001000 %Z _n	1
Displacement	UEXPDIS	-10001000 %Z _n	1
Operate delay time	UEXPDIS	60200000 ms	10
External Los Det Ena	UEXPDIS	0 = Disable	-
		1 = Enable	

25.30.98 Third harmonic-based stator earth-fault protection (H3EFPSEF)

Table 131: Third harmonic-based stator earth-fault protection (H3EFPSEF)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage:
	f _n ±2 Hz
	$\pm 5\%$ of the set value or $\pm 0.004 \times U_n$
Start time ^{118, 119}	Typically 35 ms
Reset time	Typically 35 ms

Table continues on the next page

 116 f_n= 50Hz, results based on statistical distribution of 1000 measurements

- ¹¹⁷ Includes the delay of the signal output contact
- ¹¹⁸ $f_n = 50$ Hz, results based on statistical distribution of 1000 measurements

¹¹⁹ Includes the delay of the signal output contact

Characteristic	Value
Reset ratio	Typically 0.96 (differential mode)
	Typically 1.04 (under voltage mode)
Operate time accuracy	±1.0% of the set value of ±20 ms

25.30.99 Third harmonic-based stator earth-fault protection (H3EFPSEF) main settings

Table 132: Third harmonic-based stator earth-fault protection (H3EFPSEF) main settings

Parameter	Function	Value (Range)	Step
Beta	H3EFPSEF	0.5010.00	0.01
Voltage N 3.H Lim	H3EFPSEF	0.005. 0.200 × U _n	0.001
Operate delay time	H3EFPSEF	20300000 ms	10
Voltage selection	H3EFPSEF	1 = No voltage	-
		2 = Measured Uo	
		3 = Calculated Uo	
		4 = Phase A	
		5 = Phase B	
		6 = Phase C	
CB open factor	H3EFPSEF	1.0010.00	0.01

25.30.100 Rotor earth-fault protection, injection method (MREFPTOC)

Table 133: Rotor earth-fault protection, injection method (MREFPTOC)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the current measured: $f_n \pm 2 Hz$ $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$		
	Value	30 ms	34 ms	38 ms
Reset time		<50 ms		
Reset ratio		Typically 0.96		
Retardation time		<50 ms		
Operate time accuracy		±1.0% of the set v	value of ±20 ms	
Suppression of harmonics		-50 dB at f = n × fn, where n = 2, 3, 4, 5,		

 ¹²⁰ Current before fault = 0.0 × I_n, f_n = 50 Hz, earth-fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements
 ¹²¹ Includes the delay of the signal output contact

25.30.101 Rotor earth-fault protection, injection method (MREFPTOC) main settings

Table 134: Rotor earth-fault protection, injection method (MREFPTOC) main settings

Parameter	Function	Value (Range)	Step
Operate start value	MREFPTOC	0.0102.000 × I _n	0.001
Alarm start value	MREFPTOC	0.0102.000 × I _n	0.001
Operate delay time	MREFPTOC	4020000 ms	1
Alarm delay time	MREFPTOC	40200000 ms	1

25.30.102 High-impedance or flux-balance based differential protection (MHZPDIF)

Table 135: High-impedance or flux-balance based differential protection (MHZPDIF)

Characteristic		Value				
Operation accuracy		Depending on the	Depending on the frequency of the measured current: $f_n\pm 2Hz$			
		±1.5% of the set value or 0.002 × $\rm I_n$				
Start time ^{122, 123}	I _{Fault} = 2.0 × set <i>Start</i> <i>Value</i> (one phase fault)	Minimum	Typical	Maximum		
	value (one phase fault)	13 ms	17 ms	21 ms		
	I _{Fault} = 2.0 × set <i>Start Value</i> (three phases fault)	11 ms	14 ms	17 ms		
Reset time		<40 ms				
Reset ratio		Typically 0.96				
Retardation time		<35 ms				
Operate time accuracy	in definite time mode	±1.0% of the set v	value of ±20 ms			

25.30.103 High-impedance or flux-balance based differential protection (MHZPDIF) main settings

Table 136: High-impedance or flux-balance based differential protection (MHZPDIF) main settings

Parameter	Function	Value (Range)	Step
Operate value	MHZPDIF	0.550.0 %I _n	0.1
Minimum operate time	MHZPDIF	20300000 ms	10

¹²³ Includes the delay of the signal output contact

¹²² Measurement mode = "Peak-to-Peak", current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, fault current with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

25.30.104 Out-of-step protection with double blinders (OOSRPSB)

Table 137: Out-of-step protection with double blinders (OOSRPSB)

Characteristic	Value
Impedance reach	Depending on the frequency of the measured current and volt- age: f _n
	±2 Hz
	$\pm 3.0\%$ of the reach value or $\pm 0.2\%$ of U _n /($\sqrt{3} \times I_n$)
Reset time	±1.0% of the set value or ±40 ms
Operate time accuracy	±1.0% of the set value or ±20 ms
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5

25.30.105 Out-of-step protection (OOSRPSB) main settings

Table 138: Out-of-step protection (OOSRPSB) main settings

Parameter	Function	Value (Range)	Step	
Oos operate mode	OOSRPSB	1 = Way in 2 = Way out	1 = Way in 2 = Way out -	
		2 = Way out		
		3 = Adaptive		
Forward reach	OOSRPSB	0.006000.00 Ω	0.01	
Reverse reach	OOSRPSB	0.006000.00 Ω	0.01	
Inner blinder R	OOSRPSB	1.006000.00 Ω	0.01	
Outer blinder R	OOSRPSB	1.0110000.00 Ω	0.01	
Impedance angle	OOSRPSB	10.090.0°	0.1	
Swing time	OOSRPSB	20300000 ms	10	
Zone 1 reach	OOSRPSB	1100%	1	
Operate delay time	OOSRPSB	2060000 ms	10	

25.30.106 Negative-sequence overcurrent protection for machines (MNSPTOC)

Table 139: Negative-sequence overcurrent protection for machines (MNSPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: f_n
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$

Table continues on the next page

Characteristic		Value		
Start time ^{124, 125}		Minimum	Typical	Maximum
	I _{Fault} = 2.0 × set <i>Start value</i>	23	25 ms	28 ms
Reset time		Typically 40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms		
Operate time accuracy in inverse time mode		$\pm 5.0\%$ of the theoretical value or ± 20 ms 126		
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

25.30.107 Negative-sequence overcurrent protection for machines (MNSPTOC) main settings

Table 140: Negative-sequence overcurrent protection for machines (MNSPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	MNSPTOC	0.01. 0.50 × I _n	0.01
Operating curve type	MNSPTOC	Definite or inverse time Curve type: 5, 15, 17, 18	
Operate delay time	MNSPTOC	100120000 ms	10
Operation	MNSPTOC	1 = on 5 = off	-
Cooling time	MNSPTOC	57200 s	1

25.30.108 Loss of phase, undercurrent (PHPTUC)

Table 141: Loss of phase, undercurrent (PHPTUC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_{\rm n}~{}^{\rm \pm}{}^{\rm 2}~{\rm Hz}$
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
Start time	Typically <55 ms
Reset time	<40 ms
Reset ratio	Typically 1.04
Retardation time	<35 ms
Operate time accuracy in definite time mode	mode ±1.0% of the set value or ±20 ms

 $^{^{124}\,}$ Negative-sequence current before = 0.0, $\rm f_n$ = 50 Hz, results based on statistical distribution of 1000 measurements

¹²⁵ Includes the delay of the signal output contact

¹²⁶ Start value multiples in range of 1.10...5.00

25.30.109 Loss of phase, undercurrent (PHPTUC) main settings

Table 142: Loss of phase, undercurrent (PHPTUC) main settings

Parameter	Function	Value (Range)	Step	
Current block value	PHPTUC	0.000.50 × I _n	0.01	
Start value	PHPTUC	0.011.00 × I _n	0.01	
Operate delay time	PHPTUC	50200000 ms	10	

25.30.110 Loss of load supervision (LOFLPTUC)

Table 143: Loss of load supervision (LOFLPTUC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_{n}\pm 2Hz$
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
Start time	Typically 300 ms
Reset time	Typically 40 ms
Reset ratio	Typically 1.04
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms

25.30.111 Loss of load supervision (LOFLPTUC) main settings

Table 144: Loss of load supervision (LOFLPTUC) main settings

Parameter	Function	Value (Range)	Step
Start value low	LOFLPTUC	0.01. 0.50 × l n	0.01
Start value high	LOFLPTUC	0.01. 1.00 × l n	0.01
Operate delay time	LOFLPTUC	400600000 ms	10
Operation	LOFLPTUC	1 = on 5 = off	-

25.30.112 Motor load jam protection (JAMPTOC)

Table 145: Motor load jam protection (JAMPTOC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_{n}\pm 2Hz$
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
Reset time	Typically 40 ms
Reset ratio	Typically 0.96
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms

25.30.113 Motor load jam protection (JAMPTOC) main settings

Table 146: Motor load jam protection (JAMPTOC) main settings

Parameter	Function	Value (Range)	Step	
Operation	JAMPTOC	1 = on	-	
		5 = off		
Start value	JAMPTOC	0.1010.00 × I _n	0.01	
Operate delay time	JAMPTOC	100120000 ms	10	

25.30.114 Motor start-up supervision (STTPMSU)

Table 147: Motor start-up supervision (STTPMSU)

Characteristic		Value		
Operation accuracy		Depending on t	he frequency of the	measured current: f _n ±2 Hz
		±1.5% of the se	t value or ±0.002 × I _r	ı
Start time ^{127, 128}		Minimum	Typical	Maximum
	I _{Fault} = 1.1 × set <i>Start detection</i> A	27 ms	30 ms	34 ms
Operate time accuracy		±1.0% of the se	t value or ±20 ms	
Reset ratio		Typically 0.90		

25.30.115 Motor start-up supervision (STTPMSU) main settings

Table 148: Motor start-up supervision (STTPMSU) main settings

Parameter	Function	Value (Range)	Step	
Motor start-up A	STTPMSU	1.0 10.0 × I _n	0.1	
Motor start-up time	STTPMSU	180 s	1	
Lock rotor time	STTPMSU	2120 s	1	
Operation	STTPMSU	1 = on	-	
		5 = off		
Operation mode	STTPMSU	1 = IIt	-	
		2 = IIt, CB		
		3 = IIt + stall		
		4 = IIt + stall, CB		
Restart inhibit time	STTPMSU	0250 min	1	

 127 Current before = 0.0 × $\rm I_n, f_n$ = 50 Hz, overcurrent in one phase, results based on statistical distribution of 1000 measurements

¹²⁸ Includes the delay of the signal output contact

25.30.116 MSCPMRI Group settings (Basic)

Table 149: MSCPMRI Group settings (Basic)

Parameter	Function	Value (Range)	Step
Warm start level	MSCPMRI	20.0100.0%	0.1
Max Num cold start	MSCPMRI	110	1
Max Num warm start	MSCPMRI	110	1

25.30.117 Phase reversal protection (PREVPTOC)

Table 150: Phase reversal protection (PREVPTOC)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: $f_{n}\pm 2\text{Hz}$		
		±1.5% of the se	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$	
Start time ^{129, 130}		Minimum	Typical	Maximum
	I _{Fault} = 2.0 × set <i>Start value</i>	23 ms	25 ms	28 ms
Reset time		Typically 40 ms	;	
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in definite time mode		±1.0% of the se	t value or ±20 ms	
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,		

25.30.118 Phase reversal protection (PREVPTOC) main settings

Table 151: Phase reversal protection (PREVPTOC) main settings

Parameter	Function	Value (Range)	Step
Start value	PREVPTOC	0.05. 1.00 x I _n	0.01
Operate delay time	PREVPTOC	10060000 ms	10
Operation	PREVPTOC	1 = on	-
		5 = off	

 $^{^{129}\,}$ Negative-sequence current before = 0.0, $f_{\rm n}$ = 50 Hz, results based on statistical distribution of 1000 measurements

¹³⁰ Includes the delay of the signal output contact

25.30.119 Thermal overload protection for motors (MPTTR)

Table 152: Thermal overload protection for motors (MPTTR)

Characteristic	Value
Operation accuracy Depending on the frequency of the measured curre	
	Current measurement: $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of 0.014.00 × I_n)
Operate time accuracy ¹³¹	±2.0% of the theoretical value or ±0.50 s

25.30.120 Thermal overload protection for motors (MPTTR) main settings

Table 153: Thermal overload protection for motors (MPTTR) main settings

Parameter	Function	Value (Range)	Step	
Overload factor	MPTTR	1.001.20	0.01	
Alarm thermal value	MPTTR	50.0100.0%	0.1	
Restart thermal Val	MPTTR	20.080.0%	0.1	
Weighting factor p	MPTTR	20.0100.0%	0.1	
Time constant normal	MPTTR	804000 s	1	
Time constant start	MPTTR	804000 s	1	
Env temperature mode	MPTTR	1 = FLC Only	-	
		2 = Use input		
		3 = Set Amb Temp		
Env temperature Set	MPTTR	-20.070.0°C	0.1	
Operation	MPTTR	1 = on	-	
		5 = off		

25.30.121 Thermal overload protection for rotors (RPTTR)

Table 154: Thermal overload protection for rotors (RPTTR)

Characteristics	Value	
Operation accuracy	Depending on the frequency of the measured current fn ±2 Hz	
	Current measurement $\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$ (at currents in the range of $\leq 4.00 \times I_n$)	
Operate time accuracy	±2.0% of the theoretical value or ±0.50 s	

 $^{^{131}}$ Overload current > 1.2 × Operate level temperature

25.30.122 Thermal overload protection for rotors (RPTTR) main settings

Table 155: Thermal overload protection for rotors (RPTTR) main settings

Parameter	Function	Value (Range)	Step
Time constant normal	RPTTR	8010000 s	1
Time constant start	RPTTR	8010000 s	1
Time constant stop	RPTTR	8060000 s	1
Alarm value	RPTTR	50.0100.0 %	0.1
Restart thermal Val	RPTTR	20.080.0 %	0.1
Weighting factor p	RPTTR	20.0100.0 %	0.1
Overload factor	RPTTR	1.001.20	0.01
Env temperature Set	RPTTR	-20.070.0 °C	0.1
Env temperature mode	RPTTR	1=FLC Only	
		2=Use input	
		3=Set Amb Temp	
Motor synchronous speed	RPTTR	1253600	1
Motor nominal speed	RPTTR	1003599	1

25.30.123 Directional negative sequence impedance protection (DNZPDIS)

Table 156: DNZPDIS Technical data

Characteristics	Value	
Operation accuracy	At the frequency f = f _n	
	±3% of the set value or ±0.05 Ω (When $ \angle Z_2$ - $\angle RCA $ is outside 80 to 100 degree)	
Start time ^{132, 133, 134}	<75 ms	
Operate time accuracy ¹³⁵	±1.0% of the set value or ±20 ms	
Reset ratio	0.96	
Reset time	Typically 30 ms	

¹³² Results based on statistical distribution of 1000 measurements

¹³³ Measured with static signal output (SSO)

¹³⁴ During fault, Z_2 = 2.0 × Ng Seq impedance Rv/Fw ¹³⁵ During fault, Z_2 = 2.0 × Ng Seq impedance Rv/Fw

25.30.124 Directional negative sequence impedance protection (DNZPDIS) main settings

Table 157: Directional negative sequence impedance protection (DNZPDIS) main settings

Parameter	Function	Value (Range)	Step
Direction mode	DNZPDIS	1=Non-directional	
		2=Forward	
		3=Reverse	
Operate delay time	DNZPDIS	60300000 ms	10
Ng Seq impedance Fw	DNZPDIS	0.013000.00 ohm	0.01
Ng Seq impedance Rv	DNZPDIS	-30000.01 ohm	0.01
Characteristic angle	DNZPDIS	190 deg	1

25.30.125 Power swing detection (DSTRPSB)

Table 158: Power swing detection (DSTRPSB)

Characteristic	Value
Operation accuracy	At the frequency f = fn
	Current:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
	Impedance:
	±3% of the set value or ±0.05 Ω
	Phase angle: ±2°
Reset ratio	Typically 0.96/1.04
Operate time accuracy ¹³⁶	± 1.0% of the set value or 20 ms

25.30.126 Power swing detection (DSTRPSB) main settings

Table 159: Power swing detection (DSTRPSB) main settings

Parameter	Function	Value (Range)	Step
Swing time	DSTRPSB	20300000 ms	10
Inner R1	DSTRPSB	0.015999.99 ohm	0.01
Inner X1	DSTRPSB	0.015999.99 ohm	0.01
Inner X1 reverse	DSTRPSB	0.015999.99 ohm	0.01
Inner Min Ris Rch	DSTRPSB	0.015999.99 ohm	0.01

Table continues on the next page

¹³⁶ Measured with static power output (SPO)

Parameter	Function	Value (Range)	Step
Outer R1	DSTRPSB	0.026000 ohm	0.01
Outer X1	DSTRPSB	0.026000 ohm	0.01
Outer X1 reverse	DSTRPSB	0.026000 ohm	0.01
Outer Min Ris Rch	DSTRPSB	0.026000 ohm	0.01
Max Ng Seq current	DSTRPSB	0.0110 xln	0.01
Ng Seq current time	DSTRPSB	201000 ms	10
Slow swing time	DSTRPSB	8060000 ms	10
Pulse time	DSTRPSB	2060000 ms	10
Pe Swg impedance Chr	DSTRPSB	1=Quadrilateral 2=Mho (circular)	

25.30.127 Stabilized and instantaneous differential protection for machines (MPDIF)

Table 160: Stabilized and instantaneous differential protection for machines (MPDIF)

Characteristic		Value			
Operation accuracy		Depending on	Depending on the frequency of the current measured: $f_n \pm 2 Hz$		
		\pm 3% of the set value or \pm 0.002 x I _n			
Operate time ^{137, 138}		Minimum	Typical	Maximum	
	Low stage	36 ms	40 ms	42 ms	
	High stage	18 ms	22 ms	27 ms	
Reset time		<40 ms			
Reset ratio		Typically 0.95			
Retardation time		<20 ms			

25.30.128 Stabilized and instantaneous differential protection for machines (MPDIF) main settings

Table 161: Stabilized and instantaneous differential protection for machines (MPDIF) main settings

Parameter	Function	Value (Range)	Step
Low operate value	MPDIF	530 %lr	1
High operate value	MPDIF	1001000 %lr	10
Slope section 2	MPDIF	1050%	1
End section 1	MPDIF	0100 %lr	1
End section 2	MPDIF	100300 %Ir	1
DC restrain enable	MPDIF	0 = False 1 = True	-
CT connection type	MPDIF	1 = Type 1 2 = Type 2	-

Table continues on the next page

 $_{137}^{137}$ F_n = 50 Hz, results based on statistical distribution of 1000 measurements $_{138}^{138}$ Includes the delay of the power output contact

Parameter	Function	Value (Range)	Step
CT ratio Cor Line	MPDIF	0.404.00	0.01
CT ratio Cor Neut	MPDIF	0.404.00	0.01

25.30.129 Underpower factor protection (MPUPF)

Table 162: Underpower factor protection (MPUPF)

Characteristic	Value	
Operation accuracy	Dependent on the frequency of the current measured: fn ± 2 Hz	
	±0.018 for power factor	
Operate time accuracy	±(1.0% or 30 ms)	
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5, 6, 7	
Reset time	<40 ms	

25.30.130 Underpower factor protection (MPUPF) main settings

Table 163: Underpower factor protection (MPUPF) main settings

Parameter	Function	Value (Range)	Step
Min operate current	MPUPF	0.050.65 × I _n	0.01
Min operate voltage	MPUPF	0.050.50 × U _n	0.01
Disable time	MPUPF	060000 ms	1
Voltage reversal	MPUPF	0 = No	-
		1 = Yes	

25.30.131 Stabilized and instantaneous differential protection for two- or three-winding transformers (TR3PTDF)

Table 164: Stabilized and instantaneous differential protection for two- or three-winding transformers (TR3PTDF)

Characteristic		Value			
Operation accuracy		Depending on the	Depending on the frequency of the measured current: $f_n\pm 2\text{Hz}$		
		±3.0% of the set	\pm 3.0% of the set value or \pm 0.002 × I _n		
Start time ^{139, 140}	Low stage High stage	Minimum	Typical	Maximum	

Table continues on the next page

¹³⁹ Current before fault = $0.0 \times I_n f_n = 50$ Hz. Injected differential current = $2.0 \times$ set operation value. ¹⁴⁰ Measured with static power output (SPO)

Characteristic	Value		
	30 ms	35 ms	40 ms
	17 ms	18 ms	20 ms
Reset time	Typically 40 ms		
Reset ratio	Typically 0.96		
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5		

25.30.132 Stabilized and instantaneous differential protection for two- or three-winding transformers (TR3PTDF) main settings

Table 165: Stabilized and instantaneous differential protection for two- or three-winding transformers (TR3PTDF) main settings

Parameter	Function	Value (Range)	Step
High operate value	TR3PTDF	5003000 %lr	10
Low operate value	TR3PTDF	550 %lr	1
Slope section 2	TR3PTDF	1050%	1
End section 2	TR3PTDF	100500 %lr	1
Restraint mode	TR3PTDF	5 = Waveform	-
		6 = 2.h + waveform	
		8 = 5.h + waveform	
		9 = 2.h + 5.h + wav	
Start value 2.H	TR3PTDF	720%	1
Start value 5.H	TR3PTDF	1050%	1
Stop value 5.H	TR3PTDF	1050%	1
Slope section 3	TR3PTDF	10100%	1
Current group 3 type	TR3PTDF	1 = Not in use 2 = Winding 3	-
		3 = Wnd 1 restraint	
		4 = Wnd 2 restraint	
Zro A elimination	TR3PTDF	1 = Not eliminated	-
		2 = Winding 1	
		3 = Winding 2	
		4 = Winding 1 and 2	
		5 = Winding 3	
		6 = Winding 1 and 3	
		7 = Winding 2 and 3	
		8 = Winding 1, 2, 3	
Phase shift Wnd 1-2	TR3PTDF	0.0359.9°	0.1
Phase shift Wnd 1-3	TR3PTDF	0.0359.9°	0.1

25.30.133 Stabilized and instantaneous differential protection for two-winding transformers (TR2PTDF)

Table 166: Stabilized and instantaneous differential protection for two-winding transformers (TR2PTDF)

Characteristic		Value	Value			
Operation accuracy		Depending on the	Depending on the frequency of the measured current: $f_{n}\pm 2\text{Hz}$			
		$\pm 3.0\%$ of the set value or $\pm 0.002 \times I_n$				
Operate time ^{141, 142}		Minimum	Typical	Maximum		
	Low stage	31 ms	35 ms	40 ms		
	High stage	15 ms	17 ms	20 ms		
Reset time		<40 ms				
Reset ratio		Typically 0.96	Typically 0.96			
Suppression of harmonics		DFT: -50 dB at f =	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,			

25.30.134 Stabilized and instantaneous differential protection for two-winding transformers (TR2PTDF) main settings

Table 167: Stabilized and instantaneous differential protection for two-winding transformers (TR2PTDF) main settings

Parameter	Function	Value (Range)	Step
High operate value	TR2PTDF	5003000 %lr 10	
Low operate value	TR2PTDF	550 %lr 1	
Slope section 2	TR2PTDF	1050% 1	
End section 2	TR2PTDF	100500 %lr	1
Restraint mode	TR2PTDF	5 = Waveform	-
		6 = 2.h + waveform	
		8 = 5.h + waveform	
		9 = 2.h + 5.h + wav	
Start value 2.H	TR2PTDF	720%	1
Start value 5.H	TR2PTDF	1050%	1
Operation	TR2PTDF	1 = on	-
		5 = off	

Table continues on the next page

¹⁴¹ 1) Current before fault = 0.0 × In, fn = 50 Hz. Injected differential current = 2.0 × set operation value

 $^{^{\}rm 142}\,$ 1) Measured with static power output. fn = 50 Hz

Parameter	Function	Value (Range)	Step	
Winding 1 type	TR2PTDF	1 = Y	-	
		2 = YN		
		3 = D		
		4 = Z		
		5 = ZN		
Winding 2 type	TR2PTDF	1 = y	-	
		2 = yn		
		3 = d		
		4 = z		
		5 = zn		
Zro A elimination	TR2PTDF	1 = Not eliminated	-	
		2 = Winding 1		
		3 = Winding 2		
		4 = Winding 1 and 2		

25.30.135 Numerical stabilized low-impedance restricted earth-fault protection (LREFPNDF)

Table 168: Numerical stabilized low-impedance restricted earth-fault protection (LREFPNDF)

Characteristic		Value			
Operation accuracy		Depending on the frequency of the measured current: $f_n\pm 2\text{Hz}$			
		±2.5% of the set value or ±0.002 x I _n			
Start time ^{143, 144}	I _{Fault} = 2.0 × set Operate value	Minimum	Typical	Maximum	
	value	37 ms	41 ms	45 ms	
Reset time		Typically 40 ms			
Reset ratio		Typically 0.96			
Retardation time		<35 ms			
Operate time accuracy in definite time mode		±1.0% of the set value or ±20 ms			
Suppression of harmonics		DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,			

¹⁴³ Current before fault = 0.0, f_n = 50 Hz, results based on statistical distribution of 1000 measurements

¹⁴⁴ Includes the delay of the signal output contact

25.30.136 Numerical stabilized low-impedance restricted earth-fault protection (LREFPNDF) main settings

Table 169: Numerical stabilized low-impedance restricted earth-fault protection (LREFPNDF) main settings

Parameter	Function	Value (Range)	Step	
Operate value	LREFPNDF	5.0. 50.0 %I _n	1	
Minimum operate time	LREFPNDF	40300000 ms	1	
Restraint mode	LREFPNDF	1 = None 2 = Harmonic2	-	
Start value 2.H	LREFPNDF	1050%	1	
Operation	LREFPNDF	1 = on 5 = off	-	

25.30.137 High-impedance based restricted earth-fault protection (HREFPDIF)

Table 170: High-impedance based restricted earth-fault protection (HREFPDIF)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the measured current: $f_n \pm 2 H$		
		\pm 1.5% of the set value or \pm 0.002 × I _n		
Start time		Minimum	Typical	Maximum
145 , 146	I _{Fault} = 2.0 × set <i>Operate value</i>	16 ms	21 ms	23 ms
	I _{Fault} = 10 × set <i>Operate value</i>	11 ms	13 ms	14 ms
Reset time		Typically 40 ms	5	
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy in	definite time mode	±1.0% of the se	et value or ±20 ms	

25.30.138 High-impedance based restricted earth-fault protection (HREFPDIF) main settings

Table 171: High-impedance based restricted earth-fault protection (HREFPDIF) main settings

Parameter	Function	Value (Range)	Step
Operate value	HREFPDIF	1.0 50.0%I _n	0.1
Minimum operate time	HREFPDIF	20300000 ms	1
Operation	HREFPDIF	1 = on 5 = off	-

 $^{^{145}\,}$ Current before fault = 0.0 × I $_{\rm n},\,f_{\rm n}$ = 50 Hz, results based on statistical distribution of 1000 measurements

¹⁴⁶ Includes the delay of the signal output contact

25.30.139 High-impedance differential protection (HIxPDIF)

Table 172: High-impedance differential protection (HIxPDIF)

Characteristic		Value		
Operation accuracy		Depending on the frequency of the current measured: $f_{n}\pm 2Hz$		
		$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$		
Start time ^{147, 148}	I _{Fault} = 2.0 × set <i>Start</i> <i>value</i>	Minimum	Typical	Maximum
	I _{Fault} = 10 × set <i>Start val- ue</i>	8 ms	11 ms	19 ms
		7 ms	9 ms	11 ms
Reset time		Typically <40 ms		
Reset ratio		Typically 0.96		
Retardation time		<35 ms		
Operate time accuracy	y in definite time mode	±1.0% of the set	value or ±20 ms	

25.30.140 High-impedance differential protection (HIxPDIF) main settings

Table 173: High-impedance differential protection (HIxPDIF) main settings

Parameter	Function	Value (Range)	Step
Operate value	HIxPDIF	1.0 200.0 %I _n	1.0
Minimum operate time	HIxPDIF	20300000 ms	10

25.30.141 Circuit breaker failure protection (CCBRBRF)

Table 174: Circuit breaker failure protection (CCBRBRF)

Characteristic	Value
Operation accuracy Depending on the frequency of the measured current	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
Operate time accuracy	±1.0% of the set value or ±20 ms
Reset time	<20 ms
Retardation time	<20 ms

 $^{\rm 148}\,$ Measured with static signal output (SSO)

¹⁴⁷ *Measurement mode* = default (depends on stage), current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, fault current in one phase with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

25.30.142 Circuit breaker failure protection (CCBRBRF) main settings

Table 175: Circuit breaker failure protection (CCBRBRF) main settings

Parameter	Function	Value (Range)	Step	
Current value	CCBRBRF	0.052.00 × I _n	0.01	
Current value Res	CCBRBRF	0.052.00 × I _n	0.01	
CB failure trip mode	CCBRBRF	1 = 2 out of 4	-	
		2 = 1 out of 3		
		3 = 1 out of 4		
CB failure mode	CCBRBRF	1 = Current	-	
		2 = Breaker status		
		3 = Both (AND)		
		-1 = Both (OR)		
Retrip time	CCBRBRF	060000 ms	10	
CB failure delay	CCBRBRF	060000 ms	10	
CB fault delay	CCBRBRF	060000 ms	10	

25.30.143 Three-phase inrush detector (INRPHAR)

Table 176: Three-phase inrush detector (INRPHAR)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	Current measurement:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
	Ratio I2f/I1f measurement:
	±5.0% of the set value
Reset time	+35 ms / -0 ms
Reset ratio	Typically 0.96
Operate time accuracy	+35 ms / -0 ms

25.30.144 Three-phase inrush detector (INRPHAR) main settings

Table 177: Three-phase inrush detector (INRPHAR) main settings

Parameter	Function	Value (Range)	Step	
Start value	INRPHAR	5100%	1	
Operate delay time	INRPHAR	2060000 ms	1	

25.30.145 Arc protection (ARCSARC)

Table 178: Arc protection (ARCSARC)

Characteristic Operation accuracy		Value	Value		
		±3.0% of the set v	$\pm 3.0\%$ of the set value or $\pm 0.01 \times I_n$		
Operate time TC	Operation mode = "Light	Minimum	Typical	Maximum	
	+current" ¹⁴⁹	9 ms ¹³⁵	10 ms ¹³⁵	13 ms ¹³⁵	
	Operation mode =	3 ms ¹⁵¹	5 ms ¹³⁶	6 ms ¹³⁶	
	"Light only" ¹⁵⁰	8 ms ¹³⁵	10 ms ¹³⁵	13 ms ¹³⁵	
		3 ms ¹³⁶	5 ms ¹³⁶	6 ms ¹³⁶	
Reset time		Typically 50 ms			
Reset ratio		Typically 0.96			

25.30.146 Arc protection (ARCSARC) main settings

Table 179: Arc protection (ARCSARC) main settings

Parameter	Function	Value (Range)	Step	
Phase start value	ARCSARC	0.5040.00 × I _n	0.01	
Ground start value	ARCSARC	0.058.00 × I _n	0.01	
Operation mode	ARCSARC	1 = Light+current	-	
		2 = Light only		
		3 = BI controlled		

25.30.147 High-impedance fault detection (PHIZ) main settings

Table 180: High-impedance fault detection (PHIZ) main settings

Parameter	Function	Value (Range)	Step	
Security Level	PHIZ	110	1	
System type	PHIZ	1 = Grounded	-	
		2 = Ungrounded		

¹⁴⁹ *Phase start value* = $1.0 \times I_n$, current before fault = $2.0 \times \text{set }$ *Phase start value*, $f_n = 50$ Hz, fault with nominal frequency, results based on statistical distribution of 200 measurements

¹⁵⁰ Includes the delay of the power output (PO) contact

¹⁵¹ Measured with static power output (SPO)

25.30.148 Fault locator (SCEFRFLO)

Table 181: Fault locator (SCEFRFLO)

Characteristic	Value
Measurement accuracy	At the frequency f = f _n
	Impedance:
	±2.5% or ±0.25 Ω
	Distance:
	±2.5% or ±0.16 km/0.1 mile
	XC0F_CALC:
	±2.5% or ±50 Ω
	IFLT_PER_ILD:
	±5% or ±0.05

25.30.149 Fault locator (SCEFRFLO) main settings

Table 182: Fault locator (SCEFRFLO) main settings

Parameter	Function	Value (Range)	Step	
Z Max phase load	SCEFRFLO	1.010000.00 Ω	0.1	
Ph leakage Ris	SCEFRFLO	201000000 Ω	1	
Ph capacitive React	SCEFRFLO	101000000 Ω	1	
R1 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001	
X1 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001	
R0 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001	
X0 line section A	SCEFRFLO	0.0001000.000 Ω/pu	0.001	
Line Len section A	SCEFRFLO	0.0001000.000 pu	0.001	

25.30.150 Load-shedding and restoration (LSHDPFRQ)

Table 183: Load-shedding and restoration (LSHDPFRQ)

Characteristic		Value
Operation accuracy f<		±5 mHz
	df/dt	±100 mHz/s (in range df/dt < 5 Hz/s)
		± 2.0% of the set value (in range 5 Hz/s < df/dt < 15 Hz/s)
Start time	f<	<80 ms
	df/dt	<120 ms
Reset time		<150 ms
Operate time accuracy		±1.0% of the set value or ±30 ms

25.30.151 Load-shedding and restoration (LSHDPFRQ) main settings

Table 184: Load-shedding and restoration (LSHDPFRQ) main settings

Parameter	Function	Value (Range)	Step
Load shed mode	LSHDPFRQ	1 = Freq<	-
		6 = Freq< OR df/dt	
		8 = Freq< AND df/dt	
Restore mode	LSHDPFRQ	1 = Disabled	-
		2 = Auto	
		3 = Manual	
Start value Freq	LSHDPFRQ	0.800 1.200 × f _n	0.001
Start value df/dt	LSHDPFRQ	-0.200 0.005 × f _n /s	0.005
Operate Tm Freq	LSHDPFRQ	80200000 ms	10
Operate Tm df/dt	LSHDPFRQ	120200000 ms	10
Restore start Val	LSHDPFRQ	0.800 1.200 × f _n	0.001
Restore delay time	LSHDPFRQ	80200000 ms	10

25.30.152 Multipurpose protection (MAPGAPC)

Table 185: Multipurpose protection (MAPGAPC)

Characteristic	Value
Operation accuracy	±1.0% of the set value or ±20 ms

25.30.153 Multipurpose protection (MAPGAPC) main settings

Table 186: Multipurpose protection (MAPGAPC) main settings

Parameter	Function	Value (Range)	Step	
Start value	MAPGAPC	-10000.010000.0	0.1	
Operate delay time	MAPGAPC	0200000 ms	100	
Operation mode	MAPGAPC	1 = Over	-	
		2 = Under		

25.30.154 Generator shaft current leakage protection (GSLPTOC)

Table 187: GSLPTOC Technical data

Characteristics	Value	
Operation accuracy	Depending on the frequency of the measured current $f_{\rm n}$ ±2 Hz	
	±1.5% of the set value or ±0.03 × I _n	
Start time ^{152, 153}	Typically 30ms	
Reset time	<30 ms	
Reset ratio	Typically 0.96	
Retardation time	<50 ms	
Operate time accuracy	±1.0% of the set value of ±20 ms	

25.30.155 Generator shaft current leakage protection (GSLPTOC) main settings

Table 188: Generator shaft current leakage protection (GSLPTOC) main settings

Parameter	Function	Value (Range)	Step
Alarm start value	GSLPTOC	0.1010.00 A	0.01
Alarm delay time	GSLPTOC	4030000 ms	10
Sel operate harmonic	GSLPTOC	1=Fundamental	
		3=Third harmonic	
		5=Fifth harmonic	
Operate start value	GSLPTOC	0.1010.00 A	0.01
Operate delay time	GSLPTOC	4030000 ms	10

¹⁵² Current before fault = $0.0 \times I_n$, $f_n = 50$ Hz, nominal frequency fault current 1.1 x set *Start value* is injected, results based on statistical distribution of 1000 measurements ¹⁵³ Herein the delay (inclusion of the statistical distribution of 2000 measurements)

¹⁵³ Includes the delay (\approx 0ms) of the static signal output (SSO)

25.30.156 Operation characteristics

Table 189: Operation characteristics

Parameter	Value (Range)
Operating curve type	1 = ANSI Ext. inv.
	2 = ANSI Very. inv.
	3 = ANSI Norm. inv.
	4 = ANSI Mod inv.
	5 = ANSI Def. Time
	6 = L.T.E. inv.
	7 = L.T.V. inv.
	8 = L.T. inv.
	9 = IEC Norm. inv.
	10 = IEC Very inv.
	11 = IEC inv.
	12 = IEC Ext. inv.
	13 = IEC S.T. inv.
	14 = IEC L.T. inv
	15 = IEC Def. Time
	17 = Programmable
	18 = RI type
	19 = RD type
Operating curve type (voltage protection)	5 = ANSI Def. Time
	15 = IEC Def. Time
	17 = Inv. Curve A
	18 = Inv. Curve B
	19 = Inv. Curve C
	20 = Programmable
	21 = Inv. Curve A
	22 = Inv. Curve B
	23 = Programmable

25.31 Control functions

25.31.1 Emergency start-up (ESMGAPC)

Table 190: Emergency start-up (ESMGAPC)

Characteristic	Value
Operation accuracy	At the frequency f = f _n
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$

25.31.2 Emergency start-up (ESMGAPC) main settings

Table 191: Emergency start-up (ESMGAPC) main settings

Parameter	Function	Value (Range)	Step
Motor stand still A	ESMGAPC	0.010.20 × I _n	0.01

25.31.3 Autoreclosing (DARREC)

Table 192: Autoreclosing (DARREC)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

25.31.4 Autosynchronizer for generator breaker (ASGCSYN)

Table 193: Autosynchronizer for generator breaker (ASGCSYN)

Characteristic	Value
Measurement accuracy	At the frequency f = f _n
	Voltage difference:
	±1.0% or ±0.004 × U _n
	Frequency difference:
	±10 mHz
	Phase angle difference:
	±1° (±2.5° when f = f _n ±2 Hz)
Operation accuracy	MATCH_OK for voltage:
	±0.001 × U _n
	MATCH_OK for frequency:
	±10 mHz
Operation time accuracy	Raise/Lower output pulse width:
	±1.0% of the set value or ±20 ms
	Energizing time for dead-bus closing:
	±1.0% of the set value or ±35 ms
	Minimum Syn time for SYNC_OK:
	±1.0% of the set value or ±60 ms
Reset time	Typically 20 ms
Closing angle accuracy	±1°

25.31.5 Autosynchronizer for generator breaker (ASGCSYN) main settings

Table 194: Autosynchronizer for generator breaker (ASGCSYN) main settings

Parameter	Function	Value (Range)	Step	
Live dead mode	ASGCSYN	-1 = Off	-	
		-2 = Command		
		1 = Both Dead		
		4 = Dead B, G Any		
		2 = Live G, Dead B		
Angle Diff positive	ASGCSYN	590°	1	
Angle Diff negative	ASGCSYN	590°	1	
Phase shift	ASGCSYN	-180180°	1	
Closing time of CB	ASGCSYN	40250 ms	1	
Synchronization Dir	ASGCSYN	1 = Always over synchronous	-	
		2 = Both direction		
Synchrocheck mode	ASGCSYN	1 = Off	-	
		3 = Asynchronous		
		4 = Command		
Dead voltage value	ASGCSYN	0.100.80 × U _n	0.1	
Live voltage value	ASGCSYN	0.201.00 × U _n	0.1	
Voltage match mode	ASGCSYN	1 = Off	-	
		2 = Variable Pulse		
		3 = Variable Interval		
Frequency match mode	ASGCSYN	1 = Off	-	
		2 = Variable Pulse		
		3 = Variable Interval		

25.31.6 Autosynchronizer for network breaker (ASNSCSYN)

Table 195: Autosynchronizer for network breaker (ASNSCSYN)

Characteristic	Value
Measurement accuracy	Depending on the frequency of the voltage measured: $f_{n}\pm 2Hz$
	Voltage difference:
	±1.0% or ±0.004 × U _n
	Frequency difference:
	±10 mHz
	Phase angle difference:
	±1°

Characteristic	Value
Operation accuracy	MATCH_OK for voltage:
	$\pm 0.001 \times U_n$
	MATCH_OK for frequency:
	±10 mHz
Operation time accuracy	Energizing time for dead-bus closing:
	±1.0% of the set value or ±35 ms
	Minimum Syn time for SYNC_OK:
	±1.0% of the set value or ±60 ms
Reset time	Typically 20 ms
Closing angle accuracy	±1°

25.31.7 Autosynchronizer for network breaker (ASNSCSYN) main settings

Table 196: Autosynchronizer for network breaker (ASNSCSYN) main settings

Parameter	Function	Value (Range)	Step	
Live dead mode	ASNSCSYN	-2 = Command	-	
		-1 = Off		
		1 = Both Dead		
		2 = Live B, Dead A		
		3 = Dead B, Live A		
		4 = Dead A, B Any		
		5 = Dead B, A Any		
		6 = One Live, Dead		
		7 = Not Both Live		
Diff voltage	ASNSCSYN	0.010.50 × U _n	0.01	
Diff frequency	ASNSCSYN	0.0010.060 × f _n	0.001	
Diff angle	ASNSCSYN	590°	1	
Synchrocheck mode	ASNSCSYN	1 = Off	-	
		2 = Synchronous		
		3 = Asynchronous		
		4 = Command		
Dead bus voltage	ASNSCSYN	0.10.8 × U _n	0.1	
Live bus voltage	ASNSCSYN	0.21.0 × U _n	0.1	
Phase shift	ASNSCSYN	-180180°	1	
Closing time of CB	ASNSCSYN	40250 ms	1	

25.31.8 Synchronism and energizing check (SECRSYN)

Table 197: Synchronism and energizing check (SECRSYN)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: $f_{n}\pm 1\text{Hz}$
	Voltage:
	$\pm 3.0\%$ of the set value or $\pm 0.01 \times U_n$
	Frequency:
	±10 mHz
	Phase angle:
	±3°
Reset time	<50 ms
Reset ratio	Typically 0.96
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms

25.31.9 Synchronism and energizing check (SECRSYN) main settings

Table 198: Synchronism and energizing check (SECRSYN) main settings

Parameter	Function	Value (Range)	Step	
Live dead mode	SECRSYN	-1 = Off	-	
		1 = Both Dead		
		2 = Live L, Dead B		
		3 = Dead L, Live B		
		4 = Dead Bus, L Any		
		5 = Dead L, Bus Any		
		6 = One Live, Dead		
		7 = Not Both Live		
Difference voltage	SECRSYN	0.010.50 × U _n	0.01	
Difference frequency	SECRSYN	0.0010.100 × f _n	0.001	
Difference angle	SECRSYN	590°	1	
Synchrocheck mode	SECRSYN	1 = Off	-	
		2 = Synchronous		
		3 = Asynchronous		
Dead line value	SECRSYN	0.10.8 × U _n	0.1	
Live line value	SECRSYN	0.21.0 × U _n	0.1	
Max energizing V	SECRSYN	0.501.15 × U _n	0.01	
Control mode	SECRSYN	1 = Continuous	-	
		2 = Command		
Close pulse	SECRSYN	20060000 ms	10	
Phase shift	SECRSYN	-180180°	1	
Minimum Syn time	SECRSYN	060000 ms	10	
Maximum Syn time	SECRSYN	1006000000 ms	10	
Energizing time	SECRSYN	10060000 ms	10	
Closing time of CB	SECRSYN	40250 ms	10	

25.31.10 Tap changer control with voltage regulator (OL5ATCC)

Table 199: Tap changer control with voltage regulator (OL5ATCC)

Characteristic	Value
Operation accuracy ¹⁵⁴	Depending on the frequency of the measured current: fn ±2 Hz
	Differential voltage U_d = ±0.5% of the measured value or ±0.005 × U_n (in measured voltages <2.0 × U_n)
	Operation value = $\pm 1.5\%$ of the U _d for Us = $1.0 \times U_n$
Operate time accuracy in definite time mode ¹⁵⁵	+4.0%/-0% of the set value
Operate time accuracy in inverse time mode ¹³⁸	+8.5%/-0% of the set value
	(at theoretical B in range of 1.15.0)
	Also note fixed minimum operate time (IDMT) 1 s
Reset ratio for control operation	Typically 0.80 (1.20)
Reset ratio for analog based blockings (except run back raise voltage blocking)	Typically 0.96 (1.04)

25.31.11 Tap changer control with voltage regulator (OL5ATCC) main settings

Table 200: Tap changer control with voltage regulator (OL5ATCC) main settings

Parameter	Function	Value (Range)	Step
LDC enable	OL5ATCC	0 = False	-
		1 = True	
Parallel mode	OL5ATCC	2 = Master	-
		3 = Follower	
		5 = NRP	
		7 = MCC	
		-1 = Input control	
		-2 = Command	
Band center voltage	OL5ATCC	0.0002.000 × U _n	0.001
Line drop V Ris	OL5ATCC	0.025.0%	0.1
Line drop V React	OL5ATCC	0.025.0%	0.1
Band reduction	OL5ATCC	0.009.00 %U _n	0.01
Stability factor	OL5ATCC	0.070.0%	0.1
Rv Pwr flow allowed	OL5ATCC	0 = False	-
		1 = True	

¹⁵⁴ Default setting values used

¹⁵⁵ Voltage before deviation = set *Band center voltage*

Parameter	Function	Value (Range)	Step
Operation mode	OL5ATCC	1 = Manual	-
		2 = Auto single	
		3 = Parallel manual	
		4 = Auto parallel	
		5 = Input control	
		6 = Command	
Parallel trafos	OL5ATCC	010	1
Delay characteristic	OL5ATCC	0 = Inverse time	-
		1 = Definite time	
Band width voltage	OL5ATCC	1.2018.00 %U _n	0.01
Load current limit	OL5ATCC	0.105.00 × I _n	0.01
Block lower voltage	OL5ATCC	0.101.20 × U _n	0.01
LTC pulse time	OL5ATCC	50010000 ms	100

25.31.12 Petersen coil controller (PASANCR)

Table 201: PASANCR Technical data

Characteristic	Value
Measuring accuracy	Resistance:
	±2% or ±1 Ω
Operation accuracy ¹⁵⁶	I_C_NETWORK:
	Typically ±5%

25.31.13 Petersen coil controller (PASANCR) main settings

Table 202: Petersen coil controller (PASANCR) main settings

Parameter	Function	Value (Range)	Step
Compensation mode	PASANCR	1 = Absolute 2 = Relative	-
Detuning level	PASANCR	-100100 A	1
Detuning level Rl	PASANCR	-100.0100.0%	0.1
Tuning delay	PASANCR	03600 s	1
V Res variation	PASANCR	0.1100.0 %U _n	0.1

Table continues on the next page

¹⁵⁶ Network resonance point voltage must be at least 0.005 × U_n, where U_n = nominal phase-to-earth voltage

Parameter	Function	Value (Range)	Step
Tuning mode	PASANCR	1 = Coil movement	-
		2 = Resistor switching	
V Res EF level	PASANCR	0.00100.00 %Un	0.01
EF mode	PASANCR	1 = Blocked during EF	-
		2 = Resonance	
		3 = Tuning during EF	
Resistor healthy St	PASANCR	0 = Off	-
		1 = On	
Resistor repeats	PASANCR	0100	1
Resistor pause	PASANCR	010000000 ms	1
Coil V Nom	PASANCR	0400000 V	1
Fix coil V Nom	PASANCR	0400000 V	1
Auxiliary Wnd V Nom	PASANCR	010000 V	1
Controller mode	PASANCR	0 = Manual	-
		1 = Automatic	
Parallel resistor	PASANCR	0 = False	-
		1 = True	
R0Transformer	PASANCR	0100 Ω	1
X0Transformer	PASANCR	0100 Ω	1
Voltage measurement	PASANCR	1 = Busbar	-
		2 = Coil	
Resistor control	PASANCR	1 = OFF	-
		2 = ON	
		3 = Automatic	
Resistor Nom value	PASANCR	0.00100.00 Ω	0.01
Fix coil value	PASANCR	010000 A	1
Fix coil type	PASANCR	1 = OFF	-
		2 = ON	
		3 = Automatic	

25.31.14 High speed bus transfer (HSABTC)

Table 203: High speed bus transfer (HSABTC)

Characteristic		Value		
Operation ac- curacy	Voltage	±1.5% of the set value or ±0.002 × Un, frequency range ±10Hz		
curacy	Frequency	±25mHz of the set value		
Initiation time		Minimum	Typical	Maximum
	Under voltage ^{157, 158, 159}	14 ms	18 ms	21 ms
Under frequency ^{160, 161, 162}		47 ms	49 ms	50 ms
	External (binary input) ^{163,} 164, 165	9 ms	10 ms	12 ms
Initiation time accuracy		±20 ms of the se	t value	
Operate time accuracy		±1.0% of the set	value or ±20 ms	

25.31.15 High speed bus transfer (HSABTC) main settings

Table 204: High speed bus transfer (HSABTC) main settings

Parameter	Function	Value (Range)	Step
Min standby voltage	HSABTC	0.051.20 xUn	0.01
Min busbar voltage	HSABTC	0.051.20 xUn	0.01
Residual voltage limit	HSABTC	0.011.00 xUn	0.01
Start Val frequency	HSABTC	0.9001.100 xFn	0.001
Start Val voltage	HSABTC	0.501.20 xUn	0.01

- ¹⁵⁹ Results based on statistical distribution of 1000 measurements
- ¹⁶⁰ Measured with static power output (SPO)

- ¹⁶⁴ Results based on statistical distribution of 1000 measurements
- ¹⁶⁵ Excluding the delay of the external triggering device

¹⁵⁷ Start val Voltage = 0.95 × Un, voltage before fault = 1.0 × Un, fault voltage = 0.9 × set Start val Voltage, undervoltage in one phase-to-phase voltage with nominal frequency injected from random phase angle

¹⁵⁸ Measured with static power output (SPO)

¹⁶¹ Results based on statistical distribution of 1000 measurements

¹⁶² Applies to continuous frequency change. If frequency change \geq 0.5Hz (disturbance in network or due to test setup), then initiation time is increased with 100ms to prevent false reaction.

¹⁶³ Measured with static power output (SPO)

Parameter	Function	Value (Range)	Step	
Operation mode	HSABTC	1=Only ext		
		2=Freq<		
		3=U<		
		4=Both		
Max frequency Diff	HSABTC	0.052.50 Hz	0.01	
Maximum phase lead	HSABTC	550 deg	1	
Maximum phase lag	HSABTC	550 deg	1	
Max angle Diff FBBM	HSABTC	590 deg	1	
Maximum DfDt	HSABTC	540	1	
Transfer delay time	HSABTC	100200000 ms	1	
Enable fast transfer	HSABTC	1=1>2		
		2=2>1		
		3=Both		
		4=Off		
Enable FBBM	HSABTC			
Ena 1st Ph transfer	HSABTC	1=1>2		
		2=2>1		
		3=Both		
		4=Off		
Ena Res V transfer	HSABTC	1=1>2		
		2=2>1		
		3=Both		
		4=Off		
Ena Time delay transfer	HSABTC	1=1>2		
		2=2>1		
		3=Both		
		4=Off		
Ena CB open transfer	HSABTC	1=1>2		
		2=2>1		
		3=Both		
		4=Off		
Manual transfer	HSABTC	1=Off		
		2=On		
		3=Fast MBB		
Closing time of CB1	HSABTC	0200 ms	1	
Opening time of CB1	HSABTC	0200 ms	1	

Parameter	Function	Value (Range)	Step	
Opening time of CB2	HSABTC	0200 ms	1	
Travel time Clc mode	HSABTC	1=From Cmd to Pos		
		2=From Pos to Pos		
		3=From Cmd to Curr		
		4=From Pos to Curr		

25.32 Condition monitoring and supervision functions

25.32.1 Circuit-breaker condition monitoring (SSCBR)

Table 205: Circuit-breaker condition monitoring (SSCBR)

Characteristic	Value
Current measuring accuracy	±1.5% or ±0.002 × I _n
	(at currents in the range of $0.110 \times I_n$)
	±5.0%
	(at currents in the range of $1040 \times I_n$)
Operate time accuracy	±1.0% of the set value or ±20 ms
Travelling time measurement	+10 ms / -0 ms

25.32.2 Motor controlled earthing switch and disconnector supervision (ESDCSSWI)

Table 206: Motor controlled earthing switch and disconnector supervision (ESDCSSWI)

Characteristic	Value
Operate time accuracy	±1.0 % of the set value or ±20 ms
Travelling time measurement	+10 ms / -5 ms

25.32.3 Motor controlled earthing switch and disconnector supervision (ESDCSSWI) main settings

Table 207: Motor controlled earthing switch and disconnector supervision (ESDCSSWI) main settings

Parameter	Function	Value (Range)	Step
Alarm Op number	ESDCSSWI	099999	1
Open alarm time	ESDCSSWI	4030000 ms	10
Close alarm time	ESDCSSWI	4030000 ms	10
Inactive Alm days	ESDCSSWI	09999	1
Inactive Alm hours	ESDCSSWI	023 h	1
Travel time Clc mode	ESDCSSWI	1=From Cmd to Pos	
		2=From Pos to Pos	

25.32.4 Hot-spot and insulation ageing rate monitoring for transformers (HSARSPTR)

Table 208: Hot-spot and insulation ageing rate monitoring for transformers (HSARSPTR)

Characteristic	Value
Warning/alarm time accuracy	±1.0% of the set value or ±0.50 s

25.32.5 Hot-spot and insulation ageing rate monitoring for transformers (HSARSPTR) main settings

Table 209: Hot-spot and insulation ageing rate monitoring for transformers (HSARSPTR) main settings

Parameter	Function	Value (Range)	Step
Cooling mode	HSARSPTR	1 = ONAN	-
		2 = ONAF	
		3 = OFAF	
		4 = ODAF	
Alarm level	HSARSPTR	50.0350.0°C	0.1
Warning level	HSARSPTR	50.0350.0°C	0.1
Alarm delay time	HSARSPTR	03600000 ms	10
Warning delay time	HSARSPTR	03600000 ms	10
Average ambient Tmp	HSARSPTR	-20.0070.00°C	0.01
Alarm level Age Rte	HSARSPTR	0.00100.00	1

25.32.6 Cable fault detection (RCFD)

Table 210: Cable fault detection (RCFD)

Characteristic	Value			
Operation accuracy	Depending on the frequency of the measured current: $f_n \pm 2 Hz$			
	±2.5% of the set val	±2.5% of the set value or 0.005 xI _n		
Alarm time ^{166, 167}	Minimum	Typical	Maximum	
	10 ms	15 ms	20 ms	

¹⁶⁶ Results based on statistical distribution of 1000 measurements

 $^{^{167}}$ Measured with static signal output (SSO)

25.32.7 Cable fault detection (RCFD) main settings

Table 211: Cable fault detection (RCFD) main settings

Parameter	Function	Value (Range)	Step
Adaptive Str Val Ena	RCFD		
Maximum fault cycle	RCFD	120	1
Minimum load current	RCFD	0.001.00 xln	0.10
Residual current limit	RCFD	0.001.00 xln	0.10
Phase start value	RCFD	0.1040.00 xln	0.01
Residual start value	RCFD	0.1040.00 xln	0.01

25.32.8 Current circuit supervision (CCSPVC)

Table 212: Current circuit supervision (CCSPVC)

Characteristic	Value
Operate time ¹⁶⁸	<30 ms

25.32.9 Current circuit supervision (CCSPVC) main settings

Table 213: Current circuit supervision (CCSPVC) main settings

Parameter	Function	Value (Range)	Step	
Start value	CCSPVC	0.050.20 × I _n	0.01	
Max operate current	CCSPVC	1.005.00 × I _n	0.01	

25.32.10 Advanced current circuit supervision for transformers (CTSRCTF)

Table 214: Advanced current circuit supervision for transformers (CTSRCTF)

Characteristic	Value
Operate time ¹⁶⁹	<30 ms

¹⁶⁸ Including the delay of the output contact

¹⁶⁹ Including the delay of the output contact

25.32.11 Current circuit supervision (CCSPVC) main settings

Table 215: Current circuit supervision (CCSPVC) main settings

Parameter	Function	Value (Range)	Step	
Min operate current	CTSRCTF	0.010.50 × I _n	0.01	
Max operate current	CTSRCTF	1.005.00 × I _n	0.01	
Max Ng Seq current	CTSRCTF	0.011.00 × I _n	0.01	

25.32.12 Current transformer supervision for high-impedance protection scheme (HZCCxSPVC)

Table 216: Current transformer supervision for high-impedance protection scheme (HZCCxSPVC)

Characteristic	Value
Oeration accuracy Depending on the frequency of the current measu	
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times I_n$
Reset time	<40 ms
Reset ratio	Typically 0.96
Retardation time	<35 ms
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms

25.32.13 Current transformer supervision for high-impedance protection scheme (HZCCxSPVC) main settings

Table 217: Current transformer supervision for high-impedance protection scheme (HZCCxSPVC) main settings

Parameter	Function	Value (Range)	Step	
Start value	HZCCxSPVC	1.0100.0 %I _n	0.1	
Alarm delay time	HZCCxSPVC	100300000 ms	10	
Alarm output mode	HZCCxSPVC	1 = Non-latched 3 = Lockout	-	

25.32.14 Fuse failure supervision (SEQSPVC)

Table 218: Fuse failure supervision (SEQSPVC)

Characteristic		Value
Operate time ¹⁷⁰	NPS function	U _{Fault} = 1.1 × set <i>Neg Seq volt-</i> <33 ms <i>age Lev</i>
		U _{Fault} = 5.0 × set <i>Neg Seq volt-</i> <18 ms age Lev
	Delta function	ΔU = 1.1 × set <i>Voltage change</i> <30 ms <i>rate</i>
		ΔU = 2.0 × set <i>Voltage change</i> <24 ms <i>rate</i>

25.32.15 Runtime counter for machines and devices (MDSOPT)

Table 219: Runtime counter for machines and devices (MDSOPT)

Description	Value
Motor runtime measurement accuracy ¹⁷¹	±0.5%

25.32.16 Runtime counter for machines and devices (MDSOPT) main settings

Table 220: Runtime counter for machines and devices (MDSOPT) main settings

Parameter	Function	Value (Range)	Step
Warning value	MDSOPT	0299999 h	1
Alarm value	MDSOPT	0299999 h	1
Initial value	MDSOPT	0299999 h	1
Operating time hour	MDSOPT	023 h	1
Operating time mode	MDSOPT	1 = Immediate	-
		2 = Timed Warn	
		3 = Timed Warn Alm	

 $^{^{170}\,}$ Includes the delay of the signal output contact, f $_{\rm n}$ = 50 Hz, fault voltage with nominal frequency injected from random phase angle, results based on statistical distribution of 1000 measurements

¹⁷¹ Of the reading, for a stand-alone relay, without time synchronization

25.32.17 Three-phase remanent undervoltage supervision (MSVPR)

Table 221: Three-phase remanent undervoltage supervision (MSVPR)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage:
	20 Hz < f ≤ 70 Hz:
	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
	10 Hz < f ≤ 20 Hz:
	$\pm 4.0\%$ of the set value or $\pm 0.002 \times U_n$
Reset time	Typically 40 ms
Reset ratio	Typically 1.04
Operate time accuracy in definite time mode	±1.0% of the set value or ±20 ms

25.32.18 Three-phase remanent undervoltage supervision (MSVPR) main settings

Table 222: Three-phase remanent undervoltage supervision (MSVPR) main settings

Parameter	Function	Value (Range)	Step
Start value	MSVPR	0.051.20 × U _n	0.01
Operate delay time	MSVPR	100300000 ms	100
Voltage selection	MSVPR	1 = phase-to-earth	-
		2 = phase-to-phase	
Num of phases	MSVPR	1 = 1 out of 3	-
		2 = 2 out of 3	
		3 = 3 out of 3	

25.32.19 Diesel generator monitoring and protection (DGMGAPC)

Table 223: Diesel generator monitoring and protection (DGMGAPC)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage and current: ${\rm f_n}$ ±2 Hz
	Voltage:
	\pm 1.5% of the set value or 0.002 xU _n
	Frequency:
	±5 mHz
	Active power:
	\pm 3% of the set value or 0.002 xS _n

Characteristic	Value	
	Reactive power:	
	\pm 3% of the set value or 0.002 xS _n	
Operate time accuracy	±1.0% of the set value or ±20 ms	
Reset ratio	Typically 0.96/1.04	-

25.32.20 Diesel generator monitoring and protection (DGMGAPC) main settings

Table 224: Diesel generator monitoring and protection (DGMGAPC) main settings

Function	Value (Range)	Step
DGMGAPC	10300000 ms	10
DGMGAPC	0.951 xFn	0.01
DGMGAPC	11.05 xFn	0.01
DGMGAPC	0.51.5 xUn	0.1
DGMGAPC	0.51.5 xUn	0.1
DGMGAPC	103600000 ms	10
DGMGAPC	10300000 ms	10
DGMGAPC	0.011 xSn	0.01
DGMGAPC	0.12 xSn	0.01
DGMGAPC	0.011 xSn	0.01
DGMGAPC	0.12 xSn	0.01
DGMGAPC	0.12 xFn	0.01
DGMGAPC	0100 %Fn	0.01
DGMGAPC	0.12 xUn	0.01
DGMGAPC	0100 %Un	0.01
DGMGAPC	18	1
DGMGAPC	18	1
	DGMGAPC	DGMGAPC 10300000 ms DGMGAPC 0.951 xFn DGMGAPC 11.05 xFn DGMGAPC 0.51.5 xUn DGMGAPC 0.51.5 xUn DGMGAPC 0.51.5 xUn DGMGAPC 0.13600000 ms DGMGAPC 10300000 ms DGMGAPC 0.011 xSn DGMGAPC 0.12 xSn DGMGAPC 0.12 xSn DGMGAPC 0.12 xSn DGMGAPC 0.12 xN DGMGAPC 0.12 xN DGMGAPC 0.12 xN DGMGAPC 0.12 xN

25.33 Measurement functions

25.33.1 Three-phase current measurement (CMMXU)

Table 225: Three-phase current measurement (CMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f_{n}\pm 2Hz$
	±0.5% or ±0.002 × I _n
	(at currents in the range of 0.014.00 \times I _n)
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,
	RMS: No suppression

25.33.2 Sequence current measurement (CSMSQI)

Table 226: Sequence current measurement (CSMSQI)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured current: $f/f_n = \pm 2$ Hz
	±1.0% or ±0.002 × I _n
	at currents in the range of 0.014.00 × I_n
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.33.3 Residual current measurement (RESCMMXU)

Table 227: Residual current measurement (RESCMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the current measured: $f/f_n = \pm 2$ Hz
	$\pm 0.5\%$ or $\pm 0.002 \times I_n$
Suppression of harmonics	at currents in the range of 0.014.00 × In
Suppression of harmonics	DFT: -50 dB at f = n × f_n , where n = 2, 3, 4, 5,
	RMS: No suppression

25.33.4 Three-phase voltage measurement (VMMXU)

Table 228: Three-phase voltage measurement (VMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: f_n ±2 Hz At voltages in range 0.011.15 \times U_n
	±0.5% or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5, RMS: No suppression

25.33.5 Phase voltage measurement (VPHMMXU)

Table 229: VPHMMXU Technical data

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: f _n ±2 Hz
	At voltages in range 0.011.15 × U _n
	± 0.5 % or $\pm 0.002 \times U_n$
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,
	RMS: No suppression

25.33.6 Single-phase voltage measurement (VAMMXU)

Table 230: Single-phase voltage measurement (VAMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: $\rm f_n$ ±2 Hz At voltages in range 0.01…1.15 \times $\rm U_n$
	±0.5% or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5, RMS: No suppression

25.33.7 Residual voltage measurement (RESVMMXU)

Table 231: Residual voltage measurement (RESVMMXU)

Characteristic	Value
Operation accuracy	Depending on the frequency of the measured voltage: f/f _n = ±2 Hz
	±0.5% or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,
	RMS: No suppression

25.33.8 Sequence voltage measurement (VSMSQI)

Table 232: Sequence voltage measurement (VSMSQI)

Characteristic	Value
Operation accuracy	Depending on the frequency of the voltage measured: $f_{n}\pm 2\text{Hz}$
	At voltages in range 0.011.15 × U _n
	±1.0% or ±0.002 × U _n
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

25.33.9 Three-phase power and energy measurement (PEMMXU)

Table 233: Three-phase power and energy measurement (PEMMXU)

Characteristic	Value
Operation accuracy ¹⁷²	At all three currents in range 0.101.20 × In At all three voltages in range 0.501.15 × $\rm U_n$ At the frequency $\rm f_n$ ±1 Hz
	±1.5% for apparent power S
	±1.5% for active power P and active energy ¹⁷³
	$\pm 1.5\%$ for reactive power Q and reactive energy 174
	±0.015 for power factor
Suppression of harmonics	DFT: -50 dB at f = n × f _n , where n = 2, 3, 4, 5,

 173 [PF] >0.5 which equals [cos ϕ] >0.5

¹⁷² *Measurement mode* = "Pos Seq" (default)

 $^{^{174}\,}$ [PF] <0.86 which equals $|sin\varphi|$ >0.5

25.33.10 Frequency measurement (FMMXU)

Table 234: Frequency measurement (FMMXU)

Characteristic	Value
Operation accuracy	±5 mHz
	(in measurement range 3575 Hz)

25.33.11 Tap changer position indication (TPOSYLTC)

Table 235: Tap changer position indication (TPOSYLTC)

Characteristic	Value
Response time for binary inputs	Typically 100 ms

25.34 Power quality functions

25.34.1 Current total demand, harmonic distortion, DC component (TDD, THD, DC) and individual harmonics (CHMHAI)

Table 236: Current total demand, harmonic distortion, DC component (TDD, THD, DC) and individual harmonics (CHMHAI)

Characteristic	Value
Operation accuracy ¹⁷⁵	±3.0% or ±0.2

25.34.2 Current total demand, harmonic distortion, DC component (TDD, THD, DC) and individual harmonics (CHMHAI) main settings

Table 237: Current total demand, harmonic distortion, DC component (TDD, THD, DC) and individual harmonics (CHMHAI) main settings

Parameter	Function	Value (Range)	Step
Sliding interval	СНМНАІ	1 = 3 seconds	-
		2 = 1 minute	
		3 = 5 minutes	
Reference Cur Sel	СНМНАІ	0 = fundamental	-
		2 = absolute	
Demand current	СНМНАІ	0.101.00 × I _n	0.01

¹⁷⁵ Nominal frequency 50 Hz. Harmonics in the range 0...0.21 × fundamental amplitude

25.34.3 Voltage total harmonic distortion, DC component (THD, DC) and individual harmonics (VHMHAI)

Table 238: Voltage total harmonic distortion, DC component (THD, DC) and individual harmonics (VHMHAI)

Characteristic	Value
Operation accuracy ¹⁷⁶	±3.0% or ±0.2

25.34.4 Voltage total harmonic distortion, DC component (THD, DC) and individual harmonics (VHMHAI) main settings

Table 239: Voltage total harmonic distortion, DC component (THD, DC) and individual harmonics (VHMHAI) main settings

Parameter	Function	Value (Range)	Step	
Sliding interval	VHMHAI	1 = 3 seconds	-	
		2 = 1 minute		
		3 = 5 minutes		

25.34.5 Voltage variation (PHQVVR)

Table 240: Voltage variation (PHQVVR)

Characteristic	Value
Operation accuracy	±1.5% of the set value or ±0.2% of reference voltage
Reset ratio	Typically 0.96 (Swell), 1.04 (Dip, Interruption)

25.34.6 Voltage variation (PHQVVR) main settings

Table 241: Voltage variation (PHQVVR) main settings

Parameter	Function	Value (Range)	Step	
Voltage dip set 1	PHQVVR	10.0100.0%	0.1	
Voltage dip set 2	PHQVVR	10.0100.0%	0.1	
Voltage dip set 3	PHQVVR	10.0100.0%	0.1	
Voltage swell set 1	PHQVVR	100.0140.0%	0.1	
Voltage swell set 2	PHQVVR	100.0140.0%	0.1	
Voltage swell set 3	PHQVVR	100.0140.0%	0.1	
Voltage Int set	PHQVVR	0.0100.0%	0.1	
VVa Dur Max	PHQVVR	1003600000 ms	100	

 $^{^{176}\,}$ Nominal frequency 50 Hz. Harmonics in the range 0...0.21 × fundamental amplitude

25.34.7 Voltage unbalance (VSQVUB)

Table 242: Voltage unbalance (VSQVUB)

Characteristic	Value
Operation accuracy	$\pm 1.5\%$ of the set value or $\pm 0.002 \times U_n$
Reset ratio	Typically 0.96

25.34.8 Voltage unbalance (VSQVUB) main settings

Table 243: Voltage unbalance (VSQVUB) main settings

Parameter	Function	Value (Range)	Step
Operation	VSQVUB	1 = on	-
		5 = off	
Unb detection method	VSQVUB	1 = Neg Seq	-
		2 = Zero Seq	
		3 = Neg to Pos Seq	
		4 = Zero to Pos Seq	
		5 = Ph vectors Comp	

25.35 Logging functions

25.35.1 Disturbance recorder, common functionality (RDRE) main settings

Table 244: Disturbance recorder, common functionality (RDRE) main settings

Parameter	function	Value (Range)	Step
Record length	RDRE	10500 cycles	1
Pre-trg length	RDRE	0100%	1
Operation mode	RDRE	1 = Overwrite 2 = Saturation	-
Storage rate	RDRE	32, 16, 8 samples per fundamental cycle	-

25.36 Other functionality

25.36.1 Pulse timer, eight channels (PTGAPC)

Table 245: Pulse timer, eight channels (PTGAPC)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

25.36.2 Time delay off, eight channels (TOFPAGC)

Table 246: Time delay off, eight channels (TOFPAGC)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

25.36.3 Time delay on, eight channels (TONGAPC)

Table 247: Time delay on, eight channels (TONGAPC)

Characteristic	Value
Operate time accuracy	±1.0% of the set value or ±20 ms

26. Mounting methods

With appropriate mounting accessories, the protection relay can be rack mounted, wall mounted, roof mounted or door mounted. The LHMI can be mounted either on a door or a surface, or in a tilted position (25°) using special accessories. It is also possible to rack mount or door mount the protection relay together with the LHMI.

Mounting options for the relay:

- Rack mounting
- Rack mounting with the LHMI
- Rack mounting with the LHMI including a provision for the RTXP 24 test switch
- Wall mounting
- Roof mounting
- Door mounting
- Door mounting with the LHMI

Mounting options for the HMI:

- Rack mounting
- Door mounting
- Mounting in a 25° tilt

27. Selection and ordering data

Use *ABB Library* to access the selection and ordering information and to generate the order number.

Relays online (PST), a Next-Generation Order Number Tool, supports order code creation for ABB Distribution Automation IEC products with emphasis on, but not exclusively for, the

29. Accessories and ordering data

Table 248: HMI

Relion product family. PST is an easy-to-use, online tool always containing the latest product information. The complete order code can be created with detailed specification and the result can be printed and mailed. Registration is required.

In case the relay and the HMI will be exposed to harsh environmental conditions; like high humidity, chemicals or other corrosive agents, we recommend using the conformal coated versions of both.

28. Modification Sales

Modification Sales is a concept that provides modification support for already delivered relays. Under Modification Sales it is possible to modify both the hardware and software capabilities of the existing relay. The same options are available as when a new relay variant is configured and ordered from the factory: it is possible to add new hardware modules into empty slots, change the type of the existing modules within the slots or add software functions by adding application and, if necessary, add-on packages. If it is needed to use the possibilities provided by the Modification Sales concept, please contact your local ABB unit. The information that is requested by ABB is a) Relay serial number, b) Relay order code and c) The requested modification, separately stated for each relay.

Modification Sales is based on license handling within the relay. Modifying the relay without proper new license from ABB puts the relay in internal relay failure mode.

Item	Order number
LHMI (including mounting bracket kit)	2RCA033008A0001
LHMI, conformal coated (including mounting bracket kit)	2RCA033008A0901
SHMI (including mounting bracket kit)	2RCA033008A0002
SHMI, conformal coated (including mounting bracket kit)	2RCA033008A0902

Item	Order number
0.5 m (1.6 ft) connection cable for HMI	1MRS120549-05
1.0 m (3.3 ft) connection cable for HMI	1MRS120549-1
2.0 m (6.6 ft) connection cable for HMI	1MRS120549-2
3.0 m (9.8 ft) connection cable for HMI	1MRS120549-3
5.0 m (16.4 ft) connection cable for HMI	1MRS120549-5
RJ-45 coupler for HMI service port	SYJ-ZBE 8A17

Table 249: Communication

Item	Order number
LC SFP plug-in connector for optical multimode media 100M	2RCA045621
LC SFP plug-in connector for optical single-mode media 100M, 20.0 km (12.4 mi)	2RCA045622
LC SFP plug-in connector for optical single-mode media 100M, 50.0 km (31.1 mi)	2RCA045623

Table 250: Mounting

Item	Order number
Back wall / side wall mounting kit	2RCA040872A0001
Roof mounting kit	2RCA040873A0001
Door mounting with LHMI ¹	2RCA040882A0001
19" relay rack mounting with LHMI ¹	2RCA041125A0001
19" relay rack mounting without LHMI ¹	2RCA041127A0001
19" relay rack mounting for relay and LHMI, including a provision for RTXP 24 test switch, 6U $^{\rm 1}$	2RCA051498A0001
19" relay rack mounting for relay and LHMI, including a provision for RTXP 24 test switch, 7U $^{\rm 1}$	2RCA051503A0001
Surface mounting kit for HMI ¹	2RCA038783A0001
Tilt mounting kit for HMI ¹	2RCA038782A0001
Grounding bar kit for RTD module	2RCA039981A0001

¹ Powder painting, RAL 7035 flat. (Gloss: 60L 65-85 acc. to EN-ISO 2813)

Table 251: Arc sensors

Item	Order number
ARC lens sensor cable 1.5 m (4.9 ft)	2RCA040290A0001
ARC lens sensor cable 3.0 m (9.8 ft)	2RCA040290A0003
ARC lens sensor cable 5.0 m (16.4 ft)	2RCA040290A0005
ARC lens sensor cable 7.5 m (24.6 ft)	2RCA040290A0007
ARC lens sensor cable 15.0 m (49.2 ft)	2RCA040290A0015
ARC loop sensor cable 5.0 m (16.4 ft), plastic fiber	2RCA051658A0005
ARC loop sensor cable 10.0 m (32.8 ft), plastic fiber	2RCA051658A0010
ARC loop sensor cable 15.0 m (49.2 ft), plastic fiber	2RCA051658A0015
ARC loop sensor cable 20.0 m (65.6 ft), plastic fiber	2RCA051658A0020
ARC loop sensor cable 25.0 m (82.0 ft), plastic fiber	2RCA051658A0025
ARC loop sensor cable 30.0 m (98.4 ft), plastic fiber	2RCA051658A0030
ARC loop sensor cable 40.0 m (131.2 ft), glass fiber	2RCA041050A0040
ARC loop sensor cable 50.0 m (164.0 ft), glass fiber	2RCA041050A0050
ARC loop sensor cable 60.0 m (196.9 ft), glass fiber	2RCA041050A0060
Blind extension cable for ARC loop sensors, 2.0 m (6.6 ft), to be used with plastic fiber loops only	2RCA051662A0001
ARC sensor fiber, 100 m, delivery length	1MSC 380018.100
ARC sensor fiber, 300 m, delivery length	1MSC 380018.300
ARC sensor fiber, 500 m, delivery length	1MSC 380018.500
ARC sensor fiber connector (25 pcs.)	SJG BP05226-02
ARC sensor fiber connector spacer sleeve (25 pcs.)	2RCA056821

Table 252: Connectors

Item	Order number
Compression-type signal connectors	SYJ-ZRK 2Z18P1
Ring-lug type signal connectors	SYJ-ZRK 33X18
Push-in type signal connectors	SYJ-ZRK 53P18PM
1 CT-1 VT compression-type connector	2RCA040474A0004

Item	Order number
5 CT compression-type connector	2RCA040474A0001
5 VT compression-type connector	2RCA040474A0002
1 CT-4 VT compression-type connector	2RCA040474A0003
1 CT-1 VT ring-lug type connector	2RCA041297A0004
5 CT ring-lug type connector	2RCA041297A0001
5 VT ring-lug type connector	2RCA041297A0002
1 CT-4 VT ring-lug type connector	2RCA041297A0003
RS-485/IRIG-B connector	SYJ-ZRK 44P10
HMI power supply connector	SYJ-ZRK 45X3 ¹⁷⁷

30. Tools

The protection relay is delivered with the correct protection and control functionality included but it needs some engineering to fit in the needed application. The default parameter setting values can be changed from the HMI, the Web browser-based user interface (WHMI) or Protection and Control IED Manager PCM600 in combination with the relayspecific connectivity package.

PCM600 offers extensive relay configuration functions. For example, the setting parameters, relay application, graphical display and IEC 61850 communication, including horizontal GOOSE communication, can be modified with PCM600. The REX640 relay's LHMI pages can be customized and shared between devices with a dedicated Display Editor which offers intuitive graphical drawing tools with editable symbols for single-line diagrams. In addition, it is possible to create personalized views for every supported application. The page access can be customized for every user to enable simple operational usage for all user levels.

When the WHMI is used, the protection relay can be accessed from any of the relay's access points, including the Ethernet connection on the LHMI. For security reasons, the WHMI is disabled by default, but it can be enabled via the LHMI. The WHMI functionality can be limited to read-only access.

Table 253: Tools

Description	Version
PCM600	2.12 or later
Web browser	Microsoft Edge, Google Chrome and Mozilla Firefox
REX640 connectivity package	1.3.0 or later

¹⁷⁷ Compatible alternative connector with screw flange fastening Weidmüller 1944340000.

Table 254: Supported functions

Function	Web HMI	РСМ600
Relay parameter setting	•	•
Saving of relay parameter settings in the relay	•	•
Signal monitoring	•	•
Disturbance recorder handling	•	•
Alarm LED viewing	•	•
Access control management	•	•
Relay signal configuration (Signal Matrix)	-	•
Modbus® communication configuration (communication management)	-	•
DNP3 communication configuration (communication management)	-	•
IEC 60870-5-103 communication configuration (communication management)	-	•
Saving of relay parameter settings in the tool	-	•
Disturbance record analysis	-	•
XRIO parameter export/import	•	•
Graphical display configuration	-	•
Application configuration	-	•
IEC 61850 communication configuration, GOOSE (communication configura- tion)	-	•
Phasor diagram viewing	•	-
Event viewing	•	•
Saving of event data on the user's PC	•	•
Online monitoring	-	•

• = Supported

The relay connectivity package is a collection of software and specific relay information which enables system products and tools to connect and interact with the protection relay. The connectivity packages reduce the risk of errors in system integration, minimizing device configuration and setup times.

Further, the connectivity package for REX640 includes a flexible update tool for adding

one additional LHMI language and new functionalities to the protection relay. The flexible modification support of the relay enables adding new protection functionalities whenever the protection and control needs are changing.

31. Module diagrams

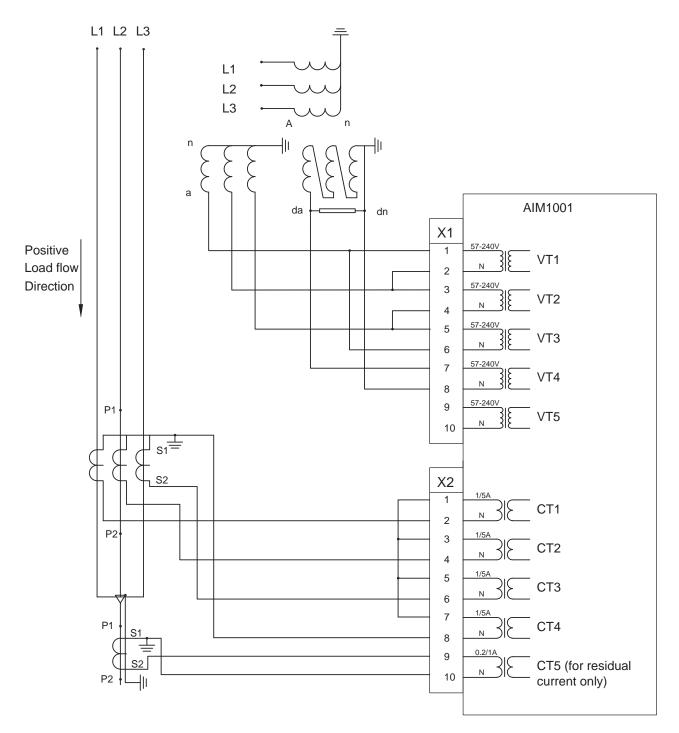
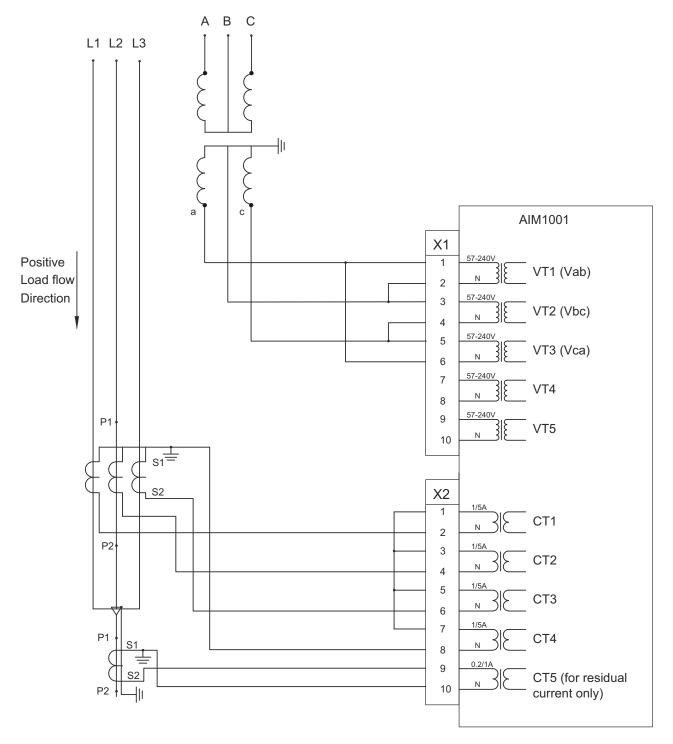



Figure 29: AIM1001 module

Figure 30: AIM1001 module (two phase-to-phase VTs)

The two phase-to-phase VT connection is often referred as "open delta" (ANSI) or as "V" (IEC) connection. The relay measures all three phaseto-phase voltages using only two primary VTs. The relay will calculate the phase-to-ground voltages internally, with the assumption that the three-phase system is balanced, i.e. residual voltage is zero.

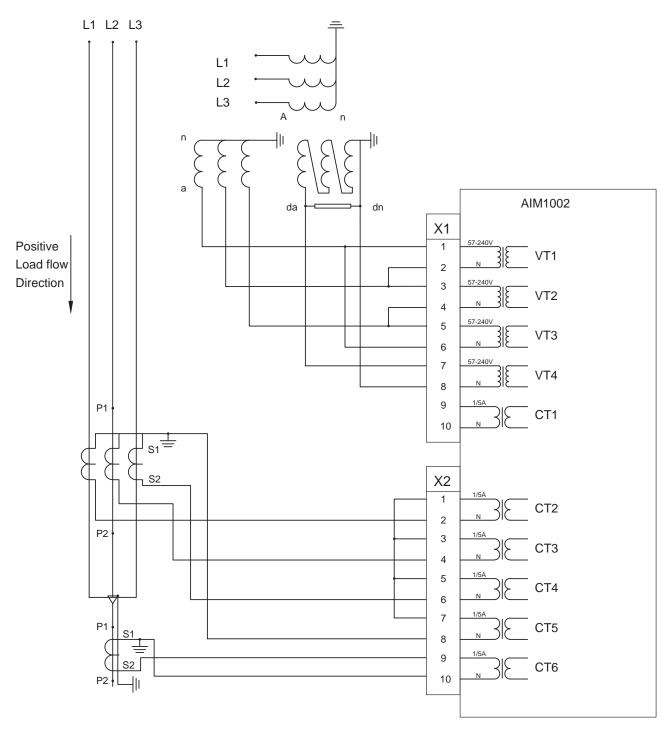
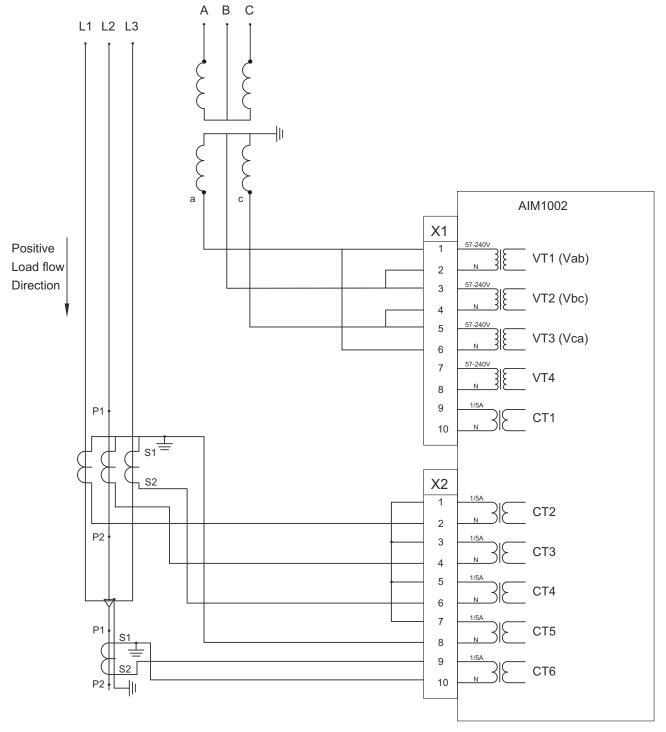



Figure 31: AIM1002 module

Figure 32: AIM1002 module (two phase-to-phase VTs)

The two phase-to-phase VT connection is often referred as "open delta" (ANSI) or as "V" (IEC) connection. The relay measures all three phaseto-phase voltages using only two primary VTs. The relay will calculate the phase-to-ground voltages internally, with the assumption that the three-phase system is balanced, i.e. residual voltage is zero.

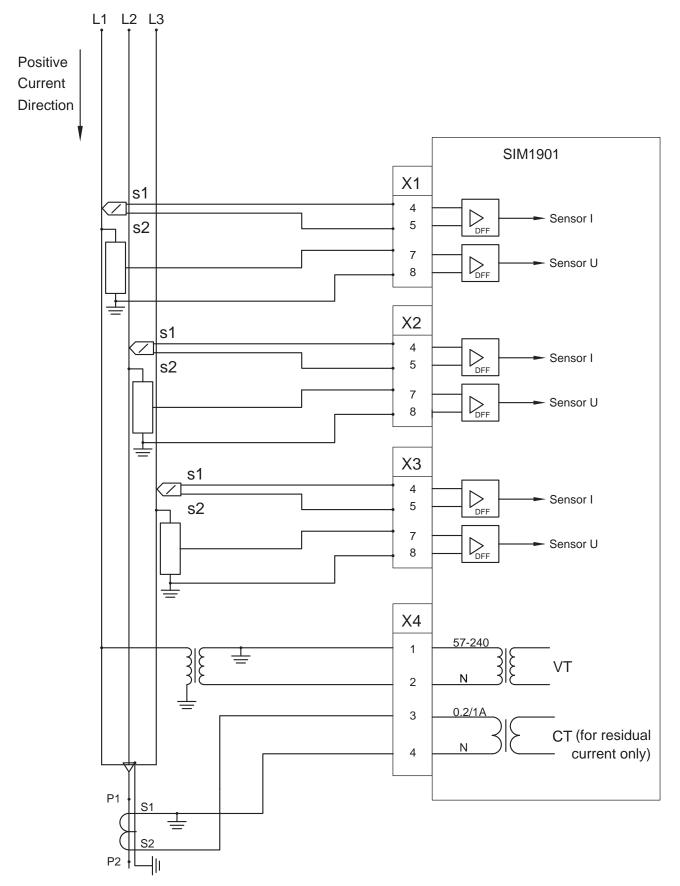


Figure 33: SIM1901 module (VT primary connection phase-to-earth)

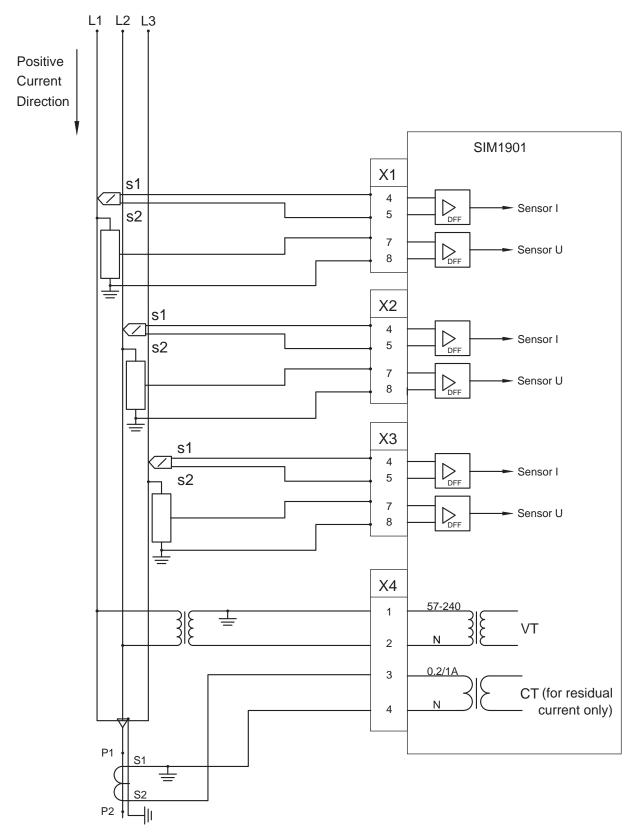


Figure 34: SIM1901 module (VT primary connection phase-to-phase)

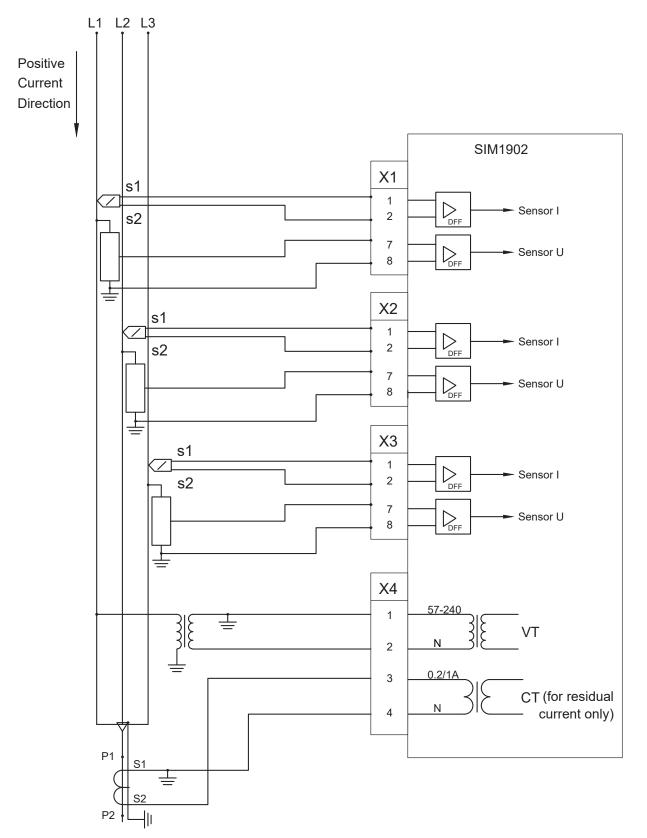
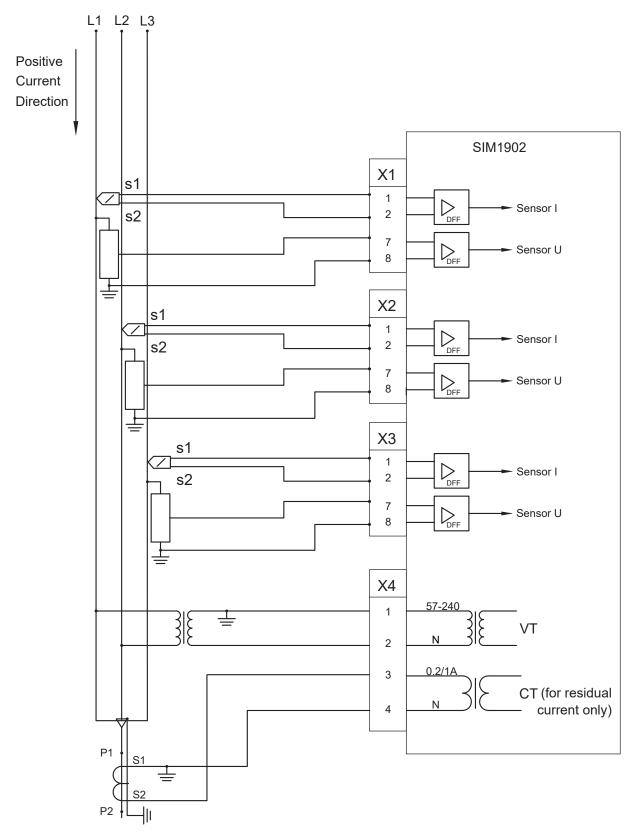



Figure 35: SIM1902 module (VT primary connection phase-to-earth)

Figure 36: SIM1902 module (VT primary connection phase-to-phase)

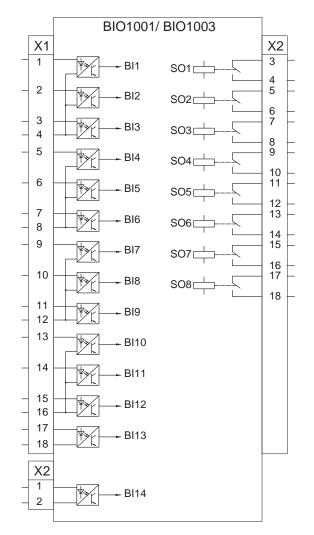


Figure 37: BIO1001/BIO1003 modules

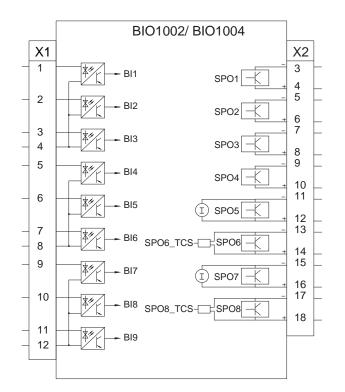


Figure 38: BIO1002/BIO1004 modules

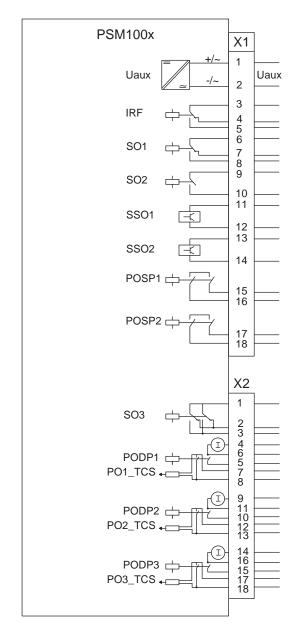


Figure 39: PSM100x module

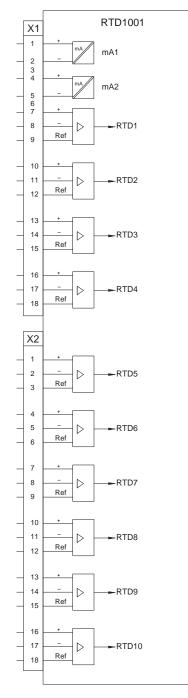


Figure 40: RTD1001 module

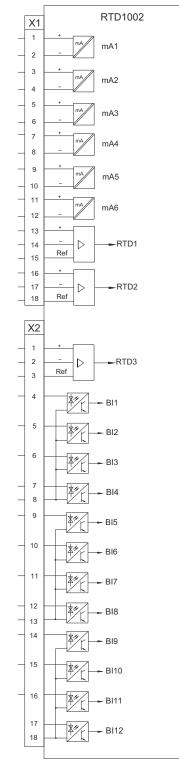


Figure 41: RTD1002 module

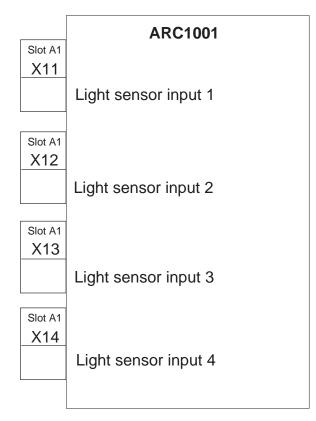


Figure 42: Arc module

32. Certificates

DNV GL has issued an IEC 61850 Edition 2 with Amendment 1 Certificate Level A1 for REX640 Protection and Control relay. Certificate number: 10358145-DSO 22-3007.

Additional certificates can be found on the *product page*.

33. References

The *www.abb.com/substationautomation* portal provides information on the entire range of distribution automation products and services.

The latest relevant information on the REX640 protection and control relay is found on the *product page*. Scroll down the page to find and download the related documentation.

34. Functions, codes and symbols

Table 255: Functions included in the relay

Function	IEC 61850	IEC 60617	ANSI				
Protection							
Distance protection	DSTPDIS	Z<	21P,21N				
Local acceleration logic	DSTPLAL	LAL	21LAL				
Scheme communication logic	DSOCPSCH	CL	85 21SCHLGC				
Current reversal and weak-end infeed logic	CRWPSCH	CLCRW	85 21CREV,WEI				
Communication logic for residual overcurrent	RESCPSCH	CLN	85 67G/N SCHLGC				
Current reversal and weak-end infeed logic for residual overcur- rent	RCRWPSCH	CLCRWN	85 67G/N CREV,WEI				
Power swing detection	DSTRPSB	Zpsb	68				
Line differential protection with inzone power transformer	LNPLDF	3Id/I>	87L				
Binary signal transfer	BSTGAPC	BST	BST				
Switch-onto-fault protection	CVPSOF	CVPSOF	SOTF				
Three-phase non- directional overcurrent protection, low stage	PHLPTOC	31>	51P-1				
Three-phase non- directional overcurrent protection, high stage	РННРТОС	3 >>	51P-2				
Three-phase non- directional overcurrent protection, instanta- neous stage	ΡΗΙΡΤΟΟ	3 >>>	50P				
Three-phase directional overcurrent protection, low stage	DPHLPDOC	67P/51P-1					
Three-phase directional overcurrent protection, high stage	DPHHPDOC	3 >>->	67P/51P-2				
Non-directional earth-fault protection, low stage	EFLPTOC	lo>	51G/51N-1				
Non-directional earth-fault protection, high stage	EFHPTOC	10>>	51N-2				
Non-directional earth-fault protection, instantaneous stage	EFIPTOC	10>>>	50G/50N				
Directional earth-fault protection, low stage	DEFLPDEF	0>->	67G/N-1 51G/N-1				
Directional earth-fault protection, high stage	DEFHPDEF	0>>->	67G/N-1 51G/N-2				
Three-phase power directional element	DPSRDIR	1 ->	67P-TC				
Neutral power directional element	DNZSRDIR	12->,10->	67N-TC				
Admittance-based earth-fault protection	EFPADM	Yo>->	21YN				
Multifrequency admittance-based earth-fault protection	MFADPSDE	lo>->Y	67NYH				
Wattmetric-based earth-fault protection	WPWDE	Po>->	32N				
Transient/intermittent earth-fault protection	INTRPTEF	lo>->IEF	67NTEF/NIEF				
Table continues on the next page							

Function	IEC 61850	IEC 60617	ANSI			
Harmonics-based earth-fault protection	HAEFPTOC	lo>HA	51NH			
Touch voltage based earth-fault current protection	IFPTOC	IF>/UT>	46SNQ/59N			
Negative-sequence overcurrent protection	NSPTOC	l2>M	46M			
Phase discontinuity protection	PDNSPTOC	12/11>	46PD			
Residual overvoltage protection	ROVPTOV	Uo>	59G/59N			
Three-phase undervoltage protection	PHPTUV	3U<	27			
Three-phase overvoltage variation protection	PHVPTOV	3Urms>	59.S1			
Three-phase overvoltage protection	PHPTOV	3U>	59			
Positive-sequence overvoltage protection	PSPTOV	U1>	59PS			
Positive-sequence undervoltage protection	PSPTUV	U1<	27PS			
Negative-sequence overvoltage protection	NSPTOV	U2>	47,59NS			
Frequency protection	FRPFRQ	f>/f<,df/dt	81			
Three-phase voltage-dependent overcurrent protection	PHPVOC	3I(U)>	51V			
Overexcitation protection	OEPVPH	U/f>	24			
Three-phase thermal protection for feeders, cables and distribution transformers	T1PTTR	49F				
Three-phase thermal overload protection, two time constants	T2PTTR	3lth>T/G/C	49T/G/C			
Three-phase overload protection for shunt capacitor banks	COLPTOC	3 >3 <	51,37,86C			
Current unbalance protection for shunt capacitor banks	CUBPTOC	dl>C	60N			
Three-phase current unbalance protection for shunt capacitor banks	HCUBPTOC	60P				
Shunt capacitor bank switching resonance protection, current based	SRCPTOC	TD>	55ITHD			
Compensated neutral unbalance voltage protection	CNUPTOV	CNU>	59NU			
Directional negative- sequence overcurrent protection	DNSPDOC	2>->	67Q			
Low-voltage ride- through protection	LVRTPTUV	UU	27RT			
Voltage vector shift protection	VVSPPAM	VS	78VS			
Directional reactive power undervoltage protection	DQPTUV	Q>-> ,3U<	32Q,27			
Reverse power/ directional overpower protection	DOPPDPR	P>/Q>	32R/320			
Underpower protection	DUPPDPR	Ρ<	32U			
Three-phase under impedance protection	UZPDIS	ZZ	21G			
Directional negative sequence impedance protection	DNZPDIS	Z2->	Z2Q			
Three-phase under excitation protection	UEXPDIS	χ<	40			
Table continues on the next page						

Function	IEC 61850	IEC 60617	ANSI					
Third harmonic-based stator earth-fault protection	H3EFPSEF	dUo>/Uo3H	64TN					
Rotor earth-fault protection (injection method)	MREFPTOC	lo>R	64R					
Generator shaft leakage current	GSLPTOC	l>,GS	38, 51					
Thermal overload protection for rotors	RPTTR	49R						
High-impedance or flux-balance based differential protection	MHZPDIF	3dlHi>M	87HIM					
Out-of-step protection with double blinders	OOSRPSB	OOS	78PS					
Negative-sequence overcurrent protection for machines	MNSPTOC	I2>M	46M					
Loss of phase, undercurrent	PHPTUC	3I<	37					
Loss of load supervision	LOFLPTUC	3I<	37					
Motor load jam protection	JAMPTOC	lst>	50TDJAM					
Motor start-up supervision	STTPMSU	ls2t n<	49,66,48,50TDLR					
Motor start counter	MSCPMRI	n<	66					
Phase reversal protection	PREVPTOC	PREVPTOC I2>>						
Thermal overload protection for motors	MPTTR	3Ith>M 49M						
Stabilized and instantaneous differential protection for ma- chines	MPDIF	APDIF 3dl>M/G 87M						
Underpower factor protection	MPUPF	MPUPF PF< 55						
Stabilized and instantaneous differential protection for two- or three- winding transformers	TR3PTDF	3PTDF 3dI>3W						
Stabilized and instantaneous differential protection for two- winding transformers	TR2PTDF	3dl>T	87T					
Numerical stabilized low-impedance restricted earth-fault pro- tection	LREFPNDF	87NLI						
High-impedance based restricted earth- fault protection	HREFPDIF	87NHI						
High-impedance differential protection for phase A	HIAPDIF	dHi_A>	87_A					
High-impedance differential protection for phase B	HIBPDIF	dHi_B>	87_B					
High-impedance differential protection for phase C	HICPDIF	HICPDIF dHi_C>						
Circuit breaker failure protection	CCBRBRF	3I>/lo>BF	50BF					
Three-phase inrush detector	INRPHAR	312f>	68HB					
Master trip	TRPPTRC	Master Trip	94/86					
Arc protection	ARCSARC	ARC	AFD					
High-impedance fault detection	PHIZ	HIZ						
Cable Fault Detection	RCFD	CFD	D CFD					
Fault locator	SCEFRFLO	FLOC	FLOC					
Table continues on the next page								

Function	IEC 61850	IEC 60617	ANSI				
Load-shedding and restoration	LSHDPFRQ	UFLS/R	81LSH				
Multipurpose protection	MAPGAPC	MAP	MAP				
Accidental energization protection	GAEPVOC	U<,I>	50/27				
Load blinder	LBRDOB	LB	21LB				
Control							
Circuit-breaker control	CBXCBR	I <-> 0 CB	52				
Three-state disconnector control	P3SXSWI	I<->0 P3S	29DS/GS				
Disconnector control	DCXSWI	I <-> 0 DCC	29DS				
Earthing switch control	ESXSWI	l <-> 0 ESC	29GS				
Three-state disconnector position indication	P3SSXSWI	I<->0 P3SS	29DS/GS				
Disconnector position indication	DCSXSWI	I <-> 0 DC	29DS				
Earthing switch position indication	ESSXSWI	l <-> 0 ES	29GS				
Motor controlled earthing switch and disconnector supervision	ESDCSSWI	ESDCSSWI ESDCCM					
Emergency start-up	ESMGAPC	ESMGAPC ESTART					
Autoreclosing	DARREC	79					
Autosynchronizer for generator breaker	ASGCSYN	ASGCSYN AUTOSYNCG 2					
Autosynchronizer for network breaker	ASNSCSYN	ASNSCSYN AUTOSYNC					
Autosynchronizer co-ordinator	ASCGAPC	AUTOSYNC	25AUTOSYNC				
Synchronism and energizing check	SECRSYN	SYNC	25				
Tap changer control with voltage regulator	OL5ATCC	90V					
Transformer data combiner	OLGAPC	OLGAPC					
Petersen coil controller	PASANCR	ANCR	90				
High speed bus transfer	HSABTC	HSABTC I<->O BT					
Condition monitoring and supervision							
Circuit-breaker condition monitoring	SSCBR	СВСМ	52CM				
Hot-spot and insulation ageing rate monitoring for transform- ers	HSARSPTR	3lhp>T	26/49HS				
Trip circuit supervision	TCSSCBR	TCS	ТСМ				
Current circuit supervision	CCSPVC	MCS 3I	ССМ				
Current circuit supervision for transformers	CTSRCTF	MCS 31,12	CCM 31,12				
Current transformer supervision for high- impedance protec- tion scheme for phase A	HZCCASPVC	MCS I_A	CCM_A				

Function	IEC 61850	IEC 60617	ANSI				
Current transformer supervision for high- impedance protec- tion scheme for phase B	HZCCBSPVC	MCS I_B	CCM_B				
Current transformer supervision for high- impedance protec- tion scheme for phase C	HZCCCSPVC	MCS I_C	ССМ_С				
Fuse failure supervision	SEQSPVC	FUSEF	VCM, 60				
Protection communication supervision	PCSITPC	PCS	PCS				
Runtime counter for machines and devices	MDSOPT	OPTS	OPTM				
Three-phase remanent undervoltage supervision	MSVPR	3U <r< td=""><td>27R</td></r<>	27R				
Diesel Generator Monitoring	DGMGAPC	P><,U/f><	32/40G				
Measurement							
Three-phase current measurement	СММХИ	31	IA, IB, IC				
Sequence current measurement	CSMSQI	11, 12, 10	11, 12, 10				
Residual current measurement	RESCMMXU	lo	IG				
Three-phase voltage measurement	VMMXU	3U	VA, VB, VC				
Single-phase voltage measurement	VAMMXU	U U_A V_A					
Phase voltage measurement	VPHMMXU	3UL VL					
Residual voltage measurement	RESVMMXU	VG/VN					
Sequence voltage measurement	VSMSQI	U1, U2, U0	V1, V2, V0				
Three-phase power and energy measurement	PEMMXU	P, E	P, E				
Load profile recorder	LDPRLRC	LOADPROF	LOADPROF				
Frequency measurement	FMMXU	f	f				
Tap changer position indication	TPOSYLTC	84T					
Power quality							
Current total demand, harmonic distortion, DC component (TDD, THD, DC) and individual harmonics	СНМНАІ	PQM3IH	PQM ITHD,IDC				
Voltage total harmonic distortion, DC component (THD, DC) and individual harmonics	VHMHAI	РQM3VH	PQM VTHD,VDC				
Voltage variation	PHQVVR	PQMU	PQMV SWE,SAG,INT				
Voltage unbalance	VSQVUB	PQUUB	PQMV UB				
Traditional LED indication							
LED indication control	LEDPTRC	LEDPTRC	LEDPTRC				
Individual virtual LED control	LED	LED	LED				
Logging functions							
Disturbance recorder (common functionality)	RDRE	DR	RDRE				

A1RADR A2RADR	A1RADR	A1RADR			
A2DADD		7110 1011			
ALKADK	A2RADR	A2RADR			
B1RBDR	B1RBDR	B1RBDR			
B2RBDR	B2RBDR	B2RBDR			
FLTRFRC	FAULTREC	FR			
PROTECTION	PROTECTION	PROTECTION			
GNRLLTMS	TSYNC	TSYNC			
SERLCCH	SERLCCH	SERLCCH			
MMSLPRT	MMS	MMS			
GSELPRT	GSE	GSE			
I3CLPRT	I3C	I3C			
I5CLPRT	15C	15C			
DNPLPRT	DNP 3.0	DNP 3.0			
MBSLPRT	MBS	MBS			
OR	OR OR				
OR6	OR6	OR6			
OR20	OR20	OR20			
AND	AND	AND			
AND6	AND6	AND6			
AND20	AND20	AND20			
XOR	XOR				
NOT	NOT	NOT			
MAX3R	MAX3R	MAX3R			
MIN3R	MIN3R	MIN3R			
R_TRIG	R_TRIG	R_TRIG			
F_TRIG	F_TRIG	F_TRIG			
SWITCHR	SWITCHR	SWITCHR			
SWITCHI32	SWITCHI32	SWITCHI32			
SR	SR	SR			
RS	RS	RS			
TPGAPC	ТР	62TP			
	FLTRFRCPROTECTIONGNRLLTMSSERLCCHMMSLPRTGSELPRTI3CLPRTI3CLPRTDNPLPRTOROR6OR20ANDAND6AND20XORMMSLRMIN3RR_TRIGF_TRIGSWITCHRSRRS	FLTRFRCFAULTRECPROTECTIONPROTECTIONGNRLLTMSTSYNCSERLCCHSERLCCHMMSLPRTMMSGSELPRTGSEI3CLPRTI3CI5CLPRTDNP 3.0MBSLPRTMBSOROROR6OR6OR20OR20AND6AND6AND6AND20XORXORXORXORMAX3RMAX3RMIN3RMIN3RSWITCHRSWITCHRSWITCHI32SRRSRS			

Function	IEC 61850	IEC 60617	ANSI			
Minimum pulse timer second resolution, two channels	TPSGAPC	TPS	62TPS			
Minimum pulse timer minutes resolution, two channels	TPMGAPC	TPM	62TPM			
Pulse counter for energy measurement	PCGAPC	PCGAPC	PCGAPC			
Pulse timer, eight channels	PTGAPC	PT	62PT			
Time delay off, eight channels	TOFGAPC	TOF	62TOF			
Time delay on, eight channels	TONGAPC	TON	62TON			
Daily timer	DTMGAPC	DTM	DTM			
Calendar function	CALGAPC	CAL	CAL			
SR flip-flop, eight channels, nonvolatile	SRGAPC	SR	SR			
Boolean value event creation	MVGAPC	MV	MV			
Integer value event creation	MVI4GAPC	MVI4	MVI4			
Analog value event creation with scaling	SCA4GAPC	SCA4	SCA4			
Generic control points	SPCGAPC	SPC	SPCG			
Generic up-down counter	UDFCNT	UDCNT	UDCNT			
Local/Remote control	CONTROL	CONTROL				
External HMI wake-up	EIHMI	EIHMI				
Real addition	ADDR	ADDR				
Real subtraction	SUBR	SUBR	SUBR			
Real multiplication	MULR	MULR	MULR			
Real division	DIVR	DIVR	DIVR			
Real equal comparator	EQR	EQR	EQR			
Real not equal comparator	NER	NER	NER			
Real greater than or equal comparator	GER	GER	GER			
Real less than or equal comparator	LER	LER	LER			
Voltage switch	VMSWI	VSWI	VSWI			
Current sum	CMSUM	CSUM	CSUM			
Current switch	CMSWI	CMSWI	CMSWI			
Phase current preprocessing	ILTCTR	ILTCTR	ILTCTR			
Residual current preprocessing	RESTCTR	RESTCTR	RESTCTR			
Phase and residual voltage preprocessing	UTVTR	UTVTR	UTVTR			
Residual current preprocessing, current measured as voltage	RESUTCTR	lo(U)	lo(U)			
SMV stream receiver (IEC 61850-9-2LE)	SMVRCV	SMVRCV	SMVRCV			
Table continues on the next page						

Function	IEC 61850	IEC 60617	ANSI		
SMV stream sender (IEC 61850-9-2LE)	SMVSENDER	SMVSENDER	SMVSENDER		
Redundant Ethernet channel supervison	RCHLCCH	RCHLCCH	RCHLCCH		
Ethernet channel supervision	SCHLCCH	SCHLCCH	SCHLCCH		
HMI Ethernet channel supervision	HMILCCH	HMILCCH	HMILCCH		
Received GOOSE binary information	GOOSERCV_BIN	GOOSERCV_BIN	GOOSERCV_BIN		
Received GOOSE double binary information	GOOSERCV_DP	GOOSERCV_DP	GOOSERCV_DP		
Received GOOSE measured value information	GOOSERCV_MV	GOOSERCV_MV	GOOSERCV_MV		
Received GOOSE 8- bit integer value information	GOOSERCV_INT8	GOOSERCV_INT8	GOOSERCV_INT8		
Received GOOSE 32- bit integer value information	GOOSERCV_INT32	GOOSERCV_INT32	GOOSERCV_INT32		
Received GOOSE interlocking information	GOOSERCV_INTL	GOOSERCV_INTL	GOOSERCV_INTL		
Received GOOSE measured value (phasor) information	GOOSERCV_CMV	GOOSERCV_CMV	GOOSERCV_CMV		
Received GOOSE enumerator value information	GOOSERCV_ENUM	GOOSERCV_ENUM	GOOSERCV_ENU M		
Bad signal quality	QTY_BAD	QTY_BAD	QTY_BAD		
Good signal quality	QTY_GOOD	QTY_GOOD	QTY_GOOD		
Received GOOSE Test mode	QTY_GOOSE_TEST	QTY_GOOSE_TEST	QTY_GOOSE_TES T		
GOOSE communication quality	QTY_GOOSE_COMM	QTY_GOOSE_COM M	QTY_GOOSE_COM M		
GOOSE data health	T_HEALTH	T_HEALTH	T_HEALTH		
Fault direction evaluation	T_DIR	T_DIR	T_DIR		
Enumerator to boolean conversion	T_TCMD	T_TCMD	T_TCMD		
32-bit integer to binary command conversion	T_TCMD_BIN	T_TCMD_BIN	T_TCMD_BIN		
Binary command to 32-bit integer conversion	T_BIN_TCMD	T_BIN_TCMD	T_BIN_TCMD		
Switching device status decoder - CLOSE position	T_POS_CL	T_POS_CL	T_POS_CL		
Switching device status decoder - OPEN position	T_POS_OP	T_POS_OP	T_POS_OP		
Switching device status decoder - OK status	T_POS_OK	T_POS_OK	T_POS_OK		
Controllable gate, 8 Channels	GATEGAPC	GATEGAPC	GATEGAPC		
Security application	GSAL	GSAL	GSAL		
Hotline tag	HLTGAPC	HLTGAPC	HLTGAPC		
16 settable 32-bit integer values	SETI32GAPC	SETI32GAPC	SETI32GAPC		
16 settable real values	SETRGAPC	SETRGAPC			
Boolean to integer 32- bit conversion	T_B16_TO_I32	T_B16_TO_I32			
Table continues on the next page					

Function	IEC 61850	IEC 60617	ANSI
Integer 32-bit to boolean conversion	T_I32_TO_B16	T_I32_TO_B16	T_I32_TO_B16
Integer 32-bit to real conversion	T_I32_TO_R	T_I32_TO_R	T_I32_TO_R
Real to integer 8-bit conversion	T_R_TO_18	T_R_TO_18	T_R_TO_18
Real to integer 32-bit conversion	T_R_TO_I32	T_R_TO_I32	T_R_TO_I32
Constant FALSE	FALSE	FALSE	FALSE
Constant TRUE	TRUE	TRUE	TRUE

35. Contents of application packages

REX640 offers comprehensive base functionality. However, it is possible to further adapt the product to meet special installation needs by including any number of the available optional application packages into a single REX640 relay. For the selected application packages, the functionality can be extended by including the related add-on package. The REX640 connectivity package guides the engineer in optimizing the application configuration and its performance.

Table 256: Application packages

Description	ID
Feeder earth-fault protection extension package	APP1
Feeder fault locator package	APP2
Line distance protection package	APP3
Line differential protection package	APP4
Shunt capacitor protection package	APP5
Interconnection protection package	APP6
Machine protection package	APP7
Power transformer protection package	APP8
Busbar protection package	APP9
OLTC control package	APP10
Generator autosynchronizer package	APP11
Network autosynchronizer package	APP12
Petersen coil control package	APP13
DG-set monitoring package	APP14
HSTD for one stand-by feeder	APP51
HSTD for two stand-by feeders	APP52
HSTD for three equal feeders	APP53
Synchronous machine add-on	ADD1
3-winding transformer add-on	ADD2

Table 257: Base and optional functionality

IEC 61850	Pcs	Base		APP 2	APP 3	APP 4	APP 5	APP 6	APP 7	APP 8	APP 9	APP 10	APP 11	APP 12	APP 13	APP 14	APP 51	APP 52	АРР 53	ADD 1	ADD 2
Protection			_	_	-	-	-	-	-											_	_
DSTPDIS	1				•																
DSTPLAL	1				•		_														
DSOCPSCH	1				•																
CRWPSCH	1				•																
RESCPSCH	1				•																
RCRWPSCH	1				•																
DSTRPSB	1				•																
LNPLDF	1					•															
BSTGAPC	4				•	•															
CVPSOF	1	•																			
PHLPTOC	5	•												-							
РННРТОС	5	•																			
PHIPTOC	5	•																_			
DPHLPDOC	5	•																			
DPHHPDOC	5	•																			
EFLPTOC	5	•																			
EFHPTOC	5	•																			
EFIPTOC	5	•																			
DEFLPDEF	5	•																			
DEFHPDEF	5	•																			
DPSRDIR	4							•				•									
DNZSRDIR	2		•																		
EFPADM	3		•																		
MFADPSDE	3		•																		
WPWDE	3		•																		
INTRPTEF	2		•																		
HAEFPTOC	1		•																		
IFPTOC	3		•																		
NSPTOC	3	•																			
PDNSPTOC	1	•																			
ROVPTOV	4	•																			
PHPTUV	5	•																			
PHVPTOV	2							•													
PHPTOV	4	•																			
PSPTOV	4	•																			
PSPTUV	4	•																			
NSPTOV	4	•																			
FRPFRQ	12	•																			
PHPVOC	5	•																			
OEPVPH	2									•										•	
	-																				

VVSPPAM	3			•					
DQPTUV	2			•			 		
DOPPDPR	3			• •	•				
DUPPDPR	3				•		 		٠
UZPDIS	3				•				٠
DNZPDIS	3	•							
UEXPDIS	2						 		٠
H3EFPSEF	1								٠
MREFPTOC	2								٠
GSLPTOC	1								•
RPTTR	1			•					
MHZPDIF	1			•					
OOSRPSB	1		•						•
MNSPTOC	2			•					
PHPTUC	3	•							
LOFLPTUC	1			•					
JAMPTOC	2			•					
STTPMSU	1			•			 		
MSCPMRI	1			•					
PREVPTOC	1			•			 		
MPTTR	1			•					
MPDIF	1			•					
MPUPF	2			•					٠
TR3PTDF	1								
TR2PTDF	1				•		 		
LREFPNDF	2	•							
HREFPDIF	2	•					 		
HIAPDIF	3			•	•	•	 		
HIBPDIF	3			•	•	•			
HICPDIF	3			•	•	•			
CCBRBRF	3	•							
INRPHAR	2	•							
TRPPTRC	6	•					 		
ARCSARC	4	•							
PHIZ	1	•							
SCEFRFLO	1	•							
Table continu	ies on t	the next page							
		-							
170								REX640	-)

8

•

9

10

IEC 61850

T2PTTR

COLPTOC

CUBPTOC

HCUBPTOC

SRCPTOC

CNUPTOV

DNSPDOC

LVRTPTUV

Pcs

1

1

3

2

1

2

2

3

٠

Base 1

2

3

4

5

٠

•

•

•

•

٠

6

7

APP

52

APP

53

1

٠

•

ADD ADD

2

APP

51

14

13

12

IEC 61850	Pcs	Base		APP 2	APP 3	APP 4	APP 5	APP 6	APP 7	APP 8	APP 9	APP 10	APP 11	APP 12	APP 13	APP 14	APP 51	APP 52	АРР 53	ADD 1	ADD 2
LSHDPFRQ	6	٠																			
MAPGAPC	24	•																			
GAEPVOC	1																			•	
LBRDOB	1	•																			
Control																					
CBXCBR	3	•																			
CBXCBR	2																•	•	•		
P3SXSWI	6	•																			
DCXSWI	8	•																			
ESXSWI	3	•																			
P3SSXSWI	6	•																			
DCSXSWI	8	•																			
ESSXSWI	3	•																			
ESMGAPC	1								•												
DARREC	2	•																			
ASGCSYN	1												•								
ASNSCSYN	3													•							
ASCGAPC	1	•	_									_	-		-					_	-
SECRSYN	4	•																			
OL5ATCC	1											•									
OLGAPC	5											•									
PASANCR	1														•						
HSABTC	1																•				
HSABTC	2																	•			
HSABTC	3	-						-											•		
Condition mo		ng and	supe	rvisio	n							-	-		-	-				_	
SSCBR	3	•																			
ESDCSSWI	11	•																			
HSARSPTR	1									•											
RCFD	3	•																			
TCSSCBR	6	•									1										
CCSPVC	5	•																			
CTSRCTF	1	•								•											
HZCCASPVC	3		-								•	-	-		-	-					
HZCCBSPVC	3										•										
HZCCBSPVC	3										•										
SEQSPVC	7	•																			
PCSITPC	2				•	•															
MDSOPT	2	•			-	-															
MSVPR DGMGAPC	3	•																			
	1															•					
Measure- ment																					
CMMXU	8	•																			

IEC 61850	Pcs	Base		APP 2	APP 3	APP 4	APP 5	APP 6	APP 7	APP 8	APP 9	APP 10	APP 11	APP 12	APP 13	APP 14	APP 51	APP 52	APP 53	ADD	ADD 2
CSMSQI	8	•	_	_	-				-	-										_	_
RESCMMXU	8	•																			
VMMXU	8	•																			
VAMMXU	4	•																			
VPHMMXU	2	•																			
RESVMMXU	8	•																			
VSMSQI	8	•																			
PEMMXU	3	•																			
LDPRLRC	1	•																			
FMMXU	5	•																			
TPOSYLTC	1									•		•									
Power quality	,																				
СНМНАІ	2	•																			
VHMHAI	2	•																			
PHQVVR	2	•																			
VSQVUB	2	•																			
Traditional LE	D ind	icatior	1																		
LEDPTRC	1	•																			
LED	66	•																			
Logging funct	tions																				
RDRE	1	•																			
A1RADR	1	•																			
A2RADR	1	•																			
B1RBDR	1	•																			
B2RBDR	1	•																			
FLTRFRC	1	•																			
Other functio	nality	,																			
PROTECTION	1	٠																			
GNRLLTMS	1	•																			
SERLCCH	2	•																			
MMSLPRT	1	•																			
GSELPRT	1	•																			
I3CLPRT	2	٠																			
I5CLPRT	5	•																			
DNPLPRT	5	•																			
MBSLPRT	5	٠																			
OR	400	٠																			
OR6	400	•																			
OR20	20	•																			
AND	400	•																			
AND6	400	•																			
AND20	20	•																			
XOR	400	•																			
NOT	400	•																			

173

APP

APP

APP

	_	D.			APP						APP		APP	APP	APP	APP	APP 51	APP 52	APP 53	ADD	
IEC 61850		Base	1	2	3	4	5	6	7	8	9	10	11	12	13	14	51	52	55	1	2
HMILCCH	1 200	•																			
GOOSERCV_ BIN		•																			
GOOSERCV_ DP	100	•																			
GOOSERCV_ MV	50	•																			
GOOSERCV_I NT8	50	•																			
GOOSERCV_I NT32	50	٠																			
GOOSERCV_I NTL	100	•																			
GOOSERCV_ CMV	9	•																			
GOOSERCV_E NUM	100	•																			
QTY_BAD	20	•																			
QTY_GOOD	20	•																			
QTY_GOOSE_ COMM	100	٠																			
T_HEALTH	100	•																			
T_DIR	50	•																			
T_TCMD	100	•																			
T_TCMD_BIN	100	•																			
T_BIN_TCMD	100	•																			
T_POS_CL	150	•																			
T_POS_OP	150	•																			
T_POS_OK	150	•																			
GATEGAPC	1	٠																			
GSAL	1	•																			
HLTGAPC	1	•																			
SETI32GAPC	2	•																			
SETRGAPC	2	•																			
T_B16_TO_I32	10	•																			
T_I32_TO_B16	10	•																			
T_I32_TO_R	10	•																			
T_R_TO_18	10	٠																			
T_R_TO_I32	10	•																			
FALSE	10	•																			
TRUE	10	•																			

36. Document revision history

Document revision/date	Product connectivity level	History
A/2018-12-14	PCL1	First release
B/2019-03-27	PCL1	Content updated
C/2019-08-15	PCL1	Content updated
D/2020-02-20	PCL2	Content updated to correspond to the product connectivity level
E/2020-08-12	PCL2	Content updated
F/2020-12-10	PCL3	Content updated to correspond to the product connectivity level
G/2023-02-06	PCL4	Content updated to correspond to the product connectivity level

ABB Distribution Solutions Digital Substation Products

P.O.Box 699 FI-65101 VAASA, Finland Phone +358 10 22 11

ABB India Ltd, Digital Substation Products Maneja Works

Vadodara-390013, India Phone: +91 265 6724402 Fax: +91 265 6724407

www.abb.com/mediumvoltage www.abb.com/relion www.abb.com/substationautomation